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Undergraduate mathematics education research focused on Introduction to Proofs 

courses has gained traction as more students are experiencing challenges in their proof-

based courses. While studies have analyzed the teaching and learning of proofs, there is a 

growing need for research in students’ understanding of mathematical logic and set theory 

because of the foundational nature of these topics in more advanced mathematics courses. 

In this dissertation, I present a teaching experiment that explores how 

computing/programming can be leveraged to facilitate and strengthen the connection 
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between set theory and logic. Programming is a focus of this work due to the growing need 

for undergraduate Science, Technology, Engineering and Mathematics majors to be 

prepared for their future careers, which will likely entail the utilization of computing in 

some form. The purpose of this study is to take a step in the direction of where 

undergraduate education is headed and better understand how the use of computing can 

potentially fit into the mathematics curriculum.  

There are three main dimensions of this study. The first is a look at how 

programming can influence students’ in-the-moment ways of reasoning about 

mathematical set theory and logic. The second takes a step back to consider the students’ 

advancing mathematical activity and growth over the course of a multi-session long 

teaching experiment. The third is a focus on the students’ affective experiences, as non-

cognitive factors such as confidence, interest and self-efficacy are analyzed to characterize 

the shifting nature of the students’ mathematical identities. The results of this study 

indicate that the students in my study were able to leverage computing as an accessible 

onramp to the fundamental ideas related to set theory and logic. Moreover, my findings 

show that computing can have a positive effect on one’s sense of confidence and interest in 

relation to mathematics and programming. 
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Chapter 1: Introduction 

In this study, I focus on the development and use of concepts commonly taught in 

an Introduction to Proofs (ITP) course, specifically set theory and mathematical logic. In a 

survey of ITP courses at 179 different very high research activity and high research activity 

(R1 and R2) universities, David and Zazkis (2019) found that 81% of the courses covered 

the same main topics of mathematical logic, methods of proof, and various topics related to 

set theory. For many of the students, this is the first time they are introduced to this 

material, providing a rich opportunity for research regarding student mathematical thinking 

and overall experience working with mathematical material that they would encounter in 

an ITP course. Considering ITP research, most of the work being done has focused on 

students’ challenges and difficulties with reading and writing proofs (e.g., Ko & Knuth, 

2009; Lew & Mejía-Ramos, 2019; Moore, 1994; Weber, 2001). For this reason, I have 

decided to focus my efforts away from proof writing and comprehension, and instead 

target set theory and logic, topics that I consider essential to an undergraduate 

mathematician’s repertoire. I consider these topics to be essential given that much of the 

mathematical activity in upper division mathematics courses begins with the assumption 

that students understand what it means for something to belong to a set. For example, in 

proof writing we often start our proofs with something along the lines of, “Let x be in 

[some set].” From there, students are expected to use deductive reasoning, and logical 

relations to arrive at a conclusion for whatever it is they are interested in. Without a firm 

grasp on what it means for an element to be a member of the set, how do we expect 



 2 

students to fully understand the power of proof writing, set relations, and other advanced 

topics commonly taught in upper division mathematics?  

Traditionally, set theory and mathematical logic have been compartmentalized in 

the curriculum and hence taught as individual units in a standard ITP course. In this study, 

the students were introduced to set theory and logic together. The conjecture that I plan to 

explore in connecting these two topics is that computing can be leveraged to facilitate and 

strengthen the connection between set theory and logic in a way that empowers learners in 

their learning of mathematics, without using proof writing as a tool to explore these ideas. 

A more developed version of the conjecture can be found in Chapter 3. 

I introduce an emphasis on computing for three main purposes. The first is that data 

science, and computer science more broadly, are becoming increasingly valuable skills in 

an age where fields such as artificial intelligence and machine learning are in position to be 

the most influential drivers of change for our society (World Economic Forum, 2016). The 

second purpose draws on Lockwood et al.’s (2019) commentary on the relationship 

between computing and students’ mathematical activity in that computing will be a focus 

for mathematics educators soon to come. By encouraging the use of computational 

software as a tool for students to learn and connect ideas in undergraduate mathematics, I 

am taking a step in the direction of where mathematics education will be going in the 

coming decade. Lastly, the content of set theory and logic lends itself to the Python 

environment and hence programming may serve as a useful means for learning this 

content. 
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Taking note of students’ progression through undergraduate mathematics courses 

provides many opportunities to investigate and better understand students’ mathematical 

growth and sophistication. Rasmussen et al. (2005) describe the growth of students’ 

mathematical thought processes, participation, and mathematical contributions as their 

advancing mathematical activity. Rasmussen and colleagues proffer this terminology as an 

alternative to what had previously been described as the transition from elementary to 

advanced mathematical thinking (Tall, 1991, 1992). The benefit of using “advancing 

mathematical activity” is that it provides an asset-based perspective that positions all 

students as capable learners and doers of mathematics compared to previous approaches 

where students were binned as either elementary thinkers or advanced thinkers. Grouping 

students into bins is problematic for two main reasons. First, binning students as 

“elementary thinkers” carries a connotation that the students’ abilities are fixed. Second, it 

encourages researchers to dissect the differences between the two groups instead of finding 

ways to understand why students are experiencing difficulties in the first place. The 

comparison between groups of students and measuring the “achievement gap” of student 

success, historically a comparison between marginalized students and middle-class white 

students, is known in the literature as gap-gazing (Gutiérrez, 2008; Gutiérrez & Dixon-

Román, 2010; Young et al., 2018). By making the decision not to “gap-gaze,” both in the 

gap between experts and novices and between students with different identities and 

histories, it is possible to meet the students where they are, rather than starting at an a 

priori expectation of where others say they should be.  
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Computing in Undergraduate Mathematics Education 

 The call for research to investigate the ways in which technology and, more 

specifically, computers can be used to facilitate the teaching and learning of mathematics is 

not new (e.g., Fey, 1989; Papert, 1980; Perlis, 1962). However, previous approaches to 

address this need have varied in the medium through which the technology is used such as 

video games (Levine et al., 2020), graphing calculators (Leng, 2011) and virtual reality 

(Bogusevschi et al., 2020). Also, these areas of technology integration have been a focus at 

multiple levels throughout the educational system (Ball et al., 2018; Oates, 2011). 

Lockwood and Mørken (2021) explicitly call for research in undergraduate mathematics 

education with a focus on machine-based computing. They define machine-based 

computing as “the practice of precisely articulating algorithms that may be run on a 

machine” (p. 2). An important aspect of machine-based computing is the development of 

an algorithm rather than its performance or implementation alone. This is an important 

component of machine-based computing that distinguishes it from other forms of 

computing such as the use of Desmos where one may only be required to input parameters 

to create a visual representation of a function. Thus, Lockwood and Mørken consider 

machine-based computing to be a separate construct that includes the use of programmable 

calculators, writing packages in Geogebra, and using text-based or block-based 

programming languages. For the purposes of my dissertation, I will focus on programming 

using the text-based language known as Python.  

 In their research commentary on computing in undergraduate mathematics 

education, Lockwood and Mørken (2021) highlight how a focus on programming can serve 
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as a tool for understanding student thinking and learning. They hypothesize that the use of 

programming can serve to strengthen student reasoning but could also pose a risk of 

serving as “another rote procedure that students may not understand” (p. 5). For this 

reason, I will integrate tasks involving writing code in Python, aimed to pique students’ 

curiosity and support their advancing mathematical activity. I will accomplish this by 

providing opportunities to use Python in ways that will support the students in their 

reasoning about set theory and logic not always possible with a standard pencil and paper 

approach. From the students’ perspective, my goal is to motivate an interest and 

appreciation of the power of computing. From a mathematics education researcher’s 

perspective, my goal is to explore the potential and possibilities that programming can 

offer to enrich student learning as well as adding to the literature on the impact that 

programming, using a text-based language, has on students’ reasoning in undergraduate 

mathematics.   

Set Theory and Logic  

Understanding students’ conceptions of mathematical logic has seen some growing 

interest, but set theory has been particularly under-researched at the undergraduate level. 

Of the studies that have been conducted, which will be reviewed in Chapter 2, there has not 

been an analysis conducted that measures the growth over time of an undergraduate 

student’s conceptions related to set theory. To this point, I believe it is crucial that we 

move beyond research that documents what students are unable to do, and instead focus on 

what students find to be helpful for their learning. In a recent review conducted by 

Dawkins et al. (2020), they explored the connections made by ITP textbook authors, and 



 6 

what they considered to be helpful connections between set theory, logic and proving. 

Their results indicate that the strongest link exists between logic and proving, with some 

evidence of textbook authors using logic to explain set operations. Dawkins et al. (2020) 

suggest that utilizing a set-based approach to logic and proving can be a valuable approach 

for the teaching and learning of the standard ITP curriculum. For this reason, and those 

made previously, I believe it is important that additional research be conducted regarding 

students’ conceptions of set theory and logic, as these two topics are integral in the upper 

division mathematics curriculum and are foundational to proofs and proving. 

Confidence, Interest, and the Importance of Student Engagement 

Introductory undergraduate mathematics serves as a gate-keeping experience, 

delaying student advancement in their STEM (science, technology, engineering, and 

mathematics) degree - or pushing them out of STEM altogether (Weston et al., 2019). As 

Koch and Drake (2018) document in their report on 36 higher education institutions across 

the United States, 34.3% of students received a D, F, Withdraw or Incomplete (DFWI) in 

calculus. The statistics for Black or African American students and Hispanic or Latinx 

students were even worse with DFWI rates of 47.8% and 47.9%, respectively. Given these 

dismal statistics, it is important that we find ways to improve the undergraduate student 

experience, which entails improving the curriculum to meet the needs of today’s students. I 

believe that by infusing computing into the undergraduate curriculum, we can find ways to 

deliver engaging and high-quality instruction that not only prepares students for their 

future careers in STEM, but also fosters a sense of confidence and enjoyment in doing 

mathematics. This is particularly important for historically marginalized groups of students 
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as they are often pushed out of STEM (Weston et al., 2019), thus not even having the 

chance to interact with programming in upper-level courses.  

As a research community, it is imperative that the studies we develop are rich and 

lead to insightful information to improve the learning of mathematics through updating 

curriculum, developing effective methods of instruction, understanding student thought 

process, etc. However, it is also important that the studies we develop consider the research 

participants as human beings that bring their lived experiences to the experiment. For 

many students, mathematics brings about feelings of anxiety which is commonly 

associated with negative performance in mathematics (Namkung et al, 2019) and as a 

result, potentially negative mathematical identities. On the other hand, confidence, interest 

and other positive affective experiences have been found to be main contributors of 

students’ positive mathematical identity development (Cribbs et al, 2015, Renninger, 

2009). Therefore, I believe it is important to develop our studies with the intention of being 

mindful of our research participants’ affective experiences, and how our intervention 

studies may contribute, either positively or negatively, to their sense of mathematical 

identity.   

Research Questions 

For this dissertation I explore how computing can be leveraged to motivate, 

facilitate, and strengthen the connections between set theory and logic. There are three 

main research foci for this study. The first is a fine-grained analysis of how programming 

may influence student reasoning and learning of mathematical set theory and logic. This 

was facilitated using the instrumental approach (Artigue, 2002; Guin & Trouche, 1998; 
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Trouche, 2004), an analytic framework that can be used to document students’ 

mathematical activity while using a piece of technology. More details about the 

instrumental approach will follow in Chapter 2. The second focus takes a step back to 

consider students’ advancing mathematical activity and growth over the course of a multi-

session teaching experiment. I will consider the students’ Actual versus Hypothetical 

Learning Trajectories (Simon, 1995) to address this focus. The third is a focus on students’ 

affective experiences and how they may contribute to their mathematical identity as non-

cognitive factors such as interest, confidence and enjoyment were analyzed in relation to 

the social and personal identities of the students in this study. These foci map onto the 

three research questions driving this study: 

1. How does Python mediate students’ learning of important concepts in set theory 

and logic?  

2. What characterizes students’ increasingly sophisticated ways of reasoning 

about set theory and logic? 

3. How does the use of technology to learn mathematics in a small-group 

collaborative setting influence students’ affective experiences? 

These research questions will be elaborated on in more detail at the end of Chapter 2. I see 

the significance of this work having four major impacts. The first is that the results of this 

study will inform how researchers, educators, and practitioners may infuse computing into 

their own mathematics curriculum, particularly for those interested in ITP material. 

Second, this project is connecting mathematical logic and set theory in new and innovative 

ways to investigate how we might be able to teach these topics without the use of proof. 
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Third, my utilization of computing to teach mathematics is fairly new territory, both in 

content and methodology; my goal with this work is to provide an existence proof that a 

study like mine can result in rich and meaningful mathematical activity for undergraduate 

students who may not normally experience computing. Lastly, some students in my study 

found the use of computing to learn mathematics to be an empowering and positive 

experience; understanding how and why this happened could be beneficial for other 

teachers, researchers, and instructional designers.   

Organization of Dissertation 

 In Chapter 2, I present the theoretical and analytical frameworks that I am utilizing 

in this study. I review the instructional design perspectives that guide the development of 

the tasks for the teaching experiment sessions. Then I situate these frameworks within my 

broader theoretical approach regarding what it means to learn mathematics. These 

frameworks also shape how I will proceed with analysis, which will be discussed in 

Chapter 3. In Chapter 2 I also highlight the literature in four research domains related to 

my study. First, I review the research on students’ conceptions of set theory and the 

teaching of set theory. The second area of research I present is related to students’ 

conceptions on mathematical logic. Third, I present the research that has investigated 

computing as a tool for mathematics teaching and learning. Last, I review the literature that 

has shaped my perspective on affect and mathematical identity. 

 In Chapter 3, I present the methodology of my study. First, I present a top-level 

review of my teaching experiment which includes a description of the participants and 

context of my study. I also provide a description of the proposed data collection process 
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and approach for analysis. For each research question I will utilize different, yet 

compatible, analytic approaches and thus each approach is specified in Chapter 2. Lastly, I 

present the tasks that I will use for the teaching experiment sessions. These tasks have been 

informed by a three-session long pilot study that occurred in the last two weeks of January, 

2021. The main purpose of the pilot study was to find an effective way to present the 

material to the student groups in the study which included streamlining the tasks used and 

understanding how to navigate between screen sharing, Jamboard, and the integrated 

development environment that was being used to run the Python code. Only a couple of 

examples of student work from the pilot study will be showcased in Chapter 4, as too many 

of the tasks used in the pilot study were changed between the pilot and the main study. In 

the presentation of the tasks, I provide a description of the purpose for each task and how it 

was informed by my chosen instructional design theories.  

 In Chapter 4 I present six schemes, or in-the-moment ways of reasoning, that 

highlight the effect that Python had on the students’ understanding of the material. These 

schemes pertain to three topics: (a) logical propositions, (b) set intersection, and (c) 

subsets. Two schemes are presented for each mathematical topic. The purpose of 

highlighting these schemes is to document the influence that programming had on 

students’ ways of reasoning and to set a foundation for future work to better understand the 

prevalence of these schemes across other student experiences.  

In Chapter 5 I discuss the learning goals that I wanted the students to take away 

from participating in this study by presenting the instructional task sequence and related 

student work to document the developmental progression of their learning process. As an 
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added measure to document what, and how much, the students learned, I also present the 

results of a pre and post-study mathematical content survey in which I asked the students 

questions related to set theory, logic and programming.  

In Chapter 6 I highlight the students’ affective experiences and how their 

experiences participating in my study may have shaped their ever-changing mathematical 

identities. To document any shift that was due to participating in my study, I administered 

a pre and post questionnaire that asked about their confidence and interest related to 

mathematics, computers and programming, and programming to learn mathematics. 

Qualitatively, I also considered their responses to errors, their beliefs, attitudes, and 

emotions, as well as their senses of self-efficacy.  

With Chapter 7 I conclude this work and provide a summary of my findings as well 

as a discussion on the limitations of my study. I also highlight the implications of my work 

and detail some potential avenues for future research.  
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Chapter 2: Theoretical Perspectives and Literature Review 

The purpose of this dissertation is to understand how a text-based programming 

language can be used by students as a tool for learning mathematical set theory and logic. 

Specifically, I am focused on answering the following three research questions: 

1. How does Python mediate students’ learning of important concepts in set 

theory and logic?  

2. What characterizes students’ increasingly sophisticated ways of reasoning 

about set theory and logic? 

3. How does the use of technology to learn mathematics in a small-group 

collaborative setting influence students’ affective experiences? 

In this chapter, I first present the theoretical frameworks informing the design of the tasks 

used for the study as well as describe how my theory of learning is situated in relation to 

these design frameworks. I also present the literature on the analytical frameworks that I 

am using as tools to answer my research questions. In the second section I present a review 

of the literature on computing in mathematics education, students' conceptions of set 

theory, students' conceptions of mathematical logic, and conclude with a discussion on 

students’ affective experiences and mathematical identity.  

Theoretical Frameworks 

 Central to my approach to the teaching and learning of mathematics is that learning 

does not occur in a vacuum; one’s previous experiences and perception of the world shape 

how they come to understand new material, whether that be mathematics or anything else. 

As described by Freudenthal (1971), mathematics is a human activity where learners 



 13 

organize ideas in increasingly sophisticated ways. The design of tasks to facilitate this 

progress is paramount. In the following subsections I provide a detailed description of the 

instructional theory guiding the development of tasks for my teaching experiment and 

highlight how the instructional theory is situated within the socio-constructivist perspective 

of what it means to learn mathematics.  

Realistic Mathematics Education 

Freudenthal’s (1971) work on mathematics as a human activity eventually led to 

the development of the instructional theory known as Realistic Mathematics Education 

(RME) (Freudenthal, 1991; Gravemeijer, 1999; Gravemeijer, 2020a; Treffers, 1987). I 

draw on this theory in the development of the tasks that were used to guide my Teaching 

Experiment (TE). RME refers to the design of instruction to be realistic in the sense that 

the material is imaginable by the students and/or relevant to their experiences (van den 

Heuvel-Panhuizen, 2003). Foundational of the RME approach to the teaching and learning 

of mathematics are three main heuristics: (a) guided reinvention, (b) didactical 

phenomenology, and (c) emergent modeling (Gravemeijer, 2020b). In broad terms these 

three heuristics refer to the reinvention and ownership of the mathematics by the students 

through their own mathematical activity. My study uses these three heuristics as the 

guiding principles in creating the TE tasks that were used for my dissertation. I introduce 

guided reinvention and didactical phenomenology first to describe the role they play in the 

instructional design theory and provide a more detailed description of the emergent 

modeling heuristic as it will strongly influence the design of the TE tasks. 



 14 

Guided reinvention is the process of supporting the students in a mathematical 

activity that leads them to a particular mathematical idea or concept that they “discover” 

for themselves. Of course, students are not expected to reinvent mathematics in a single 

class period or single TE session, but as the instructor and task designer, there are ways to 

guide the students through a sequence of tasks that ultimately leads them to a particular 

theorem or idea that is then given the formal mathematical name. Gravemeijer (2020a) 

explains that the creation of tasks to help students come to a point of discovery may be 

developed based on the history of the mathematics itself (i.e., known challenges and 

barriers that have been documented) and suggests that the task designer start with the 

informal mathematical activity that students might be bringing to the classroom or learning 

environment to anticipate more formal mathematics. In an instructional sequence presented 

by Rasmussen et al. (2019), they provide an example of how guided reinvention can be 

accomplished in an undergraduate mathematics differential equations class. The guidance 

and support to lead to the reinvention is described by Rasmussen et al. (2019) as, “the 

instructor nudges students toward a modified differential equation...the instructor helps 

students recognize contextual deficiencies...and so encourages the students to develop their 

own model” (p. 11). Highlighting points of interest and encouraging students to try 

something different are two essential instructor moves to facilitate guided reinvention.  

Didactical phenomenology is the second heuristic of RME. In a sense it is the 

development of a need for a particular piece of mathematics that will help the learner in 

creating something to advance their mathematical sophistication. That is, provided with 

evidence of a student’s particular way of reasoning, the instructor may then find ways to 
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motivate the need for a more robust method or process to further develop the mathematics. 

As the instructor, one must present the learner with situations that would call for the 

development of a concept to help with their own organization of concepts and relationships 

between those concepts. In a manuscript highlighting the important and distinguishing 

factors of didactical phenomenology for instructional design, Larsen (2018) summarizes 

didactical phenomenology as a method that “tells the designer that an instructional 

sequence meant to support the learning of a piece of mathematics should be situated in a 

context that can be productively organized by students using that piece of mathematics” (p. 

25). In other words, there must be a perceived need by the students to use a particular 

mathematical idea or concept to make sense of the overall learning goal that is being 

targeted by the instructional designer. 

The third heuristic, emergent modeling, is the gradual process in which learners 

develop more-sophisticated mathematical conceptions. Emergent modeling represents the 

gradual development and use of sub-models to shift from “model-of” methods for solving 

informal mathematics to “model-for” methods used for more sophisticated ways of 

reasoning. Zandieh and Rasmussen (2010) define a model as:  

Student-generated ways of organizing their activity with observable and 

mental tools. By observable tools we mean things in their environment, such 

as graphs, diagrams, explicitly stated definitions, physical objects, etc. By 

mental tools we mean the ways in which students think and reason as they 

solve problems—their mental organizing activity. (p. 58) 

 

To provide some background as to the development of the model-of, model-for, and sub-

model approaches, Gravemeijer (2020b) explains that meaning is not embedded within the 

mathematical symbols themselves, but is created by the learner. The development of sub-
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models was brought about to support students in their construction of their own models of 

mathematics which are made up of smaller more-comprehensible sub-models. This type of 

construction of the sub-models is reflective of the history of mathematics in that the 

symbolic representation of mathematics co-evolved with the mathematics itself. This 

process is thus described as having a recursive relationship where a smaller model is 

developed to lead to more mathematics that requires another smaller model that leads to 

more mathematics and so on.  

In a sense, one may think of the development of sub-models as the transition from a 

model-of specific or more informal problem tasks to a model-for more conceptual 

mathematics. An important aspect to highlight here is that each sub-model is built off the 

previous sub-model. The model-of/model-for transition is described in more detail by 

Gravemeijer, et al. (2000) as levels of activity and shown in Figure 2.1.  
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Figure 2.1: Four Levels of Activity (Gravemeijer, 1999, p. 235) 

 

To highlight each level of activity, I will use the instructional sequence presented by 

Rasmussen et al. (2019) which documents the model-of/model-for transition in 

undergraduate differential equations (DE) students’ reinvention of bifurcation diagrams. 

As Figure 2.1 shows, the first level is situational activity where the learners are using a 

sub-model to achieve a context-specific goal. This activity is grounded in context-specific 

activity to describe a particular problem situation that is experientially real for the students. 

At this level, students explore a realistic (from the RME perspective) method/model to 

describe a situation that serves as a foundation for future mathematical activity. One of the 

more important aspects of this level is that the situational activity should be something that 

the students can come back to as they progress in more sophisticated ways of reasoning. In 

the instructional sequence by Rasmussen et al. (2019), they begin by presenting the 

students with an owl population problem and help students establish the phase line as a 

one-dimensional representation of the entire solution space. This, in effect, serves as the 
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context-specific situational activity where students can think of the specific solution space 

in terms of the phase line. 

The next level is referential activity. At this level, students are expected to move 

away from the context-specific model and take a slightly more abstracted perspective of 

the mathematical activity. However, any abstraction must not be too far removed from the 

situational activity so that the students can still see the relationship with the model-of 

approach. The important aspect of this level of activity is that students are both able to 

refer to the situational activity as well as interpret what might be considered new 

mathematics or at least a new representation of how to describe the same material. In the 

DE example, the referential activity is the construction of the autonomous derivative 

graphs where the students are asked to graph dy/dt versus y. Note that the referential 

activity is not too far of a step back to the phase line as the phase line can be overlaid onto 

the autonomous derivative graph to represent the behavior of the rate of change function. 

With this information, the goal is that the students will be able to relate the autonomous 

derivative graph to the solution space as they did with the phase line.  

Utilizing the students’ understanding of how the context-situated autonomous 

derivative graph relates to the solution space, the next step is to present the students with 

other autonomous derivative graphs that are context-free. This is known as general activity 

where students use their model composed of sub-models to reason about a mathematical 

idea without being grounded in any particular context. So, for the DE example, Rasmussen 

et al. (2019) present the students with various context-free autonomous derivative graphs 

and ask the students to reason about what the solution space would be for each graph. Once 
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the students come to see how any autonomous derivative graph can be used as a tool to 

create solution spaces, then they have effectively used the autonomous derivative graph as 

a model-of solution spaces. Thus, the students have moved away from thinking about 

autonomous derivative graphs as a process and more so as an object that they can use for 

more mathematics.  

The final level of activity is the formal activity where students are reasoning about 

mathematics in a much more abstract manner where they are using their previously 

established ideas as a model-for higher-level activity. In the context of the DE example, the 

students are presented with a fish hatchery problem in which the students are asked to 

think cohesively about the autonomous derivative graph, the phase line and slope field to 

make inferences about the solution space. When a student has successfully made the 

transition from the model-of approach to the model-for approach, they are no longer 

thinking about context-specific autonomous derivative graphs or a context-specific family 

of solutions. Instead, the students can reason about parameters on the autonomous 

derivative graph in a context-free environment. In the end, once a student has been able to 

reach the last activity level of formal reasoning, they have created a new mathematical 

reality for themselves where, say the effect of a changing parameter for various differential 

equations can then be used as part of a sub-model for situational mathematical activity in 

another problem situation. As seen, utilizing the levels of activity can help in the 

development of instructional tasks but can also be incredibly beneficial as a focus of 

analysis in terms of the extent to which students are able to make the transition from 

model-of to model-for ways of reasoning. 
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A more detailed description of the teaching experiment tasks that I will use can be 

found in Chapter 3, but here I provide an initial conjecture of the progression through the 

four levels of activity and the model-of / model-for transition. One of the goals of this 

study is to help students develop sophisticated ways of reasoning about what it means for a 

set to be a subset of another set. To develop this idea, we start with the situational activity 

of having each of the students in the teaching experiment create their own set containing 

grocery list items. Using For Loops in Python, we can create new sets from the original 

sets using set operations such as intersection and union (see lines 16-19 in Figure 2.2 

below). Note that the set intersection is a result of the ‘for’-’if’ relationship in lines 17 and 

18 and the set union operation is represented by the ‘or’ operator in line 18. In lines 23-28 

the code is instructing the machine to check each element in the new set D (the set 

containing the elements in A and B or in A and C [(A ∩ B) ∪ (A ∩ C)]) to determine 

which elements are in all three of the original sets. This process of checking each element 

one by one serves as the initial model-of determining whether one set is a subset of another 

set. As one can see, the set D = {8, “chips”, 6, “beets”} is not a subset of all three sets as 8, 

6 and “beets” are each not elements of B and C.  
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Figure 2.2: Grocery List Item Task 

 

For the referential activity, the students are tasked with a number theory problem 

related to divisibility: “Is the set of integers from 1 to 1000, that are divisible by 21, a 

subset of the set of integers divisible by 3 and 7?” Python does not allow for the students to 

work with infinite sets, so the referential activity is in creating sets displaying these 

properties (of being divisible by 21, 3 and 7) for a given range and running For Loops to 

answer the problem task. Once the students have created the sets necessary to answer this 

question, the reference to the situational activity is the process of checking each element in 

the set of integers divisible by 21 to determine whether the set is a subset of the set of 
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integers divisible by 3 and 7, similar to the grocery lists where the students check each 

grocery list item in the new set they created (set D).  

The general activity would not include the use of Python and instead ask the 

students if the number theory statement holds for all integers rather than for a given range. 

When asked how in fact they know that it is true for all integers, I anticipate that students 

will either give examples of specific integers that satisfy the statement or propose a 

hypothetical scenario where Python is able to handle infinite ranges. Ultimately, the goal is 

to help students develop a model-for determining that a set is indeed a subset of another 

set. By removing the range from 1 to 1000, I am encouraging the students to construct a 

sub-model of selecting an arbitrary element from the set, say set A, and examining its 

characteristics to show that it belongs to another set, say set B, based on how set B defines 

set membership (to show A ⊆ B). The formal activity would then be answering a problem 

such as “Prove (S ∩ T) ⊆ S where S and T are any two sets.” This is considered the formal 

mathematical activity as there are no longer any direct references to specific characteristics 

that define the sets and instead requires the students to reason about any given set. Solving 

this task requires the students to use the model-for reasoning they developed in the general 

activity of checking an arbitrary element in S ∩ T and showing that this element is an 

element of S (by definition).  

PRIMM 

As previous research has documented, the process of learning a programming 

language can be difficult for students (Robins et al., 2003). This is particularly true at the 

K-12 level, where considerable research is being conducted regarding effective teaching 
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and learning of computing (Garneli et al., 2015), with evidence showing this is true at the 

undergraduate level as well (Bennedsen & Caspersen, 2007; Horton & Craig, 2015; 

Özmen & Altun, 2014; Watson & Li, 2014). With this in mind, teaching Python to students 

in a short TE needs to be done carefully and purposefully. Therefore, attending to the 

difficulties that might arise in learning a text-based programming language, I will also 

draw on a secondary instructional theory known as the Use-Modify-Create (UMC) model 

(Lee et al., 2011). Specifically, I will follow the PRIMM approach to teaching text-based 

programming (Sentance & Waite, 2017; Sentance et al., 2019). PRIMM stands for Predict, 

Run, Investigate, Modify, and Make. The first three map onto the “Use” component of the 

UMC model, Modify maps onto itself in the UMC model and Make maps onto “create” 

(Sentance & Waite, 2017). The creators of the PRIMM model suggest that their approach 

to the teaching and learning of text-based programming elaborates on the UMC model by 

drawing attention to the level of sophistication and understanding at each level as well as 

providing a more specific framework that can be implemented in the university classroom. 

In relation to the tasks developed for this study, the PRIMM method was used throughout 

the course of the teaching experiment. 

I propose that PRIMM and RME are compatible in at least the following two ways. 

First, both frameworks approach the teaching and learning of the material through a 

scaffolded approach. That is, students are not expected to work with formal mathematics 

nor expected to write code from the onset of instruction. Instead, the goal is to provide the 

students with an accessible on-ramp to work with the material while maintaining a 

trajectory toward increasingly sophisticated material. The second aspect of compatibility is 



 24 

that these two frameworks bring a systematic approach to the reinvention (RME) and 

creation (PRIMM) of new material. In a sense I see the Modify and Make steps of the 

PRIMM model as an application of guided reinvention in that the students are creating 

their own code to represent mathematical ideas that are new to them. 

Instrumental Genesis 

Programming is starting to become a fundamental aspect of learning undergraduate 

mathematics. For example, Buteau et al. (2020) investigates how an undergraduate student 

may use programming to learn both pure and applied mathematics. Rather than 

investigating student work with a particular mathematical concept, the authors articulate 

the use of a specific theoretical framework to study the use of programming as a tool for 

learning mathematics. The framework is known as the instrumental approach (Artigue, 

2002; Guin & Trouche, 1998; Trouche, 2004). Importantly, Buteau et al. (2020) highlight 

that the instrumental approach has been used in the past for various artifacts such as 

graphing calculators, spreadsheets, applets, etc. but has not yet been used in the case where 

a programming language was considered as the artifact. They do provide illustrative 

examples of the relationship between mathematical inquiry and programming through the 

lens of an instrumental approach, but they do not provide an in-depth analysis of one 

specific mathematical concept.  

Therefore, to investigate how Python supports students’ learning and advancing 

mathematical activity related to set theory and logic, I utilize the instrumental approach. In 

Figure 2.3 I highlight the components of instrumental genesis that serve as the analytic 

framework to answer the first research question.  
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The description of the instrumental framework starts with the distinction between 

artifacts and instruments. An artifact may be a physical object, such as a graphing 

calculator, but also may be a formula, graph, or other objects that are central to a certain 

mathematical task (Roorda et al., 2016). Once the artifact has been determined, the 

integration of the artifact into a learner’s mathematical activity is known as the instrument. 

This includes the use of the artifact to problem solve and as Trouche (2004) describes it, 

“an instrument can be considered as an extension of the body, a functional organ made up 

of an artifact component...and a psychological component” (p. 285). Figure 2.3 is a 

modification of a figure presented by Guin and Trouche (1998) and diagrams the 

relationship between the learner and the artifact. 

 

Figure 2.3: Instrumental Genesis 
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In the context of this study, the artifact is the computer programming environment, Python. 

As discussed in this chapter, programming environments have previously been utilized 

with this framework in mathematics education, but never with a focus on students’ 

advancing mathematical activity in relation to set theory and logic. 

 The development of the instrument is known as instrumental genesis (Artigue, 

2002) and is tied directly to the artifact and to the mental actions of the learner in their use 

of the artifact to carry out a given task. This means that the learner may be afforded 

particular lines of reasoning but also may be constrained in their mental activity given the 

particular features of the artifact itself. This psychological component, the mental 

processes of the learner to carry out a particular task, is referred to as an instrumented 

action scheme (Trouche, 2004). The idea of a student’s scheme draws on the theory of 

constructivism and is described by Vergnaud (2009) as “the invariant organization of 

activity for a certain class of situations” (p. 88). To clarify, this definition encompasses the 

assimilation of familiar situations which learners respond to with their learned rules or 

already-established ways of understanding as well as addresses the adjustments necessary 

to address novel situations in which a learner is required to adapt, modify or reorganize 

their psychological thought processes. In the literature regarding the instrumental 

approach, schemes are defined as consisting of four main features (Trouche, 2004; 

Vergnaud, 2009). These features are summarized well by Buteau et al. (2020) as: 

1. the goal of the activity, with sub-goals and expectations;  

2. rules of action: stable behaviors of the subject;  
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3. operational invariants, which can be theorems-in-action (propositions 

considered as true) or concepts-in-action (concepts considered as relevant); 

4. possibilities of inferences. These possibilities are essential for the 

adaptation of the scheme to the specific features of the situation. (p. 1026) 

As Buteau et al. (2020) state, the rules of action and operational invariants may present 

themselves through students’ mathematical activity in a situation where a student says 

“When I want to do this [aim of the activity] … I always act like this [rule of action] … 

because I think that [operational invariant]” (p. 1027). The rules of action are stable 

methods of activity that the student will rely on to accomplish a task, based on the belief or 

conceptual understanding (operational invariant) of how something works. The operational 

invariants are broken down into two categories, theorems-in-action and concepts-in-action. 

The theorems-in-action are constructed, from the constructivist sense, ways of 

understanding how something works. The concepts-in-action are the related mathematical 

concepts that are pertinent to the goal of the activity. For example, if a student was asked 

to use a graphing calculator to find the local max and min of a function given a certain 

domain, an example of a rule of action would be ‘enter the function in the calculator’. A 

concept in action might be ‘zero slope at local min and max,’ and a theorem-in-action 

might be ‘the window display of the graphing calculator must capture the specific domain 

that is asked in the problem in order to be sure of the local max and min.’ Lastly, the 

possibilities of inference would be situations in which the student encounters a problem 

that might result in new rules of action and operational invariants. In accordance with 

constructivism, technically these schemes are constructed within the learner’s mind and 
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thus are not directly observable, however, they can be inferred by an instructor or 

researcher based on the “regularities and patterns in students’ activities” (Drijvers et al., 

2013, p. 27). That is, for the purposes of my dissertation, a “scheme” is a model that I 

construct based on the actions of the student. Thus, a “student’s scheme” is a construct that 

seemingly places possession on that of the student, but I am not claiming that the student is 

aware of the scheme or that the scheme is unknowable.  

As Roorda et al. (2016) highlight, at the core of the instrumental approach is the 

relationship between one’s scheme and their technique, or actions in response to a given 

situation. In contrast to a student’s scheme, the technique consists of the observable actions 

that are carried out by the student. It is important to highlight that while the observable 

actions inform the student’s scheme, their actions may also contradict the scheme that was 

originally developed based on previous actions. So, the student’s technique are in-the-

moment observable actions of the student that may or may not coincide with the student’s 

scheme. In their work on a student’s schemes while using a graphing calculator to reason 

about the derivative, Roorda et al. (2016) present the following table to highlight the 

various aspects of the student’s scheme and technique: 
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Table 2.1: Schemes, Techniques and Concepts 

 

Note. Each scheme in the first column is characterized by the techniques, conceptual 

elements and technical elements in its row. From “Solving rate of change tasks with a 

graphing calculator: A case study on Instrumental Genesis,” by G. Roorda et al., 2016, 

Digital Experiences in Mathematics Education, 2(3), p. 238. 

As seen in Table 2.1, the student’s techniques are linked with conceptual elements that 

help frame an understanding for the student’s scheme. In Table 2.2 I provide a hypothetical 

example of what a student’s subset scheme might look like from an instrumental genesis 

perspective using the framework provided by Roorda et al. (2016). 
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Table 2.2: Hypothetical Example of a Student’s Subset Scheme 

Instrumentation 

Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Subset Scheme Draw a Venn 

Diagram 

To determine if a 

set is a subset, one 

must conclude that 

every element of 

the set is an 

element of the 

larger set 

Write a For Loop 

to check that each 

element is an 

element of the 

larger set  

 

 To capture the idea of instrumental genesis in more detail, it is broken into two 

subcomponents, instrumentalization and instrumentation, each describing a distinct 

directional relationship between the artifact and the learner (Artigue, 2002; Trouche, 

2004). Instrumentalization is the reshaping of the artifact in the learner’s mind as to what 

the artifact can do to accomplish a certain task. Instrumentalization occurs through the use 

of the artifact and develops over time as the learner understands the functionality of the 

artifact and its capabilities. This includes the use of an artifact by the learner in unexpected 

or unintended ways. An example of this could include a learner storing mathematical 

results and theorems in their graphing calculator as a memory aid for future use. 

Instrumentation works in the opposite direction in which the artifact itself, with its built-in 

constraints and potential uses, is shaping the ways in which the learner conducts their 

mathematical activity. Roorda et al. (2016) provide examples of how an artifact may shape 

a learner’s mathematical activity in their description of a student named Andy’s schemes 

regarding the concept of the derivative. One specific example is Andy’s use of the dy/dx-

option on the graphing calculator to calculate the steepness of a graph at a particular point. 

Andy used this option in other examples throughout the longitudinal study when they 
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needed to find instantaneous rate of change and did not coordinate between the dy/dx-

option on the calculator and the symbolic representations that were covered in class. The 

authors conclude that while Andy’s graphical and numerical representations of the 

derivative were strong, these representations were being developed independent of Andy’s 

symbolic representations, a negative consequence of Andy’s overreliance and strong use of 

the graphing calculator.  

Trouche (2004) comments that both instrumentalization and instrumentation work 

together in tandem as part of the instrumental genesis process, and thus refers to a learner’s 

scheme as the instrumented action scheme as opposed to other terms such as 

instrumentation scheme as used by Roorda et al. (2016). For the purposes of this 

dissertation, I will adhere to Trouche’s approach to the development of a learner’s scheme 

(as perceived by the researcher) and either refer to it as an instrumented action scheme or 

just scheme for short.  

Hypothetical Learning Trajectories 

To improve teachers’ approaches to instruction, Simon (1995) introduced the 

notion of a Hypothetical Learning Trajectory (HLT). As Simon presented it, a HLT 

consists of three main features. First, teachers must idealize a certain goal or understanding 

that they would like their students to have and consider the current state or level of 

sophistication in which their students are reasoning about that topic. Based on that 

reasoning, the second feature is the development of tasks that must be presented to students 

in a structured and intentionally organized way to facilitate the advancement of a particular 

kind of reasoning. The third feature is the development of the teacher’s hypothesis of how 
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the students would be learning and interacting with the designed tasks (Simon, 1995). It is 

important to note that there is an interaction between the second and third features as the 

teacher is required to reflect on the students’ perceived learning processes in response to 

the designed tasks. They then develop new tasks that might facilitate a new branch of 

discussion or potential route to proceed to the desired learning goal that was envisioned 

(the first feature of the HLT). Of course, how the students react to a teacher’s HLT is not 

always going to be how the teacher intended. For this reason, what the students actually do 

in response to the instructional tasks and the learning that takes place is referred to as the 

actual learning trajectory (Simon, 1995). Lobato and Walters (2017) describe the 

relationship between the hypothetical and the actual learning trajectories well: 

Prior to instruction or analysis a teacher or researcher has a planned or 

hypothetical learning trajectory, whereas the coproduction of mathematical 

knowledge during instruction or the results of retrospective analysis by 

researchers is often known as an actual learning trajectory. (p.84) 

 

The HLT is only one component of what Simon (1995) refers to as the Mathematics 

Teaching Cycle, which involves the interrelationship between teachers’ knowledge, 

thinking, and decision making and the mathematical activity that is occurring in the 

classroom.  

In Lobato and Walter’s (2017) literature review on learning 

trajectories/progressions, they describe how Simon (1995) introduced the idea of the 

hypothetical learning trajectory as a tool or construct for teachers. That is, a teacher 

develops a conjecture about their students’ reasoning in the classroom and, in turn, 

constructs a series of tasks for the students to help support them in their mathematical 

sophistication to ideally reach a particular learning goal. Clements and Sarama (2004) 
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adapted this idea for its use in research, by including the need to track students’ 

developmental progressions: 

We conceptualize learning trajectories as descriptions of children’s thinking 

and learning in a specific mathematical domain and a related, conjectured 

route through a set of instructional tasks designed to engender those mental 

processes or actions hypothesized to move children through a developmental 

progression of levels of thinking, created with the intent of supporting 

children’s achievement of specific goals in that mathematical domain. (p.83) 

 

For the purposes of this study, when I describe the HLT, I refer to the research adaptation 

as described by Clements and Sarama. In order to support students through a development 

progression, the researcher must first have a baseline understanding of the extent to which 

the students are familiar with the mathematical content that is the subject of study. To 

accomplish this, I administered a survey before the TE and after the TE asking the students 

content-related questions on set theory and logic (more on the surveys can be found in 

Chapter 3). To further add to the capability of utilizing a HLT for research, Simon et al. 

(2010) highlighted the importance of understanding the learning process and thus the 

developmental progression by stating that researchers can use a successful task sequence to 

“observe the student's activity over the course of the entire task sequence. This provides 

data on the process by which the new learning comes about” (p. 108). In my study, I will 

study the research participants’ learning progress and processes by documenting the actual 

learning trajectory of the students as they relate to the four levels of activity from the RME 

pedagogical framework. That is, evidence of new learning will be tracked as students move 

from one level of mathematical sophistication to the next (e.g., from situational to 

referential).  
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From a research standpoint, HLTs can be used to improve existing curricula as well 

as inform instructional practices with respect to which strategies can be most beneficial for 

students. Simon focused a great deal on the pedagogy of mathematics, which mostly 

encompassed the decision making when it came to the content and tasks that were used in 

class. A focus on particular teacher moves was not initially an explicit focus when the idea 

of a HLT was first introduced. To expand upon Simon’s presentation of the role of the 

instructor within a HLT, Andrews-Larson et al. (2017) examined the various teacher 

moves that support students’ reasoning as the students move across the sequence of 

instructional tasks. In the analysis of their results, Andrews-Larson et al. (2017) found that, 

“The choices instructors make as they respond to student contributions importantly shape 

the development of student reasoning” (p.826). Two examples of teacher moves that 

importantly shape what the students learn and how they learn it are knowing what (and 

when) to “tell” the students, and intentionally framing discussions around particular points 

of interest that foreground the desired learning goals. Thus, the explicit role of the 

instructor is considered a fourth feature of an HLT.  

In undergraduate mathematics education, there has been HLT work done in the 

areas of linear algebra (Andrews-Larson et al., 2017), abstract algebra (Larsen, 2009) and 

recently in Fourier analysis (Ekici et al., 2020), among others. However, HLTs have been 

the focus of a recent call for future research (Laursen & Rasmussen, 2019). By asking 

Research Question 2, this study will be one of the first studies in mathematics education 

(that I am aware of) to address the hypothetical and actual learning trajectories of students 



 35 

as they learn set theory and logic. In line with the four features of an HLT just described, 

Research Question 2 will be addressed by attending to the following four components:  

1. The learning goals of set theory and logic that would prepare students going 

into advanced mathematics. 

2. The development of tasks that would help support the advancement of the 

students’ mathematical reasoning.  

3. The advancing mathematical sophistication of the students as evidenced by 

the actual learning trajectory of the students (i.e., the progression through 

the four levels of activity). 

4. The specific moves that I make as the researcher to help support the 

students’ mathematical thought processes and reasoning.  

It is important to note that the instructional design heuristics of RME, emergent modeling, 

didactical phenomenology, and guided reinvention are highly compatible with these four 

listed goals. Specifically features 2 and 3 as crafting and scaffolding effective tasks can 

lead to productive advancement in students’ mathematical reasoning. As Simon and Tzur 

(2004) describe, Simon's (1995) initial presentation of HLTs “stopped short of providing a 

framework for thinking about the learning process and the design or selection of 

mathematical tasks” (p. 92). As such, I address this critique by foregrounding RME as the 

guiding instructional design theory for the tasks presented to the students in the TE. 

At this point in the description of HLTs, it is important to note that the learning 

goals are set to provide a general direction for this study. Without the learning goals, each 

TE group has the potential to stall or go off in multiple distinct directions. However, I do 
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want to stress that the mathematical activity of the students in this study in relation to the 

learning goals that are posited does not reflect any kind of failure on behalf of the students 

if the learning goals are not quite met, as they are all on their own paths in advancing their 

mathematical activity.  

HLT Goals for this Study. The first goal for this HLT is that students develop 

operational definitions of the logical operators ‘and’ and ‘or.’ Evidence of this learning 

goal would be that the students can flexibly use the logical operators in the context of set 

theory, propositional calculus, as well as number theory questions. A subgoal would be 

that students will be able to reason about truth tables when determining logical equivalence 

of compound propositional statements. Evidence of this subgoal would be the use of truth 

tables with a unified approach to comparing logical statements (Hawthorne & Rasmussen, 

2015). Further evidence of sophisticated ways of reasoning about logical statements and 

logical operators would be the proper use of logic in the construction of the For Loops 

when answering the tasks related to various set operations such as set intersection and 

union.  

Utilizing Python, and their developed ideas related to set intersection and union, to 

determine that one set is a subset of another set is the second main goal for this HLT. 

Determining that one set is a subset of another set is one aspect highlighted by Dogan-

Dunlap (2006) as well as Linchevski and Vinner (1988) in their noticing of student 

difficulty identifying situations where sets were elements of other sets, in contrast to  

subsets. Evidence that the students have reached this learning goal would be the proposed 

model-for reasoning that was previously highlighted in this chapter. This model-for 
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reasoning about sets as a subset of another set is the process of selecting an arbitrary 

element from the set and determining whether or not this element fits the characteristics of 

set membership of the other set in question. 

Socio-Constructivism 

 In this section I highlight how RME is compatible with the broader perspective on 

learning known as the socio-constructivist theory of learning. As Gravemeijer (2020a) 

described, socio-constructivism “focuses attention on the crucial role of the classroom 

culture” (p. 219). Social interactions between the students and the instructor can not only 

be interpreted through the lens of a socio-constructivist theory of learning but also can be 

framed and interpreted as the instructor’s process of didactical phenomenology and support 

for guided reinvention. Gravemeijer (2020a) explains the connection between RME and 

socio-constructivism in his paraphrasing of Cobb (1994): 

(Socio-)constructivism is not a pedagogy. [Cobb] argued that if it is true that 

people always construct their own knowledge, then students will do so in 

every classroom - even with direct instruction. The issue, [Cobb] went on to 

say, is not whether they construct, but how and what they construct.” (p. 

219)  

 

Together, RME and socio-constructivism provide a holistic approach to the teaFching and 

learning of mathematics. To address the relationship between theory and pedagogy, Simon 

(1995) posed the following question: “In what ways can constructivism contribute to the 

development of useful theoretical frameworks for mathematics pedagogy” (p.117). For 

Simon, they wanted to address how teachers can effectively support students in their 

development of mathematical knowledge that took mathematicians thousands of years to 

develop. This was the impetus in the development of the Mathematics Teaching Cycle 
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framework, of which the HLT is a major component (Simon, 1995). For Simon, the goal 

was to understand how teachers can structure a sequence of tasks in response to the 

mathematical activity of their students. To be explicit, instructors must develop conjectures 

and hypotheses as to how a student might be reasoning and find an approach that 

prioritizes learning as something that the student is individually constructing and not 

something that is originating outside of the learner (Jones & Brader-Araje, 2002; 

Labinowicz & Frazee, 1980; Sjøberg, 2010). For instructors and researchers to approach 

instruction in this way, they must consider the idea that the learners are constantly 

organizing, interpreting, and restructuring their knowledge within the broader learning 

environment.  

In addition to situating the instructional design theory guiding this dissertation, I 

highlight the relationships between RME, HLTs and socio-constructivism to ground some 

of the analysis plans that will be described in Chapter 3. Specifically, the main idea 

covered in Chapter 3 related to socio-constructivism that is important to call out here. That 

is the idea of developing schemes of students’ learning. These schemes are constructs 

generated by the instructor or researcher to explain student reasoning (Norton & 

McCloskey, 2008). The notion of a scheme is something that was detailed by von 

Glasersfeld (1995) in his description of Piagetian constructivism. This idea will be strongly 

utilized in the analysis of instrumented action schemes. In general, this process consists of 

noticing the students’ observable mathematical activity and generating hypotheses as to 

how the students might be reasoning. The instructor/researcher then tests those hypotheses 
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with follow up tasks and probing questions to narrow in on specific ways students might 

reason about a given concept.  

