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the PaD-US-aR dataset:  
Measuring accessible and 
recreational parks in the contiguous 
United States
Matthew H. E. M. Browning  1,2 ✉, Alessandro Rigolon3, Scott Ogletree4, Ruoyu Wang5, 
Jochem O. Klompmaker6,7, Christopher Bailey  2, Ryan Gagnon  1 & Peter James6,8

Most spatial epidemiological studies of nature-health relationships use generalized greenspace 
measures. For instance, coarse-resolution spatial data containing normalized difference vegetative 
index (NDVI) values are prominent despite criticisms, such as the inability to restrain exposure 
estimates to public and private land. Non-threatening natural landscapes can improve health by 
building capacities for health-promoting behaviors. Recreational and accessible parks may best activate 
such behaviors. We curated the Parks and Protected Areas Database of the U.S. (PAD-US) to identify 
parks that are accessible for outdoor recreation. Our title adds “aR” to “PaD-US” where a = accessible 
and R = Recreational. We validated the PAD-US-AR by comparisons with greenspace datasets and 
sociodemographics, which demonstrated its uniqueness from other commonly employed metrics 
of nature exposure. the PaD-US-aR presents reliable estimates of parks in the contiguous U.S. that 
are accessible for outdoor recreation. It has strong associations with home prices, shares of female 
residents, and shares of older residents. This dataset can accompany other nature exposure metrics in 
environmental epidemiology and allied research fields.

Background & Summary
Exposure science has historically measured the toxic elements that negatively impact human health1. However, 
nature-rich environments that are perceived as non-threatening can positively influence human health through 
multiple pathways, including mitigation of harmful exposures (i.e., traffic emissions, heat, and noise), restor-
ing attention and reducing stress, and promoting healthy behaviors (i.e., physical activity, sleep, and social 
interaction)2,3.

Research on the health benefits of nature has grown since the 1990s4,5. Hundreds of health outcomes/
endpoints have been studied, and at least 40 systematic reviews and meta-analyses have been conducted6,7. 
Collectively, these studies suggest plant-rich environments (“greenspaces”) are associated with lower rates of 
all-cause and stroke-specific mortality, cardiovascular disease, poor mental health, low birth weight, lower levels 
of physical activity, and poor sleep quality6. Liquid-water environments (“bluespaces”) are associated with lower 
rates of all-cause mortality, obesity, low levels of physical activity, and poor mental health8,9. Finally, solid-water 
environments (i.e., polar regions) and rock/mineral-dominated landscapes may have emotional and mental 
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benefits and serve as medical treatments for respiratory conditions and allergies, although evidence for these 
landscapes being therapeutic is minimal10.

Despite the growing interest in nature and health, ongoing research would benefit from more sophisticated 
and precise exposure estimates11–13. One simple and imprecise exposure measure of leafy green vegetative cover 
is the normalized difference vegetation index (NDVI) from moderate resolution (i.e., 30m2 or 250m2) satellite 
imagery2,14,15. The calculation of NDVI involves determining the ratio between near-infrared and red bands of 
light16. NDVI measures hold some value but are limited in several respects. In defense of NDVI, values have been 
ground-truthed by environmental psychologists and found to correspond to ratings of “greenness“17. Values can 
also be easily obtained from Google Earth Engine (GEE) at different global spatial and temporal scales. Values 
are assigned to cells laid out in a grid that overlap land cover types and ownership lines, allowing accurate 
availability estimates (i.e., magnitude of greenness around the home, work, school, and activity spaces) when 
available at fine spatial resolutions and coupled with parcel-level ownership data15,18. Finally, many vegetation 
types can activate health-promoting pathways linking nature exposure with health2. In critique of NDVI, values 
cannot indicate the type of, quality of, access to, and experience with vegetation or other forms of nature, such as 
liquid water, solid water (i.e., ice, snow), or rocks and minerals (i.e., deserts)2,10,14. These limitations should not 
be surprising; after all, the calculation of NDVI is restricted to plants and emerged from agricultural science to 
estimate crop productivity and expected yield rather than environmental epidemiology16. Also limiting NDVI is 
its inability to identify design characteristics that activate instorative effects of nature-based recreation, such as 
physical activity along greenways and social interaction at picnic shelters19,20. NDVI values are affected by com-
plex interactions between other environmental factors with less relevance to nature exposure, such as season, 
slope, and precipitation21,22 in addition to sensor type and the spatial unit size23,24.

Another measure of green vegetation is remotely sensed tree canopy cover. Versions of these data at coarse 
or moderate resolutions can be easily retrieved (i.e., from the Multi-Resolution Land Characteristics [MRLC] 
National Land Cover Database [NLCD], see www.mrlc.gov). Higher-resolution data are becoming available 
from agencies, academic institutions, and commercial providers (i.e., www.earthdefine.com/treemap/, https://
insights.sustainability.google/labs/treecanopy) through object-based image analysis and related processes25–27. 
These data can measure this specific type of greenery by classifying vegetation over a certain height (e.g., >2 m) 
as a tree. Canopy cover is an appropriate nature exposure metric given its opportunities for health promotion 
through shade, reductions in urban heat island effects, and psychological restoration28,29. However, like NDVI, 
tree canopy cover data do not provide information on public access and recreational opportunities. Such infor-
mation must be available at high resolution and coupled with parcel-level data or spatial algorithms that differ-
entiate visibility along public rights-of-ways (i.e., sideways in front yards)30,31 to identify where trees might be 
available to the public for recreational opportunities under canopies.

Other advances in the calculation of nature exposure have been made. For instance, machine learning algo-
rithms have been increasingly applied to 360-degree images along streets (e.g., Google Street View [GSV] or 
Baidu) or photographs looking out windows to calculate the percentage of visible greenery32–36. Still, most nature 
exposure metrics remain limited to greenery or open water cover rather than quantification of recreational facil-
ities (i.e., trails and lightning) that also promote health37. The need for alternative datasets remains.

