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Abstract

The “5th International Symposium on Non-neuronal Acetylcholine: from Bench to Bedside” was 

held on September 27–29, 2019 in Hyatt Regency, Long Beach, CA, USA. Approximately 50 

scientists from 11 countries over 6 continents participated in this meeting. The major topics 

included an overall biologic significance of non-neuronal acetylcholine (ACh) and the roles of 

the non-neuronal cholinergic systems in mucocutaneous, respiratory, digestive, immunologic, 

endocrine, cardiovascular, musculoskeletal and kidney diseases, and cancer. This meeting 

facilitated continued work to advance the fundamental science and translational aspects of the 

interdisciplinary studies on non-neuronal ACh. The progress made has opened a new chapter 

in the field of cholinergic pharmacology, and advanced our knowledge beyond regulation of 

individual cell- and tissue-types, defining a new paradigm of selective pharmacological regulation 

of vital function of practically all types of non-neuronal cells. It is now clear that the autocrine and 

paracrine control of non-neuronal cells by non-neuronal ACh is implemented through synergistic, 

additive, and reciprocal effects triggered by two different cholinergic receptor classes. Each 

biologic effect of ACh is determined by a unique combination of cholinergic receptors subtype 

expressed at each stage of cell development and differentiation. The plasticity of the non-neuronal 

cholinergic system helps adjust homeostasis to new environmental conditions.

The “5th International Symposium on Non-neuronal Acetylcholine: from bench to bedside” 

was held on September 27–29, 2019 in Hyatt Regency, Long Beach, CA, USA (https://

sites.uci.edu/2019nihsymposium). Approximately 50 scientists from 11 countries over 

6 continents participated in this meeting (Figure 1). The major topics included an 

overall biologic significance of non-neuronal acetylcholine (NNACh) and the roles of the 
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non-neuronal cholinergic systems in mucocutaneous, respiratory, digestive, immunologic, 

endocrine, cardiovascular, musculoskeletal and kidney diseases, and cancer. During last 

two decades, the scientific community working in the field of NNACh has continuously 

grown, expanding our knowledge on the biologic and pathologic aspects of the non-neuronal 

cholinergic system. The scientists exploring the biologic roles of NNACh gathered in 

2002 in San Francisco, USA, for a first international symposium on NNACh, followed 

by meetings held in Mainz, Germany (2007), Groningen, the Netherlands (2011), Giessen, 

Germany (2014) and now in Long Beach, USA. The articles of participants of the 5th 

International Symposium on NNACh covering a large variety of biologic and medical 

aspects of non-neuronal cholinergic systems are published in the current virtual special issue 

of International Immunopharmacology. Together with previous four symposium proceedings 

(ie, Life Sciences 2003, Vol. 72, No. 18–19; Life Sciences 2007, Vol. 80, No. 24–25; Life 

Sciences 2012, Vol. 91, No. 21–22 and International Immunopharmacology 2015, Vol. 29. 

No. 1), the present virtual special issue of International Immunopharmacology provides the 

most comprehensive summary of the history and current progress in the development of the 

field of NNACh.

The fact that ACh is present in bacteria, blue-green algae, yeast, fungi, protozoa and 

primitive plants [1, 2] indicates that ACh has been acting as a signaling molecule in non-

neuronal cells for about 3 billion years, whereas its neuronal function spans only a relatively 

short period of about ½ billion years. The discovery of ACh outside the neural system 

was followed by the discoveries in the non-neuronal locations of the metabolizing enzymes 

choline acetyltransferase and acetylcholinesterase (AChE), muscarinic and nicotinic classes 

of cholinergic receptors, (mAChRs and nAChRs), choline and ACh transporters, and, most 

recently, of non-canonical endogenous ligands, such as members of the Ly6 protein family. 

It is therefore currently well-established that ACh is a ubiquitous molecule in life that, in 

addition to neurotransmission, plays important roles in various aspects of cell biology and 

homeostasis outside the neural system.

