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ABSTRACT
To date, five ctenophore species’ mitochondrial genomes have been sequenced, and
each contains open reading frames (ORFs) that if translated have no identifiable
orthologs. ORFs with no identifiable orthologs are called unidentified reading frames
(URFs). If truly protein-coding, ctenophore mitochondrial URFs represent a little
understood path in early-diverging metazoan mitochondrial evolution and
metabolism. We sequenced and annotated the mitochondrial genomes of three
individuals of the beroid ctenophore Beroe forskalii and found that in addition to
sharing the same canonical mitochondrial genes as other ctenophores, the B. forskalii
mitochondrial genome contains two URFs. These URFs are conserved among
the three individuals but not found in other sequenced species. We developed
computational tools called pauvre and cuttlery to determine the likelihood that URFs
are protein coding. There is evidence that the two URFs are under negative selection,
and a novel Bayesian hypothesis test of trinucleotide frequency shows that the
URFs are more similar to known coding genes than noncoding intergenic sequence.
Protein structure and function prediction of all ctenophore URFs suggests that they
all code for transmembrane transport proteins. These findings, along with the
presence of URFs in other sequenced ctenophore mitochondrial genomes, suggest
that ctenophores may have uncharacterized transmembrane proteins present in their
mitochondria.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Marine Biology,
Taxonomy
Keywords Ctenophore, Mitochondria, Mitogenome, Selection, Evolution, Bioinformatics, URF,
ORF, Bayesian, Sequencing

INTRODUCTION
Ctenophores, commonly called comb jellies, are a phylum of gelatinous marine animals
found in the epipelagic through the abyssopelagic habitats in both planktonic and benthic
forms (Pang & Martindale, 2008). Despite the fact that ctenophores are abundant in
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the water column (Robison, Sherlock & Reisenbichler, 2010) they are difficult to collect
and maintain in a laboratory setting (Haddock, 2004; Harbison, 1985b). As a result, we
know relatively little about ctenophore biology (Dunn, Leys & Haddock, 2015) and past
comparisons to other phyla have confirmed that ctenophores share few qualities with other
animals (Harbison, 1985a).

One area of ctenophore “hidden biology” that has come to light is the unique features
of ctenophore mitochondrial genomes. The five previously sequenced mitogenomes
(Mnemiopsis leidyi, Pleurobrachia bachei, Coeloplana loyai, Coeloplana yulianicorum
and Vallicula multiformis) share a set of characteristics that is unique among metazoans,
including rapid mitochondrial evolutionary rates, an absence of mitochondrially-encoded
tRNAs, and a lack of mitochondrially-encoded ATP8 and ATP6 (Pett et al., 2011;
Kohn et al., 2012; Arafat et al., 2018). While these traits have been explored in past
publications, little is known about another common feature to all of these mitogenomes:
open reading frames (ORFs) with no known function. Such ORFs are also called
unidentified reading frames (URFs).

The presence of URFs in all sequenced ctenophore mitogenomes is striking
considering that most metazoan mitochondrial genomes only have the same 13 conserved
protein-coding genes (Boore, 1999). Moreover, there are very few examples of metazoans
with mitochondrial URFs (Endo et al., 2005; Park, Song & Won, 2011). Importantly,
these URFs do not appear to be similar to one another at both the nucleotide and protein
level (Arafat et al., 2018). To determine the biological significance of the mitochondrial
URFs it is first necessary to determine if they truly encode proteins.

One line of evidence that suggests that some of the ctenophore URFs truly encode
proteins is that the M. leidyi mitochondrial URFs have high AT frequencies at the
third-codon positions (Pett et al., 2011). In addition, all platyctenid (benthic ctenophore)
mitochondrial URFs putatively encode transmembrane domains (Arafat et al., 2018).
This is significant given that transmembrane domains are a defining feature in
characterized mitochondrial metabolic pathway proteins (Becker et al., 2009). While there
is no conclusive experimental evidence that ctenophore mitochondrial URFs are protein
coding there are several types of computational hypotheses that could strengthen the
hypothesis.

Purifying selection on amino acids drives protein-coding loci to have fewer
nonsynonymous mutations than synonymous mutations (Graur & Li, 2000). Therefore,
evidence of purifying selection in an URF is evidence that it is a translated protein. Using
sequence alignments from multiple individuals, one can estimate the nonsynonymous
diversity (πN) and synonymous diversity (πS) of a locus. A ratio of πN/πS less than
one indicates that the locus is under purifying selection (Choi et al., 2016), while a πN/πS
ratio above one indicates that the locus is under balancing selection (Weedall & Conway,
2010; Moncla et al., 2016). However, analyses of πN/πS have not been performed on
published ctenophore mitochondrial URFs since there is only one sequenced individual
per species.

Other genic prediction techniques include using trinucleotide frequency over a sliding
window (Staden, 1984; Tramontane & Macchiato, 1986; Fickett, 1982) or using a Fourier
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transform of the nucleotide periodicity (Tiwari et al., 1997; Issac et al., 2002).
The afforementioned techniques are useful when the translation table is poorly understood
for the target species (Staden, 1984), when the operon-like mitochondrial transcription
(Boore, 1999) prevents RNA-seq data from being reliably used to delimit gene boundaries,
or when the transcription start site may be immediately after the previous gene’s
transcription termination site (Fickett, 1982). These existing trinucleotide-based methods
have shortcomings in that they do not account for information from multiple individuals,
nor from verified protein-coding ORFs.

In this study we sequenced and annotated the mitochondrial genomes of three
individuals of the ctenophore Beroe forskalii (Fig. 1), determined their phylogenetic
relationship to sequenced ctenophores, and developed novel algorithms that leverage the
multi-individual data to determine if URFs are protein-coding or exist by random chance.
In addition to using the measure of πN/πS to assess if the URFs were under selection,
we implemented a novel nucleotide diversity permutation simulation (NDPS) to
determine the probability that the URFs arose from negative selection rather than random
mutation. To address the limitations of existing trinucleotide genic prediction techniques
we developed a novel Bayesian hypothesis test that uses trinucleotide frequencies of
known coding and noncoding sequences from multiple individuals to calculate the
likelihood that mitochondrial URFs are protein-coding.

MATERIALS AND METHODS
Sample acquisition and sequencing
We collected four B. forskalii individuals in the Monterey Bay operating from the
Monterey Bay Aquarium Research Institute’s (MBARI) RVWestern Flyer while blue water
diving or using the ROV Doc Ricketts. All ctenophore samples were collected under the
State of California Department of Fish and Wildlife scientific collecting permit SC-4029
issued to SHDH. See Table S1 for detailed collection information. After allowing the

Figure 1 The ctenophore Beroe forskalii. Full-size DOI: 10.7717/peerj.8356/fig-1
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animals’ guts to clear for several hours in on-board aquaria, we froze tissue samples in
liquid nitrogen.

