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Abstract: We provide a new derivation of the log likelihood spectral distance measure for signal
processing using the logarithm of the ratio of entropy rate powers. Using this interpretation, we show
that the log likelihood ratio is equivalent to the difference of two differential entropies, and further
that it can be written as the difference of two mutual informations. These latter two expressions
allow the analysis of signals via the log likelihood ratio to be extended beyond spectral matching
to the study of their statistical quantities of differential entropy and mutual information. Examples
from speech coding are presented to illustrate the utility of these new results. These new expressions
allow the log likelihood ratio to be of interest in applications beyond those of just spectral matching
for speech.

Keywords: log likelihood ratio; spectral distance; differential entropy; mutual information; speech
codec design

1. Introduction

We provide new expressions relating the log likelihood ratio from signal processing, the minimum
mean squared prediction error from time series analysis, and the entropy power from information
theory. We then show how these new expressions for the log likelihood ratio invite new analyses
and insights into problems in digital signal processing. To demonstrate their utility, we present
applications to speech coding and show how the entropy power can explain results that previously
escaped interpretation.

The linear prediction model plays a major role in many digital signal processing applications, but
none perhaps more important than linear prediction modeling of speech signals. Itakura introduced
the log likelihood ratio as a distance measure for speech recognition [1], and it was quickly applied to
evaluating the spectral match in other speech-processing problems [2–5]. In time series analysis, the
linear prediction model, called the autoregressive (AR) model, has also received considerable attention,
with a host of results on fitting AR models, AR model prediction performance, and decision-making
using time series analysis based on AR models. The particular results of interest here from time series
analysis are the expression for the mean squared prediction error and the decomposition in terms of
nondeterministic and deterministic processes [6–8].

The quantity called entropy power was defined by Shannon [9], and has primarily been used in
bounding channel capacity and rate distortion functions. Within the context of information theory and
rate distortion theory, Kolmogorov [10] and Pinsker [11] derived an expression for the entropy power
in terms of the power spectral density of a stationary random process. Interestingly, their expression
for the entropy power is the same as the expression from time series analysis for the minimum mean
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squared prediction error. This fact was recognized by Gish and Berger in 1967, but the connection has
never been formalized and exploited [12,13].

In this paper, we use the expression for the minimum mean squared prediction error to show
that the log likelihood ratio equals the logarithm of the ratio of entropy powers, and then develop
an expression for the log likelihood ratio in terms of the difference of differential entropies and the
difference of two mutual informations. We specifically consider applications of linear prediction to
speech coding, including codec performance analysis and speech codec design.

In Section 2, we define and discuss expressions for the log likelihood ratio, and in Section 3, we
define and explain the entropy power and its implications in information theory. Section 4 examines
the mean squared prediction error from time series analysis and relates it to entropy power. The
quantities of entropy power and mean squared prediction error are then used in Section 5 to develop
the new expressions for the log likelihood ratio in terms of differential entropy and mutual information.
Experimental results are presented in Section 6 for several speech coding applications, and in Section 7,
a detailed discussion of the experimental results is provided, as the difference in differential entropies
and mutual informations reveals new insights into codec performance evaluation and codec design.
Section 8 provides the experimental lessons learned and suggestions for additional applications.

2. Log Likelihood Spectral Distance Measure

A key problem in signal processing, starting in the 1970s, has been to determine an expression for
the difference between the spectra of two different discrete time signals. One distance measure that
was proposed by Itakura [1] and found to be effective for some speech recognition applications and for
comparing the linear prediction coefficients calculated from two different signals is the log likelihood
ratio defined by [2–5]:

d = log
[

AVAT

BVBT

]
, (1)

where A = [1, a1, a2, . . . , an] and B = [1, b1, b2, . . . , bn] are the augmented linear prediction coefficient
vectors of the original signal, x(n), and processed signal, x̂(n), respectively, and V is the Toeplitz
autocorrelation matrix [14,15] of the processed signal, with diagonal components r(|i− j|) =

∑
N−|i−j|
m=1 x̂(m)x̂(m + |i− j|), i − j = 0, 1, . . . , n. N is the number of samples used for the analysis

window, and n is the predictor order [5]. We thus see that BVBT is the minimum mean squared
prediction error for predicting the processed signal, and that AVAT is the mean squared prediction
error obtained when predicting the processed signal with the coefficients calculated based on the
original signal [2–5,14,15]. Magill [2] employed the ratio AVAT/BVBT to determine when to transmit
linear prediction coefficients in a variable rate speech coder based on Linear Predictive Coding (LPC).

