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SUMMARY

How do we remember emotional events? While emotion often leads to vivid recollection, the 

precision of emotional memories can be degraded, especially when discriminating among 

overlapping experiences in memory (i.e., pattern separation). Communication between the 

amygdala and the hippocampus has been proposed to support emotional memory, but the exact 

neural mechanisms remain unclear. Here, we used intracranial recordings in pre-surgical epilepsy 

patients to show that successful pattern separation of emotional stimuli is associated with theta 
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band (3–7 Hz)-coordinated bidirectional interactions between the amygdala and the hippocampus. 

In contrast, discrimination errors (i.e., failure to discriminate similar stimuli) were associated with 

alpha band (7–13 Hz)-coordinated unidirectional influence from the amygdala to the 

hippocampus. These findings imply that alpha band synchrony may impair discrimination of 

similar emotional events via the amygdala-hippocampal directional coupling, which suggests a 

target for treatments of psychiatric conditions such as posttraumatic stress disorder, in which 

aversive experiences are often overgeneralized.

In Brief

Zheng et al. demonstrate that successful pattern separation of emotional stimuli is associated with 

bidirectional amygdalahippocampal interactions via theta band (3–7 Hz). In contrast, 

unidirectional influence from the amygdala to the hippocampus via alpha band (7–13 Hz) leads to 

overgeneralization errors (i.e., failure to discriminate similar stimuli).

INTRODUCTION

Emotion is a powerful modulator of episodic memory. Emotional events are thought to 

promote arousal during acquisition, which facilitates later recall (McGaugh, 2013). 

However, studies in humans have shown that the impact of emotion on memory is not 

always positive. We often remember the emotional gist but forget the details (Adolphs et al., 

2005; Leal et al., 2014b). For instance, eyewitness testimony tends to focus on the weapon, 

while witnesses have impaired memory for other details of the crime scene and the 

perpetrator (Loftus et al., 1987). This emotional memory modulation can impair the 

discrimination of similar experiences, which is mediated by pattern separation (Leal et al., 

2014a). This neural computation is critical for episodic memory and is vulnerable in 

neuropsychiatric disorders (Leal and Yassa, 2018). Therefore, the neural dynamics of 

emotional mnemonic discrimination not only are vital to understanding the biological basis 

of emotion and memory processing, but also provide circuit-level insights for understanding 

psychiatric illness, offering improved targeting of therapeutic interventions.

Although several hypotheses have been proposed to explain how emotional memories are 

processed in the human amygdala-hippocampal circuit (Phelps, 2004), the underlying neural 

mechanisms remain elusive. Prior brain imaging studies have suggested that the 

hippocampus plays a critical role in pattern separation (Leutgeb et al., 2007), while the 

amygdala modulates the strength of memory (Leal et al., 2014a). This division of labor is 

based on fMRI studies, which are limited by coarse temporal resolution and cannot inform 

on oscillatory modes of network communication to support emotional memory. In contrast, 

rodent neurophysiological studies show that low-frequency oscillations (3–13 Hz) reflect 

rhythmic fluctuations of membrane potentials and provide flexible temporal windows (Fries, 

2005) to support interregional communication during aversive memory retrieval 

(Seidenbecher et al., 2003). High-frequency activity (HFA) (30–250 Hz) closely correlates 

with population spiking activity and likely reflects local neural processing. Coupling 

between the phase of low-frequency activity and the amplitude of HFA (i.e., phase-

amplitude coupling [PAC]) has been proposed to modulate synaptic plasticity (Huerta and 

Lisman, 1995; Orr et al., 2001), flexibly organizing complex mnemonic information 
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(Heusser et al., 2016) to increase memory capacity (Inman et al., 2018; Lisman and Jensen, 

2013) and promote adaptive learning (Stujenske et al., 2014), which requires highly detailed 

pattern-separated representations (McClelland et al., 1995). Here we use human depth 

electrode recordings with a high spatial and temporal resolution to test the hypothesis that 

low-frequency oscillations and HFA cooperatively facilitate amygdala-hippocampal 

interactions to support mnemonic discrimination of emotional stimuli in humans.

We recorded intracranial stereo-electroencephalography (SEEG) simultaneously from the 

amygdala and the hippocampus in 7 pre-surgical epilepsy patients while they performed an 

emotional pattern separation task (Leal et al., 2014b), in which participants were asked to 

distinguish among memories of similar emotional scenes (Figure 1A). This task has shown 

robust amygdala-hippocampal involvement in previous fMRI studies (Leal et al., 2014a, 

2017), which reported that the amygdala response is elevated in emotional conditions 

regardless of mnemonic accuracy. In contrast to the fMRI studies, we observed that neural 

responses in both the amygdala and the hippocampus are modulated by both memory 

accuracy and valence. Specifically, correct discrimination of similar emotional stimuli was 

associated with bidirectional interactions between the amygdala and the hippocampus 

mediated by theta oscillations (3–7 Hz). In contrast, discrimination errors (i.e., failure to 

discriminate similar stimuli) were associated with alpha (7–13 Hz)-driven unidirectional 

influence from the amygdala to the hippocampus. These results highlight the complex 

oscillatory dynamics of amygdala-hippocampal interactions in facilitating retrieval of 

detailed emotional memories and provide a putative mechanism for emotional 

discrimination errors.

RESULTS

Emotion Interferes with Mnemonic Discrimination

Seven pre-surgical epilepsy patients (3 males and 4 females) (Table S1) performed an 

episodic memory task (Figure 1A) (Leal et al., 2014b). During encoding, subjects were 

instructed to rate the emotional valence (negative, neutral, or positive) of each picture. 

Immediately following encoding (~1 min), subjects performed a recognition test to 

categorize the repeated images as old and the first-seen images as new. To induce memory 

interference, lure items, which are similar to the ones presented in the encoding phase, were 

included in the recognition test, along with targets (i.e., repeated images) and foils (i.e., new 

images). All subjects performed well on the task (79.8% ± 1.8% accuracy, mean ± SEM; 

range = 73.1%−86.6%, Tables S1 and S2; chance level = 54.8%, p < 0.05, permutation test). 

We calculated the lure discrimination index (LDI) (Leal et al., 2014b) for each subject, 

operationalized as p ′New′ |Lure − p ′New′ |Target , which corrected for the general tendency 

to reject items (Yassa and Stark, 2011) (e.g., calling an item new). This is analogous to the 

inverse of the corrected recognition score widely employed in a previous recognition 

memory test (Andersen, 2007). Similar to prior work (Kensinger and Schacter, 2007; Leal et 

al., 2014a, 2014b), performance significantly differed among positive, negative, and neutral 

stimuli Fvalence × LDI (subject number × 3  (2, 18) = 6.32, p = 0.008) (Figure 1B), with 

diminished LDI for emotional lures compared to the neutral ones (post hoc analysis, Scheffé 

test: 
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d|Neg − Neu| = 0.272, CV |Neg − Neu| = 0.219, p < 0.01; d
POS − Neu

= 0.171, CV |POS − Neu| = 0.169,

p < 0.05

, where Neg, negative; Neu, neutral; and Pos, positive). The magnitude of the effect was 

larger for negative stimuli compared to positive stimuli, which might be due to the higher 

level of arousal elicited by the negative condition (Lang et al., 1993) (see Discussion).

Increased Theta Power and Decreased Alpha Power Predict Successful Mnemonic 
Discrimination

Local field potentials (LFPs) were recorded from the depth electrodes implanted in the 

amygdala (13 electrodes) and the hippocampus (17 electrodes) (Figure 1C). The 

localizations of depth electrodes were determined by three experienced raters (interrater 

reliability: Κ = 0.824; see STAR Methods) based on the co-registered post-to pre-

implantation MRI scans (post-computed tomography [CT] to pre-MRI for subject 7) and 

was guided by a high-resolution anatomical atlas, labeled with medial temporal lobe (MTL) 

sub-regions of interests (Figure S1). We examined neural responses while individuals 

performed memory recognition (processing period during the retrieval phase in Figure 1A), 

comparing correctly rejected (lure correct rejection [LCR]: lures correctly identified as new) 

versus incorrectly recognized (lure false alarm [LFA]: lures incorrectly identified as old) 

negative, neutral, and positive lures.

Both amygdala and hippocampal electrodes showed strong oscillatory activity peaking in the 

theta and alpha band range (3–13 Hz) (Figures 2A and 2B) during lure discrimination trials, 

which is consistent with previous findings of increased theta and alpha oscillations 

facilitating memory retrieval (Jutras et al., 2013; Seidenbecher et al., 2003). Furthermore, 

when we separated trials into LCR and LFA conditions (collapsed across valence) (Figure 

2C), oscillations at distinct low-frequency bands reflected different task outcomes. 

Specifically, more prominent theta band (~2–7 Hz) activity was observed in both the 

amygdala and the hippocampus during LCRs, while more prominent alpha band (~7–14 Hz) 

activity was presented during LFAs (p < 0.05, corrected for multiple comparisons using the 

cluster-based permutation test; see STAR Methods) (Figure 2D). Moreover, the theta power 

increase and the alpha power decrease occurred simultaneously in the hippocampus (latency 

difference = 0.012 ± 0.004 s, p = 0.421), while the theta power increase led the alpha power 

decrease in the amygdala (latency difference = 0.824 ± 0.032 s, p = 2.35e-7). These dual 

frequency changes were only observed during lure discrimination (Figures S2A and S2B), 

with stronger theta power increases and alpha power suppression for LCRs compared to 

targets hits (i.e., targets correctly identified as old) and foil correct rejections (i.e., foils 

correctly identified as new) (p < 0.05, corrected using the cluster-based permutation test; see 

STAR Methods) (Figures S2C and S2D). We observed significant three-way interactions 

(emotion [negative, positive, and neutral], trial type [lure and foil], and accuracy [correct 

rejection and false alarm]) across theta and alpha power in both the amygdala and the 

hippocampus. Furthermore, significant emotion (negative, positive, and neutral) × accuracy 

(correct rejection and false alarm) interactions were observed in lures, but not foils, for these 

dual frequency changes in the amygdala and the hippocampus (Table S3). These results 

Zheng et al. Page 4

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest that the theta power increase and the alpha power decrease in the amygdala and 

hippocampus were spectral features specific to pattern separation.

