
UCLA
UCLA Electronic Theses and Dissertations

Title
Learning to Optimize with Guarantees

Permalink
https://escholarship.org/uc/item/3274t029

Author
Heaton, Howard Wayne

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3274t029
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Learning to Optimize with Guarantees

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Howard Wayne Heaton

2021

© Copyright by

Howard Wayne Heaton

2021

ABSTRACT OF THE DISSERTATION

Learning to Optimize with Guarantees

by

Howard Wayne Heaton

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Wotao Yin, Chair

Machine learning (ML) has evolved dramatically over recent decades, from relative infancy to a

practical technology with widespread commercial use. This same time period increasingly saw ap-

plications modeled as large scale optimization problems, reviving interest in first-order optimization

methods (due to their low per-iteration cost and memory requirements). ML enables computers to

improve automatically through experience. At first glance, this may appear to signal a pending end

to hand crafted optimization modeling.Yet, optimization can provide intuition for effective ML model

design. Also, some ML models cannot be considered trustworthy without guarantees (e.g. satisfaction

provided constraints) and/or explanations of their behaviors. Design intuition from optimization led

to experiments unrolling optimization algorithms into ML model architectures via what is now known

as the “learn to optimize” (L2O) paradigm. L2O models generalize hand-crafted optimization for use

with big data and provide promising numerical results.

This work investigates L2O theory and implementations. Chiefly, we investigate L2O convergence

guarantees, training of L2O models, how to interweave prior and data-driven knowledge, and how to

certify L2O inferences comply with desired specifications. Thus, our core contribution is a fusion of

optimization and machine learning, merging desirable properties from each field – model intuition,

guarantees, practical performance, and the ability to leverage big data. A progression of novel frame-

works and theory are developed herein for L2O models, extending prior work in multiple directions.

ii

The dissertation of Howard Wayne Heaton is approved.

Lin Yang

Deanna Hunter

Stanley Osher

Wotao Yin, Committee Chair

University of California, Los Angeles

2021

iii

To my big mama – for always inspiring and supporting my curiosity

To my princess – for your love and holding my hand at every step of this journey

iv

Contents

1. Introduction 1

1.1. Optimization via Fixed Point Methods 3

1.2. Implicit Models 7

1.3. Contributions 9

I Deep Unrolling for Classic Optimization

2. Safeguarded L2O 11

2.1. Safeguarded L2O via Fixed Point Residual 15

2.2. Safeguarded L2O via Energy 19

2.3. Training and Averaged Operator Selection 21

2.4. Numerical Examples 22

2.5. Conclusions 26

II Implicit Models

3. Jacobian-Free Backprop 28

3.1. Implicit Model Formulation 30

3.2. Backpropagation 34

3.3. Experiments 39

3.4. Conclusions 42

v

4. Convex Feasibility Problems 43

4.1. Convex Feasibility Overview 46

4.2. Feasibility Model 50

4.3. Experiments 50

4.4. Conclusions 56

5. Nash Equilibria 57

5.1. Overview of Games 59

5.2. Nash Equilibria Model 62

5.3. Experiments 67

5.4. Conclusions 72

6. Explainable L2O Models 73

6.1. Explainability via Optimization 77

6.2. Trustworthiness Certificates 79

6.3. Experiments 83

6.4. Conclusions 88

7. Conclusions 89

Appendices

Proofs 92

Safe L2O Proofs 92

Jacobian-Free Backprop Proofs 104

Nash Equilibria Proofs 110

References 122

vi

List of Figures

1.1 Classic versus Learned Optimizers . 2

1.2 Chapter content dependency graph . 9

2.1 Deep unrolling diagram . 12

2.2 Safe L2O ALISTA example, seen versus unseen performance 23

2.3 Error plot for Safe L2O with Linearized ADMM 24

2.4 Error plot for Safe L2O with LISTA denoising 25

2.5 Error plot for Safe L2O with projected gradient 26

3.1 Comparison of explicit and implicit models 28

3.2 Sample architecture for model operator TΘ 32

3.3 Diagram comparing backprop schemes 33

3.4 Sample PyTorch code for backpropagation 38

3.5 CIFAR10 plots for JFB training . 41

3.6 MNIST plots for training for Neumann truncated backprop 42

4.1 Diagram of update operations for learned feasibility problems . . . 49

4.2 Ellipse CT reconstruction examples . 51

4.3 Zoomed-in Ellipse CT reconstruction examples 52

4.4 LoDoPab CT reconstruction examples 53

4.5 Zoomed-in LoDoPab CT reconstruction examples 55

5.1 Weather example diagram of contextual games 58

5.2 Rock-paper-scissors model training and sampled performance . . . 69

5.3 Comparison toy traffic predictions based on weather 70

vii

5.4 Eastern Massachusetts traffic model training and performance . . . 71

6.1 Diagram of L2O Model + Certificates 74

6.2 Diagram of L2O Model Design, Training, and Inference 75

6.3 Example implicit dictionary inferences and certificates 79

6.4 Probability curve and labels for property values 80

6.5 Example of Python code for model post-conditions 81

6.6 Example of sparsification by implicit dictionary model 84

6.7 LoDoPab CT reconstructions examples with L2O and certificates . . 86

viii

List of Tables

1.1 Averaged operators for well-known methods 6

2.1 Safeguard choices to update reference value µk 16

2.2 Loss function choices for safeguarded L2O 21

3.1 Image classification results for implicit models 39

3.2 Comparison of Jacobian-based backprop mat-vec costs 40

4.1 Ellipse CT reconstruction results . 54

4.2 LoDoPab CT reconstruction results . 54

5.1 Comparison of Nash equilibria prediction models 59

5.2 Payoff matrix B(d) for contextual Rock-Paper-Scissors (RPS). 67

5.3 TRAFIX score for Nash model on city traffic routing problems . . . 72

6.1 Comparison of model design features and resulting properties . . . 76

6.2 Examples of certificate property value choices 82

6.3 LoDoPab CT reconstruction results . 87

ix

ACKNOWLEDGEMENTS

This work is the accumulation of guided steps from several thoughtful and encouraging mentors.

First, I owe my deepest thanks to Wotao Yin and Stan Osher for their willingness to advise me on my

academic journey. Back as an unknown undergraduate, Stan answered my cold email for a meeting

to learn about UCLA’s program, which made clear UCLA was where I wanted to be. Wotao has

generously shared from his vast knowledge, bestowing wisdom on everything from the fine details of

proofs to seeing the forest for the trees. Both Stan and Wotao also taught me through my graduate

coursework, which I am incredibly grateful for. I also owe thanks to Luminita Vese and Deanna Needell

for their instruction, incredible kindness, and time shared to meet during my UCLA journey.

I am thankful for Reinhard Schulte introducing me to the world of research as an undergraduate.

He mentored me through two summers of research at Loma Linda University and my senior project at

Walla Walla University. His guidance molded the base of my research interests and abilities. During

the second summer, I met Yair Censor, whom I cannot thank enough for patiently teaching me the ways

of iterative projection methods and mentoring me through multiple projects. Yair was an incredible

influence in developing my mathematical interests and finding my research passions. Around this

time, I became acquainted with Kevin Vixie, whom I must thank for his assistance with getting me into

graduate school, his phenomenal advice, and his continually shared wisdom through his writings.

Last, but not least, I wish to thank my family. They have been incredibly supportive of my esoteric

interests in maths since childhood. I would not be here today were it not for my mom’s inspiration,

her constantly “tutoring” me from elementary school to university, and her encouragement to chase

my passions. And endless thanks be to my wife for her love and patience, adventuring with me to

Los Angeles, and supporting us via tireless work as an ICU nurse, particularly during the Covid-19

pandemic.

Howard Heaton

Los Angeles, CA

December 9, 2021

x

VITA

2011 – 2016 Bachelors of Science, Walla Walla University.

Computer Science, Mathematics, Physics

2016 – 2018 Masters of Arts, University of California Los Angeles.

Mathematics

2020 Data Science Intern, Retina AI

2021 Graduate Tech Research Intern, Walt Disney Animation Studios

PUBLICATIONS

▸ S. Wu Fung,⋆ H. Heaton,⋆ Q. Li, D. McKenzie, S. Osher, W. Yin. JFB:

Jacobian-free Backpropagation for Implicit Networks. Proceedings of the AAAI

Conference on Artificial Intelligence, 2022.

▸ J. Shen,⋆ X. Chen,⋆ H. Heaton,⋆ T. Chen, J. Liu, W. Yin, Z. Wang. Learning

a Minimax Optimizer: A Pilot Study. International Conference on Learning

Representations, 2020.

▸ H. Heaton, X. Chen, Z. Wang, W. Yin. Safeguarded Learned Convex Optimiza-

tion. arXiv preprint:2003.01880, 2020.

▸ T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, W. Yin.† Learning to

optimize: A Primer and a Benchmark. arXiv preprint:2103.12828, 2021.

▸ H. Heaton,⋆ S. Wu Fung,⋆ A.T. Lin,⋆ S. Osher, W. Yin. Wasserstein-based Pro-

jections with Applications to Inverse Problems. arXiv preprint:2008.02200, 2020.

xi

▸ H. Heaton, Y. Censor. Asynchronous sequential inertial iterations for common

fixed points problems with an application to linear systems. Journal of Global Op-

timization, 2019.

▸ Y. Censor, H. Heaton, R. Schulte.† Derivative-free superiorization with

component-wise perturbations. Numerical Algorithms, 2019.

▸ H. Heaton,⋆ D. McKenzie,⋆ Q. Li, S. Wu Fung, S. Osher, W. Yin. Learn to Pre-

dict Equilibria via Fixed Point Networks. arXiv preprint:2106.00906, 2021.

▸ H. Heaton, S. Wu Fung, A. Gibali, W. Yin. Feasibility-Based Fixed Point Net-

works. Fixed Point Theory and Algorithms for Sciences and Engineering,

2021.

▸ H. Heaton, S. Wu Fung, S. Osher, W. Yin. Explainable AI via Learning to Opti-

mize. In Preparation, 2021.

⋆ Equal contribution

† Alphabetic ordering

xii

Chapter 1: Introduction

[A] mathematical problem should be difficult in order to entice us, yet not completely

inaccessible, lest it mock at our efforts. It should be to us a guide post on the mazy paths

to hidden truths, and ultimately a reminder of our pleasure in the successful solution.

– David Hilbert1 1 Taken from the “Math-
ematical Problems"
lecture delivered be-
fore the International
Congress of Mathemati-
cians in 1900 [131].

An ever growing number of applications can be modeled as large (or even

huge) scale optimization problems. During the early 2000s, this revived interest

in first-order optimization methods that utilize low per-iteration cost and mem-

ory storage requirements. Optimization methods were originally hand-crafted

by experts, based on theories and experience. As a paradigm shift from this

conventional design, learning to optimize (L2O) uses machine learning to either

improve an existing optimization method or generate a completely new one.

This thesis focuses on continuous and model-based L2O schemes, culminating

in novel model designs and theoretical guarantees for L2O model inferences.

Classic optimization methods are built upon components that are basic meth-

ods — such as gradient descent, conjugate gradient, Newton steps, and proximal

point — in a theoretically justified manner.2 Most conventional optimization 2 This introduction is
based on the L2O survey
[62]. We refer the reader
to this survey for a
wider coverage of L2O.

methods can be written in a few lines, and their performance is theoretically

guaranteed. To solve an optimization problem in practice, one selects a method

supporting the type of problem at hand and applies the method, expecting a

returned solution no worse than the method’s guarantee.

L2O is an alternative paradigm that develops an optimization method by

training, i. e. learning from its performance on sample problems. A naïve L2O

method may lack a solid theoretical basis, but it improves its performance during

1

Classic

Algorithms

Offline Process

Selected
Algorithm

Optimization

Problems

Online Process

Tunable
Algorithm

Training
Optimizees

Offline Process

Learned
Algorithm

Optimization

Problems

Online Process

Figure 1.1: Classic optimizers are manually designed/selected, with few or no tuning parameters (left).
Learned optimizers are trained offline in an L2O framework over a set of similar problems and designed
to solve unseen problems from the same distribution (right).

the training process. Training often occurs offline and is time consuming. How-

ever, the online application of the method is (aimed to be) time saving. When

it comes to problems where the desired solutions are difficult to obtain, such as

nonconvex optimization and inverse problems, well-trained L2O methods can

yield better quality inferences than classic methods.

Many applications involve the task of repeatedly solving a specific type of

optimization problem over a fixed distribution of input data. Input data de-

fine optimizations that are similar, yet distinct. Conventional optimizers may be

tuned for a particular distribution, but the underlying methods are designed for

a theory-specified class of optimization problems. We often describe a conven-

tional optimizer by the formulation (and its math properties), not the distribution

of data.3 In L2O, the training process shapes the optimizer according to both the3 For example, we say an
optimizer can minimize
a smooth-and-convex
objective function subject
to linear constraints.

formulation and the distribution of data. When the distribution is concentrated,

the learned optimizer can “overfit” to the tasks and may discover “short cuts”

that classic optimizers do not take.

Two topics are core to the developments of this thesis. The first is operator-

based optimization methods. The second is implicit ML models.4 Before diving

4 We henceforth drop
“ML” and simply write
models, particularly as
this will align in Part
II with the notion of
optimization models.

into L2O concepts, a brief overview is provided for each of topic. This chapter

concludes by summarizing the contributions of works used to form this thesis.

2

Section 1.1: Optimization via Fixed Point Methods

This section overviews tools used by fixed point methods, which form an ab-

straction of many first-order optimization methods.5 The set of fixed points of 5 Methods not covered
by this section include
conditional gradient
(a.k.a. Frank-Wolfe) and
conjugate gradient. L2O
methods with these
analytic counterparts are
outside the scope of this
thesis.

each operator6 T ∶ H → H is denoted by fix(T) ≜ {x ∶ Tx = x}. For T with a

6 Here H denotes a
Hilbert space, typically
the Euclidean space Rn.

nonempty fixed point set (i.e., fix(T) ≠ ∅), consider the fixed point problem

Find x such that x ∈ fix(T). (1.1)

Many convex minimization problems, both constrained and unconstrained, may

be equivalently rewritten as (1.1) for an appropriate operator T (e.g. see Table

1.1). We focus on fixed point formulations to provide a general approach for cre-

ating sequences that converge to solutions of (1.1) and, thus, of the corresponding

optimization problem.

We begin with basic definitions and a classic convergence result. An operator

T ∶H→H is nonexpansive if it is 1-Lipschitz, i. e.7 7 Let ⟨⋅, ⋅⟩ and ∥ ⋅ ∥
respectively be the
Euclidean inner product
and norm defined on H.∥T(x) − T(y)∥ ≤ ∥x − y∥, for all x, y ∈H. (1.2)

An operator T is averaged if there is α ∈ (0, 1) and nonexpansive Q ∶ H → H such

that T = (1− α)I+ αQ, with I the identity. If T is averaged with α = 1/2, then T is

firmly nonexpansive. An operator A ∶H→H is monotone provided8 8 Here A is single-
valued; however, this
notion naturally gen-
eralizes to set-valued
operators. Commonplace
examples of this include
subgradients of convex
functions. We refer read-
ers to the textbook [213]
for more on set-valued
monotone operators.

⟨A(x) − A(y), x − y⟩ ≥ 0, for all x, y ∈H. (1.3)

The resolvent JαA of A with parameter α > 0 is defined by

JαA ≜ (I+ αA)−1, (1.4)

and the corresponding reflected resolvent RαA is defined by

RαA ≜ 2JαA − I. (1.5)

The operator RαA is nonexpansive and JαA is averaged. We refer readers to the

texts [46, 27, 213] for further background on averaged operators.

3

A classic theorem states sequences generated by successively applying an

averaged operator converge to a fixed point, i. e. a solution of (1.1). This method

comes from [148, 172], yielding adoption of the name Krasnosel’skiı̆-Mann (KM)

method. Their result is stated below and is known with various forms and proofs

(e.g. see [25, Thm. 5.14], [38, Thm. 5.2], [45, Thm. 3.5.4], and [202, Thm. 2]).

Theorem 1.1.1 If an averaged operator T ∶ H → H has a nonempty fixed point set and

a sequence {xk} with arbitrary initial iterate x1 ∈H satisfies the update relation

xk+1 = T(xk), for all k ∈N, (1.6)

then there is x∞ ∈ fix(T) such that the sequence {xk} converges to x∞, i. e. xk → x∞.

To make this theorem concrete, we provide explicit examples of well-known

methods. To this end, we introduce a few more definitions. A function9 f ∶ H →9 Throughout we use the
notation R ≜R∪ {∞}.

R is proper if its value is never −∞ and is finite somewhere. A proper function f

is closed if and only if f is lower semicontinuous. And, f is convex provided

f (λx + (1−λy)) ≤ λ f (x) + (1−λ) f (y), for all x, y ∈ dom(f) and λ ∈ [0, 1]. (1.7)

If f is closed, convex, and proper (CCP), then the proximal operator is well-

defined10 and averaged. For a scalar α > 0, the proximal of a CCP function f is a10 The definition of
the proximal yields a
(posisbly empty) set of
minimizers. The added
CCP assumptions ensure
the set consists of a
unique element.

resolvent that is the solution to a minimization problem, i. e.

proxα f (x) ≜ Jα∂ f (x) = arg min
z∈H

f (z) + 1
2α
∥z − x∥2, (1.8)

where ∂ f (x) ≜ {g ∶ f (x) + ⟨g, y − x⟩ ≤ f (y) ∀ y ∈ H} is the subgradient of f .

Proximal operators for several well-known functions can be expressed by explicit

formulas (e.g. see page 177 in [31]). When the proximal admits a formula that is

computationally cheap to evaluate, we (informally) say f is proximable. The fixed

points of the proximal coincide with minimizers of f . Hence, by Theorem 1.1.1,

4

iteratively applying the proximal yields a sequence converging to a minimizer of

f , known as the proximal point method. That is, if x1 ∈H, f is CCP, α > 0, and

xk+1 = proxα f (x
k), for all k ∈N, (1.9)

then the sequence {xk} converges to a minimizer of f .

To illustrate use of operator splitting, we conclude with an example. Con-

sider the minimization the sum of two CCP functions f ∶ H → R and g ∶ H → R,

i. e.

min
x∈Rn

f (x) + g(x). (1.10)

For α > 0, by rearranging the optimality condition, each optimizer x ∈ H satis-

fies11 11 If f has L-Lipschitz
gradient, then the
subgradient coincides
with the gradient and
the optimality condition
in (1.11a) becomes
(I − α∇ f)(x) ∈ (I +
α∂g)(x), and so x =
Jα∂g ○ (I − α∇ f)(x).
Thus, x is a fixed point
of the projected gradient
operator. All sorts of
variations of operator
splitting derivations
can be used to obtain
different fixed point
operators.

0 ∈ ∂ f (x) + ∂g(x) ⇐⇒ 0 ∈ (I+ α∂ f)(x) − (I− α∂g)(x) (1.11a)

⇐⇒ 0 ∈ (I+ α∂ f)(x) − (2Jα∂g − I)(I+ α∂g)(x) (1.11b)

⇐⇒ 0 ∈ (I+ α∂ f)(x) − Rα∂g(z), z ∈ (I+ α∂g)(x) (1.11c)

⇐⇒ Rα∂g(z) ∈ (I+ α∂ f)Jα∂g(z), x = Jα∂g(z) (1.11d)

⇐⇒ (Jα∂ f ○ Rα∂g)(z) = Jα∂g(z), x = Jα∂g(z) (1.11e)

⇐⇒ (Rα∂ f ○ Rα∂g)(z) = z, x = Jα∂g(z) (1.11f)

⇐⇒ 1
2
(I+ (Rα∂ f ○ Rα∂g)) (z) = z, x = Jα∂g(z). (1.11g)

The composition Rα∂ f ○ Rα∂g of nonexpansive operators Rα∂ f and Rα∂g is itself

nonexpansive. Consequently, the fixed point operator on the left side of (1.11g)

is averaged and can be used to find a fixed point z. Having this fixed point,

an optimizer x is directly obtained by applying the proximal Jα∂g. This splitting

is known as Douglas Rachford splitting. Below Table 1.1 provides examples of

several averaged operators arising from splitting schemes.

5

Problem Method Operator T Assumption

min f (x) Gradient Descent Id− α∇ f α < 2/L

min f (x) Proximal Point proxα f

min f (x) s.t. x ∈ C Projected Gradient projC ○ (Id− α∇ f) α < 2/L

min f (x) + g(x) Proximal Gradient proxαg ○ (Id− α∇ f) α < 2/L

min f (x) + g(x) Douglas-Rachford 1
2 (Id+ Rα∂ f ○ Rα∂g)

Ω ≜ {(x, z) ∶ Ax + Bz = b}

min
(x,z)∈Ω

f (x) + g(z) ADMM 1
2 (Id+Q1 ○Q2) Q1 ≜ RαA∂ f∗(A⊺⋅)

Q2 ≜ Rα(B∂g∗(B⊺⋅)−b)

min f (x) s.t. Ax = b
Proximal Method

(I+ α∂L)−1

of Multipliers

min f (x) s.t. Ax = b Uzawa I+ α (A∇ f ∗(−A⊺⋅) − b)

min f (x) + g(Ax) PDHG (I+M−1∂L)−1 M =

⎡⎢⎢⎢⎢⎢⎢⎣

α−1I A⊺

−A β−1I

⎤⎥⎥⎥⎥⎥⎥⎦

Table 1.1: Averaged operators for well-known methods. We assume α > 0 and L is the Lipschitz constant
for shown gradients, and L is the Lagrangian associated with the presented problem. Here f ∗ denotes
the convex conjugate of f . We refer the reader to [213] for a more comprehensive reference on convex
conjugates and operator splitting.

6

Section 1.2: Implicit Models

A new direction emerged in deep learning, moving from explicit to implicit mod-

els12 [239, 18, 19, 61, 101, 82, 135, 252, 151, 203, 165, 111]. Standard feedforward 12 Throughout this thesis,
our use of the word
model is synonymous
with neural network.

models explicitly prescribe a series of computations that map input data d to

an inference y. On the other hand, each implicit model NΘ is defined via an

equation. Commonly, this takes the form of a fixed point equation,13 i. e. 13 Later chapters will
provide alternative
formulations where
NΘ is defined as a
unique solution to a
feasibility problem,
a Nash equilibrium,
or a minimizer to an
optimization problem.

NΘ(d) ≜ xd, where xd = TΘ(xd; d), (1.12)

where xd is the unique fixed point of an operator TΘ(⋅; d) parameterized by

weights Θ.14 Throughout this work, the choice of TΘ typically coincides with
14 That is, we assume
fix(TΘ(⋅; d)) = {xd}.operators used to solve optimization problems (e.g. those in Table 1.1). However,

their use can be more abstract (e.g. see the models in Chapter 3). Several core

questions must be answered for this nascent class of models:

▸ Is the model NΘ well-defined for each input d?

▸ Are implicit models expressible, i. e. are they universal approximators?

▸ How are inferences NΘ(d) computed?

▸ How are the weights Θ tuned during training?

▸ What is the intuition behind various choices of TΘ?

▸ What sorts of inference guarantees result from implicit models?

▸ How well do implicit models perform relative to their explicit counterparts?

Part II addresses variations of each inquiry. The short answers are yes, yes,

fixed point iteration, Jacobian-Free Backpropagation, optimization-based model-

ing, constraint guarantees15 and sharing similar features to training data,16 and

15 Constraints may
include large systems
of linear inequalities
or other nontrivial set
intersections.

16 Data-driven regu-
larization can be used
to implicitly learn an
“ideal” regularizer that
distinguishes between
inferences from inside or
outside the training data.

it depends on the setting (sometimes better, sometimes worse).

7

Why Implicit Models?

Below we cover advantages of implicit models over feedforward models.

Implicit models for implicitly defined outputs. In some applications, model

outputs are most aptly described implicitly as fixed points, not via an explicit

function. As a toy example, consider predicting the variable y ∈ R given d ∈

[−1/2, 1/2] when (d, y) is known to solve y = d+ y5. Using y1 = 0 and the iteration

yk+1 = T(yk; d) ≜ d + y5
k , for all k ∈N, (1.13)

one obtains convergence, i. e. yk → y. In this setting, y is exactly (and implicitly)

characterized by the equation y = T(y, d). On the other hand, an explicit solution

to y = d+y5 requires an infinite series representation,17 unlike the simple formula17 See Appendix F in [97]
for further details.

T(y, d) = d + y5. This illustrates it can be simpler and more appropriate to model

a relationship implicitly. Later we illustrate this in the areas of convex feasibility,

game theory and inverse problems. In these instances, inferences may naturally

be characterized as fixed points of an operator parameterized by input data d.

“Infinite depth” with constant memory training. Solving for the fixed point of

TΘ(⋅; d) is analogous to a forward pass through an “infinite depth” (in practice,

very deep) weight-tied, input injected feedforward model. Yet, implicit models

do not need to store intermediate quantities of the forward pass for backprop-

agation. Thus, implicit models can be trained using constant memory costs with

respect to “depth,” relieving a major bottleneck of training deep models.

No loss of expressiveness. Implicit models as defined in (1.12) are at least as

expressive as feedforward models. More interestingly, the class of implicit mod-

els in which TΘ is constrained to be an affine map and a single nonlinearity

contains all feedforward models, and is, thus, at least as expressive [101], [18,

Theorem 3]. Universal approximation properties of implicit models then follow

directly from properties of conventional deep models (e.g. see [69, 169, 140]).

8

Section 1.3: Contributions

Large scale optimization-based problems can be tackled by using a distribution

of training data to learn to optimize. For settings where exact optimization prob-

lem formulations are known, we provide two novel safeguard frameworks for

steering L2O models toward convergence. The second class of problems con-

sidered models inferences as solutions to equations. For these, we present and

theoretically justify an easy-to-implement scheme for backpropagating to train

implicit models, which opens the door to practical implementation of several

implicit model architectures. We provide examples of such architectures for con-

vex feasibility problems, computing Nash equilibria (e.g. in games), and other

L2O tasks. In each case, our numerical results are promising and implemen-

tations can have associated theoretical justifications. We conclude by showing

these tools can be used to obtain novel and concrete notions of explainability

and trustworthiness.

Introduction

Chapter 1

Safeguarded L2O

Chapter 2

Jacobian-Free Backprop

Chapter 3

Convex Feasibility Models

Chapter 4

Nash Equilibria Models

Chapter 5

L2O Models + Certificates

Chapter 6

Figure 1.2: Graph for chapter dependencies. The introduction provides high-level L2O background used
in all chapters. Chapter 3 establishes a backprop technique used in all subsequent parts of the thesis
while the safeguarded L2O (Chapter 2) is self-contained and restricted to solving analytic optimization
problems quickly. The three applications (Chapters 4, 5, and 6) can be considered independently of
each other.

9

Part I: Deep Unrolling

for Classic Optimization

10

Chapter 2: Safeguarded L2O

Being old and lame of my hands, and thereby uncapable of assisting my fellow citizens,

when their houses are on fire; I must beg them to take in good part the following hints

on the subject of fires. In the first place, as an ounce of prevention is worth a pound of

cure, I would advise ’em to take care...

– Benjamin Franklin1 1 Taken from Franklin’s
1735 article “On Pro-
tection of Towns from
Fire” in The Pennsylvania
Gazette [92].

Solving scientific computing problems often requires application of efficient

and scalable optimization algorithms. Data-driven algorithms can execute in

much fewer iterations and with similar cost per iteration as state-of-the-art gen-

eral purpose algorithms.2 Inspired by one such algorithm, [112] proposed treat-
2 This chapter is primar-
ily based on [127].ing the entries in fixed matrices/vectors of the algorithm as learnable parame-

ters that can vary by iteration. These entries were fine-tuned to obtain optimal

performance on a data set for a fixed number of iterations. Empirically, this ap-

proach converged and showed roughly a 20-fold reduction in computational cost

compared to the original algorithm. Several related works followed, also demon-

strating numerical success.3 These efforts opened the door to a new class of 3 We refer the reader
to the L2O survey [62]
for discussion of more
related work.

algorithms and analyses. Analytic optimization results often provide worst-case

convergence rates, and limited theory exists pertaining to instances drawn from

a common distribution (e.g. data supported on a low-dimensional manifold).

That is, most L2O methods have little or no convergence guarantees, especially

on data distinct from what is seen in training. Applying Franklin’s wisdom, we

wish to balance the desires to use data-driven algorithms and provide conver-

gence guarantees. This chapter addresses this matter by answering the question:

11

Figure 2.1: A com-
mon approach
in various L2O
schemes is to form
feed forward net-
works by unrolling
an iterative algo-
rithm, truncated
to K iterations,
and tuning pa-
rameters at each
layer/iteration k.
This generalizes
the update formula
xk+1 = T(xk; d) to
include a depen-
dence on weights
θk, denoted by a
subscript. Image
adapted from [62].

x1 TΘ1(·; ·) · · · TΘk(·; ·) xK

d

x1 x2 xK−1 xK

Can a safeguard be added to L2O algorithms to improve robustness and

convergence guarantees without significantly hindering performance?

Here a safeguard is anything that identifies when a “bad” L2O update would

occur and what to do in place of that “bad” update. We provide an affirmative

answer to the question for convex problems with gradient and/or proximal or-

acles by providing such a safeguard and replacing “bad” L2O updates with up-

dates from analytic methods. Our framework is called Safe-L2O. Since a trade-off

is formed between per iteration costs and ensuring convergence, we clarify three

properties of “practical” L2O safeguards.

1. Safeguards must only leverage known quantities related to convex problems

(e.g. objective values, norms of gradients, distance between iterates).

2. Both L2O and Safe-L2O schemes should perform identically on “good” data,

with comparable per-iteration costs.

3. Safeguards should apply only if “bad” L2O updates would otherwise occur.

The challenge is to create a simple safeguard that kicks in only when needed.

Unlike classic optimization algorithms, exceptional L2O algorithms do not neces-

sarily exhibit the behavior that each successive iterate is “better” than the current

iterate (i. e. are not monotonically improving). Loosely speaking, this means there

are cases where an L2O scheme that gets “worse” for a couple iterates yields a

12

better final output than an L2O scheme that is required to get “better” at each

iterate. The intuition behind why this should be acceptable is that we are solely

interested in the final output of the L2O algorithm, not the intermediate steps.

From this insight, we deduce the safeguard should exhibit a form of trailing

behavior, i. e. it should measure progress of previous iterates and only require

that updates are “good” on average. If the safeguard follows too closely, then

the Safe-L2O scheme’s flexibility and performance are limited. If it follows from

too far, then the Safe-L2O scheme may exhibit highly oscillatory behavior and

converge too slowly. The appropriate amount for the safeguard to follow can be

estimated by tuning L2O parameters for optimal performance on a training set

without safeguarding and then using a validation set to test various safeguards

with the L2O scheme. To avoid possible confusions, note we are not trying to prove

the convergence of any standalone L2O algorithm. We instead 1) alarm on an L2O

update when it may break convergence, 2) replace it with a fall-back update, and

3) show the resulting “hybrid optimization" converges.4

4 Loosely speaking, our
scheme updates via

xk+1
=

⎧⎪⎪
⎨
⎪⎪⎩

L2O if “good”
Backup if “bad”.In addition to L2O updates, our method uses a safeguard condition with

the update formula from a conventional algorithm. When the “good” condition

holds, the L2O update is used; when it fails, the formula from the conventional

algorithm is used. In the ideal case, L2O updates are applied often and the

conventional algorithm formula provides a “fallback” for exceptional cases. This

fallback is designed together with the safeguard condition to ensure convergence.

This also implies, even when an L2O algorithm has a fixed number of iterations

with tunable parameters, the algorithm may be extended to an arbitrary number

of iterations by applying the fallback to compute latter updates (see Figure 2.2).

13

Related L2O Methods. A seminal L2O work in the context of sparse coding

was by [112]. Numerous follow-up papers also demonstrated empirical success

at constructing rapid regressors approximating iterative sparse solvers, for com-

pression, nonnegative matrix factorization, compressive sensing and other appli-

cations [221, 233, 234, 130, 247]. The majority of L2O works pertain to sparse cod-

ing and provide limited theoretical results. Some works have interpreted LISTA

in various ways to provide proofs of different convergence properties [104, 179].

Others have investigated structures related to LISTA [242, 34, 35, 174], provid-

ing results varying by assumptions. [63] introduced necessary conditions for the

LISTA weight structure to asymptotically achieve a linear convergence rate. This

was followed by [164], which further simplified the weight conditions and pro-

vided a result stating that, with high probability, the convergence rate of LISTA

is at most linear. The mentioned results are useful, yet can require intricate as-

sumptions and proofs specific to sparse coding problems.

Our safeguarding scheme is related to existing Krasnosel’skiı̆-Mann (KM)

methods. Indeed, [223] presents a KM safeguard method in a more hierarchical

manner than ours; it differs from this chapter by solely refers to the current

iterate residuals (plus a summable sequence). Additionally, [251] uses a similar

safeguarding step for their Anderson accelerated KM method. To the best of our

knowledge, neither method has been employed with L2O.

Contribution. We provide two simple Safe-L2O frameworks for creating

data-driven algorithms with convergence guarantees. These framework can be

used with all L2O algorithms that solve convex problems5 for which proximal5 They also apply to
convex-convcave saddle
point problems (e. g.
matrix games).

and/or gradient oracles are available. We incorporate several safeguarding pro-

cedures in a general setting and present a simple procedure for utilizing ML

methods to instill knowledge from available data.