A filtering interpretation corresponding to AVAT and BVBT is also instructive [3,5]. Defining
A(z) = 1 + ∑n

i=1 aiz−i and B(z) = 1 + ∑n
i=1 biz−i, we consider AVAT as the mean squared prediction

error when passing the signal x̂(n) through A(z), which, upon letting z = ejω, can be expressed as
AVAT = 1

2π

∫ π
−π

∣∣A(ejω)
∣∣2∣∣X̂(ejω)

∣∣2dω; also, BVBT is the mean squared prediction error when passing

the signal x̂(n) through B(z), which can be expressed as BVBT = 1
2π

∫ π
−π

∣∣B(ejω)
∣∣2∣∣X̂(ejω)

∣∣2dω. Here,
X̂(ejω) denotes the discrete time Fourier transform of the sequence x̂(n). We can thus write the log
likelihood ratio in (1) in terms of the spectral densities of autoregressive (AR) processes as [3,5]:

d = log
1

2π

πw

−π

∣∣A(ejω)
∣∣2∣∣B(ejω)
∣∣2 dω (2)

where the spectral density
∣∣X̂(ejω)

∣∣2 divides out.
The quantity d ≥ 0 has been compared to different thresholds in order to classify how good

of a spectral match is being obtained, particularly for speech signals. Two thresholds often quoted
in the literature are d = 0.3, called the statistically significant threshold, and what has been called a
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perceptually significant threshold, d = 0.9. The value d > 0.3 indicates that “there is less than a 2%
chance” that the set of coefficients {bk} are from an unprocessed signal with coefficients {ak}, and thus
d = 0.3 is called the statistically significant threshold [4]. Itakura [1,4] found that for the difference in
coefficients to be significant for speech recognition applications, the threshold should be 3 times the
statistically significant threshold or d > 0.9. These values were based on somewhat limited experiments,
and it has been noted that these specific threshold values are not set in stone, but it was generally
accepted that d > 0.9 is a poor spectral fit [3,4]. Therefore, for speech coding applications, d > 0.9, is
considered an indicator that the codec being evaluated is performing poorly.

The challenge with the log likelihood ratio has always been that the interpretation of the value of
d when it is less than the perceptually significant threshold and greater than 0.3 is not evident. In the
range 0.3 < d < 0.9, the log likelihood was simply interpreted to be an indicator that the spectral match
was less than perfect, but perhaps acceptable perceptually. It appears that the lack of clarity as to the
perceptual meaning of the possible values taken on by d caused it to lose favor as a useful indicator of
performance in various applications.

In the sections that follow, we introduce two new additional expressions for d that allow us to
better interpret the log likelihood ratio when it is less than the perceptually significant threshold of
0.9. These new interpretations admit a new modeling analysis that we show relates directly to speech
codec design.

3. Entropy Power/Entropy Rate Power

For a continuous valued random variable X with probability density function p(x), we can write
the differential entropy

h(X) = −
w ∞

−∞
p(x) log p(x)dx (3)

where X has the variance σ2. In his original paper, Shannon [9] defined what he called the
derived quantity of entropy power corresponding to the differential entropy of the random variable X.
In particular, Shannon defined the entropy power as the power in a Gaussian random variable having
the same entropy as the given random variable X. Specifically, since a Gaussian random variable
has the differential entropy, h(g) = 1

2 log[2πeσ2], solving for σ2 and letting σ2 = Q, we have that the
corresponding entropy power is

Q =
1

2πe
e2h(X) (4)

where here h(X) is not Gaussian, but it is the differential entropy of the “original” random variable.
Generally, we will be modeling our signals of interest as stationary random processes. If we let X

be a stationary continuous-valued random process with samples Xn = {Xk, k = 1, 2, . . . , n}, then the
differential entropy rate of the process X is [16]

h = lim
n→∞

1
n

h(Xn) = lim
n→∞

h(Xn|Xn−1). (5)

We assume that this limit exists in our developments and we drop the overbar notation and use as
before h = h. Thus, for random processes, we use the entropy rate in the definition of entropy power,
which yields the nomenclature entropy rate power.