Next, we examined the impact of emotional valence. Within each condition (LCR and LFA), 

trials were grouped based on each subject’s valence ratings (negative, positive, or neutral) 

during the encoding session. The conditional power difference (LCR - LFA) was then 

calculated and averaged across time within the theta and alpha bands separately for different 

valences (negative, neutral, and positive). The theta and alpha bandwidths used in this 

analysis were determined by the significant clusters detected in Figure 2D (amygdala: 

AMYtheta = ~2–7 Hz, AMYalpha = ~8–14 Hz; hippocampus: HPCtheta = ~2–6 Hz, HPCalpha 

= ~7–13 Hz). We found the same spectral pattern (increased theta power during LCRs and 

increased alpha power during LFA s) across all three valence categories, indicating that theta 

and alpha oscillatory multiplexing served as a common mechanism for mnemonic 

discrimination irrespective of emotional valence. However, the magnitude of these 

conditional power differences was amplified by emotional valence in both regions 

(AMYtheta:Fvalence×trial(2, 216) = 4.627, p = 0.011; AMYalpha:Fvalence×trial(2, 216) = 7.934, p
= 4.730e − 4; HPCtheta:Fvalence×trial(2, 216) = 10.325, p = 5.211e − 5; HPCalpha:Fvalence×trial(2,
216) = 8.272, p = 3.461e − 4)

(Figure 2E), suggesting that a more robust oscillatory pattern is needed when discriminating 

similar emotional experiences compared to similar neutral ones. To ensure that these effects 

were not driven by the influence of evoked transients on the power estimation and the 

subsequent interpretation of directional analyses (Kovach, 2017; Wang et al., 2008), we 

assessed evoked response potentials (ERPs) for both LCR and LFA trials. This analysis 

showed no significant difference between conditions (Figure S3).

Theta and Alpha Amygdala-Hippocampal Synchrony Differentially Bias Discrimination 
Outcomes

Given the putative role of low-frequency oscillations in supporting interregional 

communication (Fries, 2005), we investigated low-frequency phase synchrony between the 

amygdala and the hippocampus. Instantaneous phases from both regions were extracted 

using the Hilbert transformation. Cross-regional coordination was quantified with phase 

locking values (PLVs), which measure the consistency of the phase relationship of each 

amygdala-hippocampal electrode pair (Lachaux et al., 1999). We computed PLVs up to 64 

Hz at each time point to reveal the spatiotemporal dynamics of amygdala-hippocampal 

phase synchrony. After averaging across subjects, we found amygdala- hippocampal phase 

synchrony was evident in two frequency bands: early theta synchrony (~3–7 Hz), predicting 

LCRs, and later alpha synchrony (~7–13 Hz), associated with LFAs (p < 0.01, permutation 

test) (Figure 3A). This frequency-specific pattern was consistent at the individual level, with 

6 of 7 subjects demonstrating theta synchrony for LCRs and alpha synchrony for LFAs (chi-

square = 18.24, p = 0.006) (Figure 3B). In addition, such a frequency difference between the 

two conditions was consistent across different emotional conditions (Figure 3C), and the 

strength of conditional differences (LCR versus LFA) of theta or alpha band synchrony was 

enhanced for emotional trials versus neutral ones (neutral < positive < negative; theta 

synchrony: Fvalence × trial (2, 216) = 5.621, p = 0.004, post hoc analysis, Scheffé test, 

d|Neg − Neu = 0.400, CV Neg − Neu = 0.327, p = 2 . 241e − 3; alpha synchrony: 
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Fvalence×trial(2, 216) = 4.212, p = 0 . 016, post hoc analysis, Scheffe test, 

d Neg − Neu = 0 . 356, CV Neg − Neu = 0 . 288, p = 1 . 826e − 3  (Figure 3D). The outcome 

selectivity was not attributed to local power differences (Kovach, 2017): frequency-specific 

interregional synchrony remained significant even when computed using the trials with 

balanced theta and alpha power across LCRs and LFAs (n = 133 trials, p < 0.01, permutation 

test) (Figures S4A and S4B). To reduce sensitivity to volume conduction and uncorrelated 

noise, we conducted phase synchrony using the weighted phase lag index (WPLI) (Vinck et 

al., 2011), which validated the prediction power of theta and alpha synchrony for subjects’ 

behavioral outcomes (Figure S4D). Moreover, although increased theta phase synchrony was 

observed in the foil trials (Figure S5A), the significant emotion × accuracy interactions were 

observed only in lures, not in foils (Table S4), providing evidence that the emotional 

modulation of theta and alpha phase synchrony is specific to pattern separation.

Bidirectional Amygdala-Hippocampal Interactions Support Mnemonic Discrimination

We used frequency-domain Granger causality analysis to quantify interregional directional 

influence, which measures the degree to which the signal from one region can be better 

predicted by incorporating information from the other. We found that the direction of 

influence differed between conditions, with theta-driven bidirectional interactions for LCRs 

and alpha-driven unidirectional influence from the amygdala to the hippocampus for LFAs 

(p < 0.01, permutation test) (Figure 4A). Moreover, this directional influence was specific to 

lure trials: no significant directional interactions between the amygdala and the hippocampus 

were observed during foil trials (Figure S5B). These conditional differences remained 

significant when band-specific LFP power was balanced across LCRs and LFAs (Figure 

S4C), indicating that the observed frequency-specific directionality was not due to 

differences in local power. During LCRs, directional influence in the theta band from the 

amygdala to the hippocampus was amplified by emotion (negative > positive > neutral; 

Fvalence × Granger causality index (subject number × 3)(2, 18) = 5.084, p = 0.018) (Figure 4B, top), 

while the reciprocal influence from the hippocampus to the amygdala remained constant 

(Fvalence × Granger causality index (subject number × 3) (2, 18) = 2.976, p = 0.076) (Figure 4B, top), 

suggesting that successful discrimination of similar emotional stimuli involved an enhanced 

engagement of the amygdala to overcome emotional interference. In contrast, for LFAs, the 

network is dominated by the greater influence from the amygdala to the hippocampus in the 

alpha band compared to the reverse direction, which is consistent across negative, positive, 

and neutral valence (Fvalence × Granger causality index (subject × 3) (2, 18) = 2.268, p = 0.132) 

(Figure 4B, bottom). These results suggest that successful discrimination of overlapping 

memories (for all three valence groups) requires bidirectional information exchange in the 

amygdala-hippocampal circuit.

Distinct Theta Phases Encode Information from the Amygdala and Hippocampus

PAC is an important mechanism to flexibly coordinate interregional information transfer, 

with the phase of slow oscillations dynamically modulating the amplitude of HFA (Helfrich 

and Knight, 2016). This mechanism has been shown to support phase-dependent encoding of 

different mnemonic representations (Heusser et al., 2016; Watrous et al., 2015). We 

performed cross-regional PAC in both phase-amplitude combinations (low-frequency phase 

Zheng et al. Page 6

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the amygdala and high-frequency amplitude from the hippocampus, and vice versa) 

using the electrode pairs exhibiting the most significant low-frequency phase synchrony 

(Zheng et al., 2017). The interregional influence was quantified as the correlation between 

low-frequency (2–32 Hz) phases from one region (i.e., the modulating signal) and the 

amplitude of HFA (30–250 Hz) from the other (i.e., the modulated signal). Again, 

frequency-specific features emerged in interregional PACs between the amygdala and the 

hippocampus for LCRs, with the theta phase of the amygdala entraining the HFA of the 

hippocampus (~70–130 Hz, peaked at 93 Hz) and the theta phase of the hippocampus 

modulating the HFA of the amygdala (~60–140 Hz, peaked at 84 Hz). In contrast, for LFAs, 

the alpha phase of the amygdala was found to modulate hippocampal HFA (~45–125 Hz, 

peaked at 112 Hz) (Figures 5A and 5B). To address whether the low-frequency phase drives 

the amplitude of HFA, or vice versa, we performed the cross-frequency directional analysis. 

Because the signal-to-noise ratio (SNR) varies across frequency bands and Granger causality 

analysis is sensitive to SNR (Cohen, 2014), we re-assessed the interregional directionality 

between low-frequency oscillations (i.e., theta and alpha) and HFA using the phase slope 

index (PSI) (Nolte et al., 2008). We found that PSI differed between the two conditions, with 

a bidirectional, theta phase-driven network during LCRs and a unidirectional, amygdala-

alpha phase-driven network during LFAs (p< 3.212 × 10−12, permutation test) (Figures 5C 

and 5D). These results not only confirmed the directional interactions observed from the 

Granger causality analysis but also suggested that such directional influence could shape 

HFA, an index of local neural activity, via PAC.