14

Algorithm 1: L2O Model formed by deep unrolling without a safeguard.

NΘ(d) ∶
x1 ← x̃ ⊲ Initialize inference
for k = 1, 2, . . . , K

xk+1 ← TΘk(xk; d) ⊲ L2O Update
k ← k + 1 ⊲ Increment counter

return xk ⊲ Output inference

Section 2.1: Safeguarded L2O via Fixed Point Residual

This section presents the Safe-L2O framework. We emphasize this safeguard-

ing acts as a wrapper around a data-driven algorithm.6 Each L2O operator TΘ is 6 In this chapter, we
assume each operator T
is averaged.parameterized by weights Θ. Each vector d of input data (e.g. the measurement

vector in a least squares problem) defines an optimization problem. For each

application of the algorithm, the fallback operator changes, depending upon the

data d. To make explicit this dependence, we include an entry d via T(⋅; d). Of-

ten TΘ can be viewed as forming one or multiple layers of a feed forward model.

Thus, NΘ(d) in Algorithm 1 is precisely a feed forward model. In addition to an

L2O operator TΘ, our Safe-L2O method uses a fallback operator T and a scalar

sequence {µk}. Here T(⋅; d) defines an averaged operator from the update for-

mula of a conventional optimization algorithm (see Table 1.1). Each µk defines a

reference value to determine whether a tentative L2O update is “good.” Each ref-

erence value µk in our safeguarding is relatable to a combination of ∥xi − T(xi)∥

among previous iterates i = 1, . . . , k. We illustrate L2O and fallback operators for

data-driven step sizes in an example below.

15

Table 2.1: Choices to update µk that ensure Assumption 2.1.2 holds. Here α, θ ∈ (0, 1), Ck is the statement
that ∥xk+1 − T(xk+1; d)∥ ≤ αµk, and we say a residual ∥xn − T(xn; d)∥ is “good” if Cn−1 holds.

Name Update Formula

Geometric Sequence
GS(θ)

µk+1 =
⎧⎪⎪⎨⎪⎪⎩

θµk if Ck holds,

µk otherwise.
Decrease µk by factor θ for “good” residuals.

Recent Term
RT

µk+1 =
⎧⎪⎪⎨⎪⎪⎩

∥xk+1 − T(xk+1; d)∥ if Ck holds,

µk otherwise.
Take µk to be most recent “good” residual.

Arithmetic Average
AA

mk+1 =
⎧⎪⎪⎨⎪⎪⎩

mk + 1 if Ck holds,

mk otherwise.

µk+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥xk+1 − T(xk+1; d)∥ +mkµk

mk+1
if Ck holds,

µk otherwise.
Take µk to be average among “good” residuals.

Exponential
Moving Average

EMA(θ)

µk+1 =
⎧⎪⎪⎨⎪⎪⎩

θ∥xk+1 − T(xk+1; d)∥ + (1− θ)µk−1 if Ck holds,

µk otherwise.
Exponentially average µk with the latest “good” residuals.

Recent Max
RM(m)

Ξk = {most recent m indices ℓ : Cℓ−1 holds}
µk+1 =maxℓ∈Ξk

∥xℓ − T(xℓ; d)∥
Take µk to be max of most recent “good” residuals.

Remark 2.1.1 Let f ∶ Rn ×Rm → R be convex and differentiable with L-Lipschitz

gradient with respect to the first argument. For Θ ∈ [0,∞), define the L2O operator

TΘ ∶Rn →Rn by

TΘ(x; d) ≜ x − 2Θ
L
⋅ ∇x f (x; d). (2.1)

Here TΘ is a gradient descent operator with tunable step-size 2Θ/L, which is is averaged

for Θ ∈ (0, 1). The fallback operator T can be set to the gradient descent update with step

size 1/L. Although using Θ ≫ 1 may not be theoretically justifiable for L2O updates,

this can be useful in accelerating the convergence of a method in some instances [105]. △

16

Algorithm 2: Safe-L2O via fixed point residual decrease

1: NΘ(d, T, α)
2: x1 ← x̃ ⊲ Initialize inference

3: µ1 ← ∥x̃ − T(x̃; d)∥ ⊲ Initialize safeguard

4: k ← 1 ⊲ Initialize counter

5: while ∥xk+1 − xk∥ > ε ⊲ Loop to fixed point

6: yk+1 ← TΘ(xk; d) ⊲ L2O Prediction

7: if ∥T(yk; d) − yk∥ ≤ αµk ⊲ Safeguard check

8: xk+1 ← yk+1 ⊲ L2O Update

9: else

10: xk+1 ← T(xk; d) ⊲ Fallback KM Update

11: Update safeguard µk+1 ⊲ See Table 1

12: k ← k + 1 ⊲ Increment counter

13: return xk ⊲ Output inference

Our first proposed Safe-L2O approach is Algorithm 2. For each iteration k,

the weights Θk are used to define the L2O update TΘk(⋅; d). A fallback operator T

is chosen in Line 3 (e.g. using Table 1.1). Each safeguard parameter µk is chosen

in Line 10 (e.g. using Table 2.1). First the initial iterate x1 is assigned in Line

2 to a fixed reference x̃ and similarly for the safeguard parameter µ1 in Line 3.

From Line 5 to Line 12, a repeated loop occurs7 to compute each update xk+1. In 7 In practice, this loops
is often fixed to be some
number K iterations
rather than a satisfy the
condition that successive
iterates are “close.”

Line 6 the L2O operator is applied to the current iterate xk get a tentative update

yk+1. This yk+1 is then determined to be “good” if the the inequality in Line 7

holds. In such a case, the L2O update is assigned to xk+1 in Line 8. Otherwise,

the fallback operator T is used to obtain the update xk+1 in Line 10. Lastly, the

safeguard parameter is updated in Line 11 (e.g. using Table 1.1).

To justify applying Algorithm 2, we use the following standard assumption.

Assumption 2.1.1 The optimization problem has a solution and is equipped with an

operator T such that i) fix(T(⋅; d)) equals the solution set and ii) T(⋅; d) is averaged.

17

The next assumption ensures the used L2O updates approach the solution set,

which is accomplished using the fixed point residual with the fallback operator.

Assumption 2.1.2 The safeguard sequence {µk} is monotonically decreasing such that

∥T(xk; d) − xk∥ ≤ µk, for all k ∈N, (2.2)

and there exists ζ ∈ (0, 1) such that

µk+1 ≤ ζµk, whenever xk+1 is an L2O update. (2.3)

Our final assumption ties the L2O updates to the fallback operator. The

assumption effectively states the residual of the L2O operator is bounded by a

multiple of the residual of the fallback operator, i. e. TΘ “looks similar” to T.88 The reasonableness of
this assumption comes
from the fact TΘ is
heavily inspired by T
and may even equal T
for a specific choice of Θ.

Assumption 2.1.3 There exists a bounded sequence {τk} ⊂ [0,∞) such that

∥TΘ(xk; d) − xk∥ ≤ τk∥T(xk; d) − xk∥, for all k ∈N. (2.4)

Our proposed methods (see Table 2.1) for choosing the sequence {µk} sat-

isfy Assumption 2.1.2. These methods are adaptive in the sense that each update

to µk depends upon the iterate xk and (possibly) previous iterates. Each safe-

guard parameter µk also remains constant in k except for when the residual

norm ∥xk+1 − T(xk+1; d)∥ decreases to less than a geometric factor of µk. This al-

lows each µk to trail the value of the residual norm ∥xk − T(xk; d)∥ and allows

the residual norm to increase in k from time to time. As noted in the chapter

introduction, this trailing behavior provides flexibility to the L2O updates. Our

main convergence result is below and it is followed by a corollary justifying use

of the schemes in Table 2.1 (both proven in the appendices).

Theorem 2.1.1 If {xk} is a sequence generated by the repeated loop in the Safe-L2O

(Algorithm 2) and Assumptions 2.1.1, 2.1.2, and 2.1.3 hold, then {xk} converges to a

limit xd ∈ fix(T(⋅; d)), i. e. xk → xd.

18

Corollary 2.1.1 If {xk} is a sequence generated by the Safe-L2O method (Algorithm 2)

and Assumptions 2.1.1 and 2.1.3 hold, and {µk} is generated using a scheme outlined in

Table 2.1, then Assumption 2.1.2 holds and, by Theorem 2.1.1, there is xd ∈ fix(T(⋅; d))

such that {xk} converges to xd, i. e. xk → xd.

We summarize the safeguard schemes as follows. The GS method decreases

µk be a fixed geometric factor at each update. The AA method averages all past

and current residuals where µk is/was modified. The EMA method performs

similarly to AA, but using a moving average. The RM method sets µk to be the

largest residual among sufficiently recent residuals. The RM and GS methods

can make µk lag far behind the current residual. In our experience, the EMA is

the most practical safeguard due to its adaptive and limited memory nature.

Section 2.2: Safeguarded L2O via Energy

This section introduces an alternative safeguard.9 The results here assume T is 9 We call this a safeguard
via energy while, in
reality, both safeguards
may be viewed as utiliz-
ing energy dissipation.
We use this naming
solely to demarcate the
approaches.

firmly nonexpansive (e.g. a proximal update). Define the residual operator

F(x; d) ≜ 1
2
(x − T(x; d)) (2.5)

and, for each k ∈N, the energy Ek ∶Rm ×Rn →R by

Ek(x; d) ≜ ∥F(x; d)∥2 − λk
1− λk

⟨F(x; d), x1 − x⟩ , (2.6)

where {λk} is a sequence of step sizes given by λk = 1/(k + 1).

The second proposed Safe-L2O scheme is in Algorithm 3. A reference iterate

x̃ can be understood to be the initialization x1. Line 2 sets x2 to be the average

of the initialization and its image under T. Lines 4 to 10 yield a repeated loop.

A tentative L2O update yk+1 is compute in Line 5. If this satisfies the check in

Line 6, then it is “good” and used to update xk in Line 7. Otherwise, the fallback

method is a Halpern iteration [118], which is used to update in Line 9.

19

Algorithm 3: Safe-L2O via Energy Decrease

1: NΘ(d, T, C)
2: x2 ← 1

2(x̃ + T(x̃; d)) ⊲ Initialize using reference x̃

3: k ← 2 ⊲ Initialize counter

4: while ∥xk − T(xk; d)∥ > ε ⊲ Loop to fixed point

5: yk+1 ← TΘ(xk; d) ⊲ L2O Prediction

6: if Ek+1(yk+1; d) ≤ C
k+1 ⊲ Safeguard energy check

7: xk+1 ← yk+1 ⊲ L2O Update

8: else

9: xk+1 ← λk x̃ + (1− λk)T(xk; d) ⊲ Fallback Update

10: k ← k + 1 ⊲ Increment counter

11: return xk ⊲ Output inference

Our next result for safeguarding is stated below (proven in the appendices).

Theorem 2.2.1 If the sequence {xk} is generated by the iteration in Algorithm 3 with

firmly nonexpansive T(⋅; d) that has a fixed point and λk = 1/(k + 1), then

∥xk − T(xk; d)∥ ≤ 1
2

⎛
⎜
⎝

d1

k
+

¿
ÁÁÀd2

1
k2 +

4C
k

⎞
⎟
⎠

, for all k ≥ 2, (2.7)

where d1 ≜min{∥x̃ − x∥ ∶ x ∈ fix(T(⋅; d))} is the distance between the reference iterate x̃

and the set of fixed points and C ≥ 0 is an arbitrary constant. In particular, this implies

each limit point of {xk} is a fixed point.

The proof draws upon two ideas: the safeguarding technique already used

and recent Halpern iteration analysis [76]. Note the inequality in Line 6 involves

an energy different from Algorithm 2. Additionally, here the fallback update is

anchored to the reference iterate x̃, providing stability of iterates (i. e. mitigating

oscillatory behavior). This energy safeguard also provides a convergence rate,10

10 Note O(1/k) is the
optimal order of conver-
gence rate for a resolvent
oracle.

O(1/k) if C = 0 and O(1/
√

k) if C > 0. For numerical examples illustrating this

safeguard with matrix games,11 we refer readers to [218].

11 Averaged and firmly
nonexpansive operators
can also be used for
convex-concave minimax
problems.

20

Section 2.3: Training and Averaged Operator Selection

Safe-L2O may be executed via inferences of a feed forward model. The input

into the model is the data d, often in vector form. Each layer is designed so that

its input is xk, to which it applies either an L2O or fallback update (following the

Safe-L2O method), and outputs xk+1 to the next layer. We encode all the model

parameters with Θ ≜ {Θk}. The set over which Θ is minimized may be chosen

with great flexibility. If each Θk can be chosen independently, the model weights

vary by layer. This is used in our numerical examples below. If instead each

Θk is identical, i. e. the parameters across all layers are fixed, then we obtain a

weight-tied recurrent neural network (RNN).12 12 The implicit models
covered in Part II all
use an operator TΘ that
coincides with weight-
tied models.

The “optimal” choice of weights Θ depends upon the application. Suppose

each d is drawn from a common distribution D. Then a choice of “optimal” pa-

rameters Θ⋆ may be identified as those for which the expected value of ϕd(xK) is

minimized among d ∼ D, where ϕd ∶ Rn → R is an appropriate cost function (see

Table 2.2). This is expressed mathematically by stating Θ⋆ solves the problem13

13 Different learning
problems than (2.8)
may be used (e. g. the
min-max problem used
by adversarial networks
[108]).

min
Θ

Ed∼D[ϕd(xK(Θ, d))], (2.8)

where we emphasize the dependence of xK on Θ and d by writing xK = xK(Θ, d).

We approximately solve the problem (2.8) by sampling data {dn}N
n=1 from D and

minimizing an empirical loss function. For our layer-dependent weights ap-

proach, we train by using successive “warm starts.” First, the model is trained

for approximately optimal performance with 1 iteration. These weights are then

used to initialize the model for 2 iterations, which is then trained to approximate

optimality. This process is repeated until the desired K iterations are reached

for the model, with the majority of training time dedicated to training with K

iterations.

L1 ∥xK − x⋆d ∥1

L2 ∥xK − x⋆d ∥
2
2

Obj. f (xK ; d)

Res. ∥xK − T(xK ; d)∥

Table 2.2: Example

choices for ϕd in-

clude ℓ1 and ℓ2

errors, objective val-

ues, and fixed point

residuals.

21

Section 2.4: Numerical Examples

This section shows examples using Safe-L2O. We numerically investigate (i) the

convergence rate of Safe-L2O relative to corresponding conventional algorithms,

(ii) the efficacy of safeguarding procedures when inferences are performed on

data for which L2O fails intermittently, and (iii) the convergence of Safe-L2O

schemes even when the application of NΘ is not justified theoretically. We first

use NΘ from ALISTA [164] on a synthetic LASSO problem. We use LISTA on a

LASSO problem for image processing, differentiable linearized ADMM [241] on

a sparse coding problem, and an L2O method for nonnegative least squares.1414 Fine details of numer-
ical implementations
can be found in the
appendices of [127].

In each example, f ⋆d denotes the optimal value of fd(x) among all possible x.

Performance is measured using a modified relative objective error:

Relative Error = R f ,D(x) ∶=
Ed∼D[fd(x) − f ⋆d]

Ed∼D[f ⋆d]
, (2.9)

where the expectations are estimated numerically. We use (2.9) rather than the

expectation of relative error to avoid high sensitivity to outliers.

Our numerical results are presented in several plots. When each iterate xk

is computed using data d drawn from the same distribution Ds that was used to

train the L2O algorithm, we say the performance is on the “seen” distribution

Ds. These plots form the primary illustrations of the speedup of L2O algorithms.

When each d is drawn from a distribution Du that is different than Ds, we refer

to Du as the unseen distribution. These plots show the ability of the safeguard to

ensure convergence. A dotted plot with square markers is also added to show

the frequency of safeguard activations among test samples, with the reference

axis on the right hand side of the plots. We extend the Safe-L2O methods beyond

their training iterations by applying the fallback operator T; we demarcate where

this extension begins by changing the Safe-L2O plots from solid to dashed lines.

22

100 102 104

10−4

10−1

102

Iteration/Layer

R
el
a
ti
v
e
E
rr
o
r

ALISTA

ISTA

(a) Performance on seen distribution

100 101 102 103

10−2

100

102

104

106

Iteration/Layer

R
el
at
iv
e
E
rr
or

ALISTA

ISTA

Extended with ISTA

Safe-L2O

Spike in safeguard activations

Safeguard activations
0%

20%

40%

60%

80%

S
af
eg
u
ar
d
F
re
q
u
en
cy

(b) Performance on unseen distribution

Figure 2.2: Plot of error versus iteration for ALISTA example. Trained with ϕd = fd. Inferences used
α = 0.99 and EMA(0.25). In (b), how often the L2O update is “bad” and the safeguard activates for
Safe-L2O is indicated in reference to the right vertical axis. This plot shows the safeguard is used only
when k = 2, k = 7, and k = 12. Also, Safe-L2O converges in (b) while ALISTA displays divergent behavior.

ALISTA for LASSO

Here we consider the LASSO problem for sparse coding. Let x⋆ ∈ R500 be a

sparse vector and A ∈ R250×500 be a dictionary. We assume access is given to

noisy linear measurements d ∈ R250, where ε ∈ R250 is additive Gaussian white

noise and d = Ax⋆ + ε. Even for underdetermined systems, when x⋆ is sufficiently

sparse and τ ∈ (0,∞) is an appropriately chosen regularization parameter, x⋆ can

often be recovered reasonably by solving the LASSO problem

min
x∈Rn

fd(x) ∶=
1
2
∥Ax − d∥22 + τ∥x∥1. (2.10)

A classic method for solving (2.10) is the iterative shrinkage thresholding algo-

rithm (ISTA) (e.g. see [73]).15 [164] presents the L2O scheme ALISTA that we im- 15 This is a special case of
the proximal-gradient in
Table 1.1.plement here. This L2O operator NΘ is parameterized by Θ = {(θk, γk)}K

k=1 ∈R
2K.

23

100 101 102

10−3

10−2

10−1

100

Iteration/Layer

R
el
at
iv
e
E
rr
or

L2O LiADMM

LiADMM

(a) Performance on seen distribution

100 101 102

10−3

10−2

10−1

100

101

102

Iteration/Layer

R
el
a
ti
ve

E
rr
o
r

L2O LiADMM

LiADMM

Extended with LiADMM

Safe-L2O

Safeguard activations

Intermittent activations

0%

20%

40%

60%

80%

S
af
eg
u
a
rd

F
re
q
u
en

cy

(b) Performance on unseen distribution

Figure 2.3: Plot of error versus iteration for D-LADMM. Trained with ϕd = fd. Inferences used α = 0.99
and EMA(0.75). In (b), how often the L2O update is “bad” and the safeguard activates for Safe-L2O is
indicated in reference to the right vertical axis. This plot shows the safeguard is used about 10% and
30% of the time when k = 4 and k = 5, respectively.

Linearized ADMM

Let A ∈ R250×500 and d ∈ R250 be as in Subsection 2.4. Here we apply the L2O

scheme differentiable linearized ADMM (D-LADMM) of [241] to the closely re-

lated sparse coding problem

min
x∈Rn

∥Ax − d∥1 + τ∥x∥1. (2.11)

The L2O operator NΘ and fallback linearized ADMM (LiADMM) operator T.

Plots are provided in Figure 2.3.

LISTA for Natural Image Denoising

To evaluate our safeguarding mechanism in a more realistic setting, we apply

safeguarded LISTA to a natural image denoising problem. In this subsection, we

learn a LISTA-CP model [63] to perform natural image denoising. During train-

ing, L2O LISTA-CP model is trained to recover clean images from their Gaussian

24

noisy counterparts by solving (2.10). In (2.10), d is the noisy input to the model,

and the clean image is recovered with d̂ = Ax⋆, where x⋆ is the optimal solution.

The dictionary A ∈ R256×512 is learned on the BSD500 dataset [173] by solving

a dictionary learning problem [245]. During testing, however, the learned L2O

LISTA-CP is applied to unseen pepper-and-salt noisy images. Comparison plots

are provided in Figure 2.4 and implementation details are in the appendices.

100 101 102 103 104

10−2

10−1

100

101

102

Iteration/Layer

R
el
at
iv
e
E
rr
or

LISTA

ISTA

(a) Performance on seen distribution

100 101 102 103

10−1

100

101

102

Iteration/Layer

R
el
at
iv
e
E
rr
or

0%

20%

40%

60%

80%

S
a
fe
gu

ar
d
F
re
q
u
en
cy

LISTA

ISTA

Extended with ISTA
Safe-L2O

Safeguard activations

(b) Performance on unseen distribution

Figure 2.4: Plot of error versus iteration for LISTA denoising. Trained with ϕd = fd. Inferences used
α = 0.99 and EMA(0.25). In (b), how often the L2O update is “bad” and the safeguard activates for
Safe-L2O is indicated in reference to the right vertical axis. This plot shows the safeguard is used
intermittently for k > 2.

Projected Gradient for Nonnegative Least Squares

Let A ∈R500×250 and d ∈R500. Consider an overdetermined NNLS problem

min
x∈R250

fd(x) ∶=
1
2
∥Ax − d∥22 s.t. x ≥ 0. (2.12)

Generalizing the projected-gradient method, we use

TΘ(x; d) ∶=max (x −Θ(Ax − d), 0) , (2.13)

where Θ ∈ R250×500. The fallback method is projected gradient, i. e. T(x; d) ≜

TαA⊺(x; d) where α = 1/∥A⊺A∥2. Here Θ = {Θk}K
k=1 consists of mnK trainable

25

parameters. A summary plot is given in Figure 2.5. Since this problem is unreg-

ularized, the L2O method learned very efficient updates, given A. This resulted

in comparable performance on unseen data and the safeguard was never acti-

vated.

Figure 2.5:
Performance on
seen distribution Ds

of L2O projected
gradient scheme in
(2.13).

100 101 102
10−3

102

107

Iteration/Layer

R
el
at
iv
e
E
rr
or

L2O Proj. Grad.

Proj. Grad.

Section 2.5: Conclusions

This chapter’s safeguarding frameworks ensure convergence of L2O algorithms.

Our Safe-L2O algorithm is also easy to implement, with our numerical ex-

periments demonstrate rapid convergence by Safe-L2O methods and effective

safeguarding when the L2O schemes appear to otherwise diverge. Roughly

speaking, ALISTA, LISTA, and the L2O method for NNLS all reduced compu-

tational costs by at least one order of magnitude when applied to data from

the same distribution as the training data. This is expected, given the results

of previous works. More importantly, plots (b) of Figures 2.2 to 2.4 show the

safeguard steers updates to convergence when they would otherwise diverge or

converge slower than the conventional algorithm. Future work will provide a

better data-driven fallback method and investigate stochastic extensions.

26

Part II: Implicit Models

27

Chapter 3: Jacobian-Free Backprop

I am enough of the artist to draw freely upon my imagination. Imagination is more

important than knowledge. Knowledge is limited. Imagination encircles the world.

– Albert Einstein11 Taken from Einstein’s
1929 interview for The
Saturday Evening Post
[228]. This chapter2 delves into a relatively new direction of machine learning, the

2 This chapter is based
on the paper [97].

movement from explicit to implicit models [239, 18, 19, 61, 101, 82, 135, 252,

151, 203, 165, 111]. In the standard feedforward setting, a model prescribes a

series of computations that map input data d to an inference y. Models can also

explicitly leverage the assumption that high dimensional signals typically admit

low dimensional representations in some latent space [226, 188, 197, 83, 225].

This may be done by designing the model to first map data to a latent space via

a mapping QΘ and then apply a second mapping SΘ to map the latent variable

to the inference. Thus, a traditional feedforward EΘ may take the compositional

form EΘ(d) = SΘ(QΘ(d)), illustrated by the red arrows in Figure 3.1.

u yd

feedforward network
implicit network

latent variableinput data output inference

QΘ SΘ

QΘ

RΘ

SΘ

latent variable

loop until
convergence

xk xd

Figure 3.1: Feedforward models compute SΘ ○QΘ. Implicit models add a fixed point condition using
RΘ. If it is averaged, applying RΘ to update a variable xk gives convergence to a fixed point xd of
RΘ(⋅; QΘ(d)).

28

One can allow for computation in the latent space U by introducing a self-

map RΘ(⋅; QΘ(d)) and the iteration

xk+1 = RΘ(xk; QΘ(d)), for all k ∈N. (3.1)

Iterating k times may be viewed as a weight-tied, input-injected model, where

each feedforward step applies RΘ [18]. As k → ∞, i.e. the latent space portion

becomes deeper, the limit of (3.1) yields a fixed point equation. As discussed in the

introduction, implicit models capture this “infinite depth” behaviour by using

RΘ(⋅ ; QΘ(d)) to define a fixed point condition:

NΘ(d) ≜ SΘ(xd) where xd = RΘ(xd, QΘ(d)), (3.2)

as shown by blue in Figure 3.1. Special cases of the model in (3.2) recover ar-

chitectures introduced in prior works [18, 19, 101, 239]. Continuing from the

introduction, we note three immediate questions arising from the definition (3.2):

▸ Is the definition in (3.2) well-posed?

▸ How is NΘ(d) evaluated?

▸ How are the weights Θ of NΘ updated during training?

Since the first two points are well-established [239, 18], we briefly review these in

Section 3.1 and focus on the third point. Using gradient-based methods for train-

ing requires computing dNΘ/dΘ and, in particular, dxd/dΘ. Hitherto, previous

works computed dxd/dΘ by solving a Jacobian-based equation (see Section 3.2).

Solving this linear system is computationally expensive and prone to instability

[20], particularly when the dimension of the latent space is large and/or includes

certain structures (e.g. batch normalization and/or dropout) [18, 19].

This chapter covers a novel and simple Jacobian-Free Backpropagation (JFB)

technique for training implicit models that avoids any linear system solves. In-

stead, our scheme backpropagates by omitting the Jacobian term, resulting in

29

a form of preconditioned gradient descent. JFB yields much faster training of

implicit models and allows for a wider array of architectures.

Section 3.1: Implicit Model Formulation

All terms presented in this section are provided in a general context, which is

later made concrete for each application. We include a subscript Θ on various

terms to emphasize the indicated mapping will ultimately be parameterized in

terms of tunable weights3 Θ. At the highest level, we are interested in construct-

3 We use the same
subscript for all terms,
noting each operator
typically depends on a
portion of the weights. ing a model NΘ ∶ D → Y that maps from a data space4 D to an inference space Y .

4 Each space is assumed
to be a real-valued finite
dimensional Hilbert
space (e. g. Rn) endowed
with a product ⟨⋅, ⋅⟩ and
norm ∥ ⋅ ∥. It will be
clear from context which
space is being used.

The implicit portion of the model uses a latent space U , and data is mapped to

this latent space by QΘ∶D → U . We define the model operator TΘ ∶ U ×D → U by

TΘ(x; d) ≜ RΘ(x, QΘ(d)). (3.3)

Provided input data d, our aim is to find the unique fixed point xd of TΘ(⋅ ; d)

and then map u⋆d to the inference space Y via a final mapping SΘ ∶ U → Y . This

enables us to define an implicit model NΘ by

NΘ(d) ≜ SΘ(xd) where xd = TΘ(xd; d). (3.4)

Algorithm 4: Implicit Model with Fixed Point Iteration

1: NΘ(d)∶ ⊲ Input data is d
2: x1 ← x̃ ⊲ Assign latent term
3: while ∥xk − TΘ(xk; d)∥ > ε ⊲ Loop til converge
4: xk+1 ← TΘ(xk; d) ⊲ Refine latent term
5: k ← k + 1 ⊲ Increment counter
6: return SΘ(xk) ⊲ Output estimate

30

Implementation considerations for TΘ are discussed below. We also intro-

duce assumptions on TΘ that yield sufficient conditions to use the simple proce-

dure in Algorithm 4 to approximateNΘ(d). In this algorithm,5 the latent variable 5 Note the great similar-
ity between Algorithms
1 and 4.initialization x̃ can be any fixed quantity (e.g. the zero vector). The inequality in

Step 3 gives a fixed point residual condition that measures convergence. Step 4

implements a fixed point update. The estimate of the inference NΘ(d) is com-

puted by applying SΘ to the latent variable xk in Step 6. The blue path in Figure

3.1 visually summarizes Algorithm 4.

Convergence Finitely many loops in Steps 3 and 4 of Algorithm 4 is guaranteed

by a classic functional analysis result [21]. This approach is used by several

implicit models [101, 239, 135]. Below is a variation of Banach’s classic result for

application in our setting.

Assumption 3.1.1 The mapping TΘ is L-Lipschitz with respect to inputs (x, d), i. e.

∥TΘ(x; d) − TΘ(v; w)∥ ≤ L∥(x, d) − (v, w)∥, for all (x, d), (v, w) ∈ U ×D. (3.5)

Holding d fixed, the operator TΘ(⋅; d) is a contraction, i.e. there is γ ∈ [0, 1) such that

∥TΘ(x; d) − TΘ(v; d)∥ ≤ γ∥x − v∥, for all x, v ∈ U . (3.6)

Remark 3.1.1 The L-Lipschitz condition on TΘ is used since recent works show Lips-

chitz continuity with respect to inputs improves generalization [220, 110, 89] and ad-

versarial robustness [66, 10].

Theorem 3.1.1 (Banach) For any x1 ∈ U , if Assumption 3.1.1 holds and if the se-

quence {xk} is generated via the update relation6 6 This result is closely
related to Theorem 4.1.1,
differing in its use of
a stronger contraction
assumption.

xk+1 = TΘ(xk; d), for all k ∈N, (3.7)

then {xk} converges linearly to the unique fixed point xd of TΘ(⋅; d).

31

TΘ(x; d)

QΘ(d)

x · · ·σ σ

d · · ·σ σ

σ σ TΘ(x; d)· · ·

data output to latent space is independent of x

1-Lipschitz affine map`-Lipschitz affine map

Figure 3.2: Diagram of a possible architecture for model operator TΘ (in large rectangle). Data d and
latent x variables are processed in two streams by nonlinearities (denoted by σ) and affine mappings
(denoted by rectangles). These streams merge into a final stream that may also contain transformations.
Light gray and blue affine maps are ℓ-Lipschitz and 1-Lipschitz, respectively. The mapping QΘ from
data space to latent space is enclosed by the red rectangle.

Alternative Approaches In [18, 19] Broyden’s method is used for finding xd.

Broyden’s method is a quasi-Newton scheme and so at each iteration it updates

a stored approximation to the Jacobian Jk and then solves a linear system in Jk.

Since in this work our goal is to explore truly Jacobian-free approaches, we stick to

the simpler fixed point iteration scheme when computing xd (i.e. Algorithm 4).

In the contemporaneous [103], it is reported that using fixed point iteration in

conjunction with Anderson acceleration finds xd faster than both vanilla fixed

point iteration and Broyden’s method. Combining JFB with Anderson acceler-

ated fixed point iteration is a research direction we leave for future work.

Other Implicit Formulations A related implicit learning formulation is the

well-known neural ODE model [61, 82, 210]. Neural ODEs leverage known con-

nections between deep residual models and discretizations of differential equa-

tions [117, 237, 211, 60, 88, 168], and replace these discretizations by black-box

ODE solvers in forward and backward passes. The implicit property of these

models arise from their method for computing gradients. Rather than backprop-

32

agate through each layer, backpropagation is instead done by solving the adjoint

equation [134] using a blackbox ODE solver as well. This is analogous to solv-

ing the Jacobian-based equation when performing backpropagation for implicit

models (see (3.10)) and allows the user to alleviate the memory costs of backprop-

agation through deep neural models by solving the adjoint equation at additional

computational costs. A drawback is the adjoint equation must be solved to high-

accuracy; otherwise, a descent direction may not be guaranteed [102, 185, 186].

d

x1 x2 · · · xK−1 xK

TΘ(·, d) TΘ(·, d) TΘ(·, d) TΘ(·, d)
· · · Traditional Backprop

Forward Prop

Jacobian-based Backprop

Proposed Backprop

Figure 3.3: Diagram of backpropagation schemes for recurrent implicit depth models. Forward propa-
gation is tracked via solid arrows point to the right (n.b. each forward step uses d). Backpropagation is
shown via dashed arrows pointing to the left. Traditional backpropagation requires memory capacity
proportional to depth (which is implausible for large K). Jacobian-based backpropagation solves an as-
sociated equation dependent upon the data d and operator TΘ. JFB uses a single backward step, which
avoids both large memory capacity requirements and solving a Jacobian-type equation.

33

Section 3.2: Backpropagation

We present a simple way to backpropagate with implicit models, called Jacobian-

free backprop (JFB). Traditional backpropagation will not work effectively for im-

plicit models since forward propagation during training could entail hundreds or

thousands of iterations, requiring ever growing memory to store computational

graphs. On the other hand, implicit models maintain fixed memory costs by

backpropagating “through the fixed point” and solving a Jacobian-based equa-

tion (at potentially substantial added computational costs). The key step to cir-

cumvent this Jacobian-based equation with JFB is to tune weights by using a

preconditioned gradient. Let ℓ ∶ Y × Y → R be a smooth loss function, denoted

by ℓ(x, y), and consider the training problem

min
Θ
Ed∼D[ℓ (yd,NΘ(d))], (3.8)

where we abusively write D to also mean a distribution. For clarity of presenta-

tion, in the remainder of this section we notationally suppress the dependencies

on weights Θ by letting xd denote the fixed point in (3.4). Unless noted other-

wise, mapping arguments are implicit in this section; in each implicit case, this

will correspond to entries in (3.4). We begin with standard assumptions enabling

us to differentiate NΘ.