Literature Review 

I present the following sections to review the current literature in four areas: (a) the 

teaching and learning of set theory, (b) students’ conceptions of mathematical logic, (c) 

computing as a tool in mathematics education and (d) students’ affective experiences and 

mathematical identity. It is important to note that historically the literature has been fairly 

deficit-oriented in terms of identifying what students cannot do (particularly so for the 

research related to set theory). While I believe a deficit perspective of student learning is 

problematic, I do think it is important to highlight the literature that is framing the 

motivation and goals for this study. That is, by understanding where students have 

historically had difficulties, we can work towards finding ways to support students in the 

learning process. 

Set Theory 

In this section I review studies that have investigated the learning of set theory 

topics for a wide range of students. One of the first studies related to set theory and student 

reasoning about these topics is Linchevski and Vinner’s (1988) investigation of elementary 

teachers’ and student teachers’ general understanding of sets. Their study focused on four 

aspects in particular that may lead to various conceptions of sets: (a) sets having a common 

property, (b) singleton sets, (c) a set can be an element of another set, and (d) set equality. 

The sample for this study consisted of 237 elementary teachers and 72 student teachers. Of 

the 237 teachers, 54 of them were classified as having higher levels of mathematics 
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training. As a product of interviews with 21 teachers, the researchers developed an open-

ended questionnaire with five items (three containing sub-items) that is meant to elicit 

one’s conceptions about sets. For example, item three in Linchevski and Vinner’s (1988) 

questionnaire states, 

A teacher asked her students to give an example of a set. One of the students 

wrote: My set has three elements: (a) 5, (b) 1.5, (c) the set of all the even 

integers between 2 and 100. Is this answer correct? Explain! (p. 473) 

 

The results of the study indicate interesting findings for each of the researchers’ four 

aspects of study. In relation to sets having a common property, 97% of the student 

teachers, 89% of the teachers and 60% of the teachers with a higher-level math background 

did not consider any arbitrary collection of elements as a set. Instead, many of the 

participants claimed that a set must contain elements that have some sort of commonality. 

Results related to the second aspect, singleton sets, revealed that the 48% of the teachers, 

55% of the student teachers and 6% of the teachers with more math training believed that a 

single element cannot form a set. In response to item three above, 56% of the teachers, 

70% of the student teachers and 76% of the teachers with greater math background claimed 

that the student’ response was incorrect because a set cannot be an element of another set. 

As for set equality (the fourth aspect), 18% of the teachers, 15% of the student teachers and 

56% of the teachers with greater math background correctly used the mathematical 

definition of set equality to determine equivalence between sets. The results of this study 

clearly indicate that there is room for growth in understanding topics related to set theory, 

but why might this be? 
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         Fischbein and Baltsan (1998) address this question in their review of how the 

collection of objects model might lead to misinterpretations and incorrect conceptions. 

Generally, the collection of objects model describes the intuitive perception of a set as a 

group of “things” whereas a more formal approach to the mathematical concept of a set is 

that sets are defined by the distinct objects in the set (or lack thereof in the case of the 

empty set) and nothing else. The authors claim that for every finding in Linchevski and 

Viner’s (1988) study, if one takes the perspective of a collection of objects model, “all of 

the misconceptions are predictable” (p.2). For example, take the misconception that a set 

must be composed of at least one element. The intuitive notion that a set is a collection of 

objects, or things, might then lead one to believe in this misconception when the truth is 

that a set can contain no elements, also known as the empty set. Another misconception 

that the collection of objects perspective may lead one to believe is that repeating elements 

add to the cardinality. That is, let A = {1, 2, 3, 3, 4}, someone with the collection of 

objects perspective might say that the cardinality is five when in fact the cardinality is four 

because the element 3 is repeated. One that understands sets to be defined by distinct 

objects would likely not make this mistake. Fischbein and Baltsan (1998) describe the 

intuitive model working behind the scenes as an effective contributor to how one processes 

mathematical problems regarding sets. The work of Fischbein and Baltsan aimed to 

investigate their hypothesis that the intuitive collection model pervades all apparent 

misconceptions regarding sets and that time and the learner’s age may have a role in how 

one reasons about sets. 
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         Four groups of students were the participants in Fischbein and Baltsan’s (1998) 

study: a) 46 8th grade students, b) 51 10th grade students, c) 21 preservice elementary 

school teachers and d) 32 preservice junior high teachers (where mathematics was their 

emphasis). Data collection was conducted through the administration of a questionnaire 

that was given during class time. Several in-person interviews were also conducted with 

students who did not take the questionnaire to better understand student reasoning 

regarding their proposed hypotheses. The first finding from this study relates to the 

correctness of the participants’ responses in their definition of a set. They found that 52% 

of the 8th graders, 71% of the 10th graders and 81% of the prospective elementary school 

teachers had incorrect conceptions of what a set is. The prospective junior high math 

teachers had a greater proportion of correct answers with 22% having incorrect definitions. 

When asked about the empty set, the junior high teachers seemed to know what it is but 

were unable to define it using precise language. The authors claim that this is a result of a 

tacit, intuitive, model taking over for their reasoning. In relation to time, the authors 

suggest that as students get older, unless the formal properties of sets are reinforced 

through study or instruction, the intuitive collection of objects model slowly becomes the 

primary conception that students use. 

Teaching Set Theory 

Given the results of Fischbein and Baltsan (1998), if students’ formal conceptions 

of sets are not being nurtured in future mathematics courses, then research on how best to 

support the formal conceptions at the undergraduate level is needed. Dogan-Dunlap (2006) 

addresses this point of interest in their study of how a lack of mastery of set theory 



 43 

concepts can lead to poor performance in linear algebra. In their review of 45 student 

exams across two different semesters as well as student interviews, it was clear that 

students were missing the necessary knowledge of set theory, particularly in the case of 

what it means for something to be included in a set and what it means for one set to be 

represented in multiple ways. Thus, the purpose of Dogan-Dunlap’s (2006) study was to 

present a student-centered approach to teaching just-in-time prerequisite knowledge of set 

theory concepts to support students in linear algebra. 

The basis of the pedagogical approach was to have students connect real-life 

experiences regarding club membership with the formal set-theory language. To help the 

students, a list of guiding questions was given during class that had them think about a club 

in terms of a gym membership or sports organization, anything that one can be considered 

a member of. The main purpose of this task was to encourage group discussion. 

Additionally, index cards were given out to the students with various representations of 

membership descriptions in an effort to engage students in reasoning about what it means 

to satisfy membership. One example the author gives is that some students are given 

vectors in 𝑅𝑛that are not members of any of the clubs in the class. The purpose of this 

activity was to show the students that, “not every vector in 𝑅𝑛 is a member of a club even 

if the members of the club are vectors in 𝑅𝑛” (p.405). The results of this study were limited 

but the author provided examples from one of the groups that participated in this activity. 

The group showed difficulty in being able to prove set inclusion, but they seemed better 

equipped with the tools necessary to relate the formal mathematical notation with their 

real-life experiences. In turn, the author suggests that connecting the formal mathematical 
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notation with their real-life experiences helped the students move away from thinking 

about linear algebra as pure symbol manipulation and led to a more meaningful discussion 

about the linear algebra concepts. 

While Dogan-Dunlap (2006) considered a student-centered approach to resolving 

issues related to students’ understanding of sets, Bagni (2006) took an in-depth look at the 

set theory material and highlighted the issues that may arise just in the students’ 

representations alone. Specifically, Bagni investigated the issues related to Euler-Venn 

diagrams and how their usage to represent formal ideas related to sets may induce 

cognitive difficulties for students. To begin, Bagni (2006) describes how students may 

conceptualize sets using a container-metaphor (Lakoff, & Núñez, 2000) way of reasoning 

and how that introduces conflict with a Euler-Venn diagram in identifying a particular 

element as either belonging to or being a subset of a larger set. This distinction is described 

mathematically as 𝑥 ∈ 𝐼 and 𝑥 ⊆ 𝐼, respectively. The main point emphasized by Bagni 

(2006) is the following, “The key concepts of Set Theory, such as the concepts of 

belonging and inclusion, have an intuitive meaning that is formalized later, when they 

appear defined through precise verbal expressions” (p.263).  

Note that the transition from an intuitive model of reasoning to a more formal one 

is in line with the goals of RME. However, I want the intuitive models to support student 

learning rather than serve as an obstacle or point of confusion. For example, Bagni 

explains that the precise verbal language (formal) does not always match what is drawn 

using diagrams in class (informal) and that drawing should not act as a replacement of a 

student’s definition for what it means to be a set. In order to further investigate the 
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potential issues related to diagrams and student understanding, Bagni (2006) conducted 

two experiments, experiment A with 16 11-year-old students that served in a sense as a 

trial study to experiment B with 25 15-year-old students. Two excerpts from classroom 

observations in experiment B served as the main point of analysis as a student presented 

their work in front of the class and then revisited their work after the teacher asked them to 

reconsider their answer. The specific task that the student was asked to answer dealt with 

the set of all points on a line, R, and the set of all points on a line, S, that lie perpendicular 

to R. The student and teacher’s diagrams are shown below in Figure 2.4. 

 

Figure 2.4: Teacher and Student Diagrams  

 

In Figure 2.4, the student’s diagram is on top and teacher diagrams are on the bottom 

(Bagni, 2006, p. 271). The student drew the diagram at the top indicating a geometric 

relationship within the set A (the set having elements R and S). Importantly, Bagni (2006) 

claims that the student was reasoning about the sets R and S as subsets within A rather than 

elements in A. The process of drawing the diagram in this instance served as both an 

obstacle in the student’s reasoning but also as a method for analysis from a researcher’s 
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perspective. Ultimately, Bagni suggests that educators must consciously draw a coherent 

distinction between the verbal register when referencing sets and their visual 

representations. This must be done throughout the semester as well to try and encourage 

flexibility in transitioning between verbal descriptions and diagrams. 

 In this section I highlighted literature on students’ conceptions of set theory to 

focus on the aspects that I believe most relevant to this dissertation. There are two ideas in 

particular that I believe students can use Python to help develop their sophisticated ways of 

reasoning about set theory. The first is related to the distinction between sets as elements 

of another set and sets as subsets. This is referenced by both Bagni (2006) and Linchevski 

and Vinner (1988). In Python, students must define the sets they are working with and to 

work with a set as an element, they must define it first as a ‘frozenset()’ before they can 

use it as an element of another set. I believe the process of defining the set first might help 

students conceptualize a set as an object that can be manipulated (i.e., a set can be 

modified or defined to whatever they want it to be). The second, is the idea of what it 

means to be a subset. This relates to Dogan-Dunlap’s (2006) study in identifying the 

characteristics of a set that describe set membership. As referenced in the example of the 

four levels of activity, Python can potentially help support students in the model-of / 

model-for transition of proving that one set is a subset of another. Ultimately, I can see 

Python helping students reason about set cardinality, sets as elements, and sets as subsets 

of other sets. The power of leveraging programming, as opposed to using manipulatives or 

paper and pencil, is that students learn an additional skill of increasing importance in 

today’s society. Moreover, students have opportunities to address common misconceptions 
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(as highlighted in the literature review in this chapter) in the programming environment as 

they will encounter error messages and must go through a troubleshooting process.  

Mathematical Logic 

Undergraduate students’ conceptions of logic is a relatively new and growing area 

of research in mathematics education. The role of logic in the mathematics curriculum is 

controversial, but Durand-Guerrier (2020) argues that the development of competencies in 

mathematical logic can help support mathematics conceptualization and sophisticated 

reasoning about mathematical proofs. In this section I present a series of studies 

particularly focused on students’ reasoning about logic with the dual goal of illuminating 

areas that are still under-studied and to provide the background information that motivated 

the conception of this present dissertation. 

First, I present the results by Hawthorne and Rasmussen (2015) and their 

framework for characterizing students’ reasoning about truth tables and implication 

statements. The framework they introduced consists of two main analytical dimensions: 

compartmentalized and unified ways of reasoning. A compartmentalized way of reasoning 

about truth tables describes students interpreting truth tables either row by row, column by 

column or even by each individual symbol. In contrast, someone with a unified view of 

truth tables is able to reason about the whole table which describes multiple cases as one 

idea and can be used to show logical equivalence between various logical statements. 

Through a series of interviews with students enrolled in a discrete mathematics class, their 

findings suggest that students generally struggle with viewing truth tables using a unified 

way of reasoning. Four of the six students demonstrated compartmentalized ways of 
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reasoning and the other two students showed partially compartmentalized ways of 

reasoning about the truth table on their way toward a unified view. Only the professor of 

the course presented fully unified ways of reasoning about the truth table to show 

equivalence between two logical statements. One of the primary takeaways from their 

study is that it is important to consider how students new to logic may find it helpful to 

work in a semantically meaningful context rather than pure symbol manipulation. This 

meaningful context could contribute to a reified view of the truth table not only as a 

process but also as an object that can be analyzed. 

Along these lines of providing meaningful contexts for mathematical logic, 

Dawkins and Cook (2017) present results from a series of teaching experiment sessions 

with undergraduate students focused on students’ reasoning about disjunctions. The design 

of the teaching experiment was guided by the RME heuristic of guided reinvention with 

the purpose of understanding how untrained mathematics students, who have not taken a 

proof-based mathematics course, reason about problems related to mathematical logic. 

Specifically, the researchers conducted teaching experiments with 13 students, six pairs 

and one individual, enrolled in Calculus 3. The teaching experiments began with asking the 

students to reason about a set of disjunctive statements, and the researchers’ goal was to 

focus on the spontaneous behavior and interpretations that the students utilized to reason 

about the statements. During the first session with the students, the researchers provided a 

set of relatively basic disjunctive statements such as, “A1. Given an integer number x, x is 

even or x is odd” and asked the students to determine whether the statement was true or 

false (p.246). The authors presented results from one pair of students, Eric and Ovid, as 
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their teaching experiment was representative of the others. Results from Eric and Ovid’s 

session indicated that after an initial confusion, the students developed what Dawkins and 

Cook (2017) refer to as a Part True-All True Heuristic to correctly reason about the 

disjunctive statements.  

On the second day however, the researchers provided the students with more 

difficult disjunctive statements such as, “B7. Given any triangle, it is acute or it is not 

equilateral” which resulted in students having to use more advanced ways of reasoning 

(p.246). Importantly (and relating back to the set theory literature), students were able to 

leverage what the authors refer to as set-based reasoning to help them answer the logical 

statements. For example, with the statement B7 provided above, one student, Erin, was 

able to use set complement relations to help justify their answer (p.254): 

It is true because an equilateral triangle is an acute triangle. So if it’s not 

equilateral, then there’s a chance that it’s, it could be anything else […] 

Like, every type of triangle. So if it says, “it is acute,” so an equilateral is an 

acute triangle, so it would fit into that category. ‘Or it’s not equilateral.’ 

That would include like right triangles, and obtuse, and all those other types. 

 

This student’s reasoning relied on being able to partition the set of all triangles into two 

complementary subsets, equilateral triangles, and non-equilateral triangles. The authors 

suggest that the set-based strategy, “may be productive for reinventing the normative logic 

of quantified disjunctions” (p.254). While not every student in the study was able to reason 

about mathematical logic using this type of set-based reasoning, all the students eventually 

finished the teaching experiment sessions demonstrating reasoning with the Part True-All 

True Heuristic where only one part of a disjunctive statement needs to be true for the entire 

statement to be true. 
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In a follow-up article explaining in more depth the importance of set-based 

reasoning, Dawkins (2017) provides more examples of student work from the teaching 

experiments used in the Dawkins and Cook (2017) study. In this article Dawkins 

characterizes several unique ways of student reasoning about mathematical logic. In this 

process, Dawkins also characterizes different ways students may reason about categories 

and properties (each of these being important ideas related to set theory). Specifically, 

Dawkins highlights the difficulties that some students encountered as in the tendency for 

Eric and Ovid to over-rely on familiar categories which resulted in an avoidance of 

negative ones. A clear example of this reasoning was Ovid’s substitution of “not acute” 

with “obtuse.” As one might suspect, this and other similar ways of reasoning led to 

complications in the ways they reasoned about disjunctive statements. Dawkins (2017) 

refers to this approach as reasoning about properties. In contrast, Erin’s approach (as 

described in the previous paragraph) was able to draw on set-based reasoning to determine 

the truth value of the logical statement. This is what Dawkins (2017) refers to as reasoning 

about predicates. I present the findings of this study for two purposes: a) to highlight the 

difficulty that students may encounter in the development of normative ways of reasoning 

about logical operators, and b) to bring awareness to the distinction of what reasoning 

about properties and reasoning about predicates may look like. Given that a focus of this 

dissertation is to understand how students reason about sets, I anticipate these ways of 

reasoning will be helpful in describing students’ mathematical activity. The main idea 

related to mathematical logic that I will explore further is the reinvention of normative 

ways of reasoning about the logical operators ‘and’ and ‘or.’ 
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Computing as a Tool for Mathematics Teaching and Learning 

The use of computing as a tool for mathematics learning is not quite a new 

phenomenon as efforts in the past have been made to learn various topics such as 

elementary algebra using Logo and Excel (Sutherland, 1994) and BASIC (Tall, 1989), set 

theory (Dubinsky, 1995) and abstract algebra (Dubinsky, & Leron, 1994). The work done 

by Dubinsky on set theory and abstract algebra is more in line with the focus of my 

dissertation as the goal is to use programming to develop conceptions of pure mathematics 

topics. To accomplish this goal, Dubinsky and colleagues developed a specific 

programming language, called ISETL, that was designed specifically for the purpose of 

learning these topics. Findings from the work with ISETL did in fact reveal connections 

between programming and the development of students’ mathematical conceptions, 

although the use of ISETL as a programming language never gained any sustained traction. 

I would argue that it wasn’t until Wing’s (2006) influential (more than 6600 

citations on Google Scholar) description of computational thinking and its influence on 

society that computing made significant headway in mathematics education. Wing (2006) 

describes computational thinking as the process of “parallel processing. It is interpreting 

code as data and data as code…It is choosing an appropriate representation for a problem 

or modeling the relevant aspects of a problem to make it tractable” (p. 33). Wing updated 

this definition in a more recent blog post by defining computational thinking as the 

following, “Computational thinking is the thought processes involved in formulating a 

problem and expressing its solution(s) in such a way that a computer - human or machine - 

can effectively carry out.” Wing’s insight has led to many changes in mathematics 
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education as new approaches have been developed to incorporate computing into the K-12 

curriculum (Grover & Pea, 2013). Drawing on some of the lessons learned from the K-12 

success, researchers have been making an effort to incorporate computational thinking into 

the undergraduate curriculum in other disciplines as well (Settle et al., 2013).  

Mathematics is one such field where computing is a natural fit into the curriculum 

and will continue to become important with an ever-growing emphasis on data science 

(National Academies of Sciences, Engineering, and Medicine, 2020). Additionally, 

computing has recently been a focus in undergraduate mathematics education as there has 

been a push for computing to be considered a mathematical disciplinary practice 

(Lockwood et al., 2019). In the context of this study, drawing on the definition used by 

Lockwood et al. (2019), computing is defined as “the practice of using tools to perform 

mathematical calculations or to develop or implement algorithms in order to accomplish a 

mathematical goal” (p. 3). The following literature highlights the research that has been 

conducted with respect to computing as a tool for mathematics learning at the 

undergraduate level.  

To gauge the prevalence of computing as a focus for undergraduate mathematics 

students in the United Kingdom (UK), Sangwin and O’Toole (2017) sent a survey to all 

departments in the UK that offer a Bachelor of Science degree in mathematics. 46 (63% of 

the total number of surveys sent) departments replied to the survey. Of the 46 respondents, 

78% of the departments indicated that their undergraduate mathematics students are 

exposed to programming, primarily using a mathematical programming language such as 

MATLAB, Maple, and R rather than general purpose programming languages Python, 
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C++ or Java. While these results reflect the prevalence of programming in the UK, there 

are also calls for computer science and computational thinking to be integrated into the 

undergraduate mathematics curriculum in the United States as well (Li et al., 2020; 

Lockwood & Mørken, 2021). This has led to a surge (and need) in research on how 

undergraduate students can leverage programming as a tool for learning mathematics.  

Avigad (2019) takes one step closer to this need with a description of the theorem 

prover known as Lean to teach an ITP course. They describe that they use Lean to teach 

their students three languages, formal symbolic logic, informal mathematical language, and 

computational proof language. The theorem prover is a programming language that allows 

for the user to carry out a proof using deductive reasoning as one might do in a standard 

mathematical proof. Using logical statements, the program can verify that the proof is 

valid. Avigad (2019) explains that “Lean’s logic is very expressive, so that, in principle, 

any ordinary mathematical theorem can be formalized and proved in the system” (p. 280). 

Avigad did not carry out a formal investigation of student work in relation to the use of 

Lean, but they did provide anecdotal data from their student evaluations. Their results 

suggest that students do in fact find the use of a programming language to be helpful in the 

learning of formal mathematics such as logic as well as developing an understanding of the 

structure of proof writing.  

Lockwood and De Chenne (2020) explicitly address the need for research in how 

computing can impact undergraduate students’ mathematical activity in their study 

exploring student reasoning about combinatorics problems. The data from this study comes 

from two paired teaching experiments in which the participants were recruited from a 
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Vector Calculus course. In the teaching experiment sessions, the students were given a 

series of counting tasks in which they were asked to use Python code to help determine 

their answers to permutations and combinations problems. An example of one of the tasks 

they used can be seen in Figure 2.5. 

 

Figure 2.5: Shirts and Pants Combinations Task 

 

The task presented in Figure 2.5 was the first task presented to the students in the teaching 

experiment by Lockwood and De Chenne, (2020, p. 317). While Lockwood and De 

Chenne do not explicitly mention it, they are incorporating the first four steps of the 

PRIMM model as the students are asked to Predict in (1a/b/c), Run in (1a/b/c), Investigate 

in (1b/c) and Modify in (1c/d). The goal of their study was to understand how Python can 

help students develop a robust understanding of the four different problem types (repetition 

allowed/order matters, repetition not allowed/order matters, repetition allowed/order does 

not matter, repetition not allowed/order matters) that involve selecting r objects from n 

items.  
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 While the students’ counting strategies are not particularly germane to the focus of 

my dissertation, how students used Python as a tool for learning is. For example, one pair 

of students were able to leverage nested For Loops to reason about a problem where order 

matters and repetition is allowed. The nested structure allowed for the students to impose 

an ordered structure while allowing for repetition in that the For Loops were repeatedly 

drawing from the set of objects that were being counted. Lockwood and De Chenne (2020) 

conclude that the use of Python seemed to have “enrich[ed] the students’ combinatorial 

reasoning by affording opportunities for the students to strengthen connections to the kinds 

of outcomes they were counting” (p. 338). In Chapters 4 and 5 I present my findings on 

students’ reasoning about newly constructed sets using For Loops which are in line with 

the conclusion presented by Lockwood and De Chenne. This is a new opportunity and 

capability for the students as they will be able to see visually what happens when the code 

runs through every element in a set and creates new sets through set operations. 

Students’ Affective Experiences and Mathematical Identity 

While computing is a major focus of this dissertation, with that comes the need to 

examine the current state of computing and mathematics education from a social-emotional 

perspective to understand how my study will have an impact on students. Impact in 

mathematics education can be measured in many ways, from an external qualitative 

ethnographic evaluation of one’s educational identity, to quantitative survey analysis on 

how students report their experiences in the classroom. For example, Rubin (2007) utilized 

ethnographic methods to document the oppressive environment at a low-income and urban 

high school in which Rubin argued, “few individuals would be able to persist and fewer 
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still would be able to gain the skills necessary to succeed in higher education” (p. 244). In 

Voigt et al. (2021) we used both qualitative and quantitative methods to document the 

shift, or refiguring, of a group of students’ mathematical identities. There are many ways to 

do this work, however, the goal of understanding how a teaching intervention or learning 

experience can impact one’s developing mathematical identity is the same, and is the 

purpose of asking Research Question 3. The design of this dissertation predominantly 

utilizes qualitative methodology (more in Chapter 3) to investigate the development of the 

students’ mathematical identities as the students progress throughout the study. In this 

section I highlight a brief review of previous work that shapes my perspective, and my 

intent, when I aim to study impact on students’ mathematical identity.  

Some studies on students’ non-cognitive behavior and identity can loosely be 

described as attempts to label or define. For example, Gee (2000) defined and illustrated 

natural, institutional, discursive, and affinity identities to describe the “kind of person” 

someone is, as they are perceived in the educational context. Other work that falls under 

this category of identity-defining can be seen with Cobb and Hodge’s (2011) Normative, 

Core, and Personal Identities, as well as Nasir and Saxe’s (2003) discussion on the tension 

between one’s Ethnic and Academic Identities (Nasir & Saxe, 2003). We can use this work 

to better understand how certain students may behave in a particular educational context, 

but there is more to be desired in terms of understanding the affective factors that 

contribute to one’s identity development. As Darragh (2016) describes, these identity-

labeling studies focus on identity as an acquisition, or something that an individual 

possesses inside of themselves. Instead, Darragh suggests that research should focus on 
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identity as a process, or something that we do. The advantage of discussing identity as a 

process, or something that changes over time, is that it is possible to take a sociological 

perspective on student behavior in educational contexts. This allows the researcher to 

analyze the interpersonal exchanges between students and the power dynamics that exist in 

STEM education (Gutierrez, 2013).  

When I consider the concept of one’s mathematical identity, I often first start with 

Martin’s (2006) definition of identity, “the dispositions and deeply held beliefs that 

individuals develop, within their overall self-concept, about their ability to participate and 

perform effectively in mathematical contexts and to use math to change the conditions of 

their lives” (p. 206). While this definition does a particularly good job in framing the 

importance of one’s mathematical competence, research suggests that mathematical 

identity is composed of more than just one’s ability to do mathematics. In fact, Cribbs et al. 

(2015) find that mathematical competence has an indirect effect on one’s mathematical 

identity, while interest and external recognition by their peers and others has a direct effect 

on their identity. For this reason, when I discuss impact on one’s mathematical identity, I 

am considering competence, evidence of interest and enjoyment, and if possible, how the 

students are being perceived by their working group partners. The perception component is 

the most difficult to analyze given that I am not asking the participants to discuss their 

perceptions of one another. However, if there is a situation in which Student A makes a 

comment about how smart Student B is, which happened in the pilot study, then I will 

consider that comment as a component of the development of Students B’s mathematical 

identity development.  
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As for studies on students’ affective experiences involving computing, Psycharis 

and Kallia, (2017) found that computing may have a positive impact on high school 

students’ self-efficacy in mathematics. Similar results were found by Weese et al. (2016) in 

their description of two interventions aimed at improving self-efficacy in computer science 

for grade 5-9 students. Relatedly, at the undergraduate level, Satyam (2020) explored the 

types of positive emotions and satisfying moments that students experience in a standard 

ITP course. These satisfying moments fell into four categories: accomplishment, sense-

making, properties of mathematics, and interactions with people. Analyzing the data for 

evidence of students’ positive affective experiences will help shape how we as educators 

and researchers understand how students experience teaching interventions in the context 

of advanced mathematical content. It is also important to consider the potential negative 

experiences that students may encounter. In a study investigating how gender and race 

influence group dynamics in physics classes utilizing computing, Shah et al. (2020) found 

that computing and physics were maintained as spaces for patriarchy and white supremacy. 

Specifically, white students dominated participation in small group settings compared to 

their black and latinx peers, and in groups with a greater proportion of girls than boys, the 

girls experienced greater participatory equity. As group work is often a major component 

of active learning classrooms, it can also potentially be an aspect that leads to inequitable 

experiences for women and students of color. Johnson et al. (2020) highlight this idea in 

their research on inquiry-oriented instruction classrooms by reporting that the inquiry-

oriented classrooms seemed to have a negative effect on women compared to their peers in 

non-inquiry-oriented classrooms. Johnson et al. (2020) stress that additional research on 
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small-group collaborative interactions is necessary in the post-Freeman et al. (2014) era of 

active learning in STEM.  

In view of this, it is important to consider the social and personal identities of 

students as we explore how computing and STEM education more broadly may have an 

effect on students’ non-cognitive experiences. Therefore, documenting how the student 

participants in my study experience the TE in terms of affective measures such as 

confidence, enjoyment, and interest is an explicit focus of my work. Additionally, attention 

to how certain students in each group are recognized by their working group partners will 

be a component in the analysis of the participants’ shifting mathematical identities. Given 

the focus on intra-group relationships and the interactions between students, the social 

identity markers for each student are described in the next chapter. The students were 

asked to provide these markers in the initial screening survey which I then used to 

compose the groups. More on group composition can be found in Chapter 3.  

As Adiredja and Andrews-Larson (2017) describe, postsecondary mathematics 

education research is taking a sociopolitical turn in that there has been a necessary push to 

better understand social discourses in the educational context and how these discourses 

impact equity, power and students’ mathematical identity development. For social 

discourses, I draw on Gutierrez’s (2013) definition of “taken-for-granted ways of 

interacting and operating” (p. 43). These discourses emerge in all aspects of our lives as we 

move through the world and interact with others. Given that I am asking my research 

participants to work in a small-group collaborative setting, it is important that I consider 

the taken-for-granted ways of interacting within each group in my study. That is, I am 
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taking up the sociopolitical push in mathematics education research to attend to the factors 

that may contribute to one’s identity development and better understand how these factors 

are manifested through the unique interpersonal dynamics that arise in each group of my 

study.  

Research Questions Revisited 

 Having reviewed some of the literature on instrumental genesis, HLTs, RME, 

PRIMM, and mathematical identity, I revisit my research questions here.  

1. What kinds of instrumented action schemes develop while using Python in learning 

about set theory and logic?  

2. Over the course of an actual learning trajectory, what characterizes students’ 

increasingly sophisticated ways of reasoning about set theory and logic? 

3. How does the use of Python to learn mathematics, in a small-group collaborative 

setting, influence students’ affective experiences and the development of their 

mathematical identity?  

Each research question has been elaborated to target the specific focus of analysis. The 

methodology and details of the approach for analysis for each research question are 

detailed in Chapter 3.  
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Chapter 3: Methodology 

In this study I aim to characterize a way in which computing can be used as a tool 

for the teaching and learning of mathematical set theory and logic. To accomplish this 

goal, I leveraged what is known as Design-Based Research (DBR). DBR consists of the 

following five characteristics: (1) the design of learning environments and learning 

theories go hand-in-hand, (2) development and research undergo continuous cycles of 

design, enactment, analysis and redesign, (3) research must lead to relevant and applicable 

theories for other design educators and practitioners, (4) research must consider the 

implementation of design and learning theories in a real learning context, and (5) findings 

from the research must be documented using methods that can connect students’ 

mathematical activity to the outcomes which lead to learning theories (Design-Based 

Research Collective, 2003).  

One form of DBR is that of a Conjecture-Driven TE (Confrey & Lachance, 2000). 

Unique to a Conjecture-Driven TE is that the conjecture is a means to “reconceptualize the 

ways in which to approach both the content and the pedagogy of a set of mathematical 

topics” (Confrey & Lachance, 2000, p. 235). The conjecture driving this work is the 

following:  programming can not only be leveraged as a processing tool, but also serve as 

an experientially real context in which students will be able to connect mathematical logic 

and set theory that also positively influences their identities as mathematicians. Central to 

this conjecture is the instructional design and delivery of how the computer programming 

language, Python, can be used to teach students about set theory and logic. In this case, the 

content is set theory and mathematical logic and the pedagogy was informed by the 
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instructional design theories of RME and PRIMM. There are four reasons in particular for 

selecting Python: (a) the nomenclature of Python is quite similar to that of standard 

mathematical writing; (b) Python has built-in operators and functions that can process 

mathematical logic and set-related commands; (c) Python is a widely used programming 

language in mathematics, data science, and web development; and (d) Python is free and 

available through the use of Google Colab1.   

This chapter is divided into three main sections. First, I provide an overview of the 

TE which will cover the context, research participants, and general approach to data 

collection and analysis. The second main section is divided into three parts to provide a 

review of the analysis for each research question. As a reminder, the three research 

questions are:  

1) What kinds of instrumented action schemes develop while using Python in learning 

about set theory and logic? 

2) Over the course of an actual learning trajectory, what characterizes students’ 

increasingly sophisticated ways of reasoning about set theory and logic?  

3) How does the use of Python to learn mathematics, in a small-group collaborative 

setting, influence students’ affective experiences and the development of their 

mathematical identity?  

I use the instrumental approach to answer Research Question 1 (RQ1), with the goal to 

analyze in-the-moment student reasoning. Analysis of the HLT and the corresponding 

actual learning trajectories as they relate to the RME levels of mathematical activity is used 

 
1 https://colab.research.google.com/notebooks/intro.ipynb 
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to answer Research Question 2 (RQ2). In the following section, I provide a description of 

the survey instrument that was used to inform analysis and consider additional aspects of 

students’ affective experiences that will be used to answer Research Question 3 (RQ3). In 

the final main section of this chapter, I provide the tasks that were used in all five TE 

sessions across all four groups with some extra tasks that I used in my final session with 

Group 4. Along with the tasks I include sample code and a brief description of various 

design elements.  

Conjecture-Driven Teaching Experiment Overview   

In this section I highlight the specific elements involved with the data collection 

process for this study. This includes a description of who was recruited to participate, the 

context in which this study occurred, how the data was collected, when the study took 

place, and a broad overview of my approach to analysis for each research question.  

Participants and Context 

This study incorporates data collection from a pilot study and a main study. The 

pilot study consisted of one group of two students and the main study consisted of four 

groups, two groups of two and two groups of three. Participants were recruited from a 

four-year Hispanic-Serving Institution and were purposefully selected using criterion 

sampling (Patton, 1990) in that they have already taken, or are currently enrolled in, 

differential calculus or integral calculus and not enrolled in an ITP course. At the 

institution in which the participants were recruited, differential calculus is the prerequisite 

for the ITP course offered. Not being enrolled in or having already taken an ITP course 

was the primary selection criterion.  
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The secondary purposeful selection criterion was to meet set thresholds based on 

students’ demographic information (e.g., race, gender, first-generation status, parent, or 

guardian, etc.). What this entailed was the selection of students with the primary intention 

of maintaining balanced gender identities (i.e., roughly half women and half men - with the 

awareness and acknowledgement that some of the research participants either may not 

want to disclose their gender identity or may identify elsewhere on the gender spectrum), 

as well as selecting a minimum of 30% underrepresented minority (URM) students. I 

gathered the 30% figure based on the undergraduate student population at the institution 

from which participants were recruited, as more than 30% identify as URM students. I 

stress the need for this secondary selection criterion to ensure that the research participants 

represent a wide range of social and personal identities. As the research shows, active 

learning in STEM classrooms is beneficial both for student performance (Freeman et al., 

2014) and narrowing the achievement gap (Theobald et al., 2020), but there is still concern 

about the opportunity for negative and potentially harmful experiences in an active 

learning setting (i.e., Cooper & Brownell, 2016). Therefore, it is important for this study to 

include as wide a range of students as possible to learn about their affective experiences in 

a collaborative setting to combat the traditionally white, male, middle-class narrative that is 

often told in STEM education research. 

To recruit students for the pilot study I asked one of the instructors of integral 

calculus (who taught eight virtual sections in the fall semester of 2020) to email their 

students with information about my dissertation and to ask them to consider participating. 

Included in the email sent to the students was a link to a screening survey, should they be 



 65 

interested in participating, asking the students for their academic information in terms of 

their major, class standing, and whether they have taken the ITP course or plan to take it. 

The screening survey was administered through the online survey software, Qualtrics. This 

method of recruitment is known as an opt-in recruiting strategy, a method preferred by 

research participants (Willison et al., 2003). I used this same strategy of recruitment when I 

recruited students for the main study in the spring semester of 2021. For the main study I 

emailed the differential calculus instructors as well as the integral calculus instructors. In 

addition to general academic background information such as their major and whether they 

plan to enroll in an ITP course, the survey also asked for demographic information from 

the students to aid my secondary selection criterion. The full screening survey can be 

found in Appendix A.  

Participant Overview  

All the names used to reference the participants in my study are pseudonyms. The 

pseudonyms were selected using a random name generator that pulled names from a large 

database of names constructed from many different cultures and time periods.2 The 

following subsections profile each of the ten students in my study. The numbers next to 

each participant’s name represent their responses to the survey questions asking them to 

rate their knowledge and experience with set theory, mathematical logic, and computer 

programming, respectively. The wording of the question on the survey was the following: 

“On a scale from 1-10, where 1 represents little to no knowledge or experience and 10 

represents extremely knowledgeable and experienced, how would you rate your knowledge 

 
2 https://www.behindthename.com/random/ 



 66 

and experience with the following.” For example, Kristal (1/1/5), this means that Kristal 

reported a 1 for set theory, which represents little to no knowledge or experience, a 1 for 

mathematical logic, which represents little to no knowledge or experience, and a 5 for 

computer programming which represents somewhere in between little knowledge and 

extremely knowledgeable. The students also had the opportunity to put 0 or not answer the 

question at all, which I am interpreting as zero knowledge or experience with that topic. 

Kristal (1/1/5). Kristal identified as a Black or African American and Native 

Hawaiian or Pacific Islander woman. She was a first-year Computer Engineering major 

and was also a student athlete. Kristal participated in all three sessions of my pilot study. 

Kristal was enrolled in integral calculus at the time of the pilot study.  

Adeline (1/0/5). Adeline identified as a white woman. She was a second year 

Applied Mathematics major and participated in all three sessions of my pilot study. 

Adeline was enrolled in integral calculus at the time of the pilot study.  

Judith (0/1/0). Judith identified as a first-generation college student and as a white 

woman. She was a second-year Physics major and a commuter student at the time of the 

dissertation study. Judith participated in all five sessions in Group 1 and was enrolled in 

integral calculus. 

Haven (0/0/0). Haven identified as a first-generation college student and as a white 

woman. She was a second-year Environmental Engineering major at the time of the 

dissertation study. Haven participated in all five sessions in Group 1 and was enrolled in 

integral calculus.  
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Palmer (1/2/2). Palmer identified as a first-generation college student and as a 

white man. He was a first-year Civil Engineering major and a commuter student at the time 

of the dissertation study. Palmer participated in all five sessions in Group 1 and was 

enrolled in differential calculus.  

Leo (1/1/2). Leo identified as a first-generation college student and as a Hispanic or 

Latinx man. He was a first-year Computer Engineering major and a commuter student at 

the time of the dissertation study. Leo participated in all five sessions in Group 2 and was 

enrolled in integral calculus.  

Eugene (1/2/3). Eugene identified as a first-generation college student and as a 

Hispanic or Latinx man. He was a first-year Computer Science major at the time of the 

dissertation study. Eugene participated in all five sessions in Group 2 and was enrolled in 

differential calculus.  

Saul (0/4/3). Saul identified as an East Asian and white man. He was a first-year 

Mechanical Engineering major at the time of the dissertation study. Eugene participated in 

all five sessions in Group 2 and was enrolled in integral calculus.  

Juliana (0/0/0). Juliana identified as a first-generation college student and as a 

Hispanic or Latinx woman. Juliana also identified as a current or former English language 

learner. She was a first-year Environmental Engineering major at the time of the 

dissertation study. Juliana participated in all five sessions in Group 3 and was enrolled in 

differential calculus.  
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Delia (0/0/1). Delia identified as a Middle Eastern or North African woman. She 

was a first-year Computer Science major at the time of the dissertation study. Delia 

participated in all five sessions in Group 3 and was enrolled in differential calculus.  

Alonso (1/1/2). Alonso identified as a Hispanic or Latinx and white man. He was a first-

year Mechanical Engineering major at the time of the dissertation study. Alonso 

participated in all five sessions in Group 4 and was enrolled in integral calculus. 

Julian (0/0/2). Julian identified as a Southeast Asian man. He was a first-year 

Mechanical Engineering major at the time of the dissertation study. Julian participated in 

all five sessions in Group 4 and was enrolled in integral calculus.  

As reported by the students, there were six women and four men in my study. Of 

the ten participants, seven reported a race other than white (including those that listed 

white and another race). By drawing on Shah et al.’s (2020) findings, I composed groups 

by avoiding unbalanced groups by gender and race/ethnicity (e.g., more men than women 

or only one person of color in a group of three). Intentionally attending to the group 

composition is not enough on its own to eliminate the possibility of harmful speech, or 

create an entirely safe space for the students, but it is one way to mitigate potentially 

problematic scenarios and create a space for the students in my study to feel welcomed and 

safe. 

Data Collection and Analysis 

The main TE consisted of five one-hour sessions and was conducted with four 

groups of two to three students in each group. I met with each group separately, which 

resulted in 20 hours of contact hours with the students across the four groups. Five sessions 
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were set as a target for two reasons. The first is that having conducted the pilot study, five 

sessions seemed to be enough time with the students to accomplish the goals of this study. 

The second was a desire to equitably compensate each participant for their time. With a 

max of five sessions per group, I was able to pay each student $20 per session. Two 

surveys were also administered to the student participants, once before the TE and once 

after the TE concluded. The first survey is focused on the students’ sense of confidence 

and enjoyment related to programming and mathematics. The second survey is content 

based. More details on the two surveys can be found in the following sections on Research 

Questions 2 and 3.  

To inform the design of the first few sequences of TE tasks that I used in the TE, I 

conducted a pilot TE with one group of two students. The pace of the first two sessions of 

the pilot study ended up being much slower than I anticipated, so the tasks of the first two 

sessions were more streamlined for the main study. One example of this streamlining 

process was the removal of an index counter which was used to support the idea of 

iterations through a For Loop. As was the case with the pilot study, the main TE was 

conducted virtually using Zoom (due to the ongoing COVID-19 pandemic) and Jamboard 

for the participants to collaborate. Zoom is a video and web conferencing platform that all 

students at the institution have access to use. Jamboard is a Google app that serves as a 

collaborative and interactive canvas. For the pilot study, the students were asked to run 

their own code in Google Colab, a free Integrated Development Environment (IDE) 

accessible from any computer connected to the internet. After the pilot study, I realized 

that having the students copy and paste from Jamboard to the IDE was taking too much 
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time, and I could not see the code that the students were running on their own screens 

without screen sharing. To make the process more efficient, I decided that I would run all 

the code for the main study using an IDE (IntelliJ IDEA Version 2020.2.2) on my own 

machine and screen sharing the code with the participants. So, half of the screen that the 

students saw contained the task that they were asked to complete, and the other half of the 

screen was the IDE with the code. All but one of the TE sessions were recorded to the 

cloud via Zoom which automatically transcribed the sessions with fairly reliable accuracy. 

However, in order to fully analyze the data from the TE sessions I cleaned the 

transcriptions for formatting, grammar, and any errors that the automatic transcript 

produced. Also, filler words such as “um,” and “like” were removed from student 

quotations for easier reading.  A timeline of the data collection process for my study is 

provided in Figure 3.1. 
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Figure 3.1: Timeline of Data Collection 

 

As Figure 3.1 shows, I collected data for the pilot TE in late January 2021. The rest 

of the data collection occurred in the spring semester and concluded just before the 

summer of 2021. Data collection for Groups 1-4 occurred using a staggered approach with 

two groups of students completing the first two sessions of the TE, then the next two 

groups started the TE. A staggered approach is used to incorporate a micro-cycle of DBR 

iterations (Prediger et al., 2015). By incorporating a cyclical approach to data collection, 

slight adjustments and modifications were made to home in on discussions and ideas that 

informed the conjecture driving this research.  
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Confrey and Lachance (2000) describe two types of analyses that are often used for 

a conjecture-driven TE: (1) ongoing and preliminary, and (2) retrospective analysis of the 

data corpus. Ongoing and preliminary analysis consists of frequent (after each TE session) 

and critical reflections of emerging issues throughout the intervention. The focus of this 

aspect of analysis is to understand the implications of the students’ mathematical activity 

related to the future plans of the TE. This step of analysis is a crucial aspect of being able 

to reflect on the conjecture (to elaborate rather than change) and be responsive to the 

students’ needs from one TE session to the next. To conduct this step in analysis, I created 

contact summary forms (Miles & Huberman, 1994) to highlight the main concepts, themes, 

and salient points related to my research questions from the TE sessions with the students.  

At a global scale, I conducted ongoing and preliminary analysis not only from one 

TE session to the next within each group, but also across each group of students. I 

developed cross-cutting themes and relevant hypotheses that influenced the design of the 

tasks and tested my conjecture throughout the data collection process. Figure 3.2 shows 

how the staggered approach to data collection for my study is leveraged in conjunction 

with the cyclical nature of retrospective analysis and ongoing development. This diagram 

was inspired by the developmental research cycle presented by Cobb and Yackel (1996) 

and modified to reflect the development of the conjecture for this conjecture-driven TE. 

Note that in Chapter 2 I highlight RME and PRIMM as guiding instructional theories. In a 

subsequent section in this chapter, I introduce the analytic frameworks that were used for 

the research phase of the TE.   



 73 

 

Figure 3.2: Development of Conjecture through Research and Design 

 

The second method of analysis that Confrey and Lachance (2000) describe occurs 

once the entire TE has concluded. At this point, a more thorough retrospective analysis of 

the entire data corpus using a theory-based approach is necessary. I approached the 

qualitative analysis for each of RQ1, RQ2 and RQ3 differently, with all three guided by 

existing analytical frameworks, but modifying the existing frameworks or using them as 

templates for my own purposes. This approach falls in the middle of the qualitative coding 

continuum as described by Miles & Huberman (1994). In Miles and Huberman’s (1994) 

description of qualitative data analysis, they explain that their preferred method of analysis 

is to create a “provisional 'start list' of codes prior to fieldwork” (p. 58). These codes are 

used to assign meaning to a particular piece of information in the data. Unlike a pure 

grounded theory (Glaser & Strauss, 1967) method where one must create codes as they 

emerge, I approached the data with an existing framework relevant to addressing each 

research question (Appendix B). In the next sections I provide details of how the 
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frameworks were used, but a description of the general coding process, based on Miles and 

Huberman (1994) is given here first.  

First, one considers the analytical frameworks and previous empirical findings to 

develop a list of codes based on the problem of investigation. The next step is to apply this 

list of codes to the first set of data. The codes are then examined for fit and power (i.e., 

how well do the codes describe the data and to what extent are the codes leaving out 

information). At this step the original list of codes are revised or removed and new codes 

may be added. The third step is to ensure that the revised list of codes maintain a general 

structure and relate to each other in a coherent way. Once the set of codes seem to be 

descriptive and relevant for answering the research question of interest, one may continue 

to code future data while remaining open to the idea that codes may change, and new codes 

might still be added. 

The entire data corpus that was analyzed using qualitative methods consists of the 

discourse between research participants, my interactions with the students, and the four 

surveys that were administered (two before the TE and two after). To carry out the 

analysis, I used the qualitative analysis software, MAXQDA to tag excerpts from the 

transcripts, and group the codes by research question. In the next section I describe my 

approach to qualitative analysis for each research question and I provide a full list of the 

types of codes that I used in the MAXQDA software in Appendix B.  

Approaches to Analysis  

I incorporate three analytic frameworks into my dissertation to understand the 

potential relationship and harmony between set theory, mathematical logic, and computing. 
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The first is instrumental genesis, as described in Chapter 2, which was used to characterize 

snapshots of students’ reasoning in terms of how Python can connect ideas in set theory 

and logic. The purpose of introducing two mathematical topics (which have historically 

been taught independently) was to provide rich opportunities for students to see the 

connections between set theory and logic, as well as develop hypotheses of undergraduate 

student understanding as the students think about these topics jointly. The second is the use 

of a HLT, a framework that was used to conceptualize the growth of students’ reasoning 

and in this case, to document what the students can learn over the course of five TE 

sessions. Results from the TE illuminated potential areas in which computing can be 

infused into the standard ITP curriculum. The third framework was built from various 

affective components based on my perspective on students’ mathematical identity 

development which incorporates students’ sense of self with respect to their confidence 

and interest in mathematics, their beliefs, attitudes, emotions, response to errors and self-

efficacy. To guide the analysis of the third research question, pre- and post-study surveys 

were the most significant components guiding the analysis for the third research question. 

Specifically, these survey results guided the qualitative analysis of students' reflections and 

interpretations of participating in this TE. Results from the analysis provided insight into 

the students’ sense of confidence and interest related to mathematics, computers and 

programming and programming as a mediating tool for learning mathematics.  
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Research Question 1 

RQ1: Instrumental genesis 

● What kinds of instrumented action schemes develop while using Python in learning 

about set theory and logic? 

For analysis, I utilized Roorda et al.’s (2016) framework for identifying the 

techniques, conceptual elements, and technical elements as the basis for developing the 

students’ instrumented action schemes. Recording the conceptual elements is done through 

the identification of the mathematical concepts that the students are learning. In analyzing 

the techniques used by the students (e.g., the output students produced, diagrams they 

drew, logical statements they considered), I watched the Zoom video recordings to 

document what exactly the students were producing in relation to conceptual elements. To 

document the technical elements (e.g., the code the students typed, the mathematics they 

wrote in jamboard), I analyzed the Zoom video recordings to document what the students 

typed and when they typed it. This analysis was done by tagging the audio transcriptions 

using MAXQDA with Concepts, Techniques, Tech-Elements as the main codes for 

analysis. If a student typed something without saying out loud what they had typed, I used 

the ‘memo’ feature within MAXQDA to document what the student typed. This way I was 

able to analyze all three aspects of the students’ instrumented action schemes within 

MAXQDA without having to analyze data in separate documents. 

