
On the Effectiveness of Returns Policies in the Price-Dependent

Newsvendor Model

Daniel Granot and Shuya Yin
Sauder School of Business, University of British Columbia

Vancouver, B.C., Canada V6T 1Z2
daniel.granot@sauder.ubc.ca • shuya.yin@sauder.ubc.ca

April 13, 2005

Abstract

We study in this paper the price-dependent (PD) newsvendor model in which a manufac-

turer sells a product to an independent retailer facing uncertain demand and the retail price

is endogenously determined by the retailer. We prove that for a zero salvage value and some

expected demand functions, in equilibrium, the manufacturer may elect not to introduce buy-

backs. On the other hand, if buybacks are introduced in equilibrium, their introduction has an

insignificant effect on channel efficiency improvement, but, by contrast, may significantly shift

profits from the retailer to the manufacturer. We further demonstrate that the introduction

of buybacks increases the wholesale price, retail price, and inventory level, as compared to the

wholesale price-only contract, and that the corresponding vertically integrated firm offers the

lowest retail price and highest inventory level.

1 Introduction

Manufacturers, whose products are subject to random demand, often accept returns of unsold

goods for full or partial credit. For example, books, newspapers, recordings, CDs, dairy products,

costume jewelry, fashion wear, computer products and peripherals, and perishable services, such

as airline tickets and hotel rooms, are usually allowed to return to their source in North America

for full or partial credit. In general, a supply chain composed of independent agents trying to

maximize their own profits does not achieve channel coordination, see, e.g., Spengler (1950), and

Pasternack (1985) was the first to show that buybacks can coordinate the basic price-independent

newsvendor model, wherein a manufacturer (M) offers a good to a retailer (R) for a constant

wholesale price and a constant buyback rate (linear pricing), and R, who faces a fixed retail price
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and stochastic demand, needs to decide upon the optimal order quantity. Subsequently, other

contracts, such as, e.g., quantity-flexibility (Tsay (1999)), sales-rebate (Taylor (2002)), and revenue-

sharing (Pasternack (1999), Cachon and Lariviere (2005)) were also shown to be able to coordinate

the basic newsvendor model. See also Lariviere (1999), Tsay et al. (1999) and Cachon (2004) for

some excellent reviews of coordination mechanisms for the basic newsvendor model and related

models.

As noted by Kandel (1996), the price-dependent (PD) newsvendor model, wherein the retail

price is determined endogenously by R, is considerably more complicated. However, Emmons and

Gilbert (E&G) (1998) have shown that if the wholesale price is large enough, both M and R would

benefit from the introduction of buybacks when the expected demand function is linear. It was con-

jectured by Lariviere (1999), and it was proved by Bernstein and Federgruen (2005), that constant

wholesale and buyback prices (i.e., independent of other decision variables) cannot, in general, lead

to coordination in the PD-newsvendor model. By contrast, contracts which do not employ constant

wholesale and buyback prices can induce coordination. Indeed, e.g., revenue-sharing contracts and

the so-called “linear price discount sharing” scheme, were shown by Cachon and Lariviere (C&L)

(2005) and by Bernstein and Federgruen (2005), respectively, that they could induce coordination

in the PD-newsvendor model. We note, however, that as discussed by C&L, revenue-sharing con-

tracts require the ability for M to verify ex post R’s revenue, which may be costly, and as noted

by Bernstein and Federgruen (2005), the “linear price discount sharing” scheme bears close resem-

blance to the traditional “bill back” or “count-recount” schemes, which, unfortunately, are reported

to be disliked by retailers (see, e.g., Blattberg and Neslin (1990), Chapter 11).

Marvel and Peck’s (M&P) (1995) model, which assumes constant wholesale and buyback prices

and is somewhat different than the traditional supply chain model in the Operations Manage-

ment (OM) literature, incorporates two types of uncertainty: One with respect to product valu-

ation and the other concerning the number of customers arriving to the retail store. They show

that uncertainty only about product valuation leads to manufacturers’ preference for a wholesale

price-only contract, whereas uncertainty only about the number of arrivals induces manufacturers

to offer buybacks in their contracts. Thus, valuation uncertainty leads to theoretically opposite re-

sults than those derived for arrival uncertainty, which, as M&P suggest, explains why return good

systems are not more wide spread than observed. Note that if there is only arrival uncertainty,

then M&P’s model essentially reduces to the basic price-independent newsvendor model wherein

the selling price coincides with a representative customer’s product valuation. If there is only prod-
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uct valuation uncertainty, then the equilibrium order quantity is either zero or equal to the known

and fixed number of arriving customers.

In this paper we study the PD-newsvendor model with constant wholesale and buyback prices

which, as stated by M&P, typifies manufacturer-distributor relations in many markets. Our objec-

tive is not to investigate channel coordination. Rather, our aim is to investigate possible factors

that affect the introduction of returns. Thus, we address queries, such as that by Lariviere (1999,

Section 8.6, second paragraph), as to why constant wholesale price and buyback rate contracts are

not more prevalent: “Given the apparent power of returns policies, it is not surprising that they

are common in industries such as publishing. Indeed, one may wonder why they are not even more

common. Relatively little work has examined this issue...”.

We investigate the effect of buybacks for three different expected demand functions: linear,

negative power and exponential. For a linear expected demand function and a uniformly distributed

random component of the demand model, our PD-newsvendor model coincides with E&G’s model.

Our main results, for a zero salvage value, are:

(1) The manufacturer may elect not to offer buybacks. Indeed, buybacks are not introduced in

equilibrium when the expected demand function is a negative power function of the retail

price.

(2) If buybacks are introduced in equilibrium, they have a relatively insignificant effect on channel

efficiency improvement.

(3) By contrast, if buybacks are introduced in equilibrium, they could have a rather dramatic

effect on profit distribution. They could significantly increase M ’s expected profit and signif-

icantly decrease R’s expected profit. For example, for a linear expected demand function and

a uniformly distributed random component of demand, the introduction of buybacks is shown

to increase M ’s expected profit by 12.5% to 23.94% and to decrease R’s expected profit by

15.62% to 20.63%.

(4) Our analysis demonstrates that the introduction of buybacks in equilibrium induces higher

wholesale price, retail price and retail inventories than those obtained under wholesale price-

only contracts.

(5) In the PD-newsvendor model with buyback options, for a uniformly distributed random

component of demand, the wholesale price, channel efficiency and profit distribution between

M and R coincide with those in the corresponding model with deterministic demand.
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It can also be shown that the introduction of a positive salvage value in the PD-newsvendor

model may have a significant effect on the possible implementation of a returns policy. For example,

for a positive and equal salvage value at M ’s and R’s locations, buybacks are introduced for all

three expected demand functions.

Our findings provide several answers to Lariviere’s query as to why return good systems are

not more common. Indeed, as it is the case for a negative power expected demand function and

a zero salvage value, a manufacturer may prefer not to offer buybacks in equilibrium. Further, if

buybacks are introduced, their insignificant effect on channel efficiency would be further diminished

by the additional costs that would arise in a return system, which are not accounted for by the

model and which will not be incurred by a wholesale price-only contract (see related discussions

in, e.g., Lariviere (1999) and Lariviere and Porteus (2001)). Thus, the introduction of buybacks

by manufacturers in the PD-newsvendor model could be viewed, perhaps correctly, by retailers as

an attempt to grab additional channel profit at their expense. To the extent possible, therefore,

retailers would object to the introduction of return good systems.

The remainder of this paper is organized as follows: §2 formally introduces the price-dependent

(PD) newsvendor model. In §3 we analyze the PD-newsvendor model, as studied by E&G, wherein

the expected demand function is linear in the retail price and the random component of demand is

uniformly distributed. §4 extends the analysis to negative power and exponential expected demand

functions. In §5 we discuss an extension to more general demand distributions and the effect of

a positive salvage value on the implementation of the returns policies, and we reveal a surprising

relationship between the PD-newsvendor model with buybacks and the corresponding deterministic

model. Conclusions and future research are provided in §6.

2 Model Formulation

Consider the single-period PD-newsvendor model with buyback policies, wherein a manufacturer

sells a single product to an independent retailer facing stochastic demand from the end-customer

market. The decision sequence is as follows. M, who has unlimited production capacity and can

produce the items at a fixed marginal cost c, is a Stackelberg leader. M initiates the process by

offering a per unit (or linear) wholesale price w, at which items will be sold to R prior to the selling

season, and a per unit (or linear) buyback rate b, at which she will buy back the unsold items at

the end of the selling season. In response to the proposed w and b, R commits to an order quantity

Q prior to the selling season, and a per unit selling price p, at which to sell the items during the
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season. Thereafter, demand is realized. At the end of the season, R returns all unsold inventory to

M , receiving a refund of b for each unit returned.