The discoveries of cholinergic molecules started in 1864 when Oscar Liebreich prepared 

a lipid-free extract from brain that he called “protagon” [3]. Using alkaline extraction, he 

obtained from protagon a basic compound that he named “neurin”. Two years later, Adolf 

von Bayer crystalized neurin, identified it as ACh and synthesized it, referring to it as 

“acetylneurin” [4, 5]. ACh had only a chemical interest until it was found to be biologically 

active. In 1906, Reid Hunt and René de M. Taveau discovered that ACh in small doses 

decreases blood pressure [6]. The story of NNACh started in 1914 when Arthur J. Ewins 

extracted ACh from ergot, the fungus Claviceps purpurea, and identified it as a blood 

pressure decreasing agent [7]. Later in 1914, Henry Hallett Dale characterized physiologic 

effects of ACh, compared to choline, and identified differences between muscarinic and 

nicotinic effects of ACh [8]. In collaboration with Harold Dudley, he first isolated ACh 

from animal body in 1929 [9]. In that study, the spleen extract containing ACh showed 

similar effects on the blood pressure of cat and on the intestinal muscle tone of rabbit. 

Since Dale and Dudley used tissue extract from ox and horse spleens that do not have 

vagal innervation, the discovery of the biologic significance of NNACh preceded that of 

neuronal ACh. Within next few years, using various methods of extraction, NNACh was 
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found in extracts of animal blood, eye, bladder, skin, testis, fat, kidney, trachea, lung, 

uterus, vagina, placenta, adrenal gland, salivary glands, esophagus, stomach, pancreas, liver, 

intestinal muscle and mucous membrane, and some other tissues and organs (reviewed 

in [10, 11]). However, the following decades witnessed a rapid progress in elucidating 

role of ACh in neurotransmission, while the NNACh was almost forgotten [12]. For his 

work on the role of ACh in chemical neurotransmission, Dale was awarded the Nobel 

prize in physiology or medicine in 1936, shared with the Austrian pharmacologist Otto 

Loewi. Using sophisticated frog heart preparations, Loewi found that electric stimulation 

of vagus nerve attached to the heart elicits the release of a substance named “Vagusstoff” 

that inhibits the heart contractility [13]. Later on, Loewi and Navratil pharmacologically 

identified Vagusstoff as ACh [14]. Dale introduced the terms “cholinergic” and “adrenergic” 

to describe nerve fibers which transmit their actions by releasing at their endings ACh and a 

substance related to adrenaline, respectively [15].

The interest to NNACh as to an important biologic modulator has been slowly growing 

from the early 1970s, owing to the discoveries of functional cholinergic receptors in non-

neuronal cells. In 1969, Sarah Tjioe and C. Paul Bianchi identified “muscarinic sites” in frog 

ventricle [16], which might represent mAChRs of both cardiomyocytes and nerve terminals. 

During the following decade, mAChRs were found in the chronologic order in retina [17], 

lymphocytes [18], spleen [19], adrenal gland [20], stomach [21], parotid gland [22], lacrimal 

gland [23] and colonic epithelium [24]. In 1977, Engel et al [25] first reported about 

expression of nAChRs outside the neural system. The authors demonstrated specific binding 

of the canonical nicotinic ligand α-bungarotoxin to thymic epithelial cells. In early 1990th, 

classic nAChRs were found in nonmuscle and non-neuronal human cell lines, including 

small cell lung carcinoma, adenocarcinoma, and several other tumor cell lines [26, 27].

In 1983, Paul Layer identified the presence of both AChE and butyrylcholinesterase at 

very early times in the embryo [28]. This was in keeping with and further elaborated 

on the earlier report by Ulrich Drews about the presence of “embryonic cholinesterase” 

that showed activity in epithelial cells independent from innervation [29]. It also became 

evident that in addition to regulating ACh level, thus playing a role of the “bottleneck” 

of cholinergic functioning (coined by Paul Layer), AChE exhibits a large variety of non-

enzymatic activities in both neuronal and nonneuronal cells (reviewed in [30, 31]).

Subsequent reports convincingly demonstrated that ACh and cholinergic enzymes and 

receptors are ubiquitously present in human body (reviewed in [32–34]). Soon after 

characterization of non-neuronal cholinergic enzymes and receptors, Prof. Kummer’s group 

first demonstrated expression of the high-affinity choline transporter, CHT1, in human 

and rat skin [35], and Prof. Schallreuter’s group that of the vesicular ACh transporter in 

human melanocytes and keratinocytes [36]. More recently, Prof. Skok’s group reported the 

presence of nAChRs on the mitochondrial outer membrane coupled to regulation of cell 

survival [37]. Among the recently discovered components of the non-neuronal cholinergic 

systems are non-canonical endogeneous ligands of nAChRs, such as secreted mammalian 

