
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Understanding Tradeoffs Among Algorithm Complexity and Performance

Permalink
https://escholarship.org/uc/item/32f214p3

Author
Murthy, Abhijeet R

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32f214p3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Understanding Tradeoffs Between Algorithm Complexity and Performance

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Abhijeet R Murthy

March 2023

Thesis Committee:

Dr. Bir Bhanu, Chairperson
Dr. Chinya V. Ravishankar
Dr. Ahmed Eldawy

Copyright by
Abhijeet R Murthy

2023

The Thesis of Abhijeet R Murthy is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, without whose help, I would not have been here.

iv

To my parents for all the support.

v

ABSTRACT OF THE THESIS

Understanding Tradeoffs Between Algorithm Complexity and Performance

by

Abhijeet R Murthy

Master of Science, Graduate Program in Computer Science
University of California, Riverside, March 2023

Dr. Bir Bhanu, Chairperson

The Minimum Description Length (MDL) principle asserts that the best model given some

data is the one that minimizes the combined cost of describing the model and the misfit

between the model and data with a goal to maximize regularity extraction for optimal data

compression, prediction, and communication.

We utilize the MDL principle to comprehend the relationship between the com-

plexity or size of the problem/representation with respect to the model’s performance.

Evaluating a large number of possibilities will enable us to compare model tradeoffs and

select the model with the best performance but the least complexity.

The complexity of the problem can be determined by factors such as the size of

the representation, number of lines of code, amount of processing time, and understanding

the order of computation. In some approaches, the order of magnitude is defined as the

number of basic computations performed by the model. In a deep learning model, it can

be defined as the number of nodes that the data are propagated through. In the proposed

approach we introduce a criterion function that accounts for system resources through the

vi

use of number of FLOPs (floating-point operations) and allows an accurate representation

of size of a model. This is combined with performance (error/accuracy) to estimate diverse

tradeoffs.

We train, validate and evaluate model performance for multiple model parameters

and hyperparameters. We use the criterion function based on the MDL principle to select

the best model. We also use the criterion function to understand the tradeoffs of the model.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2

2 Previous Approaches 4

3 Technical Approach 7
3.1 MDL Principle . 7
3.2 FLOPs . 8
3.3 Understanding the Tradeoff of time . 8
3.4 Criterion Functions . 9
3.5 Method Description . 11

4 TestBed for Evaluation 13
4.1 Data . 13
4.2 Data Preprocessing: . 14
4.3 Model Architecture . 14

4.3.1 HMR2.0 . 15
4.3.2 Extracted Features . 16
4.3.3 Dense Layer . 17

4.4 Metrics for Evaluation . 17

5 Experiment Results 19
5.1 Tradeoffs using Variable Embedding Size for Training 19
5.2 Tradeoffs for Feature Selection . 22
5.3 Tradeoffs using Variable Sizes of Data for Training 24
5.4 Discussion of Results . 27

6 Conclusions 29

viii

7 Future Work 31

Bibliography 33

ix

List of Figures

4.1 Model Architecture . 15

5.1 Experiment1 - Error Vs FLOPs . 21
5.2 Experiment1 - Error Vs FLOPs . 23
5.3 Experiment1 - Error Vs FLOPs . 26

x

List of Tables

5.1 Experimental Accuracy using variable embedding size 20
5.2 Experimental Error using variable embedded size 20
5.3 Experimental Accuracy using features . 22
5.4 Experimental Error using features . 22
5.5 Experimental Accuracy using variable training size 25
5.6 Experimental Error using variable training size 25

xi

Chapter 1

Introduction

1.1 Problem Statement

There are several techniques for deep learning model selection, each with its own

advantages and disadvantages. Some of the most commonly used techniques include grid

search, random search, Bayesian optimization, evolutionary algorithms, and transfer learn-

ing.Grid search involves testing all possible combinations of hyperparameters, while random

search randomly samples from a specified range of hyperparameters. Bayesian optimization

constructs a probabilistic model of the hyperparameter space, and evolutionary algorithms

use principles inspired by natural selection to search for the optimal parameter combina-

tion. Transfer learning involves fine-tuning a pre-trained model on a new task with a smaller

set of learnable parameters. Regularization methods such as weight decay, dropout, and

early stopping can also be used to improve model generalization performance. Ultimately,

the choice of a model selection technique depends on the specific problem and available

resources.