Because low-frequency oscillations are thought to organize cell assemblies to encode 

distinct information (Lisman and Jensen, 2013), we then asked whether a specific phase of 

the low-frequency oscillation was co-modulated with HFA in a behaviorally relevant 

manner, analogous to spike and phase coupling, in which local neuronal spiking is biased 

according to the oscillatory phase of the LFP (Buzsaki et al., 2012). Given that the SNR 

strongly depends on the strength of oscillatory modulation (Watrous et al., 2015), we 

bandpass-filtered the modulating signals within the frequencies demonstrating the strongest 

modulation effect (extracted from Figures 5A and 5B) and examined when HFA from the 

modulated signals occurred relative to the phases of the modulating signal. A phase-

dependent coding mechanism emerged in single-trial examples (shown in Figure 5E) and 

was confirmed by group analysis across all subjects and trials (Figure 5F). Specifically, for 

LCRs, HFA from both the amygdala and the hippocampus was modulated by the theta 

oscillations around the trough (average amygdala HFA occurred at 157°, pAmygdala = 1.05 × 

10−4, Rayleigh test; average hippocampal HFA occurred at 202°, pHippocampus = 2.33 × 10−5, 

Rayleigh test), with HFA from the amygdala and hippocampus separately occurring at the 

descending and ascending slope, respectively (pattern classification methods, p < 10−8, 

binomial test; see STAR Methods). In contrast, for LFAs, the occurring phases of HFA from 

both sides were largely overlapping (pattern classification methods, p > 0.05, binomial test) 

and were distributed across different alpha phases (pAmygdala HFA = 0.068, pHippocampus HFA 

= 0.082, Rayleigh test). Moreover, for LCRs, the overlapping ratio between the occurring 

phases of the amygdala and the hippocampal HFA differed across emotional valences 

(Fvalence × phase overlapping ratio (subject number × 3) (2, 18) = 4.062, p = 0.035), with greater 

overlap for the emotional stimuli compared to the neutral trials. However, for LFAs, the 
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overlapping ratio remained the same across all valence groups 

(Fvalence × phase overlapping ratio (subject number × 3) (2, 18) = 2.205, p = 0.139) (Figure 5G). Such 

phase-dependent coding provides a putative oscillatory mechanism that may increase the 

coding capacity of the amygdala-hippocampal circuit, with different phases reflecting 

distinct information (Heusser et al., 2016; Lisman and Jensen, 2013; Watrous et al., 2015). 

In summary, the amygdala and the hippocampus use frequency- and phase-specific 

oscillatory mechanisms to optimize bidirectional information transfer, with HFA at the 

trough phase of theta oscillations predicting successful mnemonic discrimination.

DISCUSSION

We provide evidence that interregional communication between the amygdala and the 

hippocampus, using specific oscillatory modes of frequency, directionality, and phase 

information, supports successful mnemonic discrimination of emotional events. In particular, 

bidirectional theta oscillations in the amygdala-hippocampal circuit are enhanced during 

LCRs, with HFA in both regions nested at distinct phases around the theta trough (Figure 6). 

Furthermore, this oscillatory pattern is driven by a stronger theta power when successfully 

discriminating similar emotional experiences, indicating that a more robust oscillatory 

communication is needed to prevent discrimination errors. In contrast, enhanced alpha 

power, driven by the amygdala, is associated with theta power decreases in both the 

amygdala and the hippocampus during LFAs. The latter observation suggests that the 

amygdala exerts a unidirectional influence on the hippocampus via increased interregional 

alpha synchrony, providing a novel mechanistic account for discrimination errors in 

memory, which may underlie pathological remembering in conditions such as post-traumatic 

stress disorder (PTSD).

These interregional oscillatory dynamics are consistent with known structural connections 

between the amygdala and the hippocampus. Because of our surgical technique of aiming 

the depth electrode in a superior trajectory to access the inferior amygdala above the 

tentorium, all of our electrodes targeting the amygdala were located in the basolateral 

nucleus. Amaral and Cowen demonstrated that in nonhuman primates, retrograde tracers 

from the hippocampal formation were predominately found in the anterior amygdaloid area, 

including the basolateral nucleus (Amaral and Cowan, 1980). A subsequent study by Ste-

fanacci and colleagues showed that the perirhinal and parahip-pocampal cortices (which are 

strongly interconnected with the hippocampus) have robust bidirectional connections with 

the basolateral nucleus (Stefanacci et al., 1996). Our results suggest that the functional 

connectivity of the hippocampal-basolateral nucleus could be dynamically modulated by 

pattern separation signals.

Low-frequency oscillations (3–13 Hz) in the MTL are thought to play a critical role in 

successful memory encoding (Hasselmo and Stern, 2014) and retrieval (Seidenbecher et al., 

2003). In particular, enhanced theta power during LCRs is consistent with the well-

established role of theta oscillation modulation of amygdala-hippocampal synaptic plasticity 

(Bazelot et al., 2015; Huerta and Lisman, 1995; Orr et al., 2001) to flexibly organize 

complex mnemonic information via theta-gamma phase coding (Heusser et al., 2016). 

Moreover, increased theta power was associated with decreased alpha power, suggesting that 

Zheng et al. Page 8

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



synergy between theta power increases and alpha power decreases supports mnemonic 

discrimination. Previous studies have shown that decreased alpha power in the hippocampus 

is associated with successful memory retrieval (Staresina et al., 2016), consistent with our 

results. In the cortex, decreased alpha power is correlated with an increase in HFA power 

and firing rates and has been associated with improved cognitive processing (Bahramisharif 

et al., 2018; Bastos et al., 2018; Haegens etal.,2011; Lundqvistetal., 2016; Miller etal., 

2018). In contrast, increased alpha power is linked to decreased HFA power and neuronal 

spiking and poor discrimination performance. These findings suggest that alpha oscillations 

are correlates of rhythmic inhibition, possibly providing top-down executive control to gate 

information flow (Cooper etal., 2003; Hanslmayret al., 2007; Kli- mesch et al., 2007; Min 

and Herrmann, 2007; Pfurtscheller, 2001). Considering our results and these works, we 

suggest that the theta power increases and the alpha power decreases facilitate amygdala and 

hippocampal processing during mnemonic discrimination by organizing neural activity 

(theta) and selectively filtering task-relevant information to attend to emotional information 

(alpha) (Jokisch and Jensen, 2007; Miller et al., 2018; Nerad and Bilkey, 2005; Parish etal., 

2018; Sauseng et al., 2005; Staresina et al., 2016). Alpha power increases are also observed 

during the processing of emotional stimuli in other studies (Güntekin and Basar, 2014) and 

the magnitude of alpha power increases with the stimulus’s arousal level (Aftanas et al., 

2002), possibly serving an important adaptive function of sharpening attention to emotional 

stimuli (i.e., threat detection). The role of alpha power increases in the detection of 

emotional stimuli may come at the cost of the precise theta-gamma phase coding (Heusser et 

al., 2016; Lisman and Jensen, 2013) required for mnemonic discrimination to favor 

knowledge critical for survival. The result is that information about threats may be 

overgeneralized. For example, if someone is bitten by a dog, he or she may become anxious 

around dogs of all breeds and sizes, i.e., generalization at the cost of discrimination.

An alternative explanation of the role of theta and alpha oscillations in the MTL is that these 

rhythms may exist on a continuum, with the frequency modulated by the rate of 

environmental exploration. Whereas several studies have observed a slower theta rhythm (3–

7 Hz) in humans during virtual navigation (Ek- strom et al., 2005) and memory tasks 

(Axmacher et al., 2010), more recent studies in freely moving humans have demonstrated 

the presence of a high theta band (8–13 Hz, also referred to as an alpha band) that is similar 

to the oscillations observed in freely moving rodents (Bohbot et al., 2017; Bush et al., 2017; 

Aghajan et al., 2017). This high theta increased in prominence with movement speed, as 

well as the rate of exploration (Aghajan et al., 2017), suggesting a role in active sensing and 

encoding the environment. We speculate that alpha band oscillations, which appear to gate 

unidirectional influence from the amygdala on the hippocampus and enable false recognition 

of negatively va-lenced information are functionally similar to the high theta oscillations 

noted in studies in freely moving humans (Bohbot et al., 2017; Bush et al., 2017; Aghajan et 

al., 2017), as well as in studies of saccade-based environmental exploration in monkeys 

(Jutras et al., 2013). By this account, higher frequency theta and alpha oscillations could be 

related to a higher sampling rate of emotional stimuli. This is consistent with an 

evolutionary account in which the amygdala’s influence is thought to orient the 

hippocampus to emotional events in the environment and perhaps generate an 

overgeneralization response (i.e., false alarm to similar negative experiences) that is 
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adaptive, especially if the stimulus has the potential to threaten survival. This can be thought 

of as a rapid override system that is related to active sensing or alert exploration. These 

results further demonstrate the potential functional heterogeneity of different theta and alpha 

oscillations in the MTL.

During LCRs, the strength of theta synchronization and alpha desynchronization is amplified 

by emotion (Figures 2E and 3C). Previous studies have shown that increased theta 

synchronization correlates with memory load and task difficulty (Jacobs et al., 2006) while 

alpha desynchronization increases corresponding to the amount of distracting information 

(Sauseng et al., 2005). Because emotional stimuli can bias attention to allocate more 

resources for the processing of emotional stimuli (Taylor and Fragopanagos, 2005), it is 

possible that when discriminating similar emotional experiences, stronger distracting 

emotional signals need to be suppressed by higher levels of alpha desynchronization. At the 

same time, task-relevant mnemonic signals may need to be strengthened by theta to increase 

SNR. This emotional modulation of mnemonic oscillatory dynamics is not independent of 

valence. We observed that negative valence is associated with a greater magnitude of theta 

synchronization and alpha desynchronization during LCRs when compared to the positive 

ones. One possible explanation for these results is that negative and positive stimuli are not 

matched for arousal. Prior studies have also shown that this matching is difficult to 

accomplish because negative stimuli, in general, tend to induce higher levels of arousal 

compared to positive stimuli (Lang etal., 1993). In addition, the amygdala does not solely 

respond to emotional stimuli but also prioritizes emotional information such as reward, 

motivation, and socially relevant events (Morrison and Salzman, 2010). Neutral stimuli in 

our study also elicited amygdala-hippocampal interactions that were modulated with 

valence. That said, understanding how positive and negative valences influence oscillatory 

dynamics is an important facet of emotional memory that, if better understood, may have 

therapeutic potential to reverse the negativity bias often observed in patients with mood 

disorders (Leal and Yassa, 2018). The stronger effect in the negative trials might also be 

influenced by the unbalanced social information in the stimuli set, such as a greater number 

of faces present in the negative stimuli. If this is the case, it would indicate that the amygdala 

facilitates the integration of socially relevant information for mnemonic discrimination. 