Assumption 3.2.1 The mappings SΘ and TΘ are continuously differentiable with re-

spect to x and Θ.

Assumption 3.2.2 The weights Θ may be written as a tuple Θ = (θS, θT) such that

weight paramaterization of SΘ and TΘ depend only on θS and θT , respectively.7

7 This assumption is easy
to ensure in practice.
For notational brevity,
we use the subscript Θ
throughout.

34

Let JΘ be defined as the identity operator, denoted by I, minus the Jacobian8 8 Under Assumption
3.1.1, the Jacobian JΘ ex-
ists almost everywhere.
However, presentation
is cleaner by assuming
smoothness.

of TΘ at (x, d), i. e.

JΘ(x; d) ≜ I− dTΘ

dx
(x; d). (3.9)

Following [239, 18], we differentiate both sides of the fixed point relation in (3.4)

to obtain, by the implicit function theorem,

dxd
dΘ
= ∂TΘ

∂x
dxd
dΘ
+ ∂TΘ

∂Θ
Ô⇒ dxd

dΘ
= J −1

Θ ⋅
∂TΘ

∂Θ
, (3.10)

where J −1
Θ exists whenever JΘ exists (see Lemma 9.2.4). Using the chain rule

gives the loss gradient

d
dΘ
[ℓ(yd,NΘ(d))] =

d
dΘ
[ℓ(yd, SΘ(TΘ(xd, d))]

= ∂ℓ

∂y
[dSΘ

dx
J −1

Θ
∂TΘ

∂Θ
+ ∂SΘ

∂Θ
] .

(3.11)

The matrix JΘ satisfies the inequality (see Lemma 9.2.4)

⟨x,J −1
Θ x⟩ ≥ 1− γ

(1+ γ)2 ∥x∥
2, for all x ∈ U . (3.12)

Intuitively, this coercivity property makes J −1
Θ appear to act like a preconditioner

and, thus, we may possibly remove9 J −1
Θ from (3.11) to backpropagate using 9 Our knowledge for

justifying this below
is relatively limited;
hence this is where
imagination of what
the situation “looks
like” is more important,
practically speaking.

pΘ ≜ −
d

dΘ
[ℓ(yd, SΘ(TΘ(x, d))]

x=xd

= − ∂ℓ

∂y
[dSΘ

dx
∂TΘ

∂Θ
+ ∂SΘ

∂Θ
] .

(3.13)

The omission of J −1
Θ admits two straightforward interpretations. NoteNΘ(d) =

SΘ(TΘ(xd; d)), and so pΘ is precisely the gradient of the expression ℓ(yd, SΘ(TΘ(xd; d))),

treating xd as a constant independent of Θ. The distinction is that using SΘ(TΘ(xd; d))

assumes, perhaps by chance, the user chose the first iterate x1 in their fixed point

iteration (see Algorithm 4) to be precisely the fixed point xd. This makes the

iteration trivial, “converging” in one iteration. We can simulate this behavior by

using the fixed point iteration to find xd and only backpropagating through the

final step of the fixed point iteration, as shown in Figure 3.3.

35

Since the weights Θ typically lie in a space of much higher dimension than

the latent space U , the Jacobians ∂SΘ/∂Θ and ∂TΘ/∂Θ effectively always have full

column rank. We leverage this fact via the following assumption.

Assumption 3.2.3 Under Assumption 3.2.2, given any weights Θ = (θS, θT) and data

d, the matrix

M ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂SΘ

∂θS
0

0
∂TΘ

∂θT

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

has full column rank and is sufficiently well conditioned to satisfy the inequality1010 The term γ here refers
to the contraction factor
in (3.6).

κ(M⊺M) = λmax(M⊺M)
λmin(M⊺M) ≤

1
γ

. (3.15)

Remark 3.2.1 The conditioning portion of the above assumption is useful for bounding

the worst-case behavior in our analysis. However, we found it unnecessary to enforce this

in our experiments for effective training (e.g. see Figure 3.5), which we hypothesize is

justified because worst case behavior rarely occurs in practice and we train using averages

of pΘ for samples drawn from large data sets.

Assumption 3.2.3 gives rise to a second interpretation of JFB. Namely, the

full column rank of M enables us to rewrite pΘ as a preconditioned gradient, i. e.

pΘ =
⎛
⎜⎜⎜
⎝

M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0

0 JΘ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

M+
⎞
⎟⎟⎟
⎠

´¹¹¸¹¹¹¶
preconditioning term

dℓ
dΘ

, (3.16)

where M+ is the Moore-Penrose pseudo inverse [178, 196]. These insights lead

to this chapter’s main result.

Theorem 3.2.1 If Assumptions 3.1.1, 3.2.1, 3.2.2, and 3.2.3 hold for given weights Θ

and data d, then

pΘ ≜ −
d

dΘ
[ℓ(yd, SΘ(TΘ(x, d))]

x=xd
(3.17)

is a descent direction for ℓ(yd,NΘ(d)) with respect to Θ.

36

Theorem 3.2.1 shows we can avoid difficult computations associated with

J −1
Θ in (3.11) (i. e. solving an associated linear system/adjoint equation) in im-

plicit model literature [61, 82, 18, 239]. Thus, our scheme more naturally applies

to general multilayered TΘ and is substantially simpler to code. Our scheme is

juxtaposed in Figure 3.3 with classic and Jacobian-based schemes.

Two additional considerations must be made when determining the efficacy

of training a model using (3.17) rather than Jacobian-based gradients (3.11).

▸ Does use of pΘ in (3.17) degrade training/testing performance relative to

(3.11)?

▸ Is the term pΘ in (3.17) resilient to errors in estimates of the fixed point xd?

The first answer is our training scheme takes a different path to minimizers

than using gradients with the implicit model. Thus, for nonconvex problems,

one should not expect the results to be the same. In our experiments in Section

4.3, using (3.17) is competitive (3.11) for all tests (when applied to nearly identical

models). The second inquiry is partly answered by the corollary below, which

states JFB yields descent even for approximate fixed points.

Corollary 3.2.1 Given weights Θ and data d, there exists ε > 0 such that if xε
d ∈ U

satisfies ∥xε
d − xd∥ ≤ ε and the assumptions of Theorem 3.2.1 hold, then

pε
Θ ≜ −

d
dΘ
[ℓ(yd, SΘ(TΘ(x, d))]

x=xε
d

(3.18)

is a descent direction of ℓ(yd,NΘ(d)) with respect to Θ.

We are not aware of any other error tolerance results for implicit models.

Coding Backpropagation A key feature of JFB is its simplicity of implemen-

tation. In particular, the backpropagation of our scheme is similar to that of a

standard backpropagation. We illustrate this in the sample of PyTorch [191] code

37

in Figure 3.4. Here explicit_model represents SΘ(TΘ(x; d)). The fixed point

xd = x_fxd_pt is computed by successively applying TΘ (see Algorithm 4) within

a torch.no_grad() block. With this fixed point, explicit_model evaluates and

returns SΘ(TΘ(xd, d)) to y in train mode (to create the computational graph).

Thus, our scheme coincides with standard backpropagation through an explicit

model with one latent space layer. On the other hand, standard implicit mod-

els backpropagate by solving a linear system to apply J −1
Θ as in (3.11). That

approach requires manual updates of the parameters, more computational re-

sources, and considerations (e.g. conditioning of J −1
Θ) for each architecture used.

Figure 3.4: Sample
PyTorch code for
backpropagation

Implicit Forward + Proposed Backprop

x_fxd_pt = find_fixed_point(d)

y = explicit_model(x_fxd_pt, d)

loss = criterion(y, labels)

loss.backward()

optimizer.step()

Neumann Backpropagation The inverse of the Jacobian in (3.9) can be ex-

panded using a Neumann series, i. e.

J −1
Θ = (I− dTΘ

du
)
−1
=
∞

∑
k=0
(dTΘ

du
)

k
. (3.19)

Thus, JFB is a zeroth-order approximation to the Neumann series. In particular,

JFB resembles the Neumann-RBP approach for recurrent models [157]. Neumann-

RBP does not guarantee a descent direction or guidelines on how to truncate the

Neumann series. This is generally difficult to achieve in theory and practice [6].

Our work differs from [157] in that we focus purely on implicit models, prove de-

scent guarantees for JFB, and provide simple PyTorch implementations. Similar

approaches exist in hyperparameter optimization, where truncated Neumann se-

ries are is used to approximate second-order updates during training [170, 167].

Similar zeroth-order truncations of the Neumann series have been employed,

38

albeit without proof, in meta-learning [90, 200] and in training transformers [99].

Section 3.3: Experiments

This section shows the effectiveness of JFB using PyTorch [191]. All models are

ResNet-based such that Assumption 3.2.2 holds.11 One can ensure Assumption

11 A weaker version of
Assumption 3.2.1 also
holds in practice, i. e.
differentiability almost
everywhere.3.1.1 holds (e.g. via spectral normalization). Yet, in our experiments we found

this unnecessary since tuning the weights automatically encouraged contractive

behavior.12 All experiments are run on a single NVIDIA TITAN X GPU with

12 We found (3.6) held
for batches of data
during training, even
when using batch
normalization.12GB RAM. Further details are in Appendix E of [97].

MNIST

Method Model size Acc.

Explicit 54K 99.4%
Neural ODE†

84K 96.4%
Aug. Neural ODE†

84K 98.2%
MON ‡

84K 99.2%
JFB-trained Implicit ResNet (ours) 54K 99.4%

SVHN

Method Model size Acc.

Explicit 164K 93.7%
Neural ODE†

172K 81.0%
Aug. Neural ODE†

172K 83.5%
MON (Multi-tier lg)‡

170K 92.3%
JFB-trained Implicit ResNet (ours) 164K 94.1%

CIFAR-10

Method Model size Acc.

Explicit (ResNet-56)∗ 0.85M 93.0%
MON (Multi-tier lg)‡∗

1.01M 89.7%
JFB-trained Implicit ResNet (ours)∗ 0.84M 93.7%

Multiscale DEQ∗ 10M 93.8%

Table 3.1: Test accu-
racy of JFB-trained
Implicit ResNet
compared to Neu-
ral ODEs, Aug-
mented NODEs,
and MONs; †as
reported in [82];
‡as reported in
[239]; *with data
augmentation

Classification

We train implicit models on three benchmark image classification datasets li-

censed under CC-BY-SA: SVHN [183], MNIST [152], and CIFAR-10 [150]. Ta-

39

Dataset Avg time per epoch (s) # of J mat-vec products Accuracy %

Jacobian
based

MNIST 28.4 6.0× 106
99.2

SVHN 92.8 1.4× 107
90.1

CIFAR10 530.9 9.7× 108
87.9

JFB
MNIST 17.6 0 99.4
SVHN 36.9 0 94.1

CIFAR10 146.6 0 93.67

Table 3.2: Com-
parison of Jacobian-
based backpropa-
gation (first three
rows) and our pro-
posed JFB approach.
“Mat-vecs” denotes
matrix-vector prod-
ucts.

ble 3.1 compares our results with state-of-the-art results for implicit models, in-

cluding Neural ODEs [61], Augmented Neural ODEs [82], Multiscale DEQs [19],

and MONs [239]. We also compare with corresponding explicit versions of our

ResNet-based models as well as with state-of-the-art ResNet results [123] on the

augmented CIFAR10 dataset. The explicit models are trained with the same

setup as their implicit counterparts. Table 3.1 shows JFBs are an effective way

to train implicit models, substantially outperform all the ODE-based models as

well as MONs using similar or fewer parameters. Moreover, JFB is competitive

with Multiscale DEQs [19] despite having less than a tenth as many parameters.

Comparison to Jacobian-based Backpropagation

Table 3.2 compares performance between using the standard Jacobian-based back-

propagation and JFB. The experiments are performed on all the datasets de-

scribed in Section 3.3. To apply the Jacobian-based backpropagation in (3.10), we

use the conjugate gradient (CG) method on an associated set of normal equations

similarly to [157]. To maintain similar costs, we set the maximum number of CG

iterations to be the same as the maximum depth of the forward propagation. The

remaining experimental settings are kept the same as those from our proposed

approach (and are therefore not tuned to the best of our ability). Note the model

architectures trained with JFB contain batch normalization in the latent space

whereas those trained with Jacobian-based backpropagation do not. Removal

40

0 250 500 750 1,000
75

80

85

90

95

Jacobian-based
Backprop

Proposed Backprop (JFB)

Epoch

T
es
t
A
cc
u
ra
cy

%

0 20 40 60 80 100 120 140
75

80

85

90

95

Jacobian-based
Backprop

Proposed Backprop (JFB)

Time (hr)

T
es
t
A
cc
u
ra
cy

%

Figure 3.5: CIFAR10

results using com-
parable models
and configura-
tions, but with two
backpropagation
schemes: our pro-
posed JFB method
(blue) and stan-
dard Jacobian-based
backpropagation
in (3.11) (green),
with fixed point
tolerance ϵ = 10−4.
JFB gives better
test accuracy and is
faster.

of batch normalization for the Jacobian-based method was necessary due to a

lack of convergence when solving (3.10), thereby increasing training loss (see the

appendices for further details). This phenomena is also observed in previous

works [19, 18]. Thus, we find JFB to be (empirically) effective on a wider class

of model architectures (e.g. including batch normalization). The main purpose

of the Jacobian-based results in Figure 3.5 and Table 3.2 is to show speedups in

training time while maintaining a competitive accuracy with previous state-of-

the-art implicit models.

Higher Order Neumann Approximation

As explained above, JFB can be interpreted as an approximation to the Jacobian-

based approach by using a truncated series expansion. In particular, JFB is the

zeroth order (i. e. k = 0) truncation to the Neumann series expansion (3.19) of the

Jacobian inverse J −1
Θ . In Figure 3.6, we compare JFB with training that uses more

Neumann series terms in the approximation of the the Jacobian inverse J −1
Θ . Fig-

ure 3.6 shows JFB is competitive at reduced time cost. More significantly, JFB is

also much easier to implement as shown in Figure 3.4. An additional experiment

with SVHN data and discussion about code are provided in the appendices.

41

0 25 50 75 100
97

98

99

Proposed Backprop (JFB)

Neumann: k = 5

Neumann: k = 10

Epoch

T
es
t
A
cc
u
ra
cy

%

0 10 20 30 40 50
97

98

99

Proposed Backprop (JFB)

Neumann: k = 5

Neumann: k = 10

Time (min)

T
es
t
A
cc
u
ra
cy

%

Figure 3.6: MNIST
training using dif-
ferent truncations k
of the Neumann se-
ries (3.19) to approx-
imate the inverse Ja-
cobian J −1

Θ . Plots
show faster training
with fewer terms
(fastest with JFB, i. e.
k = 0) and competi-
tive test accuracy.

Section 3.4: Conclusions

This chapter presents a new and simple Jacobian-free backpropagation (JFB)

scheme. JFB enables training of implicit models with fixed memory costs (re-

gardless of depth), is easy to code (see Figure 3.4), and yields efficient backprop-

agation (by removing computations to do linear solves at each step). Use of JFB is

theoretically justified (even when fixed points are approximately computed). Our

experiments show JFB yields competitive results for implicit models. Extensions

in future work (and subsequent chapters) enable satisfaction of additional con-

straints for imaging and phase retrieval [143, 87, 128, 96, 139], geophysics [115,

94, 95], and games [230, 160, 155, 212]. Future work will also analyze JFB in

stochastic settings.

42

Chapter 4: Convex Feasibility Problems

Each piece, or part, of the whole of nature is always merely an approximation to the

complete truth, or the complete truth so far as we know it. In fact, everything we know

is only some kind of approximation, because we know that we do not know all the laws

as yet. Therefore, things must be learned only to be unlearned again or, more likely, to

be corrected.

– Richard Feynman1 1 Taken from his lecture
“Atoms in Motion” [86].

Inverse problems consist of recovering a signal from a collection of noisy

measurements.2 These problems can often be cast as feasibility problems; how- 2 This chapter is based
on [125].

ever, additional regularization is typically necessary to ensure accurate and stable

recovery with respect to data perturbations. Hand-chosen analytic regularization

can yield theoretical guarantees, but such approaches can have limited practical

effectiveness recovering signals due to their inability to leverage large amounts of

available data. To this end, this chapter follows suit with Feynman’s quote and

suggests relearning/correcting convex feasibility problems to better align with

available data. This is done by fusing data-driven regularization and convex fea-

sibility in a theoretically sound manner using implicit feasibility-based models.3 3 These models were
originally called
Feasibility-based Fixed
Point Networks (F-FPNs).

Each feasibility model defines a collection of nonexpansive operators, each of

which is the composition of a projection-based operator and a data-driven reg-

ularization operator. Fixed point iteration is used to compute fixed points of

these operators, and weights of the operators are tuned so fixed points closely

represent available data. Numerical examples here show performance increases

by feasibility models when compared to standard TV-based recovery methods

for CT reconstruction and a comparable model based on algorithm unrolling.

43

Inverse problems arise in numerous applications such as medical imaging [12,

13, 120, 189], phase retrieval [29, 42, 96], geophysics [37, 94, 95, 114, 116, 139],

and machine learning [70, 93, 117, 229, 240]. The goal of inverse problems is to

recover a signal4 x⋆d from a collection of indirect noisy measurements d. These4 While we refer to
signals, this phrase is
generally meant to de-
scribe objects of interest
that can be represented
mathematically (e. g.
images, parameters
of a differential equa-
tion, and points in a
Euclidean space).

quantities are typically related by a linear mapping A via

d = Ax⋆d + ε, (4.1)

where ε is measurement noise. Inverse problems are often ill-posed, making

recovery of the signal x⋆d unstable for noise-affected data d. To overcome this,

traditional approaches estimate the signal x⋆d by a solution xd to the problem

min
x

ℓ(Ax, d) + J(x), (4.2)

where ℓ is a fidelity term that measures the discrepancy between the measure-

ments and the application of the forward operator A to the signal estimate (e.g.

least squares). The function5 J serves as a regularizer, which ensures both that5 Throughout this chap-
ter, J is used exclusively
for a regularizer and
does not correspond to a
resolvent operator.

the solution to (4.2) is unique and that its computation is stable. In addition to

ensuring well-posedness, regularizers are constructed in an effort to instill prior

knowledge of the true signal, e.g. sparsity J(x) = ∥x∥1 [32, 41, 43, 78], Tikhonov

J(x) = ∥x∥2 [40, 107], total variation (TV) J(x) = ∥∇x∥1 [57, 209], and, more re-

cently, data-driven regularizers [3, 144, 171]. A further generalization of using

data-driven regularization consists of Plug-and-Play (PnP) methods [58, 67, 128,

227], which replace the proximal operators in an optimization algorithm with

previously trained denoisers.

An underlying theme of regularization is that signals represented in high

dimensional spaces often exhibit a common structure. Although hand picked

regularizers may admit desirable theoretical properties leveraging a priori knowl-

edge, they are typically unable to leverage available data. An ideal regularizer

44

will leverage available data to best capture the core properties that should be ex-

hibited by output reconstruction estimates of true signals. Neural networks have

demonstrated great success in this regard, achieving state of the art results [243,

137]. However, purely data-driven machine learning approaches do little to lever-

age the underlying physics of a problem, which can lead to poor compliance with

data [176]. On the other hand, fast feasibility-seeking algorithms (e.g. see [56, 55,

109, 51, 49] and references therein) efficiently leverage known physics to solve

inverse problems, being able to handle massive-scale sets of constraints [24, 56,

187, 194]. Thus, a relatively untackled question remains:

Is it possible to fuse feasibility-seeking algorithms with data-driven regularization

in a manner that improves reconstructions and yields convergence?

This chapter answers the above inquiry affirmatively. The key idea is to use

machine learning techniques to create mappings TΘ, parameterized by weights

Θ. For fixed measurement data d, TΘ(⋅ ; d) forms an operator possessing standard

properties used in feasibility algorithms. Fixed point iteration finds fixed points

of each TΘ(⋅ ; d), and weights Θ are tuned so these fixed points both resemble

available signal data and are consistent with measurements (up to a noise level).

Contribution The contribution of this chapter is to connect powerful feasibility-

seeking algorithms to data-driven regularization in a manner that maintains the-

oretical guarantees. This is done by presenting a feasibility model framework

that solves a learned feasibility problem. Numerical examples are provided that

demonstrate notable performance benefits to our proposed formulation when

compared to TV-based methods and fixed-depth neural networks formed by al-

gorithm unrolling.

45

Section 4.1: Convex Feasibility Overview

Feasibility Problem Convex feasibility problems (CFPs) arise in many real-

world applications, e.g. imaging, sensor networks, radiation therapy treatment

planning (see [56, 30, 27] and the references therein). We formalize the CFP set-

ting and relevant methods as follows. Let U and D be finite dimensional Hilbert

spaces, referred to as the signal and data spaces, respectively. Given additional

knowledge about a linear inverse problem, measurement data d ∈ D can be used

to express a CFP solved by the true signal6 x⋆d ∈ U when measurements are noise-6 Note x⋆d is the signal
sought whereas xd is
the solution to (CFP).
Ideally, these are the
same, but are often
different in practice.

free. That is, data d can be used to define a collection {Cd,j}m
j=1 of closed convex

subsets of U (e.g. hyperplanes) such that the true signal x⋆d is contained in their

intersection, i. e. x⋆d solves the problem

Find xd such that xd ∈ Cd ≜
m
⋂
j=1
Cd,j. (CFP)

A common approach to solving (CFP), inter alia, is to use projection algorithms

[26], which utilize orthogonal projections onto the individual sets Cd,j. For a

closed, convex, and nonempty set C ⊆ U , the projection PC ∶ U → C onto C, is

defined by

PC(x) ≜ arg min
v∈C

1
2
∥v − x∥2. (4.3)

Projection algorithms are iterative in nature and each update uses combinations

of projections onto each set Cd,j, relying on the principle that it is generally much

easier to project onto the individual sets than onto their intersection. These meth-

ods date back to the 1930s [138, 65] and have been adapted to now handle huge-

size problems of dimensions for which more sophisticated methods cease to be

efficient or even applicable due to memory requirements [56]. Computational

simplicity derives from the fact the building bricks of a projection algorithm are

the projections onto individual sets. Memory efficiency occurs because the algo-

46

rithmic structure is either sequential or simultaneous (or hybrid) as in the block-

iterative projection methods [5, 39] and string-averaging projection methods [56,

54, 52, 53]. These algorithms generate sequences that solve (CFP) asymptotically,

and the update operations can be iteration dependent (e.g. cyclic projections).

We let Ak
d be the update operator for the k-th step of a projection algorithm solv-

ing (CFP). Consequently, each projection algorithm generates a sequence {xk}

via the fixed point iteration

xk+1 ≜ Ak
d(x

k), for all k ∈N. (FPI)

A common assumption for such methods is the intersection of all the algorithmic

operators’ fixed point sets contains or forms the desired set Cd, i. e.

Cd =
∞

⋂
k=1

fix(Ak
d), (4.4)

which automatically holds when {Ak
d} cycles over a collection of projections.

Data-Driven Feasibility Problem As noted previously, inverse problems are

often ill-posed, making (CFP) insufficient to faithfully recover the signal x⋆d . Ad-

ditionally, when noise is present, it can often be the case that the intersection is

empty (i. e. Cd = ∅). This calls for a different model to recover x⋆d . To date, pro-

jection methods have limited inclusion of regularization (e.g. superiorization [74,

50, 129, 122, 48], sparsified Kaczmarz [215, 166]). Beyond sparsity via ℓ1 mini-

mization, such approaches typically do not yield guarantees beyond feasibility

(e.g. it may be desirable to minimize a regularizer over Cd). We propose compos-

ing a projection algorithm and a data-driven regularization operator in a manner

so each update is analogous to a proximal-gradient step. This is accomplished

via a parameterized mapping RΘ ∶ U → U , with weights denoted by Θ. This

mapping directly leverages available data to learn features shared among true

signals of interest. We augment (CFP) by using operators {Ak
d} for solving (CFP)

47

and instead solve the learned common fixed points (L-CFP) problem

Find xd such that xd ∈ CΘ,d ≜
∞

⋂
k=1

fix(Ak
d ○ RΘ). (L-CFP)

Loosely speaking, when RΘ is chosen well, the signal xd closely approximates x⋆d .

We briefly recap classic operator results to solve (L-CFP). Recall an operator

T∶ U → U is nonexpansive if it is 1-Lipschitz, i. e.

∥T(u) − T(u)∥ ≤ ∥u − v∥, for all u, v ∈ U . (4.5)

Also, T is averaged if there exists α ∈ (0, 1) and a nonexpansive operator Q ∶ U → U

such that T(x) = (1 − α)x + αQ(x) for all x ∈ U . For example, the projection PS

defined in (4.3) is averaged along with convex combinations of projections [46].

Our method utilizes the following standard assumptions, which are typically

satisfied by projection methods (in the noise-free setting with RΘ as the identity).

Assumption 4.1.1 The intersection set CΘ,d defined in (L-CFP) is nonempty and {(Ak
d ○

RΘ)} forms a sequence of nonexpansive operators.

Assumption 4.1.2 For any sequence {xk} ⊂ U , the sequence of operators {(Ak
d ○ RΘ)}

has the property

lim
k→∞
∥(Ak

d ○ RΘ)(xk) − xk∥ = 0 Ô⇒ lim inf
k→∞

∥PCΘ,d(x
k) − xk∥ = 0. (4.6)

When a finite collection of update operations are used and applied (essentially)

cyclically, the previous assumption automatically holds (e.g. setting Ak
d ≜ PCd,ik

and ik ≜ k mod(m) + 1). We use the learned fixed point iteration to solve (L-CFP)

xk+1 ≜ (Ak
d ○ RΘ)(xk), for all k ∈N. (L-FPI)

Justification of the (L-FPI) iteration is provided by the following theorems, which

are rewritten from their original form to match the present context.

48

Algorithm 5: Feasibility Model Computation

1: NΘ(d): ⊲ Input data is d
2: x1 ← x̃ ⊲ Initialize iterate to fixed reference
3: k ← 1 ⊲ Initialize iteration counter
4: while ∥xk − xk−1∥ ≥ δ or k = 1 ⊲ Loop to convergence
5: xk+1 ← (Ak

d ○ RΘ)(xk; d) ⊲ Apply regularization and feasibility
6: k ← k + 1 ⊲ Increment counter
7: return xk ⊲ Output solution estimate

Theorem 4.1.1 (Krasnosel’skiĭ-Mann [148, 172]) If (Ad ○ RΘ)∶ U → U is averaged

and has a fixed point, then, for any x1 ∈ U , the sequence {xk} generated by (L-FPI),

taking Ak
d ○ RΘ = Ad ○ RΘ, converges to a fixed point of Ad ○ RΘ.

Theorem 4.1.2 (Cegieslki, Theorem 3.6.2, [46]) If Assumptions 4.1.1 and 4.1.2

hold, and if {xk} is a sequence generated by the iteration (L-FPI) satisfying ∥xk+1 − xk∥ →

0, then {xk} converges to a limit x∞ ∈ CΘ,d.

RΘ

xk Akd xk+1· · ·σ σ

Affine map σ Nonexpansive nonlinearity

Figure 4.1: Diagram for update operations in the learned fixed point iteration (L-FPI) to solve (L-CFP).
Here RΘ is comprised of a finite sequence of applications of (possibly) distinct affine mappings (e.g.
convolutions), and nonlinearities (e.g. projections on the nonnegative orthant, i. e. ReLUs). For each
k ∈ N, we let Ak

d be a projection-based algorithmic operator. The parameters Θ of RΘ are tuned in an
offline process by solving (3.8) to ensure signals are faithfully recovered.

49

Section 4.2: Feasibility Model

Herein we present the feasibility model. Although based on the setting of the

previous chapter, here we replace the single operator of those models by a se-

quence of operators, each taking the form of a composition. Namely, we use

updates in the iteration (L-FPI). The assumptions necessary for convergence can

be approximately ensured (e.g. see the Appendix). This iteration yields the fea-

sibility model NΘ, defined by

NΘ(d) ≜ xd, where xd =
∞

⋂
k=1

fix(Ak
d ○ RΘ), (4.7)

assuming the intersection is unique.7 This is approximately implemented via7 Uniqueness is unlikely
in practice; however, this
assumption is justified
since we use the same
initial iterate u1 for each
initialization. This makes
recovery of the same
signal stable with respect
to changes in Θ.

Algorithm 5.

The weights Θ of the network NΘ are tuned by solving the training problem

(3.8). In an ideal situation, the optimal weights Θ⋆ solving (3.8) would yield

feasible outputs (i. e. NΘ(d) ∈ Cd for all data d ∈ C) that also resemble the true

signals u⋆d . However, measurement noise in practice makes it unlikely thatNΘ(d)

is feasible, let alone that Cd is nonempty. In the noisy setting, this is no longer

a concern since we augment (CFP) via (L-CFP) and are ultimately concerned

with recovering a signal x⋆d , not solving a feasibility problem. In summary, our

model is based on the underlying physics of a problem (via the convex feasibility

structure), but is also steered by available data via the training problem (3.8).

Illustrations of the efficacy of this approach are provided in Section 4.3.

Section 4.3: Experiments

Experiments in this section show the relative reconstruction quality of feasi-

bility models and comparable schemes – in particular, filtered backprojection

(FBP) [81], total variation (TV) minimization (similarly to [184, 106]), total varia-

tion superiorization (based on [195, 133]), and an unrolled feasibility model.

50

Ground Truth FBP TVS
SSIM: 1.000 SSIM: 0.273 SSIM: 0.582

PSNR:∞ PSNR: 18.224 PSNR: 25.88

TVM Unrolling Proposed
SSIM: 0.786 SSIM: 0.811 SSIM: 0.900

PSNR: 27.80 PSNR: 26.01 PSNR: 30.94

Figure 4.2: Ellipse reconstruction with test data for each method: filtered back projection (FBP), TV
superiorization (TVS), TV minimization (TVM), unrolled network, and the proposed feasibility model.

Experimental Setup Comparisons are provided for two low-dose CT examples:

a synthetic dataset, consisting of images of random ellipses, and the LoDoPab

dataset [153], which consists of human phantoms. For both datasets, CT mea-

surements are simulated with a parallel beam geometry with a sparse-angle

setup of only 30 angles and 183 projection beams, resulting in 5,490 equations

and 16,384 unknowns. Additionally, we add 1.5% Gaussian noise corresponding

to each individual beam measurement. Moreover, the images have a resolution of

128 × 128 pixels. The quality of the image reconstructions are determined using

the Peak Signal-To-Noise Ratio (PSNR) and structural similarity index measure

(SSIM). We use the PyTorch deep learning framework [192] with the ADAM [141]

optimizer. We use the Operator Discretization Library (ODL) python library [2]

51

Ground Truth FBP TVS
SSIM: 1.000 SSIM: 0.273 SSIM: 0.582

PSNR:∞ PSNR: 18.224 PSNR: 25.88

TVM Unrolled Proposed
SSIM: 0.786 SSIM: 0.811 SSIM: 0.900

PSNR: 27.80 PSNR: 26.01 PSNR: 30.94

Figure 4.3: Zoomed-in ellipse reconstruction with test data of Figure 4.2 for each method: FBP, TVS,
TVM, unrolling, and the proposed model.

to compute the filtered backprojection solutions. The CT experiments are run on

a Google Colab notebook. For all methods, we use a single diagonally relaxed

orthogonal projections (DROP) [55] operator for Ad (i. e. Ak
d = Ad for all k), noting

DROP is nonexpansive with respect to a norm dependent on A [124]. The loss

function ℓ used for training is the mean squared error between reconstruction es-

timates and the corresponding true signals. We use a synthetic dataset consisting

of random phantoms of combined ellipses as in [4]. The ellipse training and test

sets contain 10,000 and 1,000 pairs, respectively. We also use phantoms derived

from actual human chest CT scans via the benchmark Low-Dose Parallel Beam

dataset (LoDoPaB) [153]. The LoDoPab training and test sets contain 20,000 and

2,000 pairs, respectively.

52

Ground Truth FBP TVS
SSIM: 1.000 SSIM: 0.423 SSIM: 0.686

PSNR:∞ PSNR: 18.86 PSNR: 24.74

TVM Unrolling Proposed
SSIM: 0.761 SSIM: 0.787 SSIM: 0.827

PSNR: 26.85 PSNR: 27.14 PSNR: 28.82

Figure 4.4: LoDoPab reconstruction with test data for each method: filtered back projection (FBP), TV
superiorization (TVS), TV minimization (TVM), unrolled network, and the proposed feasibility model.