Ly-6/urokinase plasminogen activator receptor-related protein (SLURP)-1 and -2 and some 

others proteins (reviewed in [38]).
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In 1993, localization of ACh has been found for the first time in human peripheral 

blood mononuclear leukocyte fraction consisting of mainly T and B cells [39]. In 1995 

and thereafter, the discoveries of choline acetyltransferase (ChAT) mRNA and enzyme 

expression in T cells and B cells definitely proved that immune cells have the ability to 

synthesize ACh by ChAT (reviewed in [40]). Interestingly enough, these findings indicate 

that ACh isolated from the spleen by Dale and Dudley [9] is derived from non-neuronal 

immune cells including T and B cells, because the spleen is not innervated with cholinergic 

nerve (reviewed in [41, 42]). ChAT expression in T and B cells, dendritic cells and 

macrophages was further confirmed in ChATBAC-eGFP transgenic mice [43] and ChAT-

Cre-tdTomato mice [44]. Expression of various subtypes of both mAChRs and nAChRs in 

T and B cells, dendritic cells and macrophages has been demonstrated by detecting mRNAs 

for respective ACh receptors with RT-PCR (reviewed in [45]).

All five M1-M5 mAChR subtypes are expressed in almost all immune cells at various levels. 

Studies in mAChR knockout mice revealed that M1/M5 mAChRs up-regulate TNF-α, IFN-

γ and IL-6 production in spleen cells, leading to an elevation of serum antigen specific 

IgG1 [46]. Immune cells also express neuronal type nAChRs as pentamers comprised of 

two to five distinct subunits (ie, α2-α10, and β2 and β3) forming ligand-gated ion channels. 

Expression of various ACh receptor types may vary depending on immunological status of 

the subjects and respective immune cells, such as infection [47, 48]. Among the nAChR 

subtypes expressed in immune cells, the role of α7 nAChR in the regulation of inflammatory 

and immune responses has drawn attention, in part, because stimulating α7 nAChRs on 

macrophages suppressed the synthesis and release of TNF-α, thereby protecting mice from 

lethal endotoxin shock induced by lipopolysaccharide [49]. On the basis of these findings, 

Tracey [50] proposed the “inflammatory reflex” pathways in which sensory input evoked 

by infection or injury travels through the afferent vagus nerve and cytokines to integrative 

regions in the brainstem, and after processing, the efferent vagus nerve carries the outbound 

signals terminating in the spleen. However, reflecting the lack of the direct vagal innervation 

of the spleen, the “inflammatory reflex” pathways have been modified to acknowledge that 

neural signals are relayed by ACh synthesized in a subset of CD4+ T cells to α7 nAChRs 

on macrophages within the spleen [51]. Taken together, these findings demonstrate that ACh 

synthesized in T cells plays critical roles in regulation of inflammatory responses.

Recent study by Mashimo et al [52] revealed divergent roles of α7 nAChRs in antigen-

presenting cells (APCs) and T cells in regulation of naïve CD4+ T cell differentiation 

by demonstrating that: 1) α7 nAChRs of APCs down-regulate T cell differentiation by 

inhibiting antigen processing and thereby interfering with antigen presentation; and 2) 

α7 nAChRs of T cells up-regulate differentiation into regulatory T cells and effector 

T cells. Although α7 nAChRs are also expressed almost ubiquitously in immune cells, 

their structure and function in immune cells are yet to be defined. Activation of α7 

nAChRs, α9 nAChRs and α9α10 nAChRs in monocytes inhibits pro-inflammatory 

IL-1 release via ATP-induced ion current at ATP receptor P2X7 and inflammasome 

activation [53–55]. In addition to ACh and nicotine, phosphocholine, Creactive protein and 

phosphocholine-modified lipooligosaccharides also serve as agonists for α7 nAChRs, α9 

nAChRs and α9α10 nAChRs to inhibit the ionotropic function of P2X7R and modulate 
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ATP-induced IL-1β release [53–55]. These findings suggest that α9 nAChRs and α9α10 

nAChRs are involved in down-regulation of innate immunity [53]. However, in murine 

experimental autoimmune encephalomyelitis (EAE) model, it has been shown that α9 

subunits of nAChRs in peripheral immune cells mediate exacerbation of disease severity and 

inflammatory responses in the CNS, but that α10 subunits of nAChRs are not involved in 

EAE exacerbation [56, 57]. Altogether, these findings suggest that α7 nAChRs, α9 nAChRs 

and α9α10 nAChRs are potential targets of therapeutic ligands to modulate inflammation 

and immune responses.