Future studies regarding the interactions between social and emotional dimensions could 

provide a more precise model of how social-emotional information influences mnemonic 

discrimination.

Our results suggest that impaired discrimination of emotional experience might result from 

an amygdala-driven amplification of emotional processing via enhanced amygdala-

hippocampal alpha synchrony, which may lead to false alarms to similar negative 

experiences (i.e., failure to discriminate or form highly specific representations of negative 

experiences), which is common in psychiatric disorders such as PTSD. Our findings provide 

a neural mechanism underlying this phenomenon and propose a circuit-level framework for 

possible neuropsychiatric therapy, such as deep brain stimulation, transcranial alternating 

current stimulation, and transcranial magnetic stimulation (Zheng and Lin, 2018). Moreover, 

studies (Grossman et al., 2017) in mice using temporally paired electrical fields to entrain 

hippocampal oscillatory activity without recruiting the overlying cortex suggest new 

possibilities for noninvasive stimulation of deep brain structures. Although scaling the 
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approach and technology safely to humans will be challenging, it is conceivable to use such 

stimulation techniques in humans. Specifically, one might be able to disrupt alpha synchrony 

(e.g., cancel out the alpha wave by stimulating with the same frequency but opposite phase) 

and boost theta synchrony (e.g., enhance theta phase alignment) during aversive memory 

retrieval to noninva- sively correct discrimination errors in patients with PTSD (Zheng and 

Lin, 2018). In addition, a study has shown that direct electrical stimulation of the amygdala 

can enhance declarative memory in humans, possibly via increased theta and gamma PAC 

(Inman et al., 2018). The overgeneralization behavior in patients with PTSD evolves over 

long periods, instead of the short delay (i.e., a couple of minutes) used in current task design. 

In addition, other brain regions, such as the prefrontal cortex, may play critical roles as part 

of this emotional memory circuit. Thus, future studies examining more brain regions and 

across longer timescales are needed to understand the putative mechanisms underlying 

overgeneralization in patients with PTSD. The current study was conducted with patients 

with epilepsy, whose brains may undergo epilepsy-related changes. However, behavioral 

outcomes from the patients closely match those of healthy volunteers. Furthermore, in line 

with recommendations of a review from human and nonhuman primate intracranial 

researchers, we excluded trials associated with seizures and epileptiform discharges, as well 

as recordings from epileptic tissues (Parvizi and Kastner, 2018).

In summary, we report evidence of novel electrophysiological signatures of emotional 

memory in the amygdala-hippocampal network, which is implicated in a host of 

neuropsychiatric diseases and memory deficits. Understanding these neural mechanisms 

provides a critical framework for developing circuit-specific intervention in people with 

disordered memory and emotion (Gordon, 2016).

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Michael A. Yassa (myassa@uci.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—Data were obtained from epilepsy patients undergoing intracranial EEG 

monitoring at the University of California, Irvine, Medical Center to localize epileptic foci 

for potential surgical resection. Intracranial depth electrodes (Integra or Ad-Tech, 5-mm 

inter-electrode spacing) were stereotactically implanted with robotic assistance (Rosa 

Surgical Robot, Medtech, New York, NY). The electrode placements were exclusively 

guided by clinical needs. Before testing, all subjects gave informed written consent in 

accordance with the Institutional Review Board of the University of California, Irvine. 

Patient selection was based on the following inclusion criteria: 1) having electrodes in both 

the amygdala and the hippocampus contralateral to or outside of the epileptogenic region; 2) 

meet the task performance criteria with accuracy rates above 70% (Table S1). In total, 12 

patients participated in the task. Two subjects were excluded because of low accuracy rate 

(56.7% and 64.4%) and 3 subjects were excluded because electrodes in the amygdala and/or 
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hippocampus region coincided with the epileptogenic zone. The remaining 7 subjects (4 

Female, 3 Male, Age 21–58, Table S1) were included in this study.

METHOD DETAILS

Electrode localization—Electrodes were localized in each subject using co-registered 

pre-implantation and post-implantation structural T1-weighted MRI scans except S5, who 

only had post-implantation CT scans. First, we registered post-implantation scans to the pre-

implantation scans using a six-parameter rigid body transformation (three rotations and three 

translations in x-z directions), which was implemented in Advanced Normalization Tools 

(ANTs http://stnava.github.io/ANTs/). Then a high-resolution anatomical template (an ul-

trahigh-resolution structural MPRAGE scans collected in our previous study and 

standardized to MNI space (Leal et al., 2014a), 0.55mm isotropic resolution, 273 sagittal 

slices, field of view = 240 × 240 mm, flip angle = 9o, TR/TE = 13/5.9ms, matrix size = 448 

× 448, inversion pulse TI = 1110ms), with labels of medial temporal lobe subfields was 

applied to guide our localization for each electrode. The labeled template was resampled 

(1mm isotropic) and aligned to each subject’s pre-implantation scans using ANTs 

Symmetric Normalization (Avantset al., 2011). Based on the anatomical labels within each 

subject’s space, the electrode location was determined by identifying the region of interest 

that encompassed the center of the electrode artifacts. The electrode localization was 

performed by three experienced raters independently. The inter-rater reliability is 0.824 

(function Kapam.fleiss from R statistical tool). All the electrodes included in the analyses 

have consistent results from at least two raters. The electrode localization results and the 

selection of re-referencing electrodes within white matter were furthered reviewed by the 

epileptologist (J.J.L.).

Experimental design—Participants viewed a series of images at the center of a laptop 

screen with a black background. The stimulus set consisted of novel scenes freely available 

online. All the images were rated for emotional valence and similarity (scale from 1 to 8, 

with 1 indicating the least amount of similarity and 8 indicating that the items were 

identical) in orthogonal experiments with separate samples. Specifically, for the similarity 

ratings, an independent group (N = 31, 21 female, age 19 ± 1,) was used to examine relative 

similarity of each stimulus. We presented pairs of stimuli (the original image presented 

during study and its similar lure) side-by-side and collected their subjective similarity ratings 

scaled from 1 to 8 (1 indicating the least amount of similarity and 8 indicating that the items 

were identical). We controlled the similarity ratings for lures across different emotional 

group (Leal etal., 2014b). Detailed information about the supplementary rating studies in the 

separate similarity rating participants can be found in the previous paper (Leal etal., 2014b). 

In addition, emotional images are often related thematically while neutral pictures may 

cover broader themes (Talmi and Moscovitch, 2004). If this was the case, we might expect 

that similarities across emotional items higher than similarities across neutral ones. To 

address this issue, we assessed similarities within stimuli across valence, based on similarity 

ratings from an independent group of participants (27 participants, 11 females; via Amazon 

Mechanical Turk). To ensure the quality of online ratings, participants were asked to 

complete only one session per day (~1.5 hours). In addition, we randomly inserted 5% of 

control trials with two identical images in the task to track participants’ behavioral 
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performance throughout the session. Only participants with greater than 95% accuracy for 

these control trials were included (4 participants were excluded due to their low behavioral 

performance). Based on the online ratings, we found no significant difference across valence 

(Similaritynegative = 5.47 ± 0.13, Similaritypositive = 5.39 ±0.11, Similarityneutral = 5.64 

± 0.14, p > 0.05); no significant difference across trial type (Similaritytarget = 5.68 ± 0.12, 

Similaritylure = 6.21 ± 0.28, p > 0.05); and no significant interaction (ppvaience × trial type > 

0.05).

During the encoding phase, 148 images were presented in pseudorandom order and subjects 

were instructed to rate the emotional valence of each stimulus (‘negative’, ‘neutral’ or 

‘positive’). After a short delay (~1 minute), subjects were exposed to 290 images including 

target (repeated images, n = 54), lure (similar images, n = 97) and foil items (new images, n 

= 139). The lure items were evenly distributed across emotional valence (NegLure = 33; 

NeuLure = 32; PosLure = 32) and similarity level (NegSIM = 6.29 ± 0.11; NeuSIM = 6.14 

± 0.12; PosSIM = 6.41 ± 0.08, p > 0.05). During the test period, subjects were asked to 

identify whether each image was shown in the encoding phase or not. Subjects needed to 

make the response via key press within the 2 s time window and the trials where subjects 

failed to make a decision within the time period (< 2%) were excluded from the analysis.

Notably, the stimuli have balanced visual attributes: including balanced image size, 

luminance, contrast, complexity, entropy, and color composition across all three valence 

groups (Table S4; each visual attribute was calculated using the same method from a 

published image dataset, “Nencki dataset” (Marchewka et al., 2014). Moreover, the stimuli 

have balanced brightness (ptheoritical = 0.243 and phuman vision = 0.187) and color tone 

(82.2% negative images, 91.1% positive images and 94.2% neutral images were rated as 

color balanced) across all three valence groups (Figure S6) as well based on the theoretical 

calculations and ratings from an independent group (11 participants, 4 females) via Amazon 

Mechanical Turk.