By coding the techniques, conceptual elements and technical elements used, I was 

then able to construct each students’ instrumented action schemes. Importantly, the 

students’ schemes were constructed with the four features as described by Trouche (2004) 
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and Vergnaud (2009) which included the goals, rules, operational invariants and the 

possibilities for inference. These four features also served as codes within MAXQDA to 

document excerpts from the TE that reveal information about their schemes, but were not a 

major component of the coding process. For example, coding the “goal” of a given 

instructional task was not particularly helpful as they were self-evident in many cases. In 

Appendix B I provide the list of codes that I utilized in my analysis with sub-codes that I 

used to maintain a coherent structure.  

Research Question 2 

RQ2: Learning trajectories in the context of set theory and logic 

● Over the course of an actual learning trajectory, what characterizes students’ 

increasingly sophisticated ways of reasoning about set theory and logic? 

In analyzing RQ2, I focused on the four features of an HLT to measure the overall 

growth of what the students were able to learn throughout the TE. These four features 

served as codes in MAXQDA and are listed as Goals, Tasks, Mathematical Activity, and 

Instructor Moves. Again, the Goals code was not utilized as much as originally thought 

because the design of the instructional sequence was partitioned in a way that addressed 

the first goal of the HLT at the beginning of the TE and the second goal near the end of the 

TE. The Task code was used as a general code to document the task as helpful, unhelpful, 

confusing, etc. This code was used to document the engagement of the students for each 

task either by the questions they asked or the discussions they had with their peers. The 

Mathematical Activity code was not used in its general form, but subcodes were used to 

characterize the students’ increasingly sophisticated ways of reasoning. The subcodes used 
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were the RME levels of activity as detailed in Chapter 2. The four levels are situational 

activity, referential activity, general activity, and formal activity. One might pause at the 

use of the levels of activity as constructs for analysis given that I introduced them as 

features for the instructional design heuristic of emergent modeling. However, the four 

levels of activity have proven to be useful as an analytic tool to frame the model-of/model-

for transition (Rasmussen & Blumenfeld, 2007). The RME subcodes were used sparingly, 

mostly as documentation between tasks that I thought served as important transitional 

moments for the students. The Instructor Moves code started as a list of codes drawn from 

the findings presented by Andrews-Larson et al. (2017) and I added new codes that were 

relevant to my own instructional methods. The full list of codes are listed in Appendix B. 

This approach to analysis is in line with Miles and Huberman’s (1994) preferred method of 

analysis given that I was open to the codes changing and often added new emergent codes. 

Additionally, as stated in Chapter 2, I utilized a HLT and I was interested in 

monitoring the students’ growth over time. To measure any growth or evidence of 

learning, the pre-study content survey served as a baseline for what the students may or 

may not have known coming into the study. The content survey is composed of 14 

questions, eight of the questions are related to set theory, five of the questions are related 

to logic and the last question asks students to evaluate a piece of Python code. The only 

difference between the pre-study content survey and the post-study content survey is the 

last question about the Python code. The code was modified to be slightly more 

challenging and involve a For Loop, something that we spent a lot of time working with 

during the TE sessions. The full survey can be found in Appendix C. 
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Research Question 3 

RQ3: Affective student experiences 

● How does the use of Python to learn mathematics, in a small-group collaborative 

setting, influence students’ affective experiences and the development of their 

mathematical identity?  

Mathematical and Technological Confidence Survey 

In their work to understand how MATLAB can be used to aid university students 

learning topics in algebra and calculus, Cretchley et al. (1999) asserted that students’ 

attitudes must be considered when investigating the use of technology to support the 

teaching and learning of mathematics. As a result of being on this team of researchers, 

Fogarty and colleagues set out to validate an instrument that would measure the 

psychological constructs of attitudes towards mathematics, attitudes towards technology, 

and importantly, attitudes towards the use of technology to learn mathematics. This 

instrument was named Attitudes to Technology in Mathematics Learning Questionnaire 

(ATMLQ) (Fogarty et al., 2001). 289 university students completed the survey before an 

Algebra and Calculus 1 course and 184 students completed the survey after the course was 

completed.  

Fogarty et al. (2001) found that their 34-item questionnaire loaded on three factors 

(as intended): Math Confidence, Computer Confidence, and Math-Tech. These factors 

accounted for 48% of the variance. Importantly, the findings from their efforts to test the 

validity of the instrument resulted in sound internal consistency, reliability, as well as high 

test-retest reliability. I administered this survey before the students participated in the TE 
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and again after they had completed their last TE session. While this dissertation is not 

designed to be a large quantitative study, data from the pre-and post-study surveys revealed 

changes in individual students’ attitudes towards each of these three factors, illuminating 

areas for more inquiry. Analysis of the questionnaire is composed of documenting a 

positive or negative shift in the students’ responses to the questionnaire items. The 

questions on the questionnaire are asked in the negative as well as the affirmative, which 

means that analysis consists of what I consider to be a positive or negative shift in the 

students’ responses. For most of the questions, it is clear in which direction is the positive, 

for example, a positive shift in response to the question “I find mathematics frightening” 

would be in the direction of an “Agree” to a “Disagree.” However, for the questions related 

to using programming to learn mathematics, I am operating under the assumption that 

programming is a useful and powerful tool that can be used to learn mathematics, a 

perspective that some students may not necessarily agree with. For these questions, I 

considered positive responses as those that agree with my perspective and negative 

responses as those that disagree with my perspective. The full survey is only 34 questions 

long and is presented in Appendix D.  

I have made slight modifications to this survey in the last set of questions where 

there was an extra emphasis on the use of graphing calculators being considered a part of 

technology. My reasoning is that I do not want the use of calculators to dominate the 

students’ perspectives on technology due to the high likelihood that they have had varied 

experiences working with graphing calculators in their previous mathematics courses. 

Further, I made modifications to the wording of the survey to include 
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“computing/programming” instead of general “technology.” As mentioned, results from 

this survey helped inform and support my analysis of the students’ experiences in the TE. 

In the following section I provide a more specific framework for what I focused on when 

discussing students’ affective experiences.  

Three Features of Students’ Affective Experiences 

Examining students’ affective experiences throughout a teaching experiment can 

mean many different things. For the purposes of this study, I considered the following 

three components of students’ affective experiences. First is their self-efficacy (Bandura, 

1997) as some participants were unsure about their ability to program using Python and 

others found it fun and engaging. Before each TE session began, I conducted a quick check 

in with the students and asked how they were doing and asked how they were feeling about 

the days’ activities. I also left time at the end of each session to ask the students to 

informally reflect on the tasks that they were asked to complete. However, some sessions 

ran all the way up to the hour and I was not able to ask the students to reflect on the day’s 

activities. Mid-session reflections and comments by the students were also considered as 

points for analysis as the students showed evidence of self-doubt or strong interest in a 

certain task. 

Given that the tasks presented to the students were challenging, and that this was 

the first time the participants were asked to write and analyze code, I anticipated that 

students would have to cope with not succeeding on their first try. Tulis et al. (2016) 

provide a model describing the processes that students might undergo as they experience 

errors. These processes describe both the motivational and emotional states that a student 



 82 

might experience in relation to learning and making errors. Part of the process model 

provided by Tulis et al. (2016) and important for my analysis was the students’ direct 

reactions towards errors (e.g., shutting down, frustration, curiosity), their 

indirect/secondary reactions (e.g., revise their answer to show that they now understand) 

and their emotional and motivational regulation strategies to “activate and sustain their 

cognitive, metacognitive and affective functioning” (p. 18). For some students, their 

motivational regulation strategies were to acknowledge that the problem was really 

difficult, and they had no idea what was going on, others increased in their determination 

to understand the material. It is important to note that my instructional approach entailed 

not evaluating students’ wrong answers. That is, if a student said something incorrect, my 

first reaction was not to tell them that they were wrong, but to ask their partners what their 

thoughts were and try to start a discussion. For this reason, it was not entirely evident what 

the students’ reactions were to their wrong answers at the moment, but the students did 

comment on the difficulty of the tasks, which I included as a secondary component of my 

analysis regarding their disposition towards errors. 

The third feature of analysis draws on McLeod’s (1992) general focus on students’ 

beliefs, attitudes and emotions throughout the learning of mathematics. While beliefs, 

attitudes and emotions are quite general terms, McLeod emphasized the variety of 

components and factors that each contains. For example, beliefs can encompass one’s 

beliefs about a given piece of mathematics, belief about oneself, beliefs about mathematics 

teaching and beliefs about the social context. Attitudes consist mostly of one’s moderately 

stable positive or negative reaction to a given piece of mathematics. Emotions are less-
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stable forms of affective measurement but are important to paint a fuller picture in terms of 

one’s experience. For example, aspects of boredom, panic, fear, embarrassment, anxiety, 

happiness, and excitement are important emotions to consider. Although my analysis 

focused mostly on the students’ sense of self efficacy and response to errors, analyzing the 

data with respect to general beliefs, attitudes and emotions will serve as a check to ensure 

that thorough analysis was conducted. As emphasized in Chapter 2, one’s interest and 

recognition by their peers also plays a great deal into the development of their 

mathematical identity. I consider aspects of interest and perceptions of others to fall under 

beliefs, included in the fifth column of the table as presented in Table 3.1. 

Analysis 

Table 3.1 highlights how these features were considered in response to the three 

general categories from Fogarty et al.’s (2001) survey. 

Table 3.1: Coding Framework to Document Affective Experiences 

 Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics     

Computers 

and 

Programming 

 

Programming 

to Learn Math 

 

 

I used the framework as shown in Table 3.1 to analyze each student’s general affective 

experiences throughout my study. Using the qualitative analysis software, MAXQDA, I 
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used the three features of affective experiences highlighted in this section as the main 

codes for analysis. Based on these codes, construction of the table consisted of copying 

and pasting short excerpts (or timestamps for longer excerpts) from each TE session into 

the table. As mentioned, participant comments made before, during and after the TE 

sessions were analyzed, as well as the free-response questions which were included in the 

post-study survey asking about their general experience of participating in the study. Once 

the table was constructed for each student, a smaller table was generated as a summary or 

general characterization of each student’s affective experiences. Some of the excerpts that 

were posted in the original larger table were then used as data points to provide the reader 

with a perspective of each student’s affective experience. Given that there were only 10 

students in my study, all their answers to the free-response questionnaire items were 

provided for each student as well. 

With respect to the second column labeled Pre/Post Survey Change, I measured 

shifts in either direction to capture changes in the students’ beliefs and perceptions towards 

mathematics and technology from pre-study to post-study. Given that the sample size is 

quite small, general conclusions cannot be made about all students’ experience in a TE 

utilizing Python to understand set theory and logic. However, with a small sample size I 

was given the opportunity to deeply examine the data on a question-by-question and 

individual student level. With this information I was able to provide a more robust 

interpretation of each students’ overall experience in the TE.  



 85 

TE Sessions and Example Tasks 

The following tasks represent the HLT for my study. These tasks were informed by 

the pilot study and the structure of which tasks were used on each day were not consistent 

from group to group. That is, the tasks are presented here as the original hypothetical 

organization as opposed to how they actually occurred in the study for each group, as some 

groups moved through the material quicker/slower than others. The main lesson learned 

from the pilot study was that asking the students to manage their own IDE, work in 

Jamboard and being asked to reason about topics in set theory and logic was asking too 

much of the students for the first two sessions. The pace at which we were working 

through the activities was far slower than anticipated. In response to this, my approach to 

the main study was to share my screen with the Jamboard and my own IDE document up, 

side by side. Following the first three steps of PRIMM, the students were still able to 

Predict, Run (which I did on my end), and Investigate. For the Modify and Make steps of 

the PRIMM model, the students still had access to the Jamboard where they were 

encouraged to type code that I then copied and pasted into the IDE. As mentioned, the 

following TE sessions are presented in a general anticipated format, something one might 

be able to use in their own teaching experiment. That is, the days and specific tasks are not 

exactly as they occurred as I conducted the TE sessions and moved from one group to the 

next. I modified some tasks to streamline the activities, and the original versions of the 

tasks will be given in Chapter 4 as I discuss the students’ progression in their advancing 

mathematical activity.  
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TE Session 1 

The main goal of the first TE session is to introduce features of Python that will be 

used in the future TE sessions. For example, later in the TE the plan is to teach the students 

how to use a For Loop, which will be leveraged as a tool to work with sets. For Loop 

construction is not always simple and might be a substantial roadblock for students. Thus, 

establishing a strong foundation in the building blocks of Python is a major goal and 

necessity to get to writing For Loops in future tasks. This entails covering some of the 

unique syntax requirements for the code to run properly, but also addressing the 

established norms of writing code such as proper line length and code block separation. A 

secondary goal for the first session is to introduce some of the basic ideas of set theory and 

logic. 

Given that my TE is only five sessions long, the introduction to Python starts 

immediately in the context of set theory. The following figures are what the students see in 

the Jamboard slides and I provide a description of each figure to explain how the example 

activities and tasks tie back to RME and PRIMM. In some cases, I provide example code 

to document ideal student responses. 
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In mathematics, a set is a collection of objects defined explicitly by 

the objects in the set. 

 

In Python, we use curly braces to indicate that we are working with 

sets. 

 

For example, take a look at the following code in Python: 

 

setA = {"dog", bird, "lion", "cat", "fox"} 

setB = frozenset(["dog", "lion", 4, "lion", "red", 4.37]) 

 

setA.add(9) 

len(setA) 

setB.add("whale") 

len(setB) 

 

What do you notice? What do you wonder? What do you predict will 

happen when you run this code? 

What does the ‘len()’ function do? 

 

Figure 3.3: TE Session 1 Task 1 

 

There are multiple aspects of this code that are important to highlight. First, the students 

are asked to point out features that they notice or have more questions about. Some 

students may notice or wonder that setA is defined using curly braces and setB is defined 

using ‘frozenset(),’ “lion” is repeated twice in the set B, the ‘len()’ function is doing 

something to setA and setB and the last two lines of code are in green text with the ‘#’ 

symbol in front.  

 The purpose of this first activity is to start a conversation about the different 

presentations of sets, the types of classes that Python identifies and whether these classes 

are acceptable as part of a set. For example, “dog” is a string, 4 is an integer, and 4.37 is a 

float - all of these class types are acceptable as elements of a set. However, bird is an 
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undefined variable name and is not acceptable. When the participants run this code, they 

will get an error message. 

--------------------------------------------------------------------------- 

NameError                                 Traceback (most recent call last) 

<ipython-input-13-1a72de625718> in <module>() 

----> 1 setA = {"dog", bird, "lion", "cat", "fox"} 

      2 setB = {"dog", "lion", "lion", 4, "red", 4.37} 

 

NameError: name 'bird' is not defined 

 

With this error message our conversation will focus on the Investigate step in the PRIMM 

method and we will continue to discuss the different types of elements allowed in a set. 

Without explicitly calling out this aspect of mathematical set theory, the idea behind 

highlighting the different types of elements in a set addresses Linchevski and Vinner’s 

(1988) study in which most of the participants believed that sets can only contain the same 

type of elements. We will also consider the number of elements in each set. At first glance, 

it might seem that there are five elements in setA and six elements in setB, but in fact there 

are five elements in each set as sets do not count duplicate items. 

 Once the students have a firm grasp of the types of elements allowed in a set and 

know how to find the number of elements in the set, we will transition to logical statements 

and propositions in Python. 
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cities = {"Sacramento", "San Diego", "New York", "Miami", 

"Portland"} 

 

a = 21 

b = 5 

print("Hello") 

print(a + b)    

print(a - b) 

print(a % b) 

print(a < b) 

print("Miami" in cities) 

 

What do you predict the output will be for each print statement? 

 

Figure 3.4: TE Session 1 Task 2 

 

This task is designed to introduce the participants to the ‘print()’ function and to document 

the different types of outputs that the print function can produce. The statements, ‘a < b’ 

and “Miami” in cities’ are the first propositions that the students will encounter, and the 

print statement will return the Boolean value (False and True, respectively in this case) 

when the argument is a proposition with a known truth value. To explore Boolean 

expressions in more detail, I would like the students to Predict, Run, Investigate, Modify 

and Make with the following activity. 
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Now consider the following: 

 

setA = {"dog", "bird", "lion", "cat", "fox"} 

setB = {"dog", "lion", "lion", 4, "red", 4.37} 

p = "dog" in setA 

q = (len(setB) == 5) 

r = "San Francisco" in setB 

print(p) 

print(q) 

print(r) 

print() 

print(not p) 

print() 

print(p or r) 

print(p and r) 

 

What do you predict the output will be? What is the ‘not’ command 

doing? 

 

How would you describe what the ‘and’ and ‘or’ operators are 

doing?  

 

Figure 3.5: TE Session 1 Task 3 

 

At this point I would say that the students are using Python and the ‘print()’ function as a 

model-of reasoning about propositional logic to determine the truth value of a 

propositional statement. Once the students have had the chance to work with their own 

propositional statements using the ‘and’ and ‘or’ logical operators, the next task will ask 

the students to combine the operators into one print statement.  
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Write one print function that involves multiple ‘and’ and ‘or’ 

operators. Before you run your code, predict what each other’s 

output will be. 

 

Figure 3.6: TE Session 1 Task 4 

 

A student might come up with something similar to the following, ‘print(p and q or r or p 

and r).’ 

I would consider the students to be engaging in referential activity with this task as 

they are taking a slightly more abstracted approach to the ‘and’ and ‘or’ operators in that 

there are multiple operators within the same print statement. The reference to the 

situational activity is that they can still go back to their previous print statements to reason 

about the new compound propositions they are being asked to create. 

TE Session 2 

 The main goal of this session is to encourage further discussion about the 

relationships between propositional statements. The first task is a continuation of the last 

session, but we will engage in more general activity as the students will be asked to work 

with propositions with unknown truth values. 
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Let’s assume that s is a proposition with the Boolean value of 

False, and t is a proposition with an unknown Boolean value. 

 

Interpret the following propositional statements: 

  (s and t)  and   (s or t)   

 

Figure 3.7: TE Session 2 Task 1 

 

With this task in TE Session 2, I keep the wording intentionally vague with the use of 

“interpret” to make room for the students to reason about these propositional statements in 

various ways. In the pilot study I asked the students what print(s and t)would produce and 

that seemed to have caused more confusion since that specific code cannot be run without 

defining s and t first. I do anticipate that the students will use what they learned from the 

first session, specifically from TE Session 1 Task 3, to reason about the propositional 

statements. If the students in the TE do decide that they want to run ‘print(s and t)’ to see 

what happens, then I will encourage that and support them. If not, then we will have other 

interesting discussions about the propositional statements.  

Ultimately, the goal is to guide the students to develop a model-of reasoning that 

entails developing operational definitions of the ‘and’ and ‘or’ operators which they can 

then use as models-for reasoning about more sophisticated mathematical problems. The 

students will be working with different combinations and scenarios, for example, where s 

is true and t is false and thus will be guided to write their work in a more structurally 

organized way. Once we have the structure of a truth table, we can then reason about 

additional logical statements like (s and not t) and (s or t and u) (note that the second 

compound propositional statement depends on the placement of internal parentheses). 

Once the students are at the point of reasoning about compound propositions and solving 
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more advanced mathematical problems (model-for reasoning about propositional 

statements), then the students may be presented with more abstract logical problems which 

would then be considered the formal mathematical activity. I anticipated that Task 1 during 

Session 2 would occupy most of the time for TE Session 2 and thus leave this as the only 

main task for Session 2. I also anticipated that some groups will not finish the tasks 

planned from TE Session 1 and thus will need time at the beginning of TE Session 2 to 

finish. To conclude Session 2, or to begin Session 3, I planned to use the following task as 

shown in Figure 3.8. 

How many elements are in the set A = {s, e, t, t, h, e, o, r, y}? How 

can you verify your answer using Python? 

 

Figure 3.8: TE Session 2 Task 2 

 

An ideal student response would be to write the following code: 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

 

len(A) 

 

I anticipated that the students will utilize the ‘len()’ function due to our focus on its use in 

TE Session 1. This is then a good opportunity to present the students with an alternative 

way of finding the number of elements of A using a For Loop. 

TE Session 3 

The main goal of this session is for students to develop an understanding of how to 

write a For Loop. A secondary goal for this session (and more broadly across the entire 
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TE) is for me, as the primary investigator, to gauge the extent to which students are able to 

reason about sets as objects that can be manipulated.  

 

How many elements are in set A? How do you know? 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

 

for element in A: 

  print("-----") 

 

What do you notice? What do you wonder?  

 

Figure 3.9: TE Session 3 Task 1 

 

 

Figure 3.10: TE Session 3 Task 1 – Output 

 

Here, the purpose of this code is to start a discussion with the students about what might be 

occurring in the For Loop. Some questions that might be asked at this stage are “What is 

‘element’ doing in the For Loop?” and “How might the number of lines in the output relate 

to the set A?” We take this one step further with the next task as seen in Figure 3.11. 
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Now let’s consider the following code: 

city = "San Diego" 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

 

for character in city: 

  print(character) 

  print("-----") 

 

print("*******") 

 

for element in A: 

  print(element) 

  print("-----") 

 

Run the first For Loop. What do you notice? What do you wonder? 

What do you predict the output for the second For Loop will be? 

 

Figure 3.11: TE Session 3 Task 2 

 

Again, the purpose here is to encourage the students to ask more questions and notice that 

their predictions about why the output for the second For Loop might not be what they 

anticipated. In the original design of the tasks focused on the For Loop, I introduced the 

idea of a running index counter that would count how many times the For Loop iterated 

through each iterable object. I did this with Group 1, and unfortunately it introduced 

unnecessary complications and confusion for the students. For Groups 2, 3, and 4 I instead 

introduced the tasks as presented in Figures 3.9 and 3.11. Figure 3.12 shows what the 

output would be for this code. 
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Figure 3.12: TE Session 3 Task 2 – Output 

 

Notice that the string type, “San Diego” is ordered, and the elements of set A are not. This 

will be a topic of discussion to highlight that sets are not ordered and to serve as a 

reminder that sets do not count repeated elements. The next task will introduce the students 

to the programming procedure of first defining an empty set to create new sets.  
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What do you predict will be the output of the following code? 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

B = set() 

for x in A: 

  B.add(x) 

  print(B) 

print(B) 

 

Figure 3.13: TE Session 3 Task 3 

 

What do you predict will be the output of the following code? 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

D = set() 

for x in A: 

   if ((x == "e") or (x == "o")): 

       D.add(x) 

print() 

print(D) 

 

Figure 3.14: TE Session 3 Task 4 

 

In this case D is a set of the vowels from set A. Also note that the students are required to 

reason about the logical operator ‘or’ that is situated within the For Loop. Now that we 

have an introduction to the use of For Loops, I present the following task that will be the 

basis for the following TE sessions. 

Create your own sets of items that you might get at a grocery store. 

Make sure to include elements other than strings. For example, 

{20, “bananas”} could represent the set containing $20 cash back 

from your purchase and bananas. 

 

Figure 3.15: TE Session 3 Task 5 

 

The sets used in the pilot study are presented in Figure 3.16. 
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A = {8, "apples", "chocolate", "berries", "corn", 

   "juice", 13, "strawberries", 6, "avocados", 

   "beets", "chips"} 

B = {1, "hot cheetos", "jalapeno", "onions", 

   "cilantro", 2, "limes", "chips", 6, "cherries", 9, 

   "corndogs"} 

C = {8, "biscuits", "salami", "cheese", "soda", 

   "water", "bananas", "beets", "watermelon", 

   7,"kiwis", "oranges", "coffee", 9, "cookies", 

   "ice cream", "sugar", "honey", "butter", "milk", 

   2, "pineapples", "chicken", "sausage", "beef", 

   "ribs", "pepper", "salt", "candy", 4, "lemons", 

   "parsley", "bread", "mayo", "mustard", "soy sauce", 

   "ketchup", 37, "dog treats", "chips"} 

 

How many elements do we have in each set? How many unique 

elements do we have overall? How do you know?  

 

Figure 3.16: TE Session 3 Task 6 

 

A plausible student response would include the use of For Loops and the ‘.add()’ function 

(which the students saw in TE Session 3 - Task 4 to create a union of the three sets, 

followed by a ‘len()’ function of the newly created set: 

len(A) 

len(B) 

len(C) 

 

U = set() 

 

for i in A: 

   U.add(i) 
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for i in B: 

   U.add(i) 

 

for i in C: 

   U.add(i) 

 

len(U) 

 

Once we have found the union of the three sets, the next TE session will start by asking 

about the set intersection. 

TE Session 4 

The goal of this session is to start the movement up through the levels of activity as we 

transition from the situational activity of working with grocery item sets to sets of integers. 

First we will begin by finding the intersection of the sets from TE Session 3. Then we will 

transition to a number theory problem. 

Using Python, how would you find the common elements across all 

three sets?  

 

Draw a diagram of what this might look like first before you write 

any code. 

 

Figure 3.17: TE Session 4 Task 1 

 

The goal of this activity is to help students see that logic may be used in the context of set 

theory-based questions. Specifically, ‘in’, ‘and’ and ‘or’ operators can be used within For 

Loops to control the creation of their new sets. By having the students construct their own 

sets, I am engaging the students in a situational activity that they will use to develop the 

ideas of set operations such as intersection, set difference, and symmetric difference. For 

example, the intersection of sets produces a new set containing the elements present in all 
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sets. If there are no common elements between the sets, the intersection will produce the 

empty set. Ideal student code for finding the intersection between all three of the sets 

would look like the following: 

I = set() 

for x in A: 

  if ((x in B) and (x in C)): 

      I.add(x) 

 

print(I) 

 

In the sets I provided in Figure 3.17, the intersection of the three sets is {“chips”}. Here I 

will make the decision to “tell” the students that {“chips”} is a subset of the three sets. I 

make the decision to tell the students that {“chips”} is a subset of the three sets to bring up 

the concept of subsets and start a discussion about the difference between a set as a subset 

and a set as an element.  

{“chips”} is what we refer to as a subset. By definition, if every 

element in set A is an element of another set, set B, then A is a 

subset of B and this fact is denoted by  

A ⊆ B 

 

Figure 3.18: TE Session 4 Definition 1 

 

The next task will introduce the number theory problem that will be the context of the 

referential activity. 
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Let’s consider the integers from 1 to 1000. In Python we can call 

out these integers by using the ‘range()’ function.  

 

range(1, 1001) 

 

Is the set of integers divisible by 21, a subset of the set of integers 

divisible by 3? Is the set of integers divisible by 21, a subset of the 

set of integers divisible by 7? How do you know? How can you use 

Python to help answer this question? 

 

Figure 3.19: TE Session 4 Task 2 

 

The description of the task in Figure 3.19 and transition from model-of to model-for 

reasoning about determining whether one set is a subset of another was described in detail 

in Chapter 2 in the RME section. There are two other tasks that I used for the groups that 

moved more quickly through the TE. These tasks are represented in Figures 3.20 and 3.21. 

TE Session 5 

The purpose of this session is to either finish the tasks that were not completed in the 

previous sessions or to engage in more mathematics with the following tasks. The first task 

can be used as a warmup for the fifth session, as seen in Figure 3.20. 

How many elements belong to the set A = {1, 3, 7, {1, 3}, {}}. 

How might you use Python to help you answer this question?  

 

Figure 3.20: TE Session 5 Task 1 

 

Set A has 5 elements. Drawing a Venn diagram might actually cause more confusion as 

described by (Bagni, 2006) as the set containing elements 1, 3 might make it seem that the 

set A has duplicate elements, namely 1 and 3. My hypothesis is that by writing code in 

Python to describe set A, the students will be able to develop a more sophisticated 

understanding of what it means to be an element of a set. Driving this hypothesis is that 
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Python requires sets as elements to be defined as a ‘frozenset()’ first. As initially presented 

in the first TE session, one cannot modify frozen sets once they have been defined. 

Example code to answer the activity above would look something like the following: 

B = frozenset([1, 3]) 

C = frozenset() 

A = {1, 3, 7, B, C} 

 

len(A) 

 

The following task is the first step in approaching more formal mathematics.  

Let D be the set of integers divisible by 21. Let E be the set of 

integers divisible by 3. Let F be the set of integers divisible by 7. 

How would you show that D is equal to the intersection of E and F? 

 

Figure 3.21: TE Session 5 Task 2 

 

We got to this task with Groups 3 and 4. Given the time constraints with five sessions, the 

goal is not necessarily to write out a formal proof, but talk about what it means to select an 

arbitrary element from a set and use that element to prove that each set is a subset of the 

other.
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Chapter 4: Instrumented Action Schemes 

This chapter is dedicated to answering RQ1: What kinds of instrumented action 

schemes develop while using Python in learning about set theory and logic? To answer 

this question, I draw on the instrumental approach (Artigue, 2002; Guin & Trouche, 1998; 

Trouche, 2004). As Buteau et al. (2020) describe, with the instrumental approach we can 

better understand how text-based programming can be integrated into students’ 

mathematical activity, and as a result, understand how the use of the artifact can help or 

constrain one’s mathematical understanding. In this chapter I present six instrumented 

action schemes of students’ mathematical activity, each pertaining to one of three main 

mathematical ideas. Each of the six schemes are presented by primarily highlighting 

examples of one student’s work. That is, each of the schemes are not analyzed for every 

student. However, where appropriate, I bring in examples of how the schemes may relate 

to examples of other students’ work. The goal of this chapter is to serve as a foundation for 

future studies, each focused on one particular scheme or mathematical idea. These future 

studies will analyze the emergence of the instrumented action schemes for every student in 

my study, but that is not the focus of this chapter. The purpose of this chapter is to 

highlight the schemes that pertain to the following three main conceptual ideas: 

propositional statements, set intersection, and subsets. 

As a reminder, there are four main features of a scheme as described by Buteau et 

al. (2020): 

1. the goal of the activity, with sub-goals and expectations;  

2. rules of action: stable behaviors of the subject;  
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3. operational invariants, which can be theorems-in-action (propositions 

considered as true) or concepts-in-action (concepts considered as relevant); 

4. possibilities of inferences. These possibilities are essential for the 

adaptation of the scheme to the specific features of the situation. (p. 1026) 

A full description of the instrumental approach, including rules of action, operational 

invariants and possibilities of inferences can be found in Chapter 2. For each scheme, I 

present the emergence of the instrument (the coordination of the artifact and the user to 

solve a mathematical task) through examples of student work and qualitative excerpts. In 

this chapter, I only focus on theorems-in-action for the students’ operational invariants 

instead of the concepts-in-action. I find that the concepts-in-action do not convey as much 

information as the theorems-in-action relevant to my perspective of the students’ 

construction of their schemes. The way I interpret concepts-in-action is that they mostly 

serve as contextual or descriptive components within the larger instrument development. I 

provide a table with an overview of the scheme for each student that is selected for 

analysis.  

As stated, six schemes are presented in this chapter relating to three main 

mathematical ideas. The first two schemes, Impossible-to-Answer scheme and Flexible 

Propositional Statement scheme relate to conceptions of propositional statements, 

specifically, what it means for a proposition to be “unknown.” The Filter Every Element 

scheme and Monitor Change in the Cardinality scheme relate to finding set intersections. 

The Determine Set Equality scheme and Verify Each element scheme address students’ 

conceptions of what it means for one set to be a subset of another set.  
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Propositional Statements 

A proposition is a statement that carries a Boolean (true or false) value. For 

example, the statement, ‘The Earth orbits the Sun’ is a proposition that carries a True 

Boolean value and the statement, ‘The Sun orbits the Earth’ is a proposition that carries a 

False Boolean value. If I say that s is a proposition, without any additional information, 

then all we can determine is that s carries either a True or False Boolean value and it 

cannot be both at the same time. It is not that s represents some statement that is unknown, 

say, ‘Life is a simulation,’ which no one knows the answer to. In Python, it is possible to 

work with propositional statements by assigning a particular statement to a variable. 

Consider the following code, which is pulled from Figure 3.5: 

setA = {"dog", "bird", "lion", "cat", "fox"} 

setB = {"dog", "lion", "lion", 4, "red", 4.37} 

p = "dog" in setA 

q = (len(setB) == 5) 

r = "San Francisco" in setB 

 

The single equals sign acts as an assignment, where the expression on the left-hand side of 

the equals sign is assigned to represent the expression (propositions in these cases) on the 

right hand side of the equals sign. The double equals sign is used to determine whether the 

values of the two expressions on either side of the double equals sign are equivalent. In this 

example, p is a proposition that has a True Boolean value because “dog” is an element of 

setA, q is a proposition with a True Boolean Value because there are five elements in setB, 

and r is a proposition with a False Boolean Value because “San Francisco” is not an 

element of setB. The students were asked to verify the Boolean value of each of these 
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propositions by investigating the output of the following code, which utilized the 'print()' 

function: 

print(p) 

print(q) 

print(r) 

This code would produce the following output: 

True 

True 

False 

The students were also asked to evaluate print statements such as the following: 

print(p and q) 

print(r and q) 

print(q or p) 

print(r or q) 

print(p and q or r or p and r) 

 

Working with these print statements helped the students build an understanding of how the 

logical operators 'and' and 'or' functioned when they evaluated propositional statements 

composed of propositions with known Boolean values. It is important to note that in 

Python, if one tries to use the print function with a variable that is unknown, or has not 

been assigned, say 'print(t),' one will receive the following error message: 

-------------------------------------------------------------------------- 

NameError                                 Traceback (most recent call last) 

<ipython-input-2-8061e4e0faac> in <module>() 

       

--->  print(t) 

 

NameError: name 't' is not defined 

https://localhost:8080/
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The following subsections highlight two students’ schemes of how they conceptualized 

what we referred to during the study as an unknown proposition, that is, a proposition with 

a Boolean value that was not made explicit to the students. In the first example, I provide a 

brief example of how one student initially conceptualized the concept of an unknown 

proposition and how this conception developed through an instrumental process. The 

second scheme is more representative of how the other students in my study interpreted the 

unknown propositions.  

Impossible-to-Answer Scheme 

The following task, represented in Figure 4.1 was given to the students in Group 1. 

Provide an example of a proposition with an unknown truth value.  

 

Let’s assume that s, and t are two propositions with unknown truth 

values.  

 

Interpret the following propositional statements: 

(s and t)        and        (s or t) 

 

Figure 4.1: Main Study Unknown Proposition Task 

 

At this point in the TE, the students had already worked with the logical operators 'and' and 

'or.' The students were familiar with the idea that the 'and' logical operator requires two 

true values on either side of the operator to make the entire statement true and the 'or' 

operator only needs one true value to make the entire statement true.  

When I introduced this task to Group 1, Haven’s initial reaction was to consider 

what it means to divide something by zero, “At first, I was thinking of zero and how, you 

know, you can't divide by zero and stuff. I don't know if that would be unknown, that's just 

not possible.” It wasn’t clear to me at the time why Haven would use dividing by zero as 
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an example of a proposition, so after a few seconds I asked Haven if she could clarify her 

answer. It was evident that Haven was still thinking, but she changed her response while 

keeping the theme of working with zero by offering the following proposition, “I don’t 

know, zero isn’t an even number, technically that’s unknown.” It seemed to me that Haven 

was wrestling with two ideas, the first was defining a proposition, which is a statement that 

carries either a true or false value, and the second is determining what it means for a 

proposition to be “unknown.” My interpretation of her perspective is that she was 

understanding an unknown proposition as a statement that, from her perspective, no one 

knows the answer to. However, from a mathematical standpoint, we know that zero is an 

even number, and we also know that division by zero is undefined. Perhaps the undefined 

nature of dividing by zero, that is, an expression not having any meaning at all, is what 

Haven had in mind for an unknown proposition. However, it is more likely that Haven was 

attempting to find an expression that no one would know the answer to, which in my mind 

is different from an expression being undefined. This falls under the same category as my 

‘Life is a simulation’ example, and thus I am characterizing Haven’s initial perspective on 

an unknown proposition as an Impossible-to-Answer scheme.  

Palmer, one of Haven’s partners offered the following definition of an unknown 

proposition, “If we use a new variable that isn't defined, it would be unknown because 

there'd be no way to tell if it was true or false.” To elaborate, Palmer was referring to an 

undefined variable in the computational programming sense. For example, in the previous 

scenarios, we had defined p, q, and r, but if we had another variable, say s, and not assign s 

to any propositional statement using the single equals sign, then that would be an 
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undefined variable, which is what Palmer was referring to. This definition that Palmer 

offered was closer to what I meant by “unknown proposition,” so I asked Haven to 

interpret the following piece of code in Python: 

print(s and t) 

This print statement was the only line in the code block, and thus, s and t were not defined. 

As an attempt to help Haven answer this question, I assigned hypothetical examples of 

what s and t could be. I suggested that perhaps one could consider that s represents ‘Haven 

will ace her next exam’ and t represents ‘Judith will ace her next exam.’ Each of these 

propositions are unknown given that these statements refer to a situation that will take 

place in the future, but they are not impossible to answer. They are propositions that one 

will be able to answer in the future.  

As for Haven’s scheme, the goal of the activity was to determine the output of the 

statement ‘s and t.’ With the hypothetical propositions in mind, Haven stated that “either 

[proposition] can be true or false, I was just thinking that it would be funny if it just 

popped out the answer, ‘maybe.’ Like, maybe? I don't know.” Haven’s primary rule-of-

action here is to ‘run the print statement to determine the output.’ After running the print 

statement, 'print(s and t),' we saw that the output produced an error message similar to the 

one above, that stated ‘s is not defined.’ For the operational invariants in Haven’s scheme, 

my interpretation is that there are two primary theorems-in-action at play. The first is that 

‘A single output, or correct answer, will be produced when asked to evaluate a print 

statement.’ The second is that ‘Propositional statements can only be evaluated if the 

propositions are designated with one truth value.’ These theorems-in-action are supported 
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by a secondary instance in which prior to seeing the error message, Haven mentioned that 

she was curious about how the ‘and' and the 'or' operators “would change the output 

because we don’t know what either are.” The first theorem-in-action, ‘A single output, or 

correct answer, will be produced when asked to evaluate a print statement’ is supported in 

her use of “the answer” in her statement about Python producing the output of “maybe.” 

Additionally, Haven references “the output” in her statement about not knowing what the 

print statement would produce because “we don’t know what either are.” In both cases, 

Haven is referring to a singular output, or answer. Haven had seen error messages in 

previous tasks, and thus was aware of the possibility of an error message but did not 

mention the possibility of one occurring in this instance. 

In Haven’s statement about not knowing what the output will be because, “we 

don’t know what either are,” Haven was referring to the truth value of the propositions. 

While Haven did state earlier that either proposition could be true or false, it is likely that 

she was referring to the possibility of them acing their exams in the future, but that it was 

impossible to know at the time whether these propositions were actually true or false. 

Therefore, the inference (the fourth feature of her scheme), is that the output would be 

indeterminate in a scenario in which one is asked to evaluate an unknown proposition. This 

contrasts with the possibility of the output either being True or False depending on the 

potential Boolean values of the propositions. This would lead to multiple outputs, in the 

case of 's and t', we would have four outputs depending on the truth values of the 

propositions (i.e., False, False, False, True). While it is true that we do not know whether 

the propositions would carry either a True or False value, Haven’s response that the output 
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could be “maybe” suggests that neither of the propositions could be True or False at the 

time of evaluation, it is impossible to determine. Therefore, the output would reflect the 

unknowable nature of the propositions. If Haven believed that the propositions could take 

on either a True or False value, then the output would then be True or False, depending on 

the logical operator that was used. Table 4.1 represents a summary of Haven’s scheme. 

Table 4.1: Haven’s Impossible-to-Answer Scheme 

Instrumentation 

Scheme 

Techniques Conceptual Elements Technical Elements 

Unknown 

Propositions lead to 

Impossible to 

Answer 

Propositional 

Statements 

Run the 

print 

statement in 

the IDE to 

determine 

the answer 

Propositional 

statements can only 

be evaluated if the 

propositions are 

designated with one 

truth value 

The statement 's and t' 

will produce one 

output if and only if s 

and t are propositions 

that are answerable.  

 

In Haven’s case, the instrument she developed was a direct product of the information that 

was presented to her. Up until this point, we had only worked with propositions in Python 

that we explicitly defined (e.g., ‘p = "dog" in setA’).  Furthermore, each time we ran a 

‘print()’ statement, it would produce only one output. Evaluating propositional statements 

in multiple different ways was not yet part of the instructional sequence, and perhaps not 

yet part of the students’ conceptual understanding of propositions. Other students in my 

study also showed glimpses of this impossible-to-answer scheme, Haven just served as a 

good representative example. I would like to note that Haven did eventually experience a 

shift in her understanding of unknown propositions, and her shift falls under what I 

describe in the next section as a flexible perspective on propositional statements.  
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Flexible Propositional Statement Scheme 

In this section I highlight a perspective on unknown propositions that I am calling a 

Flexible Propositional Statement scheme. For this scheme, I highlight Kristal and 

Adeline’s work, the two students in the pilot study, as they reasoned about unknown 

propositions and the logical operator 'and.' Kristal and Adeline were presented with a 

similar task as Group 1, but with less structure, see Figure 4.2.  

Let’s consider two propositions with unknown truth values, s and t. 

What would the following print statement produce? 

print(s and t) 

Please explain your reasoning. 

 

Figure 4.2: Pilot Study Unknown Proposition Task 

 

Notice in this task the students were not asked to first provide an example of an unknown 

proposition. Also, in this task the students were asked to evaluate the statement ‘s and t’ as 

an argument of a print statement.  

 When the students were asked about their initial interpretations of the problem, 

Kristal stated, “My very first thoughts were that it would throw an error, because I didn't 

really understand what unknown truth values are.” My response to Kristal’s comment was 

to inform them that s and t are propositions that can hold either a True or False value. With 

this information, Kristal’s thought process moved to think about the print statement from a 

probabilistic perspective, which Adeline took up in her own way of reasoning: 

Kristal: So, there's a 75% chance of getting it False, and only a 25% 

chance- Oh wait no, that's not right… 

Interviewer: Can you say a little bit more about that reasoning? 

Kristal: They both have to be True in order for the whole thing to be True, 

and that's only going to happen one out of the four times. There's four 

outcomes that could [happen] and that's that they both could be True, they 
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both could be False, or one could be True, and one could be False and then 

switch that, the other is True, and the other is False. That was a really bad 

way of explaining, I'm sorry. 

Interviewer: No, no, it's okay. Adeline, why don't you put into your own 

words what Kristal is saying, or reiterate what Kristal was saying. 

Adeline: I think Kristal is- I didn't notice it before, but when she said it, I 

was like, ‘Yeah that sounds like it’s on the right track, it sounds like it's 

right.’ Because if you do the little… I'm thinking of the little Punnett 

Squares from like, I don't know, it was biology. 

Kristal: Oh yeah. 

Adeline: When you do them and you pull them down, if it's the 'and,' since 

both of them have to be True for the 'and,' that’s only going to happen 25% 

of the time. So, if we say False, it's 75% likely to be False- more likely to be 

False but it still has the option to be True? But then I think if it was 'print(s 

or t)' that would change the percentages, but since it's 'print(s and t),' what 

Kristal said was right with the two Truths, you know. 

Kristal: It's like the truth is the recessive gene. 

Adeline: Exactly. 

 

The Punnett square the students are referring to was drawn immediately after this exchange 

and shown in Figure 4.3. This excerpt is a good example of the instrumentation process 

(the one-way influence of the artifact on the learner), in which Python’s built-in 

functionality of producing one output for a valid print statement is strongly influencing the 

thought processes of Kristal and Adeline. That is, Kristal and Adeline are discussing the 

likelihood that the print statement will produce either a True or False value, because it 

seems they believe that the propositional statement must produce only one output. If we 

take the assumption that Kristal and Adeline believe the propositional statement must 

produce only one output because the statement is presented as an argument of a print 

function, their determination that Python will produce either a True or False output given 

the probability of each occurrence with the logical operator 'and' makes sense.  

As for their schemes, there are the obvious similarities between Kristal and 

Adeline’s ways of reasoning with that of Haven’s (presented in the previous section). 
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Specifically, all three students are operating with the same goal, to determine the output of 

the statement 's and t,' and the same rule-of-action of running the code in Python to 

determine the output. Kristal's initial reaction was that the output would produce an error 

(which requires first running the print statement), which supports this rule-of-action to be 

true. What is interesting is where Kristal and Adeline’s schemes diverge from Haven’s. 

First, the main operational invariant that they are utilizing is the theorem-in-action of ‘All 

propositions carry either a True or False Boolean value, which determines the output of a 

propositional statement when evaluated.’ This idea of a proposition carrying either 

Boolean value at any given time is what I consider a flexible perspective on the nature of 

unknown propositions. By flexible, I mean that Kristal and Adeline both understand that 

the propositions can take on either Boolean value at the time of evaluation, and as a result, 

they are able to flexibly reason about the potential outcomes. This is demonstrated well in 

their use of the Punnett Square analogy, with their work represented in Figure 4.3. 

 

 

Figure 4.3: Kristal and Adeline’s Punnett Square  

 

In Figure 4.3, the red “T:” on the left-hand side of the figure represents the proposition, t, 

and the red “S:” at the top of the figure represents the proposition, s. The red “T” above the 
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top left square represents the scenario in which s is True, and the red “F” above the top 

right square represents the scenario in which s is False. The red “T” to the left of the top 

left square represents the scenario in which t is True and the red F to the left of the bottom 

left square represents the scenario in which t is False. Lastly, the values inside of the 

squares represent the outcomes of the statement ‘s and t’ corresponding to the Truth values 

of the propositions. For example, the T inside the top left square represents the scenario in 

which both s and t carry True Boolean values. For the statement ‘s and t,’ this is the only 

scenario in which one would have a True output.  

I see a strong connection between Kristal and Adeline’s use of the Punnett square 

with a traditional truth table. Drawing on Hawthorne and Rasmussen (2015), Kristal and 

Adeline demonstrate a form of a unified view of a truth table. Even though Adeline was 

the one to bring up the idea of a Punnett square, Kristal’s last comment, “It’s like the truth 

is the recessive gene,” proves to me that Kristal understood Adeline’s idea clearly. See 

Figure 4.4 (Genome Research Limited, 2021) for the similarity between Kristal and 

Adeline’s Punnett square with a Punnett square that one may encounter in a biology 

classroom to demonstrate how recessive genes operate in nature. 
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Figure 4.4: Biological Example of a Punnett Square - Recessive Blue Eye Color 

 

In only one scenario, bb, do we get blue eye color. This scenario relates directly back to the 

one scenario in which we get True for the logical statement ‘s and t.’ To complete the 

description of Kristal and Adeline’s scheme, one possibility of inference could be the 

scenario in which the students are asked to evaluate ‘s or t,’ and as Adeline said from the 

excerpt above, this would change the percentages. By “change the percentages” I am 

interpreting this to mean a new assignment of the values that would go inside of the 

Punnett square, in which we would have True, True, True, and False. We did not get to the 

creation of a new Punnett square for the logical operator 'or,' but Kristal and Adeline did 

demonstrate clear understanding of the 'or' operator in other future tasks. Table 4.2 

summarizes Kristal and Adeline’s flexible propositional statement scheme as described in 

this section. 
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Table 4.2: Kristal and Adeline’s Flexible Propositional Statement Scheme 

Instrumentation 

Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Flexible 

Outcomes of 

Propositional 

Statements 

Draw a Punnett 

square to 

determine the 

possible 

outcomes 

Propositions take 

on the Boolean 

value of True or 

take on the value 

of False  

The value of the statement 's 

and t' depends on the 

Boolean values of the 

propositions s and t. When 

evaluated, there are four 

outcomes, three being False 

and one being True 

 

For Kristal and Adeline, the instrument they developed was a direct result of describing 

how they believed Python may determine the output of the propositional statement 's and t' 

when s and t are unknown, or undefined propositions. To be clear, my understanding is 

they believed the code in Python would produce only one output. That is, there was a 75% 

chance of Python producing the output False and a 25% chance of Python producing the 

output True. While Kristal and Adeline were not technically correct from a computer 

programming perspective (the code would produce an error message), their understanding 

of the 'and' operator and how it functioned in the context of two unknown propositions was 

mathematically correct, and was a result of their desire to understand how Python might 

determine the output of the propositional statement. 

 This scheme of being able to flexibly reason about the output of a propositional 

statement was reflected by other groups in the study as well. Without documenting each 

step of very similar schemes built by students in Group 3, I present Figure 4.5 to document 

another case of the students coming up with a version of a truth table for the statement ‘s 

or t.’ 
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Figure 4.5: Truth Table Generated by Group 3  

 

This screenshot was taken from Group 3’s Jamboard slide that had the same task as 

presented in Figure 4.1. With some guidance and annotation, the students reasoned about 

the different scenarios and possible outputs of the statement ‘s or t.’ That is, the students in 

Group 3 showed evidence of flexibly reasoning about the various propositional statements 

and their outputs given unknown propositions. The primary piece of evidence for students 

operating with this scheme is the ability to reason about all the potential outputs at once, 

either through a truth table or otherwise, and be able to describe why each scenario is 

different as a result of the changing Boolean values of the propositions. 