1

Minimum Description Length (MDL) is another optimization algorithm that can

be used for model selection. It is based on the principle of Occam’s razor, which states that

the simplest explanation that fits the data is the most likely one. In MDL, the goal is to

find the model that has the shortest description length while still fitting the data well.

The MDL criterion takes into account both the complexity of the model and the

fit to the data, and it balances these factors to find the best model. The idea is that a good

model should not only fit the data well, but also be simple and easy to understand.

Ultimately, the choice of a model selection technique depends on the specific prob-

lem and the available resources. By selecting the best model for a given task, we can

achieve state-of-the-art performance on a wide range of applications in computer vision,

natural language processing, and other fields.

1.2 Motivation

Model selection in deep learning is a crucial step in the development of a machine

learning system, as it helps to determine the best model to use for a given problem. The

motivation for model selection in deep learning can be summarized as follows:

Generalization: The ultimate goal of any machine learning model is to generalize

well to new, unseen data. Model selection helps to ensure that the chosen model has learned

the relevant patterns in the training data and is able to generalize to new data.

Overfitting: Deep neural networks have a large number of parameters, and if not

controlled properly, can easily overfit the training data. Model selection helps to choose a

model that has just the right amount of capacity to fit the data without overfitting.

2

Computational efficiency: Deep neural networks can be computationally expensive

to train and run. Model selection can help to identify a model that is computationally

efficient while still being accurate enough for the given problem.

Interpretability: In some cases, interpretability of the model is important, espe-

cially in applications such as healthcare, where understanding the reasoning behind the

model’s decision is crucial. Model selection can help to identify models that are more

interpretable, such as decision trees or linear models.

Trade-off between performance and complexity: In many cases, there is a trade-off

between model performance and complexity. Model selection can help to identify models

that strike the right balance between the two, leading to more efficient and effective machine

learning systems.

Overall, model selection is essential in deep learning to ensure that the chosen

model can generalize well to new data, is not overfitting, is computationally efficient, and

strikes the right balance between performance and complexity.

3

Chapter 2

Previous Approaches

RegNorm [9] is a deep learning regularization method that applies unsupervised

attention across neural network layers. Inspired by neuroscience, RegNorm learns to attend

to the most regular patterns in the data to reduce the impact of noisy or irregular patterns,

leading to improved generalization performance. The principle of Minimum Description

Length (MDL) can be applied to RegNorm to determine the optimal regularization strength

that balances the model’s complexity and its ability to fit the training data. By selecting

the regularization strength that achieves the best tradeoff between model complexity and

performance on the training data, RegNorm ensures that the model is regularized to the

appropriate degree without overfitting or underfitting.

The paper ”Enhancing multi-objective evolutionary neural architecture search

with training-free Pareto local search”[12] proposes a method to enhance multi-objective

evolutionary neural architecture search (MOENA) by incorporating a training-free Pareto

local search (PLS) algorithm. The authors argue that PLS can help improve the efficiency

4

of MONEA by exploring and exploiting the search space in a more effective way. They

evaluate their proposed method on three benchmark datasets (CIFAR-10, CIFAR-100, and

ImageNet) and demonstrate that it outperforms state-of-the-art MONEA methods in terms

of Pareto front diversity and convergence speed. Additionally, they show that their method

can achieve better performance on the ImageNet dataset with significantly fewer search

costs compared to the previous methods. The authors suggest that their method can be a

valuable tool for automating the design of neural networks for a range of computer vision

tasks.

The paper ”Making a Science of Model Search: Hyperparameter Optimization in

Hundreds of Dimensions for Vision Architectures” [8] describes a method for optimizing

hyperparameters of deep learning models in high-dimensional spaces. The authors propose

a new optimization algorithm, called Hyperband, which combines random search with a

principled early-stopping scheme to efficiently search a large space of hyperparameters.

The method is demonstrated on several computer vision tasks, achieving state-of-the-art

results with significantly fewer computational resources compared to previous methods. The

paper presents an extensive experimental evaluation and provides insights into the trade-offs

between different optimization algorithms and hyperparameter settings.