Data acquisition and preprocessing—Stimuli were presented using PsychoPy2 

(Version 1.82.01) software (Peirce, 2009) on an Apple MacBook Pro, which was placed on 

the service tray at a comfortable distance in front of participants. An external Apple 

keyboard was used to capture subjects’ responses. Intracranial EEG data were acquired 

using a Nihon Kohden recording system (256 channel amplifier, model JE120A), analog-

filtered above 0.01Hz and digitally sampled at 5000Hz. After data acquisition, the 

preprocessing of raw data was conducted using customized MATLAB scripts. First, neural 

recordings were down sampled at 2000Hz and band-pass filtered between 1 to 250Hz using 

the zero phase delay finite impulse response (FIR) filter with Hamming window. Then 

power spectral density (PSD) was estimated using Welch’s method (pwelch,m in Signal 

Processing Toolbox from MATLAB). Line noises (usually 60Hz and its harmonics) 

inspected from PSD plots were removed via the multi-taper regression method. Based on the 

electrode localization results, channels in the amygdala and the hippocampus were re-

referenced to the nearest white matter electrodes on the same depth electrode probe. The 

epileptiform discharges were manually marked (using databrowser.m in FieldTrip; 

Oostenveld et al., 2011) by the epileptologist (J.J.L.), who was blinded to electrode locations 

and trial information (e.g., stimuli onsets and subject’s performance). Importantly, there 
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were no seizures recorded in any subject while performing the task, and only the electrodes 

contralateral to or outside of the seizure onset zone were included in the analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis—First, we evaluated subject’s task performance by computing the 

accuracy rate overthe test phase (i.e., the ratios between the total number of correct trials and 

the total number of responded trials) across all conditions (Table S1) and for individual 

stimuli types (Table S2). Then we quantified their discrimination ability by calculating the 

LDI, which is the difference between the number of lure correct rejections and target miss: 

p ′New′ |Lure − p ′New′ Target  for each valence group. To more accurately reflect subjects’ 

perception of emotional valence, we used subjects’ own ratings (97.2% consistent with the 

ratings from an independent group) during the encoding session to group trials into different 

valence conditions.

Event-related potentials—We then segmented the preprocessed intracranial recordings 

into event-related epochs, including a 500ms pretrial baseline and a 2000ms time window 

after trial onset. The segmented data were zero-padded to minimize filter-induced edge 

effects and were low-pass filtered at 30Hz using a finite impulse response filter (eegfilt.m 

function in EEGLAB toolbox; Delorme and Makeig, 2004). Task-induced ERPs were 

calculated within each condition (lure correct rejection versus lure false alarm) by averaging 

across filtered epochs and normalized to the averaged signal across the pre-trial baseline 

period. A two-sample t test was performed for each data point to determine the significant 

difference between conditions (t test, p > 0.05). To remove the potential contribution of 

signal components phase-locked to the trial onset (e.g., ERPs), calculated ERPs were 

subtracted from each channel before further analysis.

Frequency decomposition and task-induced power—Time-frequency 

representations of power were computed for each event-related epoch, with FIR filtering 

between 1 to 250Hz through 28 logarithmically spaced frequencies. The adaptive 

bandwidths ensured precise phase estimations within narrow bands of low-frequency 

oscillations while the broader range of higher-frequency eliminated sideband effects and 

prevented spurious PAC (Aru et al., 2015). We then applied the Hilbert transform (hilbert.m 

function in Signal Processing Toolbox from MATLAB) to extract analytic amplitude and 

phase for all filtered traces. The task-induced power (2–250 Hz) was calculated by squaring 

the analytic amplitude envelope and was normalized to the pre-trial baseline using relative 

change in decibel conversion (dB). Results shown in Figure 2C were averaged across all the 

subjects. Notably, the time-resolved power estimation is inherently temporally smoothed, 

especially for low frequencies (in the order of hundreds of milliseconds), which could 

contribute to smearing effect onsets earlier in time. To examine whether the task-induced 

power change reflected different task outcomes, we quantified the significance of the power 

difference between the lure correct rejections and lure false alarms and corrected for 

multiple comparisons using cluster-based permutation test (Function ft_timelockstatistics 
from Fieldtrip toolbox). Specifically, for every data sample ((channel, frequency, time)-

triplet), the power difference between the lure correct rejections and lure false alarms was 

quantified by means of a t-value. Samples with t-values above the threshold (2.5th and 97.5th 
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quantiles for the two-sided t test) were selected and were clustered in connected sets on the 

basis of temporal, spatial, and spectral adjacency. This empirical dataset was then compared 

to a Monte Carlo distribution, which was created by shuffling the conditional labels for 1000 

times. Conditional power differences were considered significant when the maximum of the 

cluster-level summed t-values in the empirical data exceeded the threshold (i.e., 95th 

percentile of the maximum of the cluster-level summed t-values) of the null distribution. As 

shown in Figure 2D, significant power increase (lure correct rejection > lure false alarm) and 

power decrease (lure correct rejection < lure false alarm) were highlighted by black and 

white curves respectively. Notably, similar analyses were also conducted when comparing 

the power difference between the lure correct rejections versus target hits or foil correct 

rejections (Figure S2).

Inter-regional phase synchrony—The strength of inter-regional neural synchrony was 

quantified by the PLV (Lachaux et al., 1999), which calculates the phase d differences 

between two channels (a, b) averaged across trials for a given time point t and frequency f:

PLV(t, f ) = 1
Ntrials ∑

n = 1

n = Ntrials
exp i θn, a(t, f ) − θn, b(t, f )

It measures the degree of consistency for each electrode pair phase relationship independent 

of their absolute phases and amplitudes - among repeated trials, with values approaching 1 

referring to small variations across trials and strong phase synchrony between two channels. 

We performed the PLV analysis for each electrode pair, including all possible electrode pairs 

(one electrode from the amygdala and one from the hippocampus), within the retrieval 

processing period (2 s time window after stimuli onset). Then we grouped individual PLV(t, 
f) spectrogram according to different conditions (lure correct rejection versus lure false 

alarm as shown in Figure 2A; negative, positive, and neutral as shown in Figure 2C). To test 

the statistical significance of PLV, a null distribution was created by randomly shuffling the 

signal from each electrode pair, computing the corresponding PLV spectrograms and 

repeating the same procedure for 1000 times. Then we averaged the null distribution of all 

electrode pairs and compared the observed averaged PLV with this averaged null 

distribution. The results shown in the right panel of Figure 3A were depicted with P values 

(e.g., P - 0.05 observed data exceed 95% surrogate data), with warmer colors denoting 

greater significance levels. To improve visualization, the PLV spectrogram plots were 

smoothed using a cubic spline interpolation method (spline.m function in MATLAB). 

Similar to power estimates, the PLV results were temporally smoothed, which may result in 

smearing effect with earlier onset relative to stimulus onset.

Weighted phase lag index (WPLI)—We further confirmed the amygdala-hippocampal 

phase synchrony results using weighted phase lag index (WPLI), which is less sensitive to 

the volume conduction driven by a single or common source (Vincket al., 2011). WPLI is 

based on the imaginary component of the cross-spectrum between two signals, which 

reflects the conduction delay and is more reliable to detect the true neural interactions. 

WPLI is defined as:
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WPLI =
∑n = 1

N ℑ Xn

∑n = 1
N ℑ Xn

In which, ℑ xn  denotes the imaginary component of the cross-spectrum in the nth trial and 

N is the total trial number. Thus, for each condition (lure correct rejection and lure false 

alarm), we conducted WPLI for each amygdala-hippocampal electrode pair (across all 

possible amygdala hippocampal electrode pairs) using function ft_connectivity_wpli.m from 

Fieldtrip Toolbox. To assess the significance level of WPLI-based phase synchrony 

measurements, we conducted similar permutation test as described in the “interregional 

phase synchrony” section by generating null distribution based on 1000 shuffled datasets. 

The results shown in the Figure S4D were depicted with z scores (z = 5.32 equals to P = 

0.05, which means that observed data precede 95% surrogate data), with warmer colors 

denoting greater significance levels. For better visualization, the WPLI spectrogram plots 

were smoothed using a cubic spline interpolation method (spline.m function in MATLAB). 

WPLI results are temporally smoothed, which may contribute to smearing effect as power 

estimates and PLV results.

Phase amplitude coupling and phase slope index—PAC was computed for the 

amygdala-hippocampus electrode pair with the strongest inter-regional phase synchrony in 

each subject within the retrieval processing period (the 2 s time window after the stimuli 

onset) and was calculated as the phase coherence between the low-frequency oscillation and 

the low-frequency filtered HFA (methods have been described in the previous paper (Zheng 

et al., 2017)). The directionality within each electrode pair with the strongest inter-regional 

phase synchrony in each subject was quantified as Phase Slope Index (PSI) (Nolte et al., 

2008), which estimates the slope of the phase differences between the modulating (sender) 

and modulated (receiver) signals as a function of frequency. By applying the PSI to the 

phase of low-frequency (f) oscillations and the amplitude envelope of high-frequency (v) 

activity, the directional index can be defined as:

ψ( f ) = Im ∑
f − β

2

f + β
2

C*(v, f )C(v, ( f + δ f ))

where C(v, f) is the complex coherency as the normalized cross-spectra between two time 

series and Im denotes the imaginary part. Since the transmission between modulating and 

modulated signal has a fixed time delay, the phase spectrum between these two signals will 

change systematically as a function of frequency. In other words, when the phase differences 

increase with the corresponding frequencies, a positive slope of phase spectrum is expected, 

suggesting that low-frequency phases lead the high-frequency amplitude. On the other hand, 

a negative PSI refers to the opposite directionality. The statistical analysis of cross frequency 

PSI is similar to the method described in the section ‘Interregional phase synchrony’, by 

randomly shuffling the trials 1000 times. The PSI null distribution was calculated using 
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shuffled low-frequency phase and high-frequency amplitude. The 95th percentile of the 

surrogate data was defined as the significant threshold. For better visualization, the PSI 

spectrogram plots were smoothed using a cubic spline interpolation method (spline.m 

function in MATLAB).