It is assumed in this paper that unsatisfied demand is lost, there is no penalty cost for lost

sales1, and that the salvage value of unsold inventory is zero for2 both M and R. For feasibility,

we assume: (i) c ≤ w ≤ p and (ii) 0 ≤ b ≤ w.

The stochastic demand, X, that R faces is assumed to be of a multiplicative form X = D(p)ξ,

which is a commonly used model in the Economics and OM literature. D(p) is the expected value

of X, which decreases in the retail price p, and ξ (ξ ≥ 0) is the random part of X. The density

function of X satisfies f(x|p) = 1
D(p) f̂(ε|p), where ε = x

D(p) , and f̂(ε|p)(= f̂(ε)) is the probability

density function of ξ with mean normalized to one. The multiplicative demand model was initially

proposed by Karlin and Carr (1962).

It would be interesting and challenging to extend our analysis to the additive demand model

wherein X = D(p) + ξ. The additive model, which is also commonly used in the literature, would

be an appropriate model wherein the variance of demand is unaffected by the expected demand

level. By contrast, the multiplicative model is appropriate where the variance of demand increases

with expected demand in a manner which leaves the coefficient of variation unaffected.

We note, however, that the additive model may lead to qualitatively different results than the

multiplicative model (see, e.g., Mills (1959), E&G, Granot and Yin (2004a), Song et al. (2004),

and, in particular, the excellent survey by Petruzzi and Dada (1999)). Moreover, it appears that

it is less tractable than the multiplicative model (see, e.g., Padmanabhan and Png (1997), and

Wang et al. (2004)). Indeed, even when ξ has a binary distribution and D(p) is linear in p, it

is difficult to derive a closed-form expression for, e.g., the equilibrium value of w, in the PD-

newsvendor problem with an additive demand model.

Finally, let us note the main differences between the multiplicative and additive demand models

and M&P’s demand model. In the multiplicative and additive models, the stochastic demand is
1The zero penalty cost assumption is made mainly for tractability reasons. A positive penalty cost (or goodwill

cost) of unmet demand (or lost sales) accounts for consumers’ dissatisfaction and for potential business losses, espe-
cially in a multi-period setting. Generally speaking, incorporating a penalty cost for unsold inventory complicates
the analysis significantly. Indeed, even in the price-independent newsvendor model, a goodwill cost will complicate
the channel coordinating buyback contract (Pasternack (1985)) in the sense that it becomes demand distribution
dependent and may not have a closed-form solution. When a goodwill cost is present in the PD-newsvendor model,
closed-form expressions for equilibrium decisions and profits are not available for any of the expected demand func-
tions considered in this paper. Nevertheless, we have conducted a numerical investigation of the PD-newsvendor
model for linear and negative power expected demand functions. According to our findings, for a low goodwill cost,
the results hold. That is, buybacks are introduced for the linear case but not for the negative power expected demand
case. However, for a high enough goodwill cost, buybacks are introduced in both cases.

2The implications of relaxing this assumption are considered in §5.2.
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precisely the number of arrivals, which is a function of the retail price p. It can be assumed that

all arriving customers in these models are familiar with the product, well informed about the retail

price, and are interesting in buying it. If n customers were to arrive, then it would be optimal to

order n items. However, in M&P’s model, the number of arrivals is independent of the retail price.

That is, the number of arriving customers is stochastically the same regardless whether the retail

price is very high or very low. This could be interpreted as if the arriving customers are uninformed

about the retail price. Once in the store, either all or none will buy the product, depending on

whether a representative customer’s product valuation exceeds the retail price. Thus, in M&P’s

model, if n customers were to arrive, by contrast with the multiplicative and additive demand

models, it may be optimal to stock nothing.

For the multiplicative demand model, one can express M ’s and R’s expected profit functions

as follows:

EΠM (w, b) = (w − c)Q− bE[Q−X]+ and EΠR(p, Q) = (p− w)Q− (p− b)E[Q−X]+, (1)

where E[Q−X]+ = QF ( Q
D(p))−

∫ Q
D(p)

0 D(p)εf̂(ε|p)dε is the expected unsold inventory. In this paper,

we adopt E&G’s assumption that the random part of demand, ξ, follows a uniform distribution3

on the interval [0, 2], i.e., f̂(ε|p) = 0.5 on [0, 2]. Thus, we can simplify M ’s and R’s expected profit

functions, given by (1), to:

EΠM (w, b) = (w − c)Q− b
Q2

4D(p)
and EΠR(p, Q) = (p− w)Q− (p− b)

Q2

4D(p)
. (2)

We analyze in the next section the effect of buybacks in the PD-newsvendor model with a linear

expected demand function. In §4, we extend our study to two other expected demand functions.

3 Effect of Buybacks with Linear Expected Demand

We analyze in this section the effect of buybacks in the PD-newsvendor model wherein the expected

demand function, D(p), is linear of form4 D(p) = 1 − p. Note that when p = 1, market demand
3The analysis can be easily extended to a uniform distribution of ξ on [0, K] for any K > 0, and see §5 where we

briefly report on computational results with power and triangle distributions of ξ.
4Note that the analysis can be easily extended to a general linear expected demand function D(p) = a(k − p),

where a(> 0) and k(> 0) are constant, as was assumed in E&G. Indeed, for D(p) = a(k − p), let p = k · p′,
w = k · w′, b = k · b′, Q = ak2 · Q′ and c = k · c′. Then, it is not difficult to verify that the expected profit
functions of M and R, given by (2), can be transformed to: EΠM (w, b, p, Q, c) = ak2 · EΠ′

M (w′, b′, p′, Q′, c′) and
EΠR(w, b, p, Q, c) = ak2 ·EΠ′

R(w′, b′, p′, Q′, c′), where EΠ′
M and EΠ′

R are the expected profit functions of M and R,
respectively, with respect to the expected demand function D(p′) = 1 − p′ and the marginal manufacturing cost c′.
Thus, the analysis in a model with decisions (w, b, p, Q), cost c and D(p) = a(k − p) coincides with that in a model
with decisions (w′, b′, p′, Q′), cost c′ and D(p′) = 1− p′. Note that due to this normalization, the performance of the
models with and without buybacks and the integrated system is independent of individual values of c and k, but is
dependent on c

k
, which can be referred to as the normalized marginal manufacturing cost.
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is zero and both M and R gain zero expected profits. Thus, we assume that p < 1 in the sequel,

except as otherwise noted, and c ≤ w ≤ p < 1. We further note that, for any retail price p, the

highest demand from the end-customer market is 2D(p) since ξ ≤ 2.

From (2) and for D(p) = 1− p, M ’s and R’s expected profit functions can be simplified to:

EΠM
L = (w − c)Q− b

Q2

4(1− p)
and EΠR

L = (p− w)Q− (p− b)
Q2

4(1− p)
, (3)

where the subscript “L” stands for “linear expected demand”. The total expected channel profit,

EΠTotal
L , is the sum of the expected profits of M and R.

According to R’s expected profit function, given by (3), and for any given pair (w, b), E&G

have shown that R’s optimal retail price and order quantity are:

p∗L =
3b + 1 +

√
(1 + 8w − 9b)(1− b)

4
and Q∗

L =
2(1− p∗L)(p∗L − w)

p∗L − b
. (4)

Taking R’s reaction functions into account, M ’s expected profit function becomes:

EΠM
L = (w − c)Q∗

L − b
(Q∗

L)2

4(1− p∗L)
. (5)

Substituting w = c and b = 0 into (4), we obtain the unique equilibrium values of p and Q in

the corresponding integrated system5:

pI
L =

1 +
√

1 + 8c

4
and QI

L =
(3−

√
1 + 8c)2

4
. (6)

Substituting pI
L and QI

L into the expected integrated channel profit function: EΠI
L = (p−c)Q−

p Q2

4(1−p) , and simplifying results with:

EΠI
L =

(3−
√

1 + 8c)3(1 +
√

1 + 8c)
64

. (7)

E&G have shown that for all wholesale prices w ∈ (wT , 1), where wT is a threshold value less

than 1, both M and R are better off when M offers a positive buyback rate (i.e., b > 0). However,

by contrast with E&G, we are able to find closed-form expressions for wT , the equilibrium wholesale

price, w∗
L, and equilibrium buyback rate, b∗L. We further show that when the expected demand

function is linear, as assumed by E&G, the efficiency6 of the PD-newsvendor model with buybacks is

precisely 75%, and that the increased efficiency due to the introduction of buybacks is insignificant,

and bounded by 3.16%. By contrast, we demonstrate that the introduction of buybacks has a
5Note that 3−

√
1 + 8c > 0 since c < 1. Similarly for other expressions containing 3−

√
1 + 8c in the sequel.