The AME model [7] is a parallel hyper-parameter optimization approach that uti-

lizes attention and memory mechanisms to improve optimization performance. The model’s

efficiency and effectiveness can be or has been evaluated using the Minimum Description

Length (MDL) principle, which ensures that the best model is selected with the fewest

number of evaluations. The AME model uses a memory mechanism to store previous eval-

5

uations and an attention mechanism to focus on promising regions of the hyper-parameter

space, making it computationally efficient and able to handle large hyper-parameter spaces.

By optimizing hyper-parameters with the fewest number of evaluations, the AME model

can significantly reduce the computational cost of hyper-parameter optimization.

6

Chapter 3

Technical Approach

3.1 MDL Principle

A key principle in machine learning is the minimum description length (MDL)

principle, which states that the best model is one that achieves the optimal balance be-

tween complexity and its ability to explain the data. This principle is essential not only in

traditional machine learning but also in deep learning, a subset of machine learning that

has become increasingly popular in recent years.In deep learning, the MDL principle helps

determine the optimal complexity of a neural network model. This involves finding the

smallest network that can explain the training data effectively without overfitting. Overfit-

ting occurs when the model is too complex and fits the noise in the training data, leading

to poor performance on new data. To address this issue, techniques like model compression

are used, where the original model is simplified or reduced in size without losing too much

accuracy.By balancing model complexity and accuracy, the MDL principle can guide the

development of efficient and effective deep learning models. To achieve this balance, we

7

have developed a criterion function that enables us to evaluate the trade-off between model

complexity and performance. This helps us select deep learning models that can generalize

well to new data, making them suitable for deployment in resource-constrained devices or

real-time applications.

3.2 FLOPs

FLOPs, or Floating-Point Operations, are a measure of the computational com-

plexity of a mathematical operation. They are commonly used in the context of deep neural

networks, which involve the manipulation of large arrays of floating-point numbers. FLOPs

can help to estimate the amount of computation required to perform a specific operation,

such as a convolution or matrix multiplication. By comparing the FLOPs of different mod-

els, we can assess their computational complexity and optimize their efficiency by reducing

the number of FLOPs required. Generally, a higher number of FLOPs indicates a more

computationally demanding model, which may require more processing power and memory

to train and run.

3.3 Understanding the Tradeoff of time

Time can be influenced by factors outside the model’s control: Factors such as

network latency, hardware limitations, and other environmental factors can impact the

time it takes to make predictions, even if the model is performing well. Time can be

optimized at the expense of accuracy: If time is the primary metric being optimized, a

model may sacrifice accuracy in order to make faster predictions. This can result in poor

8

performance and incorrect predictions. Time does not provide insight into the quality of

predictions: Even if a model makes predictions quickly, if those predictions are inaccurate,

the model is not performing well. Therefore, while time is an important consideration for

deploying machine learning models, it should not be used as a primary metric for evaluating

model performance. Instead, metrics such as accuracy, precision, recall, F1 score, and area

under the receiver operating characteristic (ROC) curve should be used to assess model

performance.

3.4 Criterion Functions

Criterion functions are an essential component of deep learning model selection,

as they provide a way to evaluate the performance of a model and guide the optimization

process during training. The choice of criterion function depends on the task at hand,

and there are various types of criterion functions used in deep learning. For example,

Mean Squared Error (MSE) is used for regression tasks, measuring the average squared

difference between the predicted and true output values. Cross-Entropy Loss is used for

classification tasks, measuring the difference between the predicted class probabilities and

the true class labels. Binary Cross-Entropy Loss is a variant of the cross-entropy loss used

for binary classification tasks, while Categorical Cross-Entropy Loss is used for multiclass

classification tasks. KL Divergence is used in unsupervised learning and reinforcement

learning, measuring the difference between the predicted and true probability distributions.

The choice of a criterion function can have a significant impact on the performance

of a deep learning model. It is often used in conjunction with other techniques such as

9

regularization and optimization algorithms to improve the accuracy of the model. The goal

is to minimize the value of the criterion function, which corresponds to maximizing the

accuracy of the model on the training data.