Granger causality analysis—To confirm the directionality between the amygdala and 

the hippocampus, we computed spectral Granger causality, which quantifies the prediction 

error of the signal in the frequency domain by introducing another time series. Before fitting 

to the multivariate autoregressive model to compute the spectral Granger causality, the time 

series data from each amygdala-hippocampal electrode pair with the strongest inter-regional 

phase synchrony in each subject were low-pass filtered at 85 Hz, down-sampled to 250 Hz 

and normalized within each trial (e.g., subtracting the temporal mean and cross-trial mean). 

Then, we defined the model order using the Multivariate Granger Causality (MVGC) 

Toolbox based on the Akaike information criterion. The model order for each subject varied 

from 8 to 15. The Granger causality index was computed within the retrieval processing 

period (2 s time window after stimuli onset) for both directions (amygdala to hippocampus, 

hippocampus to amygdala). The significance level testing for Granger causality is the same 

method used in the section ‘Interregional phase synchrony’ by randomly shuffling the trials 

1000 times. Then the Granger causality null distribution was created and the 95th percentile 

of the surrogate data was defined as the significant threshold.

Pattern classification analysis—To test whether the phase of theta or alpha oscillations 

time-locked to the stimulus evoked HFA could decode distinct directional information, we 

performed a pattern classification analysis. As shown in Figure 5E, HFA occurred at 

different phases of the low-frequency oscillations. We used these occurring phase of HFA 

relative to its modulating frequency (lure correct rejection: theta oscillations; lure false 

alarm: alpha oscillations) as the input of the classifier. The output of the classifier was the 

prediction of task outcomes for each high-frequency event. Similar to previous studies 

(Lopour et al., 2013; Watrous et al., 2015), we chose a linear classifier and converted phase 

values as a vector quantity in the complex plane, with cosine and sine of the phase referring 

to the real and imaginary part respectively. The classifier was calculated by determining the 

sums for lure correct rejections and lure false alarms and taking the difference between the 

two conditions. Then, we projected the phase from new trials onto the classifier by taking 

the dot product in each direction:

q = ∫
0

1
cos θ(t) φreal jncorrect(t) − φreal, corect(t)) dt

+ ∫
0

1
sin θ(t) φimag, incorect(t) − φimag, correct(t)) dt

We quantified the differences for the projection distributions between lure correct rejection 

qCR and lure false alarm qIC conditions using the discriminability index d:
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d =
qCR − qIC

1
2 σCR

2 + σIC
2

A high value of d indicated that the classifier was able to better discrimination between two 

conditions. For example, in our case, it means that the phases of theta or alpha oscillations 

coupled to the stimulus evoked HFA are clustered at different phase angles and separated 

with few overlaps. We tested the significance using a cluster-based permutation test and 

creating a distribution of pseudo discriminability indexes by randomizing the category labels 

(lure correct rejection versus lure false alarm) associated with high-frequency activity 100 

times. Observed discriminability index above the 95th percentile of the surrogate data was 

considered significant.

Power-stratification controls—To ensure that the frequency specific pattern observed in 

the inter-regional phase synchrony (Figure 3A) and Granger causality effects (Figure 4A) 

were not due to the within-region conditional power differences, we repeated these analyses 

with power balanced across the relevant conditions (Figure S4). To select the power 

balancing trials across two conditions (lure correct rejection and lure false alarm), we 

performed a stratification method (ft_stratify.m from Fieldtrip Toolbox (Oostenveld et al., 

2011)) to trim trials with extreme power values from each condition until the histogram of 

trial power values between two conditions were closely matched. We conducted this power-

stratification control for both theta and alpha band power and selected the trials with 

balanced power for both frequency bands (n = 133 out of 663) to repeat the analysis of 

interregional phase synchrony and Granger causality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank I. Skelin, E.L. Johnson, R.F. Helfrich, A. Jafarpour, S.L. Leal, and L.D. Harriger for discussion; S.L. Leal 
for development of the task; H. Dong for help with preprocessing data; and the technicians and nurses of the UC 
Irvine Epilepsy Monitoring Unit. We are especially indebted to the patient volunteers at the UC Irvine 
Comprehensive Epilepsy Program. This work was supported by several grants from the NIH-NINDS R37NS21135 
(to R.T.K.), NIMH R01MH102392 (to M.A.Y.), and NINDS T32NS45540 (to R.F.S.) (PI: T.Z. Baram)-as well as 
the UC Irvine School of Medicine Bridge Fund and the Ro- neet Carmell Memorial Endowment Fund support to 
J.J.L.

REFERENCES

Adolphs R, Tranel D, and Buchanan TW (2005). Amygdala damage impairs emotional memory for 
gist but not details of complex stimuli. Nat. Neurosci. 8, 512–518. [PubMed: 15735643] 

Aftanas LI, Varlamov AA, Pavlov SV, Makhnev VP, and Reva NV (2002). Time-dependent cortical 
asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and 
desynchronization in individually defined frequency bands. Int. J. Psychophysiol. 44, 67–82. 
[PubMed: 11852158] 

Zheng et al. Page 18

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Aghajan ZM, Schuette P, Fields TA, Tran ME, Siddiqui SM, Hasulak NR, Tcheng TK, Eliashiv D, 
Mankin EA, Stern J, et al. (2017). Theta Oscillations in the Human Medial Temporal Lobe during 
Real-World Ambulatory Movement. Curr. Biol. 27, 3743–3751. [PubMed: 29199073] 

Amaral DG, and Cowan WM (1980). Subcortical afferents tothe hippocampal formation in the 
monkey. J. Comp. Neurol. 189, 573–591. [PubMed: 6769979] 

Andersen P (2007). The hippocampus book (Oxford University Press).

Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, and Vicente R (2015). Untangling 
cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61. [PubMed: 25212583] 

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, and Gee JC (2011). A reproducible evaluation of 
ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044. 
[PubMed: 20851191] 

Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, and Fell J (2010). Cross-frequency 
coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. 
USA 107, 3228–3233. [PubMed: 20133762] 

Bahramisharif A, Jensen O, Jacobs J, and Lisman J (2018). Serial representation of items during 
working memory maintenance at letter-selective cortical sites. PLoS Biol. 16, e2003805. [PubMed: 
30110320] 

Barnett L, and Seth AK (2014). The MVGC multivariate Granger causality toolbox: a new approach to 
Granger-causal inference. J. Neurosci. Methods 223,50–68. [PubMed: 24200508] 

Bastos AM, Loonis R, Kornblith S, Lundqvist M, and Miller EK (2018). Laminar recordings in frontal 
cortex suggest distinct layers for maintenance and control of working memory. Proc. Natl. Acad. 
Sci. USA 115, 1117–1122. [PubMed: 29339471] 

Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F, and Capogna M (2015). 
Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic 
Plasticity. Neuron 87, 1290–1303. [PubMed: 26402610] 

Bohbot VD, Copara MS, Gotman J, and Ekstrom AD (2017). Low-fre-quencytheta oscillations in the 
human hippocampus during real-world and virtual navigation. Nat. Commun. 8, 14415. [PubMed: 
28195129] 

Bush D, Bisby JA, Bird CM, Gollwitzer S, Rodionov R, Diehl B, McEvoy AW, Walker MC, and 
Burgess N (2017). Human hippocampal theta power indicates movement onset and distance 
travelled. Proc. Natl. Acad. Sci. USA 114, 12297–12302. [PubMed: 29078334] 

Buzsáki G, Anastassiou CA, and Koch C (2012). The origin ofextracellular fields and currents—EEG, 
ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420. [PubMed: 22595786] 

Cohen MX (2014). Analyzing neural time series data: theory and practice (MIT Press).

Cooper NR, Croft RJ, Dominey SJ, Burgess AP, and Gruzelier JH (2003).Paradox lost? Exploring the 
role of alpha oscillations during externally vs. internallydirected attention and the implicationsfor 
idling and inhibition hypotheses. Int. J. Psychophysiol. 47, 65–74. [PubMed: 12543447] 

Delorme A, and Makeig S (2004). EEGLAB: an open source toolboxforanal-ysis of single-trial EEG 
dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. [PubMed: 
15102499] 

Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, and Kahana MJ (2005). Human hippocampal theta 
activity during virtual navigation. Hippocampus15, 881–889. [PubMed: 16114040] 

Fries P (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal 
coherence. Trends Cogn. Sci. 9, 474–480. [PubMed: 16150631] 

Gordon JA (2016). On being a circuit psychiatrist. Nat. Neurosci. 19, 1385–1386. [PubMed: 
27786177] 

Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk HJ, Cassara AM, Neufeld E, 
Kuster N, Tsai LH, et al. (2017). Noninvasive Deep Brain Stimulation via Temporally Interfering 
Electric Fields. Cell 169, 1029–1041. [PubMed: 28575667] 

Güntekin B, and Başar E (2014). A review of brain oscillations in perception of faces and emotional 
pictures. Neuropsychologia 58, 33–51. [PubMed: 24709570] 

Haegens S, Nácher V, Luna R, Romo R, and Jensen O (2011). α-Oscillations in the monkey 
sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal 
spiking. Proc. Natl. Acad. Sci. USA 108, 19377–19382. [PubMed: 22084106] 