We then extracted DNA from Bf201311 using the Qiagen DNeasy DNA isolation kit
(Catalog Number 69504). The sequencing center at the University of Utah Huntsman
Cancer Institute High Throughput Genomics Core Facility constructed an Illumina
whole-genome shotgun library with an insert size of approximately 250 bp (library
10673X1) and sequenced approximately 124 million 2 × 100 read pairs in December 2013.

We extracted DNA from samples Bf201606 and Bf201706 with the Omega Biotek EZNA
Mollusc DNA kit (Product Number D3373) and created Illumina whole-genome shotgun
libraries with a mean insert size of approximately 150 bp using the NEBNext Ultra II
DNA Library Prep kit. We then sequenced these libraries on an Illumina MiSeq and
generated approximately 1.74 million 2 × 75 read pairs for Bf201706. For sample Bf201606
we generated Illumina 2 × 150 reads for two libraries: DS117-approximately 122 million
read pairs, and DS118-approximately 42 million read pairs. In addition to Illumina
sequencing, we constructed five Oxford Nanopore Technologies (ONT) 1D sequencing-
by-ligation libraries (SQK-LSK108) from Bf201606 using 1–1.5 mg DNA as input and two
ONT Rapid Sequencing libraries using 200 ng of DNA as input. Each library was
sequenced on its own R9.4-chemistry flowcell, and all together the seven flowcells
produced 1,772,337 ONT reads with an average length of 4,170 bp.

We also extracted RNA from B. forskalii individual Bf201507 using a Trizol protocol.
Two dual-indexed RNA-seq libraries were constructed at the University of California
Davis DNA Technologies Core, after which these libraries were sequenced to
approximately 175 million 2 × 150 read pairs each on a HiSeq 4000.

Adapters were removed from the Illumina shotgun and RNA-seq libraries using
SeqPrep2 version commit 93fccac https://github.com/jeizenga/SeqPrep2 with default
parameters and additional option -A GATCGGAAGAGCACACG -B AGATCGGAAGAGCGTCGT.
We basecalled the ONT 1D reads using albacore v1.0.3.

Assembly
We first assembled the Bf201606 1D ONT reads with the canu v1.6 assembler using the
options genomeSize = 150 m -stopOnReadQuality = false -nanopore-raw (Koren
et al., 2017). Then we identified the completely assembled mitochondrial genome contig by
using our internal database of ctenophore COI sequences as a blastn query against a
database of canu’s contig file output. The contig that contained the ctenophore COI gene
appeared to be two full copies of the mitochondrial genome as evidenced by a dotplot
(Fig. S3 and Supplemental GitHub/Zenodo Files). We polished this contig by mapping the
1.7 million ONT genomic reads against the assembly with bwa mem and nanopolish
https://github.com/jts/nanopolish (Li, 2013). The final consensus sequence was generated
by mapping the Bf201606 Illumina shotgun read pairs against the polished contig with bwa
mem, then correcting the remaining misassemblies with several iterations of polishing
with pilon v1.22 (Walker et al., 2014) and inspecting the final bam file. We then verified the
circularity of the assembly by mapping ONT reads using the -x ont2d option in bwa mem
to a fasta file of two concatenated copies of the final assembly.
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We used pilon to produce reference-guided assemblies for Bf201311 and Bf201706 by
using their respective Illumina shotgun reads to correct the Bf201606 final mitochondrial
assembly. As above, we verified the final assemblies of both Bf201606 and Bf201706 by
visually inspecting a bam file of mapped reads for consistent coverage, and checking for
circularity with read pairs that map to opposing ends of the linearized genome.

Annotation and synteny
After confirming that the assembly was circular and contained no errors we used the
MITOS web server to generate an initial annotation of the Bf201606mitochondrial genome
(Bernt et al., 2013b). Then we used emboss v6.6.0 to find ORFs in sample Bf201311
(Rice, Longden & Bleasby, 2000). ORFs were annotated using results from the blastn, tblastx,
and blastx (v2.2.31+) queries against NCBI databases (Altschul et al., 1997). We then aligned
all three individuals’ mitochondrial genomes in Geneious v9 using the Geneious aligner.
The final ORF boundaries for each B. forskalii individual were defined using the largest
conserved ORF shared between all three individuals. We calculated π and the average
between-sample mismatch percent of the complete mitochondrial genome alignment using
the equation from Nei & Li (1979), implemented in cuttlery calculate-pi.

To annotate the tRNAs, we used tRNAscan-SE v2.0 and ARWEN v1.2 (Lowe & Eddy,
1997; Laslett & Canback, 2008). To determine the start and stop points of the ribosomal
RNAs (rRNAs), we created covariance models of the M. leidyi 12S and 16S ribosomal
RNAs from (Pett et al., 2011) using infernal v1.1 (Nawrocki & Eddy, 2013). In addition, we
mapped RNA-seq reads to the mitochondrial genome using bwa mem to look for coverage
minima to help determine the start and stop points of the rRNAs (Li, 2013).

To search for ATP6 and ATP8 in the B. forskalii nuclear genome, we assembled a
transcriptome and searched with BLAST v2.2.31+. We assembled the 175 million Bf201706
RNA seq reads using Trinity v2.1.1 with the option -SS_lib_type FR for read
directionality. We then searched for ATP6 using blastn and tblastx with theM. leidyiATP6
sequence, ML33722a, and the P. bachei ATP6 sequence (sb|11606431|).

Many species have nonstandard codons in their mitochondrial amino acid genetic code
Barrell, Bankier & Drouin (1979); Knight, Freeland & Landweber (2001). Nonstandard
codons can be inferred by comparing conserved codons in conserved genes shared
across phyla. Ctenophores are thought to use the Mold, Protozoan, and Coelenterate
mitochondrial translation table (Pett & Lavrov, 2015). We used the software FACIL to look
for genetic code deviations from the Mold, Protozoan, and Coelenterate mitochondrial
translation table in all three B. forskalii mitochondrial genomes (Dutilh et al., 2011).

We implemented pauvre redwood to visualize sequencing reads supporting the
assembly, and implemented cuttlery codonplot to plot the codon usage distributions for
each mitochondrial ORF. To quantify the syntenic differences between the three
ctenophore species, we used CREx (Bernt et al., 2007).