The MDL criterion function formalizes this idea by using the length of the code

or description of the model and the data to evaluate the goodness of fit of the model to

the data. The MDL criterion function can be used for various purposes, such as feature

selection, model selection, and hypothesis testing.

The criterion function used in Minimum Description Length (MDL) principle can

be formulated as follows:

Cost = L(model) + L(data | model) (3.1)

where L(model) is the complexity or size of the model, and L(data | model) is the

misfit between the model and the data. The goal is to minimize the cost function to find

the best model that fits the data well without overfitting.

This criterion function balances the tradeoff between the complexity of the model

(L(model)) and its ability to explain the data (L(data | model)). The goal is to find the

model that can describe the data with the least amount of code or description, without

sacrificing the accuracy or goodness of fit to the data.

minimize, MDL = −(α1 log2(FLOPs) + α2 log2(d) + α3ne log2, (N))

where α1 and α2 are scaling factors for FLOPs and the embedding size d, respec-

tively; FLOPs is the number of floating-point operations required by the model; d is the

dimensionality of the learned embeddings; where ne is the effective number of training ex-

amples, which accounts for data augmentation and other factors that increase the effective

10

size of the training set; and α3 is the scaling factors for N which is the total number of

images used for training. In this experiment the value of α1 is 0.025, α2 is 0.1, α3 is 0.1.

This is used to understand the trade-off between model complexity (measured by

FLOPs and embedding size) and the training set error. As the FLOPs and embedding size

increase, the model becomes more complex and may be better able to capture the under-

lying patterns in the data. However, this comes at the cost of increased computational

resources and training time. On the other hand, increasing the effective size of the training

set can improve the generalization performance of the model by reducing overfitting. How-

ever, this may require more data and/or more data augmentation, which can also increase

computational requirements.

3.5 Method Description

Proposed approach evaluates a model using a wide range of models and hyper-

parameters to find the best combination that produces the optimal performance. This can

be done by testing a model on a variety of data sets and measuring its performance using

different error metrics. This method is used to understand the contribution of each compo-

nent to the overall performance of the model and to identify the most critical components

in a system. This method can also be used to identify which components are responsible for

overfitting or underfitting, allowing for better regularization techniques to be developed.

To better understand the tradeoffs between algorithm complexity, performance,

and system resources, 2D and 3D visualizations can be created to visualize the relation-

ships between these factors. For example, a 2D plot might show the relationship between

11

algorithm complexity and performance, while a 3D plot could show the relationship be-

tween algorithm complexity, performance, and embedding size. By evaluating the model

with different combinations of parameters and visualizing the results, we can gain insights

into how the model performs under different conditions. This can help us choose the best

parameters for our model and optimize its performance.

12

Chapter 4

TestBed for Evaluation

4.1 Data

Our dataset contains indoor and outdoor media files of a large number of sub-

jects. The indoor focuses on capturing the person in a controlled environment and the

field is focused on replicating real-world scenarios for recognition The purpose of using the

above dataset is to evaluate and develop person recognition algorithms that can handle

the challenges associated with outdoor environments. The dataset contains a variety of

images captured from different outdoor settings and perspectives, including distortions and

occlusions. Therefore, it can be used to test the performance of existing person recogni-

tion algorithms in various outdoor environments and to develop new algorithms that can

accurately recognize individuals under changing lighting and weather conditions, distance,

and altitude. By using this dataset, researchers can improve the accuracy and robustness

of person recognition systems and enhance their real-world applicability.

13

4.2 Data Preprocessing:

The HMR2.0 model requires a specific preprocessing of the input RGB image

to ensure accurate predictions of human body shape and pose. For accurate predictions,

the model needs an unobstructed view of the human body, which means that the human

detected using the model should be placed in the center of the image with some background.

This requires resizing and cropping the input image.

Size normalization is a crucial step in this preprocessing. The amount of back-

ground to include in the cropped image depends on the height of the individual. Shorter

people require more background to be included in the cropped image, while taller people

require less. Our method involves using the ground-truth information of the human, such

as height or bounding box information, to determine the required amount of background.