We now consider a discrete-time stationary random process X with correlation function

φ(k) = EXjXj+k, and define its periodic discrete-time power spectral density Φ(ω) =
∞
∑

k=−∞
φ(k)e−jωk

for |ω| ≤ π. For an n-dimensional random process with correlation matrix Φn, we know that the
determinant of Φn is the product of its eigenvalues, λ

(n)
k , so |Φn| = ∏n

k=1 λ
(n)
k , and we can write

lim
n→∞

log|Φn|1/n = lim
n→∞

1
n

log

(
n

∏
k=1

λ
(n)
k

)
= lim

n→∞

1
n

n

∑
k=1

logλ
(n)
k . (6)
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Using the Toeplitz Distribution Theorem [7,12] on (6), it can be shown that [6,12,13]

lim
n→∞

log|Φn|1/n = lim
n→∞

1
n

n

∑
k=1

logλ
(n)
k =

1
2π

πw

−π

log Φ(ω)dω. (7)

To obtain an expression for the entropy rate power, we note that the differential entropy of a
Gaussian random process with the given power spectral density, Φ(ω), and correlation matrix Φn is
h(g) = (n/2) log(2πe|Φn|1/n), then solving for |Φn|1/n and taking the limit as in (7), we can write the
entropy rate power Q as [8,9]

Q = exp

{
1

2π

πw

−π

log Φ(ω)dω

}
. (8)

One of the primary applications of Q has been for developing a lower bound to the rate distortion
function [9,12,13]. Note that, in defining Q, we have not assumed that the original random process is
Gaussian. The Gaussian assumption is only used in Shannon’s definition of entropy rate power. In this
paper, we expand the utility of entropy rate power to digital signal processing, and in particular, in
our examples, to speech codec performance evaluation and codec design.

4. Mean Squared Prediction Error

To make the desired connection of entropy rate power with the log likelihood ratio, we now
develop some well-known results in statistical time series analysis. As before, we start with a
discrete-time stationary random process X with autocorrelation function φ(k) and corresponding
power spectral density Φ(ω), again without the Gaussian assumption. It can be shown that the
minimum mean squared prediction error (MMSPE) for the one-step ahead prediction of Xm, given all
Xi, i ≤ m− 1, can be written as [6,8]

MMSPE = exp

{
1

2π

πw

−π

log Φ(ω)dω

}
, (9)

which, as was first observed by Gish and Berger, is the same expression as for the entropy rate power
Q of the signal [13].

The entropy rate power is defined by Shannon to be the power in a Gaussian signal with the same
differential entropy as the original signal. The signal being analyzed is not assumed to be Gaussian, but
to determine the entropy rate power, Q, we use the signal differential entropy, whatever distribution
and differential entropy it has, in the relation for a Gaussian process. It is tempting to conclude that,
given the MMSPE of a signal, we can use the entropy rate power connection to the differential entropy
of a Gaussian process to explicitly exhibit the differential entropy of the signal being analyzed as
h(p) = 1

2 log(2πeQ); however, this is not true and this conclusion only follows if the underlying signal
being analyzed is Gaussian.

Explicitly, Shannon’s definition of entropy rate power is not reversible. Shannon stated clearly
that entropy rate power is a derived quantity [9]. For a known differential entropy, we can calculate
the entropy rate power as in Shannon’s original expression. If we start with the MMSPE or a signal
variance, we cannot obtain the true differential entropy from the Gaussian expression as above. Given
an MMSPE, however, what we do know is that there exists a corresponding differential entropy and
we can use the MMSPE to define an entropy rate power in terms of the differential entropy of the
original signal. We just cannot calculate the differential entropy using the Gaussian expression.

While the expression for the MMSPE is well-known in digital signal processing, it is the connection
to the entropy rate power Q and thus to the differential entropy of the signal, which has not been
exploited in digital signal processing, that opens up new avenues for digital signal processing and
for interpreting past results. Specifically, we can interpret comparisons of MMSPE as comparisons
of entropy powers, and thus interpret these comparisons in terms of the differential entropies of the
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two signals. This observation provides new insights into a host of signal processing results that we
develop in the remainder of the paper.

5. Connection to the Log Likelihood Ratio

To connect the entropy rate power to the log likelihood ratio, we focus on autoregressive
processes or the linear prediction model, which is widely used in speech processing and speech
coding. We recognize BVBT as the MMSPEB when predicting a processed or coded signal with the
linear prediction coefficients optimized for that signal, and we also see that AVAT is the MSPE, not
the minimum, when predicting the processed signal with the coefficients optimized for the original
unprocessed signal. The interpretation of BVBT as an entropy rate power is direct, since we know that,
for a random variable X with zero mean and variance σ2, the Gaussian distribution lower bounds its
differential entropy, so h(X) ≤ 1 log(2πeσ2), and thus it follows by definition that Q ≤ σ2. Therefore,
QB = BVBT , since σ2 = MMSPEB here.