Phylogenetics
To make a phylogeny of ctenophores plus outgroups we followed the protocol
found in Arafat et al. (2018). Ctenophores and outgroups were collected from NCBI
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(Lang et al., 2002; Kohn et al., 2012; Fallon et al., 2018; Arafat et al., 2018; Naylor & Brown,
1998; Qureshi & Jacobs, 1993; Paquin & Lang, 1996; Forget et al., 2002; Ogoh & Ohmiya,
2004; Seif et al., 2005; Lavrov, Wang & Kelly, 2008; Wang & Lavrov, 2008; Lavrov et al.,
2005; Akasaki et al., 2006; Dellaporta et al., 2006; Shao et al., 2006; Bourlat et al., 2006;
Signorovitch, Buss & Dellaporta, 2007; Lukić-Bilela et al., 2008; Tambor, Ribichich &
Gomes, 2008;Matsui et al., 2009; Erpenbeck et al., 2009; Gazave et al., 2010; Pett et al., 2011;
Kayal et al., 2012; Zou et al., 2012; Park et al., 2012; Pan et al., 2014, Del Cerro et al., 2016;
Jourda et al., 2015; Haen, Pett & Lavrov, 2014; Li, Sung & Ho, 2016; Chen et al., 2016;
Poliseno et al., 2017; Wang & Sun, 2017; Galaska et al., 2019), then an amino acid matrix
was generated using MAFFT alignments of COX1, COX2, COX3, CYTB, ND1, ND3
and ND5. MAFFT parameters were: v7.309 with the FFT-NS-i x1000 algorithm with a
200PAM k = 2 scoring matrix, 1.53 gap open penalty, and 0.123 offset value (Katoh et al.,
2002). Low-information columns were removed with Guidance2 (Sela et al., 2015). We also
generated an amino acid matrix with no columns removed. In addition to these two
amino acid matrices, we similarly generated one amino acid matrix, without Guidance2
filtering, using only ctenophores plus two outgroups, and genes COX1, COX2, COX3,
CYTB, ND1, ND2, ND3, ND4, ND4L, ND5 and ND6. Guidance2 was not used to ensure
that we did not remove columns important to resolving inter-ctenophore relationships.
Note, we used the updated P. bachei annotation from Arafat et al., 2018, and that
hexactinellids have AGR codons translated as serine rather than arginine (Arafat et al.,
2018; Haen et al., 2007). A detailed sample list is available in Table S7.

For each of these three matrices we created maximum likelihood trees using RAxML
and Bayesian consensus trees using Phylobayes. For RAxML we used v8.2.4 using rapid
bootstrapping, one partition for all sites, and the PROTCATWAG model with seeds
-p 12345 -x 12345 (Stamatakis, 2014). For Bayesian consensus trees we used Phylobayes
v4.1c and ran three chains until the maximum difference was less than 0.1 and the
minimum effective size was greater than 300, indicating that all three chains had converged
appropriately (Lartillot, Lepage & Blanquart, 2009). See Tables S8–S10 for details about the
Phylobayes runs.

Fourier transform analysis
To compare the predictions of the Bayesian protein coding likelihood test to an established
method, we used the FTG webserver and the FTG-WINDOW program with a step size of
20 and window size of 300 to look at the Fourier Transform nucleotide spectra of the
three B. forskaliimitochondrial genomes (Issac et al., 2002; Tiwari et al., 1997). The Fourier
Transform nucleotide spectrum analysis looks at an increased periodicity in trinucleotide
usage over a sliding window in the DNA sequence. Areas with a regular periodicity
have a higher score of being protein coding. We expected to see peaks centered around the
known coding ORFs, and peaks in the URF1 and URF2 sequences if truly protein coding.

Protein structure and function prediction
We generated the peptide sequences using the mold and protozoan mitochondrial
translation table for all of the B. forskalii and previously sequenced ctenophore URFs.
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Transmembrane predictions for each protein were made with the TMHMM server, and
with MEMSAT-SVM on the PSIPRED server (McGuffin, Bryson & Jones, 2000).
We predicted Bf201706’s URF1 and URF2 3D protein structures using the I-TASSER web
server (Roy, Kucukural & Zhang, 2010) and DMPfold 1.0 on the PSIPRED server
(McGuffin, Bryson & Jones, 2000). Use used FFPred 3 to predict the function of the URF
proteins (McGuffin, Bryson & Jones, 2000). I-TASSER and FFPred 3 allowed us to look
for putative functions for the URFs in the absence of primary structure orthologs using
blastp. We also used FFPred and MEMSAT-SVM to analyze the TM domains and
functions of the URFs from P. bachei, M. leidyi, C. yulianicorum, C. loyai, and
V. multiformis.

To look for orthologs of B. forskaliiURF1 and URF2 we used blastn and blastp to search
the nt and nr databases, respectively (Altschul et al., 1997). To look at the similarity
between URFs we used Clustal Omega to form a multiple sequence alignment (Sievers
et al., 2011).

Bayesian protein coding likelihood test
Bayesian hypothesis tests are a method to determine whether a given dataset better
matches one hypothesis or another (Ortega & Navarrete, 2017). Given that there we could
not find software to help determine if mitochondrial URFs were protein coding or not,
we developed a Bayesian hypothesis test. This test classifies whether the codon frequency
spectrum of an ORF best matches the codon frequency spectrum of known protein-coding
sequences or the 3-mer frequency spectrum of known non-coding sequences. This
methodology is based on the fact that 3-mer frequency varies between coding and
non-coding sequences (Hinds & Blake, 1985; Staden, 1984).

Given that there are 62 amino-acid encoding codons to model, we required a
distribution with 62 parameters that could be applied to a Bayesian framework.
Dirichlet distributions are comprised of probability vectors and are conducive to Bayesian
computation, as the distribution is the prior for the multinomial distribution (Kotz,
Balakrishnan & Johnson, 2004). We modeled an ORF’s codon frequency spectrum as a
multinomial random variable that can be drawn from either a coding or non-coding
distribution. Each of these distributions was parameterized by a probability vector from
the posterior Dirichlet distribution given the known coding and non-coding sequences.
The test statistic then consisted of the Bayes factor that the ORF was drawn from the
coding distribution (See a more detailed exposition in the Supplemental Methods).
The Bayes factor allowed us to assess if factors such as sequence length limited the amount
of evidence that the hypothesis had to classify that specific locus (Ortega & Navarrete,
2017).