4.3 Model Architecture

The goal of the model is to identify a person using a single image with the following

properties: view independence, clothing independence, body articulation, and robustness to

partial occlusion and distortion. View independence means that the model should recognize

a person from any angle or orientation, regardless of the camera’s position or angle. Clothing

independence means that the model should identify a person regardless of what they are

wearing. The model should also be body articulation invariant, able to recognize a person

even if they are in different poses or positions. In addition, the model should be robust

to partial occlusion and distortion. Partial occlusion means that the person’s face or body

may be partially obstructed by objects, such as hats, glasses, or other people, and the

14

Figure 4.1: Model Architecture

model should still be able to identify the person. Distortion means that the image may be

distorted or blurred, and the model should still be able to recognize the person.

4.3.1 HMR2.0

Our model uses HMR2.0 [13] to extract features from input images. HMR2.0 is

a deep neural network that takes a single image as input and produces the 3D pose and

shape of the human body as output. It consists of two stages: a pose stage and a shape

stage. In the pose stage, the network uses a heatmap regression approach to estimate the

3D joint locations of the body. In the shape stage, the network refines the joint locations

and estimates the 3D shape of the body using a template-based approach. This approach

has been shown to be effective in a variety of applications, such as human motion tracking

and analysis [1, 2].

15

4.3.2 Extracted Features

The HMR2.0 model was used to extract three key features from the images: pro-

jection, shape, and 3D joint and 2D distances. The projection feature is a 448x1 vector

that captures the person’s width by projecting the image onto the x and y axes. This

feature encodes the overall shape of the person in the image, providing information that is

important for recognizing individuals across different poses and viewpoints.

The shape feature is a 10x1 vector generated using HMR 2.0 and captures infor-

mation about the person’s body shape, such as their height, weight, and body proportions.

This feature provides additional information that can aid in distinguishing individuals and

improving the accuracy of the facial recognition model.

Finally, the 3D joint and 2D distances feature is a 21x1 vector that captures the

distances between the joints of a person in the image. Joint locations are estimated using

HMR 2.0 pose parameters, and 3D joint distances are calculated directly from these loca-

tions, while the 2D joint distances are obtained by projecting the 3D joint locations onto the

image plane. This feature encodes information about the person’s pose and orientation in

the image, which is crucial for recognizing individuals across different poses and viewpoints.

Overall, the combination of these features provides a comprehensive representation

of the person’s shape, pose, and orientation, which can be used to accurately identify

individuals in various settings and scenarios.

16

4.3.3 Dense Layer

A fully connected network, also referred to as a dense layer, is a type of neural

network architecture that allows every neuron in one layer to connect to every neuron in

the next layer. This design is widely used as a final layer in neural networks for tasks

like classification and regression. Additionally, fully connected layers can be utilized as

intermediate layers in deep neural networks, where they help to extract features from input

data.

In our approach, we leverage a dense layer to generate embeddings for each input

image, using the extracted features. These embeddings serve as representations of the input

images and are used to provide match scores or rank-k accuracy. By utilizing the dense

layer, we are able to capture the underlying patterns and features in the input data, enabling

us to accurately identify individuals across different poses and viewpoints

4.4 Metrics for Evaluation

Commonly used metrics for evaluating facial recognition models include accuracy,

false acceptance rate (FAR), false rejection rate (FRR), Receiver Operating Characteristic

(ROC) curve, and Area Under the Curve (AUC). Accuracy measures the proportion of

correctly identified objects, while FAR measures the proportion of incorrect matches and

FRR measures the proportion of correct matches rejected by the system. The ROC curve

helps to evaluate the trade-off between FAR and FRR, and the AUC provides an overall

measure of performance. In our approach, we have used the Rank-n accuracy metric which

measures the proportion of test samples where the correct object is among the top n pre-

17

dicted matches returned by the system. Meanwhile, the Cumulative Match Curve (CMC)

plot is used to evaluate the performance of recognition systems in biometrics. It measures

the percentage of correct matches in a ranked list of the top k matches, where the y-axis

represents the percentage of correct matches up to rank k, and the x-axis represents the

rank k.

A perfect recognition system would have a step function that reaches 100 Per-

centage accuracy at rank 1 in the CMC plot. The CMC plot can be used to compare the

performance of different systems, identify the rank at which a system achieves a certain

level of accuracy, and identify the point of saturation in the system. These metrics can be

used individually or in combination to evaluate the performance of a recognition system,

depending on the specific task and application.