Nationwide data on the location of accessible natural areas managed for outdoor recreation (i.e., parks and 
protected areas) would be particularly useful. While the composition and facilities in parks vary, many are 
managed explicitly for the mechanisms explaining the health benefits of nature, including social interaction 
and physical activity38,39,cf.40. For instance, natural landscapes in rural areas may be used for resource extraction 
or conservation with few opportunities for recreation41. Meanwhile, greenery in urban areas may be intended 
primarily for ecosystem services such as stormwater runoff, cooling, and noise/air pollution mitigation42. Parks 
across the urban-rural spectrum are important to consider alongside other nature exposure estimates.

Researchers are beginning to use some spatial nationwide datasets for measuring park cover in the U.S. 
(Table 1). USA Parks was developed by the Environmental Systems Research Institute (Esri) using proprietary 
data from that company and TomTom43. Open Street Map (OSM) includes crowdsourced data tagged by keys 
(topic/category) and values (features). These can be selected to identify possible public natural areas44. The accu-
racy and consistency of tags vary geographically and are often imprecise, making the identification of public 
natural areas difficult45. ParkServe contains data on local parks in nearly 14,000 cities, towns, and communi-
ties in the USA and was curated by the Trust for Public Land (TPL)46. Finally, the Parks and Protected Areas 
Database United States (PAD-US) is an initiative of the U.S. Geological Survey (USGS) with federal, state, and 
local partners47. It hopes to inventory all protected areas, including public lands, and voluntarily provide private 
protected areas.

These currently available park datasets are limited in identifying where accessible and recreational parks 
exist. Most lack metadata on whether each land parcel is open to the public. OSM provides some data on public 
access but without clear assignments. For example, our retrieval of polygons with the “leisure:park” tag returned 
17 types of access from “community” and “discouraged” to “permissive,” “yes,” “restricted,” and “unknown.” 
Further, OSM data are crowdsourced and not validated by the agencies who manage these spaces. ParkServe also 
has public access metadata, but its coverage is focused on municipalities. Park cover in rural areas where many 
important recreational parks (i.e., National Parks) are located is limited in ParkServe.

In response to the value of park data and limitations with extant datasets, we present a new exposure indica-
tor – the dataset for accessible and recreational parks in the contiguous United States (PAD-US-AR). We validate 
this dataset by comparing it to its source (the original PAD-US V2.1), other nature exposure metrics, including 
NDVI, tree canopy cover, alternative park datasets, and sociodemographic characteristics in counties and states.

https://doi.org/10.1038/s41597-022-01857-7
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Methods
We curated the  PAD-US-AR48 dataset from the USGS Protected Areas Database of the U.S. V2.1 (PAD-US V2.1)47. 
The PAD-US is published by U.S. Geological Service in collaboration with Boise State University and through coor-
dination with Federal, State, and non-governmental organizations that provide and verify the data. Its original release 
was in April 2009. Updates were made in 2010, 2011, 2012, 2016, 2018, 2020, and July 2022. Data on the completeness 
of the V2.0 dataset, which occurred before the V2.1 dataset used here, are available at https://www.protectedlands.net/
frequently-asked-questions-about-pad-us/. In brief, 14 states had over 95% coverage of parks and protected areas, 26 
states had 80–95% coverage, and the remaining 8 states in the contiguous U.S. had <80% coverage. Updated coverage 
statistics for V2.1 are currently unavailable.

The PAD-US is a regularly updated geographic information system (GIS) spatial dataset that compiles the 
best available data provided by U.S.-based land management agencies and organizations. It strives to be a com-
plete inventory of public land and other protected areas in the U.S. Included areas are those preserved for biolog-
ical diversity and other natural, recreation, historical, or cultural uses and managed for these purposes through 
legal or other effective means47. Some areas consist of small land parcels with building footprints that occupy 
most of the area. These are not readily identified with the PAD-US V2.1 metadata. The location designation field 
(Loc_Ds) offers some clues with values such as “cultural arts center” and “National Register of Historic Places.” 
The number of unique values (N = 1,675) in the designation, easement, and fee areas of the PAD-US V2.1 limits 
precise identifications and removal of such areas.

The PAD-US V2.1 release became available in September 2020 and included notable updates from previous 
versions. These included integration of the TPL ParkServe dataset, Census American Indian/Alaskan Native 
Areas, Ducks Unlimited protected areas, and federal land ownership updates, among others. The PAD-US V3.0 
was released in early July 2022 and contained minor updates that we expected to influence the curation pro-
cess of the PAD-US-AR very little. For a complete description of version updates, see https://www.usgs.gov/
programs/gap-analysis-project/pad-us-data-history.

The PAD-US has been used for conservation mapping49–55 and noise research56,57. These studies have identi-
fied that Western U.S. National Monuments provided jobs and economic growth after establishment52, counties 
with greater coverage of protected areas with strict conservation status (i.e., Wilderness Areas and National 
Parks) are associated with higher average noise levels56, and anthropogenic noise is common in many U.S. parks 
and protected areas57. We are also aware of a few nature-health studies that have utilized the complete PAD-US 
dataset58,59. In studies by Tsai and colleagues, the authors identified park locations and ground-truthed results 
with Google Maps and county/municipal data to identify park entrances. The PAD-US was used to calculate 
descriptive sample characteristics or covariates in models with other measures of nature exposure (i.e., tree cover 
and greenery), so associations between health and the PAD-US were not reported.

The opportunities and lack of precedent for curations of the PAD-US prompted us to define which types 
of parks and protected areas in the dataset were both accessible and recreation-oriented. Based on discussions 

Name Developers Updated Description Source License

USA Parks43

Environmental 
Systems 
Research 
Institute (Esri)

09–2021
“National and State parks and forests, along with County, Regional and Local 
parks within the United States… provides thousands of named parks and 
forests at many levels.”