However, AVAT is not the minimum MSPE for the process being predicted, because the prediction
coefficients were calculated on the unprocessed signal but used to predict the processed signal, so
it does not automatically achieve any lower bound. What we do is define AVAT as the MMSPEA
of a new process, so that for this new process, we can obtain a corresponding entropy rate power
as QA = AVAT . This is equivalent to associating the suboptimal prediction error with a whitened
nondeterministic component [6,8]. In effect, the resulting MMSPEA is the maximum power in the
nondeterministic component that can be associated with AVAT .

Using the expression for entropy power Q from Equation (4), substituting for both QA and QB,
and taking the logarithm of the two expressions, we have that

d = log
QA
QB

= 2[h(X|PA)− h(X|PB)], (10)

where h(X|PA) is the differential entropy of the signal generated by passing the processed signal
through a linear prediction filter using the linear prediction coefficients computed from the unprocessed
signal, and h(X|PB) is the differential entropy of the signal generated by passing the processed signal
through a linear filter using the linear coefficients calculated from the processed signal. Gray and
Markel [3] have used such linear filter analogies for the log likelihood ratio in terms of a test signal
and a reference signal before for spectral matching studies, and other log likelihood ratios can be
investigated based on switching the definitions of the test and reference.

It is now evident that the log likelihood ratio has an interpretation beyond the usual viewpoint of
just involving a ratio of prediction errors or just as a measure of a spectral match. We now see that the
log likelihood ratio is interpretable as the difference between two differential entropies, and although
we do not know the form or the value of each differential entropy, we do know their difference.

We can provide an even more intuitive form of the log likelihood ratio: since we have QB = BVBT

as the MMSPE when predicting the processed signal with the linear prediction coefficients optimized
for that signal, and we have that QA = AVAT is the MMSPE when predicting the processed signal
with the coefficients optimized for the original unprocessed signal, we can add and subtract h(X), the
differential entropy of the processed signal, to Equation (10) to obtain

d = 2[I(X; PB)− I(X; PA)], (11)

where, as before, we have used the notation PB for the predictor, obtaining MMSPEB = BVBT and PA
for the predictor, and generating MMSPEA = AVAT . This is particularly meaningful, since it indicates
the difference in the mutual information between the processed signal and the predicted signal based
on coefficients optimized for the processed signal, and the mutual information between the processed
signal and the predicted signal based on using the processed signal and the coefficients optimized for
the unprocessed signal. Mutual information is always greater than or equal to zero, so since we would
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expect that I(X; PB) > I(X; PA), this result is intuitively very satisfying. We emphasize that we do not
know the individual mutual informations but we do know their difference.

In the case of any speech processing application, we see that the log likelihood ratio is now not
only interpretable in terms of a spectral match, but also in terms of matching differential entropies or
the difference between mutual informations. As we shall demonstrate, important new insights are
now available.

6. Experimental Results

To examine the new insights provided by the new expressions for the log likelihood ratio, we
study the log likelihood ratio for three important speech codecs that have been used extensively in the
past, namely G.726 [17], G.729 [18], and AMR-NB [19], at different transmitted bit rates. Note that we
do not study the newest standardized voice codec, designated Enhanced Voice Services (EVS) [20],
since it is not widely deployed at present. Further, AMR was standardized in December 2000 and
has been the default codec in 3GPP cellular systems, including Long Term Evolution (LTE), through
2014, when the new EVS codec was standardized [19,21]. LTE will still be widely used until there is a
larger installed base of the EVS codec. AMR is also the codec (more specifically, its wideband version)
that is planned for use in U.S. next generation emergency first responder communication systems [22].
For more information on these codecs, the speech coding techniques, and the cellular applications, see
Gibson [23].

We use two different speech sequences as inputs, “We were away a year ago”, spoken by a male
speaker, and “A lathe is a big tool”, spoken by a female speaker, filtered to 200 to 3400 Hz, often called
narrowband speech, and sampled at 8000 samples/s. In addition to calculating the log likelihood ratio,
we also use the Perceptual Evaluation of Speech Quality-Mean Opinion Score (PESQ-MOS) [24] to give
a general guideline as to the speech quality obtained in each case.

After processing the original speech through each of the codecs, we employed a 25 ms Hamming
window and calculated the log likelihood ratio over nonoverlapping 25 ms segments. Studies of the
effect of overlapping the windows by 5 ms and 10 ms showed that the results and conclusions remain
the same as for the nonoverlapping case.

Common thresholds designated in past studies for the log likelihood ratio, d, are what is called
a statistically significant threshold of 0.3 and a perceptually significant threshold of 0.9. Of course,
neither threshold is a precise delineation, and we show in our studies that refinements are needed.
We also follow prior conventions and study a transformation of d that takes into account the effects
of the chosen window [8], namely, D = Ne f f · d, where Ne f f is the effective window length, which
for the Hamming window is Ne f f = 0.3975× N ≈ 80, where N is the rectangular window length of
N = 200 for 25 ms and 8000 samples/s [4]. With these values, we set the statistically significant and
perceptually significant thresholds for D at 24 and 72, respectively.