Zheng et al. Page 19

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, and Bäuml KH (2007). Prestimulus 
oscillations predict visual perception performance between and within subjects. Neuroimage 37, 
1465–1473. [PubMed: 17706433] 

Hasselmo ME, and Stern CE (2014). Theta rhythm and the encoding and retrieval of space and time. 
Neuroimage 85, 656–666. [PubMed: 23774394] 

Helfrich RF, and Knight RT (2016). Oscillatory Dynamics of Prefrontal Cognitive Control. Trends 
Cogn. Sci. 20, 916–930. [PubMed: 27743685] 

Heusser AC, Poeppel D, Ezzyat Y, and Davachi L (2016). Episodic sequence memory is supported by 
a theta-gamma phase code. Nat. Neurosci. 19, 1374–1380. [PubMed: 27571010] 

Huerta PT, and Lisman JE (1995). Bidirectional synaptic plasticity induced by a single burst during 
cholinergictheta oscillation in CA1 in vitro. Neuron 15, 1053–1063. [PubMed: 7576649] 

Inman CS, Manns JR, Bijanki KR, Bass DI, Hamann S, Drane DL, Fasano RE, Kovach CK, Gross RE, 
and Willie JT (2018). Direct electrical stimulation of the amygdala enhances declarative memory 
in humans. Proc. Natl. Acad. Sci. USA 115, 98–103. [PubMed: 29255054] 

Jacobs J, Hwang G, Curran T, and Kahana MJ (2006). EEG oscillations and recognition memory: theta 
correlates of memory retrieval and decision making. Neuroimage 32, 978–987. [PubMed: 
16843012] 

Jokisch D, and Jensen O (2007). Modulation of gamma and alpha activity during a working memory 
task engaging the dorsal or ventral stream. J. Neurosci. 27, 3244–3251. [PubMed: 17376984] 

Jutras MJ, Fries P, and Buffalo EA (2013). Oscillatory activity in the monkey hippocampus during 
visual exploration and memory formation. Proc. Natl. Acad. Sci. USA 110, 13144–13149. 
[PubMed: 23878251] 

Kensinger EA, and Schacter DL (2007). Remembering the specific visual details of presented objects: 
neuroimaging evidence for effects of emotion. Neuropsychologia 45, 2951–2962. [PubMed: 
17631361] 

Klimesch W, Sauseng P, and Hanslmayr S (2007). EEG alpha oscillations: the inhibition-timing 
hypothesis. Brain Res. Brain Res. Rev. 53, 63–88.

Kovach CK (2017). A Biased Look at Phase Locking: Brief Critical Review and Proposed Remedy. 
IEEE Trans. Signal Process 65, 4468–4480.

Lachaux JP, Rodriguez E, Martinerie J, and Varela FJ (1999). Measuring phase synchrony in brain 
signals. Hum. Brain Mapp. 8, 194–208. [PubMed: 10619414] 

Lang PJ, Greenwald MK, Bradley MM, and Hamm AO (1993). Looking at pictures: affective, facial, 
visceral, and behavioral reactions. Psychophysiology 30, 261–273. [PubMed: 8497555] 

Leal SL, and Yassa MA (2018). Integrating new findings and examining clinical applications of pattern 
separation. Nat. Neurosci. 21, 163–173. [PubMed: 29371654] 

Leal SL, Tighe SK, Jones CK, and Yassa MA (2014a). Pattern separation of emotional information in 
hippocampal dentate and CA3. Hippocampus 24, 1146–1155. [PubMed: 24796287] 

Leal SL, Tighe SK, and Yassa MA (2014b). Asymmetric effects of emotion on mnemonic interference. 
Neurobiol. Learn. Mem. 111, 41–48. [PubMed: 24607286] 

Leal SL, Noche JA, Murray EA, and Yassa MA (2017). Age-related individual variability in memory 
performance is associated with amygdala-hippocampal circuit function and emotional pattern 
separation. Neurobiol. Aging 49, 9–19. [PubMed: 27723500] 

Leutgeb JK, Leutgeb S, Moser MB, and Moser EI (2007). Pattern separation in the dentate gyrus and 
CA3 of the hippocampus. Science 315, 961–966. [PubMed: 17303747] 

Lisman JE, and Jensen O (2013). The 0-y neural code. Neuron 77, 1002–1016. [PubMed: 23522038] 

Loftus EF, Loftus GR, and Messo J (1987). Some Facts About Weapon Focus. Law Hum. Behav. 11, 
55–62.

Lopour BA, Tavassoli A, Fried I, and Ringach DL (2013). Coding of information in the phase of local 
field potentials within human medial temporal lobe. Neuron 79, 594–606. [PubMed: 23932002] 

Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, and Miller EK (2016). Gamma and Beta 
Bursts Underlie Working Memory. Neuron 90, 152–164. [PubMed: 26996084] 

Zheng et al. Page 20

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Marchewka A, Zurawski L, Jednorog K, and Grabowska A (2014). The Nencki Affective Picture 
System (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture 
database. Behav. Res. Methods 46, 596–610. [PubMed: 23996831] 

McClelland JL, McNaughton BL, and O’Reilly RC (1995). Why there are complementary learning 
systems in the hippocampus and neocortex: insights from the successes and failures of 
connectionist models of learning and memory. Psychol. Rev. 102, 419–57. [PubMed: 7624455] 

McGaugh JL (2013). Making lasting memories: remembering the significant. Proc. Natl. Acad. Sci. 
USA 110 (Supp/2), 10402–10407. [PubMed: 23754441] 

Miller EK, Lundqvist M, and Bastos AM (2018). Working Memory 2.0. Neuron 100, 463–475. 
[PubMed: 30359609] 

Min BK, and Herrmann CS (2007). Prestimulus EEG alpha activity reflects prestimulus top-down 
processing. Neurosci. Lett. 422, 131–135. [PubMed: 17611028] 

Morrison SE, and Salzman CD (2010). Re-valuing the amygdala. Curr. Opin. Neurobiol. 20, 221–230. 
[PubMed: 20299204] 

Nerad L, and Bilkey DK (2005). Ten-to 12-Hz EEG oscillation in the rat hippocampus and rhinal 
cortex that is modulated by environmental familiarity. J. Neurophysiol. 93, 1246–1254. [PubMed: 
15738273] 

Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, and Muller KR (2008). Robustly 
estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 100, 
234101. [PubMed: 18643502] 

Oostenveld R, Fries P, Maris E, and Schoffelen JM (2011). FieldTrip: Open source software for 
advanced analysis of MEG, EEG, and invasive elec-trophysiological data. Comput. Intell. 
Neurosci. 2011, 156869. [PubMed: 21253357] 

Orr G, Rao G, Houston FP, McNaughton BL, and Barnes CA (2001). Hippocampal synaptic plasticity 
is modulated by theta rhythm in the fascia dentata of adult and aged freely behaving rats. 
Hippocampus 11, 647–654. [PubMed: 11811658] 

Parish G, Hanslmayr S, and Bowman H (2018). The Sync/deSync Model: How a Synchronized 
Hippocampus and a Desynchronized Neocortex Code Memories. J. Neurosci. 38, 3428–3440. 
[PubMed: 29487122] 

Parvizi J, and Kastner S (2018). Promises and limitations of human intracranial 
electroencephalography. Nat. Neurosci. 21, 474–483. [PubMed: 29507407] 

Peirce JW (2009). Generating Stimuli for Neuroscience Using PsychoPy. Front. Neuroinform. 2, 10. 
[PubMed: 19198666] 

Pfurtscheller G (2001). Functional brain imaging based on ERD/ERS. Vision Res. 41, 1257–1260. 
[PubMed: 11322970] 

Phelps EA (2004). Human emotion and memory: interactions of the amygdala and hippocampal 
complex. Curr. Opin. Neurobiol. 14, 198–202. [PubMed: 15082325] 

Sauseng P, Klimesch W, Schabus M, and Doppelmayr M (2005). Frontoparietal EEG coherence in 
theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 
57, 97–103. [PubMed: 15967528] 

Seidenbecher T, Laxmi TR, Stork O, and Pape HC (2003). Amygdalar and hippocampal theta rhythm 
synchronization during fear memory retrieval. Science 301, 846–850. [PubMed: 12907806] 

Staresina BP, Michelmann S, Bonnefond M, Jensen O, Axmacher N, and Fell J (2016). Hippocampal 
pattern completion is linked to gamma power increases and alpha power decreases during 
recollection. eLife 5, e17397. [PubMed: 27508355] 

Stefanacci L, Suzuki WA, and Amaral DG (1996). Organization of connections between the 
amygdaloid complex and the perirhinal and parahippocam-pal cortices in macaque monkeys. J. 
Comp. Neurol. 375, 552–582. [PubMed: 8930786] 

Stujenske JM, Likhtik E, Topiwala MA, and Gordon JA (2014). Fear and safety engage competing 
patterns of theta-gamma coupling in the basolateral amygdala. Neuron 83, 919–933. [PubMed: 
25144877] 

Talmi D, and Moscovitch M (2004). Can semantic relatedness explain the enhancement of memory for 
emotional words? Mem. Cognit. 32, 742–751.

Zheng et al. Page 21

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Taylor JG, and Fragopanagos NF (2005). The interaction of attention and emotion. Neural Netw. 1S, 
353–369.