Esri, TomTom Esri Master License 
Agreement

OSM44
Open Street 
Map (OSM) 
Foundation

(continuous)

Park data are available by selecting relevant tags, consisting of a key and 
value separated by a colon. The key is a topic, category, or type of feature (i.e., 
areas used for leisure). The value provides detail for the key-specified feature 
(i.e., park vs. playground, both of which are used for leisure). Tags used in 
past research on park cover and greenspace measures vary but can include 
leisure = park, leisure = garden, landuse = grass45,83; playground and protected_
area84; dog park and flower bed85; and allotment, cemetery, farmland/farmyard, 
forest/wood, greenfield, greenhouse, meadow, nature reserve, orchard, plant 
nursery, scrub, village green, and wetland86. Golf courses have been excluded 
from some greenspace analyses68.

Crowdsourced Open Database 
License

ParkServe46 Trust for Public 
Land (TPL) 05–2022

“a comprehensive database of local parks in nearly 14,000 cities, towns, and 
communities… attempted to contact each city, town, and community with a 
request for their parks data. If no GIS data was provided, [TPL] created GIS 
data for the place based on available resources, such as park information from 
municipal websites, GIS data available from counties and states, and satellite 
imagery.”

Municipal, 
county, and state 
GIS datasets; 
Satellite imagery

Copyright held by the 
TPL; Data available 
for personal, non-
commercial use

PAD-US V2.147
United States 
Geological 
Survey (USGS)

09–2020

“Nation’s inventory of protected areas, including public land and voluntarily 
provided private protected areas… an ongoing project with several published 
versions of a spatial database including areas dedicated to the preservation 
of biological diversity, and other natural (including extraction), recreational, 
or cultural uses, managed for these purposes through legal or other effective 
means… its scope expanded in recent years to include all public and nonprofit 
lands and waters… strives to be a complete inventory of public land and other 
protected areas, compiling ‘best available’ data provided by managing agencies 
and organizations.”

Federal, state, 
and local 
agencies; National 
Conservation 
Easement 
Database; 
ParkServe

Public domain

PAD-US-AR V148 The Authors and 
USGS Data 12–2020 A curated version of the PAD-US that identifies parks intended for recreation 

and accessible to the general public. PAD-US V2.1
Creative Commons 
Attribution 4.0 
International

Table 1. Description of park cover datasets for the contiguous U.S. Notes: Descriptions were retrieved on  
June 6, 2022.
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among three authors (M.B., A.R., S.O.) and three outdoor recreation specialists in the western United States, we 
reached a consensus on including the following categories:

 1. Parks open for public access or restricted access (i.e., seasonally open, fees required, or permits required), 
including but not limited to lands managed by the National Park Service, U.S. Forest Service, Bureau of 
Land Management, U.S. Fish & Wildlife, Army Corps of Engineers, State Parks, State Departments of 
Conservation, State Departments of Natural Resources, State Departments of Land, State Fish and Wildlife 
Departments, State Forest Service, State Park and Recreation Departments, Tennessee Valley Authority, 
and city and county park and recreation departments.

 2. Publicly accessible conservation easements.

We excluded the following designations (see the paragraphs below for rationales):

 1. Department of Energy, Department of Defense, and Bureau of Reclamation lands
 2. Marine areas managed as Marine Protected Areas by the National Oceanic and Atmospheric Administra-

tion, or Bureau of Ocean Energy Management, among others
 3. Proclamation areas, which are boundaries of national lands used for administrative purposes that overlap 

with large areas of public lands that are not all available to the public
 4. Fish hatcheries and other lands used for water rights with regulated hunting
 5. National Park easements (i.e., lands paralleling but not including the Appalachian Trail and not used by the 

public)
 6. Joint management areas (i.e., university research stations)
 7. Non-governmental organization lands (aside from conservation easements)
 8. State trust/land survey lands
 9. American Indian Lands
 10. Other areas with unknown access or closed public access (i.e., limited to coordinated programs and research)

Restricting the PAD-US to these categories was a sequential process starting with the four terrestrial PAD-US 
domains (Fig. 1). These domains included designations (policy-designated areas such as National Parks and State 
Parks), easements (conservation and open space easements provided by the National Conservation Easement 
Database60), fee lands (open space owned by Federal, State, or local agencies, nonprofits, or private individuals), 

Fig. 1 Data curation of the PAD-US-AR from the PAD-US V2.1.

https://doi.org/10.1038/s41597-022-01857-7
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and proclamations (boundaries of administrative areas). For further information on these domains, see http://
www.protectedlands.net/pad-us-technical-how-tos/.

Our first step was to exclude all proclamation lands in the PAD-US. These administrative boundaries are not 
ownership lines but are instead the outer boundaries of areas used by land managers for planning regardless of 
internal ownership. They could but will not necessarily be publicly managed in the future. Some commercial 
mapping providers (i.e., Google Maps, Esri USA Parks) incorrectly use these boundaries to show protected areas 
and, in doing so, often show large areas of private lands as part of public lands.

Next, we excluded lands described as closed to public access in the PAD-US. Alternative classifications 
include open to public access, restricted, which denotes a permit may be needed, or unknown. We temporarily 
retained unknown access areas for further consideration since large areas of the intermountain west are desig-
nated as such. For example, the Great Salt Lake, UT, is the state’s largest water body and a recreation destination 
for boating, swimming, and sunbathing.