Experiment Methods

TV Superiorization Sequences generated by successively applying the opera-

tor Ad are known to converge even in the presence of summable perturbations,

which can be intentionally added to lower a regularizer value (e.g. TV) without

compromising convergence, thereby giving a “superior” feasible point. Com-

pared to minimization methods, superiorization typically only guarantees fea-

sibility, but is often able to do so at reduced computational cost. This scheme,

denoted as TVS, generates updates

xk+1 = Ad (xk − αβkD⊺− (
D+xk

∥D+xk∥2 + ε
)) , for k = 1, 2, . . . , 20, (4.8)

53

Method Avg. PSNR (dB) Avg. SSIM # Parameters

Filtered Backprojection 17.79 0.211 1

TV Superiorization 27.35 0.721 2

TV Minimization 28.55 0.772 4

Unrolled Network 30.39 0.859 96,307

Proposed 31.30 0.877 96,307

Table 4.1: Average PSNR and SSIM on the 1,000 image ellipse testing dataset.

where D− and D+ are the forward and backward differencing operators, ε >

0 is added for stability, and 20 iterations are used as early stopping to avoid

overfitting to noise. The differencing operations yield a derivative of isotropic TV

(e.g. see [158]). The scalars α > 0 and β ∈ (0, 1) are chosen to minimize training

mean squared error. See the superiorization bibliography [47] for further TVS

materials.

TV Minimization For a second analytic comparison method, we use anisotropic

TV minimization (TVM). In this case, we solve the constrained problem

min
x∈[0,1]n

∥D+x∥1 such that ∥Ax − d∥ ≤ ε, (TVM)

where ε > 0 is a hand-chosen scalar reflecting the level of measurement noise and

the box constraints on u are included since all signals have pixel values in the

interval [0, 1]. We use linearized ADMM [213] to solve (TVM) and refer to this

model as TV minimization (TVM). Implementation details are in the appendices.

Method Avg. PSNR (dB) Avg. SSIM # Parameters

Filtered Backprojection 19.27 0.354 1

TV Superiorization 26.65 0.697 2

TV Minimization 28.52 0.765 4

Deep Unrolling 29.30 0.800 96,307

Proposed 30.46 0.832 96,307

Table 4.2: Average PSNR/SSIM on the 2,000 image LoDoPab testing dataset.

54

Ground Truth FBP TVS
SSIM: 1.000 SSIM: 0.423 SSIM: 0.686

PSNR:∞ PSNR: 18.86 PSNR: 24.74

TVM Unrolling Proposed
SSIM: 0.761 SSIM: 0.787 SSIM: 0.827

PSNR: 26.85 PSNR: 27.14 PSNR: 28.82

Figure 4.5: Zoomed-
in LoDoPab recon-
struction with test
data of Figure 4.4
for each method:
FBP, TVS, TVM,
unrolling, and the
proposed feasibility
model.

Feasibility Model Structure The architecture of the operator RΘ is modeled

after the seminal work [123] on residual networks. The feasibility model and

unrolled scheme both leverage the same structure RΘ and DROP operator forAd.

The operator RΘ is the composition of four residual blocks. Each residual block

takes the form of the identity mapping plus the composition of a leaky ReLU

activation function and convolution (twice). The number of network weights in

RΘ for each setup was 96,307, a small number by machine learning standards.

Training here used JFB [97].

Experiment Results Our results show the proposed feasibility models outper-

forms all classical methods as well as the unrolled data-driven method. We

show the result on an individual reconstruction via wide and zoomed-in images

from the ellipse and LoDoPab testing datasets in Figures 4.2 and 4.3 and Fig-

ures 4.4 and 4.5, respectively. The average SSIM and PSNR values on the entire

55

ellipse and LoDoPab datasets are shown in Tables 4.1 and 6.3. We emphasize

the type of noise depends on each individual ray in a similar manner to [128],

making the measurements more noisy than some related works. This noise and

ill-posedness of our underdetermined setup are illustrated by the poor quality of

analytic method reconstructions. (However, we note improvement by using TV

over FBP and further improvement by TV minimization over TV superiorization.)

Although nearly identical in structure to feasibility models, these results show

the unrolled method to be inferior to feasibility models in these experiments. We

hypothesize this is due to the large memory requirements of unrolling (unlike

the proposed implicit models), which limits the number of unrolled steps (∼ 20

steps versus 100+ steps of implicit feasibility models), and the proposed mod-

els are tuned to optimize a fixed point condition rather than a fixed number of

updates.

Section 4.4: Conclusions

This chapter connects feasibility-seeking algorithms and data-driven algorithms.

The presented implicit model leverages the elegance of fixed point methods

while using state-of-the-art training methods for implicit deep learning. This

results in a sequence of learned operators {Ak
d ○ RΘ} that can be repeatedly ap-

plied until convergence is obtained. This limit point is expected to be nearly

compatible with provided constraints (up to the level of noise) and resemble

the collection of true signals. The provided numerical examples show improved

performance obtained by feasibility models over both classic methods and an

unrolling-based network. Future work will extend feasibility models to a wider

class of feasibility problems (e.g. split feasibility).

56

Chapter 5: Nash Equilibria

Faraday was asked: “What is the use of this discovery?”

He answered: “What is the use of a child - it grows to be a man.”

– Alfred North Whitehead1 1 Taken from An Intro-
duction to Mathematics
[238].

Introduction

Many recent works in deep learning have highlighted the power of using end-

to-end learning in conjunction with known analytic models and constraints2 [33, 2 This chapter is adapted
from [126].

16, 162, 161, 154, 146, 62]. This best-of-both worlds approach fuses the flexibil-

ity of learning-based approaches with the interpretability of models derived by

domain experts. Moreover, hard-coding constraints into a data-driven algorithm

can be used to guarantee safety and fairness. This chapter furthers this line of

research by proposing a new framework for learning to predict the outcomes

of contextual (i.e. parametrized) multi-player games from historical data while

respecting constraints on players’ actions.

Many social systems can profitably be analyzed as games, including compet-

itive market economies [15], traffic routing [235], anti-poaching initiatives [246]

and deployment of security resources [198]. Loosely speaking, any situation with

multiple intelligent agents attempting to achieve conflicting aims may be viewed

through a game-theoretic lens. Games with parameters depending on contextual

information d that is beyond the control of the players are called contextual games

[217]. For example, in traffic routing d may encode factors like weather, local

sporting events or tolls influencing players’ (i.e. drivers’) commute times.

57

1 2

3 4

=⇒
Utilization

– 0%

– 125%

– 250%

1 2

3 4

Width shows edge capacity

=⇒

Figure 5.1: Nash
models can pre-
dict traffic flow
given contextual
information (e.g.
weather). For exam-
ple, road capacities
reduce on rainy
days and light/dark
red edges show
light/heavy traffic.

Game-theoretic analyses frequently assume players’ cost functions are known

a priori and seek to predict how players will act, typically by computing a Nash

equilibrium [182]. Informally, a Nash equilibrium is a choice of strategy for each

player such that no player can improve their outcomes by unilaterally deviating

from this strategy. We consider the problem of predicting equilibria, given only

contextual information, without knowing the players’ cost functions. Although

the players’ cost functions are unknown, historical data pairs (d, x⋆d) can be uti-

lized, consisting of contexts d and the resulting equilibrium x⋆d [33, 250, 162, 161,

154]. This chapter proposes a new model framework based on Nash equilib-

ria.3 Here each model “learns to predict the appropriate game from context and3 The original work
dubbed these models
Nash Fixed Point Networks
(N-FPNs).

then output game equilibria” by defining a tunable operator with fixed points

that coincide with Nash equilibria. Forward propagation is formed by repeated

application of the operator until a fixed point condition is satisfied. Thus, by con-

struction, these models are implicit and the operator weights can be efficiently

trained using JFB [97]. Importantly, the models presented here also avoid di-

rect, costly projections onto sets of constraints for players’ actions, which is the

computational bottleneck of multiple prior works [162, 161, 154].

Our framework applies equally to atomic games (i.e. the set of players is fi-

nite) and certain non-atomic games, particularly traffic routing [208]. As pointed

out in [162, 154], learning to predict players’ behaviours given the context is an

important first step in manipulating the game towards a desirable outcome. For

example, in traffic routing problems a central controller may seek to discourage

58

motorists from over-utilizing a road through a quiet neighborhood. Using our

framework, and sufficient historical data, this hypothetical controller could pre-

dict the effect that exogenous variables (e.g. weather, a local sporting event) will

have on traffic flow and then take corrective measures (e.g. increasing tolls) to

decrease the predicted flow along this residential road.

Contributions This chapter provides a scalable data-driven framework for effi-

ciently predicting equilibria in systems modeled as contextual games. Specifi-

cally, we contribute the following.

▸ Provide end-to-end trained model4 that outputs Nash equilibria. 4 Plug-and-Play models
are an example of
something that is not
trained end-to-end since
training is separated
from the algorithm used
in deployment.

▸ Present scheme for decoupling constraints, enabling simple and computation-

ally efficient forward and backward propagation.

▸ Demonstrate the efficacy of proposed models on traffic routing problems.

▸ Provide universal approximation result for game-based models.

Attribute Analytic Feed Forward Prior Implicit Models Proposed Models
Output is Equilibria ✓ ✓ ✓

Data-Driven ✓ ✓ ✓
Constraint Decoupling ✓ ✓

Simple Backprop NA ✓ ✓

Table 5.1: Comparison of different Nash equilibria prediction models. Analytic modeling algorithms
yield game equilibria that are not data-driven. Traditional feed-forward models are data-driven and
easy to train, but may not output a game equilibrium. Existing game-based implicit models are non-
trivial to train (backpropagate) and require intricate forward propagation.

Section 5.1: Overview of Games

We begin with a brief review of game theory. After establishing notation, we

provide a set of assumptions under which the mapping d ↦ x⋆d is “well-behaved.”

We then recall the notion of a variational inequality and how Nash equilibria can

be characterized using fixed point equations.

59

Games and Equilibria

A K-player normal form contextual game is defined by action sets5 Vk and cost5 This is also known as
the decision set and/or
the strategy set. functions uk ∶ H × D → R for k ∈ [K], where C ≜ V1 × . . . × VK and D denotes

the set of contexts (i. e. data space). The k-th player’s actions xk are constrained

to the action set Vk, yielding an action profile x = (x1, . . . , xK) ∈ C ⊆ H. The

actions of all players other than k are denoted by x−k = (x1, . . . , xk−1, xk+1, . . . , xK).

Assuming rationality, each player seeks to minimize their own cost function uk by

controlling only xk while explicitly knowing uk is impacted by the other players’

actions x−k. An action profile6 xd is a Nash equilibrium if6 Here xd ∈ C while
xk ∈ Vk . The subscript
letter will identify which
space the point belongs
to. In some instances,
double subscripts are
used for further clarity.

uk(xk, xd,−k; d) ≥ uk(xd,k, xd,−k; d) for all xk ∈ Vk and k ∈ [K]. (5.1)

In words, xd is a Nash equilibrium if no player can lower their cost by unilaterally

deviating from xd. We make the following assumptions:

(A1) H is a finite dimensional Hilbert space.

(A2) C ⊂H is closed and convex.

(A3) The cost functions uk(⋅; d) are continuously differentiable for all k and d.

(A4) ∇kuk(x; d) is Lipschitz continuous with respect to d for all k and all x.

(A5) Each cost function uk(xk, x−k; d) is α-strongly convex with respect to xk.

(A6) D is compact.

Under these, the Nash equilibrium xd is well-behaved with respect to d, as sum-

marized by the following theorem.

Theorem 5.1.1 If Assumptions (A1) to (A6) hold, then there is a unique Nash Equilib-

rium xd for all d ∈ D and the map d ↦ xd is Lipschitz continuous.

60

When each uk is differentiable with respect to x, the game gradient is defined by

F(x; d) ≜ [∇x1 u1(x; d)⊺, . . . ,∇xK uK(x; d)⊺]⊺ . (5.2)

Remark 5.1.1 Strong convexity is a strong assumption. It may be loosened at the possi-

ble cost of uniqueness. However, in practice uniqueness of model outputs can be ensured

by fixing the initial iterate x1.

Variational Inequalities

Throughout, all sets C are assumed to be closed, convex and nonempty.

Definition 5.1.1 (Monotonicity) For α > 0, d ∈ D, and a mapping F ∶H×D →H, if

⟨F(x; d) − F(y; d), x − y⟩ ≥ α∥F(x; d) − F(y; d)∥2, for all x, y ∈H, (5.3)

then F(⋅ ; d) is α-cocoercive7. If (5.3) holds taking α = 0, then F(⋅ ; d) is monotone. 7 This is also known
as α-inverse strongly
monotone

Definition 5.1.2 (VI) Given d ∈ D, find xd ∈ C (called a solution of the VI) such that

⟨F(xd; d), x − xd⟩ ≥ 0, for all x ∈ C. (5.4)

The solution set to this variational inequality (VI) is denoted by VI(F(⋅ ; d),C).

Nash equilibria may be characterized using VIs [84, Prop. 1.4.2]; namely,

xd is a Nash Equilibrium ⇐⇒ xd ∈ VI(F(⋅ ; d),C). (5.5)

In summary, xd is a Nash equilibrium if no unilateral change lowers any indi-

vidual cost and a VI solution if no feasible update reduces the sum of individual

costs. By (5.5), these views are equivalent.

61

Section 5.2: Nash Equilibria Model

We propose networks defined by Nash equilibria. That is, by the equivalence

between Nash equilibria and certain variational inequalities (see (5.5)), we use

models defined by the optimality condition88 Under the assumptions
above, the VI solution
is unique, making NΘ
well-defined. NΘ(d) ≜ VI(FΘ(⋅; d),C), (5.6)

where C is a product of action sets Vk and FΘ(⋅;⋅) is a feed forward model with

weights Θ. We first establish the proposed model NΘ can have sufficient capacity

to accurately approximate the correspondence d ↦ x⋆d for the games of interest.

Theorem 5.2.1 (Universal Approximation) Suppose Assumptions (A1)–(A6) hold.

Then for any ε > 0 there exists an FΘ(⋅;⋅) such that maxd∈D ∥x⋆d −NΘ(d)∥2 ≤ ε.

Two core questions naturally arise in the implementation of NΘ in (5.6):

1. For a given d, how are inferences of NΘ(d) computed?

2. Given training data {d, x⋆d}, how does one select weights Θ?

The second item is addressed by assuming each x⋆d takes the form of a Nash equi-

librium and then minimizing a training loss function by using JFB,9 the scheme9 In particular, see
Section 3.2.

detailed in Chapter 3. As is well-known [84], for all α > 0,

xd ∈ VI(FΘ(⋅ ; d),C) ⇐⇒ 0 ∈ FΘ(xd; d) + ∂δC(xd) (5.7a)

⇐⇒ xd = PC(xd − αFΘ(xd; d)). (5.7b)

Thus, when the operator PC ○ (I− αFΘ) on the right hand side of (5.7) is tractable

and well-behaved, inferences of NΘ(d) can be computed via a fixed point iter-

ation.10 Unfortunately computing PC and dPC/dz (required for backprop) can10 Although not explicit,
the projected gradient-
type iteration requires
FΘ to be cocoercive and
an appropriate step-size
α to converge.

be prohibitively expensive (e.g. when each Vk is the intersection of sets). To

overcome these difficulties, we formulate (5.6) as a fixed point problem. Our formu-

lation, while superficially more complicated, avoids expensive projections and is

62

easy to backpropagate through. The key ingredient is a novel use of Davis-Yin

three operator splitting [75], which admits simple and explicit formulae for each

computation. To the best of our knowledge, this splitting has not already been

utilized in the VI literature.

Theorem 5.2.2 Suppose C = C1 ∩ C2 for convex C1 and C2. If both Ci are polyhedral or

have relative interiors with a point in common and the VI admits a unique solution, then

defining

TΘ(x; d) ≜ x − PC1(x) + PC2 (2PC1(x) − x − αFΘ(PC1(x); d)) (5.8)

yields the equivalence11 11 Observe the fixed
point zd is not the
VI solution, but its
projection onto C1

is a solution. This
distinction can be
subtle, but significant in
practice.

NΘ(d) = VI(FΘ(⋅; d),C) = PC1(zd) ⇐⇒ zd = TΘ(zd; d). (5.9)

Corollary 5.2.1 In the setting of Theorem 5.2.2, if FΘ(⋅; d) is α-cocoercive and z1 is

given, then the iteration zk+1 = TΘ(zk; d) yields convergence zk → zd ∈ fix(TΘ(⋅; d)).

Algorithm 6: Computation of Nash Equilibria (Special Case)

1: NΘ(d) ∶ ⊲ Input data is d
2: x1 ← x̃, n ← 2 ⊲ Initializations
3: x2 ← PC(x1 − αFΘ(x1; d)) ⊲ Apply TΘ update
4: while ∥xn − xn−1∥ > ε ⊲ Loop to fixed point
5: xn+1 ← PC(xn − αFΘ(xn; d)) ⊲ Apply T update
6: n ← n + 1 ⊲ Increment counter
7: return xn ⊲ Output inference

The formulation (5.9) is computationally cheaper than (5.7) when PC1 and

PC2 are computationally cheaper than PC . This is the case in many applications

of interest. Practically, we use Krasnosel’skiı̆-Mann iteration to (approximately)

find a fixed point of TΘ(⋅; d). We present a concrete instantiation of Nash model in

Algorithm 7, where we simplify the update procedure by introducing auxiliary

sequences {xk} and {yk}. This framework may be extended to constraint sets

of the form C = C1 ∩ . . . ∩ Ck and12 C = C1 + . . . + Ck (discussed below). Although

12 Here, “+” denotes the
Minkowski sum of sets

63

Algorithm 7: Decoupled Computation of Nash Equilibria (Abstract Form)

1: NΘ(d) ∶ ⊲ Input data is d
2: z1 ← z̃, z0 ← z̃, n ← 1 ⊲ Initialize iterates and counter
3: while ∥zn − zn−1∥ > ε or n = 1 ⊲ Loop to convergence
4: xn+1 ← PC1(zn) ⊲ Project onto constraint set
5: yn+1 ← PC2(2xn+1 − zn − αFΘ(xn+1; d)) ⊲ Project reflected gradient
6: zn+1 ← zn − xn+1 + yn+1 ⊲ Combine auxiliary sequences
7: n ← n + 1 ⊲ Increment counter
8: return PC1(zn) ⊲ Output inference

we find Algorithm 7 to be most practical, other operator-based methods (e.g.

ADMM and PDHG) can be used via equivalences similar to (5.9).

Constraint Decoupling

The provided formulation assumes C is expressed as the intersection of two sets

C1 and C2. When an explicit and relatively simple formula exists for PC (e.g. C

is the probability simplex [80, 232]), one can set C1 = H and C2 = C so that the

iteration in Algorithm 7 performs updates via the projected gradient-type scheme

in Algorithm 6. However, it is often the case that PC does not admit a closed form

while PC1 and PC2 admit explicit and computationally cheap expressions (e.g.

C1 =Rn
≥0 and C2 an affine hyperplane). Loosely speaking, using TΘ as in (10.112)

enables replacement of a potentially “difficult” projection onto C with “easy”

projections13 onto individual constraints Ci. More generally, in some real-world13 This does imply the
iterate xn estimating
NΘ(d) may not, at any
iteration, be feasible.
That is, one can have
xn ∈ C1 and xn ∉ C for all
n ∈N while xn →NΘ(d).

applications (e.g. traffic routing), the set C is a Minkowski sum of intersections of

simple sets, i. e. C = C1 +⋯+CK where Ck = C1
k ∩ C

2
k . By using a product space, the

constraints may be further decoupled, thereby avoiding an iterative subroutine

to compute PC for each update. This is shown14 by Algorithms 8 and 9. In14 Each overlined element
x is in the K-product
space U ×⋯×U

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
K terms

. particular, our decoupled scheme updates only require a single application of each

P
Ci

k
. See the appendices for lemmas proving the equivalences.

Crucially, decoupling projections onto C into projections onto each Ci
k that

64

Algorithm 8: Nash Equilibria (Minkowski Sum C = C1 +⋯+CK)

1: NΘ(d) ∶ ⊲ Input data is d
2: n ← 1 ⊲ Initialize counter
3: for k = 1, 2, . . . , K
4: z1

k ← ẑ ⊲ Initialize iterates to ẑ ∈H
5: while ∑K

k=1 ∥z
n
k − zn−1

k ∥ > ε or n = 1 ⊲ Loop until convergence

6: for k = 1, 2, . . . , K ⊲ Loop over constraints C1
k

7: xn+1
k ← P

C1
k
(zn

k) ⊲ Project onto constraint set

8: vn+1 ← ∑K
k=1 xn+1

k ⊲ Combine projections

9: for k = 1, 2, . . . , K ⊲ Loop over constraints C2
k

10: yn+1
k ← P

C2
k
(2xn+1

k − zn
k −αFΘ(vn+1; d)) ⊲ Project reflected gradients

11: zn+1
k ← zn

k − xn+1
k + yn+1

k ⊲ Apply block-wise updates

12: n ← n + 1 ⊲ Increment counter

13: return vn ⊲ Output inference

possess analytic formulas enables efficient forward propagation (i. e. evaluation

of NΘ) and backward propagation (to tune weights Θ) through the projections.

These projection formulas can be directly coded into the feed forward operation

for NΘ, enabling built-in autodifferentation tools to perform backpropagation.

Limitations Our approach tunes an operator so that its fixed points match

given contextual Nash equilibria, but says little about the players’ cost functions.

Thus, TΘ cannot be used to design interventions to increase social welfare (i.e.

the negative of the sum of all players costs) [201, 145, 154]. However, TΘ can be

used to design interventions to discourage agents from playing a given action.

Related Works There are two distinct learning problems for games. The first

considers repeated rounds of the same game and operates from the player’s

perspective. Players have imperfect knowledge of the game, and the goal is to

learn the optimal strategy (i.e. the Nash equilibrium or, more generally, a coarse

correlated equilibrium), given only the cost incurred in each round. This problem

is not studied here, and we refer readers to [119, 121, 222, 217] for details.

65

Algorithm 9: Nash Equilibria (Intersection Constraints C = C1 ∩⋯CK)

1: NΘ(d) ∶ ⊲ Input data is d
2: n ← 1 ⊲ Initialize counter
3: for k = 1, 2, . . . , K
4: z1

k ← ẑ ⊲ Initialize iterates
5: while ∑K

k=1 ∥z
n
k − zn−1

k ∥ > ε or n = 1 ⊲ Loop until convergence

6: for k = 1, 2, . . . , K
7: xn+1

k ← PCk(z
n
k) ⊲ Project onto each Ck

8: vn+1 ← 1
K ∑

K
k=1 (2xn+1

k − zn
k − αFΘ(xn+1

k ; d)) ⊲ Average reflected

9: for k = 1, 2, . . . , K “gradient” updates
10: zn+1

k ← zn
k − xn+1

k + vn+1 ⊲ Combine sequences

11: n ← n + 1 ⊲ Increment counter

12: return xn
1 ⊲ Output inference

The second problem supposes historical context-action data pairs (d, x⋆d) are

available to an external observer. The observer wishes to learn something about

the players’ cost functions, assuming each x⋆d is (approximately) a Nash equilib-

rium. The works [236, 201, 145, 33, 249, 248, 250, 7] and many others approach

this as an inverse problem, positing a parametrized form of each players cost

function and then tuning these weights to minimize empirical risk. Several re-

cent works [162, 161, 154] abandon learning cost functions directly in favor of

learning an operator approximating the game gradient within an implicit deep

learning framework, which is in line with our approach. A differentiable game

solver for two player games is proposed in [162]. Backpropagation is done by

solving a p × p linear system15 for each (d, x⋆d). As pointed out in [161], this is15 In this section, p
denotes the dimension of
the action space H. prohibitively expensive for high dimensional games. In [161], this approach was

modified, leading to a fast backpropagation algorithm, but only for two-player

games admitting a compact extensive form representation. Moreover, both [162]

and [161] only consider the case where C is a product of simplices, and these

works avoid projections by only considering particular types of games16. The

16 Precisely, they add
an entropic regularizer,
which guarantees xd is
in the interior of C.

66

R P S
R 0 −⟨w1, d⟩ ⟨w2, d⟩
P ⟨w1, d⟩ 0 −⟨w3, d⟩
S −⟨w2, d⟩ ⟨w3, d⟩ 0

Ð→ B(d) ≜

⎡⎢⎢⎢⎢⎢⎢⎣

0 −⟨w1, d⟩ ⟨w2, d⟩
⟨w1, d⟩ 0 −⟨w3, d⟩
− ⟨w2, d⟩ ⟨w3, d⟩ 0

⎤⎥⎥⎥⎥⎥⎥⎦

Table 5.2: Payoff
matrix B(d) for con-
textual Rock-Paper-
Scissors (RPS).

approach of [154] is most similar to ours, but crucially they do not exploit con-

straint decoupling or Jacobian-free backpropagation. Instead, they use an itera-

tive O(p3) algorithm [8] to compute PC and dPC/dz and solve a Jacobian-based

equation in every backward pass.

We also highlight recent work applying deep learning to traffic flow predic-

tion [71, 156, 113, 216]. Unlike us, these works consider non-equilibrium traffic

flows and use fine-grained spatiotemporal data (e.g. traffic densities on every

road segment at five minute intervals [71]) to predict the traffic flow in the near

future. This is in contrast with our approach of using coarse-grained data (e.g.

weather) to predict the equilibrium traffic flow. A common method for solving

the VI arising in traffic routing (see Section 5.3) is the Frank-Wolfe algorithm

[91]. More sophisticated approaches are given in [22, 77] and [23]. Although the

equivalence (5.7) is well-known in this community (see, e.g. [193, 23]), we are not

aware of any prior works utilizing operator splitting to decouple the constraints.

Section 5.3: Experiments

We show the efficacy of Nash models on two games types: rock-paper-scissors

and traffic routing. JFB is used throughout for model training.

Rock Paper Scissors

We perform a rock-paper-scissors experiment similar to [162]. Each player’s

actions are restricted to the unit simplex ∆3 ≜ {x ∈ R3
≥0 ∶ ∥x∥1 = 1} ⊂ R3 so

that C = ∆3 × ∆3 and actions xi are interpreted as probability distributions over

three choices: “rock”, “paper” and “scissors.” Equilibria x⋆d are drawn from

67

VI(F(⋅ ; d),C), using the game gradient F in (5.2) with cost functions given by

u1(x; d) ≜ ⟨x1, B(d)x2⟩ and u2(x; d) ≜ − ⟨x1, B(d)x2⟩ , (5.10)

where the payoff matrix B(d) ∈ R3×3 (see Table 5.2) defines the players’ cost

functions using wi ∈ R3
≥0. Contextual data d are drawn from a distribution D

that is uniform over [0, 1]3. An Nash model is trained to predict x⋆d from d

using training data context-action pairs {(di, x⋆di)}1000
i=1 , without using knowledge

of F. The tunable operator FΘ in (10.112) consists of a residual update with two

fully connected layers and a leaky ReLU activation. Forward propagation uses

Algorithm 6. For illustration, we simulate play between two players. The first

player acts optimally using knowledge of B(d) and the second player’s strategy.

Three options are used for the second player: another optimal player, a player

that only has access to d trained to move according to the Nash-based model,

and uniform choices. With two optimal players, a Nash equilibria is obtained

where the expected cost after each game is zero. If the Nash-based model is

well-trained, then the second case yields the same result. In the final case, the

optimal player has an advantage, yielding first player costs less than zero (i. e.

the first player usually wins). Here

(Exp. Abs. Nash Player k-Game Ave. Cost) ≡ yk ≜ Ed∼D

⎡⎢⎢⎢⎣

RRRRRRRRRRR

1
k

k
∑
ℓ=1

u1(sℓ; d)
RRRRRRRRRRR

⎤⎥⎥⎥⎦
,

(5.11)

where sk is a tuple of two one-hot vectors (e.g. sk
1 ∼ x⋆d and sk

2 ∼ NΘ(d)). If

NΘ(d) = x⋆d , then the expected cost u1 is zero and yk → 0 (n.b. simulated games

have nonzero variance due to one-hot sampling sk
i whereas x⋆d is continuous).

This behavior is illustrated in Figure 5.2.

68

0 250 500 750 1 000

10−2

10−4

10−6

Epoch

T
es
t
M
S
E

0 5 000 10 000

101

100

10−1

10−2 Optimal vs Optimal

Optimal vs N-FPN

Optimal vs Uniform

Games Played k

A
b
s.

A
v
e.

C
os
t
y
k

Figure 5.2: Rock-paper-scissors example. Left plot shows test loss during training. Right plot shows the
cost expression yk over the course of k games in three settings. The first player always acts optimally,
knowing both the true cost u1(⋅; d) and the second player’s strategy. The second player either also acts
optimally, chooses uniformly randomly, or uses trained model predictions only knowing d. Both players
acting optimally yields a Nash equilibrium, making yk → 0. When the second player is uniform, the first
player typically wins. This plot shows the modeled Nash equilibria player chooses nearly optimally.

Contextual Traffic Routing

Setup Consider a road network represented by a directed graph with vertices

V and arcs E. Let N ∈ R∣V∣×∣E∣ denote the vertex-arc incidence matrix. An origin-

destination pair (OD-pair) is a triple (v1, v2, q) with vi ∈ V and q ∈ R>0, encoding

the constraint of routing q units of traffic from v1 to v2. Each OD-pair is encoded

by a vector b ∈R∣V∣ with bv1 = −q, bv2 = q and all other entries zero. A valid traffic

flow x ∈ R∣E∣ for an OD-pair has nonnegative entries satisfying the flow equation

Nx = b. The e-th entry xe represents the traffic density along the e-th arc. The

flow equation ensures the number of cars entering an intersection equals the

number leaving, except a net movement of q units of traffic from v1 to v2. For K

OD-pairs, a valid traffic flow x is the sum of traffic flows for each OD-pair, which

is in the Minkowski sum

C = C1 +⋯+CK, with Ck = {x ∶ Nx = bk}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C1
k

⋂{x ∶ x ≥ 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C2
k

for all k ∈ [K]. (5.12)

69

1 2

3 4

origin

destination

Utilization

– 0%

– 125%

– 250%

Width shows edge capacity

1 2

3 4

origin

destination

Utilization

– 0%

– 125%

– 250%

Width shows edge capacity

1 2

3 4

origin

destination

Utilization

– 0%

– 125%

– 250%

Width shows edge capacity

1 2

3 4

origin

destination

Utilization

– 0%

– 125%

– 250%

Width shows edge capacity

Figure 5.3: Top
left: True traffic
flow for “sunny”
context. Top right:
Predicted traffic by
NΘ for “sunny”
context. Bottom left:
True traffic flow
for “rainy” context.
Bottom right: Pre-
dicted traffic by NΘ

for “rainy” context

A contextual travel time function17 te(xe; d) is associated with each arc, where

17 This time is mono-
tonically increasing
as a function of traffic
density xe (for any fixed
d).

d encodes contextual data. Here the equilibrium of interest is, roughly speaking,

a flow configuration x⋆d where the travel time between each OD-pair is as short

as possible when taking into account congestion effects [44]. This is known as a

Wardrop equilibrium (also called the user equilibrium) [235], a special case of Nash

equilibria where F = [t1(x1; d)⊺⋯t∣E∣(x∣E∣; d)⊺]⊺. In certain cases, a Wardrop equi-

librium is the limit of a sequence of Nash equilibria as the number of drivers

goes to infinity [190].

TRAFIX Scores Accuracy of traffic routing predictions are measured by a TRAFIX

score. This score forms an intuitive alternative to mean squared error. An error

tolerance ε > 0 is chosen (n.b. ε = 5× 10−3 in our experiments). For an estimate x

of x⋆, the TRAFIX score with parameter ε is the percentage of edges for which x

has relative error (with tolerance18 τ > 0) less than ε, i. e.

18 The parameter τ is
added to handle the
case when the e-th
component of x⋆ is zero,
i. e. x⋆e = 0.

70

0 100 200

10−2

10−3

10−4

Epoch

T
es
t
R
el
.
M
S
E

0 100 200
90

92

94

96

98

100

Epoch

T
R
A
F
IX

S
co
re

Figure 5.4: Plots for
Nash model perfor-
mance on Eastern
Massachusetts
testing data. The
left plot shows
convergence of
expected relative
mean squared error
on testing data
after each training
epoch and the right
shows the expected
TRAFIX score on
testing data after
each training epoch.

(relative error of edge e) ≜ ∣xe − x⋆e ∣
∣x⋆e ∣ + τ

, (5.13a)

TRAFIX(x, x⋆; ε, τ) ≜ (# edges with relative error < ε)
(# edges)

× 100%. (5.13b)

Our plots and tables show expected TRAFIX scores over testing data.

Datasets and Training We construct datasets for a (collection of) large scale

datasets constructed from the traffic networks of real-world cities curated by

the Transportation Networks for Research Project [224]. We construct this data

by fixing a choice of te(x; d) for each arc e, randomly generating a large set of

contexts d ∈ [0, 1]10 and then, for each d, finding a solution xd in VI(F(⋅ ; d),C).

For illustrative purposes, we also consider a toy example, illustrated in Figure 5.3.

We train a Nash model using Algorithm 8 for forward propagation to predict x⋆d

from d for each data set.

Results Table 5.3 shows a description of the traffic networks datasets, includ-

ing the numbers of edges, nodes, and OD-pairs. To illustrate the effectiveness of

Nash models for each setting, this table also shows the number of tunable pa-

rameters in column four, relative mean squared error (MSE) in column five and

the TRAFIX score in column six for the testing dataset. The convergence dur-

ing training of the relative MSE and TRAFIX score on the Eastern-Massachusetts

testing dataset is shown in Figure 5.4. Additional plots can be found in the

appendices.

