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ABSTRACT 

We address the outstanding problem affecting the numeri­
cal simulation of viscoelastic flows, namely the existence of 
a critical value of the elastic parameter beyond which no dis­
crete solution can be obtained. An extensive mesh refinement 
analysis conducted on a CRAY X-MP supercomputer indica'tes that 
limit points observed in the discrete solutions have a numeri­
cal origin. 

1. INTRODUCTION 

During the last ten years, a number of research groups 
have undertaken the development of computational methods for 
solving complex flows of highly elastic fluids. Viscoelastic 
flows cannot be described by simple extension of the Navier­
Stokes equations in cases where memory effects playa signi­
ficant role. Although inertia terms are negligible in most 
applications, the equations governing the flow of a viscoelas­
tic fluid are highly non-linear in view of the functional re­
lationship between the stress experienced by the material and 
the history of its deformation. Most of the work thus far has 
been concerned with steady flows (but see [1] and [2]), and 
relatively simple constitutive models have been used. Al­
though a few successful predictions have been reported in the 
literature, an outstanding problem affects current numerical 
simulations. Whatever be the flow problem under investiga­
tion, the discretization and iterative schemes used to solve 
it, and the constitutive model selected to describe the 
rheology of the material, one observes that the iterative 
scheme fails to converge beyond some cri tical value of the 
Weissenberg number, a dimensionless group that determines the 
elastic character of the flow. This critical value is (prob­
lem, method, model) dependent. An unfortunate selection of 
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this "operating triplet" can lead to poor results, while a 
better one, based on some theoretical considerations and/or 
numerical experiments, can lead.to numerical predictions of 
observed phenomena (see e.g., [3] and [4] ).At any rate, a 
sound understanding of the origin of the so-called "high 
Weissenberg number problem" is lacking. Comprehensive reviews 
are presented in [5] and [6J. 

A number of possible reasons for the breakdown of visco­
elastic computations have been proposed recently (see [7] for 
a critical evaluation of these conjectures). Recent work has 
clearly identified the occurrence of limit points in the dis­
crete solution of an upper-convected Maxwell fluid, the sim­
plest model for a polymer melt (see [8] and [9]). The crucial 
question as to whether these limit points are numerical arti­
facts or intrinsic features of the continuous solution, how­
ever, has not been unequivocally answered in view of the enor­
mous computer resources involved and the intricacy of the 
mathematical problem. Our goal in the present paper is to 
address this question. We present new results for the steady 
two-dimensional flow of a Maxwell fluid through a planar con­
traction. Contraction flows have been standard test problems 
for those actively engaged both in numerical and experimental 
work with viscoelastic materials. The presence of a singular­
ity at the re-entrant corner makes the problem very challeng­
ing for flow simulators. The nature of the singularity is 
only known for Newtonian fluids. We have conducted a system­
atic mesh refinement analysis leading to numbers of nodal un­
knowns that are significantly larger than in any previous in­
vestigation. The numerical technique used here is a mixed 
Galerkin/Finite Element method referred to as algorithm MIXI 
in our previous publications (see e.g •• [10]), implemented for 
this particular study on a CRAY X-MP supercomputer. The re­
sults lead us to conclude that limit points observed at the 
"discrete level are Dot intrinsic properties of the continuous 
problem, but rather have a numerical origin. A numerical 
experiment indi.cates that the· present Galerkin formulation is 
unable to produce a stable discretization of the non-self­
adjoint operators that characterize viscoelastic equations. 
We refer the reader to [7] for an extension of this work to 
alternative constitutive models and problems devoid of 
singulari ties. 

2. FORMULATION AND NtMERICAL METHOD 

The equations governing the steady isothermal flow of an 
upper-convected Maxwell (UCM) fluid are 

- Vp + IJ·T - Q (1) 

'V·v - a 
... ' (2 ) 
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where p is the indeterminate pressure, 1:. is the extra-stress 
tensor and ~ is the velocity vector. The constitutive model 
(3) contains two material parameters: a relaxation time A, 
and a shear viscosity~. We have neglected convective terms 
as well as body forces in the momentum equations (1), and have 
assumed that the fluid is incompressible. 