6.1. G.726: Adaptive Differential Pulse Code Modulation

Adaptive differential pulse code modulation (ADPCM) is a time-domain waveform-following
speech codec, and the International Standard for ADPCM is ITU-T G.726. G.726 has the four operational
bit rates of 16, 24, 32, and 40 Kbps, corresponding to 2, 3, 4, and 5 bits/sample scalar quantization of
a prediction residual. ADPCM is the speech coding technique that was first associated with the log
likelihood ratio; so, it is an important codec to investigate initially.

Figure 1 shows the D values as a function of frame number, with the perceptually and statistically
significant thresholds superimposed where possible, for the bit rates of 40, 32, 24, and 16 Kbps.
Some interesting observations are possible from these plots. First, clearly the log likelihood varies
substantially across frames, even at the highest bit rate of 40 Kbps. Second, even though designated as
“toll quality” by ITU-T, G.726 at 32 Kbps has a few frames where the log likelihood ratio is larger than
even the perceptually significant threshold. Third, as would be expected, as the bit rate is lowered,
the number of frames that exceed each of the thresholds increases, and, in fact, at 16 Kbps, only the
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perceptually significant threshold is drawn on the figure, since the statistically significant threshold is
so low in comparison. Fourth, the primary distortion heard in ADPCM is granular quantization noise,
or a hissing sound, and in lowering the rate from 32 to 24 to 16 Kbps, an increase in the hissing sound is
audible, and a larger fraction of the log likelihood values exceeds the perceptually significant threshold.
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Figure 1. D values for G.726 at various bit rates for “We were away a year ago”. ____: Statistically
significant threshold. _ _ _: Perceptually significant threshold.

It is useful to associate a typical spectral match to a value of D, so in Figures 2–4, we show the
linear prediction spectra of three frames of speech coded at 24 Kbps: one frame with a D value less
than the statistically significant threshold, one with a D value between the statistically significant
and the perceptually significant threshold, and one with a D value greater than both thresholds.
In Figure 2, D = 11, considerably below both thresholds, and visually, the spectral match appears
to be good. In Figure 3, we have D = 36.5 > 24, and the spectral match is not good at all at high
frequencies, with two peaks, called formants, at higher frequencies, poorly reproduced. The linear
prediction (LP) spectrum corresponding to a log likelihood value of D = 104.5 > 72 is shown in Figure 4,
where the two highest frequency peaks are not reproduced at all in the coded speech, and the spectral
shape is not well approximated either. Figures 2 and 4 would seem to validate, for these particular
cases, the interpretation of D = 24 and D = 72 as statistically and perceptually significant thresholds,
respectively, for the log likelihood ratio. The quality of the spectral match in Figure 3 would appear to
be unsatisfactory and so the statistically significant threshold is also somewhat validated; however, it
would be useful if something more interpretive or carrying more of a physical implication could be
concluded for this D value.
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Motivated by the variation in the values of the log likelihood ratio across frames, we calculate the
percentage of frames that fall below the statistically significant threshold, in between the statistically
significant and perceptually significant thresholds, and above the perceptually significant threshold for
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each G.726 bit rate for the sentence “We were away a year ago” and for the sentence “A lathe is a big
tool”, and list these values in Tables 1 and 2, respectively, along with the corresponding signal-to-noise
ratios in dB and the PESQ-MOS values [23].

Table 1. D and PESQ values for G.726 “We were away a year ago”.

Bit Rate
(Kbps)

% Frames with
D < 24

% Frames with
24 < D < 72

% Frames with
D > 72 PESQ-MOS SNR (dB)

40 85.83 14.67 0 4.163 24.3077
32 65.33 30.67 4 3.810 22.0074
24 24 50.67 25.33 3.180 16.5884
16 1.33 41.33 57.33 2.503 13.1695

SNR: Signal-to-noise ratio.

Table 2. D and PESQ values for G.726 “A lathe is a big tool”.