71

dataset edges/nodes OD-pairs # params rel. MSE TRAFIX score

Sioux Falls 76/24 528 46K 1.9× 10−3
94.42%

Eastern Massachusetts 258/74 1113 99K 4.7× 10−4
97.94%

Berlin-Friedrichshain 523/224 506 179K 5.3× 10−4
97.42%

Berlin-Tiergarten 766/361 644 253K 7.6× 10−4
95.95%

Anaheim 914/416 1406 307K 2.4× 10−3
95.28%

Table 5.3: Expected
values of Nash
model predictions
on traffic routing
test data. First and
second columns
show the number of
edges, nodes, and
origin-destination
pairs for corre-
sponding dataset.
Second column
shows number of
tunable parameters.

Section 5.4: Conclusions

The fusion of big data and optimization algorithms offers potential for predict-

ing equilibria in systems with many interacting agents. The models proposed

in this chapter form a scalable data-driven framework for efficiently predicting

equilibria for such systems that can be modeled as contextual games. The model

architecture yields equilibria outputs that satisfy constraints while also being

trained end-to-end. Moreover, the provided constraint decoupling schemes en-

able simple forward and backward propagation using explicit formulae for each

projection. The efficacy of the models is illustrated on large-scale traffic rout-

ing problems using a contextual traffic routing benchmark dataset and TRAFIX

scoring system.19 Future work will investigate applications on larger datasets,19 Returning to the
quote by Faraday, this
chapter develops a novel
tool, but we cannot yet
know how useful it is
until new datasets are
made available to truly
find its computational
limitations.

convergence acceleration, and weakening assumptions for convergence.

72

Chapter 6: Explainable L2O Models

[W]hat is important is the gradual development of a theory, based on a careful analysis

of the ordinary everyday interpretation of economic facts. This preliminary stage is

necessarily heuristic, i. e. the phase of transition from unmathematical plausibility

consideration to the formal procedure of mathematics. The theory finally obtained must

be mathematically rigorous and conceptually general. Its first applications are

necessarily to elementary problems where the result has never been in doubt and no

theory is actually required.

– John Von Neumann1 1 Taken from the con-
cluding remarks in
Section 1 of the seminal
textbook [231] on game
theory and economic
behavior.

A current paradigm shift in machine learning is to construct explainable and

transparent models, often called explainable AI (XAI). This is a crucial task for

sensitive applications like medical imaging and finance (e.g. see recent exposi-

tions on the role of explainability [14, 1, 79, 214]). However, commonplace models

(e.g. fully connected models) do not often offer this interpretability. Some works

have provided explanations using sensitivity analysis [214] or layer-wise propa-

gation [17], but these do not necessarily shed light on how to correct “bad" be-

haviors or concretely quantify whether an inference is trustworthy. This chapter

shows how L2O can be used to directly embed explainability into the structure

of models to obtain trustworthiness and interpretability.

As before, we focus on ML applications where domain experts can create

approximate models by hand.2 Here each inference NΘ(d) of a model NΘ with 2 Unlike previous chap-
ters with games and
feasibility problems,
here we solely consider
minimization problems.

input d solves an optimization problem. That is, we use models defined by

NΘ(d) ≜ arg min
x∈CΘ(d)

fΘ(x; d), (6.1)

73

where fΘ is a function and CΘ(d) ⊆ Rn is a constraint set (e.g. encoding prior

information like physical quantities), and each (possibly) includes dependencies

on weights Θ.33 Note the model NΘ
is implicit since its
output is defined by an
optimality condition
rather than an explicit
computation. This
notation intentionally
coincides with the
notation in Section 1.2.

Switching gears, a standard practice in software engineering is to code post-

conditions after function calls return. Post-conditions are criteria used to validate

what the user expects from the code and ensure code is not executed under the

wrong assumptions [9]. We propose use of these for ML model inferences (see

Figures 6.1 and 6.5). These conditions enable use of certificates with labels – pass,

warning or fail – to describe each model inference. We define4 an inference to be

4 Certainly, many alter-
natives exist for trust-
worthiness; however,
we believe our choice
is apt for the situations
considered in that it is
unambiguous. trustworthy provided it satisfies all post-conditions.

Figure 6.1: Each
L2O model is com-
posed of parts
(shown as colored
blocks) that are
analytic or learned.
L2O inferences
solve an optimiza-
tion problem for
given model inputs.
Certificates label
if each inference
is consistent with
training data. If
so, it is trustwor-
thy; otherwise, the
faulty model part
errs.

arg min
x∈

+

L2O Model

Certificates

ËËË

Certificates

ËË é

Trustworthy
Inference Ë

Explainable Error
Error: test

These two discussed ideas, optimization and certificates, form a concrete no-

tion of XAI. Prior and data-driven knowledge can be encoded via optimization,

and this encoding can be verified via certificates (see Figure 6.1). To illustrate,

consider inquiring why a model generated a “bad” inference (e.g. an inference

disagrees with observed measurements). The first diagnostic step is to check

certificates. If no fails occurred, the model was not designed to handle the in-

stance encountered. In this case, the model in (6.1) can be redesigned to encode

prior knowledge of the situation. Alternatively, each failed certificate shows a

type of error and often corresponds to portions of the model (see Figures 6.1

and 6.2). The L2O model allows debugging of algorithmic implementations and

assumptions to correct errors. In a sense, this setup enables one to manually

backpropagate errors to fix models (similar to training).

74

arg min
x∈

+ +

Optimization Problem

d
xk

x∞

Implicit L2O Model
Model Inference

d NΘ⋆(d)

Certificates

Ë�Ë é

Choose
Algorithm

Train
Model

Figure 6.2: Diagram of L2O architectures and trustworthiness certificates. Colored blocks denote prior
knowledge and data-driven terms. Middle shows an iterative algorithm formed from the blocks (e.g.
corresponding proximal operators) to solve the optimization problem. Right shows a model inference
NΘ⋆(d) and associated certificates identifying if properties of inferences are consistent with training
data. For troubleshooting, each label is associated with properties of specific blocks (indicated by labels
next to blocks). Labels take value pass Ë, warning �, or fail é. Each certificate identifies if inference
features for model parts are trustworthy.

Contributions This chapter brings new explainability and guarantees to ma-

chine learning applications using prior knowledge. We propose novel implicit

L2O models with intuitive design, memory efficient training, inferences that sat-

isfy optimality/constraint conditions, and certificates that either indicate trust-

worthiness or flag inconsistent inference features.

Related Works

Closely related to our work is deep unrolling, a subset of L2O wherein models

consist of a fixed number of iterations of a data-driven optimization algorithm.

Deep unrolling has garnered great success and provides intuitive model design.

We refer readers to recent surveys [62, 219, 177] for further L2O background.

Downsides of unrolling primarily include growing memory requirements with

unrolling depth and a lack of guarantees.5 5 Although it is difficult
to verify in general,
comparing the Safe L2O
experiments to those
with implicit models as
in this chapter, it seems
implicit models are more
stable (i. e. “easier”) to
train.

Implicit models circumvent these two shortcomings by defining models us-

ing an equation (e.g. as in (6.1)) rather than prescribe a fixed number of compu-

tations as in deep unrolling. This enables inferences to be computed by iterat-

ing until convergence, thereby enabling theoretical guarantees. Memory-efficient

75

training techniques were also developed for this class of models, which have

been applied successfully in games [126], music source separation [147], lan-

guage modeling [18], segmentation [19], and inverse problems [125, 103]. The

recent work [103] most closely aligns with our L2O methodology.

Related XAI works use labels/cards similar to our proposed certificates.

Model Cards [175] document intended and appropriate uses of models; these

are short documents that companion trained models and provide benchmarked

evaluation in a variety of conditions (e.g. across different cultural, demographic,

or phenotypic group). Care labels [180, 181] are similar, testing properties like

expressivity, runtime, and memory usage. FactSheets [11] are another option,

modeled after supplier declarations of conformity and aim to identify models’

intended use, performance, safety, and security. These works push forward the

role of explainability and complement this work. Our proposed scheme differs

both in quantities measured and methodology. Rather than provide statistics at

the distribution level, our certificates are focused on providing trustworthiness

feedback at the level individual inferences. Unlike these works, our certificates

can check with any given data (e.g. inference from a different model) is consistent

with the true data, even if it was not produced using the trained model.6

6 This is illustrated in
our CT experiments
below where certificates
are created not only for
the proposed models’
inferences, but also for
other approaches.

L2O Implicit Flags Model Property

✓ Intuitive Design

✓ Memory Efficient

✓ ✓ Satisfy Constraints + (above)

✓ Trustworthy Inferences

✓ ✓ ✓ Explainable Errors + (above)

Table 6.1: Summary of design features and corresponding model properties. Design features yield
additive properties, as indicated by “+ (above).” Proposed implicit L2O models with certificates have
intuitive design, memory efficient training, inferences that satisfy optimality/constraint conditions, cer-
tificates of trustworthiness, and explainable errors.

76

Section 6.1: Explainability via Optimization

Model Design L2O model design is naturally decomposed into two steps: op-

timization formulation and algorithm choice. The first step identifies a tentative

objective to encode prior knowledge via regularization (e.g. sparsity) or con-

straints (e.g. unit simplex for classification). We may add entirely data-driven

terms too. Informally, this step identifies a special case of (6.1) of the form7 7 Constraints are en-
coded in the objective
using indicator func-
tions, equaling∞ when
constraint is satisfied
and 0 otherwise.

NΘ(d) ≜ arg min
x

(prior knowledge)+ (data-driven terms), (6.2)

The second design step is to choose an algorithm for solving the chosen optimiza-

tion problem (e.g. proximal-gradient or ADMM). We use iterative algorithms,

and the update formula for each iteration is given by a model operator TΘ(x; d).

Updates are typically composed in terms of gradient and proximal operations.

Some parameters (e.g. step sizes) may be included in the weights Θ to be tuned

during training. Given data d, computation of the inference NΘ(d) is completed

by generating a sequence {xk
d} via the relation

xk+1
d = TΘ(xk

d; d), for all k ∈N. (6.3)

By design, {xk
d} converges to a solution of (6.1), and we set8 8 If the optimization

problem has multiple
solutions, uniqueness
of NΘ(d) is obtained
in practice by fixing the
initialization x1

d.

NΘ(d) = lim
k→∞

xk
d. (6.4)

In our context, each model inference NΘ(d) is defined to be an optimizer as in

(6.1). Hence properties of inferences can be interpreted via the optimization model (6.1).

The iterative algorithm is applied successively until stopping criteria are met

(i. e. in practice we choose an iterate K, possibly dependent on d, so that NΘ(d) ≈

xK
d). Since {xk

d} converges, we may adjust stopping criteria to approximate the

limit to arbitrary precision, which implies we may provide guarantees on model

inferences (e.g. satisfying a linear system to a desired precision [103, 125, 126]).

77

Example of Model Design. To make the model design procedure concrete, we

illustrate this process on a classic problem: sparse recovery from linear measure-

ments. Here the task is to estimate a signal x⋆d via access to linear measurements

d satisfying d = Ax⋆ for a known matrix A.

Step 1. Since true signals are known to be sparse, we include ℓ1 regulariza-

tion. To comply with measurements, we add a fidelity term. Lastly, to capture

hidden features of the data distribution, we also add a data-driven regulariza-

tion. Putting these together gives the problem

min
x∈Rn

τ∥x∥1
²

sparsity

+ 1
2
∥Ax − d∥22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fidelity

+ 1
2
∥W1x∥2 + ⟨x, W2d⟩
´¹¹¸¹¹¹¶

data-driven regularizer

, (6.5)

where τ > 0 and W1 and W2 are two tunable matrices. This model encodes a

balance of three terms: sparsity, fidelity, data-driven regularization.

Step 2. The proximal-gradient scheme generates a sequence {zk} converg-

ing to a limit which solves (6.5). Upon simplifying and combining terms, the

proximal-gradient method can be expressed via the iteration99 The shrink ηθ is
given by ηθ(x) ≜
sign(x)max(∣x∣ − θ, 0).

zk+1 = ητλ(zk − λW(Azk − d)), for all k ∈N, (6.6)

where λ > 0 is a step-size and W is a matrix defined in terms of W1, W2, and

A⊺. From the update on the right hand side of (6.6), we see the step size λ can

be “absorbed” into the tunable matrix W and the shrink function parameter can

set to θ > 0. That is, this example model has weights Θ = (W, θ, τ) with model

operator

TΘ(x; d) ≜ ηθ(x −W(Ax − d)), (6.7)

which resembles the updates of previous L2O works.[163, 112, 64] Inferences can

be computed by generating a sequence {xk
d} via the iteration

xk+1
d = TΘ(xk

d; d), for all k ∈N. (6.8)

The model inference is the limit x∞d of this sequence {xk
d}.

78

Certificates
Sparsity –

Fidelity –

Ground Truth

Pass Ë

Pass Ë

Certificates
Sparsity –

Fidelity –

Wrong Sparse Signal

Pass Ë

Fail é

Certificates
Sparsity –

Fidelity –

Non-Sparse Signal

Fail é

Pass Ë

Certificates
Sparsity –

Fidelity –

Model Inference

Pass Ë

Pass Ë

Figure 6.3: Example inferences for test data d. The sparsified version Kx of each inference x is shown
(c. f. Figure 6.6) along with certificates. Ground truth was taken from test dataset of analysis dictionary
experiment. The second from left is sparse and inconsistent with measurement data. The second from
right complies with measurements but is not sparse. The rightmost is generated using our proposed
model (ADM), which approximates the ground truth well and is trustworthy.

Convergence Evaluation of the model NΘ(d) is well-defined and tractable un-

der a simple assumption. As stated in the introduction, by the classic result

of Banach [21], it suffices to ensure TΘ be γ-Lipschitz with respect to x for a

γ ∈ [0, 1), i. e.

∥TΘ(x; d) − TΘ(v; d)∥ ≤ γ∥x − v∥, for all x, v, d. (6.9)

When this property holds, the sequence {xk} in (6.3) converges linearly. This

may appear to be a strong assumption; however, common operations in convex

optimization algorithm (e.g. proximals) are τ-Lipschitz for some τ ∈ [0, 1]. For

entirely data-driven portions of TΘ, we note several activation functions are 1-

Lipschitz [68, 98] (e.g. ReLU and softmax).10,11

10 Packages like PyTorch
[192] include functions
to force affine mappings
to be γ-Lipschitz (e. g.
spectral normalization).

11 Even without forcing
TΘ to be a contraction,
it has been observed
for trained models that
{xk} often converges in
practice [125, 18, 103].

Section 6.2: Trustworthiness Certificates

Explainable models justify whether each inference is trustworthy. We consider

providing justification in the form of certificates that verify various properties of

the inference are consistent with model inferences on training data and/or prior

knowledge. Each certificate is a tuple of the form (name, label) with a property

name and a corresponding label which has one of three values: pass, warning,

or fail. This section gives a framework for using these certificates.12

12 For certain checks,
this will be obvious,
which is in line with Von
Neumann’s quote. As
we will see, a perhaps
unexpected novelty
is the ability to now
quantify reliability using
regularization.

79

Certificate Design Each certificate label is generated by two steps. The first is

to apply a function that maps inferences (or intermediate states) to a nonnegative

scalar value α quantifying a property of interest. The second step is to map this

scalar to a label. Labels are generated via the flow:

Inference→ Property Value→ Certificate Label. (6.10)

The property value function is assumed to be given and can take various forms.

In the model design example above, a sparsity property can be quantified by

counting the number of nonzero entries in a signal, and a fidelity property can

use the relative error ∥Ax − d∥/∥d∥ (see Figure 6.3). Given property values, we

next assign labels according to the probabilities of each property value.

Pass Ë

Fail é

Warning �

α

Probability

Figure 6.4: Example

probability curve

for property values

α. Lower values

of α are desired.

Each value has a

label: pass, warn-

ing, or fail. These

are shown by green,

yellow, and red.

Typical certificate labels should follow a trend where inferences often obtain

a pass label to indicate trustworthiness while warnings occur occasionally and

failures are obtained in extreme situations. Let A be the sample space of model

inference property values α generated from training data. Since small values of

α are desirable, labels are assigned according to the probability of observing a

value less than or equal to α. That is, we evaluate the cumulative density function

(CDF) defined for probability measure PA by

CDF(α) = ∫
α

0
PA(α) dα, (6.11)

Labels are chosen according to the task at hand. Let pp, pw, and pf = 1− pp − pw

be the desired probabilities for the pass, warning, and fail labels, respectively.

Assignments are made for α via

Label(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pass if CDF(α) < pp

warning if CDF(α) ∈ [pp, 1− pf)

fail otherwise.

(6.12)

80

The remaining task is to estimate the CDF. This is done using a map ϕΛ pa-

rameterized by weights Λ. The probability measure PA can be estimated from

α samples drawn from A, and the derivative ϕ′Λ forms a probability measure

that should approximate PA. Consequently, the “ideal” weights Λ⋆ minimize

a divergence D (e.g. Wasserstein or Kullback–Leibler) between the probability

measure ϕ′Λ and the true probability PA, i. e.

Λ⋆ ∈ arg min
Λ

D (ϕ′Λ ∣ PA) . (6.13)

The training problem (6.13) can be solved using a variant of stochastic gradient

descent (SGD) [36, 205] or ADAM [142].

Certificate Implementation As noted in the introduction, trustworthiness cer-

tificates are proof that an inference satisfies post-conditions (i. e. passes various

tests). Thus, they are to be used in code in the same manner as standard software

engineering practice. Consider the snippet of code in Figure 6.5. As usual, an

inference is generated by calling the model. However, alongside the inference x,

certificates certs are returned that label whether the inference x passes tests that

identify consistency with training data and prior knowledge.

Inference + Certificates → Trustworthy Inference

def TrustworthyInference(d):

x, certs = model(d)

if ’warning’ in certs:

warnings.warn(’Warning Msg’)

if ’fail’ in certs:

raise Exception(’Error Msg’)

return x

Figure 6.5: Python
snippet code to use
certificates as post-
conditions. Actual
implementation
should use specific
warning/excep-
tion messages for
flagged entries in
certs.

81

Concept Quantity Formula

Sparsity Nonzeros ∥x∥0
Measurements Relative Error ∥Ax − d∥/∥d∥

Constraints Distance to Set C dC(x)
Smooth Images Total Variation ∥∇x∥1

Classifier Probability short
1−maxi xi

Confidence of one-hot label

Convergence Iterate Residual ∥xk − xk−1∥
Regularization Prox Residual ∥x −prox fΩ

(x)∥

Table 6.2: Examples of certificate property value choices. Each certificate is tied to a high-level concept,
and then quantified in a formula. For classifier confidence, we assume x is in the unit simplex. The
proximal is a data-driven update for fΩ with weights Ω.

Property Value Functions Several quantities may be used to generate certifi-

cates. To be most effective, these are chosen to coincide with the optimization

problem used to design the L2O model, i. e. to quantify structure of prior and

data-driven knowledge. This enables each certificate to clearly validate a por-

tion of the model (see Figure 6.2). Since various concepts are useful for different

types of modeling, we provide a brief (and non-comprehensive) list of ideas and

possible corresponding property values in Table 6.2.

One property concept deserves particular attention: data-driven regulariza-

tion. This form of regularization is important for discriminating between infer-

ence features that are qualitatively intuitive but difficult to quantify by hand.

Rather than approximate a function, implicit L2O models directly approximate

gradients/proximals. These provide a way to measure regularization indirectly

via gradient norms/residual norms of proximals. Moreover, these norms (e.g.

see last row of Table 6.2) are easy to compute and equal zero only at local min-

ima of regularizers, thereby providing a satisfactory substitute for the regularizer

function values.13

13 The learned proxi-
mal/gradient might
not coincide with any
function. However, this
is of no concern since
the operators still satisfy
convergence properties
and the model intuition
still holds.

82

Section 6.3: Experiments

Each numerical experiment shows an application of novel implicit L2O models,

which were designed directly from prior knowledge. Associated certificates of

trustworthiness are used to emphasize the explainability of each model and il-

lustrate use-cases of certificates. Experiments were coded using Python with the

PyTorch library [192], the Adam optimizer[142], and, for ease of re-use, were

run via Google Colab. We emphasize these experiments are for illustration of

intuitive and novel model design and trustworthiness and are not benchmarked

against state-of-the-art models.

Implicit Model Training

Standard backpropagation cannot be used for implicit models as it requires mem-

ory capacities beyond existing computing devices. Indeed, storing gradient data

for each iteration in the forward propagation (see (6.3)) scales the memory dur-

ing training linearly with respect to the number of iterations. Since the limit x∞

solves a fixed point equation, implicit models can be trained by differentiating

implicitly through the fixed point to obtain a gradient. This implicit differenti-

ation requires further computations and coding. Instead of using gradients, we

utilize Jacobian-Free Backpropagation (JFB) [97] to train models. JFB further sim-

plifies training by only backpropagating through the final iteration, which was

proven to yield preconditioned gradients. JFB trains using fixed memory (with

respect to the K steps used to estimate NΘ(d)) and avoids numerical issues aris-

ing from computing exact gradients [20], making JFB and its variations [100, 132]

apt for training implicit L2O models.

83

Implicit Dictionary Learning

Setup In practice, high dimensional signals often approximately admit low di-

mensional representations (e.g. see the dictionary learning and compressed sens-

ing surveys [253]). For illustration, we thus consider a linear inverse problem

where true data admit sparse representations. Here each signal x⋆d ∈ R
250 ad-

mits a representation s⋆d ∈ R
50 via a transformation M (i. e. x⋆d = Ms⋆d). A matrix

A ∈R100×250 is applied to each signal x⋆d to provide linear measurements d = Ax⋆d .

Our task is to recover x⋆d given knowledge of A and d without the matrix M.

Since the linear system is quite under-determined, schemes solely minimizing

measurement error fail to recover true signals (e.g. least squares solutions).

Figure 6.6: Training
ADM yields sparse
representation of in-
ferences. Diagram
shows true data x
(sample from test
dataset) on left and
its sparsified rep-
resentation Kx on
right.

Original: x Sparsified: Kx

Model Design All convex regularization approaches are known lead to biased

estimators whose expectation does not equal the true signal [85]. However, the

seminal work [43] of Candes and Tao shows ℓ1 minimization (rather than addi-

tive regularization) enables exact recovery under suitable assumptions. Thus, we

minimize a sparsified signal subject to linear constraints via the implicit dictio-

nary model (IDM)

NΘ(d) ≜ arg min
x∈R250

∥Kx∥1 s.t. Ax = d. (6.14)

The square matrix K is used to leverage the fact x has a low-dimensional rep-

resentation by transforming x into a sparse vector. Linearized ADMM [213] (L-

ADMM) is used to create a sequence {xk
d} as in (6.3). The model NΘ has weights

Θ = K. If it exists, the matrix K−1 is known as a dictionary and KNΘ(d) is the

corresponding sparse code; hence the name IDM for (6.14). To this end, we em-

84

phasize K is learned during training and is different from M, but these matrices

are related since we aim for the product Kx⋆d = KMs⋆d to be sparse. Note we use

L-ADMM to provably solve (6.14), and NΘ is easy to train.

Discussion IDM combines intuition from dictionary learning with a recon-

struction algorithm. Two properties are used to identify trustworthy inferences:

sparsity and measurement compliance (i. e. fidelity). Sparsity and fidelity are

quantified using the ℓ1 norm of the sparsified inference (i. e. KNΘ(d)) and rela-

tive measurement error. Figure 6.6 shows the training the model yields a spar-

sifying transformation K. Figure 6.3 shows the proposed certificates identify

“bad” inferences that might, at first glance, appear to be “good” due to their

compatibility with constraints. Lastly, observe the utility of learning K, rather

than approximating M, is K makes it is easy to check if an inference admits a

sparse representation. Using M to check for sparsity is nontrivial.

CT Image Reconstruction

Setup Comparisons are provided for low-dose CT examples derived from the

Low-Dose Parallel Beam dataset (LoDoPab) dataset [153], which consists of phan-

toms derived from actual human chest CT scans. Here CT measurements are sim-

ulated with a parallel beam geometry with a sparse-angle setup of only 30 angles

and 183 projection beams, resulting in 5,490 equations and 16,384 unknowns.

We add 1.5% Gaussian noise to each individual beam measurement. Images have

resolution 128× 128. To make errors easier to contrast between methods, the lin-

ear systems here are under-determined and have more noise than those in some

similar works. Image quality is determined using the Peak Signal-To-Noise Ratio

(PSNR) and structural similarity index measure (SSIM). Mean squared error was

used for the training loss. Training/test datasets consist of 20,000/2,000 samples.

85

Ground truth U-Net TV Min F-FPN Implicit L2O
SSIM: 1.000 SSIM: 0.722 SSIM: 0.766 SSIM: 0.840 SSIM: 0.857

PSNR:∞ PSNR: 22.62 PSNR: 26.74 PSNR: 29.28 PSNR: 30.53

Fail é – Fidelity Fail é – Regularization Fail é – Pixel Value Trustworthy Ë

Figure 6.7: Reconstructions on test data computed via U-Net [137], TV minimization, F-FPNs [125], and
Implicit L2O (left to right). Bottom row shows expansion of region indicated by red box. Pixel values
outside [0, 1] are flagged. Fidelity is flagged when images do not comply with measurements, and
regularization is flagged when texture features of images are sufficiently inconsistent with true data (e.
g. grainy images). Labels are provided beneath each image (n.b. fail is assigned to images that are
worse than 99% of L2O inferences on training data). All comparison methods fail while the Implicit
L2O image passes all tests.

86

Method Avg. PSNR Avg. SSIM # Params

U-Net 27.32 dB 0.761 533,593

TV Min 28.52 dB 0.765 4

F-FPN†
30.46 dB 0.832 96,307

Implicit L2O 31.09 dB 0.851 59,697

Table 6.3: Average
PSNR and SSIM
on the 2,000 image
LoDoPab testing
dataset. † Reported
from original work
[125]. U-Net was
trained with filtered
backprojection as in
prior work [137].

Model Design The model for the CT experiment extends the IDM. In practice,

it has been helpful to utilize a sparsifying transform [136, 244]. We accomplish

this via a linear operator K, which is applied and then this product is fed into a

data-driven regularizer fΩ with parameters Ω. We additionally ensure compli-

ance with measurements from the radon transform matrix A, up to a tolerance

δ. In our setting, all pixel values are also known to be in the interval [0, 1].

Combining these pieces yields the implicit L2O model

NΘ(d) ≜ arg min
x∈[0,1]n

fΩ(Kx) s.t. ∥Ax − d∥ ≤ δ (6.15)

Here NΘ has weights Θ = (Ω, K, δ, α, β, λ) with α, β and λ step-sizes in L-ADMM.

Discussion The L2O model is designed with three features: compliance with

measurements (i. e. fidelity), valid pixel values, and data-driven regularization.

This knowledge can identify trustworthy inferences. The property values used

are, respectively, relative measurement error, the indicator function for pixel con-

straints, and the relative residual norm for the proximal operator prox fΩ
. Com-

parisons with U-Net [137], F-FPNs14 [125], and total variation (TV) Minimization 14 This is precisely the
model from Chapter 4.

are given in Figure 6.7 and Table 6.3. In Figure 6.7, the only image to pass all

provided tests is the proposed implicit L2O model. This is intuitive as this model

outperforms the others (see Table 6.3) and was specifically designed to embed all

of our knowledge,15 unlike the others. Observe data-driven regularization en- 15 The F-FPN model
utilized measurement
constraints, but not
direct constraints on
pixel values.

abled certificates to detect and flag “bad” TV Minimization features (e.g. visible

staircasing effects [204, 59]), which shows novelty of certificates as these features

87

are intuitive yet previously were difficult to quantify. Our model used 11% and

62% as many weights as U-Net and F-FFPN, indicating greater efficiency of the

implicit L2O framework.

Section 6.4: Conclusions

Explainable ML models can be concretely developed by fusing certificates with

the L2O methodology. The implicit L2O methodology enables prior and data-

driven knowledge to be directly embedded into models, thereby providing clear

and intuitive design. This approach is theoretically sound and compatible with

state-of-the-art ML tools. The L2O model also enables construction of our cer-

tificate framework with easy-to-read labels, certifying if each inference is trust-

worthy. These certificates are derived from the L2O model and are trained to

be consistent with true data. In particular, using data-driven regularization, our

certificates provide a principled scheme for the detection and quantification of

“bad” features in inferences. Thanks to this optimization-based model design,

failed certificates can be further debugged and corrected by investigating the

architecture. This reveals the interwoven nature of pairing implicit L2O with cer-

tificates. Our experiments illustrate these ideas in different settings, presenting

novel model designs and interpretable results. Future work will study exten-

sions to physics-based applications where PDE-based physics can be integrated

into the model [199, 212, 159].

88

Chapter 7: Conclusions

Large scale scientific problems are commonplace in the current era of big data.

Even when solutions are in high dimensional spaces, practicality demands these

problems be quickly and accurately solved. Two fields – optimization and ma-

chine learning – provide complementing properties in several applications. This

is particularly the case when a problem structure is repeatedly used, each time

with new but similar data. Optimization provides desirable theory (e.g. inter-

pretation and guarantees) while machine learning enables improvement through

experience. Within this L2O paradigm, we first consider settings where exact op-

timization problem formulations are known (Chapter 2). Here the aim is to use

learning to obtain rapid convergence. Two novel safeguard frameworks are pro-

vided that provably give convergence of deep unrolling methods to optimizers.

Numerical experiments show this can enable speedup by an order of magnitude

(or more) when compared to analytic methods and converges even when the

nonsafeguarded L2O method diverges.1

1 Even if the non-
safeguarded L2O
method “blew up,” it
was found that by sim-
ply added a safeguard
it could still not only
converge, but also do so
much more quickly than
an analytic method.The second class of problems considered requires computing inferences for

which prior knowledge suggests the inferences can be well-approximated by a

parameterized model. Here we represent inferences by implicit models, which

are defined in terms of an optimality condition.2 For such training, we present 2 These typically are
explicitly formulated
in terms of fixed point
equations for an associ-
ated model operator.

novel theory for a simple backprop technique: JFB (Chapter 3). This technique is

easy-to-implement (see Figure 3.4) and improved performance over comparable

methods for image classification. Moreover, JFB was numerically observed to be

efficacious even with architectures not covered by theory (e.g. batch normaliza-

tion and dropout) that prior implicit model training schemes cannot handle.

89

JFB and related techniques open the door to several new optimization-based

models. In particular, we show JFB enables one to beneficially augment convex

feasibility problems in a data-driven and theoretically sound manner (Chapter

4). JFB also allows the computation of Nash equilibria in contextual games with

the additional use of three-operator splitting techniques (Chapter 5).3 In addi-3 A novel application of
Davis Yin splitting was
introduced to making
forward and backward
propagation simple
and computationally
practical.

tion, we show implicit models for Nash equilibria can universally approximate

true data that are constrained to action sets. Lastly, we cover implicit L2O mod-

els. These inherit theory directly from the classic result of KM and averagedness

of operator splitting schemes. Moreover, we show implicit L2O schemes admit

interpretability and the ability to identify certificates of trustworthiness (Chapter

6). These certificates can be beneficial in critical situations and act as a standard

check to ensure model inferences were computed appropriately. In particular,

these certificates are the first XAI tool, to the best of our knowledge, to con-

cretely quantify regularization-type qualities of inferences.4 Future work will4 That is, regularization
certificates are able to
concretely determine
whether seemingly
qualitative features are
“good” or “bad”, e. g. the
stair-casing phenomena
in CT images created
from TV minimization.

investigate extensions to applications with partial differential equation, exten-

sions of implicit L2O theory, loosening assumptions needed to justify JFB, and

further notions of explainability.

90

Appendices

91

Safe L2O Proofs

This section contains proofs of a sequence of lemmas followed by the two main

safeguarding theorems and corollary.

Lemma 8.1.1 If {xk} is a sequence generated by Safe-L2O and Assumptions 2.1.1,

2.1.2, and 2.1.3 hold, then there exists τ ≥ 1 such that

∥xk+1 − xk∥ ≤ τ∥T(xk; d) − xk∥, for all k ∈N. (8.1)

Proof : Fix any x⋆ ∈ fix(T(⋅; d)). Set I1 ⊆ N to be the set of all indices such

that the update relation xk+1 = TΘk(xk; d) holds, and set I2 ≜ N − I1 so that

N = I1 ∪ I2. Also define

τ ≜max(1, sup
k∈N

τk) . (8.2)

If k ∈ I1, then Assumption 2.1.3 implies

∥xk+1 − xk∥ = ∥TΘk(x
k; d) − xk∥ ≤ τk∥T(xk; d) − xk∥ ≤ τ∥T(xk; d) − xk∥. (8.3)

Additionally, if k ∈ I2, then

∥xk+1 − xk∥ = ∥T(xk; d) − xk∥. (8.4)

In either case, we see (8.1) holds, taking τ as in (8.2). ∎

92

Lemma 8.1.2 If {xk} is a sequence generated by Safe-L2O and Assumptions 2.1.1,

2.1.2, and 2.1.3 hold, then limk→∞ ∥xk+1 − xk∥ = 0.