We empirically evaluated the sensitivity and specificity of this test using the known
coding and non-coding sequences and performed 1,000,001 leave-one-out cross-validation
(LOOCV) trials. In each trial we randomly choose a sequence with a known coding
status from a random individual. In non-coding sequence we also randomly choose a
reading frame. We then computed the Bayes factor for this sequence with the posterior
distributions conditioned on only the remaining sequences. To ensure that each locus is
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independent, we only used one individual’s copy of each sequence to condition the
posterior distributions in each trial.

The coding ORFs that condition the posterior are the genes identified in the annotation
(COX1, COX2, COX3, CYTB, ND1 through ND6). The non-coding sequences are all of
the non-rRNA intergenic sequences of at least 50 basepairs—excluding the novel ORFs
themselves. To avoid strand biases, we only selected non-coding sequences on the
same strand as the coding genes. We opted to not use the opposite strand of coding
sequences since their sequences are affected by the constraints on the coding sequence.
To prevent the software for classifying sequences solely on start or stop codons, we
removed internal and flanking stop codons from non-coding sequences, stop codons from
the end of true ORFs, and start codons from the beginning of both non-coding sequences
and ORFs. Additional details on the test are included in the Supplemental Material.
This program is implemented in cuttlery dirichlet. We also validated this method on
gene alignments from a variety of organisms from diverse groups across the tree of life
including the five individuals of the alga Chlamydomonas reinhardtii (Smith & Lee, 2008),
nine individuals of the crustacean Daphnia magna, thirteen individuals of the fly
Drosophila melanogaster (Wolff et al., 2016), five individuals of the vertebrate Homo
sapiens (Yang et al., 2009; Rani et al., 2010; Guillet et al., 2010, Van De Loosdrecht et al.,
2018), and four individuals of the urchin Strongylocentrotus intermedius (Kober &
Bernardi, 2013). See Table 1 for a list of accession numbers used and the Zotero repository
for alignments.

Table 1 NDPS results for B. forskalii ORFs and URFs. These π and πN/πS values were measured using
biopython’s cal dn ds function, and πN/πS was measured using the NG method (Nei & Gojobori, 1986).
The Monte-Carlo p-value is estimated from the Nucleotide Diversity Permutation Simulation and
measures the probability that this locus is evolving neutrally. This Monte-Carlo p-value was calculated by
counting the number of simulated πN/πS less than the observed πN/πS that also had πS values greater
than zero, and dividing by the number of simulations for which πS was greater than zero. All loci,
including the URFs, appear to be evolving under negative selective pressure. The ND4L locus’ high MC
p-value is likely an artifact of the short sequence length.

Sequence π πN/πS MC p-value

COX1 0.0094 0.0124 0.0000

COX2 0.0032 0.0000 0.0000

COX3 0.0027 0.0650 0.0000

CYTB 0.0085 0.0120 0.0000

ND1 0.0050 0.0122 0.0000

ND2 0.0075 0.0267 0.0000

ND3 0.0048 0.0285 0.0000

ND4 0.0058 0.0353 0.0000

ND4L 0.0040 0.4329 0.4191

ND5 0.0044 0.0710 0.0000

ND6 0.0066 0.0410 0.0000

URF1 0.0055 0.3497 0.0120

URF2 0.0214 0.2477 0.0000
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Nucleotide diversity permutation simulation
We did not have outgroups to perform a McDonald–Kreitman test (McDonald &
Kreitman, 1991), and therefore we were limited to estimating πN/πS to detect negative
selection (Choi et al., 2016; Weedall & Conway, 2010; Moncla et al., 2016). In addition to
measuring negative selection with πN/πS we wanted evidence that a πN/πS value less
than one was the result of negative selection, and not a false positive. To gather such
evidence we devised a test to generate Monte Carlo p-values that compare the observed
πN/πS value to a null distribution. In this case the null distribution was a collection of
πN/πS values estimated from simulated sequences generated through a neutral evolution
process. For ease of computation of a large number of sequences using the cal_dn_ds
method in biopython (Cock et al., 2009), and because the mutations generated were
random, we selected the Nei & Gojobori (1986) method of calculating dN, dS, and
subsequently πN/πS. For a more detailed exposition of the nucleotide diversity
permutation simulation (NDPS), see the Supplemental Methods.

We also tested this program on the non-Beroe species listed in the Bayesian protein
coding likelihood test methods section. See Table 1 for a list of accession numbers used.

Software
We implemented and made freely available two python software packages to complete the
analyses in this manuscript. The pauvre software can be found at https://github.com/
conchoecia/pauvre, and it contains a program to visualize and verify mitochondrial
assemblies using long reads (pauvre redwood), and a tool to visualize synteny between
mitochondrial genomes (pauvre synplot) (De Coster et al., 2018; Bentley & Ottmann,
1979).

We also developed the software package cuttlery to implement the NDPS (cuttlery
piNpiSsim), to conduct the trinucleotide protein-coding test (cuttlery dirichlet),
to plot the clustering of πN > 0 and πS > 0 sites along a gene similar to Carbone et al. (2006),
and to calculate nucleotide diversity (cuttlery calculate-pi). The program
cuttlery calculate-pi was validated using DNAsp (Rozas et al., 2003). This software
is available at https://github.com/conchoecia/cuttlery.

A script written with Snakemake (Köster & Rahmann, 2012) that reproduces many of
the plots found in this manuscript is available in the Supplemental GitHub/Zenodo Data.

RESULTS
Assembly
The final assembly lengths for the Bf201311, Bf201606, and Bf201706 mitochondrial
genomes were 13,357, 13,339 and 13,338 basepairs. Bf201311’s mean mapping coverage
was over 6,000× with 2 × 100PE trimmed reads, and the mean mapping coverages of both
Bf201606 and Bf201706 mitochondrial genomes with 2 × 75PE trimmed reads were
approximately 70×. Oxford Nanopore 1D reads confirm its circularity (Fig. 2). The mean
per-basepair divergence between individuals was 2.2%. The mean GC content was 17.3%.

The size discrepancy between these three sequences is due to small insertions and
deletions of one to 16 basepairs (Table S2). There were no indels in any of the three
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individuals’ canonical mitochondrial genes, nor in URF2 and URF1. Whole-mitogenome
alignments can be found in the Supplemental GitHub/Zenodo Files.

Annotation and synteny
The B. forskalii mitochondrial genome contains the same two ribosomal RNAs (12S and
16s), and the same 11 protein-coding genes as M. leidyi: COX1, COX2, COX3, CYTB,
ND1, ND2, ND3, ND4, ND4L, ND5 and ND6. The B. forskalii mitochondrial genome
lacks the ATP6 and ATP8 genes.