18

Chapter 5

Experiment Results

5.1 Tradeoffs using Variable Embedding Size for Training

The size of the embedding generated by the fully connected network can have an

impact on the performance of the model. Typically, larger embeddings can capture more

information but can also increase the computational cost and may lead to overfitting if the

model is not regularized properly.

One approach to determine the optimal embedding size is to experiment with

different sizes and evaluate the model’s performance on a validation set To perform the

experiment, we can train multiple versions of the model with different embedding sizes and

evaluate them on the validation set. We can then compare their performance and choose

the embedding size that yields the best results.

We have a variable size data set in our experiment. 64 embedded size were used

in the first experiment. In the second experiment, 128 embedded size were used, and in the

third experiment, 256 embedded size were used. We have 60 training subjects. We have

19

15 validation subjects in all of the above experiments. We are testing all of the models on

a new data set that has 20 subjects that the model has never seen before. The following

experiments yielded the following results:

Embedding Size Rank 1 Rank 5 Rank 10 FLOPs

64 12.88 44.09 71.5 4.27× 108

128 14.90 47.77 72.57 1.07× 109

256 15.54 51.73 75.89 2.99× 109

Table 5.1: Experimental Accuracy using variable embedding size

Error 1 Embedded Size N FLOPs MDL Criterion

87.12 64 22500 1.07× 109 2.6577

85.10 128 43000 1.07× 109 2.7597

84.46 256 65000 1.07× 109 2.8869

Table 5.2: Experimental Error using variable embedded size

The experiment used a feature vector of length 479, which represented shape,

2D/3D distances, and projection features. The experiment explored the effect of different

embedding sizes on the performance of the algorithm. The results showed that increasing

the embedding size can help capture more information about the human face, but there is a

tradeoff in terms of computational cost. The results also showed that using an embedding

size of 128 can provide good performance without incurring excessive computational costs.

Therefore, it may be worthwhile to explore and optimize the model with this embedding

size further to achieve better performance while still maintaining computational efficiency.

20

Figure 5.1: Experiment1 - Error Vs FLOPs

21

5.2 Tradeoffs for Feature Selection

Training the model by considering two different sets of features at a time can

help determine the most influential feature set for accurate predictions. By comparing

the performance of the model when trained with different combinations of features, we can

understand which features have a greater impact on the model’s ability to predict the shape

and pose of the human body. For example, we can train the model using the projection

feature and shape feature, then compare its performance to when trained using the shape

feature and 3D joint and 2D distances feature, and so on. This can help identify the most

important features and their relative importance for accurate predictions.

We are using Shape, Pose and Projection XY as the parameters for our experiment.

The following experiments yielded the following results:

Features Used Rank 1 Rank 5 Rank 10 FLOPs

Shape + 2D 3D distances 11.15 40.68 67.43 4.7× 108

Shape + projection x,y 14.26 47.33 72.13 1.04× 109

2D 3D distances + projection x,y 15.67 48.36 75.56 1.06× 109

All features 14.90 47.77 72.57 1.07× 109

Table 5.3: Experimental Accuracy using features

Features Used Error 1 N FLOPs MDL

Shape + 2D 3D distances 87.12 43000 4.7× 108 2.7878

Shape + projection x,y 85.74 43000 1.04× 109 2.7685

2D 3D distances + projection x,y 84.33 43000 1.06× 109 2.7475

All features 85.10 43000 1.07× 109 2.7597

Table 5.4: Experimental Error using features

22

Figure 5.2: Experiment1 - Error Vs FLOPs

23

The experiment conducted highlights the importance of feature selection in achiev-

ing high accuracy in recognition tasks. The feature vector used included 10 shape features,

21 2D/3D distance features, and 448 projection features, which were analyzed in pairs to

measure the model’s accuracy. Interestingly, the results revealed that the combination of

2D/3D distance features and projection features provided the best accuracy. This indicates

that these features play a critical role in ecognition, providing good discriminative power

and allowing for the accurate identification of individuals. However, it was also found that

the inclusion of shape features had a negative impact on model performance, suggesting that

these features may not be as crucial for recognition or may not provide useful information

for this task.