Proof : We consider two cases. If ∣I1∣ < ∞, then there is N ∈ N such that n ≥ N

implies the xk+1 = T(xk; d), which is a KM iteration that converges5 by Theorem 5 Recall all operators T in
Chapter 2 are assumed
to be averaged.

1.1.1. Thus, in this case, there exists xd ∈ fix(T(⋅; d)) such that, together with the

triangle inequality, we deduce

0 ≤ lim
k→∞
∥xk+1 − xk∥ ≤ lim

k→∞
∥xk+1 − xd∥ + ∥xd − xk∥ = 0. (8.5)

Assume ∣I1∣ = ∞. By Assumption 2.1.2, there is an increasing sequence {nk} ⊆ N

and ζ ∈ (0, 1) such that

µnk+1 ≤ ζµnk , for all k ∈N. (8.6)

By induction and the fact {µk} is monotonically decreasing,

µnk ≤ ζkµn1 = ζkµ1, for all k ∈N. (8.7)

Since ζ ∈ (0, 1) and µ1 ∈ [0,∞), it follows that µnk → 0. With the monotonicity

and nonnegativity of {µk}, we further have µk → 0. Next applying Lemma 8.1.1

reveals there exists τ ≥ 1 such that

0 ≤ ∥xk+1 − xk∥ ≤ τ∥T(xk; d) − xk∥ ≤ τµk, for all k ∈N. (8.8)

By the squeeze lemma, we conclude ∥xk+1 − xk∥ → 0, completing the proof. ∎

93

Lemma 8.1.3 If {xk} is a sequence generated by Safe-L2O and Assumptions 2.1.1,

2.1.2, and 2.1.3 hold, then {xk} is bounded and there is a summable sequence {δk} ⊂

[0,∞) such that

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥ + δk, for all k ∈N and x⋆ ∈ fix(T(⋅; d)). (8.9)

Proof : Let d ∈ D be given and fix any x⋆ ∈ fix(T(⋅; d)). Set I1 ⊆ N to be the

set of all indices such that the update relation xk+1 = TΘk(xk; d) holds, and set

I2 ≜N− I1 so that N = I1 ∪ I2. Next observe

µk+1 ≤ ζµk, for all k ∈ I1. (8.10)

This implies

∑
k∈I1

∥xk+1 − xk∥ = ∑
k∈I1

∥TΘ(xk) − xk∥ (8.11a)

≤ ∑
k∈I1

τk∥T(xk) − xk∥ (8.11b)

≤ (sup
k∈N

τk) ∑
k∈I1

µk (8.11c)

≤ (sup
k∈N

τk) ∑
k∈I1

µ1ζk (8.11d)

≤ (sup
k∈N

τk) ⋅
µ1

1− ζ
´¹¹¸¹¹¶

≜B

, (8.11e)

where the underbraced quantity, defined to be B, is finite by Assumptions 2.1.2

and 2.1.3. A classic result (e.g. see Cor. 2.15 in [25]) states, for all θ ∈R,

∥θx + (1− θ)y∥2 = θ∥x∥2 + (1− θ)∥y∥2 − θ(1− θ)∥x − y∥2, for all x, y ∈Rn. (8.12)

Additionally, because T(⋅; d) is averaged, there exists α ∈ (0, 1) such that T(⋅; d) =

94

(1− α)I+ αQ for a 1-Lipschitz operator Q. These facts imply, for all k ∈ I2,

∥xk+1 − x⋆∥2 = ∥T(xk; d) − x⋆∥2 (8.13a)

= ∥(1− α)(xk − x⋆) + α(Q(xk) − x⋆)∥2 (8.13b)

= (1− α)∥xk − x⋆∥2 + α∥Q(xk) − x⋆∥2 − α(1− α)∥Q(xk) − xk∥2 (8.13c)

≤ ∥xk − x⋆∥2 − α(1− α)∥Q(xk) − xk∥2 (8.13d)

≤ ∥xk − x⋆∥2. (8.13e)

Thus, by the above inequality and the triangle inequality,

∥xk+1 − x⋆∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∥xk − x⋆∥ + ∥xk+1 − xk∥ if k ∈ I1,

∥xk − x⋆∥ if k ∈ I2.

(8.14)

Because the terms ∥xk+1 − xk∥ for k ∈ I1 are summable by (8.11) and ∥xk+1 − x⋆∥ ≤

∥xk − x⋆∥ for k ∈ I2, the sequence {δk} defined by δk = ∥xk+1 − xk∥ for k ∈ I1

and 0 otherwise is summable, which establishes (8.9) in the second claim of the

lemma. Moreover, applying this inequality inductively reveals

∥xk∥ ≤ ∥x⋆∥ + ∥xk+1 − x⋆∥ (8.15a)

≤ ∥x⋆∥ + ∥x1 − x⋆∥ + ∑
ℓ∈I1

δk (8.15b)

≤ ∥x⋆∥ + ∥x1 − x⋆∥ + B, for all k ∈N, (8.15c)

which proves boundedness of {xk}. ∎

95

Theorem 2.1.1. If {xk} is a sequence generated by the repeated loop in the

Safe-L2O (Algorithm 2) and Assumptions 2.1.1, 2.1.2, and 2.1.3 hold, then {xk}

converges to a limit xd ∈ fix(T(⋅; d)), i. e. xk → xd.

Proof : We first show {xk} contains a limit point in the fixed point set of

T(⋅; d). This is then used to show the entire sequence {xk} converges to this

limit point. By Lemma 8.1.3, the sequence {xk} is bounded, and so there exists

a convergent subsequence {xnk} ⊆ {xk} with limit x∞. By Lemma 8.1.1, there is

τ ≥ 1 such that

0 ≤ ∥T(xk; d) − xk∥ ≤ τ∥xk+1 − xk∥, for all k ∈N. (8.16)

Applying the squeeze lemma with the result of Lemma 8.1.2 to (8.16) yields

lim
k→∞
∥T(xnk ; d) − xnk∥ = 0. (8.17)

With the 2-Lipschitz continuity of T − I and continuity of norms, (8.17) implies

∥T(x∞; d) − x∞∥ = 0 Ô⇒ x∞ ∈ fix(T(⋅; d)). (8.18)

All that remains is to show the entire sequence {xk} converges to x∞. To this

end, let ε > 0 be given. It suffices to show there exists N ∈N such that

∥xk − x∞∥ ≤ ε, for all k ≥ N. (8.19)

By Lemma 8.1.3, there is a summable sequence {δk} ⊂ [0,∞) such that

∥xk+1 − x⋆∥ ≤ ∥xk − x⋆∥ + δk, for all k ∈N and x⋆ ∈ fix(T(⋅; d)). (8.20)

Since {δk} is summable, there exists N1 ∈N such that

∞

∑
k=N1

δk ≤
ε

2
. (8.21)

Since xnk → x∞, there exists N2 ≥ N1 such that

∥xN2 − x∞∥ ≤ ε

2
. (8.22)

96

Combining (8.21) and (8.22), we see

∥xk − x∞∥ ≤ ∥xN2 − x∞∥ +
k
∑
ℓ=N2

δℓ ≤
ε

2
+ ε

2
= ε, for all k ≥ N2. (8.23)

This verifies (8.19), taking N = N2, and the proof is complete. ∎

Corollary 2.1.1. If {xk} is a sequence generated by the Safe-L2O method (Al-

gorithm 2) and Assumptions 2.1.1 and 2.1.3 hold, and {µk} is generated using

a scheme outlined in Table 2.1, then Assumption 2.1.2 holds and, by Theorem

2.1.1, there is xd ∈ fix(T(⋅; d)) such that {xk} converges to xd, i. e. xk → xd.

Proof : The proof is parsed into four parts, one for each particular choice

of the sequence {µk} in Table 2.1, where we note “Recent Term” is a special

case of “Recent Max” obtained by taking m = 1. Each proof part is completely

independent of the others and is separated by italic text. However, to avoid

excessive writing, in each section let Γ ⊆ N be the set of all indices for which the

inequality in the conditional definitions of {µk} hold, the sequence {tk} be an

ascending enumeration of Γ, and mk be the number of times the inequality in

the conditional definition of {µk} has been satisfied by iteration k. In each case,

note ∣Γ∣ = ∞.

Geometric Sequence. Define the sequence {µk} using, for each k ∈ N, the Geomet-

ric Sequence update formula in Table 2.1. This implies

µk = αmk µ1. (8.24)

Since Γ is infinite, limk→∞mk = ∞, and it follows that

lim
k→∞

µk = lim
k→∞
(1− δ)mk µ1 = 0 ⋅ µ1 = 0, (8.25)

i. e. Assumption 2.1.2 holds.

97

Arithmetic Average. Define the sequence {µk} using the AA update formula in

Table 2.1. Then observe that, at each index tk,

0 ≤ µtk+1 ≤
αµtk +mtk µtk

mtk + 1
= (1− 1− α

mtk + 1
)µtk ≤ µtk , for all k ∈N. (8.26)

Since µk+1 = µk whenever k ∉ Γ, (8.26) shows {µk} is monotonically decreasing.

Consequently, using induction reveals

0 ≤ µtk −
1− α

mtk + 1
µtk ≤ µ1 −

k
∑
ℓ=1

(1− α)µtℓ
mtℓ + 1

= µ1 −
k
∑
ℓ=1

(1− α)µtℓ
ℓ + 1

for all k ∈N, (8.27)

where we note mtℓ = ℓ in the sum since mℓ increments once each time a mod-

ification occurs in the sequence {µk}. By way of contradiction, suppose there

exists τ ∈ (0,∞) such that

lim inf
k→∞

µk ≥ τ > 0. (8.28)

With the monotonicity of {µk}, (8.27) implies

k
∑
ℓ=1

(1− α)τ
ℓ + 1

≤
k
∑
ℓ=1

(1− α)µtℓ
ℓ + 1

≤ µ1, for all k ∈N. (8.29)

However, the sum on the left hand side becomes a divergent harmonic series

as k → ∞, contradicting the finite upper bound on the right hand side. This

contradiction proves assumption (8.28) is false, from which it follows that

lim inf
k→∞

µk = 0. (8.30)

By the monotone convergence theorem and nonnegativity of each µk, we de-

duce µk → 0, i. e. Assumption 2.1.2 holds.

Exponential Moving Average. Given θ ∈ (0, 1), define the sequence {µk} using the

EMA(θ) formula in Table 2.1. For each k when µtk changes value, observe

µtk+1 = θ∥xtk+1 − T(xtk+1)∥ + (1− θ)µtk

≤ θαµtk + (1− θ)µtk

= θ(1− α)µtk .

(8.31)

98

This implies the sequence {µk} is nonincreasing and, when a decrease does

occur, it is by a geometric factor of the current iterate. By induction, it follows

µk ≤ [θ(1− α)]mk µ1, for all k ∈N. (8.32)

Since Γ is infinite, limk→∞mk = ∞. With the fact θ(1− α) ∈ (0, 1), we see

0 ≤ lim
k→∞

µk ≤ lim
k→∞
[θ(1− α)]mk µ1 = 0 ⋅ µ1 = 0, (8.33)

from which Assumption 2.1.2 holds by the squeeze theorem.

Recent Max. Let m ∈ N. Set Ξk to be the set of the most recent m indices in

Γ, counting backwards from k, where {µk} is defined by the update formula

in Table 2.1. When there are less than m indices in Γ ∩ {1, 2, . . . , k}, we let Ξk

be all of the indices in the intersection. The sequence {µk} is monotonically

decreasing since, for each k in Γ, the new term ∥xk − T(xk; d)∥ is introduced so

that ∥xk − T(xk; d)∥ ∈ Ξk+1, and this new term is no larger than the largest term

in Ξk. All that remains is to show this sequence converges to zero. By way of

contradiction, suppose there exists τ ∈ (0,∞) such that

lim inf
k→∞

µk = τ > 0. (8.34)

Then choose

ε = (1− α)τ
2α

, (8.35)

which implies α(τ + ε) < τ. By (8.34) and the fact Γ is infinite, there exists Ñ ∈ N

with Ñ > m such that

∥µtÑ
− τ∣ < ε Ô⇒ µtÑ

< τ + ε. (8.36)

Note each new element to Ξk is no larger than αµtÑ
. And, for any k after m

such replacements occur,

µk =max
ℓ∈Ξk
∥xℓ − T(xℓ; d)∥ ≤ αµtÑ

≤ α(τ + ε) < τ, (8.37)

99

a contradiction to (8.34). This shows our assumption (8.34) must be false, and

so

lim inf
k→∞

µk = 0. (8.38)

By the monotone convergence theorem, we conclude Assumption 2.1.2 holds. ∎

We conclude this section with a proof of the second safeguarding theorem.

Theorem 2.2.1. If the sequence {xk} is generated by the iteration in Algorithm 3

with firmly nonexpansive T(⋅; d) and λk = 1/(k + 1), then

∥xk − T(xk; d)∥ ≤ 1
2

⎛
⎜
⎝

d1

k
+

¿
ÁÁÀd2

1
k2 +

4C
k

⎞
⎟
⎠

, for all k ≥ 2, (8.39)

where d1 ≜ min{∥x̃ − x∥ ∶ x ∈ fix(T(⋅; d))} is the distance between the refer-

ence iterate x̃ and the set of fixed points and C ≥ 0 is an arbitrary constant. In

particular, this implies each limit point of {xk} is a fixed point.

Proof : We proceed in the following manner, with much credit due to the

analysis in [76]. First we verify an inequality with the energy sequence {Ek(xk)}

(Step 1). This is used to obtain the convergence rate (Step 2). Resulting implica-

tions about limit points are established last (Step 3). Below we assume x1 = x̃.

Step 1. We claim

Ek(xk) ≤ C
k

, for all k ≥ 2. (8.40)

We proceed by induction. First note T(⋅; d) is firmly nonexpansive, and so

2F(⋅; d) = I− T(⋅; d) is also firmly nonexpansive [28], which implies

∥2F(x; d) − 2F(v; d)∥2 ≤ ⟨2F(x; d) − 2F(v; d), x − v⟩ , for all x, v. (8.41)

Using (8.41) with x = x2 and v = x1 together with our choice of step sizes {λk},

100

we find

E2(x2) = ∥F(x2)∥2 − λ1

1− λ1
⟨F(x2), x1 − x2⟩ (8.42a)

= ∥F(x2)∥2 − ⟨F(x2), x1 − x2⟩ (8.42b)

= ⟨F(x2), F(x2) − F(x1)⟩ (8.42c)

= ∥F(x2) − F(x1)∥2 + ⟨F(x1), F(x2) − F(x1)⟩ (8.42d)

≤ 1
2
∥2F(x2) − 2F(x1)∥2 + ⟨F(x1), F(x2) − F(x1)⟩ (8.42e)

≤ ⟨F(x2) − F(x1), x2 − x1⟩ + ⟨F(x1), F(x2) − F(x1)⟩ (8.42f)

= − ⟨F(x2) − F(x1), F(x1)⟩ + ⟨F(x1), F(x2) − F(x1)⟩ (8.42g)

= 0. (8.42h)

Thus, E2(x2) ≤ 0 ≤ C/2, and the base case holds. Inductively, suppose (8.40)

holds taking k = n for some n ≥ 2. If xn+1 = yn+1, then (8.40) holds, taking

k = n + 1, by the conditional statement in Line 6 of Algorithm 3. Alternatively,

suppose xn+1 ≠ yn+1. Applying (8.41) with x = xn+1 and v = xn yields

∥F(xn+1) − F(xn)∥2 ≤ 2∥F(xn+1) − F(xn)∥2 ≤ ⟨F(xn+1) − F(xn), xn+1 − xn⟩ . (8.43)

Upon expansion of the left hand side, we discover

∥F(xn+1)∥2 ≤ ⟨F(xn+1), xn+1 − xn + 2F(xn)⟩ − ⟨F(xn), xn+1 − xn + F(xn)⟩ . (8.44)

Algebraic manipulations of the update formula for xn+1 yield the relations

xn+1 − xn + 2F(xn) = λn

1− λn
(x1 − xn+1), (8.45a)

xn+1 − xn + F(xn) = λn(x1 − xn) − (1− 2λn)F(xn), (8.45b)

Substituting (8.45) in (8.44) gives

∥F(xn+1)∥2 ≤ λn

1− λn
⟨F(xn+1), x1 − xn+1⟩ (8.46a)

− λn ⟨F(xn), x1 − xn⟩ + (1− 2λn)∥F(xn)∥2. (8.46b)

101

and we collect terms with F(xn+1) on the left hand side to obtain

∥F(xn+1)∥2 − λn

1− λn
⟨F(xn+1), x1 − xn+1⟩ ≤ (1− 2λn)∥F(xn)∥2 (8.47a)

− λn ⟨F(xn), x1 − xn⟩ . (8.47b)

Furthermore, by our choice of step size sequence {λn},

1− 2λn =
n − 1
n + 1

(8.48)

and, for n ≥ 2,

λn =
n − 1
n + 1

⋅ 1
n − 1

= n − 1
n + 1

⋅ λn−1

1− λn−1
. (8.49)

Combining (8.47), (8.48), and (8.49) with the definition of En in (2.6) yields

En+1(xn+1) ≤ n − 1
n + 1

⋅ En(xn). (8.50)

Applying the inductive hypothesis, we deduce

En+1(xn+1) ≤ n − 1
n + 1

⋅ C
n
= n − 1

n
⋅ C

n + 1
≤ C

n + 1
, (8.51)

and this inequality closes the induction. Thus, (8.40) holds by the principle of

mathematical induction.

Step 2. Let x⋆ be the projection of x1 onto fix(T(⋅; d)) so that

∥x1 − x⋆∥ = arg min{∥x1 − x∥ ∶ x ∈ fix(T(⋅; d))} = d1. (8.52)

Note this projection is well defined since the set of fixed points is closed and

convex. By (8.40), for k ≥ 2,

∥F(xk)∥2 ≤ λk
1− λk

⟨F(xk), x1 − xk⟩ + C
k

(8.53)

= λk
1− λk
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=1/k

⎛
⎜⎜
⎝
⟨F(xk), x1 − x⋆⟩ + ⟨F(xk) − F(x⋆), x⋆ − xk⟩

´¹¹¹¸¹¹¶
=0

⎞
⎟⎟
⎠
+ C

k
(8.54)

= 1
k
⟨F(xk), x1 − x⋆⟩ + C

k
(8.55)

≤ 1
k
∥F(xk)∥∥x1 − x⋆∥ + C

k
. (8.56)

102

where the third line holds since F(x⋆) = 0 and F is monotone. Using the

quadratic formula with the fact that ∥F(xk)∥2 ≥ 0, we obtain (8), as desired.

Step 3. Let x∞ be a limit point of {xk}. This implies there exists a subsequence

{xnk} that converges to x∞. Since T(⋅; d) is 1-Lipschitz and norms are continu-

ous, it follows that

0 ≤ ∥x∞ − T(x∞; d)∥ = lim
k→∞
∥xnk − T(xnk ; d)∥ ≤ lim

k→∞

1
2

⎛
⎜
⎝

d1

nk
+
¿
ÁÁÀ d2

1

n2
k
+ 4C

nk

⎞
⎟
⎠
= 0.

(8.57)

By the squeeze lemma, we deduce x∞ ∈ fix(T(⋅; d)), i. e. x∞ ∈ fix(T(⋅; d)).

Because x∞ was an arbitrarily chosen limit point, each limit point of {xk} is a

fixed point of T(⋅; d). ∎

103

JFB Proofs

This section provides proofs for results in Chapter 3. For the reader’s conve-

nience, we restate all results before proving them.

Lemma 9.2.4 If Assumption 3.1.1 and 3.2.1 hold, then JΘ in (3.9) exists and

⟨x,JΘx⟩ ≥ (1− γ)∥x∥2, for all x ∈ U . (9.58)

Additionally, JΘ is invertible, and its inverse J −1
Θ satisfies the coercivity inequality

⟨x,J −1
Θ x⟩ ≥ 1− γ

(1+ γ)2 ∥x∥
2, for all x ∈ U . (9.59)

Proof: We proceed in the following manner. First we establish the coercivity

inequality (9.58) (Step 1). This is used to show JΘ is invertible (Step 2). The

previous two results are then combined to establish the inequality (9.59) (Step

3). All unproven results that are quoted below about operators are standard and

may be found standard functional analysis texts (e.g. [149]).

Step 1. To obtain our coercivity inequality, we identify a bound on the operator

norm for ∂TΘ/∂x. Fix any unit vector v ∈ U . By the definition of differentiation,

dTΘ

dx
v = lim

ε→0+
TΘ(xd + εv; d) − TΘ(xd; d)

∥(xd + εv) − xd∥
= lim

ε→0+
TΘ(xd + εv; d) − TΘ(xd; d)

ε
. (9.60)

Thus,

∥dTΘ

dx
v∥ = ∥ lim

ε→0+
TΘ(xd + εv; d) − TΘ(xd; d)

ε
∥ = lim

ε→0+
∥TΘ(xd + εv; d) − TΘ(xd; d)∥

ε
,

(9.61)

where the first equality follows from (9.60) and the second holds by the conti-

nuity of norms. Combining (9.62) with the Lipschitz assumption (3.6) gives the

104

upper bound

∥dTΘ

dx
v∥ ≤ lim

ε→0+
γ∥(xd + εv) − xd∥

ε
= γ. (9.62)

Because the upper bound relation in (9.62) holds for an arbitrary unit vector

v ∈ U , we deduce

∥dTΘ

dx
∥ ≜ sup{∥dTΘ

dx
v∥ ∶ ∥v∥ = 1} ≤ γ. (9.63)

That is, the operator norm is bounded by γ. Together the Cauchy-Schwarz in-

equality and (9.63) imply

⟨x,
dTΘ

dx
x⟩ ≤ ∥dTΘ

dx
∥ ∥x∥2 ≤ γ∥x∥2, for all x ∈ U . (9.64)

Thus, the bilinear form ⟨ ⋅ , JΘ ⋅ ⟩ is (1− γ) coercive, i. e.

⟨x,JΘx⟩ = ∥x∥2 − ⟨x,
dTΘ

dx
x⟩ ≥ (1− γ)∥x∥2, for all x ∈ U . (9.65)

Step 2. Consider any kernel element w ∈ ker(JΘ). Then (9.65) implies

(1− γ)∥w∥2 ≤ ⟨w,JΘw⟩ = ⟨w, 0⟩ = 0 Ô⇒ (1− γ)∥w∥2 ≤ 0 Ô⇒ w = 0. (9.66)

Consequently, the kernel of JΘ is trivial, i. e.

ker(JΘ) ≜ {x ∶ JΘx = 0} = {0}, (9.67)

and wherefore the linear operator JΘ is invertible.

Step 3. By (9.62) and an elementary result in functional analysis,

∥J ⊺ΘJΘ∥ = ∥JΘ∥2 ≤ (∥I∥ + ∥
dTΘ

du
∥)

2
≤ (1+ γ)2. (9.68)

Hence

∥x∥2 = ⟨x, x⟩ = ⟨J −1
Θ x, (J ⊺ΘJΘ)J −1

Θ x⟩ ≤ (1+ γ)2 ∥J −1
Θ x∥2 , for all x ∈ U . (9.69)

Combining (9.65) and (9.69) reveals, for all x ∈ U ,

1− γ

(1+ γ)2 ⟨x, x⟩ ≤ (1− γ)∥J −1
Θ x∥2 ≤ ⟨J −1

Θ x,JΘ(J −1
Θ x)⟩ = ⟨J −1

Θ x, x⟩ . (9.70)

This establishes (9.59), and we are done. ∎

105

Lemma 9.2.5 If A ∈Rt×t is symmetric with positive eigenvalues,

λ ≜ λmax(A) + λmin(A)
2

and S ≜ λI− A, (9.71)

then

∥S∥ = λmax(A) − λmin(A)
2

. (9.72)

Proof: Since A is symmetric, the spectral theorem asserts it possesses a set of

eigenvectors that form an orthogonal basis for Rt. This same basis forms the

set of eigenvectors for λI − A, with eigenvalues of A denoted by {λi}t
i=1. So,

there exists orthogonal P ∈Rt×t and diagonal Λ with entries given by each of the

eigenvalues λi such that

S = λI− P⊺ΛP = P⊺ (λI−Λ)P. (9.73)

Substituting this equivalence into the definition of the operator norm yields

∥S∥ ≜ sup{∥Sξ∥ ∶ ∥ξ∥ = 1} = sup{∥P⊺(λI −Λ)Pξ∥ ∶ ∥ξ∥ = 1} . (9.74)

Leveraging the fact P is orthogonal enables the supremum to be restated via

∥S∥ = sup{∥(λI −Λ)Pξ∥ ∶ ∥ξ∥ = 1} = sup{∥(λI −Λ)ζ∥ ∶ ∥ζ∥ = 1} . (9.75)

Because λI−Λ is diagonal, (9.75) implies

∥S∥ =max
i∈[t]
∣λ − λi∣ =

λmax(A) − λmin(A)
2

, (9.76)

and the proof is complete. ∎

106

Theorem 3.2.1. If Assumptions 3.1.1, 3.2.1, 3.2.2, and 3.2.3 hold for given weights Θ

and data d, then

pΘ ≜ −
d

dΘ
[ℓ(yd, SΘ(TΘ(u, d))]

u=u⋆d
(9.77)

forms a descent direction for ℓ(yd,NΘ(d)) with respect to Θ.

Proof: To complete the proof, it suffices to show

⟨ dℓ
dΘ

, pΘ⟩ < 0, for all
dℓ
dΘ
≠ 0. (9.78)

Let any weights Θ and data d be given, and assume the gradient dℓ/dΘ is

nonzero. We proceed in the following manner. First we show pΘ is equiva-

lent to a preconditioned gradient (Step 1). We then

show M⊺dℓ/dΘ is nonzero, with M as in (3.14) of Assumption 3.2.3 (Step 2).

These two results are then combined to verify the descent inequality (9.78) for

the provided Θ and d (Step 3).

Step 1. Denote the dimension of each component of the gradient dℓ/dΘ using6

6 We assumed each
space is a real-valued
finite dimensional
Hilbert space, making
it equivalent to some
Euclidean space. So,
it suffices to show
everything in Euclidean
spaces.

∂TΘ

∂Θ
∈Rp×n, J −1

Θ ∈Rn×n,
∂SΘ

∂Θ
∈Rp×c,

dSΘ

du
∈Rn×c,

∂ℓ

∂y
∈Rc×1. (9.79)

Combining each of these terms yields the gradient expression7

7 In the main text, the
ordering was used to
make clear application of
the chain rule, but here
we reorder terms to get
consistent dimensions in
each matrix operation.

dℓ
dΘ
= [∂TΘ

∂Θ
J −1

Θ
dSΘ

du
+ dSΘ

dΘ
] ∂ℓ

∂y
. (9.80)

By Assumption 3.2.2, SΘ and TΘ depend on separate components of Θ = (θS, θT).

Thus,

dℓ
dΘ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂SΘ

∂θS
∂TΘ

∂θT
J −1

Θ
dSΘ

du

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∂ℓ

∂y
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂SΘ

∂θS
0

0
∂TΘ

∂θT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¸¹¹¶

M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0

0 J −1
Θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

J̃ −1
Θ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I

dSΘ

du

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∂ℓ

∂y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
v

, (9.81)

where we define8 M ∈ Rp×(n+c), J̃ −1
Θ ∈ R(n+c)×(n+c), and v ∈ R(n+c)×1 to be the

8 Note this choice of
M coincides with the
matrix M in Assumption
3.2.3.

107

underbraced quantities. This enables the gradient to be concisely expressed via

the relation

dℓ
dΘ
= MJ̃ −1

Θ v, (9.82)

and our proposed gradient alternative in (9.77) is given by

pΘ = −Mv. (9.83)

Because M has full column rank (by Assumption 3.2.3), M+M = I, enabling us to

rewrite pΘ via

pΘ = −MJ̃Θ M+MJ −1
Θ v = −(MJ̃Θ M+) dℓ

dΘ
. (9.84)

Hence pΘ is a preconditioned gradient.99 The preconditioner is
not necessarily symmet-
ric. Step 2. Set

w ≜ M⊺
dℓ
dΘ
= M⊺MJ̃ −1

Θ v. (9.85)

The fact that M has full column rank implies it has a trivial kernel. In particular,

0 ≠ dℓ
dΘ
= MJ̃ −1

Θ v Ô⇒ 0 ≠ J̃ −1
Θ v. (9.86)

Again leveraging the full column rank of M, we know M⊺M is invertible and,

thus, has trivial kernel as well. This fact together with (9.86) reveals

0 ≠ (M⊺M)J̃ −1
Θ v = w. (9.87)

Step 3. Inserting the definition of w and pΘ formulation of (9.84) into the scalar

product in (9.78) yields

⟨ dℓ
dΘ

, pΘ⟩ = − ⟨M⊺MJ̃ −1
Θ v, J̃Θ M+MJ̃ −1

Θ v⟩ = − ⟨w, J̃θ(M⊺M)−1w⟩ , (9.88)

noting M+ = (M⊺M)−1M⊺. Let λ+ and λ− be the maximum and minimum

eigenvalues of (M⊺M)−1, respectively. Note (M⊺M) is positive definite since

the full column rank of M implies

⟨ξ, M⊺Mξ⟩ = ∥Mξ∥2 > 0, for all nonzero ξ ∈Rn+c. (9.89)

108

Thus, (M⊺M)−1 is positive definite, making λ+, λ− > 0. Let λ be the average

λ ≜ λ+ + λ−
2

. (9.90)

Plugging in this choice of λ to (9.88) by adding and subtracting λI gives

−⟨w, J̃θ(M⊺M)−1w⟩ ≤ −λ(1− γ)∥w∥2 + ⟨w, J̃Θ(λI− (M⊺M)−1)w⟩ , (9.91)

noting J̃Θ is 1 − γ coercive because it is the block diagonal composition of JΘ,

which is 1− γ coercive by (9.58) in Lemma 9.2.4, and the identity matrix, which

is 1-coercive. Application of the Cauchy Schwarz inequality to the right hand

side of (9.91) reveals

−⟨w, J̃θ(M⊺M)−1w⟩ ≤ −λ(1− γ)∥w∥2 + ∥J̃Θ∥∥λI− (M⊺M)−1)∥∥w∥2. (9.92)

By Lemma 9.2.5,

∥λI− (M⊺M)−1∥ = λ+ − λ−
2

. (9.93)

Similar block diagonal argument as used above to verify J̃Θ is coercive can also

be applied to bound the operator norm of J̃Θ. Indeed, (9.63) implies

∥JΘ∥ ≤ 1+ γ Ô⇒ ∥J̃Θ∥ ≤ 1+ γ. (9.94)

Hence (9.88), (9.92), (9.93), and (9.94) together yield

⟨ dℓ
dΘ

, pΘ⟩ ≤ −
1
2
((1− γ)(λ+ + λ−) − (1+ γ)(λ+ − λ−))∥w∥2 (9.95a)

= −2(λ− − γλ+)∥w∥2. (9.95b)

The right hand expression in (9.95) is negative since (9.87) shows w ≠ 0 and the

conditioning inequality (3.15) in Assumption 3.2.3 implies (λ− −γλ+) is positive.

This verifies (9.78), completing the proof. ∎

Corollary 3.2.1. Given weights Θ and data d, there exists ε > 0 such that if xε
d ∈ U

satisfies ∥xε
d − xd∥ ≤ ε and the assumptions of Theorem 3.2.1 hold, then

pε
Θ ≜ −

d
dΘ
[ℓ(yd, SΘ(TΘ(x, d))]

x=xε
d

(9.96)

109

is a descent direction of ℓ(yd,NΘ(d)) with respect to Θ.

Proof: For notational convenience, for all x̃ ∈ U , define

pΘ(x̃) ≜ −
d

dΘ
[ℓ(yd, SΘ(TΘ(x; d))]

x=x̃
(9.97)

noting pε
Θ = pΘ(xε

d). Also define the quantity

∇ ≜ d
dΘ
[ℓ(yd,NΘ(d))] . (9.98)

Assuming ∇ ≠ 0, it suffices to show

⟨pε
Θ,∇⟩ < 0. (9.99)

By the smoothness of ℓ, SΘ, and TΘ (Assumption 3.2.1), there is δ > 0 such that

∥x − xd∥ ≤ δ Ô⇒ ∥pΘ(x) − pΘ(xd)∥ ≤
(λ− − γλ+)∥M⊺∇∥2

∥∇∥ , (9.100)

where λ+ and λ− are the maximum and minimum eigenvalues of (M⊺M)−1,

respectively. Also note M⊺∇ ≠ 0 since M⊺ has full column rank.10 Substituting10 See w in Step 2 of the
proof of Theorem 3.2.1.

the inequality (9.95) in the proof of Theorem 3.2.1 into (9.99) reveals

⟨pΘ(x),∇⟩ = ⟨pΘ(xd),∇⟩+ ⟨pΘ(x) − pΘ(xd),∇⟩ (9.101a)

≤ −2(λ− − γλ+)∥M⊺∇∥2 + ⟨pΘ(x) − pΘ(xd),∇⟩ . (9.101b)

The Cauchy Schwarz inequality and (9.100) enable us to obtain the upper bound

∣ ⟨pΘ(x) − pΘ(xd),∇⟩ ∣ ≤ (λ− − γλ+)∥M⊺∇∥2, for all x ∈ B(xd, δ), (9.102)

where B(xd, δ) is the δ-ball centered at xd. Combining (9.101) and (9.102) yields

⟨pΘ(x),∇⟩ ≤ −(λ− − γλ+)∥M⊺∇∥2, for all x ∈ B(xd, δ). (9.103)

In particular, this shows (9.99) holds when we set ε = δ. ∎

110

Nash Equilibria Proofs

Here we provide proofs for all theorems stated in the main text. For the readers

convenience we reproduce each statement before proving it

Theorem 5.1.1. If Assumptions (A1) to (A6) hold, then there is a unique Nash Equilib-

rium xd for all d ∈ D and the map d ↦ xd is Lipschitz continuous.