In addition to the canonical mitochondrial coding sequences above, there are two large
URFs in the B. forskalii mitochondrial genomes that are conserved among all three
individuals. We refer to the first large ORF that begins after ND5 on the coding strand
as URF1. This sequence is 1,065 bp and encodes a putative 384 aa protein. We refer to
the second large conserved URF after URF1 as URF2. URF2 is 669 bp and encodes a
putative 222 aa protein. These ORFs have no matches to NCBI databases with BLASTn,
BLASTx, PSI-BLAST and tBLASTn. Also, neither URF appears to have any homology with
published ctenophore genomes.

Figure 2 The B. forskalii mitogenome. Each black concentric circle of the inner layer is one Oxford
Nanopore read, organized from the longest reads on the outside of the track to the shortest on the inside.
The annotation shows the direction and length of the predicted coding sequences (green) and the
ribosomal RNAs (purple). Overlapping coding sequences are shown with an overlapping chevron on the
5′ end of the downstream gene. The outermost layer is a histogram of RNA-seq log-transformed read
coverage at that position. Full-size DOI: 10.7717/peerj.8356/fig-2
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Our structural models of M. leidyi 12S and 16S ribosomal RNAs had significant
matches to the 3′ ends of both the B. forskalii 12S and 16S sequences. We verified the start
and stop sites using Illumina RNA-seq data. The structural orthology and clear read
delimitation information allowed us to annotate both the 5′ and 3′ ends of the 12S and 16S
ribosomal RNAs.

A tRNA search using tRNAscan-SE with infernal did not identify any tRNAs in any
of the three B. forskalii mitochondrial genomes. ARWEN did not identify any tRNAs
that were conserved between the three individuals. ARWEN detected one TV-loop
mtRNA-Phe(aaa) in Bf201706 in the middle of the 16S sequence, one TV-loop mtRNA-
Ser(act) in the middle of the COX2 coding sequence in 201311, and no tRNAs in Bf201606.

The CREx heuristic revealed that B. forskalii shares more common intervals with
M. leidyi (16 common intervals) than with P. bachei (eight common intervals),
V. multiformis (10 common intervals), or Coeloplana spp. (eight common intervals).
There is considerable gene order shuffling between the three species (Fig. 3).

The FACIL analysis did not reveal any deviations in the genetic code from the Mold,
Protozoan, and Coelenterate translation table (See Table S15; Fig. S12).

Phylogenetics
In the ctenophore/two-outgroup amino acid matrix, the monophyly of ctenophores
is well-supported (bootstrap value of 100, posterior probability of one) (Fig. 4).
The relationship of platyctenid ctenophores as a monophyletic clade that is, sister to the
rest of the ctenophores was supported in the RAxML trees but not the Phylobayes trees.

Trees that were constructed with only a limited set of mitochondrial proteins
(COX1, COX2, COX3, CYTB, ND1, ND3 and ND5) and used Phylobayes CAT + GTR + Γ

model failed to reconstruct platyctenid ctenophores as monophyletic, with or without
removing sites using Guidance2. Trees constructed with the same set of genes using the
PROTCATWAG model in RAxML reconstructed platyctenes as a monophyletic group.
The hexactinellid sponges, in all trees in which they were included (Figs. S7–S10) did not
form a monophyletic group with the rest of the sponges. Early-divergence relationships,

Figure 3 Ctenophore mitochondrial synteny map. A synteny map of the ctenophore mitochondrial
genomes. The opacity of the “brush stroke”-like bars connecting the same gene between two species
increases with positional amino acid similarity using the BLOSUM62 matrix. Exact matches for
ribosomal RNAs are opaque lines, while mismatches and gaps are not displayed. This plot was generated
using the program pauvre synteny. Full-size DOI: 10.7717/peerj.8356/fig-3
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such as the evolutionary branching order of Sponges, Ctenophores, Choanoflagellates, and
Cnidarians, had low bootstrap support and low posterior probability values.

Ctenophore mitochondrial URF structure and function prediction
Beroe forskalii URF1 and URF2 had no blast hits in the nr or nt databases, with no cutoff.
A multiple sequence alignment between all of the URFs in all ctenophore species showed
that while most of the Coeloplana sequences were generally similar to one another
(28–83.3% identity), the between-genera alignments had generally fewer than 30%
identical amino acids (Table S4). This is below a commonly-used threshold for orthology
(Pearson, 2013). Protein alignments with high percent identity were exclusively from short
peptide sequences. However, shorter peptide sequences are more likely to have high
amino acid identity by chance (Pearson, 2013). Overall, these results indicate that
B. forskalii URF1 and URF2 have no known orthologs, and are not similar to any other
published ctenophore URFs.

We predicted the protein structure of URF2 using I-TASSER, and the top five predicted
models are transmembrane-protein-like and are composed of antiparallel alpha helices.
Models 1,2,3 and 5 all contained six alpha helices and model four contained eight
alpha helices. The top five structural hits were transmembrane transport proteins,
including one protein with an unidentified transport substrate (PDB 3WDO), a peptide

Coeloplana yulianicorum [LN898114]

Mnemiopsis leidyi [NC016117]

Vallicula multiformis [LN898115]

Beroe forskalii [MG655623]

Beroe forskalii [MG655624]

Allomyces macrogynus [NC001715]

Monosiga brevicollis [AF538053]

Coeloplana loyai [LN898113]

Beroe forskalii [MG655622]

Pleurobrachia bachei [JN392469]

100/1

100/0.83

100/1

8 1/0.62

100/1

100/1

8 5/1

0 . 3

Figure 4 Ctenophore mitochondrial phylogeny. This phylogeny contains the loci COX1, COX2,
COX3, CYTB, ND1, ND2, ND3, ND4, ND4L, ND5 and ND6 independently aligned with MAFFT (Katoh
et al., 2002) then concatenated together. No sites were removed from the amino acid matrix. Two
phylogenies were created (1) using RAxML with rapid bootstrapping and (2) using Phylobayes with the
CAT + GTR + Γ model, three chains, and convergence until the max difference between chains was less
than 0.1. Both trees reconstructed the same topology. The branch lengths and scale shown are from the
RAxML tree. The RAxML bootstrap values/Phylobayes posterior probabilities of each node are shown
within the ctenophore clade. Full-size DOI: 10.7717/peerj.8356/fig-4
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transport protein (4W6V), an iron transport protein (5AYM), a nitrate transporter
(5A2N), and a proton:xylose symporter (4GBY). TMHMM predicted 6 transmembrane
domains with an extracellular N-terminus, while MEMSAT-SVM predicted seven
transmembrane domains with a cytoplasmic N-terminus. FFPred’s top predicted
biological process for URF2 was GO:0055085, transmembrane transport (Prob = 0.774),
and the top molecular function prediction was GO:0022857, transmembrane transporter
activity (Prob = 0.875) (Table S3).