The components of non-neuronal cholinergic systems such as mAChRs and nAChRs are 

also the targets for both effectors of autoimmunity and novel therapeutic approaches in 

patients with relevant autoimmune diseases (reviewed in [58–60]). Autoantibodies reacting 

with the M2 mAChR are found in patients with dilated cardiomyopathy, Chagas heart 

disease and arrhythmic disorders. Both autoantibodies and autoreactive T cells against the 

M3 mAChR subtype expressed in salivary and lachrymal glands are found in patients with 

Sjögren’s syndrome. Autoantibodies to certain subtypes of both mAChRs and nAChRs 

expressed on oral and cutaneous keratinocytes are found in patients with pemphigus, a 

potentially lethal autoimmune mucocutaneous blistering disease. Recent data presented 

at the 5th International Symposium on NNACh implicated anti-M3 mAChR antibody in 

determining the level of intraepidermal split just above the basal cells in patients with 

pemphigus vulgaris [61]. Although the presence of autoantibodies against keratinocyte 

mAChRs in pemphigus patients has been known for more than 25 years [62], specific 

targeting of the M3 mAChR subtype was discovered only recently in proteomic studies 

[63, 64]. Most recently, it has been demonstrated that the titer of anti-M3 mAChR antibody 

correlates with disease activity in pemphigus patients and declines with therapy [65, 66]. 

The pathogenic significance of autoimmunity against keratinocyte M3 mAChR helps explain 

therapeutic activity of the AChE inhibitor pyridostigmine bromide (Mestinon) in pemphigus 

[67].

The involvement of cholinergic signaling in the generation of cancer was among the topics 

of the 5th International Symposium on NNACh. Already in 1991, Soreq and coworkers 

discussed a possible role of cholinesterases in tumorigenesis [68]. Based on the observation 

that the enzymes AChE and butyrylcholinesterase, both limiting the cellular effects of 

ACh, are mutated, amplified and/or aberrantly expressed in a variety of human tumor 

types, the authors considered a proliferative effect of cholinergic signaling in tumor cells. 

Correspondingly, organophosphorous poisons have shown some tumorigenic effects in 

humans [68]. In the same year, Gutkind et al [69] reported that stimulation of M1, M3 

and M5 mAChRs induced foci of transformation in proliferating cultured cells. These 

effects occurred dose-dependently and the authors concluded that mAChRs may operate as 

conditional oncogenes.

Meanwhile, our knowledge about cellular effects of ACh has substantially increased. 

NNACh, via auto- and paracrine pathways, was found to be involved in the regulation of 

the cell cycle, proliferation, differentiation, migration, apoptosis and angiogenesis (reviewed 

in [32, 34, 70, 71]). Cholinergic signaling has been investigated in multiple tumors, i.e., 

cancers of the lung, female breast, colon, stomach, pancreas, prostate gland and the 
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hematopoietic system. NNACh was shown to promote cancer cell proliferation as auto-

stimulating growth factor in some tumors [72–74].

The deleterious effects of nicotine in context of lung cancer are well known and described 

in detail elsewhere [71, 75, 76]. For example, nicotine increases the survival of cancer 

cells, reduces apoptosis, facilitates spreading and metastasis of some tumor cells ([77] 

and also reviewed in [76, 78]). In human colon cancer, significant differences in the 

expression pattern of cholinergic signaling components ChAT, AChE, α7 nAChR and its 

endogenous peptide ligand modulator SLURP-1 were found between normal and tumor 

tissues [79]. Moreover, the extent of the difference in the expression pattern corresponded to 

the prognosis factors [79]. Using a human colon cancer cell line, the proliferative effects of 

a very low concentration of nicotine (1 nM) have been reported, and the opposite effect was 

observed after blockade of the synthesizing enzyme ChAT [72].