Set Intersection 

In this section I highlight two instrumented action schemes. The first is Leo’s, a 

student in Group 2. The second is Alonso’s a student in Group 4. Both instrumented action 

schemes emerged during a task related to finding the intersection of multiple sets. When 

one finds the intersection of two or more sets, the result is a new set that contains all of the 

elements that are common in all of the original sets. For instance, if we let A = {2, 3, 5, 7, 
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11} and B = {1, 2, 3, 4, 5}, then the intersection of A and B is a new set containing three 

elements, {2, 3, 5} because 2, 3, and 5 are elements of both sets A and B. In the following 

sections, I describe how two students used specific programming concepts, For Loops and 

If Statements, to find the intersection of multiple sets. As additional information, every 

group in the study was presented with the same three sets: 

A = {8, "apples", "chocolate", "berries", "corn", "juice", 13, "strawberries", 

6, "avocados", "beets", "chips"} 

B = {1, "cheetos", "jalapeno", "onions", "cilantro", 2, "limes", "chips", 6, 

"cherries", 9, "corndogs"} 

C = {8, "biscuits", 6, "cheese", "soda", "water", "bananas", "beets", 

"watermelon", 7, "kiwis", "chips"} 

 

The intersection of the three sets, A, B, and C is a set containing two elements, {6, 

“chips”}. Every group was presented with the following task, seen in Figure 4.6, asking the 

students to reason about the intersection of three sets (we did not use the word 

“intersection” until after the students created an algorithm to find the intersection). 

Using Python, how would you find the common elements across all 

three sets? 

 

Draw a diagram of what this set relationship might look like first 

before you write any code.  

 

Figure 4.6: Set Intersection Task 

 

Filter Every Element Scheme 

In this section I highlight the work of Leo from Group 2 during the fourth session. 

While I focus mainly on the work of Leo, similar to the last section examining Kristal and 

Adeline’s work, I found that this scheme applies to all of the students in Group 2. The 
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main reason why I highlight Leo specifically is because up until this point he had not been 

as vocal about his thoughts as compared to his peers and during Session 4 Leo led the 

group in solving the task presented in Figure 4.6. Before drawing the diagram, I asked each 

student in Group 2 to share their thoughts on what the question was asking. Leo’s response 

was that the task was to find the “elements that are shared between all three sets.” Leo’s 

other two partners agreed with this statement. The diagram that Leo drew is shown in 

Figure 4.7. 

 

Figure 4.7: Leo’s Set Intersection Diagram 

 

Leo’s diagram showcases three sets, A, B, and C, with the element of 2 in all three sets. 

This element is then added to a new set, which Leo called D. There is also the matter of 

what appears to be the elements A, B and C in the sets A, B and C, respectively. Without 

ignoring this fact, I am hesitant to speculate on exactly what Leo was intending when he 

included those elements in his diagram. It could be that the first elements that came to 

mind in Leo’s mind were elements that were called “A,” “B,” “C.” It could also be that 

perhaps Leo was using those letters as stand-ins for the other elements that belonged to the 

sets A, B, and C. The more important fact is that Leo’s diagram represents that his 
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conception of “common across all three sets” is in line with the set operation of 

intersection, which was the goal of this task. I mention this point because other students in 

the TE study interpreted “common across all three sets” as the set union instead of the 

intersection. Leo’s other partners, Eugene and Saul, drew Venn diagrams for their 

representation of what the goal of the task was. Their Venn diagrams are shown in Figure 

4.8. 

 

Figure 4.8: Eugene and Saul’s Set Intersection Diagrams 

 

The distinction between Leo’s diagram, versus Eugene and Saul’s diagrams, is an 

important one. I argue that Leo approached the design of his diagram from a computational 

thinking perspective, an argument that cannot necessarily be made about the diagrams of 

his partners. This is supported by Leo’s description of his diagram in that when asked 

about it, Leo said that he created a new set D and he was thinking that there might be 

“some code that would look for repeated values and add it to the new set D. Number two 

was repeated in all of them, so I brought it down to the new set.” With this statement, it is 

possible to infer that Leo drew his diagram as pseudocode, where he did not know the 

exact code that needed to be written to achieve the goal, but represented a computational 
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process in the form of a diagram that searched every element in each set and selected the 

element that existed in all three sets. Pseudocode can also be a rough set of instructions, 

steps or processes that outline the computational process involved in constructing an 

algorithm to solve a task, without using all of the involved syntax that is required in text-

based programming languages. This is often the first step in writing a computational 

process or algorithm to solve a problem. In contrast to Leo’s approach, when Eugene and 

Saul were asked about their diagrams, they each said that they drew their diagrams to 

represent an overlapping area that would contain elements that all three sets shared. 

Eugene and Saul were right in their reasoning, and I do not want to downplay this fact, but 

what I want to highlight is that there is a closer connection between the computational 

process involved in finding the intersection between sets and Leo’s diagram compared to 

his partners’. 

 As for Leo’s scheme, the goal of the activity was to find the intersection of all three 

sets. Leo’s rule of action was to ‘Implement a code that would check each element in all 

sets and try to find a match for that element in each of the other sets.’ This is supported by 

Leo when he was asked to explain his diagram in more detail, “So originally what I had 

thought of was, you'd have three sets, or as many sets as you want, and I’m not sure if 

there's code that can search through each set and then just look for repeated ones. But then 

just add those values, the repeated ones, into a new set.” Leo’s explanation is in line with 

his diagram and also in line with the idea of set intersection.  

 Given that Leo was unsure about the specific code that we would write to make this 

computational process happen, I suggested that we go back to an example of a For Loop 
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that was used in the previous session, Session 3. The For Loop presented below was the 

last For Loop that Group 2 examined in a series of examples that I used to present the 

functionality of a For Loop to the students. Thus, by this time in the study, the students in 

Group 2 had a good understanding of the process of a For Loop and understood how the 

For Loop iterates through the designated object. In the following example, the For Loop 

iterates through a set with elements consisting of the letters that spell out “set theory.” 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

D = set() 

for i in A: 

   print(i) 

   if ((i == "e") or (i == "o")): 

       D.add(i) 

       print(D) 

print() 

print(D) 

 

One potential output of this code is the following:  

h 

o 

{'o'} 

t 

r 

e 

{'e', 'o'} 

y 

s 

 

{'e', 'o'} 

 

Looking at the output, we can see that the first step in the For Loop is to print each element 

in A. The next step is to verify whether this element is either “e” or “o.” If the element is 

either “e” or “o,” then this element is added to the set D and the set D is printed. This is 
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why we see the set {‘o’} right after the output of ‘o’ and the set {‘e’, ‘o’} right after the 

output of ‘e.’ Reflecting on this For Loop, Leo said that one would “need code that would 

relate the sets. But you don’t know which values repeat.” Leo points to the line in the 

above code that states ‘if ((i == "e") or (i == "o"))’ and says that we can only use this “if 

you know which [elements] repeat.’ As stated earlier, we know that ‘6’ and ‘chips’ are the 

two elements common across all three sets. If the students knew which elements were 

repeated, they could theoretically just replace ‘e’ and ‘o’ from the if statement with ‘6’ and 

‘chips.’ This is what Leo was referring to by saying that they don’t know which elements 

are repeated. The main goal is to find this information out by constructing a computational 

process that would work with any number of given sets. At this point I gave Leo’s partners 

an opportunity to step in and offer their thoughts as to how we might be able to construct 

this process of verifying that a single element existed in all three sets. Eugene confirmed 

that we could use a For Loop, but then also stated that we can use an If Statement that 

would establish a condition that would need to be met:   

So, yeah you would use a For Loop for this. And I guess you would use an 

If Loop as well. So, you could say that if x is in A and B and C, then you put 

the function to add. 

 

Before writing any code, I asked Saul if he would like to offer his thoughts as well. Saul 

took up Eugene’s thoughts and stated the following: 

We're going to use a For Loop for each [element in] A and then we're going 

to compare it to B and C by saying if x is in B, I don't know how you write 

the code, but- And then you do 'and' because both values have to be True, 

instead of 'or,' I think. So you do 'and' x in C or something like that. And 

then you do the last line, which is add, or D dot add or something like that.  
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As we can see from Saul’s statement, he was not confident in how exactly one would write 

this code. So, as Saul was verbalizing his thoughts, I was writing code in Python that 

represented his ideas. After the code was written, presented below, I asked Leo to reflect 

on the code and share whether the code resonated with his original thought of a 

computational process that checked every element across all of the sets.   

D = set() 

for x in A: 

   if ((x in B) and (x in C)): 

       D.add(x) 

print(D) 

 

Leo stated that the If Statement was “acting as restraints” to make sure that the element 

coming from set A exists in both B and C. When asked why we are using the 'and' operator 

and not the 'or' operator, Leo said that “we’re using 'and' and not 'or' because if just one 

was True then it would add [the element], but you want both to be True. So, x in both A 

and B. C and B I mean.” By “you want both to be True,” I am interpreting this to mean 

both propositions, ‘x in B’ and ‘x in C.’ Both expressions are propositions because they 

can carry either a True or False Boolean value depending on the element that is selected in 

A. As the For Loop is iterating through the elements of A, the If Statement is being used to 

verify that both propositions are being met, that the element exists in B and the element 

also exists in C. For example, in the case of the element, “beets,” this element exists in C 

but is not an element of B. Thus, the proposition ‘x in C’ is True, but the proposition ‘x in 

B’ is False. Since the conditional statement, ‘x in B 'and' x in C’ is not met, the program 

exits out of the If Statement and moves onto the next random element in A. In the case of 
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the elements that exist in all three elements, like “chips,” both of the propositions are True, 

satisfying the conditional of the If Statement, thus prompting the next line of code, which 

is to add “chips” to the set D. The output of the code written above produces the following 

output: 

{6, 'chips'} 

This is indeed the intersection of all three sets.  

 Given the data, I infer that Leo is operating with two main theorems-in-action. The 

first is ‘Using a For Loop, one can iterate through every element of a defined set in 

Python.’ The second theorem-in-action, and the one that I see as the foundation for his 

construction of the meaning of set intersection is ‘Using an If Statement in a For Loop, 

with a specific conditional statement, one can filter for particular elements.’ From the very 

beginning, with Leo’s diagram, we saw the presence of a desire to search through every 

element of the given sets to find the repeated elements. This approach was then taken on 

by Leo’s partners by utilizing the For Loop and If statements. Leo was then able to verify 

the computational process and determine that the written code did indeed reflect his 

original idea of looking for repeated elements. The fourth feature of Leo’s scheme is the 

possibilities of inference. This emerged quite clearly in the fifth session with Group 2 as 

they were tasked to determine whether or not the set of integers divisible by 21 is a subset 

of the set of integers divisible by 7 and 3. This task will be the focus of the next section, 

but for the purposes of examining Leo’s use of inference, I only highlight the first step of 

the code that the students in Group 2 came up with. The code is below. 
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A = set() 

for x in range(1, 1001): 

   if (x % 21 == 0): 

       A.add(x) 

 

Here we can see that the students constructed a For Loop that iterates through a sequence 

of integers ranging from 1 to 1000 (the range function stops one value short of the second 

specified number). One can also see that the students in Group 2 utilized an If Statement 

and a specific conditional statement to filter for the values that are divisible by 21. The ‘%' 

sign in Python functions as the modulus. So, in this case we have x mod 21. Leo explains 

the code by stating the following: 

Leo: The second line is looking through a range from one to one thousand 

and one. And then the third line it's just saying for any constant from one to 

1000, where you do the mod 21, if that equals zero, then you add that in to 

set A. 

Interviewer: That's right. And my question to you, Leo, why is it that we're 

setting x mod 21 double equal sign to zero? 

Leo: You don’t want a remainder. Yeah, you don’t want a remainder, 

because if you have a remainder then it’s not fully divisible I guess. 

 

In Leo's first statement he says that the second line is looking through a range from 1 to 

1001, but this was just a reference to the range function which stops one value short of the 

second specified number. The important part here is that both of Leo’s theorems-in-action 

are present here in this possibility of inference, with a slight adjustment in that the code is 

not iterating through a set. First, Leo states that one can iterate through every value in a 

specified sequence of numbers. Second, the conditional statement is used to filter for 

specific values in that range. As with all possibilities of inference, one’s operational 

invariants are subject to change. In Leo’s case, the major change here is that one can 
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extend this filtering process beyond sets, in this case we ended up filtering for specific 

values in a range of integers.  

 As for the utilization of the For Loop and If Statement to filter for the intersection 

of the three sets, these computational tools were not designed to find the intersection of 

sets or any other specific mathematical task. They were designed to make computational 

processes more efficient. Leo, and his partners in Group 2, took these computational tools 

and used them to solve a mathematical task. This is the definition of instrumental genesis, 

the process of integrating an artifact, or artifacts, into one’s thought processes as a means 

to solve a mathematical task. In this case, both the For Loop and the If Statement served as 

artifacts in the development of the instrument of finding the intersection of given sets. A 

summary of Leo’s scheme is below in Table 4.3. 

Table 4.3: Leo’s Filter Every Element Scheme 

Instrumentation 

Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Find the Set 

Intersection by 

Verifying 

Every Element 

Write a For 

Loop using an 

If Statement 

to filter for 

specific 

elements 

The intersection 

produces a new 

set containing 

all elements that 

are shared in all 

of the original 

sets 

By writing a For Loop, one 

can pass through every 

element in a set. These 

elements are then passed 

through an If Statement 

containing the logical operator 

'and' to filter for the elements 

that are shared across sets. 

 

Monitor Change in the Cardinality Scheme 

 In this section I present the work of Alonso, a participant in Group 4 as they 

worked on the same task as presented in Figure 4.6. The goal of the activity was to find the 
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intersection of the three given sets. I highlight Alonso’s work due to the unique nature of 

his approach to solving this task. No other student in my study attempted to solve the task 

in the same way that Alonso did. First, I will briefly present some information that will be 

pertinent to understanding Alonso’s solution method. First, repeated elements in a set, in 

Python and in mathematics in general, are not counted multiple times for the total number 

of elements that belong to the set. For example, if we define A = {1, 2, 3, 4, 5, 5}, the 

number of elements that belong to A, otherwise known as the cardinality of A, is five. 

Second, the cardinality of a set can be determined in Python using the 'len()' function. This 

function finds the length, or the number of items in the iterable data object.  

 As with all of the other groups, I asked Julian and Alonso to describe, in their own 

words, the goal of the task. Alonso didn’t quite describe the goal of the task and instead 

verbalized his initial thoughts in how one would solve this problem:  

What you could basically do I guess is compare two sets and then, if they're 

the same- oh sorry, you could compare elements from both sets and if they 

are the same then you could print it or add it to another set. But, yeah it'd be 

a little bit more tricky because you have to check all the possible 

combinations. You can't just add it one at a time or check one at a time like 

we did with the last code.  

 

The “last code” that Alonso is referring to is seen below, which was used to find the union 

of three sets, A, B and C. Set union results in a new set that contains all of the elements 

from all of the original sets. For example, if A = {1, 2, 3, 4}, B = {4, 5, 6, 7} and C = {7, 8, 

9, 10}, then the union of the three sets would be a set containing the elements {1, 2, 3, 4, 5, 

6, 7, 8, 9, 10}. 
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for x in B: 

   A.add(x) 

 

for x in C: 

   A.add(x) 

 

The code above uses a For Loop to iterate through all of the elements in sets B and C and 

add all of those elements to set A. This would result in the union of the three sets as the 

new version of set A contains all of the elements that were in the original sets A, B, and C. 

As Alonso said, one cannot just add all of the sets to a new set without first verifying that 

the element is repeated across the other sets. With respect to Alonso’s description of the 

goal of the set intersection task, Alonso is considering the scenario where one has two sets 

and the intersection would involve pairing each element in one set to all of the other 

elements in the other set. Figure 4.9 is a diagram representation of Alonso’s initial idea. 

 

Figure 4.9: Diagram Representation of Alonso’s Comparing Elements Method 

 

The dots in each set represent unique elements. In the figure I only draw arrows for the 

first and fourth elements in Set A, but the idea is that every element in Set A is being 

compared to every element in Set B. As an example, the first dot in Set A is being 

  

Set A 
Set B 

 

New Set 
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compared to every other element in Set B and the second dot in Set B is a match to the first 

dot in Set A. This element would then be added to a new set, which is the intersection of 

Set A and Set B. All the different possible arrows that could be drawn in the diagram 

represent all of the “possible combinations” that Alonso was referring to. In his 

description, Alonso mentions comparing “two sets,” which I asked for clarification on and 

he said, “All three, well all sets,” indicating that this method could be done with more than 

three sets in the event that there were more sets. The reader may observe that this approach 

is quite similar to the approach taken by Leo and Group 2 in which every element in A was 

passed through an If Statement to determine whether or not the element had a match in 

both sets, B and C. What is interesting is that Alonso took a different direction when he 

started to develop his diagram documenting the computational process of finding the 

intersection of the three sets.  

 Once the goal of the task was agreed upon by both Julian and Alonso, I gave them 

about six minutes of silent work time to draw a diagram or representation of the 

computational process to find the intersection of all three sets. Also, it is important to note 

that before drawing the diagram, Alonso wanted to clarify what I meant by “diagram.” I 

told him that I would “leave it up for interpretation.” Figure 4.10 is a screenshot of 

Alonso’s diagram, which he used as an opportunity to write pseudocode.  
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Figure 4.10: Alonso’s Pseudocode for Set Intersection 

 

Alonso and his partner (diagram not shown) were the only two in my study to write 

pseudocode. The other students either drew Venn diagrams, circled certain elements in the 

sets, or did some type of representation of what the intersection process might look like. 

Julian’s approach was more in line with how Leo and Group 2 solved the problem, which 

is why I am not presenting Julian’s work and instead mainly focusing on Alonso’s work.  

 Here I will approach Alonso’s pseudocode step by step. The first process in 

Alonso’s pseudocode is to step through (another computer science term for ‘iterate 

through’) all the values, or elements, in A and add those elements to the set B and the set 
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C. This step is fairly straightforward but requires a little interpretation as to what is meant 

by ‘set B and C’ in the second line. One could interpret this to mean the logical operator 

'and,' because he refers to it as a ‘set’ instead of ‘sets,’ and would thus possibly imply the 

intersection of the two sets B and C. However, in his description of the pseudocode, 

Alonso clarified this line when he said, “So, if you had set A, you would add it to both set 

B, and C. So that all the values from set A get cycled through the two sets.” This confirms 

to me that Alonso was referring to two separate sets, set B and set C. The next step in 

Alonso’s pseudo code is to check the length, or in mathematical terms, check the 

cardinality of the two sets B and C. As Alonso describes it, “With each iteration you check 

to see if the length has increased. If the length has not increased, then you know that there 

has been a repeat.” I am interpreting this statement as a process of adding each element 

from A to both sets B and C. One then finds the cardinality of the sets B and C. If there is a 

change in the cardinality from before the element in A is added to the sets B and C, then 

one can determine that this element is not shared with the set. For example, let A = {1, 2, 

3} and B = {4, 5, 6}. If we add the element 2 to B, then the cardinality of the set B would 

change from three to four since 2 is not an element of B. The next step in Alonso’s 

pseudocode is to add the element to a new set, D, if the cardinality does not change. An 

overview of the whole computational process is described by Alonso in the following way: 

This would require three For Loops and at the end you would just print the 

length of D and you would get the number of common elements. Or you 

could just print D to get which elements are in common. 

 

The three For Loops that Alonso describes represent three iterative processes to add all the 

elements from each of the three sets to the other two remaining sets. Of course, three For 
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Loops are not required, which is an interesting distinction from Leo and Group 2’s 

approach in which they realized that only one For Loop was required. We did not write out 

Alono’s code as we were running close to the end of time during Session 4 and we still 

needed to hear from Julian about his diagram, but given that Alonso’s method was so 

detailed, my hypothesis is that having the actual code would not change anything about his 

scheme or his conception of finding the intersection of multiple sets. 

 As for Alonso’s scheme, we know that the goal is to find the intersection of the 

three sets. I consider the rule-of-action to be similar to Leo’s, ‘Implement a code that 

would check each element in all sets and verify whether or not that element existed in each 

of the other sets.’ The way in which the elements are verified to exist in the other sets is 

the point of divergence between Alonso’s approach and Leo’s. For Alonso, the first 

theorem-in-action is the same, ‘Using a For Loop, one can iterate through every element 

of a defined set in Python.’ The second theorem-of-action is where the two approaches 

differ in that for Alonso, ‘One can determine the existence of repeated elements by 

monitoring any change in the cardinality of a set once an element has been added to the 

set.’ These theorems in action led Alonso to the solution method that has been presented in 

this section. Without Python, it is unlikely that Alonso would have come to that solution 

method, which is evidence that Alonso constructed an instrument, using the For Loop and 

the 'len()' function as artifacts, to solve the mathematical task of finding the intersection of 

multiple sets. For the possibilities of inference, I present Julian and Alonso’s first step in 

solving the number theory task of determining whether the set of integers divisible by 21 is 

a subset of the set of integers divisible by 3 and 7. What is interesting is that Alonso and 
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Julian came up with the same first approach as Group 2 in writing a For Loop to construct 

the set of integers divisible by 21, but solved the task using different methods, reminiscent 

of their approaches to the set intersection task. A summary of Alonso’s scheme can be 

found in Table 4.4. 

Table 4.4: Alonso’s Monitor Change in the Cardinality Scheme 

Instrumentation 

Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Determine Set 

Intersection by 

Monitoring 

Change in the 

Cardinality 

Add an 

element to a 

set and 

calculate the 

cardinality of 

the set 

The cardinality 

of a set 

changes when a 

new, non-

repeated 

element is 

added 

By writing a For Loop, one can 

pass through every element in a 

set. These elements are added to 

the other sets and the cardinalities 

of the other sets are calculated. If 

there is no change in the 

cardinality from before the 

element was added to after for all 

sets, then the element is a repeated 

element can can be added to a 

new set. 

 

Subsets 

The third and final mathematical concept that is covered in this chapter is that of 

subsets. Consider any two sets A and B. A is a subset of B if and only if every element in 

A is an element in B. So, for example, let A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5, 6, 7}. A is 

a subset of B because all four elements are elements in B. The goal of the task for all three 

groups (Group 1 did not get to this question) was the same, but the wording of the problem 

was slightly different between Group 2 and Groups 3 and 4. Figure 4.11 is the task that 

was presented to Group 4 and Figure 4.12 is the task that was presented to Group 2.  
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Let’s consider the integers from 1 to 1000. In Python we can call out 

these integers by using the 'range()' function.  

range(1,1001) 

 

Is the set of integers divisible by 21, a subset of the set of integers 

divisible by 3? 

Is the set of integers divisible by 21, a subset of the set of integers 

divisible by 7? How do you know? How can you use Python to help 

answer this question? 

 

Figure 4.11: Group 4 Number Theory Subset Task 

 

Let’s consider the integers from 1 to 1000. In Python we can call out 

these integers by using the 'range()' function.  

range(1,1001) 

 

Is the set of integers divisible by 21, a subset of the set of integers 

divisible by 3 and 7? How do you know? How can you use Python to 

help answer this question? 

 

Figure 4.12: Group 2 Number Theory Subset Task 

 

The only difference between the two tasks is breaking the first question into two separate 

questions. I highlight the difference because this ultimately resulted in two different 

approaches, one by Leo in Group 2, and the other which was represented by Leo’s partners 

as well as the participants in Group 4. Group 2 and Group 4 are highlighted again in this 

section by presenting two different schemes. This will serve as a follow up on the previous 

section as the schemes presented for Leo and Alonso documenting their conceptions of set 

intersection very much coincide with the two schemes developed to solve the subset tasks. 
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Determine Set Equality Scheme 

 As an extension of what was presented at the end of the Filter Every Element 

Scheme section, and as was the case with Group 2, the code below is what the students in 

Group 4 settled on to find the sets of integers divisible by 21, 3 and 7.  

D = set() 

E = set() 

F = set() 

for x in range(1, 1001): 

   if (x % 21 == 0): 

       D.add(x) 

for x in range(1, 1001): 

   if (x % 3 == 0): 

       E.add(x) 

for x in range(1, 1001): 

   if (x % 7 == 0): 

       F.add(x) 

 

This code represents three computational processes in which the product is three sets, D 

which is the set of all integers from 1 to 1000 which are divisible by 21, E the set of all 

integers from 1 to 1000 which are divisible by 3, and F the set of all integers from 1 to 

1000 which are divisible by 7. The next step was to determine whether A was a subset of B 

and C.  

Given that we focused on Alonso in the previous section to represent Group 4, I 

would like to highlight Julian’s work and ideas in the development of a scheme that I am 

calling the Determine Set Equality scheme. Julian’s initial idea was to conduct a check of 

each element in D to see if all those elements exist in E: 
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To find if the elements divisible by 21 are an actual subset of the integers 

divisible by three, you just would have to find if the elements of 21 are 

equal to, like all the elements that are divisible by 21, are equal to the 

elements in three, but not all of [the elements in E], obviously, because the 

[elements] divided by three would have much more, but just to make sure 

that they are an actual subset. 

 

My interpretation of Julian’s statement that “All of the elements that are divisible by 21, 

are equal to elements in three” is that one needs to determine that every element in D has a 

match with an element in E. Further, by stating that “the [elements] divided by three would 

have much more,” I am interpreting this as the cardinality of E is much greater than D, 

which it is. When asked how one would go about computing this check process in Python, 

Julian offered the following idea: 

Julian: Because you're trying to find if the elements in D equal certain 

elements in E, then I was thinking about doing a ‘for x in’ statement and 

then doing a print. So I was thinking of doing ‘for x in D, if x equals E’, 

then you can [add] that into another set. So if the elements in E are the same 

as D, then you [add] that into another set and then you just find that set 

equal to D. If it’s True, then obviously all of the elements in D are in E. So 

like ‘for x in D, if x equals’… could you do ‘if x is in set E?’ or ‘x in E’ then 

just do ‘G,’ or ‘A add x’ 

Interviewer: And you want to add these elements to an empty set, is that 

correct? 

Julian: Yeah. And then after that do ‘print A equals D’ 

Interviewer: Okay 

Julian: And if that works, if that is True, then D would be a subset of E. 

 

As Julian was talking I was writing code in Python. The resulting code is below. 

A = set() 

for x in D: 

   if (x in E): 

        A.add(x) 

 

print(A == D) 
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Again, Julian refers to an element being “equal” to E, but I interpreted that in the moment, 

and now, as an element having a match in the other set. As such, the third line in the code 

uses an If Statement to verify whether the element from D is also an element in E. If this is 

True, then the element from D is added to a new set, A. Running the code, we found that 

the output was indeed True. Alonso was not completely sure about the print statement in 

the final line of the code that Julian came up with, so I asked Julian to explain why he 

wanted to compare the sets A and D using the double equals sign (the double equals sign is 

used to verify that two expressions produce the same value whereas a single equals sign is 

used for assignment). In the following exchange Julian describes the purpose of the print 

statement and Alonso was able to jump into the conversation and provide evidence that he 

too was on board with why the print statement is a significant step to showing that D is a 

subset of E: 

Julian: So set A is basically made up of elements that are the same in D and 

E. Basically we are making sure that the elements in A are the quote-

unquote ‘subset of E,’ that they are actually the subset of E because then 

they would equal D. Which is what we wanted to know, if it was a subset or 

not. 

Interviewer: Okay. What would happen, let's just say a hypothetical 

situation where we got an output of False? What would that mean about the 

sets D and E? 

Alonso: So I think that would mean that the set of integers that are divisible 

by 21 is not a subset of the integers divisible by seven. So I think what that 

means is that… yeah I don’t how else to say it than that. and ensures visible 

by. 

Interviewer: And did you mean the set of integers divisible by three? 

Alonso: Yes, what did I say? 

Interviewer: You said seven. 

Alonso: Ah okay, I meant three. 

Interviewer: Okay, and Julian, what are your thoughts? 

Julian: Yeah I was thinking the same thing because, obviously, since we are 

checking if D is a subset then somewhere in there, the total amount of 

integers - or at least one of the integers in set D are not equal to set E so it 
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would not add it to set A and obviously the statements would not be the 

same. 

 

I was initially confused with what Julian meant by his first statement, saying that “the 

elements in A are the quote-unquote ‘subset of E.’ However, after proposing the 

hypothetical scenario in which the output is False, it seems to me that Julian has a firm 

grasp on the purpose of the print statement. The purpose being a verification that the two 

sets, D, the set of integers divisible by 21 and A, the set of integers divisible by 21 and also 

divisible by 3, are the same. That is, all of the elements in D are divisible by three, which 

means that all of the elements in D are also elements in E, which by definition implies that 

D is a subset of E. This same process was done with set F, to find that D is a subset of F, as 

seen with the code below. 

B = set() 

for x in D: 

   if (x in F): 

       B.add(x) 

 

print(B == D) 

 

With this code the output is once again True, which means that all of the elements in D are 

divisible by 21 and also divisible by 7. Thus, all of the elements in D are elements in F, 

which implies that D is a subset of F. 

 Julian’s scheme is composed of the goal, which is to determine whether D is a 

subset of E as well as a subset of F. The primary rule-of-action is to ‘Construct a For Loop 

that will find the intersection of the two sets in question,’ (D and E, or D and F in this 

case). While Julian did not verbalize that the goal was to find the intersection, his 
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construction of the For Loop to find the elements divisible by both sets is the process of 

finding the intersection. As for the main theorem-in-action, it is my interpretation that 

Julian believes that ‘If the set intersection of D and E (A) is equal to D, then D is a subset 

of E.’ Again, the purpose of determining the truth value of the print statement ‘print(A == 

D)’ is to conclude whether or not D is a subset of E. If the output of this print statement 

was False, then this means the two sets are not equal and thus implies that there exists an 

element in D that is not divisible by 3. Therefore, every element in D would not be an 

element in E which would mean that D is not a subset of E. Lastly, stating the possibilities 

of inference is somewhat difficult, as this was the last task that I worked on with the 

students. However, Julian and Alonso did not skip a beat when they applied their 

Determine Set Equality scheme to determine that D is a subset of F. For this reason, they 

showed that their conceptual understanding was strong in determining whether a set was a 

subset of another set. As seen in their Monitor Change in the Cardinality scheme, the 

instrument that Julian and Alonso constructed to determine whether one set was a subset of 

another set utilized a For Loop and an If Statement as artifacts. I would argue that the 

typical approach (for someone not experienced or exposed to proof writing) to solving this 

task would be to check every element and verify that each element belongs to the other set 

in question. Julian and Alonso did not take this approach. Instead, their instrument was 

constructed utilizing the capability and efficiency of set relations in Python. A summary of 

Julian’s instrument is below in Table 4.5. 
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Table 4.5: Julian’s Determine Set Equality Scheme 

Instrumentation 

Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Determine one 

set is a subset of 

another by 

utilizing set 

equality 

Write a For 

Loop to find 

the 

intersection of 

the two sets in 

question 

D is a subset of 

E if every 

element in D is 

an element in 

E 

Using a For Loop, one can 

construct a new set A to be the 

intersection of two sets, D and E. 

A True value of the equality ‘A 

== D’ means that D is equal to A 

and thus a subset of E as every 

element in D is an element in E.  

 

Group 2. Two members of Group 2, Eugene and Saul, also showed evidence of a 

Determine Set Equality scheme, and I highlight their code below to showcase a different 

example of how this scheme can be represented. It is important to note that the labeling of 

the sets used in Group 2 were different from the sets used in Group 4. The code that Group 

2 wrote to determine the sets divisible by 21, 3 and 7 is below. 

A = set() 

B = set() 

C = set() 

for x in range(1, 1001): 

   if (x % 21 == 0): 

       A.add(x) 

for x in range(1, 1001): 

   if (x % 3 == 0): 

       B.add(x) 

for x in range(1, 1001): 

   if (x % 7 == 0): 

       C.add(x) 
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As one can see, Group 2 used the labels A, B and C instead of D, E and F. With that, 

Eugene described his initial thought process in determining whether A was a subset of B 

and C: 

I initially thought of using a proposition which would be like the 'and' 

proposition since both would be True. But I guess I’m blanking on how to 

write that using the If Loop. Obviously, you start off with ‘for x in A’ to get 

the values inside the set of A. And then we have to check if those values, ‘if 

x is in both B and C.’ Therefore, if they are, we already know that it's a 

subset from just that- if all the values are True. So that's where I’m stumped, 

on writing the If. 

 

If we take a look at Figure 4.11, we see that the question asks if the set of integers divisible 

by 21 is a subset of the set of integers divisible by “3 and 7.” Given Eugene’s immediate 

use of the 'and' operator inside of an If Statement, I am interpreting this as Eugene 

interpreting the question already asking about the intersection of the set of integers 

divisible by 3 and the set of integers divisible by 7. This was not the intended interpretation 

of this question, but Eugene handles this well with his use of the 'and' operator in the If 

Statement. He says that this computational process would immediately tell you whether A 

is a subset of B 'and' C (the intersection) given that the If Statement is True for every 

element in A. Even though Eugene essentially said exactly what should go in the If 

Statement, he says that he is stumped. At this point Saul jumps in and says that the If 

Statement should read ‘if x in B and x in C then add to D.’ Eugene followed up Saul’s 

statement and said that “we already know that any value we pick is already inside the set A 

and we're trying to make sure it’s a subset of both B and C. So, yeah I think that would 

work.” When asked about how one would then check, or make the final determination that 

A is a subset of B 'and' C, Eugene said that we could “get the length of the new set and the 
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original set A and compare those two to see if it’s true.” By “true” I am interpreting this to 

mean the same as in previous tasks we used the double equals signs to compare two 

expressions and determine the truth value. As I had done previously, I helped the students 

by writing the code as they were talking, without going ahead of them and made sure only 

to write what they had said out loud. This resulted in the following code: 

D = set() 

for x in A: 

   if ((x in B) and (x in C)): 

       D.add(x) 

print(len(D)) 

print(len(A)) 

 

To test Eugene’s instrument that he constructed to determine whether A is a subset of B 

‘and’ C, I asked him to consider a hypothetical scenario in which an element in A is not an 

element of B or C, and consider what that might mean about the length of the sets: 

Eugene: Okay you made me think of something else. Using the 'and' 

proposition both have to be True, right? Both the left prop- the left thing and 

the right thing have to be True for it to run.  

Interviewer: [nods] 

Eugene: Okay, I was confused with the 'or,' but it still stands. Yeah, one [of 

the lengths] would be less than the other, because they wouldn't contain an 

element that was in the original, which would mean that one of those 

elements is not in B or C, which would make it not a subset. 

Interviewer: Okay, and I’m sorry I got cut up with something you said 

about the 'or,' but your answer to the question is that [the length of D] would 

be less than [the length of A]? 

Eugene: Yeah the new [set] should be less than the old, so yeah you’re 

right. D would be less than A. 

Interviewer: If- if there was what? 

Eugene: If one of them was not included. 

 

Running this code produced the following output. 

47 
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47 

Thus, the length, or cardinality of D is equal to the cardinality of A. This means that every 

element in A exists in the intersection of B and C. Therefore, the conclusion is that A is a 

subset of B 'and' C.  

 Eugene’s scheme is composed of the goal to determine whether A is a subset of B 

and C. The primary rule-of-action to ‘Construct a For Loop with the condition ‘x in A.’’ 

The main theorem-in-action is that ‘If the cardinality of the set containing elements in A 

and in the intersection of B and C is equal to the cardinality of A, then A is a subset of the 

set intersection of B and C.’ This is supported by his determination that this is true by 

verifying the lengths of the two sets. Confirming that the two sets have the same 

cardinality was proof that A is a subset of the intersection of B and C, which was the goal 

for Eugene and Group 2. As the case with Julian’s scheme, determining the possibilities of 

inference is difficult given that this was the last task with the students, and they did not 

have an opportunity to adjust their rules-of-action or operational invariants. A summary of 

Eugene’s scheme is shown in Table 4.6. 
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Table 4.6: Eugene’s Determine Set Equality Scheme 

Instrumentatio

n Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Determine one 

set is a subset 

of another by 

utilizing set 

equality 

Write a For Loop 

to pass the 

elements of A 

through an If 

Statement filtering 

for elements that 

belong to B and C 

A is a subset of 

B ‘and’ C if 

every element 

in A is an 

element in B 

'and' C 

Using a For Loop, one can 

construct a new set by adding 

all of the elements in A that 

satisfy the conditional 

statement ‘x in B 'and' x in C’ 

to a new set, D. If the 

cardinality of D is equal to the 

cardinality of A, then A is a 

subset of the intersection B 

'and' C 

 

While Julian’s scheme and Eugene’s scheme are different in the computational 

processes, I argue that the scheme name of ‘Determine Set Equality’ is fitting for both. The 

name encapsulates a broader conception dealing with the properties and relations of sets. 

For Julian, this entailed determining the set equality between D with the intersection of D 

and E. For Eugene, this entailed determining that the cardinality of the two sets, A and the 

intersection of B and C were equal. This contrasts with the next and last scheme presented 

in this chapter which focuses more on the individual elements that belong to the set of 

integers divisible by 21.  

Verify Each Element Scheme 

 In the previous section we saw how Leo’s partners solved this task by determining 

that the length, or cardinality of A is the same as a new set containing values that belong to 

A and are also elements of the intersection of the two sets B and C. In this section, I briefly 
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highlight Leo’s alternative method because his interpretation of the problem led to another 

unique solution. The examination of Leo’s scheme is not as in-depth as the other schemes, 

but I thought it interesting as it coincides with his earlier Filter Every Element scheme. 

Immediately after Eugene presented his thoughts on utilizing the cardinality, Leo offered 

the following idea of finding the union of B and C, which is written mathematically as B ∪ 

C: 

We can add the integers of three and seven together to make a new set and 

then compare the integers of 21 to the new set to see if all of the integers in 

the set divisible by 21 - if those are in the new [set] of 3 and 7, then 21 has 

to be a subset of that one. 

 

My interpretation of Leo’s statement is that he wanted to combine all of the elements in B 

and C into a new set. This would effectively find the union of the two sets. Leo then 

wanted to compare A to the new set containing all of the elements from 1 to 1000 that are 

either divisible by 3 or divisible by 7. Leo offered his solution to this task immediately 

after Eugene presented his solution: 

So I was thinking of- it's a little bit different than what [Eugene] has here. 

I’m not sure if the way I’m thinking of it is correct too, but I was originally 

thinking after where we said ‘create a new set D,’ like how [Eugene] did. 

Then you put D add B and D add C and then you just do the If Statement 

too. And if A in D then you’d put… I guess a proposition? The ending was 

kind of confusing. But I was just thinking kind of like that. You add both of 

them into a new set and then Just compare the A with the new set. If A is in 

D, then you do a proposition or I’m not sure exactly how you would do that.  

 

As Leo was speaking, I was writing code that he could see and he verified that the code I 

wrote is how he was imagining it. The end is where Leo got stuck, he wasn’t sure what 

could go after the If Statement which was checking to see that each element in A is an 
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element in D. I offered a suggestion because we had not seen something quite like this and 

we were running out of time during our last session. The code is below. 

D = set() 

for x in B: 

   D.add(x) 

for x in C: 

   D.add(x) 

 

for x in A: 

   if (x in D): 

       print("A is a subset") 

   else: 

       print("A is not a subset") 

 

For the If Statement, I wrote an If Else statement that would produce the output ‘A is a 

subset’ if the element selected from A is in the set D and would produce the output ‘A is 

not a subset’ if the element selected from A is not an element of D. The output produced 

47 lines of ‘A is a subset.’ Leo’s Verify Each Element scheme is summarized in Table 4.7. 
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Table 4.7: Leo’s Verify Each Element Scheme 

Instrumentation 

Scheme 

Techniques Conceptual 

Elements 

Technical Elements 

Determine one 

set is a subset of 

another by 

verifying each 

element 

Write a For 

Loop to pass the 

elements of A 

through an If 

Statement as a 

check to 

determine if 

every element in 

A is an element 

of D 

A is a subset 

of B ∪ C if 

every element 

in A is an 

element in B ∪ 

C 

Using two For Loops, one 

can construct a new set by 

adding all of the elements in 

B and C to the new set, D. 

One then uses another For 

Loop and If Statement to 

check all of the elements in A 

and determine whether they 

also exist in B ∪ C 

 

As for Leo’s scheme, the goal in this case was to determine whether A is a subset of the 

union of the sets B and C. The rules-of-action were to ‘Add all the elements in B and C to a 

new set, D’ and ‘Use an If Statement to check every element in A to see if it exists in D.’ 

The primary theorem-in-action is that ‘If every element in A satisfies the If Statement, then 

A exists in D and thus is a subset of D.’ This theorem in action was supported by my own 

writing of ‘A is a subset’ and then seeing the 47 lines of code with this output. While Leo 

did not solve exactly the same task as his partners, he did determine that A was a subset of 

the intended set in question, which was the union between B and C. The whole goal for 

this task was to work with the mathematical idea of a subset, and Leo achieved this goal. 

As with the last two cases, the possibilities of inference are nearly impossible to determine.  
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Chapter 5: Hypothetical and Actual Learning Trajectories 

In this chapter I revisit the goals of the HLT as outlined in Chapter 2 and address 

the degree to which these goals were met by each group in this study. The research 

question that I answer in this chapter is the following: Over the course of an actual 

learning trajectory, what characterizes students’ increasingly sophisticated ways of 

reasoning about set theory and logic? Given the nature of a conjecture-based teaching 

experiment with multiple groups, the tasks used in the instructional sequence were 

modified from one group to the next in an effort to narrow in on the most productive tasks 

and ideas for the students. Thus, the actual learning trajectories were slightly different for 

each group in my study. As a result, the extent to which the goals of the HLT were met 

also varies by group. As a reminder, the goals of the HLT are the following: 

1.  Students develop operational definitions of the logical operators ‘and’ and 

‘or’ and are able to flexibly reason about these logical operators to solve 

problem tasks. 

2. Students are able to utilize Python and their conceptions of union and 

intersection to determine that one set is a subset of another set.  

Note that in this chapter some details are lost in the comparison between the actual 

learning trajectories of each group in the service of a more detailed look into the 

instructional sequence. That is, this chapter highlights and how the instructional sequence 

supported the developmental progression, or movement between situational, referential, 

and general mathematical activities across all the groups. In this chapter I do not highlight 
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the step-by-step instructional task sequence for each group, which would result in the 

presentation of the same/similar tasks four times (one for each group).  

 

Figure 5.1: Each Group’s Progress through TE 

 

This chapter is divided into three main sections, with the first two focusing on the 

two respective HLT goals. Within the first two sections, I highlight the instructional tasks 

relevant to the HLT goal, with examples of student work presented to represent the 

progression of the students’ work. I present multiple student solutions in cases where 

students took multiple unique approaches to solve a task. However, some tasks were 

solved using the same or similar approaches. In these cases, I do not present all of the 

students’ work. Additionally, some of the figures presented in this chapter are repeated 

figures from Chapter 3. Presenting the tasks here in this chapter is not only easier for the 

reader, but also highlights the evolution of the tasks used for the students across all four 

groups. As previously mentioned, the tasks presented in Chapter 3 are to be used as a 

reference or foundation for future work. The tasks presented in this chapter are what was 
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actually presented to the students. Additionally, the students’ work is analyzed using the 

four levels of mathematical activity to track the developmental progression of the students 

in each group. However, it is important to note that the instructional tasks did not entirely 

support a clear progression from one level of mathematical activity to the next for both 

goals. With respect to the first goal, all of the students in the study showed evidence of 

constructing a model related to logical operators, and using that model to solve more 

sophisticated mathematical tasks. However, the instructional task sequence designed to 

support the second goal of the HLT did not result in student work that was evident of a 

model-of/model-for transition. This is largely due to an oversight in the design of the tasks 

related to set intersection and union, and how those tasks related to the number theory task 

meant to engage the students in reasoning about subsets. Specifically, the oversight was in 

not providing the students a situational context in which they were given the opportunity to 

develop a model-of reasoning about sets as subsets (compared to sets as elements) and set 

equivalence. The students’ mathematical activity for those tasks are still presented to 

document their mathematical progression, but the focus on the model-of/model-for 

transition is not a focus in addressing the second goal of the HLT.  

For the tasks that were modified from one group to the next, I highlight the 

differences between tasks and the reasons why I changed the task. For the tasks that I did 

not modify, I present examples of student work and document the extent to which this 

work was representative of all the groups, or highlight the differences between students’ 

work from one group to the next. In the third section, I present the results from the 

mathematical content surveys that were administered before and after the study. The 
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surveys were administered as a way to determine what the students learned over the course 

of the teaching experiment study, and the survey questions consist of both multiple-choice 

questions as well as open-ended response questions. The survey results are presented by 

groups to document the differences in learning outcomes between the four groups.  

Logical Operators 

The purpose of this section is to highlight the developmental progress of the 

students’ mathematical activity with respect to the first goal regarding the logical operators 

‘and’ and ‘or.’ Specifically, I highlight the model-of/model-for transition that resulted in 

what I am characterizing as the ‘proposition/operator/proposition’ model. Moreover, the 

ideas that the students are reinventing with this model are the set operations of set union 

and set intersection. 

Situational Activity 

The first session with the students was mostly designed to help them become 

familiar with the Python environment and learn the basic principles of set theory and logic 

such as set membership, set cardinality, logical propositions as well as first exposure to the 

logical operators ‘and’ and ‘or.’ All of the groups were exposed to working with Python 

and exploring various outputs from the very beginning. For example, the first task 

presented to Groups 1, 2, and 3 is shown in Figure 5.2. 
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In mathematics, a set is a collection of objects defined explicitly by 

the objects in the set. 

 

In Python, we use curly braces to indicate that we are working with 

sets. 

 

For example, take a look at the following code in Python: 

 

setA = {"dog", bird, "lion", "cat", "fox"} 

setB = frozenset(["dog", "lion", 4, 4.0, "red", 4.37]) 

 

setA.add(9) 

len(setA) 

 

What do you notice? What do you wonder? What do you predict 

will happen when you run this code? 

What does the ‘len()’ function do? 

 

Figure 5.2: First Task for Groups 1, 2, and 3 

 

With this task the students started to become familiar with the syntax of Python in working 

with sets as well as working with the idea of cardinality, or the size of the sets. Given that 

this task is not directly associated with the first HLT learning goal, I will skip providing 

excerpts on what the students had to say about this task. The purpose of providing this task 

is to document the beginning of the HLT as well as to use this task as a reference for the 

following section. The only difference between the first task presented to Groups 1, 2, and 

3 and the first task presented to Group 4 is that I removed ‘4.0’ from setB and replaced it 

with another ‘lion.’ Python interprets 4 and 4.0 as the same element within a set, and I 

wanted to stress the idea that only unique elements contribute to the cardinality of a set. By 

the time I got to Group 4, I realized that Groups 1, 2, and 3 spent more time discussing 

why 4 and 4.0 are considered as the same element in Python (because one is an integer and 
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the other is a float) as opposed to the general idea of repeated elements. By replacing ‘4.0’ 

with ‘lion,’ I streamlined the discussion to the important conceptual topic of cardinality. 

The second important idea with this task is to understand the functionality of the 

‘frozenset(),’ which is an immutable version of a regular set (typically denoted using the 

curly braces, {}). Immutability is the idea that one cannot change the basic properties of 

the object using a function in Python, such as removing or adding an element. In order to 

remove or add an element in setB, one must change the line that assigns the frozenset to 

the variable ‘setB.’ 

The first relevant activity introduced to the students on the idea of logical 

propositions and operators is shown in Figure 5.3. 
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Now consider the following: 

setA = {"dog", "bird", "lion", "cat", "fox"} 

setB = {"dog", "lion", "lion", 4, "red", 4.37} 

p = "dog" in setA 

q = (len(setB) == 5) 

r = "San Francisco" in setB 

print(p) 

print(q) 

print(r) 

print() 

print(not p) 

print() 

print(p or r) 

print(p and r) 

 

What do you predict the output will be? What is the ‘not’ command 

doing? 

 

How would you describe what the ‘and’ and ‘or’ operators are 

doing?  

 

Figure 5.3: Introducing Logical Propositions and Operators 

 

All of the groups in my study were presented with this task during the first or second 

session (Group 2 saw this problem in Session 2). In terms of the levels of mathematical 

activity, this task serves as the situational activity for the students. Often with a situational 

activity, the students are provided with an opportunity to start constructing their own 

models of certain mathematical ideas. In this case, the students are constructing models on 

how the ‘and’ and ‘or’ operators function when utilized in a propositional statement. 

Below are some excerpts of the students’ reasoning on their predictions as well as their 

initial interpretations of what the ‘and’ and ‘or’ operators are doing.  
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 In Group 1, Haven and Palmer discussed their initial thoughts on the output of the 

print statement ‘print(p),’ which produces a value of True because the element ‘dog’ is in 

setA: 

Haven: I want to guess that it's going to print dog. Or maybe say True? I 

can’t tell the difference between the propositions and then when you just do 

it, you know? 

Interviewer: Yeah, yeah. Anybody want to tag in on that one? 

Palmer: I think it'll say true. 

Interviewer: Okay, and why do you think that? 

Palmer: Because it's printing p, and p is a proposition. Kind of like 

declaring that this element is in the set. 

 

Haven’s initial thought is that the print statement would print ‘dog,’ but as Palmer 

described, the proposition is declaring that ‘dog’ is in setA and the print statement is 

determining the validity of that declaration, which is True in this case. As a result of our 

discussion, Haven determined that when we print a proposition, we determine the validity 

of the proposition which means that the output will be either True or False. This reasoning 

was picked up by the other groups in the study as well. The next step in this task was to 

determine the output of the propositional statements ‘p or r’ and ‘p and r’ as well as 

formulate an idea on how the logical operators ‘and’ and ‘or’ operate. I present an 

exchange that occurred in Group 1 first, followed by excerpts from Groups 3 and 4: 

Palmer: I’m thinking for [p ‘and’ r] it'll print the results of both 

propositions p and r. 

Interviewer: And we saw that p was True and r was False. Am I 

understanding correctly that maybe the output will be True, False? 

Palmer: Yes. That's what I think. 

Interviewer: And Judith? 