6The efficiency of a supply chain is defined as the ratio of the equilibrium channel profit to the corresponding
integrated channel profit.
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significant effect on the distribution of the channel profit between M and R. Explicitly, we prove

that the introduction of buybacks increases M ’s expected profit by 12.5% to 23.94%, whereas, R’s

expected profit decreases by 15.62% to 20.63%.

We start by providing a closed-form expression for wT . All proofs are presented in the appendix.

Proposition 3.1 For any wholesale price in the interval (wT ≡
2+30c+3

√
6(1+5c)

50 , 1), there exists a

buyback rate b > 0, at which both M and R earn higher expected profits than when b = 0.

Observe that neither Proposition 3.1 nor Proposition 2 in E&G implies that buybacks are used

in equilibrium. Rather, they merely assert that when the wholesale price is large enough, both M

and R benefit from the introduction of buybacks. To prove that buybacks are used in equilibrium,

we need Proposition 3.2 and Lemma 3.3 below. In Proposition 3.2, we derive an explicit expression

for the equilibrium wholesale price, ŵ∗
L, in the PD-newsvendor model under a wholesale price-only

contract, wherein M first commits to a wholesale price w, and then R commits to a retail price p

and an order quantity Q.

Now, substituting b = 0 into the expected profit functions of M and R under a contract

with buybacks, given by (3), we obtain M ’s and R’s expected profit functions, EΠ̂M
L and EΠ̂R

L ,

respectively, in a wholesale price-only contract:

EΠ̂M
L = (w − c)Q and EΠ̂R

L = (p− w)Q− p
Q2

4(1− p)
. (8)

Proposition 3.2 In the PD-newsvendor model under a wholesale price-only contract, M’s equilib-

rium wholesale price is: ŵ∗
L = 5+32c+3

√
17+64c

64 .

The following relationship holds between wT and ŵ∗
L.

Lemma 3.3 wT < ŵ∗
L.

In view of Proposition 3.1 and Lemma 3.3, we have:

Corollary 3.4 Buybacks are introduced in equilibrium in the PD-newsvendor model with a linear

expected demand function.

For b = 0 and knowing ŵ∗
L, we are able to calculate p̂∗L and Q̂∗

L in a wholesale price-only contract

by substituting b = 0 and ŵ∗
L into p∗L and Q∗

L, given in (4):

p̂∗L =
7 +

√
17 + 64c

16
and Q̂∗

L =
(9−

√
17 + 64c)2

64
. (9)
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Substituting the resulting p̂∗L and Q̂∗
L further into EΠ̂M

L and EΠ̂R
L , given by (8), and simplifying

provides us with M ’s and R’s equilibrium expected profits in the PD-newsvendor model under a

wholesale price-only contract:

EΠ̂M∗
L = t(3 +

√
17 + 64c) and EΠ̂R∗

L = t(
7
2

+
1
2
√

17 + 64c), (10)

and the equilibrium total expected channel profit under a wholesale price-only contract is:

EΠ̂Total∗
L = t(

13
2

+
3
2
√

17 + 64c), (11)

where7 t = (9−
√

17+64c)3

8192 .

Lemma 3.5 In the PD-newsvendor model under a wholesale price-only contract, in equilibrium,

the ratio of M’s and R’s expected profits is bounded between 1.28 and 1.5.

We are now able to calculate the channel efficiency with wholesale price-only contracts.

Proposition 3.6 The channel efficiency with a wholesale price-only contract is strictly increasing

in c and is bounded between 71.84% and 74.07%.

A possible explanation for the increased efficiency as a function of c is that as c increases, the

range for w decreases since c ≤ w ≤ p < 1. Thus, an increase in c decreases the possibility for

double marginalization. See also Granot and Yin (2004a) for a similar behavior of channel efficiency

in decentralized systems under decision postponement.

In the PD-newsvendor model with buybacks, E&G had to resort to a numerical and graphical

investigation to analyze the equilibrium expected profits of M , R and the overall channel as a func-

tion of w, for parameter values (c, a, k) = (1,−3, 5). Fortunately, we are able to derive closed-form

expressions for the equilibrium values of w∗
L and b∗L, and therefrom to derive explicit expressions

for M ’s and R’s equilibrium expected profits.

Proposition 3.7 In the PD-newsvendor model with buybacks, the equilibrium values of M ’s deci-

sion variables are: (w∗
L = 1+c

2 , b∗L = 1
2), and in equilibrium,

EΠM∗
L = 2EΠR∗

L =
(3−

√
1 + 8c)3(1 +

√
1 + 8c)

128
. (12)

7Note that 9 −
√

17 + 64c > 0 since c < 1. Similarly for other expressions which contain 9 −
√

17 + 64c in the
sequel.
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Having the equilibrium wholesale and buyback prices, we are able to calculate R’s equilibrium

retail price and order quantity:

p∗L =
5 +

√
1 + 8c

8
and Q∗

L =
(3−

√
1 + 8c)2

8
. (13)

Further, having the equilibrium expected profits of M and R in contracts with buybacks, given

by (12), and the integrated channel profit, given by (7), we derive the following conclusion.

Proposition 3.8 The channel efficiency of the PD-newsvendor model with buybacks is 75%.

Propositions 3.6 and 3.8 imply8 that as compared to the wholesale price-only contract, the

improvement in channel efficiency due to the introduction of buybacks is decreasing in c, and it is

quite insignificant, at most 3.16% for c = 0. This result should be contrasted with the significant

effect of buybacks on channel efficiency improvement in the basic newsvendor model, wherein the

retail price is exogenously determined. Indeed, Lariviere and Porteus (2001) have studied the

basic newsvendor model under a wholesale price-only contract, and they have shown, e.g., that the

channel efficiency under such a contract is only 75% when demand follows a uniform distribution.

But, as shown by Pasternack (1985), the channel can be perfectly coordinated when buybacks

are introduced in the basic newsvendor model, which implies that buybacks can increase channel

efficiency by 25% for uniformly distributed demand.

From the above discussion we conclude that channel efficiency improvement is unlikely to be

the motivation behind the introduction of buybacks to the PD-newsvendor model. The following

two propositions suggest another motivation for their introduction in this model.

Proposition 3.9 In the PD-newsvendor model, the percent improvement in M’s equilibrium ex-

pected profit due to the introduction of buybacks is strictly decreasing in c and is bounded between

23.94%, for c = 0, and 12.5%, for c → 1.

Proposition 3.10 In the PD-newsvendor model, the percent deterioration of R’s equilibrium ex-

pected profit due to the introduction of buybacks is strictly decreasing in c and is bounded between

20.63%, for c = 0, and 15.62%, for c → 1.

A possible explanation for the decreased improvement in M ’s equilibrium expected profit

(Proposition 3.9) and the decreased deterioration in R’s equilibrium expected profit (Proposi-

tion 3.10) as a function of c is similar to that for Proposition 3.6. That is, as c increases, there is

less room for M to manipulate w to improve her welfare.
8Recall that the channel efficiency in the wholesale price-only contract is increasing in c.
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In view of Propositions 3.9 and 3.10, we may conclude that a possible motivation for the intro-

duction (by M) of buyback policies to the PD-newsvendor model is the significant and favorable,

for M , effect it has on the distribution of the channel profit.

Propositions 3.9 and 3.10 are consistent with E&G’s findings for the specific instance of the

PD-newsvendor model they have studied, wherein (c, a, k) = (1,−3, 5). Indeed, in their specific

example, c′ = c/k = 1/5 = 0.2, and there is an 18.92% increase in M ’s expected profit and a

19.26% decrease in R’s expected profit, due to the introduction of buybacks.

Proposition 3.11 below reveals the relationships among the equilibrium wholesale and retail

prices and the order (or production) quantities in supply contracts with and without buybacks and

in the vertically integrated channel.

Proposition 3.11 In the PD-newsvendor model:

(i) ŵ∗
L < w∗

L,

(ii) pI
L < p̂∗L < p∗L and

(iii) Q̂∗
L < Q∗

L < QI
L.

It follows from Proposition 3.11 that, as expected, the integrated channel would be preferred by

the end customers to a decentralized supply channel with or without buybacks, in the sense that it

offers a lower retail price and makes a larger amount of the product available to customers. But,

while the retail price with buybacks is strictly higher than that without buybacks, the quantity

available for the end customers in a supply chain with buybacks is strictly larger than that without

buybacks. We note that the results derived in Proposition 3.11 are consistent with those derived

by M&P for their demand model.

4 Effect of Buybacks with Other Expected Demand Functions

In this section, we maintain the assumption that ξ follows a uniform distribution, and we investigate

the robustness of our results, presented in §3, for other expected demand functions. Specifically, in

§4.1 the expected demand function is a negative power function of the retail price, and in §4.2, the

expected demand function is exponential.