Proof: (A3) implies the game gradient F(⋅; d) is strictly (in fact, strongly) monotone

for all d, i. e.

⟨F(x; d) − F(y; d), x − y⟩ > 0 ∀x, y (10.104)

In game theory this is sometimes referred to as diagonal strict convexity. By [207,

Theorem 2] the Nash equilibrium x⋆d is unique. See also [84, Theorem 2.2.3].

Next observe (A4) implies F is Lipschitz continuous with respect to d while (A5)

guarantees F is α strongly monotone. [72, Theorem 2.1] then shows that around

any fixed d̄ ∈ D the map d ↦ x⋆d is locally Lipschitz, i.e. there exists a constant

Ld̄ and an open neighborhood Nd̄ ⊂ D of d̄ upon which d ↦ x⋆d is Ld̄-Lipschitz

continuous. As D̄ is compact a standard covering argument converts this local

Lipschitz property to a global Lipschitz property. ∎

Theorem 5.2.1. If Assumptions (A1) to (A6) hold, then for any ε > 0 there exists

an FΘ(⋅;⋅) such that

max
d∈D
∥x⋆d −NΘ(d)∥2 ≤ ε. (10.105)

Proof: Let ε > 0 and ζ ∈ D be given. Denote11 the map d ↦ x⋆d by L, i.e. L(d) ≜ x⋆d . 11 In this proof, the
notation L is not to
be confused with a
Lagrangian.

By Theorem 5.1.1, L is well-defined and Lipschitz continuous. Combined with

the compactness of D via (A6), this implies, by standard universal approximation

properties of neural networks [140], there exists a continuous model GΘ ∶ D → X

111

such that

max
d∈D
∥L(d) −GΘ(d)∥2 ≤

ε

2
. (10.106)

Next fix α > 0 and define the operator FΘ∶ X ×D → X by

FΘ(x; d) ≜ x −GΘ(d)
α

. (10.107)

Note FΘ is continuous by the continuity of GΘ, and so the VI and fixed point

equivalence (5.7) implies, letting xζ be the fixed point of the projected gradient

operator,

NΘ(ζ) = PC(xζ − αFΘ(xζ ; ζ)) = PC(GΘ(ζ)). (10.108)

By definition of the projection PC ,

∥PC(GΘ(ζ)) −GΘ(ζ)∥2 =min
x∈C
∥x −GΘ(ζ)∥2, (10.109)

which implies, since x⋆d = L(ζ) ∈ C,

∥PC(GΘ(ζ)) −GΘ(ζ)∥2 ≤ ∥L(ζ) −GΘ(ζ)∥2. (10.110)

Together with the triangle inequality, (10.106) and (10.110) yield

∥x⋆ζ −NΘ(ζ)∥2 = ∥L(ζ) − PC(GΘ(ζ))∥2 (10.111a)

≤ ∥L(ζ) −GΘ(ζ)∥2 + ∥GΘ(ζ) − PC(GΘ(ζ))∥2 (10.111b)

≤ 2∥L(ζ) −GΘ(ζ)∥2 (10.111c)

= ε. (10.111d)

Since (10.111) holds for arbitrarily chosen ζ ∈ D, we deduce (10.105) holds for the

provided ε. As ε > 0 was also arbitrarily chosen, the result follows. ∎

112

Variational Inequalities

Below we provide a lemma justifying the decoupling of constraints in the action

set C. Here we make use of polyhedral sets12; however, this result also holds in 12 A set is polyhedral
if it is of the form {x ∶
⟨x, ai⟩ ≤ bi , for i ∈ [p]},
for p ∈N.

a more general setting utilizing relative interiors of C1 and C2.

Theorem 5.2.2. Suppose C = C1 ∩ C2 for convex C1 and C2. If both Ci are polyhedral or

have relative interiors with a point in common and the VI admits a unique solution, then

defining

TΘ(x; d) ≜ x − PC1(x) + PC2 (2PC1(x) − x − αFΘ(PC1(x); d)) (10.112)

yields the equivalence13 13 Observe the fixed
point zd is not the
VI solution, but its
projection onto C1

is a solution. This
distinction can be
subtle, but significant, in
practice.

NΘ(d) = VI(FΘ(⋅; d),C) = PC1(zd) ⇐⇒ zd = TΘ(zd; d). (10.113)

Proof: We begin with the well-known equivalence relation [84]

x○d ∈ VI(F(⋅; d),C) ⇐⇒ 0 ∈ F(x○d ; d) + ∂δC(x○d). (10.114)

Using our assumption on C1 and C2, we may apply [206, Theorem 23.8.1] to assert

∂δC = ∂δC1 + ∂δC2 . (10.115)

Next consider three maximal14 monotone operators A, B and C, with C single- 14 A monotone operator
M is maximal if there
is no other monotone
operator S such that
Gra(M) ⊂ Gra(S)
properly [213]. This is
a technical assumption
that holds for all cases of
our interest.

valued. For each α > 0, let JαA and RαA be the resolvent of αA and reflected

resolvent of αA, respectively, i. e.

JαA ≜ (I+ αA)−1 and RαA ≜ 2JαA − I. (10.116)

In particular, note the resolvent of ∂δCi is precisely the projection operator PCi

[27, Example 23.4]. Using three operator splitting (e.g. see [75, Lemma 2.2] and

[213]), we obtain the equivalence

0 ∈ (A + B +C)(x) (10.117a)

⇐⇒ x = JαB(z), where z = z − JαB(z) + JαA(RαB − αCJαB)(z). (10.117b)

113

Setting A = ∂δC2 , B = ∂δC1 , and C = F, (10.117) reduces to

0 ∈ F(xd; d) + ∂δC1(xd) + ∂δC2(xd) ⇐⇒ xd = PC1(zd), where zd = T(zd; d).

(10.118)

Combining (10.114), (10.115), and (10.118) yields (10.113), as desired. ∎

Corollary 5.2.1. In the setting of Theorem 5.2.2, if FΘ(⋅; d) is α-cocoercive and z1 is

given, then the iteration zk+1 = TΘ(zk; d) yields convergence zk → zd ∈ fix(TΘ(⋅; d)).

Proof: Because all sets considered in this work are closed and convex, the pro-

jection operators PC1 and PC2 are averaged [46, Theorem 2.2.21]. Combined with

the fact that F is α-cocoercive, the operator T is averaged [75, Proposition 2.1].

By Theorem 1.1.1, given any z1, if a sequence {zk} is generated using updates of

the form zk+1 = T(zk; d) for an averaged operator T(⋅; d), then {zk} converges to a

fixed point zd ∈ fix(T(⋅; d)). ∎

114

Constraint Decoupling

Minkowski Sum

This subsection provides a decoupling scheme for constraints structured as a

Minkowski sum,15 i. e. 15 This arises in the
modeling Wardrop
equilibria in traffic
routing problems.

C ≜ C1 +⋯+CK, (10.119)

where Ck ⊂ X and Ck = C1
k ∩C

2
k for all k ∈ [K]. The core idea is to avoid attempting

to directly project onto C and instead perform simple projections onto each set

Ci
k, assuming the projection onto Ci

k admits an explicit formula. First, define the

product space

X ≜ X ×X × . . . ×X
´¹¹¸¹¹¶

K times

. (10.120)

For notational clarity, we denote elements of X by overlines so each element

x ∈ X is of the form x = (x1, . . . , xK) with xk ∈ X for all k ∈ [K]. Because X is a

Hilbert space, X is naturally endowed with a scalar product ⟨⋅, ⋅⟩
X

defined by

⟨x, y⟩
X
≜

K
∑
k=1
⟨xk, yk⟩. (10.121)

Between X and the product space X we define two natural maps Q−∶ X → X and

Q+ ∶ X → X by

Q−(x) ≜
K
∑
k=1

xk and Q+(x) ≜ (x, x, . . . , x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K copies

). (10.122)

In words, Q−(x) maps down to X by adding together the blocks of x and Q+(x)

maps up to X by making K copies of x, thus motivating the use of “+” and “−”

signs. Define the Cartesian product

A ≜ C1 × . . . × CK ⊆ X , (10.123)

and note Q− (A) = C. To further decouple each set Ck, also define the Cartesian

products

Ai ≜ Ci
1 × . . . × Ci

K for all i ∈ [2]. (10.124)

115

so A = A1 ∩ A2. The projection onto Ai can be computed component-wise;

namely,

PAi(x) = (PCi
1
(x1), . . . , P

Ci
K
(xK)) for all i ∈ [2]. (10.125)

We now rephrase Algorithm 7, applied to a VI in the product space

VI (Q+ ○ F ○Q−,A), into Algorithm 8 using Ai in lieu of Ci. The use of Algorithm

8 is justified by the following two lemmas. The first shows the product space

operator is monotone whenever F is. The second shows the solution sets to the

two VIs coincide, after applying Q− to map down from X to X .

Lemma 10.3.6 If F ∶ X → X is α-cocoercive, then Q+ ○F ○Q− onX is (α/K)-cocoercive.

Proof: Fix any x, y ∈ X and set Rx ≜ (F ○Q−)(x) and Ry ≜ (F ○Q−)(y). Then

⟨Q+(Rx) −Q+(Ry), x − y⟩
X
=

K
∑
k=1
⟨Rx − Ry, xk − yk⟩ (10.126a)

= ⟨Rx − Ry, Q−(x) −Q−(y)⟩ . (10.126b)

Substituting in the definition of Rx and Ry reveals

⟨Q+(Rx) −Q+(Ry), x − y⟩
X
= ⟨F(Q−(x)) − F(Q−(y)), Q−(x) −Q−(y)⟩ (10.127a)

≥ α∥F(Q−(x)) − F(Q−(y))∥2 (10.127b)

= α

K
∥Q+ ○ F ○Q−(x) −Q+ ○ F ○Q−(y)∥2

X
, (10.127c)

where the final equality follows from the definition of the norm on X . Because

(10.127) holds for arbitrary x, y ∈ X , the result follows. ∎

116

Lemma 10.3.7 For F∶ X → X , x○ ∈ VI (Q+ ○ F ○Q−,A) if and only if Q−(x○) ∈

VI (F,C).

Proof: Fix y ∈ A and x○ ∈ VI (Q+ ○ F ○Q−,A). Similarly to the proof of Lemma

10.3.6, observe

⟨(Q+ ○ F ○Q−)(x○), y − x○⟩
X
=

K
∑
k=1
⟨(F ○Q−)(x○), yk − x○k⟩ (10.128a)

= ⟨F(Q−(x○)), Q−(y) −Q−(x○)⟩ . (10.128b)

Since Q−(A) = C, it follows that x○ ≜ Q−(x○) ∈ C and w ≜ Q−(y) ∈ C. Conse-

quently,

0 ≤ ⟨(Q+ ○ F ○Q−)(x○), y − x○⟩
X
= ⟨F(x○), w − x○⟩ . (10.129)

As y was arbitrarily chosen, (10.129) holds for all w ∈ C and Q−(x○) ∈ VI (F,C).

Conversely, fix y ∈ A and x○ ∈ X such that Q−(x○) ∈ VI(F,C). Then Q−(y) ∈ C and

0 ≤ ⟨F(Q−(x○)), Q−(y) −Q−(x○)⟩ (10.130a)

=
K
∑
k=1
⟨F(Q−(x○)), yk − x○k⟩ (10.130b)

= ⟨(Q+ ○ F ○Q−)(x○)), y − x○⟩
X

. (10.130c)

Together the inequality (10.130) and the fact y ∈ A was arbitrarily chosen imply

x○ ∈ VI(Q+ ○ F ○Q−,A). This completes the proof. ∎

117

Intersections of Constraints

For completeness, we also consider constraints C that may be expressed as the

intersection of several sets, i. e. C = C1 ∩ C2⋯∩CK. Let X , ⟨⋅, ⋅⟩
X

, Q+ and Q− be as

in Appendix 7. Next define1616 Note A in Appendix
7 is the same as B1 in
(10.131), i. e. B1 = A.

B1 ≜ C1 ×⋯×CK and B2 ≜ Q+(X) = {x ∈ X ∶ x1 = ⋯ = xK}, (10.131)

and B ≜ B1 ∩ B2. Note Q−(B) = C. The logic is now the same as before;

rephrase Algorithm 1 using Bi in place of Ci. The projection PB1 can be com-

puted component-wise via

PB1(x) = (PC1(x1), . . . , PCK(xK)) , (10.132)

and PB2(x) has a simple closed form given in the following lemma.

Lemma 10.3.8 With notation as above, PB2(x) = Q+ (1
K ∑

K
k=1 xk).

Proof: By the definition of a projection and the norm on X ,

PB2(x) ≜ arg min
z∈B2

∥z − x∥2
X

(10.133a)

= arg min
z∈B2

K
∑
k=1
∥zk − xk∥2 (10.133b)

= Q+(z#), where z# = arg min
z∈X

K
∑
k=1
∥z − xk∥2, (10.133c)

so z# satisfies the following optimality condition

0 = d
dz

⎡⎢⎢⎢⎣

K
∑
k=1
∥z − xk∥2

⎤⎥⎥⎥⎦z=z#

=
K
∑
k=1

2(z# − xk) = 2K
⎛
⎝

z# − 1
K

K
∑
k=1

xk
⎞
⎠

. (10.134)

This implies

z# = 1
K

K
∑
k=1

xk. (10.135)

Together (10.133) and (10.135) yield the result, completing the proof. ∎

118

For each operator F∶ X → X , we define a corresponding product space oper-

ator F∶ X → X via

F(x) ≜ (F(x1), . . . , F(xK). (10.136)

This definition enables us to show a direct equivalence between a VI in the orig-

inal space X and the product space X . That is, we complete the analysis in

the following lemmas by showing the solution set of an appropriate VI in the

product space coincides with that of the original VI.

Lemma 10.3.9 If F∶ X → X is α-cocoercive, then the operator F∶ X → X is α-cocoercive.

Proof: Fix any x, y ∈ X . Then observe

⟨F(x) − F(y), x − y⟩
X
=

K
∑
k=1
⟨F(xk) − F(yk), xk − yk⟩ (10.137a)

≥ α
K
∑
k=1
∥F(xk) − F(yk)∥

2 (10.137b)

= α∥F(x) − F(y)∥2
X

. (10.137c)

Because (10.137) holds for arbitrarily chosen x, y ∈ X , we conclude F is α-

cocoercive. ∎

Lemma 10.3.10 For α-cocoercive F∶ X → X , x○ ∈ VI (F,C) if and only if Q+(x○) ∈

VI (F,B).

Proof: Fix any x○ ∈ VI(F,C) and set x○ = Q+(x○). An elementary proof shows

Q+ ∶ C → B is a bijection. Together with the fact x○ is a VI solution, this implies

0 ≤ K ⟨F(x○), y − x○⟩ , for all y ∈ C (10.138a)

⇐⇒ 0 ≤
K
∑
k=1
⟨F(x○), yk − x○⟩ , for all y ∈ B (10.138b)

⇐⇒ 0 ≤
K
∑
k=1
⟨F(x○k), yk − x○k⟩ , for all y ∈ B (10.138c)

⇐⇒ 0 ≤ ⟨F(x○), y − x○⟩
X

, for all y ∈ B. (10.138d)

119

By the transitive property, the first and final expressions in (10.138) are equiva-

lent, and we are done. ∎

Projections onto Intersections of Hyperplanes

Consider the set C ≜ {x ∶ Nx = b} ⊆ X , and note C is closed and convex so the

projection operator onto C is well-defined and given by

PC(z) = arg min
x∈C

1
2
∥x − z∥2 = arg min

x∈X

1
2
∥x − z∥2 s.t. Nx = b. (10.139)

For completeness we express (and prove) a projection formula for C via the fol-

lowing lemma.

Lemma 10.3.11 For nonempty C ≜ {x ∶ Nx = b}, the projection PC is given by

PC(z) = z −N†(Nz − b), (10.140)

where N† ≜ UΣ−1V⊺ and UΣV is the compact singular value decomposition of N such

that U and V have orthonormal columns and Σ is invertible.

Proof: Referring to (10.139), we see the associated Lagrangian is given by

L(x, λ) ≜ 1
2
∥x − z∥2 + ⟨λ, Nx − b⟩ . (10.141)

The optimizer x# ≜ PC(z) satisfies the optimality condition 0 = ∇L(x#, λ#) for

some λ#, which can be expanded as

0 = ∇x[L(x, λ)]
(x,λ)=(x#,λ#)

= x# − z +N⊺λ#, (10.142a)

0 = ∇λ[L(x, λ)]
(x,λ)=(x#,λ#)

= Nx# − b. (10.142b)

We claim it suffices to choose

λ# = (UΣ−2U⊺)(Nz − b). (10.143)

120

By (10.142a), this choice yields

x# = z −N⊺λ# (10.144a)

= z −N⊺(UΣ−2U⊺)(Nz − b) (10.144b)

= z − (VΣU⊺)(UΣ−2U⊺)(Nz − b) (10.144c)

= z − (VΣ−1U⊺)(Nz − b) (10.144d)

= z −N†(Nz − b). (10.144e)

To prove this formula for x# gives the projection, it suffices to show the remaining

condition Nx# = b is satisfied. Decomposing N into its singular value decompo-

sition, observe

Nx# = N(z − (VΣ−1U⊺)(Nz − b)) (10.145a)

= Nz − (UΣV⊺)(VΣ−1U⊺)(Nz − b) (10.145b)

= Nz − (UΣV⊺)(VΣ−1U⊺)(UΣV⊺z − b) (10.145c)

= Nz −UΣV⊺z +UU⊺b (10.145d)

= UU⊺b. (10.145e)

The range of N is contained in the subspace spanned by the orthonormal columns

of U, i. e. range(N) ⊆ span(u1, . . . , ur), where ui is the i-th column of U and r is

the rank of N. Because C is nonempty, b ∈ range(N) and it follows that there

exists scalars α1, . . . , αr such that

b =
r
∑
i=1

αiu
i. (10.146)

Through direct substitution, we deduce

UU⊺b = UU⊺
r
∑
i=1

αiu
i = U

⎛
⎝

r
∑

i,j=1
αi ⟨uj, ui⟩

⎞
⎠
= U

r
∑
i=1

αie
i =

r
∑
i=1

αiu
i = b. (10.147)

Thus, (10.145) and (10.147) together show the final optimality condition is satis-

fied, proving the claim. ∎

121

References

[1] Amina Adadi and Mohammed Berrada. “Peeking inside the black-box:

a survey on explainable artificial intelligence (XAI)”. In: IEEE access 6

(2018), pp. 52138–52160.

[2] Jonas Adler, Holger Kohr, and Ozan Öktem. Operator Discretization

Library (ODL). Jan. 2017.

[3] Jonas Adler and Ozan Öktem. “Learned primal-dual reconstruction”. In:

IEEE transactions on medical imaging 37.6 (2018), pp. 1322–1332.

[4] Jonas Adler and Ozan Öktem. “Solving ill-posed inverse problems

using iterative deep neural networks”. In: Inverse Problems 33.12 (2017),

p. 124007.

[5] Ron Aharoni and Yair Censor. “Block-iterative projection methods for

parallel computation of solutions to convex feasibility problems”. In:

Linear Algebra and Its Applications 120 (1989), pp. 165–175.

[6] Christopher Aicher, Nicholas J Foti, and Emily B Fox. “Adaptively

truncating backpropagation through time to control gradient bias”.

In: Uncertainty in Artificial Intelligence. PMLR. 2020, pp. 799–808.

[7] Stephanie Allen, John P Dickerson, and Steven A Gabriel. “Using

Inverse Optimization to Learn Cost Functions in Generalized Nash

Games”. In: arXiv preprint arXiv:2102.12415 (2021).

[8] Brandon Amos and J Zico Kolter. “Optnet: Differentiable optimization

as a layer in neural networks”. In: International Conference on Machine

Learning. PMLR. 2017, pp. 136–145.

122

[9] Mariano Anaya. Clean Code in Python: Refactor your legacy code base. Packt

Publishing Ltd, 2018.

[10] Cem Anil, James Lucas, and Roger Grosse. “Sorting out Lipschitz func-

tion approximation”. In: International Conference on Machine Learning.

PMLR. 2019, pp. 291–301.

[11] Matthew Arnold et al. “FactSheets: Increasing trust in AI services

through supplier’s declarations of conformity”. In: IBM Journal of Re-

search and Development 63.4/5 (2019), pp. 6–1.

[12] Simon R Arridge. “Optical tomography in medical imaging”. In: Inverse

problems 15.2 (1999), R41.

[13] Simon R Arridge and John C Schotland. “Optical tomography: forward

and inverse problems”. In: Inverse problems 25.12 (2009), p. 123010.

[14] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence

(XAI): Concepts, taxonomies, opportunities and challenges toward re-

sponsible AI”. In: Information Fusion 58 (2020), pp. 82–115.

[15] Kenneth J Arrow and Gerard Debreu. “Existence of an equilibrium for a

competitive economy”. In: Econometrica: Journal of the Econometric Society

(1954), pp. 265–290.

[16] Filipe de Avila Belbute-Peres et al. “End-to-end differentiable physics

for learning and control”. In: Advances in neural information processing

systems 31 (2018), pp. 7178–7189.

[17] Sebastian Bach et al. “On pixel-wise explanations for non-linear clas-

sifier decisions by layer-wise relevance propagation”. In: PloS one 10.7

(2015), e0130140.

123

[18] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium mod-

els”. In: Advances in Neural Information Processing Systems. 2019, pp. 690–

701.

[19] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. “Multiscale Deep Equi-

librium Models”. In: Advances in Neural Information Processing Systems 33

(2020).

[20] Shaojie Bai, Vladlen Koltun, and Zico Kolter. “Stabilizing Equilibrium

Models by Jacobian Regularization”. In: Proceedings of the 38th Interna-

tional Conference on Machine Learning. Ed. by Marina Meila and Tong

Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,

18–24 Jul 2021, pp. 554–565.

[21] Stefan Banach. “Sur les opérations dans les ensembles abstraits et leur

application aux équations intégrales”. In: Fund. math 3.1 (1922), pp. 133–

181.

[22] Hillel Bar-Gera. “Origin-based algorithm for the traffic assignment

problem”. In: Transportation Science 36.4 (2002), pp. 398–417.

[23] Hillel Bar-Gera. “Traffic assignment by paired alternative segments”. In:

Transportation Research Part B: Methodological 44.8-9 (2010), pp. 1022–1046.

[24] H. H. Bauschke and V. R. Koch. “Projection methods: Swiss army knives

for solving feasibility and best approximation problems with halfs-

paces”. In: Contemporary Mathematics 636 (2015), pp. 1–40.

[25] Heinz Bauschke and Patrick Combettes. Convex Analysis and Monotone

Operator Theory in Hilbert Spaace. 2nd. Springer, 2017.

124

[26] Heinz H Bauschke and Jonathan M Borwein. “On projection algorithms

for solving convex feasibility problems”. In: SIAM review 38.3 (1996),

pp. 367–426.

[27] Heinz H Bauschke, Patrick L Combettes, et al. Convex Analysis and

Monotone Operator Theory in Hilbert Spaces. 2nd. Springer, 2017.

[28] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and mono-

tone operator theory in Hilbert spaces. Vol. 408. Springer, 2011.

[29] Heinz H Bauschke, Patrick L Combettes, and D Russell Luke. “Phase

retrieval, error reduction algorithm, and Fienup variants: a view from

convex optimization”. In: JOSA A 19.7 (2002), pp. 1334–1345.

[30] Heinz H Bauschke and Valentin R Koch. “Projection methods: Swiss

army knives for solving feasibility and best approximation problems

with halfspaces”. In: Contemporary Mathematics 636 (2015), pp. 1–40.

[31] Amir Beck. First-order methods in optimization. Vol. 25. SIAM, 2017.

[32] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding

algorithm for linear inverse problems”. In: SIAM journal on imaging

sciences 2.1 (2009), pp. 183–202.

[33] Dimitris Bertsimas, Vishal Gupta, and Ioannis Ch Paschalidis. “Data-

driven estimation in equilibrium using inverse optimization”. In: Mathe-

matical Programming 153.2 (2015), pp. 595–633.

[34] Thomas Blumensath and Mike E. Davies. “Iterative hard thresholding

for compressed sensing”. In: Applied and Computational Harmonic Analy-

sis 27.3 (2009), pp. 265–274. issn: 1063-5203.

125

[35] M. Borgerding, P. Schniter, and S. Rangan. “AMP-Inspired Deep Net-

works for Sparse Linear Inverse Problems”. In: IEEE Transactions on

Signal Processing 65.16 (2017), pp. 4293–4308.

[36] Léon Bottou. “Large-scale machine learning with stochastic gradient

descent”. In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–

186.

[37] Tan Bui-Thanh et al. “A computational framework for infinite-dimensional

Bayesian inverse problems Part I: The linearized case, with application

to global seismic inversion”. In: SIAM Journal on Scientific Computing 35.6

(2013), A2494–A2523.

[38] Charles L Byrne. Applied Iterative Methods. en. A K Peters, Ltd., 2008.

[39] Charles L Byrne. “Block-iterative methods for image reconstruction

from projections”. In: IEEE Transactions on Image Processing 5.5 (1996),

pp. 792–794.

[40] Daniela Calvetti and Lothar Reichel. “Tikhonov regularization of large

linear problems”. In: BIT Numerical Mathematics 43.2 (2003), pp. 263–283.

[41] Emmanuel J Candes and Justin Romberg. “Quantitative robust uncer-

tainty principles and optimally sparse decompositions”. In: Foundations

of Computational Mathematics 6.2 (2006), pp. 227–254.

[42] Emmanuel J Candes et al. “Phase retrieval via matrix completion”. In:

SIAM review 57.2 (2015), pp. 225–251.

[43] Emmanuel J Candès, Justin Romberg, and Terence Tao. “Robust uncer-

tainty principles: Exact signal reconstruction from highly incomplete

frequency information”. In: IEEE Transactions on information theory 52.2

(2006), pp. 489–509.

126

[44] Guillaume Carlier and Filippo Santambrogio. “A continuous theory of

traffic congestion and Wardrop equilibria”. In: Journal of Mathematical

Sciences 181.6 (2012), pp. 792–804.

[45] Andrzej Cegielski. Iterative Methods for Fixed Point Problems in Hilbert

Spaces. Lecture Notes in Mathematics 2057. Springer, 2012.

[46] Andrzej Cegielski. Iterative methods for fixed point problems in Hilbert

spaces. Vol. 2057. Springer, 2012.

[47] Yair Censor. “Superiorization and perturbation resilience of algorithms:

a continuously updated bibliography”. In: arXiv preprint arXiv:1506.04219

(2021).

[48] Yair Censor. “Weak and Strong Superiorization: Between Feasibility-

Seeking and Minimization”. In: Analele Universitatii "Ovidius" Constanta

- Seria Matematica 23.3 (2017), pp. 41–54. doi: doi:10.1515/auom-2015-

0046. url: https://doi.org/10.1515/auom-2015-0046.

[49] Yair Censor and Andrzej Cegielski. “Projection Methods: An Anno-

tated Bibliography of Books and Reviews”. In: Optimization 64.11 (2015),

pp. 2343–2358.

[50] Yair Censor, Ran Davidi, and Gabor T Herman. “Perturbation resilience

and superiorization of iterative algorithms”. In: Inverse Problems 26.6

(2010), p. 065008.

[51] Yair Censor and Alexander Segal. “Iterative projection methods in

biomedical inverse problems”. In: Mathematical methods in biomedical

imaging and intensity-modulated radiation therapy (IMRT) 10 (2008), pp. 65–

96.

127

https://doi.org/doi:10.1515/auom-2015-0046
https://doi.org/doi:10.1515/auom-2015-0046
https://doi.org/10.1515/auom-2015-0046

[52] Yair Censor and Alexander Segal. “On the string averaging method for

sparse common fixed-point problems”. In: International Transactions in

Operational Research 16.4 (2009), pp. 481–494.

[53] Yair Censor and Eli Tom. “Convergence of string-averaging projection

schemes for inconsistent convex feasibility problems”. In: Optimization

Methods and Software 18.5 (2003), pp. 543–554.

[54] Yair Censor and Alexander J Zaslavski. “Convergence and perturbation

resilience of dynamic string-averaging projection methods”. In: Compu-

tational Optimization and Applications 54.1 (2013), pp. 65–76.

[55] Yair Censor et al. “On diagonally relaxed orthogonal projection meth-

ods”. In: SIAM Journal on Scientific Computing 30.1 (2008), pp. 473–504.

[56] Yair Censor et al. “On the effectiveness of projection methods for convex

feasibility problems with linear inequality constraints”. In: Computational

Optimization and Applications 51.3 (2012), pp. 1065–1088.

[57] Raymond H Chan et al. “A two-stage method for spectral–spatial classi-

fication of hyperspectral images”. In: Journal of Mathematical Imaging and

Vision (2020), pp. 1–18.

[58] Stanley H Chan, Xiran Wang, and Omar A Elgendy. “Plug-and-play

ADMM for image restoration: Fixed-point convergence and applica-

tions”. In: IEEE Transactions on Computational Imaging 3.1 (2016), pp. 84–

98.

[59] Tony Chan, Antonio Marquina, and Pep Mulet. “High-order total

variation-based image restoration”. In: SIAM Journal on Scientific Com-

puting 22.2 (2000), pp. 503–516.

128

[60] Bo Chang et al. “Reversible architectures for arbitrarily deep residual

neural networks”. In: Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 32. 1. 2018.

[61] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Ad-

vances in neural information processing systems. 2018, pp. 6571–6583.

[62] Tianlong Chen et al. “Learning to optimize: A primer and a bench-

mark”. In: arXiv preprint arXiv:2103.12828 (2021).

[63] Xiaohan Chen et al. “Theoretical Linear Convergence of Unfolded ISTA

and Its Practical Weights and Thresholds”. In: Advances in Neural Infor-

mation Processing Systems 31. Ed. by S. Bengio et al. Curran Associates,

Inc., 2018, pp. 9061–9071.

[64] Xiaohan Chen et al. “Theoretical linear convergence of unfolded ISTA

and its practical weights and thresholds”. In: arXiv preprint arXiv:1808.10038

(2018).

[65] Gianfranco Cimmino. “Cacolo approssimato per le soluzioni dei systemi

di equazioni lineari”. In: La Ricerca Scientifica (Roma) 1 (1938), pp. 326–

333.

[66] Moustapha Cisse et al. “Parseval networks: Improving robustness to

adversarial examples”. In: International Conference on Machine Learning.

PMLR. 2017, pp. 854–863.

[67] Regev Cohen, Michael Elad, and Peyman Milanfar. “Regularization

by denoising via fixed-point projection (red-pro)”. In: arXiv preprint

arXiv:2008.00226 (2020).

129

[68] Patrick L Combettes and Jean-Christophe Pesquet. “Lipschitz certificates

for layered network structures driven by averaged activation operators”.

In: SIAM Journal on Mathematics of Data Science 2.2 (2020), pp. 529–557.

[69] Balázs Csanád Csáji et al. “Approximation with artificial neural net-

works”. In: Faculty of Sciences, Eötvös Lorànd University, Hungary 24.48

(2001), p. 7.

[70] Felipe Cucker and Steve Smale. “Best choices for regularization parame-

ters in learning theory: on the bias-variance problem”. In: Foundations of

computational Mathematics 2.4 (2002), pp. 413–428.

[71] Zhiyong Cui et al. “Traffic graph convolutional recurrent neural net-

work: A deep learning framework for network-scale traffic learning and

forecasting”. In: IEEE Transactions on Intelligent Transportation Systems

21.11 (2019), pp. 4883–4894.

[72] Stella Dafermos. “Sensitivity analysis in variational inequalities”. In:

Mathematics of Operations Research 13.3 (1988), pp. 421–434.

[73] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding

algorithm for linear inverse problems with a sparsity constraint”. en. In:

Communications on Pure and Applied Mathematics 57.11 (2004), pp. 1413–

1457.

[74] Ran Davidi, Gabor T Herman, and Yair Censor. “Perturbation-resilient

block-iterative projection methods with application to image recon-

struction from projections”. In: International Transactions in Operational

Research 16.4 (2009), pp. 505–524.

[75] Damek Davis and Wotao Yin. “A three-operator splitting scheme and

its optimization applications”. In: Set-valued and variational analysis 25.4

(2017), pp. 829–858.

130

[76] Jelena Diakonikolas. “Halpern iteration for near-optimal and parameter-

free monotone inclusion and strong solutions to variational inequali-

ties”. In: Conference on Learning Theory. PMLR. 2020, pp. 1428–1451.