The subsequent step was refining lands labeled as unknown access in the PAD-US. Decisions were made 
based on the assigned land manager. City lands (Code = CITY) were included since many greenways were 
under this classification. County lands (CNTY), which described nearly 250 polygons run by the City of New 
York for parks and recreation in the city and upstate, were included. Similarly, regional agency land (REG) 
covered over 400 polygons concentrated in Chicago and Los Angeles suburbs used for parks and recreation; 
these lands were retained. State Department of Conservation (SDC) and State Department of Natural Resource 
(SDNR) lands were also retained. These included over 5,000 polygons across the country, including the Great 
Swamp Management Area, RI, an important area for birding and open to the public, and the Great Salt Lake. 
State Department of Land (SDOL) areas were retained, as they included approximately 30 polygons used by the 
public for hiking in Northwestern states. State Fish and Wildlife (SFW) lands included urban areas with trails 
along waterways and were retained. State Parks and Recreation (SPR) lands were retained and covered public 
recreational areas in Maine. Tennessee Valley Authority (TVA) and Army Corps of Engineers (USACE) areas 
covered large reservoirs with important water-based recreation resources and were retained. The presence of 
such waterbodies, which provide public recreation to millions of visitors annually61, required us to retain the 
entire census geographies despite evidence that removing areas covered by water can lead to more precise and 
realistic sociodemographic analyses62. Last, U.S. Forest Service (USFS) lands were retained as they included 
several recreational areas in Virginia.

All other areas with unknown public access in the PAD-US were deemed not accessible to the public or used 
for public recreation and therefore excluded. This conservative approach reduced the chances of misclassifying 
large tracts of land that were likely inaccessible. For example, Department of Defense (DOD) lands included 
ammunition plants, Department of Energy (DOE) lands included nuclear test sites, and National Oceanic and 
Atmospheric Administration (NOAA) lands included estuarine research reserves. Non-governmental organiza-
tion (NGO) lands included nearly 17,500 polygons in the Rocky Mountains but covered too many conservation 
types to determine whether these were open to the public. American Indian Lands (TRIB) were on reservations 
and could not be assumed to be accessible and used by the public.

The final step in curating the PAD-US-AR dataset was determining how to approach the polygons in the 
Western and Midwestern states that were left over from the Public Land Survey System (designation = SRMA). 
Most of these lands follow a grid pattern and are not used for outdoor recreation. However, some state trust 
lands include important parks, such as DuPont State Forest, NC, a popular destination for mountain biking, hik-
ing, swimming, and visiting waterfalls. Three of the authors conducted online searches of the uses of these lands 
using online resources (i.e., State Department of Natural Resource portals) for each state and selected which 
to include or exclude. The corresponding author also discussed these decisions with three outdoor recreation 
professionals living in the western U.S. Based on this examination, we removed state trust lands from Arizona, 
Colorado, Idaho, Louisiana, Mississippi, Montana, Nevada, New Mexico, North Dakota, Oklahoma, Oregon, 
South Dakota, Texas, Utah, Washington, and Wyoming.

To obtain census tract and county exposure estimates, we calculated the percentage of the PAD-US-AR cov-
ering each geographic unit. Tract-level estimates included a 0.5-mile buffer around each tract to acknowledge 
the opportunities for park access for residents living near the tract boundaries. Similar thresholds have been 
used in past research63–65 and are recommended as U.S. park access standards by several nonprofits (e.g., Trust 
for Public Land, www.10minutewalk.org). This threshold is primarily used in urban areas and may be most 
relevant to those areas where most people live and where tract sizes are smaller.

No buffering was conducted around counties. Counties are >300% larger than tracts, on average. In our data-
set, the median county area was 1,614 km2, while the median tract area was 5 km2. Counties are also jurisdictions of 
local governments, whereas tracts do not represent any administrative boundaries. For these reasons, we avoided 
buffering counties, which often have parks and recreation departments managing parks within their borders.

Data Records
PAD-US-AR48 data are released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license 
and publicly available on an Open Science Framework (OSF) repository (https://doi.org/10.17605/OSF.IO/
PWDSG). Several files are available:

 1. Geopackage and shapefile of the PAD-US-AR48 in a standard format (separate polygons for different parks) 
and dissolved format (a single polygonal layer)

 2. Spreadsheets of PAD-US-AR48 cover in 2019 U.S. counties
 3. Spreadsheets of PAD-US-AR48 cover in 2019 U.S. ZIP code tabulation areas
 4. Spreadsheets of PAD-US-AR48 cover in 2019 U.S. tracts with 0.5-mile buffers around each tract

https://doi.org/10.1038/s41597-022-01857-7
http://www.protectedlands.net/pad-us-technical-how-tos/
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Geopackage and shapefiles include vector polygons with the original metadata from the PAD-US 
V2.1. For a complete listing of variables, please visit https://www.usgs.gov/programs/gap-analysis-project/
pad-us-data-manual. In brief, the data include the name of the parcel; feature class (in the PAD-US-AR, the 
options are designation, easement, or fee); type and name of management agency (i.e., federal, state, American 
Indian Lands, or local government); designation (i.e., conversation easement vs. National Park); conservation 
protection level as designated by the International Union for the Conservation of Nature (IUCN); state name; 
and geographic size.

Spreadsheets include geographic identifiers (i.e., FIPS codes or GEOID) and percent park cover. These are 
provided as Microsoft Excel files (.xlsx) and text files (.txt) to maintain leading zeros in the geographic identi-
fiers. Park cover ranges from 0 (no parks) to 100 (complete park cover). Tract estimates are provided for park 
cover within the boundaries of each tract and the 0.5-mile buffered tract boundaries.

technical Validation
The PAD-US-AR48 dataset presents park cover from nearly 250,000 spatial units and 1,900,000 km2 in area 
across the contiguous U.S (Table 2). Histograms of the data within counties and tracts and by census region are 
presented in Figure S2. Distributions were right skewed in all regions except Northeastern and Western counties. 
Northeastern counties showed a flat distribution until approximately 20% cover. Higher levels of cover were 
present in few counties. Western counties showed a roughly flat distribution until around 80% cover, after which 
the number of counties with higher cover levels was small.