4.1 Negative power expected demand

In this subsection, we study the PD-newsvendor model with a negative power expected demand

function of the retail price p, D(p) = p−q, where q > 1 and w ≤ p < ∞. The restriction q > 1 is
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used to ensure that R’s optimal retail price will be finite. The analysis can be easily extended to a

general D(p) = ap−q, where a > 0.

According to (2), M ’s and R’s expected profit functions, denoted as EΠM
N and EΠR

N , in the

PD-newsvendor model with D(p) = p−q and buyback options are:

EΠM
N = (w − c)Q− b

Q2

4p−q
and EΠR

N = (p− w)Q− (p− b)
Q2

4p−q
, (14)

where the subscript “N” stands for “negative power demand”. Let

p∗N =
qw + qb + w − 2b + J

2(q − 1)
and Q∗

N =
2(p∗N )−q(p∗N − w)

p∗N − b
, (15)

where J ≡
√

(q + 1)2w2 − 2(q2 − q + 2)wb + (q − 2)2b2.

Proposition 4.1 In the PD-newsvendor model with buybacks and D(p) = p−q, for any given (w, b),

R’s optimal reaction functions are given by (15).

Substituting w = c and b = 0 into p∗N and Q∗
N , we obtain the unique equilibrium pI

N and QI
N

in the corresponding integrated system:

pI
N =

q + 1
q − 1

c and QI
N =

4(q − 1)q

(q + 1)q+1
c−q.

Substituting pI
N and QI

N into the integrated channel profit function: EΠI
N = (p− c)Q− p Q2

4p−q , and

simplifying results with:

EΠI
N =

4(q − 1)q−1

(q + 1)q+1
c1−q. (16)

Having R’s reaction functions, p∗N and Q∗
N , given by (15), M ’s expected profit function becomes:

EΠM
N = (w − c)Q∗

N − b
(Q∗

N )2

4(p∗N )−q
. (17)

Similar to the case when the expected demand function is linear (Proposition 3.1), we find a

range of wholesale prices in which exercising buybacks can benefit both M and R.

Proposition 4.2 In the PD-newsvendor model with D(p) = p−q, for any wholesale price w, where

w > wN
T ≡ qc

q−1 , exercising a buyback option benefits both M and R.

M ’s equilibrium decision variables, (w∗
N , b∗N ), and the equilibrium expected profits of M and R

are as follows:

12



Proposition 4.3 In the PD-newsvendor model with buybacks and D(p) = p−q, the equilibrium

values of M’s decision variables are: (w∗
N = qc

q−1 , b∗N = 0), and, in equilibrium,

EΠM∗
N =

4(q − 1)2q−1

cq−1qq(q + 1)q+1
, EΠR∗

N =
4(q − 1)2q−2

cq−1qq−1(q + 1)q+1
and

EΠM∗
N

EΠR∗
N

=
q − 1

q
. (18)

Proposition 4.3 implies that when the expected demand function is a negative power of the

retail price, M elects not to offer a buyback option in equilibrium. Thus, as suggested earlier,

Proposition 4.2, which proves the existence of a range of wholesale prices at which both M and R

would benefit from the implementation of buybacks, is not sufficient for the introduction of buybacks

in equilibrium. Rather, a sufficient condition for the introduction of buybacks is that the equilibrium

wholesale price, for a wholesale price-only contract, falls in the interval of wholesale prices at which

both M and R would benefit from buybacks. Indeed, in the linear case, this wholesale price falls in

that interval (Lemma 3.3), and thus, in equilibrium, buybacks are used. However, for the negative

power demand case, this wholesale price is not in that interval (Propositions 4.2 and 4.3), and,

indeed, in equilibrium, buybacks are not used.

Proposition 4.3 should be compared with the result derived by M&P, according to which M

would always prefer to offer buybacks in equilibrium in the presence of uncertainty only with

respect to the number of arrivals. However, this specific result appears to be implied by their

model. Indeed, when the uncertainty is only with respect to the number of arrivals, M and R

know with certainty the customers’ valuation of the product. By requesting a wholesale price

equal to the customers’ valuation, M , in M&P model, is able to secure the entire channel profit

by implementing a complete consignment contract (full return for full credit). In fact, as noted in

the introduction section, M&P’s model with only arrival uncertainty essentially coincides with the

price-independent newsvendor model wherein the retail price is exogenously fixed. Thus, M&P’s

result that full-credit buybacks are offered when there is only arrival uncertainty is consistent

with the literature on channel coordination through buybacks in the price-independent newsvendor

model (Pasternack (1985), Kandel (1996)), wherein M is able to secure the entire channel profit by

setting w = b = p. Observe that in the presence of uncertainty both with respect to valuation and

arrivals, but when there is not very much arrival uncertainty, M may not offer buybacks in M&P’s

model (M&P (1995)).

Having the equilibrium expected profits of M and R, given by (18), and the integrated channel

profit, given by (16), we can derive the channel efficiency with (or without) buybacks.

13



Proposition 4.4 The channel efficiency of the PD-newsvendor model with (or without) buybacks

and with D(p) = p−q, is (q−1)q−1(2q−1)
qq , where q > 1, and it is strictly decreasing in q.

Note that price elasticity of a negative power expected demand D(p) = p−q is −dD(p)/dp
D(p)/p = q

(> 1). Thus, the larger q is, the more sensitive customers are to changes in the retail price, and

the more severe are the effects of double marginalization. This may explain the decrease of channel

efficiency as a function of q.

Similar to the linear expected demand case, one can show that the following relationships hold

among the equilibrium decision variables for an integrated firm and a decentralized channel with a

negative power expected demand function: (i) pI
N < p∗N , and (ii) Q∗

N < QI
N . That is, the integrated

firm charges a lower retail price and produces a larger quantity than the decentralized system.

4.2 Exponential expected demand

We consider in this subsection the PD-newsvendor model with an exponential expected demand

function9, i.e., D(p) = e−p, where w ≤ p < ∞.

For D(p) = e−p, M ’s and R’s expected profit functions with buybacks, given by (2), reduce to:

EΠM
E = (w − c)Q− b

bQ2

4e−p
and EΠR

E = (p− w)Q− (p− b)
Q2

4e−p
, (19)

where the subscript “E” stands for “exponential expected demand”. Similar to the negative power

expected demand case (Proposition 4.1), according to R’s expected profit function, given in (19),

it can be shown that R’s reaction functions for any given w and b are:

p∗E =
w + b + 1 +

√
(w − b)2 + 6(w − b) + 1

2
and Q∗

E =
2e−p∗E (p∗E − w)

p∗E − b
. (20)

Substituting w = c and b = 0 into p∗E and Q∗
E , we obtain the unique equilibrium pI

E and

QI
E in the corresponding integrated system: pI

E = c+1+H
2 and QI

E = 2e−pI
E (pI

E−c)

pI
E

, where H ≡
√

c2 + 6c + 1. Substituting pI
E and QI

E into the corresponding integrated channel profit function:

EΠI
E = (p− c)Q− p Q2

4e−p , and simplifying results with:

EΠI
E =

(c + 3−H)(−c + 1 + H)
4

e−
c+1+H

2 . (21)

Let us first consider the model under a wholesale price-only contract. Substituting b = 0 into

R’s reaction functions p∗E and Q∗
E for contracts with buybacks, given by (20), and simplifying

9Similar to the linear expected demand case, the analysis can be easily extended to a general D(p) = ae−s·p, where
a(> 0) and s(> 0) are constant. As in the linear expected demand case, due to this normalization, the performance
of the models with and without buybacks and the integrated system is independent of individual values of c and s,
but is dependent on s · c.
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provides us with R’s reaction functions in the wholesale price-only contract:

p̂∗E =
w + 1 + Z

2
and Q̂∗

E = e−
w+1+Z

2 (w + 3− Z), (22)

where Z =
√

w2 + 6w + 1. By substituting the resulting Q̂∗
E further into M ’s expected profit

function under a wholesale price-only contract, EΠ̂M
E = (w − c)Q, we obtain:

EΠ̂M
E = (w − c)(w + 3− Z)e−

w+1+Z
2 . (23)

Proposition 4.5 In the PD-newsvendor model under a wholesale price-only contract with D(p) =

e−p, the equilibrium wholesale price, ŵ∗
E(≥ c), is the unique solution to the nonlinear equation:

(w + 5)(w − c) + (w − c− 2)
√

w2 + 6w + 1 = 0. (24)

Using Proposition 4.5, we are able to show:

Lemma 4.6 In the PD-newsvendor model under a wholesale price-only contract with D(p) = e−p,

in equilibrium, M’s expected profit is strictly smaller than R’s expected profit.