The predicted URF1 structure was also similar to known transmembrane proteins.
The top five structural predictions were composed of between 8 and 11 antiparallel
transmembrane domains. TMHMM predicted eight transmembrane domains with an
intracellular N-terminus while MEMSAT-SVM predicted nine transmembrane domains
with an extracellular N-terminus. The transmembrane domains boundaries were largely the
same, except for the last two domains predicted by both tools. The highest-scoring structural
hit had a high structural similarity TM-score of 0.941, and is an iron transport protein
(PDB 5AYM). PDB 5AYM is the same protein as the third-best hit for the URF2 structural
hit above. Like the URF2 structural hits, all of the URF1 structural hits are to transmembrane
transport proteins. The top biological process predicted by FFPred was GO:0098655,
cation transmembrane transport (Prob = 0.879), and the top molecular function prediction
was GO:0022857, transmembrane transporter activity (Prob = 0.951) (Table S3).

Overall, the URFs from the other ctenophore species had similar GO annotations to
B. forskalii URF1 and URF2. Every URF from P. bachei, M. leidyi, C. yulianicorum,
and C. loyai had the term transport in at least one of the top three Biological Process GO
terms predicted by FFPred. All of the URFs with at least two predicted transmembrane
domains had Molecular Function GO terms with high probabilities related to
transmembrane transporter activity. Other common molecular function GO terms
were GO:0003824 catalytic activity, GO:0005125 cytokine activity, GO:0008270 zinc ion
binding, and GO:0001882 nucleoside binding (Table S3). URF1 from V. multiformis was
too short to analyze using PSIPRED.

Observed πN/πS
All of the canonical genes (ND1-ND5, ND4L, COX1-COX3, CYTB), with exception of
ND4L, had πN/πS values between zero (COX2, no non-synonymous sites) and 0.652
(ND4L). The mean πN/πS of the canonical genes is 0.087. ND4L is the shortest of the
sequences observed in this analysis at 189 bp and only three mutation sites. The πN/πS of
URF1 and URF2 are 0.350 and 0.248, respectively. These results suggest that the URF1
and URF2 ORFs are under less selective pressure than the canonical ND1-6/COX1-3/
CYTB genes. The πN/πS values calculated for the non-Beroe test datasets were less
than one for invertebrate species, similar to results found in similar studies such as
Bazin, Glémin & Galtier (2006) and Rand & Kann (1998).

We also looked at the distribution of nonsynonymous mutation sites in the protein
structural domains of B. forskalii URF1 and URF2 (See Fig. S13; Tables S11–S14).
In mitochondrial transmembrane transport proteins each peptide is either transmembrane
(TM), exposed to the mitochondrial matrix (MM), or is exposed to the intermembrane
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space (IM) between the mitochondrial membrane and the outer membrane. We found
that both URF1 and URF2 had elevated mutation rates in MM-exposed peptides
(Table S13), despite both proteins having fewer MM sites than the IM-exposed peptides
and TM peptides (Table S12). Overall, B. forskalii URF2 had more mutation sites, both
synonymous and nonsynonymous, than B. forskalii URF1 (Table S11).

Nucleotide diversity permutation simulation
The Monte–Carlo p-value for all genes in the observed vs absence-of-selection simulated
πN/πS experiment was p < 0.001, except ND4L and URF1 (Table. 1). ND4L had a
Monte–Carlo p-value of p = 0.4191 and URF1 had a Monte–Carlo p-value of p = 0.0120.
The πN/πS value of ND4L (0.433) was an outlier compared to the mean canonical
mitochondrial genes’ πN/πS values (Fig. S5), but this is likely due to only three polymorphic
sites in a short sequence of 186 basepairs (Table S11). The πN/πS values of URF1 and
URF2 were also outliers relative to the mean canonical gene πN/πS, at 0.350 and 0.248
(Table 1). All of the canonical mitochondrial genes have a lower observed πN/πS than the
range of πN/πS values predicted by the nucleotide diversity mutation simulation (p = 0)
with the exception of ND4L (p = 0.419) and URF1 (p = 0.012) (Fig. S5; Table 1).

The results of this simulation for non-Beroe species were generally that the Monte Carlo
p-value accurately predicted that a sequence’s πN/πS were due to negative selection rather
than neutral mutations (Table 1; Table S6; Fig. S5). The outliers were mostly in the
human mitochondrial data, which do not have as much negative selective pressure on
mitochondrial loci as invertebrates (Meiklejohn, Montooth & Rand, 2007), and overall
have less nucleotide diversity than invertebrates (Bazin, Glémin & Galtier, 2006).

Bayesian protein coding likelihood test
The log-likelihood ratio distributions for URF1 and URF2 more closely match those
found in other known coding sequences even when the effects of sequence length were
considered (Fig. 5). The power of both analyses were approximately 0.97. The results of
this analyses performed on other species also show that most loci longer than 500 bp are
clearly distinguishable as coding or non-coding (Fig. 5).

Codon usage frequency and FTG analysis
The codon usage frequencies of genes in the B. forskaliimitochondrial genome are skewed
toward AT-rich codons (Fig. S4). The Fourier Transform FTG-WINDOW analysis shows
trinucleotide periodicity above the signal-to-noise threshold that corresponds to
protein-coding sequence between 0–1,000 bp (COX1), around 6,500 bp (ND5), around
7,800 bp (URF1) and around 9,300 bp (URF2).

DISCUSSION
Three B. forskalii mitogenomes show high between-individual
haplotype variability
The genus Beroe represents one of the distinct morphological and taxonomic lineages of
comb jellies, and complements the “cydippid” P. bachei and lobateM. leidyi species whose
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mitochondrial genomes have been previously studied. Species of Beroe can be difficult to
distinguish, but B. forskalii, which we study here, is morphologically distinct and readily
identified. The four specimens collected were from the same waters off the coast of
California (See Supplemental Methods 1). Two specimens were from the same geographic
location, with one collected at the surface and one collected from 400 m. The third
specimen was taken at the surface 70 km to the south, and the fourth specimen was
taken at the surface 50 km to the east. Based on the distribution of B. forskalii along the
eastern Pacific, these three specimens would be expected to belong to the same population,
and any molecular differences are intraspecific and not likely to be indicative of
biogeographic boundaries.