Comparisons with the source dataset (PAD-US V2.1) are available for each census region in Figs. 2–5. Large 
areas of Maine, southeast Pennsylvania, central/western Massachusetts, and northern New Hampshire were 
excluded from the PAD-US-AR because they were private conservation easements, watersheds with closed 
access as listed in the PAD-US V2.1, or otherwise unknown public access. Swaths of the Dakotas were removed 
as conservation easements used for wildlife management with uncertain public access. Lands in Oklahoma 
arranged on a gridwork were removed as state school lands typically leased out for agriculture and mineral 
resource purposes. A gridwork of land parcels in Montana, Wyoming, Colorado, Arizona, and New Mexico 
was removed as state trust lands managed for timber, surface, and mineral resource extraction. Similarly, larger 
parcels of state trust lands in Western Texas were excluded. Other large parcels of lands excluded were over 
560,000 acres in central Idaho, 860,00 acres in southern Nevada, and nearly 200,000 acres in southern South 
Carolina managed by the Department of Energy; approximately 550,000 acres at Vermejo Park Ranch managed 
by Ted Turner Reserves, Inc., and 133,000 areas of the Stronghold District of Badlands National Park in western 
South Dakota owned by the Oglala Sioux Tribe under agreement by the National Park Service.

Next, we compare the PAD-US-AR dataset with other park datasets, nature exposure metrics, and sociode-
mographic characteristics. The value of comparing the PAD-US-AR with other park datasets is to determine 
whether the PAD-US-AR differs from already available datasets. Park dataset comparisons were made by tal-
lying the number of geographic polygon units and calculating the total cover after dissolving all polygon units  
(to account for some polygons overlapping each other) in census regions.

The value of comparing the PAD-US-AR to nature exposure metrics is to determine whether park cover 
differs from other standard exposure estimates. We employed two measures of NDVI (annual averages and 
summertime highs) and tree canopy cover, which were derived from raster images and averaged across geo-
graphic units (tracts or counties). NDVI values were retrieved and processed in Google Earth Engine (GEE) 
using cumulative annuals or summertime highs (June-August) from 250 × 250 m 16-day MODIS images aver-
aged over five years (2015–2020) after extracting cloud cover and water pixels. Tree canopy data were retrieved 
from the 2019 National Land Cover Database (NLCD) release66, which provides cover estimates ranging from 
0 to 100% for each 30 × 30 m pixel in 2016. This release was the most recent available during data retrieval 
(September 2022). To identify whether the PAD-US-AR was unique from these other estimates of nature  
exposure, we examined bivariate correlations between each metric and the PAD-US-AR.

Name Nationwide Northeast Midwest South West

USA Parks 61,030 (1,409,517 km2) 9,724 (52,082 km2) 17,075 (110,524 km2) 16,657 (172,960 km2) 17,665 (700,588 km2)

ParkServe 135,179 (574,333 km2) 29,238 (18,672 km2) 35,251 (52,267 km2) 37,647 (48,153 km2) 33,008 (453,441 km2)

OSM leisure tags 309,160 (764,141 km2) 64,442 (51,179 km2) 90,833 (77,872 km2) 72,046 (95,613 km2) 80,113 (522,610 km2)

OSM boundary tags 51,966 (1,195,726 km2) 17,174 (69,626 km2) 8,257 (80,742 km2) 11,670 (138,321 km2) 13,760 (890,270 km2)

PAD-US V2.1 430,836 (3,619,326 km2) 110,327 (117,498 km2) 118,496 (817,404 km2) 90,815 (438,958 km2) 110,650 (2,094,608 km2)

PAD-US-AR48 248,871 (1,866,564 km2) 63,530 (68,037 km2) 69,493 (161,952 km2) 54,456 (172,563 km2) 61,693 (1,464,012 km2)

Table 2. Number of units and cover of datasets for park cover in the contiguous U.S. Notes: Areal statistics were 
calculated by dissolving all polygons and determining cover rather than meta-data provided in the original 
data. Sum of the areas within regions may not total the nationwide statistics in polygons extending beyond the 
terrestrial scope of the U.S. and polygons overlapping regions. OSM tags included dog_park, garden, nature_
reserve, and park for the leisure key and national_park and protected_area for the boundary key based on past 
research utilizing OSM for park cover45,68,83–86. PAD-US-AR values differ from Fig. 1 because those values were 
intended to show the number of units/aerial cover lost at each curation stage. In contrast, these values were 
designed to compare park datasets and report results after dissolving park polygons.

https://doi.org/10.1038/s41597-022-01857-7
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Last, we examined sociodemographic correlates of park cover measured through the PAD-US-AR to inform 
what confounding factors should be considered when modeling associations between park cover and human 
health. Sociodemographic characteristics were retrieved from 2015–2019 American Community Survey (ACS) 
estimates from the U.S. Census at the county and tract level67. We selected 14 variables (Table S2) based on exist-
ing literature examining correlates of greenspace, especially in studies focusing on socioeconomic and racial 
disparities in access to these spaces68–72. Attempts at incorporating median household income alongside other 
measures resulted in multicollinearity, so this variable was excluded from the primary analyses but considered 
in a sensitivity analysis. We examined the results of generalized linear mixed models (GLMMs) with gamma dis-
tributions and U.S. states as random effects to account for the non-normal distribution of the outcome variable 
and the hierarchical nature of the data (counties and tracts within states). Models were run with complete data 
for 100% of counties (N = 3,108) and 97.3% of tracts (N = 70,580) in the contiguous U.S. circa 2019.