We are also able to obtain explicit expressions for the equilibrium wholesale price, w∗
E , and

buyback rate, b∗E , in the PD-newsvendor model with buybacks and exponential expected demand.

Proposition 4.7 In the PD-newsvendor model with buybacks and D(p) = e−p, M’s expected profit

is globally maximized at (w∗
E = 1 + c, b∗E = 1), and in equilibrium,

EΠM∗
E = EΠR∗

E =
(c + 3−H)(−c + 1 + H)

4
e−

3+c+H
2 , (25)

where H =
√

c2 + 6c + 1.

Having derived the equilibrium expected profits of M and R, given by (25), and the integrated

channel profit, given by (21), we are able to calculate the channel efficiency of the PD-newsvendor

model with buybacks.

Proposition 4.8 The channel efficiency of the PD-newsvendor model with buybacks and D(p) =

e−p is 2
e ≈ 73.58%.

By Proposition 4.5, the equilibrium wholesale price under a price-only contract, ŵ∗
E , is implicitly

given by (24), and it seems unlikely that a closed-form expression for ŵ∗
E as a function of c can

be found. Fortunately though, Maple 6 is able to solve for ŵ∗
E for any given value of c. Indeed,
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Percentage (%) Equilibrium decision variables
improvement

M ’s R’s Channel Integrated Buybacks No buybacks

c profit profit efficiency pI
E QI

E w∗
E b∗E p∗E Q∗

E ŵ∗
E p̂∗E Q̂∗

E

0.0 11.14 -4.33 2.02 1.00 0.7358 1.00 1.00 2.00 0.2707 0.56 1.86 0.2175

0.1 9.22 -4.16 1.51 1.18 0.5602 1.10 1.00 2.18 0.2061 0.69 2.03 0.1741

0.5 5.54 -3.23 0.70 1.78 0.2424 1.50 1.00 2.78 0.0892 1.16 2.61 0.0816

1.0 3.65 -2.43 0.38 2.41 0.1048 2.00 1.00 3.41 0.0385 1.72 3.25 0.0365

2.0 2.06 -1.54 0.17 3.56 0.0249 3.00 1.00 4.56 0.0092 2.79 4.42 0.0089

5.0 0.74 -0.63 0.04 6.74 0.0006 6.00 1.00 7.74 0.0002 5.87 7.64 0.0002

Table 1: Supply chain performance due to buybacks with D(p) = e−p

in Table 1 we present the equilibrium values of the decision variables for the integrated channel,

and of the channel with and without buybacks, as well as the effect of buybacks on the equilibrium

expected profits of M and R and the channel efficiency. Recall that by Proposition 4.8, the channel

efficiency under a buyback contract is 2
e ≈ 73.58%.

Based on Table 1, we can make the following observations.

Observation 4.9 The percentage increase in channel efficiency due to buybacks is decreasing in c,

and is maximized at c = 0 for which it is 2.02%.

Observation 4.10 In equilibrium, due to the introduction of buybacks, M’s expected profit in-

creases at a decreasing rate in c and R’s expected profit decreases at a decreasing rate in c.

Table 1 and Observations 4.9 and 4.10 imply that for an exponential expected demand func-

tion, the introduction of buybacks in equilibrium has an insignificant effect on channel efficiency.

However, by contrast, it may have a relatively large and favorable, for M , effect on the distribution

of the channel profit. For example, when c = 0, M ’s expected profit increases by 11.14%, while R’s

expected profit decreases by 4.33%. These results are consistent with those obtained in the linear

expected demand case.

Further based on Table 1 we can make the following observation.

Observation 4.11 From Table 1:

(i) ŵ∗
E < w∗

E,

(ii) pI
E < p̂∗E < p∗E and

(iii) Q̂∗
E < Q∗

E < QI
E.

Observation 4.11 is consistent with the corresponding results derived in §3 and §4.1 for the

linear and negative power expected demand functions.
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5 Discussion and Extensions

In this section we reveal a close relationship between the PD-newsvendor model with buybacks and

the corresponding deterministic model, discuss extensions for other distributions of ξ and examine

the effect of introducing a positive salvage value for unsold inventory.

5.1 The PD-newsvendor model and the corresponding deterministic model

In the deterministic model, M , in Stage 1, offers a wholesale price w to R, who then determines

the selling price p in Stage 2, which induces demand D(p) that coincides with the expected demand

function in the newsvendor model. Obviously in the deterministic case, R would order a quantity

that is exactly equal to the deterministic demand. Thus, no buybacks are necessary in the deter-

ministic model. Let us take the linear demand as an example and analyze the deterministic model

with D(p) = a(k − p), where a > 0 and k > 0.

Deterministic model with D(p) = a(k−p). In Stage 2, for any given w, R determines p to

maximize ΠR(D) = (p−w)D(p), where D(p) = a(k−p). Clearly, ΠR is concave in p, which results

with p∗L(D) = k+w
2 . Taking R’s reaction function p∗L(D) into consideration, M ’s profit in Stage 1

becomes: ΠM = (w−c)D(p) = a
2 (w−c)(k−w), which is, again, concave in w. Thus, w∗

L(D) = k+c
2 ,

and accordingly, p∗L(D) = 3k+c
4 and ΠM∗

L (D) = 2ΠR∗
L (D) = a(k−c)2

8 . For the integrated channel in

the deterministic model, we substitute w = c into ΠR = a(p− w)(k − p). Then, pI
L(D) = k+c

2 and

the corresponding integrated channel profit is ΠI
L(D) = a(k−c)2

4 .

A similar analysis can be carried out for the other two expected demand functions. The results

are summarized in the following table.

ΠM∗(D) ΠR∗(D) Profit w∗(D) ΠI(D) Channel
distribution efficiency

D(p) = a(k − p) a(k−c)2

8
a(k−c)2

16 2 : 1 k+c
2

a(k−c)2

4 75%

D(p) = p−2 1
16c

1
8c 1 : 2 2c 1

4c 75%

D(p) = ae−s·p a
se−sc−2 a

se−sc−2 1 : 1 sc+1
s

a
se−sc−1 2

e ≈ 73.58%

Table 2: Supply chain performance in the deterministic model
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The results derived for the PD-newsvendor model with a uniform ξ, presented in §3 and §4, and

those given in Table 2 reveal a remarkable connection between the multiplicative PD-newsvendor

model with buybacks and the corresponding deterministic model, which are summarized below.

Theorem 5.1 In the PD-newsvendor model with a uniform ξ and buyback options, when the ex-

pected demand function is either linear, negative power or exponential, the wholesale price, the

channel efficiency and the profit distribution between M and R coincide with those in the corre-

sponding deterministic model.

In fact, to ascertain the robustness of the results derived for a uniform ξ, we have carried out

a numerical investigation for two families of distributions of ξ: power distributions with a non-

negative exponent (f̂(ε) = λ(ε)i, i ∈ [0,∞)) and triangle distributions on the interval [r, 2− r] for

any r ∈ [0, 1). The results are available in Granot and Yin (2004b), and for space consideration, we

only very briefly summarize them below. Specifically, the numerical study reveals that the results

derived analytically for a uniform ξ are quite robust. More explicitly, for the power and triangle

families of distributions of ξ:

(1) In equilibrium, buybacks are introduced for linear and exponential expected demand func-

tions, while they are not used for a negative power expected demand function.

(2) The increase in channel efficiency due to buybacks is relatively insignificant, if at all.

(3) Buybacks essentially shift the channel profit from R to M .

(4) Buybacks increase the equilibrium retail price and inventory level.

Thus, based on the results obtained for the PD-newsvendor model for power and triangle dis-

tributions of ξ, we can make the following observation:

Observation 5.2 In the PD-newsvendor model with buyback options, for power and triangle dis-

tributions of ξ and linear, negative power and exponential expected demand functions:

(i) The equilibrium wholesale and buyback prices are independent of the distribution of ξ.

(ii) The channel profit distribution between M and R and the channel efficiency are independent of

the distribution of ξ. Further, for linear and exponential expected demand functions, the profit

distribution and channel efficiency are independent of the model parameters ( i.e., (c, a, k) for

the model with D(p) = a(k − p) and (c, a, s) for D(p) = ae−s·p).
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Observation 5.2 suggests that for an arbitrary distribution of ξ (> 0) and D(p) = a(k − p), w∗
L

and b∗L can be derived from Proposition 3.7, EΠM∗
L = 2EΠR∗

L and the channel efficiency is 75% for

any (c, a, k); for D(p) = p−q, w∗
N and b∗N can be derived from Proposition 4.3, EΠM∗

N = q−1
q EΠM∗

N

and the channel efficiency is (q−1)q−1(2q−1)
qq , and for D(p) = ae−s·p, w∗

E and b∗E can be derived from

Proposition 4.7, EΠM∗
E = EΠR∗

E and the channel efficiency is 2
e ≈ 73.68% for any (c, a, s).