5.3 Tradeoffs using Variable Sizes of Data for Training

Deep learning models require a large amount of data for training, which can be

difficult to obtain in certain scenarios where data collection is costly or limited. In such

cases, using variable-sized data and different splits of data can help in determining if the deep

learning model can be trained effectively using a lower number of samples. By evaluating

the model’s performance on a smaller number of samples, we can determine the optimal

size of the training set, which can help in reducing the training time and computational

resources required for training the model.

Using variable-sized data during training can also improve the robustness of the

model. By training the model on data of varying sizes, the model can learn to handle

different input sizes and accurately predict the shape and pose of the human body. This

24

can be especially useful in real-world scenarios where the input image sizes may vary due to

differences in camera resolution, distance, and other factors. Overall, using variable-sized

data and considering different splits of data can be a helpful strategy for optimizing the

training process and improving the performance of deep learning models.

We have a variable size data set in our experiment. 30 data sets were used in

the first experiment. In the second experiment, 60 data sets were used, and in the third

experiment, 90 data sets were used. We have 15 validation subjects in all of the above

experiments. We are testing all of the models on a new data set that has 20 subjects that

the model has never seen before. The following experiments yielded the following results:

No.Subjects Rank 1 Rank 5 Rank 10 FLOPs

30 Subjects 14.11 46.30 72.44 1.07× 109

60 Subjects 14.90 47.77 72.57 1.07× 109

90 Subjects 14.93 53.15 77.00 1.07× 109

Table 5.5: Experimental Accuracy using variable training size

No.Subjects Error 1 N FLOPs MDL Criterion

30 Subjects 85.89 22500 1.07× 109 2.6916

60 Subjects 85.10 43000 1.07× 109 2.7597

90 Subjects 85.07 65000 1.07× 109 2.8099

Table 5.6: Experimental Error using variable training size

Increasing the number of training samples improves the model’s ability to recognize

people at rank 1, 5, and 10. This suggests that the model is capable of generalization and

is learning to recognize individuals based on their features. The higher accuracy rates

25

Figure 5.3: Experiment1 - Error Vs FLOPs

26

obtained with a larger number of training samples indicate that the model performs better

when exposed to more diverse samples of faces. This supports the idea that the model is

capable of recognizing a wider range of individuals when provided with more training data.

Overall, the results of this experiment suggest that providing a model with a greater amount

of training data can lead to improved performance in recognition tasks. Additionally, the

more individuals that the model is trained to recognize, the better it becomes at accurately

identifying people in general.

5.4 Discussion of Results

The discussion highlights some of the key factors that contribute to achieving

high performance in recognition tasks. By carefully selecting the most important features,

such as shape, pose, and 2D/3D projection features, and balancing model complexity with

performance, it is possible to create models that generalize effectively and provide accurate

recognition of individuals at different ranks.

In particular, the use of larger and more diverse training datasets can significantly

improve model performance, providing a solid foundation for effective recognition. This can

be further augmented by leveraging advanced techniques such as the minimum description

length (MDL) criterion to guide model selection and avoid overfitting. It can be observed

that the criterion function gives us a good representation of the model complexity and could

be used as a metric to optimize the model.s

Overall, these findings point to the need for a nuanced and careful approach to

recognition, one that balances the importance of different factors and leverages cutting-edge

27

techniques to achieve optimal performance. By continuing to refine our understanding of

these factors and exploring new approaches to model optimization, we can continue to make

significant progress toward creating more accurate and effective recognition systems.

28

Chapter 6

Conclusions

Deep learning has emerged as a powerful tool for various applications, including

computer vision, natural language processing, and speech recognition. However, deep learn-

ing models can be computationally expensive, requiring significant computational resources

to train and deploy. As such, it is important to consider the trade-offs between model

complexity and accuracy in order to develop efficient and effective models.

To address this issue, we propose a formula for evaluating the quality of a deep

learning model in terms of its accuracy and efficiency. This formula takes into account three

main factors: the number of floating point operations required by the model (FLOPs),

the embedding size, and the effective size of the training set. The FLOPs measure the

computational cost of a model and are often used as a proxy for its complexity. The

embedding size is the dimensionality of the learned representations in the model, and the

effective size of the training set accounts for data augmentation and other factors that

increase the effective size of the training data.