Bit Rate
(Kbps)

% Frames with
D < 24

% Frames with
24 < D < 72

% Frames with
D > 72 PESQ-MOS SNR (dB)

40 98.46 1.54 0 4.35 29.03
32 83.08 16.92 0 4.155 23.67
24 44.3 46.5 9.2 3.643 17.86
16 9.2 46.15 44.62 2.858 13.50

A few observations are possible from the data in Tables 1 and 2. From Table 1, we see that for
24 Kbps, the PESQ-MOS indicates a noticeable loss in perceptual performance, even though the log
likelihood ratio has values above the perceptually significant threshold only 25% of the time. Although
not as substantial as in Table 1, the PESQ-MOS at 24 Kbps in Table 2 shows that there is a noticeable
loss in quality even though the log likelihood ratio exceeds the perceptually significant threshold only
9% of the time. However, it is notable that at 24 Kbps in Table 1, D > 24 for 75% of the frames, and in
Table 2, for more than 50% of the frames. This leads to the needed interpretation of the log likelihood
ratio as a comparison of distributional properties rather than just the logarithm of the ratio of mean
squared prediction errors (MSPEs) or as a measure of spectral match.

Considering the log likelihood as a difference between differential entropies, we can conclude
that the differential entropy of the coded signal when passed through a linear prediction filter based on
the coefficients computed on the original speech is substantially different from the differential entropy
when passing the coded signal through a linear prediction filter based on the coefficients calculated
on the coded speech signal. Further, in terms of the difference between two mutual informations,
the mutual information between the coded speech signal and the signal passed through a linear
filter with coefficients calculated based on the coded speech is substantially greater than the mutual
information between the coded speech and the coded speech passed through a linear prediction filter
with coefficients calculated on the original speech.

Notice also that, for both the differential entropy and the mutual information interpretations, as
the coded speech signal approaches that of the original signal, that is, as the rate for G.726 is increased
or the quantizer step size is reduced, the difference in differential entropies and the difference in
mutual informations each approach zero.

6.2. G.729

We also study the behavior of the log likelihood ratio for the ITU-T standardized codec G.729 at
8 Kbps. Even though G.729 is not widely used at this point, we examine its performance because of
its historical importance as the forerunner of today’s best codecs, and also so that we can compare
AMR-NB at 7.95 Kbps to G.729 at 8 Kbps, both of which fall into the category of code-excited linear
prediction (CELP) approaches [23].
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Tables 3 and 4 show the percentage of frames in the various D ranges along with the PESQ-MOS
value for the two sentences “We were away a year ago” and “A lathe is a big tool”. SNR is not included,
since it is not a meaningful performance indicator of CELP codecs.

Table 3. Comparison of D and PESQ values for G.729 “We were away a year ago”.

G.729 (We Were
Away a Year Ago)

% Frames with
D < 24

% Frames with
24 < D < 72

% Frames with
D > 72 PESQ-MOS

8 Kbps 38.67 61.33 0 3.955

Table 4. Comparison of D and PESQ values for G.729 “A lathe is a big tool”.

Bit Rate (Kbps) % Frames with
D < 24

% Frames with
24 < D < 72

% Frames with
D > 72 PESQ-MOS

8 Kbps 42.19 57.81 0 3.810

As expected, the PESQ-MOS values are near 4.0 in both cases and in neither table does any fraction
of D exceed the perceptually significant threshold. Strikingly, however, in both tables, more than 50%
of the frames have a D value above the statistically significant threshold. To think about this further,
we note the bit allocation for the G.729 codec is, for each 20 ms interval, 36 bits for the linear prediction
model, 28 bits for the pitch delay, 28 bits for the codebook gains, and 68 bits for the fixed codebook
excitation. One fact that stands out is that the parameters for the linear prediction coefficients are
allocated 36 bits when 24 bits/20 ms frame is considered adequate [25]. In other words, the spectral
match should be quite good for most of the frames, and yet, based on D, more than 50% of the frames
imply a less than high quality spectral match over the two sentences.

Further analysis of this observation is possible in conjunction with the AMR-NB results.

6.3. AMR-NB

The adaptive multirate (AMR) set of codecs is a widely installed, popular speech codec used in
digital cellular and Voice over Internet Protocol (VoIP) applications [22,26]. A wideband version (50 Hz
to 7 kHz input bandwidth) is standardized, but a narrowband version is also included. The AMR-NB
codec has rates of 12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.15, and 4.75 Kbps.

In Tables 5 and 6, we list the percentage of frames with the log likelihood ratio in several ranges
for all of the AMR-NB bit rates and the two sentences “We were away a year ago” and “A lathe is a
big tool”, respectively. At a glance, it is seen that although the PESQ-MOS changes by over 0.5 for the
sentence “We were away a year ago” and by more than 0.8 for the sentence “A lathe is a big tool” as
the rates decrease, there are no frames above the perceptually significant threshold! This observation
points out that the “perceptually significant” threshold is fairly arbitrary, and also that the data need
further analysis.

Table 5. D and PESQ-MOS values for AMR-NB “We were away a year ago”.