Thus, in view of the above results we make the following conjecture:

Conjecture 5.3 In the PD-newsvendor model with buyback options:

(i) For a general distribution of ξ(≥ 0), the wholesale price, the channel efficiency and the profit

distribution between M and R coincide with those in the corresponding deterministic model.

(ii) The buyback rate is independent of the distribution of ξ.

Conjecture 5.3 implies10 that the addition of buybacks to a wholesale price-only contract model

increases the channel efficiency up to the efficiency of the corresponding deterministic model. This

explains why buybacks are not implemented in the negative power expected demand case, wherein

the channel efficiency under a wholesale price-only contract coincides with the efficiency of the

corresponding deterministic model.

Naturally, Conjecture 5.3 implies a significant reduction in the computational burden associated

with solving the PD-newsvendor model with a buyback option. Indeed, the equilibrium wholesale

price, efficiency and profit allocation are derived from the corresponding deterministic model. The

increase in efficiency due to buybacks is available once the efficiency of the wholesale price-only

contract is found, and the equilibrium buyback rate for an arbitrary ξ can be found by solving the

model for a simple form of ξ, such as, e.g., a uniform ξ.

5.2 Positive salvage value of unsold inventory

A zero salvage value for both M and R was assumed for unsold inventory. There are cases,

however, where some salvage value can be generated from unsold inventory. In this subsection, we

will briefly consider the effect of a positive salvage value on the possible implementation of buybacks

in equilibrium for a uniformly distributed ξ.

We denote by SM (respectively, SR) the salvage value at M ’s (respectively, R’s) location, and

we will consider the following cases: (i) SM = SR = S, (ii) SM > SR and (iii) SM < SR. It is
10After the completion of essentially the current version of this paper, and motivated by essentially the current and

previous versions of this paper, Song, Ray and Li (2004) have managed to verify Conjecture 5.3 for linear, negative
power and exponential expected demand functions.
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reasonable to assume that max(SM , SR) < c to avoid a situation of producing for salvaging. We

briefly discuss the three cases below.11

(i) SM = SR = S. In this case, without loss of generality, we can assume12 that b ≥ S. Then,

M ’s and R’s expected profit functions can be written as:

EΠM = (w − c)Q− b
Q2

4D(p)
+ S

Q2

4D(p)
and EΠR = (p− w)Q− (p− b)

Q2

4D(p)
, (26)

where R’s expected profit function coincides with his expected profit function in the case of no

salvage value.

Following the same steps as in the model with a zero salvage value, one can show that M ’s

equilibrium decision variables are:

• (w∗
L = 1+c

2 , b∗L = 1+S
2 ) for a linear expected demand function D(p) = 1− p;

• (w∗
N = q

q−1c, b∗N = q
q−1S) for a negative power expected demand function D(p) = p−q, and

• (w∗
E = 1 + c, b∗E = 1 + S) for an exponential expected demand function D(p) = e−p.

Thus, the introduction of a positive salvage value at M ’s and R’s locations in the PD-newsvendor

model with buybacks does not affect the equilibrium wholesale price, and it can be further shown

that it has no impact on channel efficiency and the profit distribution between M and R. Thus,

Theorem 5.1 holds for a positive salvage value, where SM = SR. However, by contrast with the case

of a zero salvage value, buybacks are implemented for a negative power expected demand function

when SM = SR > 0. Apparently, the introduction of a positive salvage value is enough to make a

buyback option attractive for M .

(ii) SM > SR. As compared to Case (i), a higher salvage value for M would provide her with

an additional incentive to buy back unsold inventory. Indeed, returns are introduced in all three

expected demand cases.

(iii) SM < SR. If R has an advantage salvaging unsold inventory, no returns may occur for

all three expected demand functions. Indeed, if SR − SM is large enough, M will prefer b = 0 on

b > SR.

The results above imply that the existence of a positive salvage value (and perhaps other costs

associated with a returns policy) may have a significant effect on the possible implementation

of a returns policy. We note, however, that our results are consistent with those presented in

Kandel (1996) for the basic price-independent newsvendor model. Specifically, as noted in Kan-
11The detailed analysis is available upon request.
12For b < S, there are clearly no returns. For b = S, there is no difference between returns and no returns, and

considering the extra costs that are possibly associated with returns, we can assume no returns. For b > S, actual
returns may take place.
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del (1996), milk and flowers seem to have different returns policies. Unsold milk is usually returned

to the milk processing plants, while unsold flowers are often disposed at the retail store by price

discounting. The allowance for returns of unsold milk is due to the fact that milk processing plants

(i.e., M) can use it to produce other dairy items, while a grocery store (i.e., R) does not have such

a capability. On the other hand, it is more economic for a flower retailer to sell unsold flowers at

a discount price than to return them to the flower suppliers. See further Kandel (1996) for other

industrial examples, e.g., apparels and produce, where different returns policies are implemented

for unsold items due to differences in salvage values.

Finally, in addition to the form of the expected demand function and the salvage value, factors,

such as transportation cost or new product introduction consideration could also affect returns

policies. For example, in the textbook publishing industry, publishers are willing, sometime even

trying hard, to buy back used or unsold textbooks in order to promote and increase revenues from

a new edition of the textbook.

6 Conclusions and Further Research

We have studied in this paper the PD-newsvendor problem with a multiplicative probabilistic

demand model. We have investigated the desirability of introducing buybacks and their effect

on the equilibrium values of decision variables, channel efficiency and profit distribution for three

commonly used expected demand functions: linear, negative power and exponential. Initially,

we have assumed a zero salvage value. For this case, we have demonstrated that in equilibrium,

buybacks will be introduced for linear and exponential expected demand functions, but they are

not introduced for a negative power expected demand function. In those cases where buybacks are

introduced, we have shown that their introduction has an insignificant effect on channel efficiency

improvement. By contrast, their introduction in those cases may significantly increase M ’s expected

profit, and significantly decrease R’s expected profit. Thus, we suggest that in the absence of the

salvage value, the introduction of buybacks to the PD-newsvendor model is probably not motivated

by a desire to increase channel efficiency. Rather, it is more likely motivated by the significantly

favorable, for M , effect it has on the distribution of the channel profit. These results partially

explain why returns policies are not more common.

It is interesting to note that whenever buybacks are implemented in equilibrium in the PD-

newsvendor model, the wholesale price, profit distribution between M and R and channel efficiency

coincide with those values in the corresponding deterministic model. Since a return system involves
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costs not incorporated in this model (see, e.g., Lariviere (1999) and Lariviere and Porteus (2001)),

buybacks will not be introduced when a wholesale price-only contract is relatively efficient. Indeed,

as we have shown, buybacks are not introduced in the negative power expected demand function

case with a zero salvage value, wherein the channel efficiency under a wholesale price-only contract

coincides with that in the deterministic model.

However, we have also shown that the existence of a positive salvage value may have a significant

effect on the introduction of buybacks. For example, for a positive and equal salvage value at M ’s

and R’s locations, buybacks will be introduced for all three expected demand functions. Thus, if

the salvage value at M is positive and larger than that at R, M has an additional incentive to

introduce buybacks. These results may explain why some industries implement a return system,

and are consistent with the related discussion in Kandel (1996).

Several natural extensions of our results could be pursued. For example, it would be useful

to study other expected demand functions, and it would be interesting to extend the analysis to

the PD-newsvendor model with an additive demand model. As suggested earlier, however, (see

also Emmons and Gilbert (1998), Mills (1959), and Petruzzi and Dada (1999)), the additive model

could produce results which are different from those derived in the multiplicative demand model.

Indeed, one can verify that Conjecture 5.3 is not valid for the additive model.
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Appendix:

Proof of Proposition 3.1. As pointed out by E&G, for a given w, EΠR
L is non-decreasing in b.

Thus, the proof will follow if we are able to show that ∂EΠM
L

∂b (b = 0) > 0 for any w ∈ (wT , 1). For

convenience, we present derivatives of p∗L and Q∗
L with respect to w and b in Table A-1. Recall that

p∗L and Q∗
L are given by (4). The derivation of the partial derivative expressions is straightforward.