The COX1 gene, which is widely used for species- and population-level genetic
studies, has been difficult to obtain for many ctenophore species due to high
intraspecific nucleotide diversity. Standard primers, such as those from Folmer
et al. (1994), fail to amplify COX1 sequences from many species. Our current data
set helps clarify the diversity of mitochondrial genes from additional ctenophore
lineages.
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Figure 5 Bayesian likelihood of ORFs being coding or noncoding. These plots show the locus length versus the log-likelihood ratio distributions
of the LOOCV trials for each noncoding, coding sequence, or test sequence (B. forskalii URF1 and URF2). (A) Beroe forskalii, (B) Chlamydomonas,
(C) Daphnia, (D) Drosophila, (E) Homo, (F) Strongylocentrotus. Dotted lines are linear fits to the log-likelihood values for each simulation.
Log-likelihood ratios less than zero mean that the sequence’s trinucleotide frequency was more similar to the trinucleotide frequency of noncoding
sequence than that of known protein-coding sequence. Similarly, values greater than zero indicate a better match to known protein-coding
sequences. For all species we tested, with the exception of ND6 in human and RTL in Chlamydomonas, we found that the novel Bayesian likelihood
test for protein coding likelihood presented in this paper unambiguously can differentiate between coding and noncoding sequences for loci longer than
500 bp. The alignments used in these analyses are the same as those used in Table S5; Fig. S5. Full-size DOI: 10.7717/peerj.8356/fig-5
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The B. forskalii mitogenome contains the same subset of genes as
other sequenced ctenophore
One surprising finding from the first ctenophore mitochondrial genome annotations was
that ctenophores lack two or more genes that are conserved in most other metazoan phyla
(Kohn et al., 2012; Pett et al., 2011; Arafat et al., 2018). In our dataset, the B. forskalii
mitochondrial genome is missing the same protein-coding sequences as the other five
ctenophore species’ mitogenomes: ATP6 and ATP8. In both M. leidyi and P. bachei,
mitochondrial ATP6 is present in the nuclear genome, although ATP8 is not. There is no
publicly available data for platyctenid ctenophores to determine if they similarly have
ATP6 and ATP8 in the nuclear genome. We did not have a complete B. forskalii nuclear
genome to detect the presence of ATP6 or ATP8. However, we were able to detect a
B. forskalii ATP6 in the transcriptome.

Given that mitochondria are transcribed as operons (Boore, 1999), the uncertainty of
whether ctenophores use mitochondrial mRNA 3’ polyadenylation (Chang & Tong, 2012),
and the tendency for mitochondrial transcripts to not match gene boundaries (Gao et al.,
2016), poly-A RNA-seq libraries are not a reliable way to determine ctenophore
mitochondrial transcript start and stop sites. B. forskalii poly-A RNA-seq reads mapped to
the mitochondrial genome did not reliably help determine gene start and stop positions.
A future study of ctenophore RNA using direct RNA sequencing may reveal trends in
ctenophore mitochondrial transcription and post-transcriptional modification.

All sequenced ctenophore mitochondrial genomes lack tRNAs, and there is evidence
that they are genuinely missing given the lack of nuclear-encoded mitochondrial
aminoacyl-tRNA synthetases (Pett & Lavrov, 2015). Our results using standard tRNA
identification software did not have any hits conserved between individuals, and each hit
was in the middle of another annotated feature (16S in Bf201706 and COX2 in Bf201311).
The fact that these hits appear in the middle of other features is strong evidence that
they are not true tRNAs. This, however, does not preclude the existence of yet-unidentified
mitochondrial tRNAs (mtRNAs) and future studies should use specialized tRNA
sequencing methods to map tRNAs to a reference (Cozen et al., 2015).

Ribosomal RNAs are similarly difficult to annotate accurately. In the case of ctenophore
mitochondrial genomes, the highly derived ribosomal RNAs often are not recognized
by publicly available covariance models found on Rfam and used by infernal. In the case
of Pett et al. (2011), the authors used a locally-crafted covariance model to identify the
16S and 12S genes in M. leidyi. However, the details of the model were not published
and are no longer available from the authors. As a result, we crafted covariance models of
the single published M. leidyi 16S and 12S nucleotide sequences. These covariance
models matched several domains of what MITOS predicted for the 16S ribosomal
sequence, and a region upstream in the B. forskalii mitochondrial genome matching the
12S covariance model. The 12S gene shares structural similarity with the 12S covariance
model in the 3′ region of the gene, although there was little similarity with the 5′ region.
This suggests that either the Pett et al. (2011) 12S structural model was incorrect, or
that the 12S rRNA structures are not conserved between ctenophore species. Similarly, the
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published M. leidyi 16S rRNA structure lacks information on approximately the first 500
basepairs. Due to the high divergence of ctenophore ribosomal RNAs from the rest of the
tree of life, experiments that help determine RNA structure, like SHAPE-seq (Loughrey
et al., 2014), would be beneficial to future studies of ctenophore mitochondrial and nuclear
ribosomal RNAs.

Ctenophore mitochondrial rearrangements are common between
sequenced genera
The number of common intervals is a metric of how closely related are two mitochondrial
genome gene orders (Bernt et al., 2007). While we are not able to determine the exact
rearrangement pathway leading to the different gene orders between B. forskalii and other
ctenophore species, it is clear that large-scale mitochondrial rearrangements occurred
during the diversification of ctenophores, similar to the findings of Arafat et al. (2018).
One feature to note is that transcription appears to be unidirectional in all six ctenophore
species (Fig. 3).

Beroid ctenophores are sister to a clade containing Pleurobrachia and
Mnemiopsis
In the ctenophore/two-outgroup tree B. forskalii is sister to a clade of M. leidyi and
P. bachei. This contrasts with a previous transcriptome-based phylogeny that found that
P. bachei is sister to a clade containing M. leidyi and B. forskalii (Simion et al., 2017).
Further studies on ctenophore phylogenies using an expanded set of species may resolve
the discordant nodes, or may raise questions concerning mitochondrial introgression after
the platyctenid split.

The Phylobayes results, despite using the same loci and similar outgroups to Arafat
et al., 2018, found that platyctenid ctenophores were not a monophyletic clade that is, sister
to the rest of the ctenophores. Our RAxML results, however, reconstructed the same
topology as found in Arafat et al. (2018). This discrepancy may be due to differences in
alignments caused by using different outgroups than Arafat et al. (2018) despite us using
the same phylogenetic protocol and loci.