The complex and multiple pathways in which ACh can be involved in the generation or 

promotion of cancer include mAChRs. Using gastric tumor cell lines, it was shown that 

ACh via M3 mAChRs and the epidermal growth factor receptor pathway stimulated tumor 

cell proliferation [80]. In whole animal studies with subcutaneously applied xenografted 

tumor models, M3 mAChR antagonists significantly reduced tumor growth and enhanced 

the cytotoxic effect of 5-fluorouracil [80]. Interestingly, surgical denervation of the stomach 

was followed by a reduced tumor incidence and a reduced progression of gastric cancer 

[81]. It is known that mAChRs are overexpressed in colon cancer compared to normal colon 

epithelial cells. Stimulation of these receptors mediates proliferation, migration and invasion 

of human colon cancer cells [82]. In a recently published review article, the role of M3 

mAChR activation in promotion of colon cancer progression and dissemination has been 

summarized [83]. The downstream activation of several intracellular signaling pathways 

activated by M3 mAChR in colon tumor cells (i.e., the mitogen activated protein kinase/

extracellular signal-related kinase; protein kinase C; p38 mitogen-activated protein kinase; 

phosphatidylinositol 3-kinase/Akt) and, additionally, the induction of metalloproteinases has 

been identified. In consequence of these activated signaling cascades, the transcription of 

genes and the expression of proteins are modified resulting in tumor cell proliferation, 

enhanced cell survival, migration and invasion [83].

Data about cholinergic signaling in breast cancer, the most frequent malignancy in women, 

was also presented at the 5th International Symposium on NNACh. The complexity of 

cholinergic signaling by different cellular effects mediated either by mAChRs or nAChR 

becomes evident in this tumor type, too. It appears that certain mAChRs are absent in 

normal breast tissue but are expressed in tumor tissue and stimulation of these receptors, 

at least in cultured breast tumor cells, reduced cell viability and migration [84, 85]. In 

contrast, nAChRs are present in normal and tumor breast tissue and their stimulation 

enhanced proliferation rate in a dose dependent manner, emphasizing the importance to 

consider consequences of nicotine consumption with respect to the effectiveness of anti-

tumor therapy.

Discussions at the 5th International Symposium on NNACh strongly emphasized that 

basic science should be intensified to identify critical targets of cholinergic signaling in 
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carcinogenesis, because it is evident that cholinergic signaling is involved in this process. 

Analysis of cholinergic signaling in the so-called tumor stem cells should be among the 

focus of such research. Therewith, it will be a major challenge of science in the next decade 

to find out new therapeutic approaches targeting cholinergic signaling in tumor cells.

Thus, “5th International Symposium on NNACh from bench to bedside” facilitated 

continued work to advance the fundamental science and translational aspects of the 

interdisciplinary studies on NNACh. The progress made has opened a new chapter in 

the field of cholinergic pharmacology, and advanced our knowledge beyond regulation of 

individual cell- and tissue-types, defining a new paradigm of selective pharmacological 

regulation of vital function of practically all types of non-neuronal cells. It is now clear 

that the autocrine and paracrine control of non-neuronal cells by NNACh is implemented 

through synergistic, additive, and reciprocal effects triggered by two different cholinergic 

receptor classes: the ionic events, generated by ACh-dependent opening of nAChR channels 

and the metabolic events, due to ACh-binding to the G-protein coupled mAChRs as well 

as nAChR-dependent activation of signaling kinases [86]. Each biologic effect of ACh is 

determined by a unique combination of cholinergic receptors subtype expressed at each 

stage of cell development and differentiation. Simultaneous stimulation of mAChRs and 

nAChRs may be required to synchronize and balance ionic and metabolic events in a single 

cell, and a crosstalk between mAChRs and nAChRs may provide for a fine tuning of the 

signals emanating from CNS, endocrine glands and environmental stimuli. The plasticity 

of the non-neuronal cholinergic system helps adjust homeostasis to new environmental 

conditions.
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HIGHLIGHTS

1. The “5th International Symposium on Non-neuronal Acetylcholine: from 

Bench to Bedside” was held on September 27–29, 2019 in Hyatt Regency, 

Long Beach, CA, USA.

2. Acetylcholine is a ubiquitous molecule in life that, in addition to 

neurotransmission, plays important roles in various aspects of cell biology 

and homeostasis outside the neural system.

3. The plasticity of the non-neuronal cholinergic system helps adjust 

homeostasis to new environmental conditions.

4. A major challenge of science is to identify new therapeutic approaches 

targeting cholinergic signaling in non-neuronal cells.
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Figure 1. 
Participants of the Fifth International Symposium on Non-neuronal Acetylcholine, Long 

Beach, USA
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