Expressions corresponding to p∗L Expressions corresponding to Q∗
L

p∗L = 1
4
(1 + 3b +

√
(1 + 8w − 9b)(1− b)) Q∗

L = 4 + 2w − 6p∗L
∂p∗L
∂w

= 1−b√
(1+8w−9b)(1−b)

∂Q∗
L

∂w
= 2− 6(1−b)√

(1+8w−9b)(1−b)

∂p∗L
∂b

= − 5+4w−9b−3
√

(1+8w−9b)(1−b)

4
√

(1+8w−9b)(1−b)

∂Q∗
L

∂b
= −6

∂p∗L
∂b

=
3(5+4w−9b−3

√
(1+8w−9b)(1−b))

2
√

(1+8w−9b)(1−b)

Table A-1: Summary of some partial derivatives
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It follows from (5) that

∂EΠM
L

∂b
= (w − c)

∂Q∗
L

∂b
− 1

4
Q∗

L(1− p∗L)−2[(1− p∗L)(Q∗
L + 2b

∂Q∗
L

∂b
) + bQ∗

L

∂p∗L
∂b

]. (A-1)

By evaluating p∗L, Q∗
L, ∂p∗L

∂b and ∂Q∗
L

∂b , given in Table A-1, at b = 0, substituting them and b = 0

into (A-1) and simplifying, we obtain that: ∂EΠM
L

∂b (b = 0) = (−3+
√

1+8w)2

16
√

1+8w
(20w+1−12c−3

√
1 + 8w).

Let A1(w) ≡ 20w + 1− 12c− 3
√

1 + 8w. ∂EΠM
∂b (b = 0) > 0 if and only if A1(w) > 0. Note that

A1(w) is convex in w and it has two stationary points, w1 and w2, where w1 = 2+30c−3
√

6(1+5c)

50 <

c <
2+30c+3

√
6(1+5c)

50 = w2 < 1. The last two strict inequalities follow since c < 1. Let wT = w2.

Since A1(w) > 0 when w > wT , we have verified that for any w ∈ (wT , 1), ∂EΠM
L

∂b (b = 0) > 0. 2

Proof of Proposition 3.2. By substituting b = 0 into (4), we derive R’s reaction functions in

a wholesale price-only contract: p̂∗L = 1+
√

1+8w
4 and Q̂∗

L = (3−
√

1+8w)2

4 . Upon their substitution in

M ’s expected profit function, given by (8), and simplifying, we obtain: EΠ̂M
L = (w−c)(3−

√
1+8w)2

4 .

The first derivative of EΠ̂M
L with respect to w is: dEΠ̂M

L
dw = (3−

√
1+8w)

4
√

1+8w
(−16w + 3

√
1 + 8w− 1 + 8c).

Let A2(w) ≡ −16w + 3
√

1 + 8w − 1 + 8c. Then, since c ≤ w < 1, dA2(w)
dw = −16 + 12√

1+8w
< 0.

Thus, A2(w) is strictly decreasing in w. Let w̄ = 5+32c+3
√

17+64c
64 . It follows from the definition

of A2(w) that A2(w) > 0 for c ≤ w < w̄, A2(w) < 0 for w̄ < w < 1 and A2(w) = 0 for w = w̄.

Since dEΠ̂M
L

dw = (3−
√

1+8w)

4
√

1+8w
A2(w) and (3−

√
1+8w)

4
√

1+8w
> 0, we conclude that dEΠ̂M

L
dw > 0 for c ≤ w < w̄,

dEΠ̂M
L

dw < 0 for w̄ < w < 1 and dEΠ̂M
L

dw = 0 for w = w̄. Therefore, EΠ̂M
L is pseduo-concave in w ∈ [c, 1)

and is uniquely maximized at ŵ∗
L = w̄ = 5+32c+3

√
17+64c

64 . 2

Proof of Lemma 3.3. Simply compare wT = 2+30c+3
√

6(1+5c)

50 and ŵ∗
L = 5+32c+3

√
17+64c

64 . 2

Proof of Lemma 3.5. From (10) the ratio, F , of M ’s and R’s equilibrium expected profits can be

simplified to F ≡ EΠ̂M∗
L

EΠ̂R∗
L

= 6+2
√

17+64c
7+

√
17+64c

, which is strictly increasing in c. Thus, the ratio of M ’s and

R’s equilibrium expected profits, F , is bounded between F (c = 0) ≈ 1.28 and F (c → 1) = 1.5. 2

Proof of Proposition 3.6. By (7) and (11), the efficiency of a wholesale price-only contract is:

EΠ̂Total∗
L

EΠI
L

∗ 100% =
(9−

√
17 + 64c)3(13 + 3

√
17 + 64c)

256(3−
√

1 + 8c)3(1 +
√

1 + 8c)
=

2(13 + 3
√

17 + 64c)(3 +
√

1 + 8c)3

(1 +
√

1 + 8c)(9 +
√

17 + 64c)3
∗ 100%,

which increases in c, and thus it is bounded between 71.84% for c = 0 and 74.07% for c → 1. 2

Proof of Proposition 3.7. It follows from (5) that

∂EΠM
L

∂w
= Q∗

L + (w − c)
∂Q∗

L

∂w
− 1

4
bQ∗

L(1− p∗L)−2[2(1− p∗L)
∂Q∗

L

∂w
+ Q∗

L

∂p∗L
∂w

]. (A-2)

Substituting p∗L, Q∗
L, ∂p∗L

∂w and ∂Q∗
L

∂w , given in Table A-1, into (A-2), and simplifying gives us:
∂EΠM

L
∂w = (U−3V )

4UV [(U −3V )(UV +3b)+8(w−c)V ], where V ≡
√

1− b and U ≡
√

1 + 8w − 9b. Since

b ≤ w < 1, U − 3V < 0. Thus, the first-order condition of EΠM
L with respect to w implies:

25



(U − 3V )(UV + 3b) + 8V (w − c) = 0. (A-3)

Similarly, by substituting p∗L, Q∗
L, ∂p∗L

∂b and ∂Q∗
L

∂b , given in Table A-1, into (A-1), and simplifying,

the first-order condition of EΠM
L with respect to b yields:

(U − 3V )[2V (UV + 6b) + b(U − 3V )] + 24V 2(w − c) = 0. (A-4)

Solving (A-3) and (A-4) reveals that (w∗
L = 1+c

2 , b∗L = 1
2) is the unique stationary point of M ’s

expected profit function, and the Hessian matrix at this stationary point is:∣∣∣∣∣ ∂2EΠM
∂w2

∂2EΠM
∂w∂b

∂2EΠM
∂b∂w

∂2EΠM
∂b2

∣∣∣∣∣ =
4

z(−3 + z)3

∣∣∣∣ Mww Mwb
Mbw Mbb

∣∣∣∣ ,

where z ≡
√

1 + 8c, Mww ≡ 8c3z − 72c3 + 648c2 − 24zc2 − 462zc + 1350c + 261 − 251z, Mbb ≡

8(8c2 + 56c − 12zc + 17 − 15z) and Mwb = Mbw ≡ 6(−60c2 + 4zc2 − 150c + 46zc − 33 + 31z).

Since c ∈ [0, 1), it is not difficult to verify that z < 3, Mww > 0, Mbb > 0 and Mwb = Mbw < 0.

Furthermore, we have Mww · Mbb − Mwb · Mbw > 0, which implies that the Hessian matrix at

(w∗ = 1+c
2 , b∗ = 1

2) is negative definite. Thus, this point is the global maximizer of M’s problem.

Accordingly, we have: EΠM∗
L = 2EΠR∗

L = (3−
√

1+8c)3(1+
√

1+8c)
128 . 2

Proof of Proposition 3.9. From (10) and (12), after some simplifications, the percent improve-

ment of M ’s equilibrium expected profit due to the introduction of buybacks reduces to:

EΠM∗
L − EΠ̂M∗

L

EΠ̂M∗
L

∗ 100% = (
(1 +

√
1 + 8c)(9 +

√
17 + 64c)3

8(3 +
√

17 + 64c)(3 +
√

1 + 8c)3
− 1) ∗ 100%, (A-5)

which decreases in c, and thus it is bounded between 12.5% for c → 1 and 23.94% for c = 0. 2

Proof of Proposition 3.10. From (10) and (12), after some simplifications, the percent deterio-

ration of R’s equilibrium expected profit due to the introduction of buybacks reduces to:

EΠR∗
L − EΠ̂R∗

L

ÊΠ
R∗
L

∗ 100% = (
(1 +

√
1 + 8c)(9 +

√
17 + 64c)3

8(7 +
√

17 + 64c)(3 +
√

1 + 8c)3
− 1) ∗ 100%, (A-6)

which increases in c, and thus it is bounded between -20.63% for c = 0 and -15.62% for c → 1. 2

Proof of Proposition 3.11. (i) ŵ∗
L < w∗

L. By Propositions 3.2 and 3.7, we know that ŵ∗
L =

5+32c+3
√

17+64c
64 and w∗

L = 1+c
2 . Thus, we have w∗

L − ŵ∗
L = 3

64(9−
√

17 + 64c) > 0 since c < 1.