Beroe forskalii URFs are more similar to coding sequences than
noncoding
We attempted to use several methods to determine if the B. forskalii URFs are protein-
coding. First, we checked that the codon usage of the URFs was similar to the codon usage
of the canonical ORFs (Fig. S4). URF1 and URF2 generally had similar trinucleotide
frequencies to the canonical genes (ND1-6, CYTB, COX1-3), although this information
alone was was not sufficient to discern whether URFs were bona fide protein-coding genes.

The results of the Bayesian hypothesis test suggested that the URF1 and URF2
codon usage profile is more similar to the codon usage profile of the canonical coding
sequences than to the trinucleotide frequency of the known non-coding sequences (Fig. 5).
Overall, the Bayesian hypothesis test’s ability to classify a sequence as noncoding or coding
was proportional to the length of the locus in question (Fig. 5). Moreover, the test had
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a high positive predictive ability for true protein coding genes using mitochondrial datasets
for well-studied species (Fig. 5). The Fourier Transform analysis of the B. forskalii
mitogenomes also indicate URF1 and URF2 are likely protein coding regions (Fig. S6).

Beroe forskalii URFs appear to be under purifying selection
We looked for signatures of selection on the putative amino acid sequences of URF1
and URF2 directly by estimating πN/πS, and observed that the πN/πS of the canonical
mitochondrial genes and the URF2 and URF1 putative genes were all less than one (Table 1;
Fig. S5). These results suggest that the B. forskalii URFs are under negative selection.
However, the URF1 and URF2 πN/πS values were higher than the πN/πS values of the
ND1-6, CYTB and COX1-3 genes. This discrepancy raised the question of whether the
elevated πN/πS values in URF1 and URF2 are the result of lower negative selective pressure
relative to ND1-6, CYTB and COX1-3 or if URF1 and URF2 evolved in the absence of
selective pressure. To clarify this question we devised a simulation in which we mutated the
ORFs randomly while preserving the phylogenetic relationship and nucleotide diversity
observed between the ORFs in the three B. forskaliimitochondrial genomes. First, we verified
that this test correctly predicted that low πN/πS values in invertebrate mitochondrial
genomes were the result of negative selection (Table S6; Fig. S5), similar to previous results
(Bazin, Glémin & Galtier, 2006). We found that the observed πN/πS values in URF1 and
URF2 are below what is expected if the loci were evolving without selective pressure,
with significant Monte Carlo p-values (Fig. S5). These results suggest that the higher πN/πS
values for URF2 and URF1 relative to the canonical mitochondrial genes are due to less
selective pressure, but not neutral evolution when measuring πN/πS over the complete loci.
In biological terms, the putative protein products of URF1 and URF2 are evolutionarily
constrained and may have biological function within the mitochondria.

Beroe forskalii URFs have more nonsynonymous mutations in non-TM
domains
The distributions of nonsynonymous and synonymous sites along the lengths of URF1 and
URF2 suggest weaker selection in some regions of the ORFs, such as the portions of URF1
and URF2 predicted to be inside the mitochondrial matrix (Fig. S13; Tables S11–S14).
However, the fact that all regions of URF1 and URF2 are under less selective pressure than
canonical mitochondrial proteins, and the high accumulation of both synonymous and
nonsynonymous mutations in the URFs, may suggests that URF1 and URF2 are less
critical to B. forskalii mitochondrial function than the canonical genes.

Ctenophore URFs appear to be mitochondrial TM transport proteins
The GO term and secondary structure predictions suggest that the B. forskalii URF1
and URF2 proteins, as well as all other known ctenophore mitochondrial URFs, are
transmembrane transport proteins (See Supplemental GitHub/Zenodo Data and
Table S3). Interestingly, the GO term predictions for all of the URFs from previously
published ctenophores also hint at functions related to transmembrane transport. It is not
possible to speculate on the transport substrate of URF1 and URF2 due to the high
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structural similarity of all transmembrane transport proteins and the lack of BLAST hits to
public databases.

One hypothesis was that URF2 and URF1 are orthologs of the metazoan
mitochondrially-encoded transmembrane protein ATP6, not present in other ctenophore
mitogenomes. However, the presence of an ATP6 gene in the B. forskalii transcriptome
indicates that it is nuclearly-encoded, as has been shown in M. leidyi and P. bachei
(Pett et al., 2011; Kohn et al., 2012).

While the B. forskalii URFs and other ctenophore URFs appear to be exclusively
transmembrane proteins with up to nine TM domains, one of the only known bilaterian
mitochondrial URFs (from the brachiopod Lingula) appears to be a duplicated protein
(Endo et al., 2005) with a maximum of two TM domains. Given this collection of evidence
it is clear that URF1 and URF2, if truly protein coding, are genes that have not been
characterized in other mitochondrial genomes. In the metazoa, the presence of additional
mitochondrial protein-coding genes aside from the canonical thirteen is a trait only found
in some Cnidarians and Poriferans (Gissi, Iannelli & Pesole, 2008). These findings mean
that both the Ctenophora and the Porifera share the same set of structural genomic
features as defined by Gissi, Iannelli & Pesole (2008): additional proteins, high gene
rearrangement variability, all genes encoded in one direction, and a single coding strand.
While mitochondrial phylogenetics have not been able to resolve early metazoan
evolutionary relationships (Osigus et al., 2013; Bernt et al., 2013a), future studies of the
additional proteins present in ctenophore and sponge mitogenomes may give clues to how
their metabolic pathways evolved after diverging.

CONCLUSION
There is a large body of work on bilaterian mitochondrial genomes, and among those
mitogenomes there are few deviations from the canonical composition of thirteen protein
coding genes, two ribosomal RNAs, and twenty two tRNAs. Non-bilaterian metazoan
species, however, often have deviations from the canonical gene content, including poorly
understood unidentified URFs. Here, we provided evidence that all sequenced ctenophore
mitochondrial genomes contain URFs that appear to encode transmembrane transport
proteins, and that the URFs in the mitochondrial genome of the ctenophore B. forskalii are
under negative selection, and therefore are translated and functional within the
mitochondria.

To confirm that these ctenophores contain the protein products of mitochondrial URFs,
a future study may benefit from performing mass spectrometry experiments on purified
fractions of ctenophore mitochondria to attempt to identify the protein products of
the URFs. In addition, the sequencing of more ctenophore mitochondrial genomes at
the population-level may reveal patterns that inform us of the “hidden biology” of
ctenophores, their metabolism, and how they have adapted to diverse marine habitats.
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