Vinck M, Oostenveld R, van Wingerden M, Battaglia F, and Pennartz CM (2011). An improved index 
of phase-synchronization for electrophysio-logical data in the presence of volume-conduction, 
noise and sample-size bias. Neuroimage 55, 1548–1565. [PubMed: 21276857] 

Wang X, Chen Y, and Ding M (2008). Estimating Granger causality after stimulus onset: a cautionary 
note. Neuroimage 41, 767–776. [PubMed: 18455441] 

Watrous AJ, Deuker L, Fell J, and Axmacher N (2015). Phase-amplitude coupling supports phase 
coding in human ECoG. eLife 4, e07886.

Yassa MA, and Stark CE (2011). Pattern separation in the hippocampus. Trends Neurosci. 34, 515–
525. [PubMed: 21788086] 

Zheng J, and Lin JJ (2018). Modulating Amygdala-Hippocampal Network Communication: A 
Potential Therapy for Neuropsychiatric Disorders. Neuropsychopharmacology 43, 218–219. 
[PubMed: 29192669] 

Zheng J, Anderson KL, Leal SL, Shestyuk A, Gulsen G, Mnatsakanyan L, Vadera S, Hsu FP, Yassa 
MA, Knight RT, and Lin JJ (2017). Amygdala-hippocampal dynamics during salient information 
processing. Nat. Commun. 8, 14413. [PubMed: 28176756] 

Zheng et al. Page 22

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Experiment Design, Behavioral Results, and Electrode Locations
(A) Mnemonic discrimination task with emotional stimuli. Each trial consists of three parts: 

a 500-ms maintenance fixation period followed by a 2,000-ms image display (processing 

period) and a self-paced response window up to 2,000ms. During the encoding phase, 

participants were cued to rate the emotional valence of each stimulus (Neg, negative; Neu, 

neutral; Pos, positive). During the retrieval phase, participants were cued to identify the 

same stimuli presented in the encoding phase as old or to indicate similar scenes (lure items) 

and novel items(foil items) as new. See Table S4 and Figure S6 for visual controls of the 

stimuli set.

(B) Across all subjects, the lure discrimination index was significantly lower in negative and 

positive conditions compared to the neutral one (error bar, SEM; *p < 0.05, **p < 0.01, 
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Scheffé test). See Tables S1 and S2 for subjects’ information and individual subject’s 

behavior performance.

(C) Electrode localizations across 7 subjects, rendered onto athree-dimensional glass brain 

(gray) based on a high-resolution anatomical atlas, with amygdala electrodes in red and 

hippocampal electrodes in blue (L, left; R, right). See Figure S1 for individual electrode 

localization.
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Figure 2. Task-Evoked Spectrotemporal Power in the Amygdala and the Hippocampus during 
Task Performances for Lure Items
(A) Averaged power spectra during the retrieval processing period in the amygdala (red) and 

the hippocampus (blue) for lure Items across all valence groups.

(B) Signal trial examples of local field potentials (LFPs) from a pair of electrodes in the 

amygdala (red) and the hippocampus (blue) from the same subject and the same LCR/LFA 

trial. Gray traces represent raw LFPs and red and blue lines denote LFPs filtered within 3–13 

Hz. The vertical lines represent stimuli onsets. Slower oscillatory activity was observed 

during the LCR (~4 Hz) compared to the LFA (~7 Hz).

(C) Averaged power of electrodes in the amygdala (left) and the hippocampus (right) across 

all 7 subjects, normalized to the pre-trial baseline (500-ms fixation period) and grouped 

according to performance outcomes (LCR, top row; LFA, bottom row, collapsed across all 

valence groups). Warmer colors denote task-induced power increases from the baseline, 

while cooler colors refer to power decreases from the baseline. The relative power changes 

from the baseline within the theta and alpha bands are highlighted with dashed and solid 

boxes, respectively. Dashed vertical lines indicate stimuli onsets. See Figure S2 for the task-

evoked spectrotemporal power for target hits and foil correct rejections and Table S3 for the 

comparisons of theta and alpha power between lure and target trials, as well as between lure 

and foil trials.

(D) Averaged power difference (LCR – LFA) across all 7 subjects and collapsed across all 

valence groups. Positive values (yellow colors) indicate greater power in the LCR compared 

to the LFA, while negative values (blue colors) refer to greater power in the LFA. The 
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significant conditional power differences (p < 0.05, corrected with the cluster-based 

permutation test) were highlighted with black contours (LCR > LFA) and white contours 

(LCR < LFA). Dashed vertical lines indicate the stimuli onset. Moreover, the power 

differences observed here were not driven by the influence of evoked response potentials 

(Figure S3).

(E) Conditional power difference (LCR – LFA) averaged within the significant theta (blue) 

and alpha (pink) clusters (detected in D) in the amygdala (left) and the hippocampus (right). 

Each dot represents the results of an individual subject. Power differences were plotted for 

negative, positive, and neutral valence stimuli (*p < 0.05).
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Figure 3. Frequency-Specific Amygdala-Hippocampal Phase Synchrony Reflects Discrimination 
Outcomes and Emotional Valence
(A) Amygdala-hippocampus synchrony (i.e., phase locking value [PLV]) averaged across all 

subjects, with stronger theta synchrony for LCRs(top left) and greater alpha synchrony for 

LFAs (bottom left). Phase locking value ranges from 0 to 1, with warmer colors indicating 

greater PLVs and stronger amygdala-hippocampal phase synchrony compared to baseline. 

The significant PLVs (p < 0.05, permutation test) were plotted for both conditions (right), 

with warmer colors denoting lower p values. The vertical dashed lines indicate stimuli 

onsets. The significant phase synchrony was not attributed to local power differences and 

was not due to volume conduction and uncorrelated noise (Figure S4).

(B) Peak frequency of amygdala-hippocampus synchrony for each subject (S1-S7, coded 

with different colors; the average peak frequency for each subject is labeled to the side in the 

plot), with theta synchrony for LCR and alpha synchrony for LFA.

(C) Consistent spectral patterns (theta synchrony for LCR and alpha synchrony for LFA) 

emerged with different emotional valence.

(D) Conditional differences in amygdala-hippocampus synchrony (LCR – LFA) are co-

varied with emotional valence, with decreased theta synchrony (blue) and increased alpha 

synchrony (pink) for negative trials compared to neutral ones (*p < 0.01).

See Figure S5A and Table S3 for comparisons of theta and alpha phase synchrony between 

lure and foil trials.
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Figure 4. Bidirectional Amygdala-Hippocampal Interactions Support Mnemonic Discrimination
(A) Averaged Granger causality index across all subjects, with bidirectional interactions for 

LCRs (green lines) and unidirectional influence from the amygdala to the hippocampus for 

LFAs (yellow lines). The dashed gray lines represent the 99.9% threshold. Color shaded 

areas, SEM. The significant directional influence was not attributed to local power 

differences (Figure S4).

(B) Difference of Granger causality indices (LCR – LFA) averaged within the theta (top) and 

alpha (bottom) bands for both directions (red, amygdala to hippocampus; blue, hippocampus 

to amygdala). *p < 0.05 indicates that the conditional difference of Granger causality indices 

significantly differed across groups with different emotional valences.

Neg, negative; Pos, positive; Neu, neutral; n.s., not significant; AMY, amygdala; HPC, 

hippocampus. See Figure S5B for comparisons of directionality between lure and foil trials.
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Figure 5. Distinct Theta Phases Encode Information from the Amygdala and the Hippocampus
(A) Averaged interregional phase-amplitude coupling (PAC) across all subjects within the 

amygdala-hippocampal network for LCRs (A) and LFAs (B). Warmer colors denote lower p 

values (permutation test; see STAR Methods).

(C) Phase slope indices (PSIs) were calculated for two directions (red, amygdala leads 

hippocampus; blue, hippocampus leads amygdala) in each condition (left, LCR; right, LFA). 

Positive values indicate low-frequency phases driving high-frequency activity. Dots 

represent the PSI value of each subject.
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(D) PSI difference was calculated by subtracting the PSI values from two directions 

(PSlAMYtoHPC – PSlHPCtoAMy).Then, the calculated PSI differences were Z scored against 

null distributions generated by randomly shuffling trials. The colored lines represent the 

results of individual subjects. PSI differed between two conditions, from a bidirectional 

network during LCR to a unidirectional, amygdala-driven network during LFA (p < 3.212 × 

10−12) (AMY, amygdala; HPC, hippocampus).

(E) Example trials from one subject demonstrate that high-frequency activity (HFA) 

occurred at different phases of theta oscillations for different conditions (LCR, top; LFA, 

bottom). The LFP traces were color coded by the phase of the peak modulating frequency 

from either the amygdala (top rows) or the hippocampus (bottom rows). Gray dots indicate 

the time when HFA from the modulated signal (top rows, hippocampus; bottom rows, 

amygdala) occurred.

(F) Circular distributions of phases at which HFA occurred across all 7 subjects.

(G) Overlapping percentage of the occurring phases of HFA from the amygdala and the 

hippocampus for both conditions (left, LCR; right, LFA). For LCR, the phase overlapping 

percentage reduced with the decrease of emotional valence (negative > positive > neutral, *p 

< 0.05). For LFA, the phase overlapping percentage remained constant across different 

emotional valence (n.s., not significant).
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Figure 6. Interactive Approach between the Amygdala and the Hippocampus Determines 
Memory Outcomes
Differentiating similar (overlapping) memories from one another requires the cooperation 

between the amygdala and the hippocampus. A balanced amygdala-hippocampal circuit 

(left), with bidirectional interregional interactions via phase-specific theta-gamma coupling, 

could successfully separate the overlapping memories and store them as independent 

mnemonic representations (i.e., pattern separation). In contrast, an amygdala-dominated 
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circuit (right), with unidirectional influence from the amygdala to the hippocampus via alpha 

oscillations, could lead to discrimination errors.
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