Judith: I have an idea. For the ‘and’ one, I think it'll say False because True 

and False it’s ‘and’ so, True, is not equal to False so it’s not both it can’t be 

both True and False, but the one for ‘or,’ it would be True or False you 

know what I’m saying? 
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Interviewer: So what do you think the output, when you have the ‘or’ 

would be? 

Judith: I’m not sure actually. I don’t know. 

Interviewer: Okay, Haven? 

Haven: Ooh yeah, this is a tough one, because I was at first, I was thinking 

kind of like how Palmer was where if it's ‘p ‘and’ r,’ they'll show both 

outputs for p and r, but yeah the ‘or’ is throwing me off. 

 

There are two instructor moves that I find important to highlight here that helped provide 

insight into the students’ reasoning. First, I did not evaluate the students’ answers. 

Evaluating Palmer’s answer would likely have led to a different response by Haven, who 

revealed that she also thought the output would be the two values, True and False. Second, 

I asked each student to voice their thoughts on the problem task, and for two of the 

students I probed with follow-up questions to get a better understanding of their reasoning. 

Note, as the fourth component of the HLT, I will continue to highlight additional different 

instructor moves that helped further the instructional agenda throughout the rest of this 

chapter. As for Group 1’s reasoning, Palmer predicted that the output would produce two 

values, True and False, because those were the individual outputs when we evaluated p and 

r on their own, respectively. Judith had a different idea and said that the output would be 

False because True and False (the values of the propositions on their own) are not equal, or 

not the same. I couldn’t determine what exactly Judith meant with her last comment 

regarding the ‘or’ operator, but given her tone, my interpretation is that she reasoned that 

the print statement will produce either True or False, as if at random.  

Group 2 took a different approach in that they wanted to see more examples of the 

print statements using different propositions to get a better idea of what the ‘and’ and ‘or’ 

operators were doing. To assist them, I asked Group 2 to come up with another proposition 
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that would produce a False output, and Saul came up with ‘m = “LA” in setA.’ With this 

new proposition, I wrote out four lines for Group 2 as presented below: 

print(p and q) 

print(p and r) 

print(r and q) 

print(r and m) 

 

All of the potential cases are covered here (True ‘and’ True, True ‘and’ False, False ‘and’ 

True, False ‘and’ False). This was another intentional instructor move in that I provided a 

scenario with complete information for the students to easily investigate the outputs and 

compare print statements. After running this code, Saul said “the ‘and’ is checking that 

both sides are True, and if not, then it is False.” Leo asked about the situation in which we 

would have ‘or’ and I wrote the same bit of code, replacing the ‘and’ operator with the ‘or’ 

operator: 

print(p or q) 

print(p or r) 

print(r or q) 

print(r or m) 

 

Eugene described the propositional statements with the ‘or’ operator as “wanting [the 

proposition] to be True in order to get True.” All three of the students in Group 2 quickly 

came to the same conclusion that the ‘and’ operator requires two True premises in order 

for the output to be True and the ‘or’ operator only requires one True premise. Seeing all of 

the different possible combinations of the propositional statements significantly helped 

Group 2 reason about the logical operators ‘and’ and ‘or’ much more quickly than Group 

1. In fact, Group 2’s success and confidence in their reasoning about the logical operators 
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‘and’ and ‘or’ motivated me to change the problem task for Groups 3 and 4 by presenting 

all of the possible combinations to the students and asking them to reflect on the outputs, 

as compared to predicting the output for just the two statements ‘p or r’ and ‘p and r,’ 

which I asked for with Group 1. Being able to determine the output for the simple 

propositional statements of ‘p or r’ and ‘p and r’ was the first step in the students 

constructing their ‘proposition/operator/proposition’ model. 

Once the groups showed evidence of understanding how the ‘and’ and ‘or’ 

operators functioned, I asked the students to create their own print statements that 

contained multiple logical operators and multiple propositions. For example, students in 

Groups 3 and 4 created and evaluated the following two print statements, respectively: (a) 

print(p and q and r), and (b) print(((r and m) or p) and (q and r)). Figure 5.4 showcases the 

work that Juliana in Group 3 came up with. 

 
Figure 5.4: Juliana’s Evaluation of a Compound Proposition  

 

Juliana’s description of her thought process highlights how she reduced the compound 

proposition from left to right: 

So for ‘p and q,’ p is True and for q it is also True. So, for ‘True and True’ it would 

be- So I have ‘True and True and False’ and for the first statement ‘True and True’ 
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it would give me a True statement and I have the False statement left so it would be 

‘True and False’ and since when we have the ‘True and False’ statement it will give 

us a False statement since it favors that. 

The code shown in Figure 5.4 was written by me after Juliana’s description to verify that I 

understood Juliana’s reasoning. Juliana and her partner Delia often used the language of a 

logical operator “favoring” a certain Boolean value. In the case of the ‘and’ operator, 

Juliana and Delia said that the ‘and’ operator favors False since only one False value will 

result in a False output. For the ‘or’ operator, they said that it favors True since only one 

True value is required to produce a True output. Alonso typed out the step-by-step method 

for the problem analyzed in Group 4, shown in Figure 5.5, after they had discussed why 

the final output would be False.  

 
Figure 5.5: Alonso’s Evaluation of a Compound Proposition 

 

For Group 4, ‘m’ was assigned to be the proposition ‘“LA” in setB’ which is False. I asked 

Julian and Alonso to reflect on the compound proposition shown in Figure 5.5 and they 

described an approach similar to that of Juliana from the last example, but their focus was 

on which operator would be the last to be evaluated: 

Interviewer: So, since Alonso wrote this one, Julian, can I get your 

thoughts on the output? 
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Julian: Yeah so I looked at it as I kind of want to go the simplest route first. 

So, I’d say the final [operator] would be ‘and’ because ‘r and m’ and then 

‘p,’ those are together. And ‘q and r’ is [together]. So I want to look- 

because it’s an ‘and’ statement, if those two don’t match up, then it would 

be False. And ‘q and r,’ I looked at it and because it’s an ‘and’ statement, r 

is False so that statement will be False and because that statement is False, 

the whole entire thing will be False. 

Interviewer: Okay, and Alonso, can you rephrase in your own words what 

Julian was saying? He was saying something with the ‘and’ and then he 

referred to this relationship right there [mouse pointing to ‘q and r’]. 

Alonso: Yeah so the last operator that happens is the ‘and’ in the middle 

between the two parentheses. And since ‘q and r’ is False, it doesn't matter 

what’s on the other side because of the operator ‘and’ so it’s all False. 

 

The one instructor move to highlight from this exchange was asking Alonso to rephrase in 

his own words what Julian said. Julian was thinking out loud when he was describing why 

he thought the answer would be False, so he was jumping to several ideas in his mind at 

the same time. Rather than asking Julian to explain his reasoning again and risk making 

Julian feel uncomfortable that I was putting him on the spot, I asked Alonso to rephrase in 

his own words Julian’s reasoning, specifically calling out the ‘and’ operator and the 

propositional statement ‘q and r.’ After Alonso’s rephrasing, it is clear that both Julian and 

Alonso agreed that the focus should be on the second ‘and’ operator in the compound 

proposition and determined that the simplest approach would be to show that the 

propositional statement ‘q and r’ is False. This then implies that the entire compound 

proposition would then be False as the ‘and’ operator requires two True premises. In both 

cases, the students in Groups 3 and 4 showed a multi-step process of simplification down 

to a single statement of the form ‘proposition/operator/ proposition.’ Up to this point, the 

‘proposition/operator/proposition’ model has only been used as a model-of solving for one 

output, which has been the Boolean value of a given propositional statement. In the general 
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activity, this model will become an important component for reasoning about a more 

complicated mathematical task. The students in all of the groups eventually came to the 

same understanding and method of reducing down to simpler propositional statements and 

I consider the students’ work on compound propositional statements to still be situational 

activity, as they were working with the same defined propositions, ‘p,’ ‘q,’ and ‘r’ with the 

two sets, ‘setA,’ and ‘setB.’ 

Before moving on to the referential activity, I want to spend more time discussing 

the actual learning trajectory of Group 1, as this task was a point of divergence for Group 1 

compared to the other three groups. We spent all our time in the following session (Session 

2) to discuss how the logical operators were functioning, as it was still unclear for the 

students why the propositional statements were producing various outputs. Specifically, 

Palmer said “If I remember correctly, I think the ‘and’ is making sure both of [the 

propositions] have the same result, whereas the ‘or,’ well, it just kind of chooses like one 

of them randomly.” Palmer's reasoning about the ‘and’ operator is in line with how Judith 

was initially reasoning in that as long as the two propositional values are the same, then the 

‘and’ operator would produce a True output. This means that for Palmer, ‘False and False’ 

would produce a True output. Palmer’s reasoning is also in line with my interpretation of 

how Judith initially described the ‘or’ operator as well in that Python was producing a True 

or False output at random when evaluating a propositional statement with the ‘or’ operator. 

At the time, during Session 2, I thought that we could resolve this reasoning by looking at 

compound propositional statements. After analyzing multiple compound propositions, it 

seemed that Group 1 had a good understanding of the logical operators as they were able to 
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solve the following compound propositional statements correctly: 1) print(p and q or r), 2) 

print((r and q) or p), and 3) print(r and (q or p)). Unfortunately, it wasn’t until the end of 

Session 2 that we cleared up that the ‘and’ operator requires two True values, not just two 

of the same values. This clarification occurred as we moved onto the next task which was 

designed to support students’ referential mathematical activity. 

Referential Activity 

With the next task for all the groups, the goal was to support students in their 

reasoning about any proposition, not just defined ones like ‘p,’ ‘q,’ and ‘r’ in the previous 

example. The task presented to Group 1 is shown in Figure 5.6. 

Provide an example of a proposition with an unknown truth value.  

 

Let’s assume that s and t are two propositions with unknown truth 

values. 

 

Interpret the following propositional statements: 

(s and t)    and     (s or t)   

 

Figure 5.6: Group 1 General Proposition Task  

 

Even after we discussed some potential examples of what a proposition with an unknown 

truth value could be, Palmer said that, “For me when I see that I wonder what s and t mean, 

or what they are? They're just kind of random variables.” Judith and Haven also seemed to 

have some reservations about what exactly a general proposition is, so I decided to try and 

provide a different example using two sides of a coin that could relate back to the 

propositions: 

Interviewer: How about we do something else, like a coin flip. If I say I 

have two coins, s and t. And I flip them, it's either heads or tails right? 
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Associating to True or False. So if I flip s and - let's do this. Let’s set heads 

equal to True and Tails is equal to False…What are the different possible 

combinations and different outcomes for these two propositions s and t? 

Now we’re thinking about it in terms of coins, but we can still kind of relate 

it to the same idea.  

Judith: I’m not sure about the possible combinations but does it have 

something to do with probability? 

Interviewer: Can you say a little bit more about that? 

Judith: If there were one coin, the possibility of getting heads, being True, 

would be 50%? If it was ‘print s’ it’d be like 50, but when you introduce a 

second variable t, the probability goes down to I don't know 25% or 

something? 

Interviewer: Okay. 

Judith: I don't remember statistics, but yeah something like that. 

 

I realized that I could leverage Judith’s response by relating the only scenario (out of four) 

of ‘True and True’ to the 25% that she mentioned for the propositional statement ‘s and t,’ 

but I needed to first make sure that everyone in Group 1 was on the same page about the 

possible outcomes of this propositional statement. Palmer reveals that he still was unclear 

on the functionality of the ‘and’ operator: 

Interviewer: What situations would you get True and in what situations, 

would you get false? 

Palmer: True, would be if both coin flips are the same and then False would 

be if one is heads and one is tails. 

Interviewer: Okay. Let me go back really quickly. Because I think I want a 

little bit of clarification here. Let’s do ‘m’ is equal to the proposition ‘whale 

in setA.’ Okay, so we know this proposition is False, because ‘whale’ is not 

in setA right? Now, one thing that you said was that it would produce a True 

value for the same, but I want to highlight that if we have ‘r and m’ that you 

actually get a False output. So, even though r and m are both False, you still 

get a False output.  

Palmer: Oh, okay. 

Interviewer: Haven or Judith, can you explain why you’re getting False 

here? 

Haven: Yeah I kind of noticed it right after he said it too. Because even if 

they’re both the same, if they both were tails, they're both going to be False 

and the whole thing would be False. Even though they're the same, that 

wouldn't make it True. 
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Interviewer: So let’s think about the situation where we would get a True 

value for these two coins. 

Palmer: Oh, so both land heads. 

Interviewer: Okay. And so Judith, going back to what you said about the 

25%, I think you're right there, in terms of probability. Can you kind of 

relate the 25% back to this situation here in which you would get a True 

output? 

Judith: Yeah because to get both heads is one of the four options of getting 

heads and tails, tails and heads, tails and tails, and heads and heads, with s 

and t respectively.  

 

I typed out the possible combinations of coin flips that Judith described and asked Palmer 

and Haven to reflect on the outcomes for the four statements: 

Palmer: Yeah okay so now I see that they would all- or the first three would 

all be False and only the last one would be heads, or only the last one would 

be True. 

Interviewer: Haven, can you rephrase in your own words, what Palmer was 

saying there? 

Haven: Yeah I was thinking the same thing that only heads and heads would 

be True because heads is True and then even though heads and tails has that 

True value, it’s still False because tails is False. And all of them have tails, 

the rest of them do, so they would be False. 

 

This discussion on relating the propositions to coin flips occurred at the end of the second 

session for Group 1. Given that Group 1 had some difficulty with the task as it was 

presented, I decided to change the task slightly for the other groups in my study. I modified 

the task by assuming that s is a proposition with a known Boolean value of False. The 

modified task is presented in Figure 5.7. 
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Provide an example of a proposition with an unknown truth value.  

 

Let’s assume that s is a proposition with the Boolean value of 

False, and t is a proposition with an unknown Boolean value. 

 

Interpret the following propositional statements: 

(s and t)    and     (s or t)   

 

Figure 5.7: General Proposition Task for Groups 2, 3, 4 

 

My reason for assigning a False Boolean value to s was to first ask about the propositional 

statement ‘s and t’ with the hope that the students would realize that it does not matter 

what the value of t is. From there, we could reason about the other propositional statement. 

There were some minor clarifications that needed to be made across Groups 2, 3, and 4 

with what was meant by “unknown proposition,” but for the most part, Delia’s 

contributions from Group 3 serve as good representations of the mathematical activity 

across the three groups that solved this task. I present Delia’s contributions below followed 

by Julian and Alonso’s contributions from Group 4 when asked about ‘s and t’ and ‘s or t’: 

Interviewer: What are the possible outputs for ‘s and t’? 

Delia: Yeah so I guess it would just both be False so it would just come out 

as False. 

Interviewer: Both be False. So do you mean- is that what you mean when 

you say it’ll both be False? [typed out ‘False ‘and’ True,’ and ‘False ‘and’ 

False’]  

Delia: Yeah. 

Interviewer: What would we have for ‘s or t’? 

… 

Delia: Well we would just be taking both options that could be presented 

when you run a proposition statement that has an unknown value. You have 

to take all of the options that could possibly happen. So, s is a definite, so 

we always know it will be False. And while it was true- [t] can be True or 

False, so you have to take both options. You have to take ‘False or True’ 

and you have to take ‘False or False.’  
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The ellipses between Delia’s contributions represents a brief discussion with Juliana on her 

reasoning of the propositional statement ‘s or t.’ Juliana’s reasoning was not clear in terms 

of what the two cases would be, which is why I did not include her contribution in the 

above excerpt. As mentioned, students in Groups 2 and 4 provided similar arguments in 

their reasoning about the propositional statements, as shown in Julian’s reasoning about ‘s 

and t’: 

So ‘s and t.’ Since one is False then that means the statement will probably 

be False already, or- yeah because s has a value of being False and t is 

unknown, but because it’s an ‘and’ statement it would be False because you 

would need both of them to be True to be True. 

 

Alonso agreed with this reasoning and followed Julian with his own reasoning about the 

statement ‘s or t,’ “That one can be either True or False because s is False, but if t is True 

then the entire thing will be True, but if t is False then the entire thing will be False.” 

Similar to Julian’s reasoning, Alonso determined that the value of the statement ‘s or t’ 

depends on the value of t because we already knew that s was False.  

At this point in the learning trajectory, the students have elaborated on their model-

of understanding mathematical logic (or constructed a sub-model). That is, they have 

determined that the value of a propositional statement is dependent on the values of the 

propositions at the time of evaluation, which can change as the values of the propositions 

can shift between True and False. This model is a broader, more holistic perspective on 

evaluating propositional statements compared to the previous situational activity in which 

the propositional statements were fixed given the defined propositions in the form 

‘proposition/operator/proposition.’ In the next activity, the students use their developed 

model to solve a different mathematical task in the context of set theory. Solving a task in 



 169 

a different context, or a context-free environment represents the next step in the evolution 

of mathematical activity, general activity. 

General Activity 

 The purpose of this section is to present two tasks that are relevant to the students’ 

mathematical activity involving the logical operators ‘and’ and ‘or.’ Both tasks involve the 

use of a For Loop, which was introduced to the students before the task presented in Figure 

5.8. More information on the tasks used to introduce the For Loop to students can be found 

in Chapter 3.  

Each group in the study was presented with the following task, but I will highlight 

the work of Groups 1 and 4 as each group had different initial experiences with this task, 

with Group1 having slightly more difficulty than Group 4. Groups 2 and 3 had similar 

initial experiences as 1 and 4, respectively. 

What do you predict will be the output of the following code? 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

D = set() 

for x in A: 

   if ((x == "e") or (x == "o")): 

       D.add(x) 

print() 

print(D) 

 

Figure 5.8: Task Utilizing the Logical Operator ‘or’ in a For Loop 

 

Following the instructional theory of PRIMM, I first asked students to predict what they 

thought the output would be, or to provide any thoughts that they had on certain lines in 
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the code. Palmer in Group 1 said the following about the if statement in the fourth line of 

the code: 

Well the code is probably going to recognize those as important results or 

something. Those are the elements where it’s going to notice that- we’re 

highlighting those [elements] and we’re going to want it to do something 

when it reaches an ‘e’ or an ‘o.’ 

 

Judith and Haven did not have anything to add, so I ran the code and asked the students to 

reflect on the output of ‘{e, o}.’ Again, Palmer was the first to respond, but I used Palmer’s 

ideas to inquire into Judith’s reasoning: 

Palmer: When I initially saw this line of code, I was looking at every single 

individual line trying to figure out what everything does. Then I saw 

between three and five [the if statement], it's kind of like giving it steps. So, 

the first one, we already know it’s going to like list out all of the [elements] 

in the set and then the second one is kind of like highlighting specifically the 

‘e’ and ‘o’ and then when you told me to like to analyze it, you kind of just 

wanted me to look at that one specifically, but I also noticed that [line] five 

is saying ‘D add x.’ I was thinking if it sees an ‘e’ or an ‘o’ in set A, it’s 

going to add the ‘e’ and the ‘o’ to the empty set. That’s kind of what I was 

thinking. 

Interviewer: Great. Judith, what do you think about what Palmer just said? 

Judith: Yeah I think that makes a lot of sense. 

Interviewer: So, Judith, what happens when let’s say x randomly grabs ‘r.’ 

Let’s say that’s the first one it does. Okay, so, ‘for r in A.’ Why isn’t ‘r’ in 

this final set D? 

Judith: Because ‘r’ is not what ‘x’ is defined as, ‘x’  is defined as either ‘e’ 

or ‘o.’ Since ‘r’ is not either ‘e’ or ‘o,’ it isn’t printed. 

 

Given that Palmer and Judith are both seeing this material for the first time, I did not want 

to harp on the terminology that they used too much. For example, Palmer says that the For 

Loop is going to “list out all of the [elements],” and it is unclear whether Palmer thinks 

that every element in set A will be printed, or he is using “list” as another term for iterating 

through all of the elements in A. Similarly, Judith responds to my question saying that 

“Since ‘r’ is not either ‘e’ or ‘o,’ it isn’t printed.” I am interpreting Judith’s use of the word 
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“print” to mean printed in the set D, or not added to the set D, and thus does not appear 

when set D is printed. In either case, the important aspect of both Palmer and Judith’s 

responses is the idea that only certain elements from set A are being added, specifically the 

elements ‘e’ and ‘o.’    

 What was not clear to me at the time of this activity was if the students in Group 1 

could describe line by line how the For Loop was iterating and evaluating each element in 

A. That is, what happens next after the code has identified either the element ‘e’ or the 

element ‘o.’ As an important component of any HLT, I wanted to test Group 1’s reasoning, 

so I came up with another task by asking the students to consider the following code: 

comp = "computer" 

D = set() 

 

for letters in comp: 

   print(letters) 

   if ((letters == "e") or (letters == "o")): 

       D.add(letters) 

       print(D) 

 

print(D) 

 

Again I ran the code for the students to see the output, which is shown below: 

c 

o 

{'o'} 

m 

p 

u 

t 

e 

{'o', 'e'} 

r 
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{'o', 'e'} 

 

Haven recognized that all of the letters in computer are printed, but was not sure why the 

sets were printed after ‘o’ and ‘e’: 

Haven: So we still have computer spelled out from the For Loop, but now in 

between…I don’t know how [Python] chose it because after ‘o’ you have 

the ‘o’ in brackets because that’s specified in the ‘if letters ‘o.’ So, yeah I’m 

not sure why they’re in those spots, because then as it goes down, you have 

the [set] ‘o’ and ‘e.’ 

Interviewer: Mm hmm. Palmer or Judith? What are you thinking? 

Judith: Well what I’m thinking is since it’s spelling out computer, maybe 

it’s going through ‘c,’ ‘o,’ and then it recognizes that there’s an ‘o’ and then 

it keeps going, and then when the ‘e’ comes up it said oh, there was an ‘e’ 

and then now there’s an- or there was an ‘o’ and now there’s an ‘e.’ It’s like 

going through the letters of ‘computer’ to find ‘o’ and ‘e’ and showing it 

when they find the letters. 

 

Neither student referred to line 7, ‘D.add(letters).’ I wanted the students to see that when 

the For Loop is iterating through each element in the string ‘comp,’ that when the elements 

‘e’ or ‘o’ are passed through, they satisfy the If Statement and are then added to D, which 

is then printed. After asking again about the If Statement, Haven refers to the logical 

operator ‘or’: 

I know with the ‘or’ and ‘and’ operators, it's like ‘or’ is the one that if it’s 

True then it’s all True or something, like if one of them is. So, that is true, 

there is an ‘o’ in computer, so it kind of picks that up and then prints it 

 

Again, the terminology used was not precise, but the important aspect of Haven’s thought 

process is that the If Statement is satisfied because one of the propositions is true when the 

element ‘o’ is passed through. Haven utilized her constructed ‘proposition/operator/ 

proposition’ model to help her come to the correct conclusion. We spent a considerable 

amount of time (about 20 minutes) on this task to understand how the For Loop was 

functioning, but I still was not entirely convinced that all the participants in Group 1 felt 
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comfortable explaining the processes of a For Loop. In an effort to keep momentum going, 

I transitioned to the next task knowing that I would need to provide additional support in 

solving the next task asking about set intersection.  

Before getting to the next task, I present some of the work done by the participants 

from Group 4 on this task to highlight the difference in the language used by Alonso and 

Julian and their detailed descriptions of how the For Loop functioned. I highlight this 

difference as an important result from the perspective of computer science education in 

that with Groups 3 and 4, I switched to an IDE on my own computer rather than using 

Google Colab. I made this switch because Google Colab does not have a Debug feature 

that enables the user to step through each line of the code (typically as a method of 

troubleshooting, or “debugging” code that is producing an error message). The Debug 

feature was useful for Groups 3 and 4 in showcasing how a For Loop steps through each 

element in the iterable object. With Google Colab, the students in Groups 1 and 2 were not 

able to see how the For Loop would randomly select an element from the set (since sets are 

not ordered) and step through the code with that element.  

 In the following exchange between Julian, Alonso and I, I ask both participants to 

share their reasoning on what they think the output will be for the code presented in Figure 

5.8. Prior to this exchange however, Julian was thinking out loud and offered a couple of 

different ideas but ultimately reasoned that the final output would be a set containing three 

elements, three ‘e’s and one ‘o.’ In an effort to understand how Julian was thinking, I 

asked him to repeat his thought process in how he arrived at his final answer: 
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Interviewer: And can you walk me through just one more time how you got 

to that output? 

Julian: Yeah. So, I was thinking before that it would just add any of the set 

letters, but because the action of adding the element into ‘D’ only works 

when ‘x’ equals ‘e’- or when the element equals ‘e’ or when it equals ‘o.’ 

So, every single time it hits ‘e’ then it adds the element and when it hits ‘o’ 

it adds the element into ‘D.’ And because there are only two ‘e’s and one ‘o’ 

then- I would assume that it would keep doing that over and over again until 

it hits ‘e’ and ‘o’ and then it would just add those. And then going to the 

next ‘e’ and then add that again. So I assume it would create the equal 

amount of ‘e’s and ‘o’s in ‘D’ as in ‘A.’ 

Interviewer: Okay, great. Thank you very much. Alonso, what are your 

thoughts? 

Alonso: I think something slightly different. So I think the output would be 

an empty line, and then it would be the brackets with either ‘e’ or ‘o’ inside 

of it. Then another empty line, and then it would be after that empty line 

would be the brackets with both ‘e’ and ‘o’ as part of that set. But it would 

only be the two elements, I think. And the reason for that is in previous 

examples, when we did ‘x in A,’ it stepped through all the elements, but it 

didn't do any repeats. So, what this code does is for the For Loop, it steps 

through all the elements when they're not repeated and then the ‘if’ it says 

that if the element is ‘e’ or if the element is ‘o,’ then add that element to set 

‘D.’ So only ‘e’s and ‘o’s are going to be added to the set and in the set you 

can only count ‘e’ and ‘o’ once.  

Interviewer: Okay great. Thank you very much for that explanation as well. 

So, let's run this and see what happens.  

[{'e', 'o'}] 

So both of you were very, very close and I think both of you had similar 

reasoning- 

Alonso: Oh that’s why. That’s what’s wrong 

Interviewer: Julian, can you reflect on this output here? 

Julian: Yeah so it seems Alonso was kind of right with it only printing ‘o’ 

and ‘e’ and no repeats. I kind of just didn't realize that. Because it’s the 

elements, it would not do the repeats. So, it would only be the ‘o’ and ‘e’ the 

one time so it would print those. 

 

Both Alonso and Julian were able to step through the entire process, with the important 

aspect of their contributions being that the if statement is satisfied with either the elements 

‘e’ or ‘o’ and then moves on to the next step which is to add these elements to set ‘D.’ This 

understanding is supported by the model that they constructed in their situational and 
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referential mathematical activity in interpreting propositional statements of the form 

‘proposition/operator/proposition.’ Neither student was entirely correct, but after seeing the 

output they both understood why the output was just the one set containing the two 

elements ‘e’ and ‘o.’  

 With the next task in the sequence, my intention was that students would use what 

they have learned of utilizing a For Loop to iterate through elements in a set, and use an If 

Statement to filter for certain elements that they want. Specifically, the goal of this task 

was to find the intersection of the following three sets, A, B and C:  

A = {8, "apples", "chocolate", "berries", "corn", "juice", 13, "strawberries", 

6, "avocados", "beets", "chips"} 

B = {1, "cheetos", "jalapeno", "onions", "cilantro", 2, "limes", "chips", 6, 

"cherries", 9, "corndogs"} 

C = {8, "biscuits", 6, "cheese", "soda", "water", "bananas", "beets", 

"watermelon", 7, "kiwis", "chips"} 

 

Each group in the study were given the same three sets and eventually came to some 

version of the following code: 

D = set() 

for x in A: 

   if ((x in B) and (x in C)): 

       D.add(x) 

 

print(D) 

 

In Chapter 4 I highlight how students from Group 2 came to this code which resulted in the 

output of ‘{chips, 6}.’ At this point in the study for all of the groups I first mentioned the 

notion of a subset. I used the example of ‘{chips, 6}’ to show that every element in 
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‘{chips, 6}’ exists in A, B, and C which makes ‘{chips, 6}’ a subset of A, a subset of B, 

and a subset of C. There will be more on the idea of subsets in the next section.  

Like Group 2, Groups 3 and 4 also arrived at some version of the above code on 

their own given their understanding of how to filter through a set for select elements. For 

Group 1, I provided additional support by writing the basic structure of the code (starting 

with a For Loop and If Statement) and asked them to fill in the blanks given the goal of 

finding the set intersection. With Group 1 we spent most of our time investigating the 

general functionality of a For Loop in sessions 3 and 4, which is why I wanted to provide 

them with extra support in our last session and finish the TE by solving the task of finding 

the set intersection. As mentioned, Group 1’s TE stopped short of the designed 

instructional sequence. Their actual learning trajectory was composed mostly of 

understanding how a For Loop works in session 3 and 4. Unfortunately for Group 1, they 

helped me figure out what didn’t work so well with the tasks as they were initially 

designed. They also helped me realize that Google Colab was not the best choice. 

However, as far as understanding For Loops, I made sure that we spent the time 

understanding how they worked and how they could be used to make longer code more 

efficient. To this degree the students in Group 1 learned a great deal, even if what they 

learned was not exactly what was initially envisioned with the design of this study.  

 Going back to the above code, I want to highlight that the students in all of the 

Groups were able to utilize the ‘and’ logical operator to solve a mathematical task in the 

context of set theory (line three). That is, the structure of ‘proposition/operator/proposition’ 

appears as a way to filter for certain elements across three different sets. In the beginning 
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of the designed instructional sequence, the students were asked to evaluate simple 

compound propositions such as ‘True or False’ as well as compound propositions such as 

‘(True and False) or True.’ In reasoning about the compound propositions, the students 

reduced the longer compound proposition down to a shorter form of 

‘proposition/operator/proposition.’ This constituted the students’ Situational activity. The 

students were then asked to reason about propositional statements in which they were not 

directly given the Boolean value of the propositions, such as ‘s and t.’ I consider their work 

on this task to be referential as the form was short, but the content itself was slightly more 

abstract and removed from context. Lastly, using their initially constructed model-of ways 

of reasoning about logical operators in the form of ‘proposition/operator/proposition,’ the 

students were able to solve a more sophisticated mathematical problem asking them to find 

the intersection of three sets. Thus, the students were able to utilize their model-of ways of 

reasoning about logical operators as a model-for reasoning about sets and set relationships. 

In the next section I start with the set intersection task as the situational activity for 

reasoning about set relationships and how I attempted to support the students develop 

models-of reasoning about set intersection as models-for reasoning about subsets.  

Set Operations and Properties of Subsets 

In this section I present the sequence of tasks that were designed to support 

students in their reasoning about set operations, and ultimately reason about what it means 

for one set to be a subset of another set. This section will be briefer than the previous for 

three main reasons. The first is that most of the student work related to the core tasks for 

this instructional sequence has already been presented in Chapter 4. The second is that 



 178 

work related to these tasks involved introducing the idea of the For Loop to the students 

and these tasks are presented in Chapter 3. Third, the instructional sequence presented to 

the students, which was meant to foster the developmental progression from situational 

activity to formal activity, did not support the model development as intended. That is, the 

situational activity meant to support students in their reasoning about set intersection did 

not lead to mathematical activity that was entirely coherent with the referential and general 

activity related to subsets. Specifically, the goal with the situational activity was to 

generate a discussion about how the intersection of sets is a subset of the sets that were 

used to find the intersection. In the original conception of this task I thought that this 

would be enough to serve as the situational activity. However, in retrospect, a task focused 

on understanding the difference between sets as subsets and sets as elements would have 

likely been much more beneficial for the students to have an opportunity to build a model-

of way of reasoning about sets. As such, a model-of reasoning did not necessarily emerge 

from their mathematical activity, but I highlight their work on these tasks as a foundation 

for future work that may utilize these tasks and build more coherent instructional tasks. 

The first task in the sequence was the set intersection task, which was intended to provide 

an opportunity for students’ situational mathematical activity. 

Situational Activity 

With this task, the students were given the three sets: 

A = {8, "apples", "chocolate", "berries", "corn", "juice", 13, "strawberries", 

6, "avocados", "beets", "chips"} 

B = {1, "cheetos", "jalapeno", "onions", "cilantro", 2, "limes", "chips", 6, 

"cherries", 9, "corndogs"} 
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C = {8, "biscuits", 6, "cheese", "soda", "water", "bananas", "beets", 

"watermelon", 7, "kiwis", "chips"} 

 

The students were asked to find the elements that exist in all three sets. The students were 

also asked to find the union and other set relationships (e.g., A union B not C). The 

problem context for this task was that these sets represent items that one may find at a 

grocery store. The integers in the sets represented cash back that they might receive when 

checking out. Some of the student work for this problem has already been highlighted in 

Chapter 4, but the focus of this section is specifically on how the students were reasoning 

about set operations. This was the last task presented to Group 1, so I present some of their 

work below. With Group 1, I drew a Venn diagram to represent the three sets A, B, and C 

which is shown in Figure 5.9.  

 

Figure 5.9: Venn Diagram Used with Group 1 
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Once Group 1 constructed the code that would find the intersection of the three sets, I 

asked the students what we could do to find the elements in the green shaded area labeled 

‘G.’ Judith first idea was to find the intersection of A and B, “I guess, could you do ‘for x 

in A, if x in B…and then G dot add x?” As Judith was talking, I was writing the code 

which is below: 

G = set() 

for x in A: 

   if x in B: 

       G.add(x) 

 

The output produced the same set as the intersection of all three sets, ‘{chips, 6}.’ I asked 

the students if they could identify what was wrong with this output, which led to the 

following exchange: 

Judith: Okay I think I have an idea. Okay, because it doesn’t include the 

blue area- so we’re saying it includes those in A and B, but not those in A, 

B, and ‘C.’ So, wouldn’t it be like… nothing? You know? 

Interviewer: Palmer, what are your thoughts on that? Can you rephrase 

what Judith was saying? 

Palmer: Umm… 

Interviewer: Or do you have any questions about- 

Palmer: Yeah I think we’re just kind of continuing on what we did last 

week. Yeah I guess the Green is just what only A and B share and not what 

all three of them share like we were trying to find last week. 

Interviewer: Right, and so this first output for ‘print F’ [{chips, 6}]. That 

set contains all of the elements that exist in all three sets.  

Palmer: Yeah. 

Interviewer: ‘Print G’ is referring to- let's do this. Okay, so that area is G, 

and this area is F [labeling the green and blue shaded regions, respectively]. 

Haven, what are your thoughts on the two outputs and maybe if you want to 

refer back to what Judith was saying. 

Haven: Yeah when she mentioned how it should be nothing I was like ‘Oh 

wait?’ Because I don't know I’m kind of still figuring it out and thinking 

about it. So, yeah I don’t know really. 
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Interviewer: Okay. What is it that you’re curious about in terms of when 

she said it could be nothing? 

Haven: I don't know because when we were looking at ‘print G,’ it is 

supposed to draw from A and B and then ‘F’ is supposed to draw from A, B, 

and C. So I’m kind of curious when Python is running through it, I’m kind 

of curious of where it's going wrong, like when it's running that. 

Interviewer: Mm hmm. Well let’s take a look at the code. What can I add in 

here [pointing to the If Statement]? Judith, do you have what we might be 

able to add here to tell Python that we only want the elements in A and B 

and not to include any elements in ‘C?’  

Judith: We could do ‘x not in C?’ Maybe? 

Interviewer: Yeah so that’s gonna go right here… 

Judith: Oh and ‘and!’ ‘and’ will go there 

Interviewer: Let's try that. So, let’s run this. We end up with the empty set 

here. So, Palmer, can I get your reflections on why we got the empty set? 

Palmer: Yeah because A and B, aside from the ‘chips’ and ‘six,’ they don't 

have anything else in common with each other. So, there’s nothing in the 

“the G zone.” 

 

From the excerpt, both Judith and Palmer noticed that the original code produced the 

intersection of A and B, but they didn’t just want the intersection, they wanted the 

intersection not including any of the elements that also exist in C. Since the intersection of 

A and B was equal to the intersection of all three sets, they figured that must mean that 

there are no elements that exist in A and B and not in ‘C.’ With this understanding, Group 

1 also found the elements that exist in A and C and not B by modifying their code slightly: 

H = set() 

 

for x in A: 

   if ((x in C) and (x not in B): 

       H.add(x) 

 

The output produced a set containing two elements, ‘{8, beets}.’ Judith commented that 

this code is working the way it is supposed to because “‘8’ and ‘beets’ are repeated in A 

and ‘C.’ But ‘chips’ and ‘6’ are not mentioned because ‘chips’ and ‘6’ are repeated in all 
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three. We only want the ones that are repeated in those two [A and C].” The only other 

group in the study that constructed different For Loops to find various intersections of the 

three sets was Group 4, who also found the set of elements shared between A and C and 

not in B. All of the groups did find the union of the three sets, with most of the groups 

opting to either add all of the elements from B, and C to A or creating a new set and adding 

the elements from all three sets to the new set. Group 3 took the latter approach, and their 

code is below: 

D = set() 

 

for dog in A: 

   D.add(dog) 

 

for dog in B: 

   D.add(dog) 

 

for dog in C: 

   D.add(dog) 

 

The reader may notice that the variable used in the For Loop in the above code is ‘dog’ 

which came out of a discussion about what ‘x’ represented in another For Loop that we 

were looking at. In Group 3 we discussed how the variable in the For Loop can be any 

letter or string that we want. Juliana asked if this means it can be something like ‘dog’ and 

I ran the code using ‘dog’ as the variable to show that the code still works. This was 

another instructional move that worked well in this study in terms of using the words or 

vocabulary that the students were using to relate to their ideas. While their terminology 

was not always technically correct, I decided not to correct them in the moment and return 
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to that idea if it needed to be addressed, usually after the students had a better idea of the 

mathematical concept.  

 As mentioned in the previous section on logical operators, once the students found 

the intersection of all three sets, I used the intersection to talk about what it means for one 

set to be a subset of another set. We discussed how the two elements, ‘chips,’ and ‘6’ are 

elements in all three sets, A, B, and C. In the initial task design, the work that the students 

put towards finding this result was supposed to be the situational mathematical activity. 

However, the work going into finding the intersection had nothing to do with subsets 

themselves. A better situational activity would have been providing the students with sets 

and subsets and asking the students to find different relationships between the sets using 

Python. At the time of conducting the fourth session with Group 2, I realized that the set 

intersection activity did not adequately generate the need or motivation to investigate the 

idea of subsets further, so I provided the students with an additional block of code to show 

the difference between a set as a subset and a set as an element of another set: 

A = frozenset([1, 2, 3]) 

B = {1, 2, 3, A} 

 

print(len(B)) 

 

The output for the above code is ‘4’ as there are four elements in B: 1, 2, 3, and A. What is 

interesting in this case is that A is not only a subset, but also an element of B. Investigating 

this code was beneficial in discussing the idea of sets as subsets and sets as elements, but it 

did not challenge the students in the same way a traditional situational activity from the 

RME perspective would have, it was mostly just direct instruction in telling them what the 
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definition of a subset was. With the next task, the students in Groups 2, 3 and 4 were given 

a task in the context of a number theory problem, which was intended to serve as an 

opportunity for the students’ referential mathematical activity.  

Referential Activity 

I am presenting this task and the following task as potential referential and general 

mathematical activity with the intention of developing tasks in the future that support 

situational mathematical activity. The goal would be to create tasks that provide more of an 

opportunity for a coherent progression and opportunity for model development. For this 

task, the students were no longer in the same problem context of the grocery store and 

working with grocery store items. Instead, the students were asked to reason about a 

number theory problem which is presented in Figure 5.10 below.  

Let’s consider the integers from 1 to 1000. In Python we can call 

out these integers by using the ‘range()’ function.  

 

range(1, 1001) 

 

Is the set of integers divisible by 21, a subset of the set of integers 

divisible by 3? Is the set of integers divisible by 21, a subset of the 

set of integers divisible by 7? How do you know? How can you use 

Python to help answer this question? 

 

Figure 5.10: Number Theory Problem 

 

For more details on how Groups 2 and 4 arrived at their final code, refer to Chapter 4. 

Group 3’s work was not highlighted in Chapter 4 because their approach was essentially 

the same as Leo’s from Group 2. Below are the codes written by each group to solve the 

number theory task presented in Figure 5.10. Group 2’s code was the following: 

D = set() 
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for x in A: 

   if ((x in B) and (x in C)): 

       D.add(x) 

print(len(D)) 

print(len(A)) 

 

A represented the set containing the integers between one and 1000 divisible by 21, B 

represented the set containing the integers between one and 1000 divisible by 3, and C 

represented the set containing the integers between one and 1000 divisible by 7. This 

approach used a For Loop to find the set intersection between B and C, and finds the 

cardinality of the two sets A and D. Group 2 determined that since the two sets have the 

same number of elements, A is a subset of D (and is in fact equal to D). It is also important 

to remind the reader that the original language used in this task for Group 2 was “Is the set 

of integers divisible by 21, a subset of the set of integers divisible by 3 and 7? Having the 

“and” in between 3 and 7 likely contributed to the difference between Group 2’s code and 

Groups 3 and 4. Group 3’s code is below: 

for x in A: 

   if (x in B): 

       print("A is a subset of B") 

   else: 

       print("A is not a subset of B") 

 

for x in A: 

   if (x in C): 

       print("A is a subset of C") 

   else: 

       print("A is not a subset of C") 
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Group 3 utilized a For Loop to iterate through the elements in A, and used an If-Else 

structure to verify that each element in A was an element in the sets B and C. Group 4’s 

approach is similar to Group 2’s as they relied on a set relationship (equality) to solve the 

task: 

A = set() 

for x in D: 

   if (x in E): 

       A.add(x) 

 

print(A == D) 

 

B = set() 

for x in D: 

   if (x in F): 

       B.add(x) 

 

print(B == D) 

 

For Group 4, D represented the set containing the integers between one and 1000 divisible 

by 21, E represented the set containing the integers between one and 1000 divisible by 3, 

and F represented the set containing the integers between one and 1000 divisible by 7. The 

output for this code produced a value of True. Their method included adding all of the 

elements that existed in D and E to a new set A. They determined that since A and D are 

equal, then all of the elements in A are also in E, which means that A is indeed a subset of 

E. The same case was true for the relationship between sets B and D.   

 With each group in the study, the students used a For Loop which enabled them to 

filter for certain elements. Group 2’s actual mathematical activity was most closely aligned 
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with the original design of my study in that they used the idea of set intersection inside of 

the For Loop to determine that the set of integers divisible by 21 is a subset of the set of 

integers divisible by 3 and 7. As alluded to, the connection between the situational and 

referential tasks is lacking coherence in terms of set intersection supporting the students’ 

development of a model that can serve as a model-of way of reasoning that could be used 

as a model-for way of reasoning in a later task about subsets. Future work on these tasks 

would entail a different direction for the situational activity to think about what it means to 

be a subset. In fact, the code on the two sets, A and B where A={1, 2, 3} and B={1, 2, 3, 

A} provided an opportunity for the students to engage in discussions about the difference 

between a set as a subset and a set as an element. This scenario will likely be developed as 

a starting point for future work on this task. For the general activity, I wanted the students 

to take a step back from Python and consider the same question about whether the set of 

integers divisible by 21 is a subset of the sets of integers divisible by three and seven, but 

for all integers, not just those between one and 1000.  

General Activity 

Removing the constraints of Python is what I considered to be the next step in the 

students’ mathematical activity. This section is divided into two smaller subsections with 

each subsection focusing on the groups, 2 and 4 to showcase the students’ thinking without 

requiring Python to be used as a tool to solve the problem. Only Groups 2 and 4 will be the 

focus of this section as Group 3 only had a couple of minutes to think about this task. Both 

students in Group 3 said that they think it is still true for all integers, that the set of integers 
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divisible by 21 is a subset of the set of integers divisible by three and a subset of the set of 

integers divisible by seven. 

Group 2. Group 2 was only given about 10 minutes to think about this question as 

it was the last task with about 15 minutes left in the final session. Below is an exchange 

presenting each of the three students’ ideas: 

Interviewer: Now we only have about 15 minutes left, but I’d like to think 

about what you all think if we strip away Python. Okay, let’s consider all of 

the integers, not just the integers from one to 1000. Is the set of integers 

divisible by 21 a subset of the sets of integers divisible by three and seven, 

how do you know? 

Leo: I don’t know if it’s true, but I see three and seven have a similarity 

with 21. So I would say that it’s true. So it would be like- but you said we 

couldn't use what we figured out on Python… So it would just be, I guess 

mathematically what we thought? 

Interviewer: Yeah, I would like you to expand a little bit more. It might just 

be your initial thoughts, so I want to give you some time if you need a little 

bit more time. But can you say a little bit more about what you're thinking 

about three and seven? 

Leo: Well the numbers divisible by 21- Since 21 is divisible by three and 

seven, then any number that’s divisible by 21, you can [divide it by] three 

and seven. You can put 21 is equal to three times seven. And if you do 21 

squared, that would be seven times three squared. I think. No, that wouldn't 

work. 21 times seven… 

Interviewer: 21 squared is 21 times 21 right. 

Leo: Yeah.  

Interviewer: So we can sort of write this as three times seven [(21)(21) = 

(21)(3)(7)]. We know that 21 is equal to three times seven. 21 squared is 

equal to 21 times three times seven.  

Leo: So there would be a pattern, with after each- With one power higher 

then you’d add an extra set of that. 

Interviewer: Mm hmm… Okay, so we have this idea that 21 can be written 

as three times seven. How does that relate to this idea of a subset? Eugene 

and Saul, what are your thoughts? Leo offered some insight, but I want to 

hear how you two are thinking about it. 

Eugene: Yeah I mean I’d say- I mean, I wouldn't have known if we didn’t 

go through this process. Just my math skills aren’t on that level. But if we’re 

assuming that from one to 1000 you know it’s true, I guess we're using all 

integers now so including negative values, it should still be true. Because if 

it’s a negative value, it’s just negative for both- all three subsets you know. 
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Using the same integer. So, that's what I’m thinking. It should be the same. 

It should be the same, yeah. 

Interviewer: Saul, what are you thinking? 

Saul: Yeah kind of just the same thing. Since the factors of 21 are three and 

seven, then you’re going to have similar factors for 42 and everything. For 

set A. There’s going to be a three and seven there, so that means as you go 

up there can be a six and nine. I guess. 

 

Looking back at this excerpt, Leo, Eugene and Saul all had great ideas about the properties 

of the elements in set A, the set of integers divisible by 21. Leo brought up that there is a 

relationship between 21 and the numbers three and seven, Eugene figured that if it’s true 

for one to 1000 then including the negative numbers shouldn’t be an issue, and Saul even 

mentioned the factors of the elements in A. Instead of following up on their ideas in a more 

informal way by discussing the factors further, I decided to try and do a rough sketch of 

the proof to show that any arbitrary element in A will also exist in B and C. I asked the 

students to consider any element in A and I showed them that this element could be written 

at 21 times some integer ‘m.’ We can then write this as 3 times 7 times m which ultimately 

shows that this element exists in both B and C. We only had about five minutes left in the 

session, so we didn’t get a chance to spend too much time on this rough sketch of the 

proof. Looking back, Leo and Saul were close enough to determining the answer on their 

own and the last five minutes of the session would have been more productive if I asked 

more questions and inquired further into Saul’s reasoning about the factors instead of 

telling them the answer. Even though we only had a few minutes to spare, Group 2 made it 

all the way through to the end of the designed teaching experiment.  

As the reader may have already noticed, the goal of this task was to identify that the 

set of integers divisible by 21 is equal to the intersection of the set of integers divisible by 
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three and the set of integers divisible by seven. My thinking in the design of this task was 

that the students might first find the intersection of the two sets of integers divisible by 

three and seven, then we could explore the relationship between the intersection and the set 

of integers divisible by 21.  

 Group 4. Group 4 made it the furthest in the TE compared to the other three 

groups. In fact, the students in Group 4 were one whole session ahead of the other groups 

by the time we got to this task. Below I highlight their initial thoughts on this task, which 

occurred during  the last five minutes of the fourth session.  

 In response to the task asking about all of the integers, the following is what Julian 

and Alonso had to say: 

Julian: I’d say yes, I mean obviously the integers follow certain sets of rules 

because it’s, you know, going up by ones. So I’d necessarily say yes. If it’s 

you know infinitely going, then obviously- I think… Yeah I’d say it’s true 

because since we’ve already done it inside the limited type of range, we can 

obviously say it is true for a higher type or just infinite in general. 

Interviewer: Okay, and Alonso, what are your thoughts? 

Alonso: Yeah I think this holds true as well. So, three and seven go into 21 

evenly and as long as those numbers go into the other numbers I think it’s 

going to be true for all integers.  

 

Both Alonso and Julian say this statement is true, and the above excerpt is where we 

finished Session 4. Julian uses the argument that since it is true for the range from one to 

1000, then it must be true for all integers and Alonso uses the factors argument as 

justification that this statement is true. In the fifth session I did not come back to this exact 

problem and instead asked the students what their thoughts were on how to prove that the 

set of integers divisible by 21 (D) is equal to the intersection of the set of integers divisible 

by 3 and the set of integers divisible by 7 (G).  
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We started the session with a couple of warm-up tasks on set intersection and the 

definition of a subset. One of the questions asked if the set of integers divisible by 3 (E) is 

a subset of the set of integers divisible by 7 (F) and both students reasoned that E is not a 

subset of F. As Julian explains: 

Okay okay. Yeah so basically we’re just disproving the fact that all integers- 

or all elements in E are included in the integers in F- or the elements in F. If 

we disprove that three itself is not divisible by the [number] that is getting 

divided in F- So, we just find that one integer, you know, three is already 

not included, so that means E itself cannot be a subset because not all of its 

elements are included in F. 