Stratified analyses using more urbanized counties (≥50 people/km2) and tracts (≥1,000 people/km2) were 
conducted to compare results with past research and inform future scholarship with the PAD-US-AR. There is 
no consensus on differentiating more vs. less urban areas in nature-health research19. Between 1,000 and 1,999 
people/km2 is a common cut point19. We attempted to apply that cut point to both units of analysis (tracts and 
counties), which split the number of tracts roughly in half (n = 32,929 as more urban). In contrast, this cut point 
resulted in too few counties to conduct sufficiently powered analyses (N = 45 as more urban). We attempted the 
300 people/km2 cut point recommended by the European Union73 and used in a recent U.S. study on the associa-
tion between park cover, park use, and mental health74. This continued to produce small sample sizes: N = 43 for 
the Northeast, 30 for the Midwest, 93 for the South, and 16 for the West. A cut point of 50 people/km2 produced 
reasonable sample sizes for most regions (N = 121 for the Northeast, 178 for the Midwest, 386 for the South, and 
58 for the West). Applying this 50 people/km2 cut point to counties also produced maps that approximated the 
location of the Census classification of urbanized areas (https://www.census.gov/programs-surveys/geography/
guidance/geo-areas/urban-rural.html; Figure S2). This urbanized area classification scheme has been used to 
create other datasets on environmental exposure estimates, such as urban heat island vulnerability75. GLMMs 

Fig. 2 PAD-US-AR park cover compared with its source dataset (PAD-US V2.1) in Northeastern states (57.9% 
of the total park cover was retained).
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were used in these stratified analyses except in the Midwest, where standard linear regression models were 
run to avoid singularity resulting from few urban counties per state in the random effect term.

Comparison of the PAD-US-AR percent park cover dataset to other park datasets. Descriptive 
statistics for each park dataset are provided in Table 2, and maps of park cover are provided in Figure S3. The 
PAD-US-AR48 covers 51.6% of the acreage in the PAD-US V2.1 dataset. The PAD-US-AR acreage is larger than 
the acreage of USA Parks and ParkServe but smaller than the OSM datasets when leisure and boundary tags 

Fig. 3 PAD-US-AR park cover compared with its source dataset (PAD-US V2.1) in Midwestern states (19.8% of 
the total park cover was retained).

Fig. 4 PAD-US-AR park cover compared with its source dataset (PAD-US V2.1) in Southern states (39.3% of 
the total park cover was retained).

https://doi.org/10.1038/s41597-022-01857-7
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are combined. Bureau of Land Management (BLM) lands are mainly absent from the USA Parks and ParkServe 
datasets but are partially included in the OSM datasets and prominent in the PAD-US-AR. This is particularly 
noticeable in Nevada, western Utah, and Wyoming. These areas include such popular recreation attractions as 
the Grand Staircase-Escalante National Monument, UT, and the Grand Canyon Parashant National Monument, 
AZ. These collectively encompass nearly 3,000,000 acres (around twice the size of Delaware), attract more than 
150,000 visitors annually for hiking, backpacking, and camping, and have received thousands of 5-star reviews 
on Google Maps. This high number of reviews shows their popularity and visibility in the public sphere. Other 
notable areas include off-highway vehicle (OHV) trails, such as the Little Sahara OHV Area, UT, which offers 
driving/riding on a 700-foot drivable sand dune, 30,000 annual visitors, four campgrounds, and approximately 
62,000 acres. Most popular mountain biking and OHV riding trails around Moab, UT (except for the Slick Rock 
Trail System) are also BLM lands excluded or with limited coverage in datasets other than the PAD-US and 
PAD-US-AR. These results demonstrate that the PAD-US-AR presents a selected sample of the PAD-US dataset 
with differing coverage from pre-existing park cover datasets.

Comparison of the PAD-US-AR to other nature exposure measures. Descriptive statistics for park 
cover and  other nature exposure metrics are presented in Table 3. Maps of each metric are provided in Figure S4. 
Distributions of nature exposure metrics are available in Figures S5-S7.

Associations between the PAD-US-AR48 and NDVI varied across geographies and seasons (Fig. 6). Park 
cover was negatively associated with NDVI at the county level. Pearson correlation coefficients (r[95% confi-
dence interval]) were as follows: rannual = −0.21[−0.24, −0.17]; rsummer = −0.33[−0.36, −0.30]. Park cover was 
not correlated with NDVI at the tract level (rannual = 0.03[0.02, 0.04]; rsummer = 0.01[0.00, 0.02]). Associations 
between the PAD-US-AR and NDVI within census regions were consistently positive, except in Western coun-
ties (rannual = −0.12[−0.21, −0.02]; rsummer = −0.03 [−0.12, 0.07]) or with NDVI summertime maximums in 
Midwestern counties (r = −0.02[−0.08, 0.04]). Such results are likely due to climatic and land use differences, 
such as arid climates in the West and high concentrations of agricultural land that only produces chlorophyll 
in the summer in the Midwest. Meanwhile, associations between park cover and NDVI annual averages in 

Fig. 5 PAD-US-AR park cover compared with its source dataset (PAD-US V2.1) in Western states (69.9% of the 
total park cover was retained).
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Midwestern counties were the strongest observed among any pairing (r = 0.28[0.22, 0.33]). This may be 
explained by parkland in the upper Midwest having higher concentrations of vegetation that produce chlo-
rophyll year-round (i.e., evergreen trees, herbaceous wetland cover) than in the South and fewer urban parks 
with less greenery than in the Northeast. Associations at the tract level ranged from 0.03[0.02, 0.05] for NDVI 
summertime maximums in Midwestern tracts, where agricultural lands may only be green in the summer, to 
0.23[0.22, 0.25] for NDVI summertime maximums in Western tracts.

Park cover was positively associated with tree canopy cover in every pairing. The strongest correlations were 
among Midwestern counties (r = 0.65[0.61, 0.68]), and the weakest correlations  were in nationwide county-level 
models (r = 0.10[0.07, 0.14]). The consistent correlation between canopy cover and parks may be explained by 
people’s innate preference for open-growth trees with large amounts of canopy cover29,76–78 and historical guide-
lines to retain such trees in park design79.