Bit Rate (Kbps) % Frames with
D < 24

% Frames with
24 < D < 72

% Frames with
D > 72 PESQ-MOS

12.2 82.67 17.33 0 4.113
10.2 80 20 0 4.084
7.95 41.33 58.67 0 3.836
7.4 45.33 54.67 0 3.871
6.7 44 56 0 3.803
5.9 53.33 46.67 0 3.807

5.15 30.37 69.33 0 3.658
4.75 33.33 66.67 0 3.586
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Table 6. Comparison of D and PESQ-MOS values for AMR-NB “A lathe is a big tool”.

Bit Rate (Kbps) % Frames with
D < 24

% Frames with
24 < D < 72

% Frames with
D > 72 PESQ-MOS

12.2 100 0 0 4.006
10.2 90.32 9.68 0 3.899
7.95 64.52 35.48 0 3.651
7.4 62.90 37.10 0 3.645
6.7 62.90 37.10 0 3.546
5.9 61.29 38.71 0 3.435

5.15 43.55 56.45 0 3.310
4.75 37.10 62.90 0 3.197

A more subtle observation is that, for the sentence “We were away a year ago”, changes in
PESQ-MOS of more than 0.1 align with a significant increase in the percentage of frames satisfying
24 < D < 72. The converse can be stated for the sentence “A lathe is a big tool”, namely that when the
percentage of frames satisfying 24 < D < 72 increases substantially, there is a change in PESQ-MOS of
0.1 or more. There are two changes in PESQ-MOS of about 0.1 for this sentence, which correspond to
only slight increases in the number of frames greater than the statistically significant threshold.

Analyses of the number of bits allocated to the different codec parameters allow further important
interpretations of D, particularly in terms of the new expressions involving differential entropy and
mutual information. Table 7 shows the bits/20 ms frame for each AMR-NB bit rate for each of the
major codec parameter categories, predictor coefficients, pitch delay, fixed codebook, and codebook
gains. Without discussing the AMR-NB codec, we point out in summary that, first, the AMR-NB codec
does not quantize and code the predictor coefficients directly, but quantizes and codes a one-to-one
transformation of these parameters called line spectrum pairs [15,23], but we use the label “predictor
coefficients”, since these are the model parameters discussed in this paper.

Table 7. Allocated Bits per 20 ms Frame for AMR-NB.

Bit Rate (Kbps) 12.2 10.2 7.95 7.4 6.7 5.9 5.15 4.75

Predictor
Parameters 38 26 27 26 26 26 23 23

Pitch Delay 30 26 28 26 24 24 20 20
Fixed Codebook 140 124 68 68 56 44 36 36
Codebook Gains 36 28 36 28 28 24 24 16

Further, as shown in Figure 5, the synthesizers or decoders in these speech codecs (as well
as G.729) are linear prediction filters with two excitations added together, the adaptive codebook,
depending on the pitch delay, and the fixed codebook, which is intended to capture the elements of the
residual error that are not predictable using the predictor coefficients and the long-term pitch predictor.

Reading across the first row of Table 7, we see that the number of bits allocated to the predictor
coefficients, which model the linear prediction spectra, is almost constant for the bit rates of 10.2 down
to 5.9 Kbps. Referring now to Tables 5 and 6, we see that for the rates 7.95 down through 5.9 kbps,
the PESQ-MOS with the percentage of frames greater than the statistically significant threshold but
less than the perceptually significant threshold is roughly constant as well. The outlier for the rates
with the same number of bits allocated to predictor coefficients in terms of a lower percentage D value
above the statistically significant threshold is 10.2 Kbps. What is different about this rate? From Table 7,
we see that the fixed codebook has a much finer representation of the prediction residual, since it
is allocated 124 bits/frame at 10.2 Kbps compared to only 68 or fewer bits for the other lower rates.
Focusing on the fixed codebook bit allocation, we see that both the 7.95 and 7.4 Kbps rates have 68 bits
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assigned to this parameter, and the PESQ-MOS and the percentage of frames satisfying 24 < D < 72
are almost identical, the latter of which is much higher than 10.2 Kbps, for these two rates.Entropy 2017, 19, 496  12 of 15 
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We further see that the continued decrease in PESQ-MOS for “A lathe is a big tool” in Table 6
as the rate is reduced from 7.4 to 6.7 to 5.9 to 5.15 corresponds to decreases for the fixed codebook
bit allocation. This same trend is not observed in Table 5. The reason for this appears to be that the
sentence “We were away a year ago” is almost all what is called Voiced speech, which is well-modeled
by linear prediction [23], and the bits allocated for the predictor coefficients remain almost constant
over those rates. However, the sentence “A lathe is a big tool” has considerable Unvoiced speech
content, which has more of a noise-like spectrum not captured well by a linear prediction model. As a
result, the fixed codebook excitation is more important for this sentence.