 

Julian uses a counterexample argument to reason that E is not a subset of F. That is, since 

three is not divisible by seven, then three cannot be an element of F, which automatically 

means that E is not a subset of F as not all of its elements are elements in F. The purpose of 

this warmup task was to verify with both students the meaning of a subset.  

 The warmup tasks only took about 10 minutes, and we spent the rest of the session 

discussing the proof showing that D is equal to G. The goal of the fifth session with Group 

4 was to show that two sets are equal by proving that each set is a subset of the other. I 

wasn’t entirely sure what to do with Group 4 in the last session since we had completed the 

sequence of instructional tasks earlier than expected. I figured a discussion on proving set 

equality would provide an opportunity to discuss selecting an arbitrary element as well as 

provide closure to the number theory problem that the students solved in the fourth session. 

Figure 5.11 shows a screenshot of the proof that was constructed with help from Julian and 

Alonso in Group 4.  
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Figure 5.11: Proof with Group 4 

 

Note that in the above proof there are some mistakes. First, in “since we can write x as 3 

times any integer,” the “any” should say “some.” This mistake was made in other similar 

lines in the proof. In a situation where the students were able to construct a model-of 

reasoning about subsets and then use this model as a model-for reasoning about one set 

being a subset of another, and proving this fact, then that would be considered formal 

mathematical activity. However, I provided a lot of support for Julian and Alonso as we 

were working through the proof. I had a major role in the construction of the proof by 

frequently reminding them of the goal of the proof and structuring the conversation that 

would get us to showing that D is a subset of G and G is a subset of D. I did challenge 
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Julian and Alonso by asking questions throughout the construction of the proof, but my 

questions were very specific. For example, in showing that D is a subset of G, I started us 

off by asking Julian and Alonso to consider any arbitrary element, ‘x,’ in D: 

Interviewer: What are the properties of ‘x,’ or what can we say about ‘x’? 

Julian: That they’re divisible by 21 

 

I then wrote ‘x = 21*n’ and showed that ‘x’ can be written as ‘3*m’ and can also be 

written as ‘7*p.’ Alonso was initially concerned about the process of selecting an arbitrary 

element in D, as he explained,  

I’m just thinking of the example where if you have two sets which are 

randomly generated, then if you just randomly pick an [element], then it is 

likely that [the randomly selected element] will be in the other set, but they 

are probably not subsets. 

 

Alonso’s comment was a nice contribution that helped guide our conversation about what 

it means to select an arbitrary element. I told the students that the goal in selecting an 

arbitrary element is to not to look “at just one element, you’re looking at all the elements in 

a set by describing it using some property. And the property that we have [in this case] is 

that [the elements] are generated by 21.” From there, showing that ‘x’ is an element in G 

was straightforward for Julian and Alonso. We took a similar approach to show that G was 

a subset of D, and I offered them a hint by asking them what they recalled about the least 

common multiple of two factors. In the last five minutes of this session, I asked Julian and 

Alonso to reflect on the proof and describe their thoughts about what we proved and how 

we proved. Julian doubted his ability to write the proof on his own, but also explained 

what we proved: 
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I don't think I could do this by myself, I’m going to be honest. You kind of 

walked us through it, so I kind of mostly get it. That we're trying to find- 

obviously we’re finding that D is a subset of ‘E and F’ and then we’re 

finding that G is a subset of D by using E and F for just the set D. We’re just 

using regular division and stuff, and multiples, to then find how ‘x’ or those 

arbitrary elements are pieces of the sets. That’s how we basically just 

connect each part to then make D and G both subsets of each other. 

 

Alonso had been contributing the most as we worked through the construction of the proof, 

but he wasn’t very sure about the method of showing that the two sets were subsets of each 

other: 

It seemed a little circular to me. I guess what we did is we used the fact that 

anything divisible by 21 is divisible by seven and three. Then we used the 

fact that if something is divisible by seven and three, then it is divisible by 

21. So, I don’t know, I guess the proofs are important, it just seems a little 

circular. 

 

We did not have time to talk more about the proof, but I was impressed with their thoughts 

and contributions throughout the whole session. In the next section I present the results of 

the pre- and post-study mathematical content surveys as one way to document what the 

students learned in this study. 

Pre and Post Mathematical Content Survey Results 

Pre/post mathematical content surveys are one way to measure the extent to which 

a student learned the mathematical content that is the focus of study. In my study, the foci 

are mathematical logic, set theory, and computer programming. There were 12 questions 

on the survey: six questions were asked about set theory topics, two were about 

mathematical logic, three included ideas of both set theory and logic, and there was one 

question asking the students to interpret Python code. This section is divided by each 

Group in the study and their survey results are presented by each content topic. In the 
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tables, the cells highlighted with a green color are correct answers, and the cells 

highlighted with the salmon color are either wrong answers or unsure as indicated by the 

participants. Big-picture ideas from the survey results will be presented after the survey 

results, with some commentary in between on interesting findings.   

Group 1 

Haven, Palmer, and Judith composed the first group in my study. As mentioned 

previously, I learned a lot from Group 1 as their reception to the tasks and instructional 

methods informed the direction of the rest of the study. However, this meant that we spent 

more time than intended on the functionality of a For Loop and less time on some of the 

set theory ideas such as set intersection and subsets. On the pre-study survey, Haven, 

Judith and Paul scored 3, 4, and 4, respectively. On the post-study survey they scored 4, 

10, and 9 respectively. Their survey results are presented below with the pre-study and 

post-study results presented separately. 
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Table 5.1: Pre-Study Group 1 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a subset 

of S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of S? 

Haven 

Yes. 1,5,7 are 

odd numbers 

and are in set A 

Yes Yes I'm not sure Yes Yes 

Judith Yes. 5,7,3 Yes Yes Yes No Yes 

Palmer Yes. 1,3,5,7 Yes Yes No Yes Yes 
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Table 5.2: Post-Study Group 1 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer.  

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a subset 

of S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of S? 

Haven 

Yes. 1,5,7 are 

odd numbers 

and are in set A 

Yes Yes No Yes Yes 

Judith 

No. Set A 

contains only 2 

subsets, {1,5,7} 

and {3,4,8}, the 

contents of 

which are not 

pertinent to 

answering this 

particular 

question. 

Yes No No Yes Yes 

Palmer Yes. 1,3,5,7 Yes No No Yes Yes 

 

In response to Q1, Judith mentions that ‘{1, 5, 7}’ and ‘{3, 4, 8}’ are “subsets” but my 

interpretation is that she is conflating the meaning between a set as an element and a set as 

a subset. I still considered her answer to be correct given that she answered the question 

“No” and she says that the “contents,” or elements, in the sets are not relevant to the 

question that is being asked. This implies that she saw set A as having two objects, neither 

of them being integers and thus not relevant to the question. Another interesting aspect of 
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the answers to these questions is that none of the students in Group 1 answered Q4 or Q6 

correctly. However, as mentioned, we did not spend much time on the topic of subsets 

compared to the other groups, so it is not entirely surprising that the students answered 

these questions incorrectly.  

Table 5.3: Pre-Study Group 1 Logic Questions 

Name 

Q7 

Is the following statement true or 

false? 

“Given an integer number x, x is even 

or x is odd” 

Q8 

Is the following statement true or 

false? 

“The integer 15 is even or 15 is odd” 

Haven True False 

Judith True False 

Palmer True True 
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Table 5.4: Post-Study Group 1 Logic Questions 

 

Name 

Q7 

Is the following statement true or 

false? 

“Given an integer number x, x is even 

or x is odd” 

Q8 

Is the following statement true or 

false? 

“The integer 15 is even or 15 is odd” 

Haven True False 

Judith True True 

Palmer True True 
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Table 5.5: Pre-Study Group 1 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A and B, what 

elements are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A or B, what 

elements are in C? 

Q11 

Consider any two sets, 

A and B. What does it 

mean for an element 

to not be an element of 

A and B? 

Haven 1,3,4,5,7,8 1,3,4,5,7,8 Not sure 

Judith 1,5,7,3,4,8 i don't know 

the element is not in 

both A and B, but is in 

A or B or neither. 

Palmer {1,5,7,3,4,8} {1,5,7,3,4,8} 
To be a new element 

not found in A or B 
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Table 5.6: Post-Study Group 1 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 8} }, 

B = {1, 5, 7, {3, 4, 8} }. If 

we define C to be the set 

of elements that exist in A 

and B, what elements are 

in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 8} }, 

B = {1, 5, 7, {3, 4, 8} }. If 

we define C to be the set 

of elements that exist in A 

or B, what elements are 

in C? 

Q11 

Consider any two sets, A 

and B. What does it mean 

for an element to not be 

an element of A and B? 

Haven 1,5,7,3,4,8 1,5,7,3,4,8 
it is not in the set{} of 

both A or B 

Judith C={{3,4,8}} C={{1,5,7},{3,4,8},1,5,7} 

If an element is not an 

element of both A and B 

this means the element 

can either exist in set A 

or in set B or in neither 

set A nor set B. The 

element cannot exist in 

both set A and set B. 

Palmer {3,4,8} {1,5,7,{1,5,7},{3,4,8}} 
for it to not be in both A 

and B 

 

Haven’s post-study answer to question Q11 is not entirely clear, and I initially considered 

her answer to be wrong, but the word “both” made me think that her conception of the 

situation is correct, or else she would likely have used the word “either.” 
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Table 5.7: Pre-Study Group 1 Python Question 

Name 

Q12 

What would be the output of the following code in Python? 

city = "San Diego" 

for x in city:  

    print(x) 

Haven Not sure 

Judith San Diego 

Palmer print("San Diego") 
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Table 5.8: Post-Study Group 1 Python Question 

Name 

Q12 

What would be the output of the following code in Python? 

prop = "proposition" 

for x in prop:   

    print(x)  

    if ((x == "o") or (x == "p")):      

        print(x) 

Haven 

prop=“The integer 15 is even or 15 is odd” 

 

for x in prop: 

    print(x) 

    if ((15 is even) or (15 is odd)) 

Judith 

&  

Palmer 

p 

p 

r 

o 

o 

p 

p 

o 

o 

s 

i 

t 

i 

o 

o 

n 

 

Given that we spent more time on For Loops than the other groups, I am not surprised that 

Judith and Palmer answered Q12 correctly on the post-study survey. However, it seems 

that the task sequence was not as beneficial for Haven as compared to her peers.  

Group 2 

On the pre-study survey, Saul, Eugene and Leo scored 3, 4, and 4, respectively. On 

the post-study survey they scored 8, 11, and 5 respectively. Eugene and Saul were usually 

the two to step in and provide their thoughts first throughout the study, but I was surprised 
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at Leo’s post-study survey results. However, I am considering the possibility that perhaps 

the reason Leo did not improve as much as his peers is because of his poor internet 

connection. In almost every session I asked Leo to turn his camera off to potentially help 

with connection, which could have been the reason why Leo was not participating as much 

and missing out on some of what was said by me or his group partners, ultimately missing 

out on the learning process. 

Table 5.9: Pre-Study Group 2 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a 

subset of S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of S? 

Saul Yes. 1,5,7,3 Yes Yes No Yes Yes 

Eugene 

Yes. 1,5,7,3 are 

odd numbers in 

the set A. 

Yes I'm not sure I'm not sure Yes I'm not sure 

Leo 

Yes. 1,5,7,3 are 

odd numbers 

that are part of 

set A 

Yes Yes I'm not sure Yes I'm not sure 
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Table 5.10: Post-Study Group 2 Set Theory Question 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a subset 

of S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of S? 

Saul 

No. I think A 

only consists of 

two elements, 

and each is a 

subset.  

Yes Yes No Yes Yes 

Eugene 

No. The only 

elements of set 

A are two other 

sets not the 

elements within 

those sets. 

Yes No Yes Yes No 

Leo 

Yes. 1 as there 

is only a value 

of 2 in this set 

as the two sets 

in set A ony 

count as 1 

element 

Yes Yes No Yes Yes 

 

Similar to Group 1, Saul and Leo in Group 2 did not answer the subset questions correctly. 

We spent more time on the idea of subsets than Group 1, but this goes to show that even 

after an instructional sequence on set theory topics, the students still had a difficult time 

between the idea of a set as an element and a set as a subset. As for Leo’s answer to Q1 in 

the post-study survey, it seems that Leo recognizes that there are only two objects in set A, 

but it is not clear to me what he meant with his explanation. 
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Table 5.11: Pre-Study Group 2 Logic Questions 

Name 

Q7 

Is the following statement true or 

false? 

“Given an integer number x, x is 

even or x is odd” 

Q8 

Is the following statement true or 

false? 

“The integer 15 is even or 15 is 

odd” 

Saul True False 

Eugene True True 

Leo True True 
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Table 5.12: Post-Study Group 2 Logic Questions 

Name 

Q7 

Is the following statement true 

or false? 

“Given an integer number x, x 

is even or x is odd” 

Q8 

Is the following statement true 

or false? 

“The integer 15 is even or 15 is 

odd” 

Saul True True 

Eugene True True 

Leo True True 
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Table 5.13: Pre-Study Group 2 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A and B, what 

elements are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A or B, what 

elements are in C? 

Q11 

Consider any two sets, A 

and B. What does it 

mean for an element to 

not be an element of A 

and B? 

Saul 1,5,7,3,4,8 1,5,7,3,4,8 
It won't be part of C 

either 

Eugene 
Both elements in A and 

B will be within C. 

Both elements in A and 

B will be within C. 

The element would not 

be defined in either set 

A or B.  

Leo 

The elements in C are 

(1,5,7)(3,4,8). Which 

are the elements in A 

and B 

The elements in C are 

(1,5,7)(3,4,8).  

For an element to not be 

an element for A or B 

that element can't be 

those numbers in the 

list.  
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Table 5.14: Post-Study Group 2 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A and B, what 

elements are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A or B, what 

elements are in C? 

Q11 

Consider any two sets, A 

and B. What does it 

mean for an element to 

not be an element of A 

and B? 

Saul {3, 4, 8} 
{3, 4, 8} , 1, 5, 7, {1, 5, 

7} 

Any element besides {3, 

4, 8}. It's either in 

neither set or only one 

set.  

Eugene C= {{3,4,8}} 
C= 

{{1,5,7},{3,4,8},1,5,7} 

The element is not inside 

both sets A and B. 

Leo {{1,5,7},{3,4,8},1,5,7} {{3,4,8},{1,5,7},1,5,7} 

For an element to not be 

an element of A or B it 

has to differ in value. 

For example set B has 

elements of 1,5,7. If an 

element was not those 

values then it wouldn't 

be an element of B.  

 

Regarding Saul’s answer to Q11 in the post-study survey, Saul was answering the question 

with set B from Q9 and Q10 and follows up by saying that an element not in ‘A and B’ is 

either in A or in B or neither set. 
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Table 5.15: Pre-Study Group 2 Python Question 

Name 

Q12 

What would be the output of the following code in 

Python? 

city = "San Diego" 

for x in city:  

    print(x) 

Saul x 

Eugene San Diego 

Leo I'm not sure. 
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Table 5.16: Post-Study Group 2 Python Question 

Name 

Q12 

What would be the output of the following code in 

Python? 

prop = "proposition" 

for x in prop:   

    print(x)  

    if ((x == "o") or (x == "p")):      

        print(x) 

Saul 
o 

p 

Eugene proposition 

Leo o,p 

 

None of the students in Group 3 got the Python question correct, which was a bit surprising 

considering that I thought the students had a good grasp on the functionality of the For 

Loop. Obviously, Leo and Saul knew that ‘o,’ and ‘p’ were important and perhaps they 

missed the first print statement in the For Loop which would have caused each element in 

‘prop’ to be printed with the ‘o’ and the ‘p’ to be printed a second time each time it was 

run through the loop. 

Group 3 

On the pre-study survey, Delia and Juliana scored 5 and 2, respectively. On the 

post-study survey, they scored 6, and 4 respectively. I did have to support Delia and 

Juliana more than some of the other groups in the study, and I found it more difficult to 
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engage the students in discussions about these topics as they were not as likely to ask 

follow-up questions or challenge one another’s ideas.  

Table 5.17: Pre-Study Group 3 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a 

subset of 

S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of 

S? 

Delia Yes. 1,5,7,3 Yes Yes Yes Yes No 

Juliana Yes. 5,7,3  Yes Yes 
I'm not 

sure 
No Yes 
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Table 5.18: Post-Study Group 3 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a 

subset of 

S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of 

S? 

Delia Yes. 1,5,7,3 Yes Yes Yes Yes Yes 

Juliana Yes. 1,5,7,3 Yes Yes No Yes Yes 

 

As with the other groups, the subset questions (Q3, Q4, and Q6) seem to give the students 

the most trouble and the element questions (Q2 and Q5) seem to be easier to answer. 
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Table 5.19: Pre-Study Group 3 Logic Questions 

Name 

Q7 

Is the following statement true or 

false? 

“Given an integer number x, x is 

even or x is odd” 

Q8 

Is the following statement true or 

false? 

“The integer 15 is even or 15 is 

odd” 

Delia True False 

Juliana True False 

 

Table 5.20: Post-Study Group 3 Logic Questions 

Name 

Q7 

Is the following statement true or 

false? 

“Given an integer number x, x is 

even or x is odd” 

Q8 

Is the following statement true or 

false? 

“The integer 15 is even or 15 is 

odd” 

Delia True False 

Juliana True True 
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Table 5.21: Pre-Study Group 3 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 

8} }, B = {1, 5, 7, {3, 

4, 8} }. If we define C 

to be the set of 

elements that exist in A 

and B, what elements 

are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 

8} }, B = {1, 5, 7, {3, 

4, 8} }. If we define C 

to be the set of 

elements that exist in A 

or B, what elements 

are in C? 

Q11 

Consider any two sets, 

A and B. What does it 

mean for an element to 

not be an element of A 

and B? 

Delia im not sure im not sure  im not sure  

Juliana 
C={{1,5,7},{3,4,8}}, 

{1,5,7,{3,4,8}} 
No idea No idea 
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Table 5.22: Post-Study Group 3 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 

8} }, B = {1, 5, 7, {3, 

4, 8} }. If we define C 

to be the set of 

elements that exist in 

A and B, what 

elements are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 

8} }, B = {1, 5, 7, {3, 

4, 8} }. If we define C 

to be the set of 

elements that exist in 

A or B, what elements 

are in C? 

Q11 

Consider any two sets, 

A and B. What does it 

mean for an element 

to not be an element 

of A and B? 

Delia 1,5,7,3,4,8 1,5,7,3,4,8 

That means the 

element will not be 

found in A and B  

Juliana {1,5,7,3,4,8} 
{1,5,7,3,4,8,1,5,7,3,4,

8} 

it means that the 

element is not defined 

in either set A or B 

 

Delia’s answer to Q11 in the post-study survey was borderline for me in terms of whether 

she really understood the answer, especially after not answering Q9 correctly, which also 

uses the logical operator ‘and.’ However, she wasn't wrong, so I marked her answer as 

correct.  
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Table 5.23: Pre-Study Group 3 Python Question 

Name 

Q12 

What would be the output of the following code in 

Python? 

city = "San Diego" 

for x in city:  

    print(x) 

Delia 'San Diego' 

Juliana print(San Diego) 
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Table 5.24: Post-Study Group 3 Python Question 

Name 

Q12 

What would be the output of the following code in Python? 

prop = "proposition" 

for x in prop:   

    print(x)  

    if ((x == "o") or (x == "p")):      

        print(x) 

Delia 

p 

p 

r 

o 

o 

p 

p 

o 

o 

s 

I 

t 

I 

o 

o 

n 

Juliana {p,o} 

 

Group 4 

On the pre-study survey, Julian and Alonso both answered 3 questions correctly. 

On the post-study survey they scored 7, and 12 respectively. Alonso was the only student 

to answer all 12 questions correctly on the post-study survey. It was clear throughout the 

study that Alonso was highly interested in the material and was often quicker to pick up on 

some of the concepts than Julian. However, Alonso allowed space for Julian to voice his 

thoughts which ultimately led to differing ideas and an open dialogue between the two 
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students. As a result of their effective communication, we were able to have in-depth 

discussions about programming and the mathematical content at a much quicker pace than 

the other groups. 

Table 5.25: Pre-Study Group 4 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a 

subset of 

S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of 

S? 

Julian I'm not sure Yes Yes Yes No Yes 

Alonso 

Yes. I'm 

guessing but 

there are odd 

numbers that 

are between 1 

and ten such 

as 1,5,7,3 

Yes Yes 
I'm not 

sure 
Yes Yes 

 

 

 

 

 



 220 

Table 5.26: Post-Study Group 4 Set Theory Questions 

Name 

Q1 

A = { {1, 5, 7}, 

{3, 4, 8} }. Are 

any odd 

numbers 

between 1 and 

10 elements of 

set A? Please 

provide details 

with your 

answer. 

Q2 

S = {1, 3, 

{3, 4} }. Is 

3 an 

element of 

S? 

Q3 

S = {1, 3, 

{3, 4} }. Is 

3 a subset 

of S? 

Q4 

S = {1, 3, 

{3, 4} }. Is 

{3} a 

subset of 

S? 

Q5 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} an 

element of 

S? 

Q6 

S = {1, 3, 

{3, 4} }. Is 

{3, 4} a 

subset of 

S? 

Julian 

No. There are 

no number 

elements in set 

A rather there 

are group 

elements {1, 5, 

7} which are 

made as 1 

element and not 

as individual 

number 

elements.  

Yes Yes No Yes Yes 

Alonso 

No. The 

elements of set 

A are sets not 

integers. The 

sets that are 

elements have 

the odd 

numbers 1,5,7 

and 3. 

Yes No Yes Yes No 

 

Again, we see that the subset questions proved to be a challenge, with Julian not answering 

Q3, Q4, or Q6 correctly. 
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Table 5.27: Pre-Study Group 4 Logic Questions 

Name 

Q7 

Is the following statement true 

or false? 

“Given an integer number x, x 

is even or x is odd” 

Q8 

Is the following statement true 

or false? 

“The integer 15 is even or 15 is 

odd” 

Julian True False 

Alonso True I'm not sure 

 

Table 5.28: Post-Study Group 4 Logic Questions 

Name 

Q7 

Is the following statement true 

or false? 

“Given an integer number x, x 

is even or x is odd” 

Q8 

Is the following statement true 

or false? 

“The integer 15 is even or 15 is 

odd” 

Julian True False 

Alonso True True 
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Table 5.29: Pre-Study Group 4 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A and B, what 

elements are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A or B, what 

elements are in C? 

Q11 

Consider any two sets, A 

and B. What does it mean 

for an element to not be 

an element of A and B? 

Julian 3,4,8 1,5,7,3,4,8 I am not sure 

Alons

o 
not sure  not sure  I'm not sure  
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Table 5.30: Post-Study Group 4 Logic and Set Theory Questions 

Name 

Q9 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A and B, what 

elements are in C? 

Q10 

A = { {1, 5, 7}, {3, 4, 8} 

}, B = {1, 5, 7, {3, 4, 8} 

}. If we define C to be 

the set of elements that 

exist in A or B, what 

elements are in C? 

Q11 

Consider any two sets, A 

and B. What does it 

mean for an element to 

not be an element of A 

and B? 

Julia

n 

The elements in C 

would just be {3, 4, 8} 

because is is the only 

similar element as 1, 5, 

7 is not the same as {1, 

5 ,7} 

The elements in C 

would be 1, 5, 7, {1, 5, 

7}, {3, 4, 8} 

That means the element 

is not present in both A 

and B rather it is either 

present in A or B but not 

both.  

Alons

o 
{3,4,8} 

{ {1, 5, 7}, {3, 4, 8}  ,1, 

5, 7, {3, 4, 8} } 

 "and" is being used as a 

logical operator which 

means that the element 

is not in both the sets. 

That means the element 

could either be in one set 

or no sets.  

 

Both Julian and Alonso answered all of the combination logic and set theory questions 

correctly, which was an interesting result considering that Julian did not answer the subset 

questions earlier correctly. However, the combination logic and set theory questions did 

not explicitly ask about subsets, which is an oversight on my part in the design of these 

questions.  
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Table 5.31: Pre-Study Group 4 Python Question 

Name 

Q12 

What would be the output of the following code 

in Python? 

city = "San Diego" 

for x in city:  

    print(x) 

Julian print(San Diego) 

Alonso San Diego 

 

Table 5.32: Post-Study Group 4 Python Question 

Name 

Q12 

What would be the output of the following code in Python? 

prop = "proposition" 

for x in prop:   

    print(x)  

    if ((x == "o") or (x == "p")):      

        print(x) 

Julian (o, p, p, o, o,) 

Alonso 
not enough lines to show realistic output in console. Would 

print pprooppoositioon but it would be arranged vertically  

 

While there should have been enough space in the console for Alonso to write out his 

answer, his description of the output is entirely correct. As for Julian’s answer, it is 
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interesting that there are multiple ‘p’s and ‘o’s in his answer which indicates some idea of 

an iteration through ‘prop,’ I am just not entirely sure how he came to that answer.  

Summary 

Below is a table of the results of the pre-study survey and the post-study survey. 

Table 5.33: Pre-Study and Post-Study Results (number of correct responses) 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

Pre - 

Study 
0 10 0 3 7 1 10 3 0 0 1 0 

Post - 

Study 
5 10 4 3 10 2 10 7 6 7 8 4 

 

All of the students on the pre-study survey answered Q2 correctly, indicating that ‘3’ is an 

element of  ‘S = {1, 3, {3, 4}}.’ My hypothesis as to why all of the students answered Q2 

correctly is that the students relied on their colloquial understanding of what an “element” 

is, which is synonymous with “component,” “part,” or “constituent.” Similarly, we see that 

seven out of the 10 students answered Q5 correct on the pre-study survey, which asked 

whether ‘{3, 4}’ is an element of S. With the idea that “element” is synonymous with 

“component,” “part,” or “constituent,” it is sensible that the students were able to identify 

an object in a set (whether that be an integer or a set) and were successful on those two 

questions before the study took place. All of the students also answered Q7 correctly, 

claiming that the statement “Given an integer number x, x is even or x is odd” is True. 

Additionally, only three students answered Q8 correctly on the pre-study survey which 

asked whether or not the statement “The integer 15 is even or 15 is odd” is true or false. 
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These results are further evidence of Dawkins and Cook’s (2017) Part False-All False 

Heuristic in which the presence of one false statement in a disjunction is reason for 

students to declare the whole disjunction false.  

The three questions that students struggled with most were Q3, Q4, and Q6 asking 

whether ‘3,’ ‘{3},’ and ‘{3,4}’ are subsets of S. Given the lack of coherence in the 

instructional task sequence on subsets, it was not entirely surprising to see these results. 

The results from Q3, Q4, and Q6 support a need to revise the task sequence on subsets and 

find a better way to introduce the idea of subsets instead of using the set intersection task 

to promote students’ situational mathematical activity. Compared to the concept of 

elements of a set, the students were provided with minimal learning opportunities to 

construct their own understanding of what it means for a set to be a subset of another set. 

Most of what we discussed during the TE sessions focused on the elements of a set, either 

finding the cardinality, adding elements to a set or finding the intersection and union of 

sets and discussing the elements that belonged in the new set. All of these ideas focus on 

the elements as the primary property of the set. It wasn’t until the last session or the 

penultimate session for some groups did we discuss what it means for a set to be a subset. 

With that said, it is peculiar that only half of the students answered Q1 correctly on the 

post-study survey asking about the elements of the defined set, A. It could just be that 

asking the students to extrapolate about the properties of a set and provide a justification 

for their reasoning is a more difficult question to answer than answering a true or false 

question.  
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The greatest improvements were on items Q9, Q10, and Q11, with six, seven and 

seven additional correct answers, respectively. The structure of Q9, Q10, and Q11 were 

similar to the structure of the questions that the students were asked to solve during the TE. 

That is, we spent most of our time working with set theory and logic in the same context, 

which could be the reason for the students’ success on these questions. In terms of learning 

opportunities, the idea of the For Loop with an If Statement to filter for certain elements 

was a major focus of discussion and opportunity for students to build an understanding of 

set relationships such as union and intersection. The average score on the pre-study survey 

for the students was 3.5 and the average score on the post-study survey was 7.6, more than 

double that of the pre-study survey.  
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Chapter 6: Confidence and Mathematical Identity 

The purpose of this chapter is to address RQ3: How does the use of Python to learn 

mathematics, in a small-group collaborative setting, influence students’ affective 

experiences and the development of their mathematical identity? This chapter is divided 

into four sections, one for each group, with subsections for each research participant. As 

outlined in Chapter 3, there are five units of analysis with respect to the students’ affective 

experiences. The first is the main component of analysis, which is the documentation of a 

quantitative change in their pre-study and post-study ATMLQ results. Changes in the 

students’ responses from the pre-study questionnaire to the post-study questionnaire, which 

are presented as a difference, reveal a shift in their confidence and interest as learners and 

doers with respect to three categories: mathematics, computers and programming, and 

programming to learn mathematics. The second, third and fourth units of analyses are 

smaller components which are used to provide a more robust qualitative description of 

their dynamic mathematical identities. Lastly, their open-ended responses to the 

questionnaire are presented to document their final thoughts on their experiences in the 

study. For each student, a summary table is presented to provide an overview of their 

experience and characterization of their shifting mathematical identity in this study, as well 

as individual histogram charts to highlight the three different blocks of the ATMLQ.  

Given that there are only ten research participants in this study, generalizable 

conclusions from the ATMLQ cannot be made. However, analysis of each student’s 

responses can serve as a component of the bigger-picture description of their affective 

experiences. As a reminder, analysis of the questionnaire items was conducted to document 
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a positive or negative shift in their attitude towards mathematics, computers and 

programming. For example, consider the following item on the questionnaire, “I find 

mathematics frightening.” If the student’s response to this question on the pre-study 

questionnaire was “Strongly Agree” (-2) and their response to this question on the post-

study questionnaire was “Strongly Disagree” (2), then they had a positive shift of four 

units (2- (-2)) for that question in the Mathematics block of questions. This analysis was 

conducted for each question on the questionnaire for each student. For the students in my 

study, the average score on the mathematics block of questions on the pre-study 

questionnaire was 6.9, post-study was 9.3. The average score on the computers and 

programming block of questions on the pre-study questionnaire was 10.2, post-study was 

10.5. Lastly, the average score on the programming to learn mathematics block of 

questions on the pre-study questionnaire was 8.3, post-study was 11.8. 

Group 1   

Group 1 was composed of Haven, Judith and Palmer. There were two main reasons 

why I grouped these students together, the first is that all of the students identified as first-

generation college students, and the second is that I wanted to make sure that there were at 

least two women in a group of three. Additionally, all these students identified as white, 

which made me more inclined to group the only white man in my study with the two white 

women. Both Judith and Palmer kept their cameras turned off throughout the duration of 

the study and Haven kept her camera on. In the first session I told the students that if they 

feel comfortable, they can turn their cameras on, but Judith and Palmer never did. Given 

that Judith and Palmer’s cameras were turned off, it was much harder for me to get a read 
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on how they were receiving the material, and it felt difficult to build community among the 

students.  

Haven 

 Haven’s mathematical identity development can be described as a significant shift, 

from coming into the study and seeing herself as a low performer in mathematics to seeing 

herself as someone that can do math and programming. Based on the questionnaire results, 

Haven had the greatest positive shift in her mathematical confidence and interest from pre-

study to post-study with a difference of 32 points. This result was initially unexpected, as 

Haven was seemingly the least confident and not as strong mathematically compared to her 

partners throughout the duration of the study. However, after analyzing Haven’s reflections 

after each TE session, Haven always had a positive attitude and seemed to really enjoy 

learning new material. A summary of Haven’s affective experiences is presented in Table 

6.1.  

Table 6.1: Haven’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics +8 

Not confident 

in her answers, 

but not afraid 

to guess to get 

a conversation 

started 

Allowed space 

for others 

 

Made it clear she 

found the tasks 

to difficult  

Positive 

attitude with 

the tasks 

 

Excited to 

participate 

 

Interested in 

new 

mathematics 

Computers 

and 

Programmin

g 

+12 

Programmin

g to Learn 

Math 

+12 
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As a reminder, the summary tables presented in this chapter represent a synthesis of the 

data collected and analyzed related to each student’s affective experiences. For example, in 

analyzing the data, I constructed a larger table that contained quotes by Haven that related 

to each of the above columns or notes that I took as part of my descriptive accounts of each 

session. These notes and quotes were then pared down to reflect the most salient ideas 

related to Haven’s affective experiences. Haven was always upbeat and excited to 

participate throughout the study. Usually in the first few minutes of informal conversation 

time she would talk about her classes and discuss any upcoming tests that she was either 

looking forward to or nervous about. During the TE, if there was a long pause and none of 

the students quite knew what the correct approach was, Haven typically jumped in and 

offered an idea even though she wasn’t quite confident in her answer. For example, we had 

a proposition, ‘p = “dog” in setA’ which was a True proposition, and I asked the students 

what they thought ‘print(p)’ would produce (this was on the first day of the TE). There was 

a long pause before the following exchange occurred: 

Haven: I want to guess that it's going to print ‘dog.’ Or maybe say ‘True.’ I 

can’t tell the difference between the propositions and then when it just 

[prints it], you know? 

Interviewer: Yeah totally, does anybody want to tag in on that one? 

Palmer: I think it will say ‘True.’ 

Interviewer: Okay, and why do you think that? 

Palmer: Because it's printing ‘p,’ and ‘p’ is a proposition. Kind of like 

declaring that this element is in the set.  

 

Before the ‘print(p)’ command, we had seen other print statements such as ‘print(hello)’ 

which would print out the string ‘hello.’ Haven wasn’t sure whether the print statement 

would print out the string ‘dog,’ or evaluate the proposition, but she offered her thoughts 
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on the question anyway. Haven’s contribution ultimately prompted Palmer to provide his 

thoughts, which when we ran the print statement, proved correct. After the first session of 

the TE, I asked all of the students to reflect on the day’s activities and comment on their 

thoughts about how the first day went, Haven’s response is a great example of the 

excitement that she brought each day to our sessions: 

I mean this stuff is really cool, I’ve never seen this stuff before. Like that 

percentage sign [modulus] thing, I was like ‘oh my mind is blown.’ And 

then even at the end, I was like ‘whoa,’ relating [the logical operators] to 

math and stuff. So, yeah I’m excited to learn more! 

 

As we started to get more and more into programming, introducing For Loops and If 

Statements, Haven seemed to need slightly more help than her peers, but always kept a 

positive attitude and felt comfortable asking questions when she needed to or letting 

everyone know that she wasn’t sure what was going on. In one instance, I asked the group 

how we would find the intersection of three sets using Python, and Haven responded 

immediately by saying “I’m not quite sure…I’m kind of getting ‘lost in the sauce’ now. 

There’s a lot [to think about].” Haven made the comment with a smile on her face and her 

honesty lightened the mood as Judith joined in with Haven in her laughter. Haven never 

seemed embarrassed when she didn’t quite understand something, and at the end of 

Session 3, Haven commented on her interest with the programming ideas: 

This stuff keeps getting cooler. It's crazy how- you mentioned before, with 

the 'range()' and how it will just do all this math and spit out all these 

numbers super fast. And you can have one line do all that instead of working 

more for it. So, that's kind of cool. And even...yeah, I don't know. I'm still 

wrapping my head around the whole For Looping stuff.  

 

Haven acknowledged that she was still trying to understand how the For Loop was 

working, but she still commented on how the material “keeps getting cooler.”  Haven’s 
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interest in the mathematics we were exploring, as well as her desire to understand the 

programming material, are likely the reasons why there was such a large difference in her 

ATMLQ results. Haven’s ATMLQ results are presented below in Figure 6.1. 

 

Figure 6.1: Haven’s Pre and Post ATMLQ Results 

 

Haven came into the study with a low sense of confidence and interest in 

mathematics, reporting a score of -10 on the ATMLQ, but by the end of the study, Haven 

experienced a positive growth to -2. The greatest shifts occurred with respect to Haven’s 

perspectives on computers and programming, and programming to learn math, each with a 

positive shift of 12 points. Given her participation throughout the study, her results are not 

surprising; even though Haven was not always correct or confident in her answers, she 

gave her best effort and found a genuine interest in the material. Haven’s responses to the 

free-response questions at the end of the post-study ATMLQ are presented below, offering 

a more detailed look at how she perceived her experience as a research participant. 
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In response to the question, “What was your favorite part about participating in this 

study?” Haven said, “I got to learn some basics of set theory in python. The people in my 

group were great and always kept me on my toes. This was something new and exciting for 

me to learn.” While there wasn’t a specific topic that Haven called out as being her 

favorite, again she reflects a general interest and excitement in her experience. In response 

to “What was your least favorite part about participating in this study?” Haven had the 

following to say: 

Trying to work around everyone's schedule can definitely be difficult but for 

me. This was the 6th zoom call of the day for me on Wednesdays and 

sometimes I dreaded going to it but it always turned out to be worth it and 

time always flew by in the sessions it seemed. Usually I hate hate hate cold 

calling in my classes but I know you needed our input and actually it wasn't 

bad. I didn't mind it for this setting. You were very patient with our answers. 

 

Haven mentions that she hates cold-calling (calling on someone for an answer without 

them volunteering), but she also said that for this study, “it wasn’t bad.” I did my best to let 

the students know that it was okay to not know the answer and that when I called them, I 

was really just interested in how they were thinking about the material. She also mentions 

that she had six Zoom meetings on the days that Group 1 met. At the time of data 

collection, everything was still virtual in terms of meetings and classes, so, “Zoom fatigue” 

was certainly a very real factor that was likely affecting many of the students in the study. 

Relatedly, the third open-ended question addressed the virtual nature of data collection, 

“What are your thoughts on working collaboratively with others in the Zoom virtual 

setting?” Haven’s response primarily addressed her experience in terms of logistics: 
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I thought the zoom setting was great. It made this really accessible for me 

and easy to be a part of. It's just the click of a link. Sometimes I wish the 

other people would have had their cameras on but it really wasn't a huge 

deal. 

 

As mentioned, Judith and Palmer had their cameras turned off throughout the duration of 

the study. I also thought that the group would have benefited if everyone’s cameras were 

on, but I did not want to press the issue. The last question asked about the student’s 

identity, “What about you or your identity contributed to your success in this study?” 

Haven reflected on her identity as someone that gives 100%: 

I'm a really passionate person like when I'm doing something I enjoy, I go 

all in. No distractions. I felt like this was just new enough and exciting 

enough for me that I was able to really dive in and focus a lot on it.  

 

Haven’s response reflects the main takeaway, that her positivity, excitement and interest 

really helped her succeed and ultimately led to large shifts in her perspectives on 

mathematics, computers and programming to learn mathematics.  

Judith 

Judith’s mathematical identity development can be described as one of maintaining 

a strong sense as a mathematician and a growing interest in how programming can relate to 

mathematics. Across the three blocks of her ATMLQ results, Judith scored the highest in 

mathematics for both the pre-study questionnaire and the post-study questionnaire. Judith 

typically wasn’t the first to offer a solution to a task, but when she did, she was usually 

right. Also, when Judith did provide an answer, most of the time her answer was phrased 

as a question, indicating a lack of confidence. For example, in the first session I asked if 

anyone had any thoughts on what the command, ‘B.add(‘whale’)’ would do, Judith 

responded by saying, “Yeah it’s going to add ‘whale’ to set B maybe? Or not inside the- 
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wait, I don't know. And then there would be seven elements, maybe?” Judith’s reasoning 

was correct, the ‘.add()’ function adds the argument to the specified set, but like this one, 

many of her contributions were qualified with a “maybe” or “I don’t know,” even though 

she was right. A summary of Judith’s affective experiences is presented in Table 6.2. 

Table 6.2: Judith’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of 

Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematic

s 
+5 

Semi-

confident in 

her 

answers, 

typically 

not the first 

to volunteer 

an answer, 

and her 

answers 

were most 

often 

correct 

Knew when 

she was wrong  

 

Tended to 

think out loud 

to start a 

conversation 

about a 

difficult task 

Positive attitude 

with the tasks 

 

Strong interest 

in mathematics 

and found 

connections 

between 

programming 

and 

mathematics 

Computers 

and 

Programmi

ng 

+3 

Programmi

ng to Learn 

Math 

+3 

 

Judith often found ways to relate what we were doing to something that she had 

seen before in her mathematics classes. For example, when the students were first learning 

about the ‘and’ and ‘or’ logical operators, Judith commented that the operators were 

functioning in a similar way to the union (⋃) and intersection (⋂), where the union is 

commonly used in Precalculus and Calculus classes to discuss the domain and range of 

functions:  

It reminds me of the thing in math where you have the thing in parentheses, 

and then you have the ‘U looking thing.’ That means like 'or' and then you 

have the two parentheses, and you have the ‘and looking thing’ in between 

the two sets of parentheses that mean this and that. So, I was thinking, like 
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the 'p or r' since both ‘p’ and ‘r’ exist, it’ll either be True or False and since 

True falls in True [or] False, True is- it's True you know? And then the ‘p 

and r,’ it can't be both True and False. If that makes any sense. 

 

It was interesting that Judith brought up this idea in the first session, before we had even 

gotten to union and intersection of sets. Relating the ‘or’ and ‘and’ operators to the union 

and intersection was the goal of the TE and Judith saw the connection way ahead of what I 

had planned. Given that Judith had seen the union and intersection in a previous 

mathematics class, it is worth considering the influence this may have had in terms of her 

participation and ideas throughout the study. If Judith had a strong understanding of union 

and intersection before the study, then her contributions should be reanalyzed. However, 

since Judith refers to the union as the “U looking thing,” this makes me question the 

significance or meaning that the union actually had for Judith as well as the other students 

in the study. At the end of the first session, Judith’s reflection highlighted her interest in 

mathematics, “I think it's super cool. I like math a lot, so it’s cool to do this kind of stuff.” 

She also called out her interest in mathematics and enjoyment in finding connections to 

mathematics at the end of the third session, “I think it's super cool. I like when you 

introduce a new topic. I’m trying to figure out like, ‘Oh, how does this connect to math’ or 

something. It’s really cool.” As mentioned, Judith came into the study with a high sense of 

confidence and interest in mathematics, and she reported even greater confidence and 

interest after the study. Her results on the ATMLQ are presented in Figure 6.2. 
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Figure 6.2: Judith’s Pre and Post ATMLQ Results 

 

Judith showed gains in every block on the ATMLQ from the pre-study questionnaire to the 

post-study questionnaire, with a five-point gain in mathematics, and three point gains in 

computers and programming, and programming to learn math. Given that there were not 

any major shifts in her scores, my hypothesis is that this experience solidified (if not 

bolstered) her belief and confidence in herself as a mathematician and supported her 

interest in programming. The only time Judith mentioned anything about her participation 

and contributions in the study was her reflection about the entire experience after Session 

5: 

I liked it a lot. It’s definitely something that I feel super engaged in, which is 

super cool. Because whenever I have this meeting thing I’m always paying 

100% attention to what's going on. And I liked that you would like- you’re 

active about participation, you're like ‘Oh Haven what do you think? Or 

Judith, Palmer? What do you think?’ I liked that. It was cool. Yeah, it's been 

a good experience.  
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Judith addressed my approach to engaging the students, in that I would never immediately 

evaluate a student’s response by saying “that’s not right,” or “good job” and move on. 

Instead, I would ask each student what they were thinking, which was helpful to hear from 

all of the students, but I have also realized that this approach did not give the students a 

chance to reflect on their incorrect answers. The times that Judith did provide a wrong 

answer (which was very rare) she would typically give her answer as more of a think-out-

loud explanation of the process. I found two examples that represent this phenomenon. In 

the first example, I asked the students how we might go about finding all of the unique 

elements between three different sets. Judith responded by saying the following: 

Well, I was thinking you could just copy and paste. Like make another set 

D, and then copy and paste everything from A, B, and C in it. But that might 

be hard in practice if there were like a lot of really big sets or something. 

 

Judith’s reasoning isn’t wrong, but the goal was to use Python in a way that would simplify 

this process, and as Judith mentioned, copy and pasting would be difficult if you were 

working with large sets. In another example, I asked the students how we would find the 

intersection of three sets and the students got to a point where they knew that they wanted 

to use a For Loop and an If Statement to find the common elements. However, they 

weren’t sure how to filter for the ones they wanted, so I wrote the ‘and’ operator in the 

second line of the following code:  

for x in A: 

 if       and      : 

 

In the following exchange, Judith doesn’t provide the right answer and immediately 

follows up her answer with an out-loud explanation as to why she is wrong: 
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Judith: What you wrote with the ‘and’ makes a lot of sense because instead 

of the ‘or’ we’re using ‘and’ because we’re finding what is in sets A, B and 

C. 

Interviewer: Okay, and so, what do you think would go in these missing 

spaces here. 

Judith: ‘Chips’ and ‘6,’ but I mean… I guess we would have to know that 

‘chips’ and ‘6’ are repeated, but we might not know that for larger sets.  

 

Judith’s first response was correct, we need the ‘and’ operator to filter across all three sets, 

but what should go in the missing spaces is ‘x in B’ and ‘x in C.’ Judith knew that ‘chips’ 

and ‘6’ couldn’t go in the missing spaces because we would have to know beforehand that 

‘chips’ and ‘6’ were the only two elements common across all three sets. Judith’s think-

out-loud process was very helpful to engage the other students in the conversation as I 

would follow up Judith’s response by asking one of the other students to reflect on Judith’s 

thought processes.  

As for Judith’s open-ended responses, Judith’s perspective on her favorite part 

about the study was that “This study was super interesting and engaging. Looking for the 

connections to mathematics and learning a new skill were probably my favorite things 

about this study.” Judith didn’t have anything that she wanted to share about her least 

favorite part of participating as she put “N/A.” As for her perspective on working on 

Zoom, she said that she, “would prefer in person, but working collaboratively on zoom is 

definitely a great substitute, given the current state of things.” I thought her preference to 

be in person was a little surprising as Judith had her camera off throughout the entire study, 

but perhaps Judith was working in a physical space with others (like a dorm room or 

common living area with family) which could have been distracting for the other 

participants. Lastly, in response to the question “What about you or your identity 
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contributed to your success in this study?” Judith responded, “My interest in the topic. I 

love Math and Linguistics, and computer programming languages give me a bit of both.” 

For Judith, this experience solidified her positive sense of mathematical identity as a 

capable learner and doer of mathematics. Her ideas furthered the mathematical agenda, and 

my impression was that she was well-respected in the group as we all quickly learned that 

Judith was usually right when she answered a question.  

Palmer 

 Palmer’s mathematical identity development can be described as a process of 

maintaining a positive sense of mathematical identity and finding an appreciation in how 

complex programming can be. Across all of the students in this study, Palmer scored the 

highest in the computers and programming block for both the pre-study questionnaire and 

the post-study questionnaire with scores of 26 and 16, respectively. 26 was the highest 

possible score on the computers and programming block of the questionnaire, which 

showed a great deal of confidence in his ability to understand computers and interest in 

programming. His confidence came through in his participation as Palmer was generally 

sure of himself in his answers and not afraid to voice his opinion, but not in a rude or 

overly confident way, it was just clear that he enjoyed participating. For example, in the 

first session I asked if anyone had any ideas what ‘print(21 % 5)’ would produce, and 

Palmer was the first to offer his thoughts, “I have two ideas. The first one, maybe it will 

divide [21] by [5]. My other idea was maybe it would find 21% of five.” Neither of 

Palmer’s guesses were correct, but his thoughts spurred the others to throw out their own 

ideas too. Another instance of Palmer’s confidence came at the beginning of the third 
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session when I asked the students to reflect on their experiences up to that point in which 

he said, “I feel like it’s kind of easy to pick up. As we've been going through, nothing 

seems too complicated so far.” A summary of Palmer’s affective characterization is 

presented in Table 6.3 below.  

Table 6.3: Palmer’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics -2 
Confident in his 

answers 

 

Confident in his 

ability to 

understand the 

material 

 Appreciated 

difficult tasks 

and was most 

engaged when 

the group was 

struggling 

Belief in 

himself to 

learn the 

material 

 

Curious  

 

Overwhelmed 

at the end 

Computers and 

Programming 
-10 

Programming to 

Learn Math 
+4 

 

Throughout the study Palmer was very even-keel and nothing seemed to faze him. He did 

have his camera turned off and he was muted until he wanted to say something, but that 

was just representative of his approach to learning. That is, he didn’t have much to say, but 

I could tell that he was actively listening to me and his partners because he always made 

productive contributions, either in the form of a question or an answer. In his reflection on 

the first TE session, Palmer said the following: 

I’m in the same boat as Haven and Judith. I think when we were doing this, 

I was seeing a whole bunch of concepts that I learned all throughout high 

school and college here. They're kind of like...I don't know, I noticed them 

being used in a different way. It was like a new perspective.  
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So, like Judith, Palmer also was able to see connections between what he was learning in 

the TE and what he had seen in his previous mathematics classes. After the third session, 

Palmer still had a positive perspective on the material: 

Palmer: Everything is kind of like building upon each other, like every little 

facet of the coding. So as we go on it never gets that hard because we’re just 

introduced to new topics one at a time. 

Interviewer: And do you think that's manageable for you, or is it too fast? 

Are things moving too fast? 