29

We examine how increasing the FLOPs of a model affects its performance accord-

ing to this formula. Specifically, we consider the impact of FLOPs on the accuracy and

efficiency of the model, and explore the trade-offs between model complexity and accuracy.

By analyzing the formula, we show that increasing the FLOPs generally leads to better

accuracy, but also increases the computational cost of the model. Therefore, there is a

trade-off between model complexity and accuracy, and it is important to find the optimal

balance between the two.

Overall, our work highlights the importance of considering model complexity when

developing deep learning models. By using our formula, researchers and practitioners can

evaluate the quality of their models in terms of both accuracy and efficiency, and make

informed decisions about the trade-offs between model complexity and accuracy.

30

Chapter 7

Future Work

In our experiments, we have developed a test bench to evaluate the performance

of various deep learning models and architectures, with a focus on achieving high accuracy

while minimizing computational complexity. Moving forward, we plan to continue conduct-

ing experiments to optimize our recognition models, exploring changes to the architecture,

training techniques, and validation methods to identify the most effective approach. We

will also refine our evaluation bench to make it more scalable and flexible, allowing us to

evaluate a wide range of model architectures and input data.

While FLOPs is a commonly used metric for measuring the size of deep learning

models, it has limitations and other measures such as number of parameters, memory

usage, and inference time should also be considered. Moreover, calculating accuracy and

rank scores using only the mean result is not sufficient and we need to also take into account

the standard deviation and variance to obtain a more accurate representation of the model’s

performance.

31

Another interesting approach would be to dynamically learn the weights associated

with the MDL criterion function using techniques such as genetic algorithms to optimize

model performance. By continuing to explore new approaches and techniques, we can make

significant progress toward creating more effective and reliable recognition systems.

32

Bibliography

[1] Tianqi Chen, Itay Hubara, Zhe Xu, and Yoshua Bengio. Compressing deep neural
networks with the hashing trick. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI), 2016.

[2] Xiaopeng Dong, Xiaolin Huang, Lei Yang, and Qionghai Dai. Attentive multi-task
evaluation for hyper-parameter optimization. IEEE Transactions on Image Processing,
30:1368–1380, 2021.

[3] Ranasinghe M Gondara and Robert C Holte. Deep learning via minimum description
length. In Proceedings of the 33rd International Conference on Machine Learning,
2016.

[4] Ranasinghe M Gondara and Robert C Holte. Sparse deep learning via stochastic com-
pressive sensing. In Proceedings of the 30th AAAI Conference on Artificial Intelligence,
2016.

[5] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. In Proceedings
of the International Conference on Learning Representations (ICLR), 2016.

[6] Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-to-
end recovery of human shape and pose. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7122–7131, 2018.

[7] Adam R Kosiorek, Alex Bewley, Ingmar Posner, and Stephen J Roberts. Learning deep
architectures using information criteria to discover parsimonious models. In Advances
in Neural Information Processing Systems, 2018.

[8] Liam Li, Kevin Jamieson, Genevieve DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Making a science of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2442–2451. JMLR. org, 2018.

[9] Xiyu Li, Zhuang Chen, Kun Zhang, Yi Yang, and Jun Zhang. Regnorm: Regularization
of deep learning via unsupervised attention across neural network layers. arXiv preprint
arXiv:2004.05868, 2020.

33

[10] Yuanqing Lin and Bir Bhanu. Genetic algorithm based feature selection for target
detection in sar images. Image and Vision Computing, 21(7):591–608, 2003.

[11] Yuanqing Lin and Bir Bhanu. Object detection via feature synthesis using mdl-based
genetic programming. IEEE Transactions on Systems, Man and Cybernetics Part B,
35(3):538–547, 2005.

[12] Chunxu Lu, Zhiguo Yang, Wenya Wang, Yue Liu, Zhe Lin, and Lei Zhang. Enhancing
multi-objective evolutionary neural architecture search with training-free pareto local
search. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3519–3528, 2019.

[13] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning to
estimate 3d human pose and shape from a single color image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 459–468, 2018.

[14] Yiming Yang, Liqun Chen, and Yiqing Yu. Evaluating the optimization performance
of augmented memory networks with minimum description length. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 4999–5006, 2019.

34