We put all of these analyses in the context of the new interpretations of the log likelihood ratio in
the next section.

7. Modeling, Differential Entropy, and Mutual Information

For linear prediction speech modeling, there is a tradeoff between the number of bits and the
accuracy of the representation of the predictor coefficients as opposed to the number of bits allocated
to the linear prediction filter excitation. For a purely AR process, if we know the predictor order and
the predictor coefficients exactly, the MSPE will be the variance of the AR process driving term. If we
now try to code this AR process using a linear prediction based codec, such as CELP, there is a tradeoff
between the number of bits allocated to the predictor coefficients, which corresponds with the number
and accuracy of coefficients used to approximate the AR process, and the number of bits used to model
the excitation of the AR process; that is, the linear filter excitation.

Any error in the number and accuracy of the predictor or AR process coefficients is translated
into a prediction error that must be modeled by the excitation, thus requiring more bits to be allocated
to the codebook excitation. Also, if we use a linear prediction-based codec on a segment that is not
well-modeled by an AR process, the prediction will be poor and the number of bits required for the
excitation will need to increase.

While the spectral matching interpretation of the log likelihood ratio captures the error in the fit
of the order and accuracy of the predictor for the predictor part, it is not as revelatory for the excitation.
For the excitation, the expression for d in terms of differential entropies illuminates the change in
randomness caused by the accuracy of the linear prediction. For example, the change in the percentage
of d values that fall within 24 < D < 72 in Table 5 when the rate is decreased from 10.2 to 7.95 or 7.4 is
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not explained by the predictor fit, since the number of bits allocated to the coefficients is not decreased.
However, this change is quite well-indicated by the change in bits allocated to the fixed codebook
excitation. The difference in the two differential entropies is much better viewed as the source of the
increase than the spectral fit.

As discussed earlier, the interaction between the spectral fit and the excitation is illustrated in
Table 6 when the rate is changed from 6.7 to 5.9, the number of bits allocated to the predictor is
unchanged but the fixed codebook bits are reduced, and this produces only a slight change in the
percentage of d values that fall within 24 < D < 72 and a 0.1 decrease in PESQ-MOS. Further, changing
the rate from 5.9 to 5.15, both the number of bits allocated to the predictor and to the fixed codebook
are both reduced, and there is a large jump in the percentage of d values that fall within 24 < D < 72
and a 0.12 decrease in PESQ-MOS. A decrease in bits for spectral modeling without increasing the bits
allocated to the codebook causes the predictor error to grow, which is again better explained by the
difference in differential entropy interpretation of d.

Similarly, the expression for d as a difference in mutual informations illuminates the source of
the errors in the approximation more clearly than just a spectral match, since mutual information
captures distributional differences beyond correlation. For example, G.729 has more bits allocated to
the predictor coefficients than AMR-NB at 10.2 Kbps, yet in Tables 3 and 4 for G.729, we see a much
larger percentage of d values that fall within 24 < D < 72. This indicates other, more subtle modeling
mismatches that suit the mutual information or differential entropy interpretations of d.

Certainly, with these new interpretations, d is a much more useful quantity for codec design
beyond the expression for spectral mismatch. Much more detailed analyses of current codecs using
this new tool are indicated, and d should find a much larger role in the design of future speech codecs.

8. Finer Categorization and Future Research

In hindsight, it seems evident, from the difference in the differential entropies expression and
the difference in the mutual information expressions, that to utilize d as an effective tool in digital
signal analysis, a finer categorization of d beyond just greater than 0.3, between 0.3 and 0.9, and greater
than 0.9, would be much more revealing. For example, even though the fraction of values within an
interval does not change, the number of values in the upper portion of the interval could have changed
substantially. Future studies should thus incorporate a finer categorization of d in order to facilitate
deeper analyses.

Even though the new interpretations of d have been quite revealing for speech coding, even more
could be accomplished on this topic with a finer categorization. Additionally, the log likelihood ratio
now clearly has a utility in signal analysis, in general, beyond speech, and should find applications
to Electromyography (EMG), Electroencephalography (EEG), and Electrocardiogram (ECG) analyses
among many other applications, where spectral mismatch alone is not of interest. In particular, the
ability to use d to discover changes in differential entropy in the signals or to recognize the change in the
mutual information between processed (for example, filtered or compressed) signals and unprocessed
signals should prove useful.
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