[77] Robert B Dial. “A path-based user-equilibrium traffic assignment algo-

rithm that obviates path storage and enumeration”. In: Transportation

Research Part B: Methodological 40.10 (2006), pp. 917–936.

[78] David L Donoho. “Compressed sensing”. In: IEEE Transactions on infor-

mation theory 52.4 (2006), pp. 1289–1306.

[79] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. “Explainable

artificial intelligence: A survey”. In: 2018 41st International convention on

information and communication technology, electronics and microelectronics

(MIPRO). IEEE. 2018, pp. 0210–0215.

[80] John Duchi et al. “Efficient projections onto the l 1-ball for learning in

high dimensions”. In: Proceedings of the 25th international conference on

Machine learning. 2008, pp. 272–279.

[81] Dan E. Dudgeon and Russell M. Mersereau. “Multidimensional Digital

Signal Processing”. In: Prentice Hall Professional Technical Reference (1990).

[82] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented Neu-

ral ODEs”. In: Advances in Neural Information Processing Systems. Ed. by

H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url: https://

proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-

Paper.pdf.

[83] Michael Elad, Mario AT Figueiredo, and Yi Ma. “On the role of sparse

and redundant representations in image processing”. In: Proceedings of

the IEEE 98.6 (2010), pp. 972–982.

131

https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf

[84] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational

inequalities and complementarity problems. Springer Science & Business

Media, 2007.

[85] Jianqing Fan and Runze Li. “Variable selection via nonconcave penal-

ized likelihood and its oracle properties”. In: Journal of the American

statistical Association 96.456 (2001), pp. 1348–1360.

[86] Richard Feynman. Atoms in Motion. Remarks by Richard Feynman dur-

ing his lecture at California Institute of Technology [Accessed: 2021 12

01]. Sept. 1961. url: https://www.feynmanlectures.caltech.edu/I_01.

html.

[87] James R Fienup. “Phase retrieval algorithms: A comparison”. In: Applied

optics 21.15 (1982), pp. 2758–2769.

[88] Chris Finlay et al. “How to train your neural ODE”. In: arXiv preprint

arXiv:2002.02798 (2020).

[89] Chris Finlay et al. “Lipschitz regularized deep neural networks gener-

alize and are adversarially robust”. In: arXiv preprint arXiv:1808.09540

(2018).

[90] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-

learning for fast adaptation of deep networks”. In: Proc. International

Conference on Machine Learning (ICML). 2017, pp. 1126–1135.

[91] Marguerite Frank and Philip Wolfe. “An algorithm for quadratic pro-

gramming”. In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.

[92] Benjamin Franklin. On Protection of Towns from Fire, 4 February 1735.

1734. url: https://founders.archives.gov/documents/Franklin/01-

02-02-0002.

132

https://www.feynmanlectures.caltech.edu/I_01.html
https://www.feynmanlectures.caltech.edu/I_01.html
https://founders.archives.gov/documents/Franklin/01-02-02-0002
https://founders.archives.gov/documents/Franklin/01-02-02-0002

[93] Samy Wu Fung. “Large-Scale Parameter Estimation in Geophysics and

Machine Learning”. PhD thesis. Emory University, 2019.

[94] Samy Wu Fung and Lars Ruthotto. “A multiscale method for model or-

der reduction in PDE parameter estimation”. In: Journal of Computational

and Applied Mathematics 350 (2019), pp. 19–34.

[95] Samy Wu Fung and Lars Ruthotto. “An uncertainty-weighted asyn-

chronous ADMM method for parallel PDE parameter estimation”. In:

SIAM Journal on Scientific Computing 41.5 (2019), S129–S148.

[96] Samy Wu Fung and Zichao Wendy. “Multigrid optimization for large-

scale ptychographic phase retrieval”. In: SIAM Journal on Imaging Sci-

ences 13.1 (2020), pp. 214–233.

[97] Samy Wu Fung et al. “JFB: Jacobian-free Backpropagation for Implicit

Networks”. In: Proceedings of the AAAI Conference on Artificial Intelligence

(2022).

[98] Bolin Gao and Lacra Pavel. “On the properties of the softmax function

with application in game theory and reinforcement learning”. In: arXiv

preprint arXiv:1704.00805 (2017).

[99] Zhengyang Geng et al. “Is Attention Better Than Matrix Decomposi-

tion?” In: International Conference on Learning Representations. 2021. url:

https://openreview.net/forum?id=1FvkSpWosOl.

[100] Zhengyang Geng et al. “On Training Implicit Models”. In: Thirty-Fifth

Conference on Neural Information Processing Systems. 2021.

[101] Laurent El Ghaoui et al. “Implicit Deep Learning”. In: arXiv preprint

arXiv:1908.06315 (2019).

133

https://openreview.net/forum?id=1FvkSpWosOl

[102] Amir Gholami, Kurt Keutzer, and George Biros. “ANODE: Uncondi-

tionally accurate memory-efficient gradients for neural ODEs”. In: arXiv

preprint arXiv:1902.10298 (2019).

[103] Davis Gilton, Gregory Ongie, and Rebecca Willett. “Deep Equilib-

rium Architectures for Inverse Problems in Imaging”. In: arXiv preprint

arXiv:2102.07944 (2021).

[104] R. Giryes et al. “Tradeoffs Between Convergence Speed and Recon-

struction Accuracy in Inverse Problems”. In: IEEE Transactions on Signal

Processing 66.7 (2018), pp. 1676–1690.

[105] Pontus Giselsson, Mattias Falt, and Stephen Boyd. “Line search for av-

eraged operator iteration”. en. In: 2016 IEEE 55th Conference on Decision

and Control (CDC). Las Vegas, NV, USA: IEEE, Dec. 2016, pp. 1015–1022.

[106] Tom Goldstein and Stanley Osher. “The Split Bregman Method for L1-

Regularized Problems”. In: SIAM Journal on Imaging Sciences 2.2 (2009),

pp. 323–343.

[107] Gene H Golub, Per Christian Hansen, and Dianne P O’Leary. “Tikhonov

regularization and total least squares”. In: SIAM journal on matrix analy-

sis and applications 21.1 (1999), pp. 185–194.

[108] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in

neural information processing systems. 2014, pp. 2672–2680.

[109] Dan Gordon and Rachel Gordon. “Component-averaged row projec-

tions: A robust, block-parallel scheme for sparse linear systems”. In:

SIAM Journal on Scientific Computing 27.3 (2005), pp. 1092–1117.

[110] Henry Gouk et al. “Regularisation of neural networks by enforcing

Lipschitz continuity”. In: Machine Learning 110.2 (Feb. 2021), pp. 393–

134

416. issn: 1573-0565. doi: 10.1007/s10994-020-05929-w. url: https:

//doi.org/10.1007/s10994-020-05929-w.

[111] Stephen Gould, Richard Hartley, and Dylan Campbell. “Deep declara-

tive networks: A new hope”. In: arXiv preprint arXiv:1909.04866 (2019).

[112] Karol Gregor and Yann LeCun. “Learning fast approximations of sparse

coding”. In: Proceedings of the 27th international conference on international

conference on machine learning. 2010, pp. 399–406.

[113] Shengnan Guo et al. “Attention based spatial-temporal graph convolu-

tional networks for traffic flow forecasting”. In: Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 922–929.

[114] E Haber et al. “Fast simulation of 3D electromagnetic problems using

potentials”. In: Journal of Computational Physics 163.1 (2000), pp. 150–171.

[115] Eldad Haber. Computational methods in geophysical electromagnetics. SIAM,

2014.

[116] Eldad Haber, Uri M Ascher, and Douglas W Oldenburg. “Inversion of

3D electromagnetic data in frequency and time domain using an inexact

all-at-once approach”. In: Geophysics 69.5 (2004), pp. 1216–1228.

[117] Eldad Haber and Lars Ruthotto. “Stable architectures for deep neural

networks”. In: Inverse Problems 34.1 (2017), p. 014004.

[118] Benjamin Halpern. “Fixed points of nonexpanding maps”. In: Bulletin of

the American Mathematical Society 73.6 (1967), pp. 957–961.

[119] James Hannan. “APPROXIMATION TO BAYES RISK IN REPEATED

PLAY”. In: Contributions to the Theory of Games 21.39 (1957), p. 97.

[120] Per Christian Hansen, James G Nagy, and Dianne P O’leary. Deblurring

images: matrices, spectra, and filtering. SIAM, 2006.

135

https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w
https://doi.org/10.1007/s10994-020-05929-w

[121] Sergiu Hart and Andreu Mas-Colell. “A simple adaptive procedure

leading to correlated equilibrium”. In: Econometrica 68.5 (2000), pp. 1127–

1150.

[122] Hongjin He and Hong-Kun Xu. “Perturbation resilience and superior-

ization methodology of averaged mappings”. In: Inverse Problems 33.4

(2017), p. 044007.

[123] Kaiming He et al. “Deep residual learning for image recognition”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 770–778.

[124] Howard Heaton and Yair Censor. “Asynchronous sequential inertial it-

erations for common fixed points problems with an application to linear

systems”. In: Journal of Global Optimization 74.1 (May 2019), pp. 95–119.

issn: 1573-2916.

[125] Howard Heaton et al. “Feasibility-based fixed point networks”. In: Fixed

Point Theory and Algorithms for Sciences and Engineering (2021).

[126] Howard Heaton et al. “Learn to Predict Equilibria via Fixed Point Net-

works”. In: arXiv preprint arXiv:2106.00906 (2021).

[127] Howard Heaton et al. “Safeguarded Learned Convex Optimization”. In:

arXiv preprint arXiv:2003.01880 (2020).

[128] Howard Heaton et al. “Wasserstein-based Projection with Applications

to Inverse Problems”. In: arXiv preprint arXiv:2008.02200 (2020).

[129] Gabor T Herman et al. “Superiorization: An optimization heuristic for

medical physics”. In: Medical physics 39.9 (2012), pp. 5532–5546.

136

[130] John R. Hershey, Jonathan Le Roux, and Felix Weninger. “Deep Un-

folding: Model-Based Inspiration of Novel Deep Architectures”. In:

arXiv:1409.2574 (2014).

[131] David Hilbert. “Mathematical problems”. In: Bulletin of the American

Mathematical Society 8.10 (1902), pp. 437–479.

[132] Zhichun Huang, Shaojie Bai, and J Zico Kolter. “Implicit2: Implicit Lay-

ers for Implicit Representations”. In: Advances in Neural Information

Processing Systems 34 (2021).

[133] Tony Humphries, J Winn, and Adel Faridani. “Superiorized algorithm

for reconstruction of CT images from sparse-view and limited-angle

polyenergetic data”. In: Physics in Medicine & Biology 62.16 (2017),

p. 6762.

[134] Antony Jameson. “Aerodynamic design via control theory”. In: Journal

of scientific computing 3.3 (1988), pp. 233–260.

[135] Younghan Jeon, Minsik Lee, and Jin Young Choi. “Differentiable For-

ward and Backward Fixed-Point Iteration Layers”. In: IEEE Access

(2021).

[136] Changhui Jiang et al. “Super-resolution ct image reconstruction based

on dictionary learning and sparse representation”. In: Scientific reports

8.1 (2018), pp. 1–10.

[137] Kyong Hwan Jin et al. “Deep convolutional neural network for inverse

problems in imaging”. In: IEEE Transactions on Image Processing 26.9

(2017), pp. 4509–4522.

137

[138] S Kaczmarz. “Angenaherte Auflosung von Systemen linearer Gleichun-

gen”. In: Bulletin International de L’Académie Polonaise des Sciences et des

Lettres A (1937).

[139] Kelvin Kan, Samy Wu Fung, and Lars Ruthotto. “PNKH-B: A Projected

Newton–Krylov Method for Large-Scale Bound-Constrained Optimiza-

tion”. In: SIAM Journal on Scientific Computing 0 (2021), S704–S726.

[140] Patrick Kidger and Terry Lyons. “Universal approximation with deep

narrow networks”. In: Conference on Learning Theory. PMLR. 2020,

pp. 2306–2327.

[141] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic

Optimization”. In: ICLR (Poster). 2015.

[142] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic

optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[143] Mikhail Viktorovich Klibanov. “Determination of a compactly sup-

ported function from the argument of its Fourier transform”. In: Doklady

Akademii Nauk. Vol. 289. 3. Russian Academy of Sciences. 1986, pp. 539–

540.

[144] Erich Kobler et al. “Variational networks: connecting variational meth-

ods and deep learning”. In: German conference on pattern recognition.

Springer. 2017, pp. 281–293.

[145] Ioannis C Konstantakopoulos et al. “Social game for building energy

efficiency: Utility learning, simulation, and analysis”. In: arXiv preprint

arXiv:1407.0727 (2014).

[146] James Kotary et al. “End-to-End Constrained Optimization Learning: A

Survey”. In: arXiv preprint arXiv:2103.16378 (2021).

138

[147] Yuichiro Koyama et al. “Music Source Separation with Deep Equilib-

rium Models”. In: arXiv preprint arXiv:2110.06494 (2021).

[148] M.A. Krasnosel’skiı̆. “Two remarks about the method of successive

approximations”. In: Uspekhi Mat. Nauk 10 (1955), pp. 123–127.

[149] Erwin Kreyszig. Introductory Functional Analysis with Applications. Vol. 1.

Wiley New York, 1978.

[150] Alex Krizhevsky and G. Hinton. Learning Multiple Layers of Features from

Tiny Images. Tech. rep. University of Toronto, 2009.

[151] Nathan Lawrence et al. “Almost Surely Stable Deep Dynamics”. In: Ad-

vances in Neural Information Processing Systems. Ed. by H. Larochelle et al.

Vol. 33. Curran Associates, Inc., 2020, pp. 18942–18953. url: https://

proceedings.neurips.cc/paper/2020/file/daecf755df5b1d637033bb29b319c39a-

Paper.pdf.

[152] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit

database”. In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist

2 (2010).

[153] Johannes Leuschner et al. “The LoDoPaB-CT dataset: A benchmark

dataset for low-dose CT reconstruction methods”. In: arXiv preprint

arXiv:1910.01113 (2019).

[154] Jiayang Li et al. “End-to-End Learning and Intervention in Games”. In:

Advances in Neural Information Processing Systems 33 (2020).

[155] Shuang Li et al. “Cubic regularization for differentiable games”. In:

NeurIPS Workshop 2019.

139

https://proceedings.neurips.cc/paper/2020/file/daecf755df5b1d637033bb29b319c39a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/daecf755df5b1d637033bb29b319c39a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/daecf755df5b1d637033bb29b319c39a-Paper.pdf

[156] Yaguang Li et al. “Diffusion Convolutional Recurrent Neural Network:

Data-Driven Traffic Forecasting”. In: International Conference on Learning

Representations. 2018.

[157] Renjie Liao et al. “Reviving and improving recurrent back-propagation”.

In: International Conference on Machine Learning. PMLR. 2018, pp. 3082–

3091.

[158] Johan Lie and Jan M Nordbotten. “Inverse scale spaces for nonlinear

regularization”. In: Journal of Mathematical Imaging and Vision 27.1 (2007),

pp. 41–50.

[159] Alex Tong Lin et al. “Alternating the population and control neural

networks to solve high-dimensional stochastic mean-field games”. In:

Proceedings of the National Academy of Sciences 118.31 (2021).

[160] Alex Tong Lin et al. “APAC-Net: Alternating the population and agent

control via two neural networks to solve high-dimensional stochastic

mean field games”. In: arXiv preprint arXiv:2002.10113 (2020).

[161] Chun Kai Ling, Fei Fang, and J Zico Kolter. “Large scale learning of

agent rationality in two-player zero-sum games”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 6104–6111.

[162] Chun Kai Ling, Fei Fang, and J Zico Kolter. “What game are we play-

ing? end-to-end learning in normal and extensive form games”. In:

arXiv preprint arXiv:1805.02777 (2018).

[163] Jialin Liu and Xiaohan Chen. “ALISTA: Analytic weights are as good

as learned weights in LISTA”. In: International Conference on Learning

Representations (ICLR). 2019.

140

[164] Jialin Liu et al. “ALISTA: Analytic Weights Are As Good As Learned

Weights in LISTA”. In: International Conference on Learning Representa-

tions. 2019.

[165] Andreas Look et al. “Differentiable Implicit Layers”. In: arXiv preprint

arXiv:2010.07078 (2020).

[166] Dirk A Lorenz et al. “A sparse Kaczmarz solver and a linearized Breg-

man method for online compressed sensing”. In: 2014 IEEE international

conference on image processing (ICIP). IEEE. 2014, pp. 1347–1351.

[167] Jonathan Lorraine, Paul Vicol, and David Duvenaud. “Optimizing mil-

lions of hyperparameters by implicit differentiation”. In: International

Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 1540–

1552.

[168] Yiping Lu et al. “Beyond finite layer neural networks: Bridging deep

architectures and numerical differential equations”. In: International

Conference on Machine Learning. PMLR. 2018, pp. 3276–3285.

[169] Zhou Lu et al. “The expressive power of neural networks: A view from

the width”. In: arXiv preprint arXiv:1709.02540 (2017).

[170] Jelena Luketina et al. “Scalable gradient-based tuning of continuous

regularization hyperparameters”. In: International conference on machine

learning. PMLR. 2016, pp. 2952–2960.

[171] Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. “Adversar-

ial regularizers in inverse problems”. In: Advances in Neural Information

Processing Systems (2018), pp. 8507–8516.

[172] Robert Mann. “Mean Value Methods in Iteration”. In: 4.3 (1953), pp. 506–

510.

141

[173] D. Martin et al. “A Database of Human Segmented Natural Images and

its Application to Evaluating Segmentation Algorithms and Measuring

Ecological Statistics”. In: Proc. 8th Int’l Conf. Computer Vision. Vol. 2. July

2001, pp. 416–423.

[174] Chris Metzler, Ali Mousavi, and Richard Baraniuk. “Learned D-AMP:

Principled Neural Network based Compressive Image Recovery”. In:

Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et

al. Curran Associates, Inc., 2017, pp. 1772–1783.

[175] Margaret Mitchell et al. “Model cards for model reporting”. In: Pro-

ceedings of the conference on fairness, accountability, and transparency. 2019,

pp. 220–229.

[176] Michael Moeller, Thomas Mollenhoff, and Daniel Cremers. “Controlling

neural networks via energy dissipation”. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2019, pp. 3256–3265.

[177] Vishal Monga, Yuelong Li, and Yonina C Eldar. “Algorithm unrolling:

Interpretable, efficient deep learning for signal and image processing”.

In: IEEE Signal Processing Magazine 38.2 (2021), pp. 18–44.

[178] Eliakim H Moore. “On the reciprocal of the general algebraic matrix”.

In: Bulletin of the American Mathematical Society 26 (1920), pp. 394–395.

[179] Thomas Moreau and Joan Bruna. “Understanding Trainable Sparse

Coding with Matrix Factorization”. In: 2017.

[180] Katharina Morik et al. “The Care Label Concept: A Certification Suite

for Trustworthy and Resource-Aware Machine Learning”. In: arXiv

preprint arXiv:2106.00512 (2021).

142

[181] Katharina Morik et al. “Yes We Care!–Certification for Machine Learn-

ing Methods through the Care Label Framework”. In: arXiv preprint

arXiv:2105.10197 (2021).

[182] John F Nash et al. “Equilibrium points in n-person games”. In: Proceed-

ings of the national academy of sciences 36.1 (1950), pp. 48–49.

[183] Yuval Netzer et al. “Reading digits in natural images with unsupervised

feature learning”. In: NIPS Workshop on Deep Learning and Unsupervised

Feature Learning. 2011.

[184] Daniel O’Connor and Lieven Vandenberghe. “Primal-dual decompo-

sition by operator splitting and applications to image deblurring”. In:

SIAM Journal on Imaging Sciences 7.3 (2014), pp. 1724–1754.

[185] Derek Onken and Lars Ruthotto. “Discretize-Optimize vs. Optimize-

Discretize for Time-Series Regression and Continuous Normalizing

Flows”. In: arXiv preprint arXiv:2005.13420 (2020).

[186] Derek Onken et al. “OT-Flow: Fast and Accurate Continuous Normal-

izing Flows via Optimal Transport”. In: Proceedings of the AAAI Confer-

ence on Artificial Intelligence 35.10 (2021), pp. 9223–9232. url: https:

//ojs.aaai.org/index.php/AAAI/article/view/17113.

[187] C. E. Ordoñez et al. “A real-time image reconstruction system for par-

ticle treatment planning using proton computed tomography (pct)”. In:

Physics Procedia 90 (2017), pp. 193–199.

[188] Stanley Osher, Zuoqiang Shi, and Wei Zhu. “Low dimensional manifold

model for image processing”. In: SIAM Journal on Imaging Sciences 10.4

(2017), pp. 1669–1690.

143

https://ojs.aaai.org/index.php/AAAI/article/view/17113
https://ojs.aaai.org/index.php/AAAI/article/view/17113

[189] Stanley Osher et al. “An iterative regularization method for total variation-

based image restoration”. In: Multiscale Modeling & Simulation 4.2 (2005),

pp. 460–489.

[190] Dario Paccagnan et al. “Nash and Wardrop equilibria in aggregative

games with coupling constraints”. In: IEEE Transactions on Automatic

Control 64.4 (2018), pp. 1373–1388.

[191] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

[192] Adam Paszke et al. “Pytorch: An imperative style, high-performance

deep learning library”. In: Advances in neural information processing sys-

tems. 2019, pp. 8026–8037.

[193] Michael Patriksson and R Tyrrell Rockafellar. “Sensitivity analysis of

variational inequalities over aggregated polyhedra, with application to

traffic equilibria”. In: Transportation Science 37.1 (2003), pp. 56–68.

[194] S. Penfold et al. “Block-iterative and string-averaging projection algo-

rithms in proton computed tomography image reconstruction”. In: in:

Censor Y., Jiang M., Wang G. (eds), Biomedical Mathematics: Promising Di-

rections in Imaging, Therapy Planning and Inverse Problems, Medical Physics

Publishing Madison (2010), pp. 347–368.

[195] S.N. Penfold et al. “Total variation superiorization schemes in proton

computed tomography image reconstruction”. In: Medical physics 37.11

(2010), pp. 5887–5895.

[196] Roger Penrose. “A generalized inverse for matrices”. In: Mathematical

Proceedings of the Cambridge Philosophical Society. Vol. 51. 3. Cambridge

University Press. 1955, pp. 406–413.

144

[197] Gabriel Peyré. “Manifold models for signals and images”. In: Computer

vision and image understanding 113.2 (2009), pp. 249–260.

[198] James Pita et al. “Deployed ARMOR protection: The application of a

game theoretic model for security at the Los Angeles International Air-

port”. In: Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems: industrial track. 2008, pp. 125–132.

[199] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-

informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential

equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707.

[200] Aravind Rajeswaran et al. “Meta-Learning with Implicit Gradients”.

In: Advances in Neural Information Processing Systems. Ed. by H. Wallach

et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.

neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-

Paper.pdf.

[201] Lillian J Ratliff et al. “Social game for building energy efficiency: Incen-

tive design”. In: 2014 52nd Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE. 2014, pp. 1011–1018.

[202] Simeon Reich. “Weak convergence theorems for nonexpansive map-

pings in Banach spaces”. In: Journal of Mathematical Analysis and Applica-

tions 67.2 (1979), pp. 274–276.

[203] Max Revay and Ian Manchester. “Contracting implicit recurrent neural

networks: Stable models with improved trainability”. In: Learning for

Dynamics and Control. PMLR. 2020, pp. 393–403.

145

https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf

[204] Wolfgang Ring. “Structural properties of solutions to total variation reg-

ularization problems”. In: ESAIM: Mathematical Modelling and Numerical

Analysis 34.4 (2000), pp. 799–810.

[205] Herbert Robbins and Sutton Monro. “A stochastic approximation

method”. In: The annals of mathematical statistics (1951), pp. 400–407.

[206] R Tyrrell Rockafellar. Convex analysis. Vol. 36. Princeton university press,

1970.

[207] J Ben Rosen. “Existence and uniqueness of equilibrium points for con-

cave n-person games”. In: Econometrica: Journal of the Econometric Society

(1965), pp. 520–534.

[208] Tim Roughgarden. “Routing games”. In: Algorithmic game theory 18

(2007), pp. 459–484.

[209] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total

variation based noise removal algorithms”. In: Physica D: nonlinear phe-

nomena 60.1-4 (1992), pp. 259–268.

[210] Lars Ruthotto and Eldad Haber. “An Introduction to Deep Generative

Modeling”. In: arXiv preprint arXiv:2103.05180 (2021).

[211] Lars Ruthotto and Eldad Haber. “Deep neural networks motivated by

partial differential equations”. In: Journal of Mathematical Imaging and

Vision (2019), pp. 1–13.

[212] Lars Ruthotto et al. “A machine learning framework for solving high-

dimensional mean field game and mean field control problems”. In:

Proceedings of the National Academy of Sciences 117.17 (2020), pp. 9183–

9193.

146

[213] Ernest Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithm

Designs via Monotone Operators. Cambridge, England: Cambridge Uni-

versity Press, 2022.

[214] Wojciech Samek and Klaus-Robert Müller. “Towards explainable artifi-

cial intelligence”. In: Explainable AI: interpreting, explaining and visualizing

deep learning. Springer, 2019, pp. 5–22.

[215] Frank Schöpfer and Dirk A Lorenz. “Linear convergence of the ran-

domized sparse Kaczmarz method”. In: Mathematical Programming 173.1

(2019), pp. 509–536.

[216] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. “Think Globally, Act

Locally: A Deep Neural Network Approach to High-Dimensional

Time Series Forecasting”. In: Advances in Neural Information Process-

ing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc.,

2019. url: https://proceedings.neurips.cc/paper/2019/file/

3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf.

[217] Pier Giuseppe Sessa et al. “Contextual Games: Multi-Agent Learning

with Side Information”. In: Advances in Neural Information Processing

Systems 33 (2020).

[218] Jiayi Shen et al. “Learning A Minimax Optimizer: A Pilot Study”. In:

International Conference on Learning Representations (ICLR). 2021.

[219] Nir Shlezinger et al. “Model-Based Deep Learning”. In: arXiv preprint

arXiv:2012.08405 (2020).

[220] Jure Sokolić et al. “Robust large margin deep neural networks”. In: IEEE

Transactions on Signal Processing 65.16 (2017), pp. 4265–4280.

147

https://proceedings.neurips.cc/paper/2019/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf

[221] P. Sprechmann, A. M. Bronstein, and G. Sapiro. “Learning Efficient

Sparse and Low Rank Models”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 37.9 (Sept. 2015), pp. 1821–1833.

[222] Gilles Stoltz and Gábor Lugosi. “Learning correlated equilibria in games

with compact sets of strategies”. In: Games and Economic Behavior 59.1

(2007), pp. 187–208.

[223] Andreas Themelis and Panagiotis Patrinos. “SuperMann: a superlin-

early convergent algorithm for finding fixed points of nonexpansive

operators”. In: (2019).

[224] Transportation Networks for Research Core Team. Transportation Networks for

Research. https://github.com/bstabler/TransportationNetworks..

Accessed: 2021-05-24.

[225] Madeleine Udell and Alex Townsend. “Why are big data matrices ap-

proximately low rank?” In: SIAM Journal on Mathematics of Data Science

1.1 (2019), pp. 144–160.

[226] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using

t-SNE.” In: Journal of machine learning research 9.11 (2008).

[227] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. “Plug-and-Play

priors for model based reconstruction”. In: 2013 IEEE Global Conference

on Signal and Information Processing. 2013, pp. 945–948.

[228] Geroge Viereck. “What Life Means to Einstein”. In: The Saturday Evening

Post (1929).

[229] Ernesto De Vito et al. “Learning from examples as an inverse problem”.

In: Journal of Machine Learning Research 6.May (2005), pp. 883–904.

148

https://github.com/bstabler/TransportationNetworks.

[230] John Von Neumann. “On the theory of games of strategy”. In: Contribu-

tions to the Theory of Games 4 (1959), pp. 13–42.

[231] John Von Neumann and Oskar Morgenstern. Theory of Games and Eco-

nomic Behavior. Princeton University Press, 1953.

[232] Weiran Wang and Miguel A Carreira-Perpinán. “Projection onto the

probability simplex: An efficient algorithm with a simple proof, and an

application”. In: arXiv preprint arXiv:1309.1541 (2013).

[233] Zhangyang Wang, Qing Ling, and Thomas S. Huang. “Learning Deep ℓ0

Encoders”. en. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[234] Zhangyang Wang et al. “D3: Deep Dual-Domain Based Fast Restoration

of JPEG-Compressed Images”. In: 2016, pp. 2764–2772.

[235] John Glen Wardrop. “Some theoretical aspects of road traffic research.”

In: Proceedings of the institution of civil engineers 1.3 (1952), pp. 325–362.

[236] Kevin Waugh, Brian D Ziebart, and J Andrew Bagnell. “Computational

rationalization: the inverse equilibrium problem”. In: Proceedings of

the 28th International Conference on International Conference on Machine

Learning. 2011, pp. 1169–1176.

[237] E Weinan. “A proposal on machine learning via dynamical systems”. In:

Communications in Mathematics and Statistics 5.1 (2017), pp. 1–11.

[238] Alfred North Whitehead. An introduction to mathematics. Henry Holt and

Company, 1911.

[239] Ezra Winston and J. Zico Kolter. “Monotone operator equilibrium net-

works”. In: Advances in Neural Information Processing Systems. Ed. by

H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 10718–

149

10728. url: https://proceedings.neurips.cc/paper/2020/file/

798d1c2813cbdf8bcdb388db0e32d496-Paper.pdf.

[240] Samy Wu Fung et al. “ADMM-SOFTMAX: AN ADMM APPROACH

FOR MULTINOMIAL LOGISTIC REGRESSION”. In: Electronic Transac-

tions on Numerical Analysis 52 (2020), pp. 214–229.

[241] Xingyu Xie et al. “Differentiable Linearized ADMM”. In: arXiv:1905.06179

(2019).

[242] Bo Xin et al. “Maximal Sparsity with Deep Networks?” In: Advances in

Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran

Associates, Inc., 2016, pp. 4340–4348.

[243] Li Xu et al. “Deep convolutional neural network for image deconvo-

lution”. In: Advances in neural information processing systems 27 (2014),

pp. 1790–1798.

[244] Qiong Xu et al. “Low-dose X-ray CT reconstruction via dictionary learn-

ing”. In: IEEE transactions on medical imaging 31.9 (2012), pp. 1682–1697.

[245] Yangyang Xu and Wotao Yin. “A fast patch-dictionary method for

whole image recovery”. In: arXiv preprint arXiv:1408.3740 (2014).

[246] Rong Yang et al. “Adaptive resource allocation for wildlife protection

against illegal poachers.” In: AAMAS. 2014, pp. 453–460.

[247] Yan Yang et al. “Deep ADMM-Net for Compressive Sensing MRI”. In:

Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee

et al. Curran Associates, Inc., 2016, pp. 10–18.

[248] Jing Zhang and Ioannis Ch Paschalidis. “Data-driven estimation of

travel latency cost functions via inverse optimization in multi-class

150

https://proceedings.neurips.cc/paper/2020/file/798d1c2813cbdf8bcdb388db0e32d496-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/798d1c2813cbdf8bcdb388db0e32d496-Paper.pdf

transportation networks”. In: 2017 IEEE 56th Annual Conference on Deci-

sion and Control (CDC). IEEE. 2017, pp. 6295–6300.

[249] Jing Zhang et al. “The price of anarchy in transportation networks by

estimating user cost functions from actual traffic data”. In: 2016 IEEE

55th Conference on Decision and Control (CDC). IEEE. 2016, pp. 789–794.

[250] Jing Zhang et al. “The price of anarchy in transportation networks:

Data-driven evaluation and reduction strategies”. In: Proceedings of the

IEEE 106.4 (2018), pp. 538–553.

[251] Junzi Zhang, Brendan O’Donoghue, and Stephen Boyd. “Globally con-

vergent type-I Anderson acceleration for non-smooth fixed-point itera-

tions”. In: arXiv:1808.03971 (2018).

[252] Qianggong Zhang et al. “Implicitly defined layers in neural networks”.

In: arXiv preprint arXiv:2003.01822 (2020).

[253] Zheng Zhang et al. “A survey of sparse representation: algorithms and

applications”. In: IEEE access 3 (2015), pp. 490–530.

151

	Introduction
	Optimization via Fixed Point Methods
	Implicit Models
	Contributions

	I Deep Unrolling for Classic Optimization
	Safeguarded L2O
	Safeguarded L2O via Fixed Point Residual
	Safeguarded L2O via Energy
	Training and Averaged Operator Selection
	Numerical Examples
	Conclusions

	II Implicit Models
	Jacobian-Free Backprop
	Implicit Model Formulation
	Backpropagation
	Experiments
	Conclusions

	Convex Feasibility Problems
	Convex Feasibility Overview
	Feasibility Model
	Experiments
	Conclusions

	Nash Equilibria
	Overview of Games
	Nash Equilibria Model
	Experiments
	Conclusions

	Explainable L2O Models
	Explainability via Optimization
	Trustworthiness Certificates
	Experiments
	Conclusions

	Conclusions

	Appendices
	Proofs
	Safe L2O Proofs
	Jacobian-Free Backprop Proofs
	Nash Equilibria Proofs
	References