Palmer: No I think it’s really manageable because it makes it really easy to 

kind of backtrack a little. If a new topic does seem a little confusing at first, 

I just have to look at what we did before, and then kind of see what's 

changing- like when you introduced the For [Loop]   

 

At this point in the TE, Palmer is still feeling good about programming and feels that 

everything is building nicely, which from a design perspective, is good feedback to hear. 

However, once we reached the fourth and fifth TE sessions, Palmer indicated that the new 

material was starting to become more challenging as we were putting everything together 

to solve specific tasks related to set theory: 

I feel like today was a little more challenging. Especially with the week off, 

I’m kind of forgetting all the different options I have now. At the beginning 

it was only one at a time and now it’s like all of the different- you have to 

apply everything now. So, it’s kind of overwhelming. 

 

There was a definite shift in Palmer’s attitude towards the material after Session 4 in which 

we started to solve problems related to set theory using Python. Figure 6.3 shows his pre 

and post ATMLQ scores. 
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Figure 6.3: Palmer’s Pre and Post ATMLQ Results 

 

My interpretation of his results is that he maintained his identity as a confident learner and 

doer of mathematics (even though he dropped two points) and gained a deeper appreciation 

for the complexity of computers and how they can be used to program and solve problems. 

As noted previously, 26 is the highest one could score on the computers and programming 

block, it is likely that after his experience in the TE, he realized how much he didn’t know 

about computers and programming, which dropped his confidence down 10 points. 

However, his score of 16 on the post-study questionnaire on the computers and 

programming block was still the highest out of any of the students in the study.  

 Even though Palmer seemed to experience a shift in his perspective on computers 

and programming, his reflection after the last session shows how much he valued his time 

as a research participant: 
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I'm really glad I signed up for this. I think at first I just kind of saw it as 

another thing to do throughout the week for school, But it was really 

interesting to kind of dive into a new topic I really have no background in 

and learn a little bit about Python. And maybe in the future I’ll take another 

class or something to learn more.  

 

The sentiment in his reflection was echoed in his description of his favorite part of 

participating in the study, “My favorite part of the study was learning about python and 

how it works, I hope to learn more and use it in the future.” In line with my interpretation 

of Palmer’s experience, his least favorite part of the study was, “when at the end we had all 

of these terms and coding techniques all coming together and it all became very 

overwhelming and confusing near the end.” As for his experience working virtually, 

Palmer said, “I think Zoom works best when it’s small groups of people collaborating like 

we did during this study, so I feel it didn't cause any trouble for me and I enjoyed working 

with everyone.” Lastly, even though Palmer thought that the end was overwhelming and 

confusing, he still found interest in the material and he was motivated to continue learning. 

He attributes his success to his “background of using computers for most of my life and 

my interest in mathematics, that allowed for me to succeed in this study.” Similar to Judith, 

Palmer attributes part of his success to his interest in mathematics, a direct predictor of 

positive mathematical identity. Interpreting Palmer’s total score difference from pre-study 

ATMLQ to post-study ATMLQ of -8 points, I see this negative shift as more of a 

reflection of his appreciation and understanding of how much can be done with computers 

and programming. As noted, his post-study ATMLQ on the computers and programming 

block of questions was still the highest out of all the students in the study, even after it had 

dropped 10 points. 
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Group 2   

The students in Group 2 were Saul, Eugene and Leo. All three identified as men, 

Eugene and Leo identified as Hispanic or Latinx, first-generation, commuter students and 

Saul identified as East Asian and white. All three of the students kept their cameras turned 

on throughout the duration of the study, except for when I asked Leo to turn his camera off 

three times about halfway to three quarters of the way through the second, third and fourth 

sessions due to poor connectivity issues. Generally, I would describe Group 2 as a group of 

students with a predisposed interest in STEM as they all brought an energy to each session 

that was unlike the other groups in the study. More specifically, there were instances in 

which we were all laughing, and it seemed that the students were genuinely having a good 

time. First I present a characterization of Saul’s affective experiences, followed by Eugene 

and Leo.   

Saul 

Saul was the quietest participant in Group 2 in that he was hardly ever the first to 

speak up unless I asked for his thoughts. However, he wasn’t afraid to voice his ideas 

when asked to. His mathematical identity during the study can be described as a high 

positive belief in his mathematical ability with a newly developed interest in computing 

and programming. I would characterize Saul’s approach to the material throughout the 

study as positive, reflective and confident. He did not seem phased when he answered 

something wrong, instead he would often sit back, smile, and think about why he was 

wrong. In the moment, and now upon analysis, I interpret his smile as enjoyment for trying 
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to solve a difficult task, not as embarrassment or anything else. Saul’s affective 

experiences characterization can be found in Table 6.4. 

Table 6.4: Saul’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics +1 

Confident in 

his ability to 

solve the 

tasks 

Not bothered 

with being 

wrong 

 

Enjoyed 

working on 

difficult tasks 

Positive 

attitude  

 

Interested 

 

Happy 

Computers and 

Programming 
+3 

Programming to 

Learn Math 
+6 

 

Even though Saul was pretty quiet compared to his group I knew that he was intently 

listening because of his ability to rephrase or clarify his partners’ ideas into his own words. 

For example, in one instance, the students were given the sets A and D where each set 

contained 12 elements and I asked what would happen if we added set A to set D. The 

group came to two possible scenarios, one is that we can write a For Loop to add the 

elements of set A to set D, as follows: 

for x in A: 

 D.add(x) 

 

Another scenario was the one in which we added the entire set A (as an element) to set D 

by making A a ‘frozenset’ in Python and adding it to D by using ‘D.add(A)’ which resulted 

in the following exchange: 
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Interviewer: What's different about set D, as compared to what we did 

earlier where we did 'for x in A?'  

Leo: You don't have to do another For Loop? 

Interviewer: We don't have to do another For Loop, but also let's take a 

look at the length of set D, the length is being reported as 13. 

Leo: Oh it’s not adding the actual- it's just like adding one. Like set A would 

just be value one. 

Interviewer: Yeah... Saul, can you rephrase that? When Leo is saying it’s 

adding “value one,” what is he referring to? 

Saul: I think it’s counting set A as one element so it’s counting all 12 

[elements] of B and then it’s adding basically one element which is set A to 

make it 13.  

 

As the above exchange demonstrated, Saul was often able to not only rephrase another 

student’s ideas, but also provide additional rationale as to why certain code produced a 

specific output. As for the learning of Python, Saul was particularly in favor of the PRIMM 

method of instruction, which he described after the second TE session: 

I was going to say the ‘and’ and ‘or’ made a lot more sense today because 

we were practicing it and then the parentheses [using parentheses in a 

logical statement], once you start thinking about it compared to math where 

you do the parentheses first [order of operations] then I started getting that 

too. So I think it really helps that we kind of guess what it’s going to be first 

and then we run it and see what it is, and then we alter our predictions or 

whatever.  

 

The fact that Saul explicitly addressed this method of instruction shows me that he was 

acutely aware of his own learning process which included making mistakes and having the 

opportunity to find the reasons why he made those mistakes. Saul echoed this sentiment in 

his answer to the free-response question on the final survey about his favorite aspect of 

participating in the study: 

I like the way we learned how to program. It was a lot of testing to figure 

things out rather than just given a list of what everything does. For that it 

made the learning process a lot more interesting and fun.  
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 During the rollout of the study and the TE sessions with Group 2, I wasn’t completely sure 

how Saul was doing in terms of his interest and enjoyment participating in this study. That 

is, during the first two sessions Saul was often quiet and leaned back in his chair, which 

was an indication for me that he might be experiencing a lack of interest with the material. 

However, after the third session, I figured that Saul was just deep in thought and preferred 

to sit quietly with his own ideas and listen to others. Now, having revisited the data, I 

would certainly say that this is true. After the third session, Saul reflected on how the 

material was getting harder and how he was dealing with this fact: 

Since we are adding more and more to our knowledge, then we’re having 

more steps to follow for each [activity]. So, kind of trying to figure out why 

it’s computing some things takes a little bit longer. Like the last [activity], I 

didn't really realize why until the very end, but before that I was kind of- I 

didn’t really even have a guess. But the more I looked at it, then I was like, 

"Ohh." So, it just took me a little longer.  

 

Saul described his experience of progressing through the TE as “having more steps to 

follow” for the tasks that I was giving them, which I am interpreting as “more things to 

consider” rather than “steps.” There wasn’t a step-by-step approach that I was encouraging 

the students to follow. It is likely that Saul was having difficulty managing all of the 

different concepts at one time and thus needed more time to reflect on what he knows and 

how that could help him solve the problem. In contrast, this idea of using what they know 

to solve the problem is something that I stressed often with the research participants. Saul’s 

free-response answer about his least favorite aspect of participating in this study addresses 

this idea of managing all of the different concepts at once: 
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There wasn’t anything really bad. The only thing I would say is it was 

sometimes a bit hard to remember at first exactly what we learned in the 

previous meeting since it was a week apart, but after a little refresher it all 

came back.  

 

After the final session, Saul’s reflection on his whole experience alluded to the desired 

outcome with the push for computing/programming and computational thinking in 

mathematics: 

I would just say after this session especially, I could see how you have to 

come from a pretty [good] mathematical background to understand how the 

[programming] language kind of- not like specific parts of the 

[programming] language, but how to incorporate it into what you're doing.  

 

Saul’s perspective is in line with the goal of infusing programming into the mathematics 

curricula; understanding how a given piece of mathematics fits together with other ideas is 

one thing, having to construct an algorithm to solve a mathematical problem using Python 

(or any other programming language) is a completely different concept. This requires 

intimate knowledge of the mathematics and understanding the goal of the solution to a 

mathematical problem. In terms of Saul’s experience working collaboratively over Zoom, 

he seemed to warm up to the idea and understood how it can be useful: 

At first I was a little skeptical but now I see it is possible. Although I do 

favor working in person and talking with others personally, I do see how a 

virtual setting has some potential to be used more often for convenience.  

 

In response to how his identity contributed to his success, Saul said: 

I really enjoy math and learning new topics in math. I see a lot of 

similarities in programming with math as some of it is kind of like a 

practice/method. There’s always some sort of problem and you must find 

the solution. However, sometimes there are different ways to solve it, and 

that's why I think I enjoyed it.  
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Like others in the study, Saul’s interest in mathematics helped him succeed in this study, as 

he was determined and made a concerted effort to understand the material, even if it took 

him longer than he was used to or longer than his peers. His positive sense of mathematical 

identity is reflected in the ATMLQ results in Figure 6.4 as he came into the study reporting 

strong positive mathematical confidence and interest and finished the study reporting 

almost no change.  

 

Figure 6.4: Saul’s Pre and Post ATMLQ Results 

 

Lastly, Saul’s interest in problem solving and investigating the output to understand why 

his ideas were initially incorrect led to a shift in 6 points from the pre-study questionnaire 

to the post-study questionnaire on the programming to learn mathematics block of 

questions. Overall, Saul experienced a positive shift of 10 points from his pre-study 
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ATMLQ to the post-study ATMLQ, which shows a growth in his own sense of 

mathematical and computational confidence and interest. 

Eugene 

Eugene was by far the most vocal student in Group 2 in that when he talked he 

gave longer descriptions of his thought processes and tended to answer the question in as 

much detail as possible. However, Eugene also created space for the other students as he 

was typically faster to catch on to the material, but would give Leo or Saul an opportunity 

to answer the question first before he did. When the group was stuck, I would often go to 

Eugene to ask his thoughts to get us back on track, and if Eugene didn’t know the answer, 

then I knew that we had to go back or clarify something else. I would describe Eugene’s 

mathematical identity development as one that came into the study confident and remained 

stable in terms of his ability to do math and understand computers and programming. His 

mathematical identity was also reflected in his pride and his confidence to catch on quickly 

to new material. Eugene’s affective experiences are characterized in Table 6.5. 
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Table 6.5: Eugene’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics 0 

Confident in 

his ability to 

understand 

material 

quickly 

 Quickly 

corrected his 

own errors or 

and had a 

positive outlook 

in the value of 

mistakes  

Positive 

 

Excited to 

learn new 

mathematics 

 

Enjoyed 

explaining his 

ideas to his 

peers 

Computers 

and 

Programming 

-1 

Programming 

to Learn Math 
+2 

 

What was great about Eugene was that he was always excited and brought a positive 

attitude to learning new material. Even after the first session, which was overwhelming for 

a lot of students, Eugene was ready to move on and get into the more complicated topics: 

I had some experience with coding but I’ve never worked with Python and 

I’m definitely enjoying it. It seems really really cool and interesting, but I’m 

excited to get into more discrete math as well. Excited to get to that part. 

 

In the third session, Eugene really started to showcase his confidence and understanding of 

the programming material and was a great source of knowledge for the other students to 

work through the material. For example, when I introduced For Loops, Eugene was able to 

catch on quickly and help explain what was happening to the other students. In one 

instance, Saul and Leo were confused about what the ‘for x in A’ was doing, specifically 

what the function of the ‘x’ was in the For Loop. In the following exchange, Eugene was 

explaining how he was thinking about it to the other students: 
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Eugene: It's a placeholder, right. Yeah it’s a placeholder that runs through 

whatever you’re trying to run it through, in this case it’s set A right? So I 

guess that little ‘x’ is going to be running through each element in that set 

and running through that code and picking out elements in the set. Then it’s 

going to print- in the line that’s in the bottom, which is a print. So whatever 

it picks it’s going to print, and whatever picks it’s going to print, so it keeps 

going back. It's like a little guy that runs around. That’s how I picture ‘x’ 

[laughs]. And I guess it can be anything, ‘element,’ ‘character,’ ‘letter.’  

Leo: Oh so it’s basically an arbitrary value for any of the elements? 

Eugene: Mm hmm.  

Leo: I see it now, so ‘x’ and ‘element’ are the same thing. You can put like, 

‘for leaf,’ or ‘for dog.’ 

 

In this instance, Eugene was able to explain the function of the variable ‘x’ that served as 

the object that pulled the elements from the set and ran through the For Loop. Below I 

provide the code that we were looking at, in which I used Eugene’s idea of using ‘element’ 

instead of ‘x:’ 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

D = set() 

for element in A: 

 print(element) 

 if ((element == "e") or (element == "o")): 

   D.add(element) 

   print(D) 

print() 

print(D) 

 

With the above code, the output will produce each element on its own line (in random 

order) and if the element is ‘e’ or the element is ‘o,’ then the element is added to set D and 

the set is printed after the element ‘e’ or ‘o’ with the set D printed one final time outside of 

the For Loop as the last line of the code. One potential output is provided below: 

h 

t 
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s 

y 

r 

o 

{'o'} 

e 

{'o', 'e'} 

 

{'o', 'e'} 

 

I highlight the above code to preface another example of Eugene explaining his thought 

process:  

I would say that in this case it's kind of going to show you how the computer 

is thinking at the moment. Because it's going to print every element. 

Running the For [Loop] in this case, it's going to do all the letters, right. 

Except the ones that are repeated, it’s only going to do them once. So, it’s 

going to go through that and it's going to show you how it’s thinking and 

once it runs into an ‘e’ or an ‘o,’ I guess it won't show you this, but it's going 

to add it into the element- or into the  set of D. It’s just showing you how it’s 

“thinking.” 

 

Before running the code, I asked the students to consider Eugene’s comments and think 

about what the output will look like. After running the code, I asked the students to reflect 

on the output and Eugene’s comment highlights his confidence in his understanding: 

Yeah it ran exactly how I was thinking how it was going to go, once you 

added the ‘print D’ inside the loop. Because- yeah, yeah, yeah, like I said, 

it’s showing you how it's doing the process of adding those specific 

elements into the set. 

 

Eugene’s ability to catch on quickly likely stemmed from his confidence and interest in 

computers and programming, which was high before the study began and remained high 

once the study concluded. His results from the ATMLQ are presented in Figure 6.5 below. 
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Figure 6.5: Eugene’s Pre and Post ATMLQ Results 

 

As for Eugene’s perspective on making mistakes in this study, his reflection after Session 2 

sums up his approach to the material and solving the difficult problems, “It’s just reverse 

engineering it. Because you know [laughs], it's a lot of trial and error in this. Mistakes after 

mistakes, but I guess that's how you learn.” In his reflection after the third session, Eugene 

commented on how the tasks were getting more involved: 

I feel like in today’s session we learned a little more. It was a little different 

because we kind of used the previous knowledge and applied it to what we 

were doing in the moment. Before we were just learning new stuff 

individually. And this time, for example, we were running [loops] like For 

an If, and inside those [loops], we were using propositions like ‘and’ and 

‘or.’ So, we had to understand how those worked in order to understand how 

the function as a whole worked. And whether it would run or not. 

 

Eugene’s reflection shows how well he was able to articulate his understanding of how the 

different tools worked with one another in Python and how these tools were being used to 
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solve problems. He described his favorite aspect of participating in the study in the 

following way: 

I was able to test ideas of how to solve a problem and realize that there were 

many different ways to achieve a solution. I could then compare my way to 

solve the problem with the ideas of the other participants, then combining 

ideas we could eventually conclude in a more efficient way to solve the 

problem. 

 

With his favorite part being the ability to solve a problem in multiple ways, it makes sense 

that his least favorite part about the study was that he did not fully have the opportunity to 

write his own code, “Not being able to write the code myself, gave me a sense of 

helplessness and prevented my ideas to be executed correctly, due to not being able to 

articulate the process in the best way.” The reason why I shared my screen instead of 

asking the students to write their own code was due to the pilot study in which the students 

were asked to write and run their own code. Given how long it took during the pilot study 

to get through the material, and the logistical complications of monitoring what each 

student was writing, I knew that it wasn’t feasible for me to get through the material that I 

wanted to get through in five one-hour sessions during the main study. I will discuss more 

on this point in the final chapter. As for Eugene’s experience working virtually with other 

students he said, “I enjoyed seeing other’s ideas and thoughts on a specific problem. By 

listening to what other participants said I could usually understand and find a solution to 

the problem.” Lastly, as to how his identity helped him succeed in the study, he said, “I 

think that my ability to understand new topics rather quickly helped me understand the 

concepts of sets and how they functioned with each other.” Indeed, Eugene was able to 

understand the material quickly, but he also allowed space for others to participate. He 



 258 

used his partners’ ideas to help shape his understanding, which ultimately resulted in 

Eugene being able to explain to his peers how something worked, in case they were stuck. 

Leo 

At the beginning of the study, Leo participated less and did not seem as confident 

with his answers compared to his partners. As mentioned before, he struggled with poor 

internet connection which could partly be the reason for his comparatively reduced level of 

engagement compared to his two peers. However, I see Leo’s mathematical identity as a 

story of success, as one of a growing sense of confidence and interest as the TE sessions 

progressed. At the beginning of the study, he reported the third lowest score of 

mathematical confidence on the ATMLQ with a score of five, where the average of all 10 

participants on the mathematics block of questions was 8.3. By the end of the study, Leo 

was coming up with his own solution methods to solve problems, speaking up when he 

needed clarification and participating just as much, if not more than his peers. A summary 

of his affective characterization is provided in Table 6.6. 
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Table 6.6: Leo’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics +3 

Growing sense 

of 

mathematical 

confidence 

 Asked questions 

when he needed 

clarification 

which led to 

valuable 

discussions  

 Positive 

attitude 

 

Determined 

Computers 

and 

Programming 

+2 

Programming 

to Learn Math 
+1 

 

Leo’s reflections after the first two sessions stood out to me after looking back at the data 

that support my conclusion that Leo started to build his confidence from day one. In both 

reflections, he mentions the pre-study mathematical content survey and how he didn’t 

understand the material at the time, but he felt that he now had a better sense of what was 

happening. In the first reflection he talked about his expectations coming into the study: 

I was expecting some of the coding, and I didn't really know much of it, so I 

was expecting that we were going to go over a little bit of the basics. But 

yeah, the first quiz I did in the beginning, there were some questions in there 

that had sets inside of sets, that’s kind of where I got confused a little bit. So 

[today's session] explained a little bit more of how that works. 

 

After the second session, Leo discussed specifically what he learned: 

I guess the most important thing that I learned was the parentheses - the 

internal parentheses [of a logical statement]. That makes a lot more sense. 

Going back to the first quiz that we took in the beginning, or the survey, 

there were internal parentheses in there, and I was kind of confused, but now 

I get it more. I'm not sure exactly if that’s what it was about but I guess 

that's where it can function. 
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In both instances, Leo is comparing how he felt when taking the survey (confused), to how 

he was feeling after the session took place, which was a sense of more understanding. Note 

that Leo did not say that he completely understands the material, but there is a sense of 

growth and progress in his reflections as with the first session he says the activities 

“explained a little bit more” and in the second session, “but now I get it more.”  

Leo often found himself slightly behind his partners in terms of how quickly Saul 

and Eugene got a grasp of the material, but one of Leo’s greatest strengths throughout the 

study was his comfort in asking questions for clarification. For example, during the fourth 

session we were discussing how to find the union of three sets, by using For Loops to add 

elements to a new set. One of the students wanted to use ‘D.add(B)’ to add the set B to set 

D, but the ‘.add()’ function does not allow one to add mutable objects to a set. We found 

that if we make B a frozen set (making it immutable), then we can. Leo stepped in at this 

point and asked for clarification: 

Leo: I have a question. So we added set B, I get that part. But how come 

before, when it wasn't a frozen set, it still worked? When you do the For 

Loop for set A? I don't get what you guys are doing right now. 

Interviewer: What's different about set D, as compared to what we did 

earlier where we did 'for x in A?'  

Leo: You don't have to do another For Loop? 

Interviewer: We don't have to do another For Loop, but also let's take a 

look at the length of set D, the length is it's being reported as 13. 

Leo: Oh it's not adding the actual- it's just like adding one. Like set A would 

just be value one.  

 

This exchange is a good example of how one of Leo’s questions led to clarification for his 

own learning process, which might have been beneficial for the other students as well. Leo 

was very direct about not understanding the material when he did not understand 
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something. I take this as his desire to want to learn the material rather than being okay with 

not understanding 100% of what we were covering.  

 In his final reflection of the study, Leo seemed to enjoy himself so much that he 

asked if I had any other studies that he could be a part of:  

It was pretty interesting. If you have any extra- any other studies, you know, 

[it would be] pretty cool to do some more. I thought it was pretty cool, 

learning and seeing how things that you wouldn't think [of] would affect 

certain stuff. I like learning how something can affect other things.  

 

During the study, I would not have guessed that Leo would want to participate in future 

studies given how much harder he was working compared to his peers by asking questions 

and needing clarification. Being vocal about being confused is not always easy in front of 

one’s peers, so I commend Leo for his growth in participation and showing up to each 

session with a desire to learn and embrace the uncomfortable nature of not knowing the 

answer. Leo’s scores from the ATMLQ are presented below in Figure 6.6. 
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Figure 6.6: Leo’s Pre and Post ATMLQ Results 

 

Leo’s scores reveal a growth in each block of questions, with the greatest positive 

difference in the mathematics block of questions of three points. In his free-response 

answers, Leo said that his favorite part of participating in the study was: 

Collaborating with my teammates on how to solve certain problems. In the 

last 2 sessions, we applied our previous gained knowledge to try to solve 

specific questions. The application of code to these problems such as the for 

loop was very interesting.  

 

It stands out to me that Leo is once again portraying a growth or progression in his 

knowledge in that they used what they learned in the first three sessions to solve tasks in 

the last two sessions. This portrays a progression and development that seems to be a sense 

of pride for Leo in being able to point to something that he learned. As for his least favorite 

aspect of participating in the study Leo said, “There really wasn't anything bad about the 

study. I would say that going more into what set theory is and exploring it more could be 
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done. Other than that everything else was great.” It is encouraging that Leo’s least favorite 

part of the study was that he wanted to learn more than he did about set theory. This is 

additional evidence that he enjoyed himself in this study. His reflection on virtual 

participation alluded to his poor internet connection, “I feel like the zoom app is an ok 

virtual setting. The connection at times would drop for a few seconds but [Zoom] allows us 

to collaborate without being there in person.” I do think that Leo would have significantly 

benefited from attending in person compared to being virtual due to his connection. It is 

impossible to know exactly what he missed, but given his mathematical content survey 

results (see Chapter 5) he could have missed crucial pieces of information, which likely led 

to Leo needing to ask more clarifying questions than his peers. Lastly, in terms of the 

aspects of his identity that led to his success, Leo said, “I would say my willingness to ask 

questions allowed me to succeed. If I was confused I would ask questions. I was also 

interested in the subject so that helped me too.” Like other participants in the study, Leo 

referenced his interest in mathematics, but he also refers to his willingness to ask 

questions. Leo’s questions not only helped him succeed in this study, but his questions led 

to discussions with his peers (specifically giving Eugene an opportunity to explain his 

thought processes) and ultimately helped his peers’ learning processes as well.  

Group 3   

There were two students in Group 3, Delia and Juliana. Delia identified as a Middle 

Eastern or North African woman, and Juliana identified as a Hispanic or Latinx woman as 

well as a first-generation college student. Juliana also identified as a current or former 

English language learner. I intentionally chose this grouping because both students are 
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women and they both identify as belonging to historically marginalized groups. Although 

Delia and Juliana kept their videos turned on throughout the entire study, I had the most 

trouble fostering productive and prolonged discussions with the students in Group 3 

compared to the other groups in the study, for which I have two hypotheses. The first is 

that Delia and Juliana were naturally just not as talkative as compared to the students in 

Groups 1 and 2, so it took me longer to understand what worked in terms of inquiring 

about their thought process. The strategy that seemed to work best for Delia and Juliana 

was to allow for more wait time as well as offer hypothetical student reasoning to get a 

conversation started. I figured that since they did not have a third partner, there was more 

room for me to step in and offer some hypothetical ways of reasoning that I often took 

from what I learned working with the students in Groups 1 and 2. The second hypothesis 

that could potentially explain their levels of engagement was that each student came into 

the study with lower levels of confidence. For Delia, she came into the study with the 

second lowest score on the mathematics block of questions and Juliana came into the study 

tied for second lowest score in the computers block of questions and the lowest score on 

the programming to learn math block of questions. The students not being confident at the 

beginning of the study could explain why it was more difficult to engage in discussions 

with the students, especially at the beginning. 

Delia 

Delia had the greatest negative shift from her pre-study ATMLQ score to her post-

study ATMLQ score with a total difference of -14 points. I was quite surprised to see this 

result because Delia was a strong student throughout the study, she seemed confident in 
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her answers, and I would often rely on Delia to rephrase her own thinking or rephrase 

Juliana’s thinking in order to start a discussion. However, as referenced in Chapter 2, Cribs 

et al. (2015) found that competence does not have a direct effect on one’s mathematical 

identity. Instead, interest and external recognition are the two main factors that have a 

direct effect on one’s mathematical identity. This finding seems to describe Delia’s 

experience as there never seemed to be a point that Delia was very excited about the 

material, she remained fairly stoic and matter of fact throughout the entire study. Table 6.7 

summarizes her affective experiences. 

Table 6.7: Delia’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics -6 

Confident in 

her answers 

 

Waning sense 

of confidence 

as the TE 

progressed 

Vocal about not 

understanding 

Matter of fact 

 

Neutral about 

the tasks 

Computers 

and 

Programming 

-8 

Programming 

to Learn 

Math 

+0 

 

As mentioned, Delia had the greatest negative shift out of all the students in the study. In 

the mathematics block of questions there was a negative shift of six points and in the 

computers and programming block of questions there was a negative shift of eight points. 

The one question that stood out to me on the mathematics block of questions was the 
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following: “I have never felt myself able to learn mathematics.” On the pre-study ATMLQ, 

Delia’s answer to this question was “Strongly Disagree” while her answer on the post-

study ATMLQ was “Agree.” Her response to this question alone was responsible for a 

negative shift of three points. For reference, there was only one other instance in which a 

student’s pre/post answers to a question resulted in a negative shift of three or more points. 

As for the qualitative results, there is not much either during the study, or in her free-

response questions that could really explain her negative shift in her confidence and 

interest in mathematics. While she may not have been as excited about the material as 

some of the other students from other groups, her lack of excitement could just be a part of 

her personality and does not necessarily mean that she was having a bad time. 

The only piece of evidence that may explain her negative shift in confidence could 

be in the comparison between her reflections after the first two sessions and after the third. 

After the first two sessions Delia did not think that the material was too difficult, but the 

third session was quite frustrating for her and left her confused going into the fourth 

session. When asked whether the material that we covered in the first session is what she 

expected, Delia said: 

I expected it because you told us in the beginning that you are going to teach 

us about Python and how to use Python with math, so I would think you 

would have to show us the beginnings of Python to help us understand how 

to apply it to the math. And I don't think it was that bad.  

 

The one aspect of this quote that is impossible to capture through text is the tone in which 

she said it. Throughout the entire study she was very pragmatic, and if the reader can 

imagine it, she spoke in a very direct way as if her reasoning was obvious. This tone did 

not come off as condescending, but instead rather steadfast. That is, there were not many 
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“um”s or “like”s in her speech, she just seemed very sure in herself and her reasoning. As 

for her reflection after the second session, she said, “I had fun, I didn't think it was too 

difficult. The only part I thought was difficult was when we're trying to figure out where 

the parentheses go for when you have multiple proposition statements.” Thus, after the first 

two sessions she did not think that the material was too difficult. However, the third 

session is when I introduced For Loops to the students, and this caused a lot of difficulty 

for Delia and Juliana. In fact, after the third session I decided to switch from Google Colab 

to the IDE on my own computer so that I can debug a For Loop and show the step-by-step 

process of the loop grabbing an element from an iterable object and stepping through the 

loop line by line. One For Loop that we spent a lot of time discussing was the following: 

A = {"s", "e", "t", "t", "h", "e", "o", "r", "y"} 

D = set() 

for element in A: 

   print(element) 

   if ((element == "e") or (element == "o") or (element == "t")): 

       D.add(element) 

       print(D) 

print() 

print(D) 

 

Below is an example of what an output might look like from the above For Loop: 

y 

h 

e 

{'e'} 

s 

t 

{'t', 'e'} 

r 

o 
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{'o', 't', 'e'} 

 

{'o', 't', 'e'} 

 

Delia’s comment is just one example of her frustration from the third session, “I honestly 

can't come up with any... I don't know why. I don't know why one has just one 'o,' the next 

that has 'o' and then 't' and then so on and so forth. I'm quite confused.” When we ran the 

For Loop during the third session, the element ‘o’ was grabbed first which is why ‘o’ was 

the only element in the set D when it was printed. Her reflection after the third session 

shows a shift in how she felt compared to after the first two sessions: 

I thought it was harder than the last couple of sessions. And where Juliana 

understood what was going on, I only understood it up to the ‘o.’ I still don't 

understand why ‘o’ and ‘t’ would appear in the same set and then ‘o,’ ‘t,’ 

and ‘e’ when you're just looking at that one element, which in this case is 

‘t.’  

 

After Delia made this comment in her final reflection I went back to try and explain the 

process of the For Loop in the last few minutes of the session, but there definitely was no 

closure to the third session. In the fourth session we used the IDE which definitely helped 

both Delia and Juliana solidify their understanding of For Loops, but I worry that perhaps 

the third session was just too challenging and frustrating for Delia. In her final reflection, 

Delia said, “I had a lot of fun, to be honest. And going into a [computer science] class next 

semester, I thought this was quite interesting. Delia’s ATMLQ results are presented in 

Figure 6.7. 
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Figure 6.7: Delia’s Pre and Post ATMLQ Results 

 

Unfortunately, the stand-out result is the negative shift of six units for the mathematics 

block of questions, dropping Delia’s confidence and interest in mathematics below zero. 

Delia’s pre-study score on the computers and programming block of questions was the 

second highest out of all the participants in the study, and her post-study score was still 

above the average post-study score of 10.2.  

True to her matter-of-fact nature (or maybe just her desire to be done participating 

in my study), her answers to the free-response questions were quite brief. Her favorite part 

of participating in the study was that she “liked starting to learn about one section of 

python and how that can be used to look at math problems,” and her least favorite aspect of 

the study was that she “didn't like the use of the jamboards because I find them a hassle to 

use.” While she found the jamboards to be a hassle, she did say that “Zoom can show how 

easy and productive working collaboratively can be with other people.” Lastly, with 
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respect to aspects of her identity that led to her success, she said, “I don't believe my 

identity had anything to do with my success in this study.” Given the data, I would 

unfortunately say that Delia had an overall negative experience participating in this study. 

Even after conducting the TE with Groups 1 and 2, there were aspects of the instructional 

sequence that still needed to be ironed out, which likely led to some degree of frustration 

and lack of interest in mathematics.  

Juliana 

 Juliana had the second greatest positive shift from her pre-study ATMLQ score to 

her post-study ATMLQ score with a total difference of +21 points. I would not have 

predicted this result as Juliana was often hesitant about her reasoning and not always 

confident in her answers. However, as mentioned in Delia’s section, competence alone 

does not necessarily predict one’s sense of a positive mathematical identity. One possible 

contributing factor to Juliana’s positive shift was the fact that she never seemed worried 

about getting the wrong answer. In fact, Juliana was often the first to throw out an idea, 

and I either built off that idea or asked Delia to rephrase in her own words what her 

interpretation was of Juliana’s reasoning. A summary of Juliana’s affective experiences is 

presented in Table 6.8 below.  
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Table 6.8: Juliana’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics +12 

Growing sense 

of self 

confidence as 

the TE 

progressed 

Okay with 

being wrong 

 

Important that 

her wrong 

answers were 

not evaluated 

in the moment 

Overwhelmed in 

the beginning 

 

Moments of 

frustration 

 

Positive attitude 

at the end and 

felt supported by 

Delia 

Computers 

and 

Programming 

+1 

Programming 

to Learn Math 
+8 

 

There were two questions in the mathematics block of questions on which Juliana reported 

a complete shift from the most negative disposition to the most positive disposition. The 

first was in response to the following question: “I don't understand how some people seem 

to enjoy spending so much time on mathematics problems.” On the pre-test questionnaire 

Juliana answered “Strongly Agree” and on the post-test she answered “Strongly Disagree” 

which resulted in a four point positive shift. The second question was the following: “I 

have never been very excited about mathematics.” Similar to the previous question, 

Juliana’s answers resulted in a four point positive shift. For reference, no other student’s 

answers from the pre-test to the post-test resulted in a four point shift on a single question. 

In the programming to learn mathematics block of questions, there were four questions that 

Juliana answered that resulted in a positive three point shift: 

1. Using computing power/programming for the calculations makes it easier for 

me to do more realistic applications 
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2. I like the idea of exploring mathematical methods and ideas using 

programming. 

3. I want to get better at using computers to help me with mathematics. 

4. Having programming to do routine work makes me more likely to try different 

methods and approaches. 

Out of all of the students, there were only eight responses from pre-test to post-test that 

resulted in a positive shift of three or more points. Juliana accounted for six of these eight 

responses.  

 As previously noted, Juliana was not the most confident, at least initially. After the 

first session she mentioned that the material was pretty overwhelming for her, “Yeah it 

wasn't that bad, but I guess being introduced to new stuff we were- I guess for me it was 

totally overwhelming. But I guess if we try practicing again I feel like we’ll get better at 

it.” During the second session it seemed that she was slowly getting more comfortable, but 

she was experiencing some frustration with the tasks, as well as with my questioning. For 

example, after questioning her about what the output would be for a compound 

propositional statement she said, “Are we supposed to give you an answer right away? Or 

can we get a little time to think about it?” I took the hint and gave Juliana and Delia a 

couple of minutes to work out the solution on their own, which worked really well in terms 

of fostering a productive discussion with the students. After the second session Juliana’s 

reflection was that she “thought it was pretty easy. When we had several ‘or’s and ‘and’s 

together in one sentence, but I thought it got harder when ‘s’ and ‘t’ weren't defined- or 

they were unknown.” From her perspective, things were getting better, but still 
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challenging. This trend continued in the third session as she described her experience as 

“kind of hard because we were introduced to new things. But after you explained the For 

Loop statements, I guess it was pretty easy.” Juliana’s final reflection shows the growth 

that she experienced over the course of the TE: 

I honestly found working with Python very interesting because you're able 

to use numbers but also words and come up with an answer using Python in 

those words and I thought it was really cool honestly. 

  

The change in her response from the first session of being “totally overwhelming” to the 

last session being “really cool,” is evidence that Juliana experienced a positive growth in 

her mathematical identity, which is supported by her ATMLQ results shown in Figure 6.8. 

 

Figure 6.8: Juliana’s Pre and Post ATMLQ Results 

 

The greatest difference from the pre-study questionnaire to the post-study questionnaire 

was in the mathematics block of questions where there was a difference of 12 points, and 

the programming to learn mathematics block of questions showed a positive difference of 
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eight points. My hypothesis as to why there was not a dramatic shift in the computers and 

programming block of questions is that those questions did not directly ask about 

mathematics, which is where I see Juliana’s shift in her perspective of herself as a learner 

and doer of mathematics using programming. 

As for Juliana’s answers to the free response questions at the end of the study, her 

favorite aspect of participating in the study was the following: 

My favorite part about participating in this study was applying mathematics 

to python. Although I feel like I used more of my thinking than actual 

calculations, the math was still there which made it enjoyable although 

confusing at times. 

 

Her reflection on her favorite aspect of the study addresses my last hypothesis, that Juliana 

was more excited and interested in the mathematics, rather than just working with 

computers. Her least favorite aspect of participating in the study was, “being asked to solve 

a question when I did not know how to answer haha.” While Juliana’s response is light-

hearted, this idea of “cold calling” on students when they don’t know the answer has come 

up before with Haven’s free-response answer, and is something that I will have to think 

about moving forward with my research (more in Chapter 7). Juliana’s answer to the 

question about her participation in a small group over Zoom was one that had not come up 

before and important to consider, “I think I have gotten used to it, I find it easy and less 

intimidating than it would be working face to face.” I am not entirely sure why being in 

person would be more intimidating, but perhaps the comfort of being at home has 

something to do with it. In terms of aspects of her identity that helped her succeed, she said 

the following: 
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I feel like my knowledge and my ambition to learn some aspects of python 

contributed to my success in this study. Also it was very important that 

Antonio never told me my answer was wrong, rather we worked from my 

answer to generate a more sophisticated answer. My partner Delia also 

contributed to my success in this study because many times she agreed with 

my answer and she never put me down if my answer was wrong. Overall, I 

felt confident speaking up even if I knew my answer would be wrong. 

 

Once again referencing Cribbs et al.’s (2015) findings related to mathematical identity, 

Juliana commented that Delia contributed to her success because Delia agreed with her 

answers (recognition from others). Additionally, she said that I never said that her answer 

was wrong, which likely helped her maintain a positive sense of mathematical identity as a 

contributor to more advanced mathematical ideas. Lastly, her strong positive shift in 

mathematical identity is likely a reason why she was able to maintain her confidence even 

if she knew that her answer was going to be wrong.  

Group 4   

There were two students in Group 4, Alonso and Julian. Alonso identified as 

Hispanic or Latinx and as white. Julian identified as Southeast Asian. Both students also 

identified as men, and both were Mechanical Engineering majors at the time of data 

collection. Both students kept their cameras turned on throughout the duration of the study. 

As mentioned in Chapter 5, Group 4 made it the furthest in the instructional sequence and I 

attribute their success to their interest in the material as well as my being able to streamline 

the instructional tasks. From the very beginning, both students seemed to feel comfortable 

participating and sharing their thoughts, which led to productive conversations and 

opportunities for the students to explain their reasoning. For example, in some cases the 

students would not agree with one another’s reasoning, and their answers compared to the 



 276 

actual output generated a discussion about aspects of their answers that were right and how 

their thinking has changed once seeing the output. I present Julian’s results first, then 

conclude with Alonso’s. 

Julian 

Julian’s mathematical identity development can be described as a process of 

continual growth in his confidence and interest as the study progressed. In the beginning he 

seemed unsure in his reasoning, which could be attributed to nerves in being a participant 

in a research study. Also, Julian was usually behind Alonso in terms of how quickly they 

understood the material. However, as the study progressed, he became more and more 

comfortable describing his thought processes and was not shy about vocalizing his thought 

processes out loud. This did lead to some difficulty in my interpretation of Julian’s 

reasoning as he would often waver back and forth between multiple ideas, but this also 

provided an opportunity to ask Alonso to rephrase what he understood of Julian’s 

reasoning. Julian’s affective experiences are summarized in Table 6.9. 
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Table 6.9: Julian’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to Errors 

/ Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics +2 

Growing sense 

of confidence 

as the TE 

progressed 

Comfortable 

acknowledging that 

he was confused 

 

Quick to correct or 

go back to where he 

went wrong in his 

original thought 

process 

Positive 

attitude to 

tasks 

 

Happy 

 

Problem 

solving was 

more 

interesting 

Computers 

and 

Programming 

+4 

Programming 

to Learn 

Math 

+0 

 

Julian did also struggle with all the vocabulary that we were using (e.g., using “variables” 

instead of “elements” or “propositions”), but it did not get in the way or stop him from 

explaining his thought processes. Additionally, when Julian answered a question 

incorrectly, he consistently did a good job of explaining why his original thought process 

was incorrect or what he learned after seeing the correct answer: 

So, in the beginning I was kind of confused [between] regular text and the 

actual boolean value. I was just mixing them up. But I realized that now, it 

was actually the true or false statements that are set. I was kind of confused 

a little bit with the variables and everything, but now I understand that it's 

really just simplifying the longer code into just variables, which then you 

just put into print and it just runs it along. So, for 'p,' it will just be 'dog in 

setA' which is obviously true because in setA 'dog' is there.  

 

In this excerpt Julian was referring back to some of the propositions that we were 

exploring and what the difference was between running ‘print(p)’ and ‘print(dog in setA),’ 

which were the same thing. The important aspect of his reflection is that he was able to 
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identify specifically what he was confused about and how he now understood the material. 

As mentioned, Julian and Alonso were moving through the material quickly, which Julian 

alludes to in his reflection after the first session in terms of his expectation for what his 

participation in the study would look like: 

It's not really what I expected. I didn't really know what we were getting 

into. I didn't know set [theory] and I don't really know a lot about Python. 

So, seeing how you can integrate it and how you can use different codes to 

read the sets and have True and False values was pretty interesting. I also 

like how we had the 'and' and 'or' and how you can do different ways of 

reading the different texts of the set and finding values into values. Like 

how we did the variables and we did the 'and' and 'or.' It kept getting more 

complicated as we went on.  

 

There was a lot that we covered in the first session, which is likely why Julian said that he 

“didn’t really know what we were getting into.” He also mentioned that the material “kept 

getting more complicated” which shows that he experienced some struggle with the 

material, but was still interested. An additional strength of Julian’s was that he let me know 

when he was confused. For example, in the second session I introduced For Loops to the 

students and asked for them to reflect on the different outputs that we were getting. Julian 

was hesitant in saying that he was confused with the process, but he still let me know: 

I'm kind of thinking about it in a different way. I'm kind of a little bit 

confused.  Not confused, but kind of…[long pause]...a little bit confused in 

how it still works. Because of the print thing. So I'm not quite sure how it 

actually works. 

 

By saying out loud that he was confused, we were able to have a discussion about what 

was confusing and go back to his point of confusion after working out more examples and 

debugging the For Loops. A third strength of Julian’s was his comfort in disagreeing with 

Alonso when he had a different idea of what the output would be given a certain code 
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block. For example, in the second session Julian rephrased Alonso’s reasoning and 

described how his reasoning was slightly different: 

[Alonso] said that it would be printing the elements, one and then add 

another one until it has the same elements as A. I was thinking that it would 

just be printing each single element, along the lines. So I think my 

hypothesis is kind of different from his.  

 

The two students disagreeing with each other was not uncommon, and led to many 

productive conversations that gave me a chance to inquire into their thinking.  

Julian’s reflection after the third session shows a slight shift in his interest 

compared to his first reflection (we ran out of time to do reflections after the second 

session): 

I also think it's pretty fun. I like going through all the processes. I think, 

especially this session, finding all the unique approaches, especially with 

finding all the variables and everything and having everything being used. 

Like the For [Loop] and having to find all that stuff and then just 

interpreting how to actually use the code to then add things or like equal 

things, all that stuff. I think it's very you know- I like how open minded this 

concept is.  

 

By “open minded,” perhaps Julian meant to say “open ended.” After this reflection I asked 

him whether the material was more or less difficult than after the first two sessions: 

I think it's maybe less difficult because we're kind of using more of what we 

already know, just trying to find the pathway. Where before we're kind of 

like learning new things, and it was kind of more finding out more 

information and how to use it, rather than here we're just interpreting- we're 

also trying to find how to use it, but more interpreting how we can 

implement our thoughts with the code.  

 

For Julian, he preferred problem solving and finding a solution path, which he thought was 

less difficult than learning about all of the syntax and different functions in Python. As his 
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reflection after Session 4 demonstrates, his perspective remained the same in terms of his 

interest in problem solving: 

I'm going to be honest, I don't really remember much from last week 

[laughs], but I think today was definitely more fun. I think it was putting it 

together and just finding how everything fit mostly with the subsets and just 

putting together those different statements. Everything was pretty nice. 

 

In his reflection with the group after the fifth and final session, he summarized his 

experience participating in the study: 

I thought this was pretty fun. You know, I definitely think that the beginning 

was basically just learning vocabulary and all the basic stuff like all the 

functions and what elements were and everything. And that was kind of just 

learning the steps. And then we got into more of problem solving and just 

putting everything together and just basically going deeper into what the 

idea of coding and all these processes were. Then today we didn't use 

Python, it was all mostly just an idea of how it would work and how we 

would need to go through this process of proving this thing. But yeah, I 

think it was definitely a nice experience, a first time for me, you know 

seriously coding, and just learning this. 

 

Julian saw the first couple of sessions as basic, and found more interest as the study 

progressed as they were required to do more problem solving with the tools at their 

disposal. This could explain some of Julian’s ATMLQ results which are presented in 

Figure 6.9 below. 
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Figure 6.9: Julian’s Pre and Post ATMLQ Results 

 

Julian maintained a strong positive mathematical identity but experienced a significant 

growth in his interest and confidence with computers. I would have expected to see a 

similar growth in the programming to learn mathematics block of questions, but it could be 

that Julian found more interest in the idea of working with computer science and 

programming instead of mathematics. As for Julian’s answers to the free-response 

questions, his favorite aspect of participating in the study was, “Creating new lines of code 

to solve certain coding problems” and his least favorite aspect was “Learning through the 

initial phase of vocab, code phrases, and technical things.” Given that his least favorite part 

of the study was the introductory sessions, I am confident in saying that his interest, and 

thus mathematical identity, grew positively as the study progressed. As for working 

collaboratively over Zoom, Julian said, “I think that a collaborative setting allowed me to 

look at certain problems in a different perspective and allowed me to have a greater insight 
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on certain problems and code.” As mentioned, the discussions between Julian and Alonso 

were really productive for each to better understand the material as they were able to 

describe their thought processes in different ways. Lastly, in terms of the aspects of his 

identity that helped him succeed he said, “I think being initially interested in coding and 

having coded a little previously on other languages helped me grasp the concept a little 

better.” As with some of the other students, Julian referenced his interest as a main factor 

that helped him succeed. Additionally, he referenced some experience with coding, which 

could be a reason why the coding aspect of this study was more salient for Julian than the 

mathematics.  

Alonso 

Alonso’s mathematical identity development was one of maintaining a strong 

positive sense of mathematical identity, especially with respect to computers and 

programming to learn mathematics. Alonso came into the study with the highest score for 

the programming to learn mathematics block of questions on the pre-study ATMLQ. He 

also had higher-than average scores for the mathematics and computers and programming 

blocks of questions on the ATMLQ. Throughout the study, Alonso was quicker to 

understand the material than Julian, but he did not dominate the space and provide his 

answer before Julian had an opportunity to speak. There were some moments where I 

could see that Alonso had an answer and was waiting for Julian to finish thinking. 

Additionally, if Julian had an answer that Alonso knew wasn’t right, he would disagree 

with Julian, but do so in a way that would foster a back-and-forth discussion. For example, 

in one instance Alonso said, “I am thinking slightly differently,” and followed with his 
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explanation. This allowed room for me to ask Julian what his thoughts were on Alonso’s 

reasoning which often led to an opportunity for both students to rephrase their thought 

processes and come to a common understanding. Overall, Alonso’s ATMLQ results show 

a total decrease of three points, which was slightly surprising because he showed so much 

confidence, interest and excitement throughout the study. Even though his total score was 

negative three points, it is difficult to say that Alonso had a negative experience 

participating in this study, especially since there were no questions from Alonso’s ATMLQ 

responses that resulted in a negative shift of greater than two points. Alonso’s summary of 

affective experiences is presented in Table 6.10 below.  

Table 6.10: Alonso’s Affective Characterization 

 

Pre/Post 

Survey 

Change 

Sense of Self-

Efficacy 

Response to 

Errors / 

Difficulty of 

Tasks 

Beliefs, 

Attitudes, 

Emotions 

Mathematics +1 

Confident in 

his answers 

Slightly hard on 

himself for 

getting a 

question wrong 

 

Enjoyed working 

on difficult tasks  

Positive 

attitude 

 

Serious 

Computers 

and 

Programming 

-3 

Programming 

to Learn 

Math 

-1 

 

Alonso was one of the most serious participants out of all of the students as he almost 

always had his eyebrows scrunched together in concentration. I could tell that he was 

really trying hard to understand 100% of the material at all times. He would even ask 

clarifying questions about the syntax or functionality of some functions in Python that 
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were not the direct focus of the material, he just wanted to know everything that we were 

doing and why we were doing it. With his seriousness also came a sense of pressure that he 

put on himself to have all of the right answers, and when he didn’t he would sometimes be 

hard on himself for not knowing. For example, in one instance his guess did not match up 

with the output and he said the following: 

I should have been able to predict this because I just realized we did the 

exact same thing when we had ‘for element in A’ and there the length was 

outputted. So I should have been able to guess that. And yeah, I was not 

expecting it to be random.  