Fig. 6 Correlations between park cover and nature exposure metrics across the contiguous U.S. within counties 
and tracts. Notes: Pearson correlation coefficients.

Counties Tracts

N Med IQR Range N Med IQR Range

Nationwide

Public park cover 3108 0.04 0.12 0.97 (0–0.97) 70580 0.03 0.07 1 (0–1)

Tree canopy cover 3108 0.27 0.47 0.87 (0–0.87) 70580 0.13 0.30 0.93 (0–0.93)

NDVI annual average 3108 0.53 0.22 0.66 (0.12–0.78) 70527 0.46 0.21 0.82 (0.02–0.83)

NDVI summertime max 3108 0.82 0.19 0.79 (0.13–0.93) 70446 0.65 0.31 1.04 (−0.11–
0.93)

Northeast

Public park cover 217 0.11 0.12 0.79 (0.01–0.79) 13022 0.05 0.08 0.88 (0–0.88)

Tree canopy cover 217 0.53 0.24 0.75 (0.03–0.77) 13022 0.24 0.37 0.83 (0–0.83)

NDVI annual average 217 0.58 0.05 0.43 (0.22–0.65) 12970 0.49 0.23 0.69 (0.02–0.71)

NDVI summertime max 217 0.86 0.07 0.57 (0.35–0.93) 12893 0.71 0.29 1.04 (−0.11–
0.93)

Midwest

Public park cover 1055 0.02 0.05 0.7 (0–0.7) 16762 0.04 0.07 0.88 (0–0.88)

Tree canopy cover 1055 0.08 0.21 0.75 (0–0.75) 16762 0.10 0.16 0.78 (0–0.78)

NDVI annual average 1055 0.45 0.11 0.41 (0.25–0.66) 16762 0.44 0.11 0.65 (0.02–0.67)

NDVI summertime max 1055 0.84 0.10 0.72 (0.2–0.91) 16762 0.71 0.21 0.88 (0.04–0.92)

South

Public park cover 1422 0.03 0.09 0.7 (0–0.7) 25601 0.02 0.06 0.91 (0–0.91)

Tree canopy cover 1422 0.47 0.37 0.87 (0–0.87) 25601 0.26 0.36 0.93 (0–0.93)

NDVI annual average 1422 0.63 0.11 0.57 (0.17–0.74) 25600 0.55 0.17 0.69 (0.08–0.77)

NDVI summertime max 1422 0.83 0.11 0.7 (0.21–0.91) 25596 0.70 0.24 0.84 (0.09–0.93)

West

Public park cover 414 0.40 0.47 0.97 (0–0.97) 15195 0.04 0.10 1 (0–1)

Tree canopy cover 414 0.09 0.21 0.66 (0–0.66) 15195 0.02 0.06 0.74 (0–0.74)

NDVI annual average 414 0.31 0.15 0.66 (0.12–0.78) 15195 0.31 0.17 0.78 (0.05–0.83)

NDVI summertime max 414 0.46 0.24 0.74 (0.13–0.88) 15195 0.36 0.22 0.85 (0.05–0.91)

Table 3. Descriptive statistics for the PAD-US-AR and other nature exposure metrics. Note: Med. = median, 
IQR = interquartile range; differences in tract-level sample sizes across exposure metrics resulted from Google 
Earth Engine not providing complete data from MODIS imagery across study years and regions.
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These findings demonstrate that the PAD-US-AR48 presents a unique exposure estimate from metrics of 
nature exposure. Plant-rich landscapes, or “greenspaces,” do not capture all aspects of open recreational spaces 
and nature-rich landscapes10. Correlations between nature exposure metrics vary in size and direction based on 
the unit of analysis (counties vs. tracts) and geography (regions of the country and nationwide analyses).

Comparison of the PAD-US-AR to sociodemographic characteristics. A listing of the sociodemo-
graphic characteristics considered in analyses is provided in Table S1. Descriptive statistics for each variable are 
presented in Tables S2–S6. Maps of the distribution of these variables are provided in Figure S8. Multivariate 
associations between the PAD-US-AR48 and sociodemographic characteristics are shown in Fig. 7 and Table S7. 
These results were derived from GLMMs with gamma distributions and U.S. states as random effects to account 
for the non-normal distribution of the outcome variable with minimal multicollinearity (Table S8).

Park cover was more strongly associated with sociodemographic characteristics at the county level than at the 
tract level. Around 30% of the variance in countywide park cover was explained in U.S. regions after account-
ing for state random effects (conditional R2

Northeast = 0.29, R2
Midwest = 0.31, R2

South = 0.23, R2
West = 0.38). Variance 

explained within counties across the country was over 60% (R2
Nationwide = 0.63). Variance explained at the tract 

level was closer to 10%–20% (R2
Nationwide = 0.19, R2

Northeast = 0.09, R2
Midwest = 0.08, R2

South = 0.12, R2
West = 0.18).

Fig. 7 Regressing sociodemographic characteristics on the PAD-US-AR park cover dataset within counties and 
tracts. Notes: GLMMs with gamma distributions and U.S. state random effects, except for Midwestern counties, 
which report standard linear regression results. Standardized betas and 95% confidence intervals are shown. 
Differing symbols represent statistical significance (p-value): an empty circle is shown for p > 0.05, a filled-in 
circle for p < 0.05; a triangle for p < 0.01; a square for p < 0.001. X-axes are on different scales. Sensitivity models 
with median household income substituted for other socioeconomic variables are provided in Figure S9.
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Three sociodemographic characteristics showed fairly consistent associations with park cover. On average, 
areas with greater shares of older adults (≥65 yrs) had more park cover. Areas with higher median home values 
also had more park cover, except in the Northeast. Last, areas with greater shares of female residents had less 
park cover on average, except in Northeastern and Southern counties. Two other sociodemographic character-
istics showed consistent associations within either county or tract samples. First, counties with lower Gini index 
values (lower inequality) had more park cover on average. Secondly, tracts with higher unemployment rates had 
more park cover on average.