(ii) pI
L < p̂∗L < p∗L. By (6) and (9), we have p̂∗L − pI

L = 7+
√

17+64c
16 − 1+

√
1+8c
4 . We simplify it to

1
16 (3 +

√
17 + 64c − 4

√
1 + 8c), which can be shown to be positive for any c < 1. Thus, pI

L < p̂∗L.

Similarly, by (9) and (13), we have p∗L − p̂∗L = 5+
√

1+8c
8 − 7+

√
17+64c
16 = 1

16 (3 + 2
√

1 + 8c−
√

17 + 64c). It

can be shown that p̂∗L < p∗L for any c < 1. Thus, pI
L < p̂∗L < p∗L. Similarly for the proof of (iii). 2

Proof of Proposition 4.1. For any given w, b and p, EΠR
N , given in (14), is concave in Q. Thus,

at optimality, Q∗
N = 2p−q(p−w)

p−b . By substituting Q∗
N into EΠR

N , we obtain EΠR
N = p−q(p−w)2

p−b . By
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employing the same proof method as that used in Proposition 3.2 to prove that EΠ̂M
L is pseudo-

concave in w, we can prove that EΠR
N is pseudo-concave in p. Thus, EΠR

N is uniquely maximized

at p∗N = qw+qb+w−2b+J
2(q−1) , where J ≡

√
(q + 1)2w2 − 2(q2 − q + 2)wb + (q − 2)2b2. 2

Proof of Proposition 4.2. As in the proof of Proposition 3.1, for any w, R’s expected profit is

non-decreasing in b. Thus, the proof will follow if we can show that WT ≡ ∂EΠM
N

∂b (b = 0) > 0 for any

w > wN
T , where EΠM

N is given by (17). By using Maple 6, we get that WT = − 4(q−1)q

wq+1(q+1)q+2 (−w(q−

1) + qc), where − 4(q−1)q

wq+1(q+1)q+2 < 0 since q > 1. Thus, WT > 0 for any w > qc
q−1 . 2

Proof of Proposition 4.3. Using Maple 6 to solve, simultaneously, the first-order conditions

of EΠM
N with respect to w and b, i.e., ∂EΠM

N
∂w = 0 and ∂EΠM

N
∂b = 0, results with a unique solution

(w∗
N = qc

q−1 , b∗N = 0). (For brevity, we don’t present the intermediate results here.) The Hessian

matrix at this stationary point is:∣∣∣∣∣ ∂2EΠM
∂w2

∂2EΠM
∂w∂b

∂2EΠM
∂b∂w

∂2EΠM
∂b2

∣∣∣∣∣ =

∣∣∣∣∣ Mww = −4[ (q−1)2

cq(q+1) ]
q+1 Mwb

Mbw Mbb = − 8(q−1)2q+2

cq+1qq(q+1)q+4

∣∣∣∣∣ ,

where Mwb = Mbw ≡ 4(q−1)2q+2

(cq)q+1(q+1)q+2 . Since q > 1, we have Mww · Mbb − Mwb · Mbw > 0,

which implies that the Hessian matrix at the unique stationary point is negative definite. Thus,

the unique stationary point (w∗ = qc
q−1 , b∗ = 0) is the global maximizer of M’s problem in Stage 1.

Upon substitution of this point, and the corresponding p∗N and Q∗
N , given by (15), into M ’s and

R’s expected profit functions, given by (14), we obtain that in the PD-newsvendor model with a

negative power expected demand function, EΠM∗
N = 4(q−1)2q−1

cq−1qq(q+1)q+1 , EΠR∗
N = 4(q−1)2q−2

cq−1qq−1(q+1)q+1 , and
EΠM∗

N

EΠR∗
N

= q−1
q . 2

Proof of Proposition 4.5. By (23), we have ∂EΠ̂M
E

∂w = e−
w+1+Z

2 (w+3−Z)
2Z B(w), where B(w) ≡

−wZ + cZ + 2Z −w2 + wc− 5w + 5c and Z =
√

w2 + 6w + 1. Note that B(w) can be transformed

to: B(w) = (−w + c + 2)
√

w2 + 6w + 1− (w + 5)(w − c), which is concave in w since ∂2B(w)
∂2w

< 0.

Since B(w = c) > 0 and B(w) < 0 for w large enough, there exists a unique w̄ such that B(w) > 0

for c ≤ w < w̄, B(w) < 0 for w̄ < w and B(w) = 0 for w = w̄. Since ∂EΠ̂M
E

∂w = e−
w+1+Z

2 (w+3−Z)
2Z B(w)

and e−
w+1+Z

2 (w+3−Z)
2Z > 0, we conclude that ∂EΠ̂M

E
∂w > 0 for c ≤ w < w̄, ∂EΠ̂M

E
∂w < 0 for w̄ < w and

∂EΠ̂M
E

∂w = 0 for w = w̄. Therefore, EΠ̂M
E is pseduo-concave in w ∈ [c,∞) and uniquely maximized

at ŵ∗
E , where ŵ∗

E is the unique solution to B(w) = 0 such that ŵ∗
E ≥ c. 2

Proof of Lemma 4.6. Substituting b = 0 into M ’s and R’s expected profit functions under a

wholesale price-only contract, given by (19), results with EΠ̂M
E = (w− c)Q and EΠ̂R

E = (p−w)Q−
pQ2

4e−p . To prove EΠ̂M∗
E < EΠ̂R∗

E , we need to show that in equilibrium, (w−c)Q < (p−w)Q− pQ2

4e−p , i.e.,

27



0 < Q < 4e−p(p+c−2w)
p . By substituting p̂∗E , given by (22), into Q̄ ≡ 4e−p(p+c−2w)

p , and simplifying,

we obtain: Q̄ = 4e−
w+1+Z

2 (−3w+1+Z+2c)
w+1+Z , where Z =

√
w2 + 6w + 1. Thus, we need to compare, at

w = ŵ∗
E , the equilibrium order quantity in the wholesale price-only contract, Q̂∗

E , given by (22),

and Q̄, where ŵ∗
E is the equilibrium wholesale price, which satisfies (24) in Proposition 4.5. Now,

at w = ŵ∗
E , Q̂∗

E < Q̄ if (w + 3− Z)(w + 1 + Z) < 4(−3w + 1 + Z + 2c), which holds if and only if

5w−4c−1 < Z. By Proposition 4.5, in equilibrium, c = 1+3w2+18w−(w+5)Z
2(6+w) , and upon substituting c

into 5w−4c−1 < Z and simplifying, we obtain that Q̂∗
E < Q̄ if (4+w)

√
w2 + 6w + 1 < w2+7w+8,

which holds for any w(≥ c). Thus, we conclude that in equilibrium, Q̂∗
E < Q̄, which completes the

proof of Lemma 4.6. 2

Proof of Proposition 4.7. Having derived R’s reaction functions, p∗E and Q∗
E , given by (20),

M ’s expected profit function becomes: EΠM
E = (w − c)Q∗

E −
b(Q∗

E)2

4e
−p∗

E
.

Using Maple 6 to solve, simultaneously, the first-order conditions of EΠM
E with respect to w

and b, i.e., ∂EΠM
E

∂w = 0 and ∂EΠM
E

∂b = 0, results with a unique stationary point (w∗
E = 1 + c, b∗E = 1).

The Hessian matrix (for brevity, again, we don’t present the intermediate results) at this point is:∣∣∣∣∣ ∂2EΠM
∂w2

∂2EΠM
∂w∂b

∂2EΠM
∂b∂w

∂2EΠM
∂b2

∣∣∣∣∣ =
∣∣∣∣ Mww Mwb

Mbw Mbb

∣∣∣∣ ,

where
Mww ≡ −16β(2c4 + 18c3 + 2c3H + 12c2H + 42c2 + 14cH + 23c + 3 + 3H)

H(1 + c + H)4
,

Mbb ≡ −8c3 + 11c2 − c2H + 8cH + 17c + 3 + 3H)β
H(1 + c + H)4

,

Mwb = Mbw =
16(2c3 + 2c2H + 15c2 + 7cH + 13c + 2 + 2H)β

H(1 + c + H)4
,

where β = e−
3+c+H

2 , and, as we recall, H =
√

c2 + 6c + 1. One can verify that since β > 0

and Mww < 0, Wbb < 0 and Mww · Mbb − Mwb · Mbw > 0, which implies that the Hessian

matrix at the unique stationary point is negative definite, and M’s expected function is globally

maximized at (w∗ = 1 + c, b∗ = 1). Thus, the equilibrium expected profits of M and R are:

EΠM∗
E = EΠR∗

E = (c+3−H)(−c+1+H)
4 e−

3+c+H
2 , where H =

√
c2 + 6c + 1. 2
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