 

However, other times when he was not as confident in his answer he would still give his 

best guess which was really helpful moving forward and comparing his guess to the final 

output. One example of this was in the second session when I first introduced For Loops to 

the students and they were just giving their initial interpretations of what the For Loop 

might be doing. 

 I think there will be repeats because you're just printing the elements and 

not the length...I think. I'm not completely sure. I'm not sure how we would 

deal with that. So, my best guess is that it will go 's' dash dash dash, 'e' dash 

dash dash, 't' dash dash dash all the way through. 

 

Like Julian, Alonso tended to give complete descriptions of his thought processes which 

demonstrated a level of confidence and comfort for both of the students that not many 

other participants in my study showed. In the previous section I discussed how I would 

often find myself inserting some ideas into the discussion with Delia and Juliana to foster 

more productive conversations, but with Julian and Alonso I rarely had to provide a similar 

level of support and encouragement to garner their engagement.  
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 After the first session, I asked Alonso and Julian to reflect on whether this was 

what they expected, and the following was what Alonso said: 

I didn't know what to expect because I had no clue what set theory was. So, 

I can't say this is different from what I expected because I don't know, I was 

just completely clueless. I was kind of surprised that my philosophy course 

actually helped [laughs]. Didn't really expect to ever use that again. Yeah, I 

mean Python, I guess it just makes sense, you have to just understand what 

everything actually does.  

 

During the first session Alonso commented that in his philosophy course they spent a small 

amount of time discussing logical operations and propositional statements, which is why 

he referenced his philosophy course in his reflection. He also had a very sensible outlook 

on understanding Python in terms of it making sense if you understand all of the individual 

components. However, as he soon realized, sometimes it isn’t that easy. His reflections 

after the third and fourth sessions reflect this point. His reflection after the third session 

alluded to the difficulty, “I find this harder for sure. I'd say harder, but more fun. The other 

was easier, but less fun.” Unlike Julian, Alonso thought that the material in the third 

session was more difficult than the first two sessions. However, he also thought that the 

material in the third session was more enjoyable. He echoed this idea in his reflection after 

the fourth session as well: 

I found this time definitely more difficult for sure. I'm not sure if that's 

because I'm a little sleep deprived but for some reason that just wasn't 

clicking, the print statement thing. I don't know why. But yeah, I like seeing 

how this stuff is applied.  

 

Alonso’s comment about “the print statement thing” was referring back to a solution 

method that Julian had proposed and Alonso was not understanding why Julian suggested 

that we check the cardinality of two sets to check if they were equal (see Chapter 4). This 
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one instance was one of the only times in our five sessions that Alonso was behind Julian 

in terms of their understanding of the material and, as evident in his reflection, it was 

weighing on him that he didn’t understand. In his last reflection, after the final session, he 

commented that he enjoyed participating in the study, but it was difficult to keep track of 

everything that they were being asked to do. 

I really enjoyed it. It was enjoyable to learn about this, I thought it was 

really interesting. The last few sessions were a lot more challenging. I guess 

I mean a lot more confusing. The first sessions were crystal clear and then it 

just became hard to keep track of everything that was going on. To keep 

track of all the variables. It was just a lot of stuff to remember.  

 

Even though Alonso was one of the most competent students that participated in my study 

(see Chapter 5 pre/post content survey results), it seemed that there was a sense of being 

overwhelmed with all of the material. This, or his pressure on himself to get all the right 

answers, could explain the slight decrease in his overall score from the ATMLQ results, 

which are presented below in Figure 6.10. 
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Figure 6.10: Alonso’s Pre and Post ATMLQ Results 

 

Alonso scored above average in each category for the pre-study ATMLQ as well as the 

post-study ATMLQ. He also scored the highest in the programming to learn mathematics 

block of questions on the pre-study ATMLQ.  

Even though Alonso did comment that with each session the material was getting 

more difficult, his answers to the free response questions reveal that he did enjoy his time 

participating in the study. He had the following to say about his favorite aspect of the 

study, “I really liked how much I learned in such a short amount of time. Both python and 

set theory were really interesting to learn about.” As for his least favorite aspect, he said, 

“Nothing was bad.” His reflection about the virtual setting was in line with Juliana’s from 

the previous section:  

In this study working virtually went really well. I felt like it might actually 

be better for this activity. In general working collaboratively with other 

people on zoom is more of a hassle and worse than in person settings.  
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As the one that conducted the study, I also consider the virtual setting to have worked 

particularly well for this activity. In fact, it is not entirely clear to me if being in person 

would have greatly added to this study (more in Chapter 7). As to the factors of his identity 

that contributed to his success, Alonso said that, “All I needed to succeed was an interest in 

the subjects being taught. Everything was clear and manageable.” As we have seen with 

the other students, interest is a main component for his perceived success. Lastly, after the 

study Alonso emailed me to follow up and said, “I really enjoyed learning python and set 

theory. You were a great teacher and I wish you luck with your study. You inspired me to 

continue learning python on my own time.” His total shift between the two ATMLQ scores 

was negative, but he enjoyed his time participating in the study and found something that 

he wanted to pursue further, evidence of positive mathematical/computer science identity 

growth and interest.  

All Students  

Out of the ten students that participated in the study, seven reported a positive 

change in their overall confidence and interest with respect to the three categories on the 

ATMLQ. Additionally, using a paired sample t-test to compare the scores between the pre-

study ATMLQ (mean = 25.4, standard deviation = 16.27) and the post-study ATMLQ 

(mean = 31.6, standard deviation = 8.13), the results indicate a statistically significant 

improvement (p = 0.0043 < 0.01). While it is not possible to generalize given the small 

sample size, comparing the scores of the pre-study ATMLQ and the post-study ATMLQ 

by gender reveals that the women’s total score improved by 50 points and the men’s score 

improved by 12 points. Given the different sized groups of the men (6) and women (4), it 
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was striking to see such a large difference for the women. Dividing the total difference for 

the women compared to the total difference for the men results in a shift of +12.5 for the 

“average woman” and a shift of +2 for the “average man.” Due to the small sample size, 

the assumptions to run a two-sample t-test could not be met, but I do present the statistics 

of the two groups’ normalized gains. The normalized gain represents the amount that a 

student (or groups of students in this case) improved compared to the maximum amount 

they could have improved. For example, on a 100-point test, a student that scores 90 on the 

pretest and 95 on the post test has a normalized gain of 50%. The same is true for a student 

that scores 50 on the pretest and 75 on the post test. For the ATMLQ, the maximum score 

possible is 70 points (representing extreme confidence and interest in mathematics, 

computers and programming, and programming to learn mathematics). The average 

ATMLQ pre-test score for the women was 18.75 and the average ATMLQ pre-test score 

for the men was 29.83. The average ATMLQ post-test score for the women was 31.25 and 

the average ATMLQ post-test score for the men was 31.83. As a group, the women came 

into the study with lower levels of confidence and interest compared to the men. However, 

the two average post-test scores are roughly the same. As for the normalized gains, the 

women had a normalized gain of 24.39% and the men had a normalized gain of 4.98%.  

Given the large difference reported by gender, future investigation regarding the 

differential impact that a similar learning situation may have will be necessary. All the 

point shifts from pre-test to post-test for the students in the study are presented below in 

Table 6.11. 
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Table 6.11: Total Scores Across all Three Categories 

Haven +32 

Judith +11 

Palmer -8 

Saul +10 

Leo +6 

Eugene +1 

Juliana +21 

Delia -14 

Julian +6 

Alonso -3 

 

As for the three students whose total scores were negative, I consider only Delia’s case to 

be truly representative of her experience. For Palmer, his pre-study ATMLQ score on the 

computers and programming section was so high that there wasn’t any potential for 

positive growth on that section. That is, even though his score on the post-study ATMLQ 

was the highest out of all the students, there was still a difference of negative 10 points on 

that block of questions. For Alonso, he was the most proficient student in the group, 

enjoyed his time during the study, and maintained fairly stable scores across all three 

blocks of questions from the pre-study ATMLQ to the post-study ATMLQ. It is not 

impossible that Alonso experienced a negative shift in his mathematical identity, but I 

consider it highly unlikely due to his explicit interest in the material and his positive sense 
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of self-efficacy. In Delia’s case, she came into the study with the second lowest level of 

mathematical confidence and interest, which was surprising given her confidence and 

proficiency during the TE sessions. There isn’t one factor that I can attribute her negative 

experience to, although she was very stoic which I sometimes interpreted as her being 

bored. There is a real possibility that the material was too easy for Delia as she was often 

correct in her reasoning, or she had different expectations for what the study would be. 

This could explain her matter-of-factness and lack of engagement at times. Additionally, 

all the students except for Delia referenced some aspect of positive mathematical identity 

development in their answers to the free-response question about aspects of their identity 

that helped them succeed. For most of the students, it was an interest in mathematics or 

computer science. For others, it was the ambition or ability to learn new material. For 

Delia, she didn’t believe that any aspect of her identity helped her succeed.  

 

 

 

 



 292 

Chapter 7: Conclusion 

The purpose of this teaching experiment was to address the following conjecture: 

Programming can not only be leveraged as a processing tool, but also serve as an 

experientially real context in which students will be able to connect mathematical logic 

and set theory that also positively influences their identities as mathematicians. In an era 

where machine learning, data science, and computer science more broadly, are becoming 

the most influential levers of change for our society, why are we still teaching mathematics 

as if computers don’t exist? Of course, it is not literally true that all mathematics courses 

are taught without the use of computers, but the implementation of computer programming 

to teach and learn mathematics is not widespread and has considerable room for growth 

(Hickmott et al., 2018). I conducted this study to make progress in addressing this concern, 

to better understand the impact that computing and programming may have on students’ 

learning of mathematics. This is particularly important as advances in technology are 

leading to STEM occupations with the highest rates of worker turnover and decline of old 

skills (Deming & Noray, 2018). I begin this chapter with a summary of my findings. I then 

highlight the implications of this work. I then present a discussion on the various 

limitations of my work. I follow by discussing areas of future research, and conclude the 

chapter with some final remarks. 

Summary of Findings  

 The findings summarized in this section are divided by each research question, as 

each research question had its own unique focus. As a reminder, the first research question 

focused on the in-the-moment ways of reasoning by the students and how Python 
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influenced these ways of reasoning. The second research question focused on what the 

students learned over the course of their actual learning trajectories. The third question 

addressed the students’ affective experiences and changes in their mathematical identities.  

Research Question 1 

Using the instrumental approach as the analytical framework, which considered the 

confluence of an artifact (often a piece of technology) and the human mind, I identified six 

instrumented action schemes emerging from various ways of student reasoning. Before 

addressing each of the six schemes, it is important to note that the instrumental approach 

has two major strengths. The first is that through analysis, we can better understand how an 

artifact, typically a piece of technology, can be used to strengthen or enhance one’s 

understanding of a mathematical idea. The second major strength is the opposite, 

understanding how a piece of technology may in fact hinder one’s thoughts about a 

mathematical idea. The six schemes emerged as groups of two, grouped by three main 

mathematical concepts: (a) propositional statements, (b) set intersection, and (c) subsets.  

The first two schemes, Impossible-to-Answer scheme and Flexible Propositional 

Statement scheme related to the students’ conceptions of propositional statements and the 

truth value of “unknown” propositions. By an unknown proposition, what I intended was 

for the students to reason about any proposition that could take on either a True or False 

value. For example, in the case of the propositional statement ‘s or t,’ there are four 

potential cases that represent two outcomes: (a) True, (b) True, (c) True, and (d) False. The 

only situation which results in a False outcome is the one in which both s and t are False. 

In Haven’s case, her reasoning reflected a perspective that an unknown proposition was 
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one that no one could possibly know the answer to, such as “there are more wheels in the 

universe than there are doors.” So, a propositional statement such as ‘s or t,’ a 

propositional statement with two unknown propositions, cannot be evaluated because the 

truth values of s and t are undeterminable. This is what I referred to as an Impossible-to-

Answer scheme. The Flexible Proposition scheme describes an understanding that any 

proposition can take on either a True or False value at the time of evaluation. For Adeline 

and Kristal this meant that the propositional statement ‘s and t’ would produce two outputs 

depending on the truth value of the propositions themselves. In both cases, Python 

influenced the students’ reasoning in that the students understood that when evaluating a 

print statement in Python, one should receive a single output. For Haven, given a scenario 

with unanswerable propositions, it is impossible to determine a single output of a 

propositional statement such as ‘s or t.’ In contrast, for Adeline and Kristal, they thought 

that Python must make a choice between True or False with the probability of Python 

choosing False 75% of the time when evaluating the statement ‘s and t.’ While both 

student conceptions are incorrect, the use of Python provided an opportunity for the 

students to face these misconceptions and engage in a discussion about the functionality of 

propositions and logical operators. 

The Filter Every Element scheme and Monitor Change in the Cardinality scheme 

related to finding set intersections. I presented Group 2’s work related to the Filter Every 

Element scheme in which they used the idea of For Loops and If Statements as the artifacts 

in the construction of an instrument to solve a problem. That is, the use of For Loops and If 

Statements are computational tools that were not originally designed to find the 
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intersection of sets, but were co-opted by Leo to solve the mathematical task of finding the 

intersection of three sets. This is a nuanced elaboration of how I initially interpreted the 

role of Python as the primary artifact when I designed this study. The nuance is that when I 

originally conceptualized this study, I considered Python itself as the primary artifact in the 

students’ instrument development. I was thinking about text-based code in general, not 

specific computational tools like For Loops and If Statements, which is what emerged 

through the students’ work. The Monitor Change in Cardinality scheme represented by 

Alonso’s work also utilized For Loops as the artifact in the construction of his instrument 

to solve the mathematical task. In wanting to find the intersection of sets A, B, and C, his 

idea was to add each element from A to both B and C. If the cardinality of B and C each 

did not change, then the element added from A must belong to all three sets and can be 

added to a new set, D. Once this process is complete, the new set D would contain all of 

the common elements from A, B and C, which is the intersection of the three sets.  

The Determine Set Equality scheme and Verify Each Element scheme 

characterized two ways students determined that one set is a subset of another set. The 

Determine Set Equality scheme emerged through Julian’s work in Group 4 as well as with 

Eugene and Saul’s work in Group 2. Both groups came up with solutions to determine that 

the set of integers between 1 and 1000 which are divisible by 21 (A) is a subset of the sets 

of integers between 1 and 1000 which are divisible by three (B) and seven (C). Both 

solution methods used For Loops and If Statements as artifacts in the construction of their 

instruments, but they solved the task in slightly different ways. Julian’s approach was to 

check each element in set A and add it to a new set, D, if it was also an element in set B. 
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After the For Loop was run, Julian set A equal to D to check whether the sets were the 

same. If the sets were the same (which they were) then every element in A was an element 

in B which means that A was a subset of B. Eugene and Saul took a similar approach, but 

their For Loop used an If Statement to check that every element in A belonged in both B 

and C. If the element in A was an element in B and C, then the element was added to a new 

set, D. After the For Loop was run, the students checked the cardinality of A and D and 

determined that since the cardinalities were the same, A was a subset of both B and C. The 

Verify Each Element scheme emerged as Leo came up with a different solution than his 

partners Eugene and Saul. Leo’s approach was similar to his work that contributed to the 

Filter Every Element scheme in that he constructed a For Loop to check each element in A. 

His For Loop passed each element of A through the Union of B and C and if it was in the 

union, the code would produce the output “A is a subset.” There were 47 elements in A, 

which resulted in the output of 47 lines of “A is a subset.” Of course, finding that A is a 

subset of the union is a slightly different problem, but the central idea is that Leo’s goal 

was to verify that each element in A was an element in the other set. In the next section I 

discuss the extent to which the students in my study achieved the learning outcomes that I 

set when I designed this study. As a reminder, the first learning goal was for the students to 

develop operational definitions of the logical operators, ‘and’ and ‘or.’ The second learning 

goal was for the students to be able to determine what it means for one set to be a subset of 

another set. 
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Research Question 2 

 The goal of Research Question 2 was to characterize the students’ increasingly 

sophisticated ways of reasoning about set theory and logic. To do this I utilized four 

components of a hypothetical (and actual) learning trajectory: 

1. Established learning goals related to set theory and logic that would prepare 

students going into advanced mathematics. 

2. Developed tasks that would help support the advancement of the students’ 

mathematical reasoning.  

3. Analyzed the advancing mathematical sophistication of the students as 

evidenced by the actual learning trajectory of the students. 

4. Monitored the specific moves that I made as the researcher to help support 

the students’ mathematical thought processes and reasoning.  

There were two learning outcomes that I wanted the students to be able to take away from 

participating in this study. The first was to be able to develop operational definitions of the 

logical operators ‘and’ and ‘or’ and be able to flexibly reason about these logical operators 

to solve problem tasks. The second learning outcome was for the students to be able to 

utilize Python and their conceptions of union and intersection to determine that one set is a 

subset of another set. The extent to which the students achieved these goals varied by each 

group as some groups progressed further in the instructional task sequence than other 

groups. Specifically, Group 4 made it the furthest and had the most success in achieving 

both stated goals. As for Group 1, their actual learning trajectory focused more on the first 

goal, as well as an added focus on the functionality of a For Loop.  
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As is the case with most endeavors, the more one does something, the better they 

get. This was certainly the case with this study as I learned what aspects students struggled 

with and how I can streamline the tasks to best support the students in their learning of the 

material related to the two goals. For example, with Group 1 when I introduced the For 

Loop, I included a running index to track the iterations of the loop. This aspect was more 

of a topic of confusion and distraction than anything else, so I removed it for the other 

groups. I also made the decision to switch from Google Colab to an IDE on my own 

computer for Groups 3 and 4, which helped with a more detailed understanding of the 

processes of a given block of code. Making these changes allowed for more time, which 

led to richer, more meaningful conversations about the mathematical ideas. The tasks that I 

created were also developed utilizing two instructional theories known as Realistic 

Mathematics Education and PRIMM (Predict, Run, Investigate, Modify, and Make). Both 

theories start with the underlying premise that one can design tasks in such a way that 

students are able to engage in rich and meaningful problems from the moment they are 

introduced to the new material. Moreover, each of these theories support an approach that 

encourages students to develop an ownership of the material in ways that straightforward 

instruction or lecture cannot do. The overarching goal with the tasks that I created was to 

support students in their development of algorithms to solve problems related to set theory 

and logic. 

To monitor the advancing mathematical sophistication of the students, I used the 

four levels of mathematical activity that fall under the emergent modeling heuristic of 

Realistic Mathematics Education. These levels of activity are situational, referential, 
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general, and formal. Typically, these levels of mathematical activity are used to inform the 

design of the tasks to support students in their construction of models, or ways of 

understanding mathematical material. However, they have also proved to be helpful in 

documenting the developmental learning progression of students as one is able to monitor 

the shift between students’ models-of ways of reasoning about a mathematical idea, and 

then utilizing that model-of reasoning as a model-for reasoning about a more advanced 

topic. In this study, I highlighted the emergence of what I called the 

‘proposition/operator/proposition’ model that all the students in my study were able to 

construct. This model addressed both aspects of the first learning outcome in the following 

ways. First, the students developed a model-of reasoning in being able to determine the 

truth value of a given propositional statement such as ‘True or (False and True)’ and 

general propositional statements such as ‘s and t’ where s and t are any two propositions. 

These two propositional statements are examples of the situational and referential levels of 

activity, respectively. The next step in their model development addressed the second part 

of the first learning outcome, being able to flexibly reason about the ‘and’ and ‘or’ 

operators to solve more complicated problem tasks. This next step was the students’ 

general mathematical activity in which the students were able to use If Statements inside of 

a For Loop that contained a logical operator such as ‘and’ or ‘or’ to filter for certain 

elements in sets to reinvent set union and set intersection. As for the second learning 

outcome, the students did not achieve this goal to the extent to which I was hoping. The 

main reason for this is that the learning opportunities afforded to the students on the idea of 

subsets was minimal compared to those on logical statements and other ideas such as 



 300 

elements of a set. I was focused more on the idea of using a For Loop to reason about sets 

that I lost sight of the mathematics itself. If I were to redo the introductory task on subsets, 

I would likely construct a situation for the students in which they were tasked with 

investigating certain properties and relationships between defined sets and their subsets. 

One potential example would be a task in which the students were asked to reason about 

sets A = {1, 2, 3} and B = {1, 2, 3, {1, 2, 3}}. In this example, A is both an element of B 

and subset of B. This task would provide the students with an opportunity to engage more 

deeply with the idea of a subset, and as a result, would have more of an opportunity to 

construct a model-of way of reasoning that could be developed for more complex 

mathematical problems. As a result of the oversight, a model did not emerge from the 

students’ work on subsets. However, some students such as Alonso were able to internalize 

a working definition of a subset, evidenced by his performance on the post-study 

mathematical content survey which I will summarize in the last paragraph of this section. 

The last component of the learning trajectory was a focus on the different 

instructional strategies that I utilized to inquire into the students’ thinking and encourage 

productive conversations. I identified the following four instructor moves: 

1. I did not evaluate the students’ answers. 

2. I asked for each student’s thoughts and probed for more details of their 

understanding. 

3. I “told” the students certain pieces of information when necessary. 

4. I wrote code that would provide an opportunity for the students to investigate and 

compare outputs. 
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I found the most helpful instructor moves to engage students in productive conversations 

were items 2 and 4. By asking each student what they thought about a certain problem task 

(and not evaluating their answers), I was able to facilitate a back and forth between the 

students by asking them to reflect on their partner’s ideas. Additionally, by providing 

complete code, the students were able to compare the output with their initial thoughts and 

interpretations of what the code would produce.  

 Lastly, as a measure to document what the students may have known coming into 

the study compared to what they learned by the end of the study, I administered a pre and 

post-study mathematical content survey. Every student in the study improved their 

mathematical content survey score from pre-study to post-study. Additionally, the results 

of the surveys support my finding that the students achieved more success related to the 

first learning outcome compared to the second learning outcome. For the three questions 

related to subsets, there was only an improvement of four correct answers on the first 

question (from zero correct to four correct), no improvement on the second question (three 

correct to three correct), and only one additional student answered the third question 

correctly (one correct to two correct). Comparing this to the three questions that contained 

components of both set theory and logic, we see that there was a difference of six correct 

answers (from zero to six) for question nine, a difference of seven correct answers (from 

zero to seven) for question 10, and a difference of seven correct answers (from one to 

eight) for question 11. Given these findings, I realize that my approach to the content 

related to subsets was flawed and requires more attention. Specifically, developing tasks 

that would foster the development of a model related to subsets, or a task that would foster 
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their situational activity, is needed. In the next section I summarize the results related to 

the students’ affective experiences and their mathematical identities. 

Research Question 3 

 The third research component of my study was to investigate the effect that a 

collaborative online research study using Python to learn mathematics might have on 

students’ affective experiences, and in turn, their mathematical identities. There are two 

fundamental aspects related to my study that are important to consider when I discuss 

students’ mathematical identities. First, one’s mathematical identity is composed of 

multiple factors including interest, recognition by others, self-efficacy, beliefs, attitudes, 

and competence. The second aspect is that one’s mathematical identity is not a static 

characteristic. That is, one’s identity is fluid and context-specific and may change from one 

task to the next. While the complexity of identity cannot be entirely captured by 

implementing a pre/post survey on confidence and interest (such as the ATMLQ), these 

data points can serve as a blunt measure of students’ sense of self before and after a 

teaching experiment. Studying students’ affective experiences and understanding their 

shifting mathematical identities is important since the STEM disciplines are dominated by 

white men; understanding how we can support students of color, women, and other 

marginalized groups in their development of positive mathematical identities is crucial to 

diversifying the future STEM workforce. Treating our research participants as human 

beings and understanding their mathematical identity development can tell us so much 

more than whether or not the students were able to solve some problem tasks.  
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The data analyzed to address this component of my research consisted of debrief 

discussions with the students after each teaching experiment session, comments that the 

students made as they worked through the tasks, and the pre and post-study surveys called 

the ATMLQ (Attitudes to Technology in Mathematics Learning Questionnaire). The 

ATMLQ measured the students’ confidence and interest related to three categories: (a) 

mathematics, (b) computers and programming, and (c) programming to learn mathematics. 

To capture a general description of the students’ affective experiences and mathematical 

identity, I analyzed the students’ pre-study ATMLQ score compared to their post-study 

scores, evidence of the students’ sense of self-efficacy, their response to errors, and their 

general beliefs, attitudes, and emotions. 

The difference between the pre-study ATMLQ score and their post-study ATMLQ 

score was the main factor that I measured to understand the students’ experiences 

participating in the study. On the pre-study ATMLQ, the average score on the mathematics 

block of questions was 6.9, 10.2 for the computers and programming section, and 8.3 for 

the programming to learn mathematics section. For the post-study ATMLQ, the average 

score on the mathematics block of questions was 9.3, 10.5 for the computers and 

programming section, and 11.8 for the programming to learn mathematics section. Note, 

any number above zero on the ATMLQ indicates a positive sense of confidence and 

interest. Generally, the students that participated in my study experienced a positive shift in 

their confidence and interest related to mathematics and programming. However, three out 

of the ten students reported an overall negative shift in their confidence and interest. I 

summarize these three students’ experiences below. 
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Palmer experienced a negative shift of eight points from the pre-study ATMLQ to 

the post-study ATMLQ, with the largest negative shift occurring in his confidence and 

interest related to computers and programming (negative 10 points) but a small positive 

shift with respect to programming to learn mathematics (positive four points). As evident 

through his participation, Palmer was confident in his ability, but my hypothesis is that the 

complexity of the computer programming opened his eyes to what was possible with 

computers. That is not to say that Palmer was completely defeated, instead I conjecture that 

Palmer gained an appreciation for the power of computers. In support of this conjecture are 

his ATMLQ scores. His score on the pre-study ATMLQ was as high as one could score on 

the computers and programming block of questions, with the post-study ATMLQ it 

dropped 10 points, and yet his score was still the highest out of all of the research 

participants.  

Alonso had an overall difference between the pre-study ATMLQ and post-study 

ATMLQ of negative three points, but I do not consider this negative shift to be very 

descriptive of his overall experience. If anything, Alonso maintained his identity as a 

capable mathematician. Alonso understood the material quicker than any other student in 

my study, and answered every question correctly on the post-study mathematical content 

survey. Moreover, after the last session Alonso emailed to inform me that his participation 

in the study motivated him to study Python on his own time. There were moments where I 

thought that Alonso was being slightly too hard on himself for not knowing the right 

answer, but this was likely just a product of his desire to learn the material because of his 

genuine interest in mathematics and programming. So, like Palmer, I do not consider his 
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negative shift on the ATMLQs to be compelling evidence of a negative shift in his 

mathematical identity.  

The third student that reported a negative shift from the pre-study ATMLQ to the 

post-study ATMLQ was Delia, with a difference of 14 points. Throughout the study, Delia 

seemed neutral in her disposition toward the tasks, she even seemed bored in some 

moments. It could be that the material we were covering was not challenging enough for 

her as she was a competent mathematician, and she was confident in her reasoning. 

However, as stated previously, one’s mathematical identity is not inextricably linked to 

competence. One’s mathematical identity is also composed of one’s interest and other 

affective measures. Another explanation could be that she had a different expectation of 

what this study was going to be like, which could have led to a lack of engagement and 

interest as the study progressed. 

Additional evidence that supports the claim that Delia had a different experience 

participating in this study related to the other students was in the students’ answers to the 

free-response questions. All the students, except for Delia, noted some aspect of positive 

mathematical identity growth that contributed to their success in this study. Many students 

said that their interest in mathematics helped them succeed, other students mentioned their 

comfort in asking questions or a general desire to learn new material. For Delia, she did 

not believe that any aspect of her identity helped her succeed. In the next section I discuss 

the various implications that the findings related to my three research objectives may have 

in the years to come.  
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Implications 

 There are three main implications of this work. The first has to do with curriculum 

design and development in that the instructional sequence that I designed for this study 

showcases one example of how set theory and logic can be taught strictly using Python. 

More generally, this study is an existence proof that computer programming can serve as 

an accessible onramp to mathematics in a way that empowers learners in their 

understanding of the material. Therefore, one direct implication of this work is that 

educators may find ways to utilize computing and programming in traditional mathematics 

classrooms as a way to introduce a concept and encourage students to explore the material 

for themselves. Moreover, all the students in my study had little to no previous experience 

coding, and all of them were either enrolled in differential or integral calculus, courses that 

we traditionally view as “introductory.” What this implies then is that we don’t need to 

wait until students have some type of background in computing or advanced mathematics 

to encourage them to think computationally. Therefore, this study is particularly relevant 

for those teaching Introduction to Proofs courses, as set theory and logic are two ideas 

which are often central to the curriculum. 

Relatedly, the second main implication is the idea that set theory and logic do not 

necessarily need to be introduced in the context of proof, nor do they need to be introduced 

as independent units of instruction. Traditionally, set theory and logic are independent 

units taught with methods utilizing proofs. Granted, proof writing is one of the most, if not 

the most, important skill for mathematicians, and undergraduate students need to practice 

this skill. However, in this study I demonstrated how the fundamental ideas of set theory 
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and logic can be introduced together, in the context of Python. This implies that educators 

teaching introduction to proofs courses can utilize some aspects of Python to help students 

reason about set theory and logic, if only to introduce the material and ground the problem 

tasks in a realizable context. One example of a learning outcome for a student in my study 

that might not necessarily be true for a student in a standard introduction to proofs course 

would be the strong connection between the ‘and’ operator and set intersection as well as 

the ‘or’ operator with set union.  

The third implication is that conducting a research study in the virtual environment 

can not only be possible, but can be an ideal method of data collection. For this study, I 

conducted all the teaching experiment sessions over Zoom, using the screen record feature 

to capture student work in one window and the software that ran the code in another 

window. This format worked particularly well as the students were able to annotate their 

work in Jamboard, monitor the output of a given block of code, and easily communicate 

with one another all at the same time. If we were in person, navigating back and forth 

between one student’s code to another student’s code would end up being more of a 

logistical and physical challenge than anything else. That is, the students would end up 

needing to type their code and share it to a shared document like Google Docs or Jamboard 

anyways, thus I do not see the logistical added benefit of conducting the study in person. 

Additionally, some of the students in the study commented that being able to attend these 

sessions virtually was convenient for them, and in Juliana’s case, she believed that working 

online was less intimidating than working in person. An additional added benefit of 

collecting data via Zoom is that recording to the cloud will produce an automatic transcript 
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of the session, something that is a major time saver compared to writing up the transcript 

from scratch. In the next section I address the limitations of this study. 

Limitations 

There are three main limitations of this study that are important to address, 

presented in decreasing levels of significance. First, after the pilot study I realized that 

asking students to write their own code, think deeply about ideas related to set theory and 

logic, communicate their ideas out loud, and engage in discussions with their partner(s) 

was too much to ask for a short five-session teaching experiment like the one I designed. 

For this reason, I decided that I would primarily write the code, and the students would 

evaluate the code, predict the output, etc. My writing of the code had two benefits. First, 

the students did not have to worry about the syntax of Python which allowed them to 

instead concentrate on the ideas. Secondly, with me writing the code, we were able to 

progress through the material much quicker than if the students were required to write their 

own code. The students were given some opportunities to write their own code, and in 

most cases I would not write something unless they had verbalized their code out loud, but 

in general the students were not tasked with developing their own code. While there were 

some benefits, my hypothesis is that not asking the students to write their own code had a 

negative effect in that the students were not able to take ownership over the code that was 

being run. In retrospect, if I were to conduct this study again, I would only focus on the 

first learning outcome (on the use of logic to solve more complex tasks related to set 

theory) and spend the extra time to support students in their writing of code.  
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A second limitation is related to the opt-in nature of the students’ participation in 

this study. As a reminder, I recruited students from differential and integral calculus 

classes by asking the instructors of the courses to encourage their students to participate in 

my study which focused on the use of programming to learn mathematics. If a student was 

interested, they were required to take a screening survey which asked about their 

experience with set theory, logic and programming as well as other demographic 

information. While I selected students with minimal experience in these three areas of 

study, the students that opted-in to participate likely had higher levels of confidence and 

interest compared to their peers. This is reflected by the ATMLQ data in which all but one 

of the students (Haven) scored positively on the pre-study questionnaire asking about their 

confidence and interest related to mathematics, computers and programming, and 

programming to learn mathematics. Therefore, the students’ general positive disposition 

towards mathematics and programming produced an ideal teaching scenario where the 

students were interested and wanted to learn about mathematics and programming. Given a 

random sample of students, I would not be so sure that this instructional task sequence 

would have gone as smoothly as it did.  

Lastly, there were some aspects of the virtual environment that limited the true 

potential of this study. Poor connectivity was the first issue. During some sessions I would 

ask students to turn their cameras off to try and establish a better connection, but it is not 

entirely clear how much that helped them. Listening back to the video recordings I also 

realized that I experienced some connectivity issues without knowing it (the students did 

not say anything when it happened), which certainly led to missed information. 
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Additionally, when screen sharing, the screen record function on Zoom only captured the 

screen that I was sharing, and a mini window of whoever was speaking. Due to only being 

able to see the speaker, I was not able to incorporate any additional data such as gestures or 

facial expressions by those that were not highlighted as the speaker.  

Future Research 

 One important aspect of research is that one typically generates more questions 

about their work compared to the number of questions they were able to answer. This is 

certainly true about the work presented in this manuscript as I see five important areas for 

future research. The first is related to the students’ schemes in terms of the instrumental 

approach. In Chapter 4 I only highlighted the schemes of select students, but how well do 

these schemes characterize the other students’ work on the same tasks? That is, are there 

slight variations of each scheme that would capture each student’s thought processes in 

more detail? A more detailed analysis of each student’s work (and additional students in a 

follow up study) is necessary to better understand the prevalence and scope of the schemes 

presented in Chapter 4.  

A second area of future research would focus on the task sequence on subsets. The 

students in my study were not provided with learning opportunities that supported 

constructing a model-of what it means for one set to be a subset of another set in the way 

that I originally intended. Future research would entail the development of a new task 

sequence, or a modification of the introductory task sequence presented in this manuscript. 

More generally, future research to investigate how to infuse programming into any 
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instructional task sequence using Realistic Mathematics Education and PRIMM is needed, 

which brings me to the next area of future research. 

As alluded to previously, this study portrays the enactment of an ideal scenario in 

which the students were interested and wanted to learn how to use programming to learn 

mathematics. How would other students not as interested in programming or mathematics 

receive this material? Would it push them away from STEM? Or would it encourage and 

empower them to pursue STEM? Moreover, this study was conducted as a series of 

teaching experiment sessions in which the only focus was on programming to learn set 

theory and logic. Finding a way to integrate computing into an intact mathematics course 

with homework, quizzes and exams is the next step in bringing computing into the 

classroom and into the student learning experience. There has been some progress on this 

front with Kaplan’s development of Computer-Age Calculus with R (2020) and Brownlee’s 

Basics of Linear Algebra for Machine Learning: Discover the Mathematical Language of 

Data in Python (2018) to name two of the more recent attempts to integrate programming 

with introductory mathematics.  

Another area of future research could be on the differential impact that 

programming to learn mathematics may have based on students' social-marker identities 

such as gender. As seen in my study, the top three greatest shifts in terms of positive 

mathematical identity development were three women with shifts of +32, +21, and +11. 

Delia was the only other woman in this study and her ATMLQ results produced a shift of -

14 points, but the overwhelming difference between the total scores of the women 

compared to the total scores of the men (50 compared to 12, respectively) deserves further 
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investigation. Relatedly, two of the students that identified as women mentioned that their 

least favorite aspect of the study was being “cold-called.” I imagine that most students 

prefer other methods of eliciting participation over cold-calling, but I wonder if the online 

environment had anything to do with a heightened-sense of discomfort when being cold-

called. Additional research on cold-calling in a virtual teaching environment would be 

beneficial to understanding student engagement and how that may affect their sense of 

mathematical identity development. 

Lastly, there were many instances in my study in which the students would 

anthropomorphize Python or the written code itself. For example, some students would say 

that the ‘or’ operator “favors True” or “wants it to be True” to produce a True output. 

There were also instances of students using “see” as if Python itself was reading the code, 

“if it sees an ‘e’ or an ‘o’ in set A, it’s going to add the ‘e’ and the ‘o’ to the empty set.” 

This kind of language is natural when one is describing a process, but I wonder what 

correlation exists between one’s anthropomorphizing of Python and their confidence and 

ability to construct an algorithm to solve a mathematical task. My hypothesis is that there 

exists a negative correlation between the two ideas. That is, for the students that do not 

anthropomorphize and see computer programming as a simple set of instructions that are 

carried out by a machine, then those students would understand that they are in charge of 

what the output will be. If on the other hand students see computers or programming 

languages as things that have their own agency and/or preferences, then the students may 

be less likely to find a sense of ownership over the material.  
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Final Thoughts 

I begin this section with some thoughts on completing a dissertation during the 

height of a global pandemic. In March 2020 I was finishing my last set of courses required 

for my doctoral degree and preparing some thoughts on what I wanted to do for my 

dissertation. As we all know, it was then that the world shut down due to COVID-19 and 

we were required to conduct operations under quarantine. Now, restrictions have almost 

entirely been lifted (e.g., no mask requirement for flying, no proof of vaccine necessary at 

concerts or other indoor venues). For me, that meant that the entire dissertation process 

from proposal to data collection, to analysis and writing occurred during the COVID-19 

pandemic. Research has shown that the COVID-19 pandemic and preventative health 

measures such as quarantining and school/work closures have resulted in elevated levels of 

stress, anxiety, and depression which has had deleterious effects on cognitive functioning 

and overall affect (e.g., Boals & Banks, 2020; de Figueiredo et al., 2021; Nogueira et al., 

2021; Schwartz et al, 2021, Vannorsdall, 2022; Wirkner et al., 2022). With that said, and 

with the lessons learned from completing this work, I encourage those reading this to allow 

yourself grace, find a moment to reflect on what matters to you most, call your loved ones, 

and do your best to support those around you, because we all need it. 

To conclude this manuscript, I revisit the need for computing and programming in 

mathematics education. Integrating programming and computational thinking into the 

mathematics curriculum goes beyond just preparing undergraduate STEM majors for their 

future careers. It is a matter of economic mobility for the underserved and marginalized 

groups of our society. Computer science should not just be for those that can afford to 
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attend private institutions or live in the right zip codes and as a result attend the best public 

schools, nor should it just be for undergraduate students in STEM - by that time we are 

already too late. Moving forward, my hope is that we find ways to introduce computing at 

an earlier age, which means teaching future K-12 educators with methods that integrate 

computing and investing in the resources needed to properly support all students. 
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Appendix A: Screening Survey 

  

Welcome! Thank you so much for your interest in participating in my dissertation study. 

The following questions will help me in selecting participants for the pilot study of my 

dissertation. The overall focus of my dissertation work is to better understand how the 

programming language, Python, can be leverage to connect ideas related to Set Theory and 

Mathematical Logic.  

 

The pilot study will occur mid-to-late January 2021. Each one of you has something 

important to offer, and thus I am so appreciative of your time. If selected, you will be 

modestly compensated for your time. 

 

To participate in this survey, you must be 18 years old, or older. Are you? 

o Yes  

o No 

  

Thank you for participating! Your progress will be automatically saved every time you 

move to the next page. If you experience any difficulties, please contact Antonio Martinez 

at antonio.aemartinez@gmail.com 

  

On a scale from 1-10, where 1 represents little to no knowledge or experience and 10 

represents extremely knowledgeable and experienced, how would you rate your knowledge 

and experience with the following: 

  0 1 2 3 4 5 6 7 8 9 10 

  

Mathematical Set Theory ()  

Mathematical Logic ()  

Computer Programming (e.g., 

Java, C++, Python) () 

 

What do you know about Mathematical Set Theory? In what context have you seen it? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
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What do you know about Mathematical Logic? In what context have you seen it? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

  

What do you know about programming? In what context have you seen it? 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

  

The purpose of the following questions is to ensure that a wide range of student voices will 

be heard and learned from throughout this study. Some of this information may be 

sensitive, and I will handle it responsibly. Your responses will be kept private and secure, 

and will not be used for any other purposes outside of this study. Only members of the 

research team will have access to this data.  

  

Do you plan to enroll in Math 245 (Discrete Mathematics) in the future? 

o Yes  

o No  

o I'm not sure  

o I am currently taking or have already passed Discrete Mathematics  (4) 

  

When do you plan on taking Math 245 - Discrete Mathematics? 

o Spring 2021  

o Fall 2021  

o Other 

 

What is your class standing? 
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o First Year   

o Second Year   

o Third Year   

o Fourth Year   

o Other (please specify)________________________________________________ 

o Prefer not to disclose   

  

Which major(s) have you declared, or do you intend to declare? 

________________________________________________________________ 

  

  

(Select all that apply) Do you consider yourself to be: 

▢     Alaska Native or Native American   

▢     Black or African American   

▢     Central Asian   

▢     East Asian   

▢     Hispanic or Lantinx   

▢     Middle Eastern or North African   

▢     Native Hawaiian or Pacific Islander   

▢     Southeast Asian  

▢     White   

▢     Not listed (please specify)  

________________________________________________ 

▢     ⊗Prefer not to disclose   

  

 

(Select all that apply) Do you consider yourself to be: 

▢     International student   

▢     First-generation college student  (i.e., neither parent nor guardian completed 

a Bachelor's degree)   

▢     Commuter student   

▢     Transfer student   
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▢     Student with a disability   

▢     Student athlete   

▢     Current or former English language learner (i.e., the primary language 

spoken in your childhood home was not English)   

▢     Parent, guardian or care giver   

▢     ⊗Prefer not to disclose  

  

(Select all that apply) Do you consider yourself to be: 

▢     Man   

▢     Gender fluid or gender diverse   

▢     Transgender  

▢     Woman   

▢     Not listed (please specify)  

________________________________________________ 

▢     ⊗Prefer not to disclose 

  

Please confirm your participation in my study: 

o Yes, I would like to participate. Here is my contact email:  

________________________________________________ 

o No, I would not like to participate in your study.   

  

  

Thank you for being willing to participate! Antonio will reach out to you if you are 

selected for participation.  

  

If you would like to revisit any of your responses, please use the back button on this page. 

Submitting this page will finalize your responses and complete your submission. If you 

have any questions about the project or this survey, please contact Antonio Martinez at 

antonio.aemartinez@gmail.com. 
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Appendix B: List of Codes by Research Question 

 

RQ1: 

● Scheme 

○ Goals 

○ Rules 

○ Operational Invariants 

○ Inference 

● Concept 

○ Set theory 

○ Logic 

○ Python 

● Techniques 

○ Diagram 

○ Run the code 

○ Write a For Loop 

○ Add elements to a set 

● Tech-Elements 

○ Written Code 

○ Annotation in Jamboard 

○ Verbalized code 

 

RQ2: 

● Goals  

○ Sets as objects 

○ Use of ‘and’ 

○ Use of ‘or’ 

● Tasks 

○ Unhelpful - Bored 

○ Unhelpful - No discussion 

○ Helpful - Productive Discussion 

○ Helpful - Aha moment 

○ Confusing - Lots of Questions 

● Mathematical Activity 

○ Situational Activity 

○ Referential Activity 

○ General Activity 

○ Formal Activity 

● Instructor Moves 

○ ‘Telling’ Students 

○ Not evaluating answer 

○ Inquire into student thinking 

○ Writing code 
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RQ3: 

● Self Efficacy  

○ Confident 

○ Not confident 

○ Waning confidence 

○ Gaining confidence 

● Errors  

○ Give space 

○ Shut down 

○ Signal understanding 

○ Smile out of interest or curiosity 

○ Revise error 

○ Preface answer with “not sure” or “I know this isn’t right” 

● Beliefs 

○ Math/programming is interesting 

○ Math/programming difficult 

○ Collaboration over Zoom worked well 

● Attitudes 

○ Positive Attitude 

○ Negative Attitude 

○ Neutral Attitude 

● Emotions 

○ Happy 

○ Excited 

○ Nervous 

○ Anxious 

○ Embarrassed 

○ Frustrated 

○ Serious  

○ Tired/burnt out 

○ Joy in explaining answer 

○ Curious 

○ Overwhelmed 

○ Determined 

○ Matter-of-fact 
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Appendix C: Mathematical Content Survey 

Please answer the following questions to the best of your abilities. If you do not know how 

to answer the question, that is okay! 

  

What is your name? 

________________________________________________________________ 

  

  

A = { {1, 5, 7}, {3, 4, 8} }. Are any odd numbers between 1 and 10 elements of set A? 

Please provide details with your answer. 

o Yes ________________________________________________ 

o No ________________________________________________ 

o I'm not sure 

  

A = { {1, 5, 7}, {3, 4, 8} }, B = {1, 5, 7, {3, 4, 8} }. If we define C to be the set of 

elements that exist in A and B, what elements are in C? 

________________________________________________________________ 

  

  

A = { {1, 5, 7}, {3, 4, 8} }, B = {1, 5, 7, {3, 4, 8} }. If we define C to be the set of 

elements that exist in A or B, what elements are in C? 

________________________________________________________________ 

  

  

Consider any two sets, A and B. What does it mean for an element to not be an element of 

A and B? 

________________________________________________________________ 

  

  

Please do not change your answers to the previous questions. We define an "element" as a 

member of a set. We define a subset in the following way: A is a subset of B given that 

every element in A is an element of B.  

  

S = {1, 3, {3, 4} }. Is 3 an element of S? 

o Yes 

o No 

o I'm not sure 
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S = {1, 3, {3, 4} }. Is 3 a subset of S? 

o Yes 

o No 

o I'm not sure 

  

S = {1, 3, {3, 4} }. Is {3} a subset of S? 

o Yes 

o No 

o I'm not sure 

  

S = {1, 3, {3, 4} }. Is {3, 4} an element of S? 

o Yes 

o No 

o I'm not sure 

  

S = {1, 3, {3, 4} }. Is {3, 4} a subset of S? 

o Yes 

o No 

o I'm not sure 

  

Is the following statement true or false?  

 

“Given an integer number x, x is even or x is odd” 

o True 

o False 

o I'm not sure 

  

Is the following statement true or false?  

 

“The integer 15 is even or 15 is odd” 

o True 

o False 

o I'm not sure 

  

[Question on the Pre-Study Survey] 
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What would be the output of the following code in Python? 

 

city = "San Diego" 

 

for x in city: 

    print(x) 

 

[Question on the Post-Study Survey] 

 

What would be the output of the following code in Python? 

 

prop = "proposition" 

 

for x in prop: 

    print(x) 

    if ((x == "o") or (x == "p")): 

        print(x) 
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Appendix D: Confidence and Interest Survey 

Five-point Likert scale for the following questions: 1 = Strongly agree; 2 = Agree; 3 = 

Neutral; 4 = Disagree; 5 = Strongly disagree 

 

The following statements refer to your confidence when learning mathematics. 

1. I have less trouble learning mathematics than other subjects. 

2. When I have difficulties with mathematics, I know I can handle them. 

3. I do not have a mathematical mind. 

4. It takes me longer to understand mathematics than the average person. 

5. I have never felt myself able to learn mathematics. 

6. I enjoy trying to solve new mathematics problems. 

7. I find mathematics frightening. 

8. I find many mathematics problems interesting and challenging. 

9. I don’t understand how some people seem to enjoy spending so much time 

on mathematics problems. 

10. I have never been very excited about mathematics. 

11. I find mathematics confusing. 

 

The following statements refer to your confidence when using computers. 

12. I have less trouble learning how to use a computer than I do learning other 

things. 

13. When I have difficulties using a computer I know I can handle them. 

14. I am not what I would call a computer person. 

15. It takes me much longer to understand how to use computers than the 

average person. 

16. I have never felt myself able to learn how to program. 

17. I enjoy trying new things on a computer. 

18. I find having to use computers frightening. 

19. I find many aspects of using computers interesting and challenging. 

20.  The idea of being asked to program is frightening. 

21. I don’t understand how some people can seem to enjoy spending so much 

time using computers. 

22. I have never been very excited about programming. 

23. I find using computers confusing. 

24. I’m nervous that I’m not good enough with computers to be able to use 

them to learn mathematics. 

 

The following questions refer to the way you feel about computers in the learning of 

mathematics.  

25. Computing power makes it easier to explore mathematical ideas. 

26. I know programming is important but I don’t feel I need to use it to learn 

mathematics. 

27. Computers and graphics calculators are good tools for calculation, but not 

for my learning of mathematics. 
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28. I think programming is too new and strange to make it worthwhile for 

learning mathematics. 

29. I think programming wastes too much time in the learning of mathematics. 

30. I prefer to do all the calculations and graphing myself, without using a 

computer or graphics calculator. 

31. Using computing power/programming for the calculations makes it easier 

for me to do more realistic applications. 

32. I like the idea of exploring mathematical methods and ideas using 

programming. 

33. I want to get better at using computers to help me with mathematics. 

34. The symbols and language of mathematics are bad enough already without 

the addition of programming. 

35. Having programming to do routine work makes me more likely to try 

different methods and approaches. 

 

 

 

Post-Study Free-Response Questions 

1. What was your favorite part about participating in this study? 

2. What was your least favorite part about participating in this study? 

3. What are your thoughts on working collaboratively with others in the Zoom 

virtual setting? 

4. What about you or your identity contributed to your success in this study? 
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