Associations between the PAD-US-AR and other sociodemographic characteristics varied by region. Park 
cover in Northeastern counties was concentrated in areas with lower rates of income inequality, high school 
graduation, and natural resource employment. Park cover in Midwestern counties was greater in areas with 
higher poverty rates, income inequality, and unemployment. Park cover in Southern counties was higher in 
areas with greater population densities or higher rates of poverty and lower rates of income inequality, nat-
ural resource employment, or non-Hispanic Black residents. Western counties showed greater park cover in 
areas with more poverty, higher shares of college degree holders, less income inequality, and lower shares of 
non-Hispanic Asian residents. Within tracts, park cover was higher in densely populated Northeastern areas 
but lower in densely populated areas throughout the rest of the country. Tract-level park cover was higher in 
areas with greater shares of residents employed in natural resource professions in the West and Northeast, while 
the opposite was found in the South and Midwest; in these areas, park cover was lower in areas where greater 
shares of people worked in natural resources professions. Park cover was higher in Midwestern and Southern 
tracts with greater shares of non-Hispanic Asians, whereas park cover was lower in Western and Northeastern 
tracts with greater shares of non-Hispanic Asians. In summary, park cover was associated with many sociode-
mographic characteristics, but the strength and direction varied by geography and unit of analysis.

Multivariate associations between the PAD-US-AR and sociodemographic characteristics in urban areas are 
presented in Table S10. In most cases, median home value continued to show strong positive associations with 
park cover. One exception was observed in Midwestern tracts, where median home value was negatively asso-
ciated with park cover. Percent female no longer predicted park cover except in Southern tracts. Shares of older 
adults also predicted park cover in only a few urban cases; significant positive associations were observed only 
in nationwide and Northeastern tracts. Percent Non-Hispanic Asian residents emerged as a predictor in several 
models, but the direction of the associations differed. Nationwide models showed negative associations, while 
Midwestern counties and tracts and Southern tracts showed positive associations. County-level models of urban 
areas continued to predict the variance explained by park cover better than tract-level models of urban areas. 
Alternative models substituting median household income for other socio-economic indicators found mixed 
relationships between this variable and park cover (Table S9, Figure S9).

Usage Notes
We present a new potential indicator of outdoor nature exposure for the contiguous U.S: the location of parks 
intended to be accessible for recreation. This dataset allows researchers to examine the number of outdoor rec-
reation areas meant for public use around geographic units of interest (i.e., homes, neighborhoods, and transit 
routes). Other commonly-used metrics – like moderate/coarse resolution NDVI and tree canopy cover datasets 
– cannot identify whether the areas are managed for public recreational use. The PAD-US-AR48 is unique from 
these other metrics, as determined by the correlations presented above (Fig. 6).

The PAD-US-AR also differs in coverage from pre-existing park cover datasets. These differences were 
observed when tallying the geographic polygon units and calculating the total cover after dissolving all polygon 
units to account for some overlapping units. The reasons to utilize the PAD-US-AR dataset rather than these 
other options include the PAD-US-AR source data (PAD-US V2.1) being validated by the agencies managing 
the land, our systematic examination of what is accessible for recreation, and the clarity and transparency in its 
curation. The potential for park cover to not match park access for all residents in a county or tract remains high, 
as in any area-level exposure estimate80–82. Individual-level estimates should be calculated from the boundaries 
or centroids of park polygons along road or pedestrian networks when geolocated data for homes, schools, 
workplaces, or activity spaces are available.

The chances for residual confounding in area-level studies with the PAD-US-AR dataset exist if multivariate 
models do not control for sociodemographic characteristics of the areas encompassing parks. The PAD-US-AR 
has the most robust associations with home prices, shares of female residents, and shares of older presents. These 
should be statistically controlled in models using the PAD-US-AR as an independent variable or covariate. 
Other measures of socioeconomic status (i.e., median household income) might be insufficient to avoid residual 
confounding in ecological studies with PAD-US-AR data.

Since the PAD-US-AR was curated nationwide, it is most appropriate for use at larger geographic scales 
(i.e., regional and national). Studies focusing on smaller geographic contexts, such as within individual cities or 
states, should partner with local land management agencies and recreation departments to ensure PAD-US-AR 
data accurately represent all parks and protected areas managed for public outdoor recreation. Since ownership 
boundaries and land acquisitions can change annually, local land management agencies might also be able to 
identify new parks that aren’t present in the PAD-US-AR. Smaller-scale analyses may allow manual selection of 
land parcels with building footprints that occupy most of the area.

The PAD-US-AR may be best conceived as the minimum park coverage level. We excluded the approxi-
mately 35,000 areas covering over 42,000 km2 with unknown public access in the PAD-US. Some private parks, 
such as golf courses or community parks restricted to residents who pay homeowner association fees, can pro-
vide opportunities for outdoor recreation that activate the same health-promoting pathways as public parks. 
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People living in the counties and tracts presented in the datasets may have more access to outdoor recreational 
opportunities than suggested by the PAD-US-AR.

As the nature-health literature expands, exposure estimates are expected to develop and be refined. The 
PAD-US-AR presents a significant advancement in this body of literature by offering researchers an assessment 
of where parks are available for outdoor recreation.

Code availability
R (4.1.2) was used to generate the PAD-US-AR48 dataset and results. QGIS (3.18.3) was used to create the maps. 
Scripts and source data to reproduce results are available on OSF (https://osf.io/pwdsg/).
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