In the present paper, we consider the flow of a UCM fluid 
through a 4:1 planar contraction. With the aforementioned as­
sumptions, a single dimensionless group appears in the analy­
sis, namely the Weissenberg number We, defined as 

V 
We - A -H ' 

(4 ) 

where V and H denote the average velocity and half-thickness 
of the downstream slit, respectively. The Newtonian solution 
(Stokes flow) corresponds to We = O. The boundary conditions 
are: i) fully developed velocity and extra-stress fields at 
the entry section, ii) no-slip at the wall, iii) fully devel­
oped velocity field at the exit section, and iv) symmetry con­
ditions at the plane of symmetry. 

The numerical method is a mixed Galerkin/Finite Element 
technique where the unknown fields!. and ~ are interpolated by 
second-order polynomials, while the pressure p is given by 
first-order polynomials. Both approximated fields are of 
class Co. This technique is referred to as method MIXl in 
[10), and is detailed in [6). Its extension to more complex 
constitutive equations is presented in references [3), [4) and 
[ 11 ). 

The discretized version of equations (1-3) constitutes a 
set of non-linear algebraic equations depending on the param­
eter We; it has the form 

!: (~ ; We) = Q. ' (5 ) 

where X is the vector of nodal values of T, v and p. We solve 
(5) by-Newton's method combined with a first=order continua­
tion scheme to obtain initial guesses as the Weissenberg num­
ber 1s incremented. The presence of limit or bifurcation 
points in the solution family of (5) is indicated by a change 
in sign of the determinant of the Jacobian matrix 3F/3X when 
such a point is encountered. First-order continuation -allows 
one to pass a bifurcation point along the original branch; it 
is, of course, useless at a limit point, where a special scheme 
is needed to compute the return solution (see e.g., [8). 

A partial view of the three finite element meshes used in 
this work is shown in Fig. 1. 
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Fig. 1. Partial view of the three finite element meshes and 
magnification of M3 near the re-entrant corner. 

Meshes Ml and M2 were used in [4] for the study of entry flows 
of a Phan-Thien-Tanner fluid. Mesh M3 is highly refined in 
the neighborhood of the re-entrant corner; we have exercised 
much care in the design of M3 so as to avoid sudden steps in 
element size as well as unfavorable element aspect ratios. 
Table 1 gives some characteristic dimensions for these grids. 
It is seen that M3 is an order of magnitude finer than M2, 
both in terms of number of degrees of freedom and size of the 
elements placed at the corner. 
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Degrees of Si ze of 
Nodes Element·s freedom corner elements 

M1 594 130 3139 0.25 
M2 577 129 3046 0.05 
M3 7794 1912 40974 0.005 

Table 1 • Characteristic dimensions of the three finite 
element meshes. 

The computations have been conducted on an IBM 3081/K, which 
is a scalar machine, and a CRAY X-MP, which is a vector super­
computer. To give the reader a feeling for the amount of 
computing resources needed here, we present in Table 2 the CPU 
cost for a single non-linear iteration on equation (5). 

M1 
M2 
M3 

IBM 30B1/K 

30 
39 

5040 

CRAY X-MP 

3.7 
3.B 

167 

IBM/CRAY 

B 
10 
30 

Table 2. CPU time (in seconds) for a single non-linear 
iteration, and speed ratio between IBM and CRAY. 

The third coluon of this table indicates the speed ratio be­
tween the scalar and vector machines. This ratio is not a 
constant, since it is related to the degree of vectorization 
achieved with any given grid. Needless to say, all simula­
tions involving M3 were conducted with the CRAY, aside from 
the single iteration performed to provide the information in 
Table 2. We mention finally that the enormous size of M3 
calls for special i/o procedures during the frontal elimi­
nation process. We have developed a "buffered" i/o routine 
which optimizes the amount of disk access. In so doing, the 
time spent in writing (reading) the triangulated Jacobian ma­
trix to (from) disk is reduced to 30 seconds per iteration, 
which is quite acceptable for the transfer of about 96 Mega­
bytes of data. 

3. RESULTS 

With each of the three finite element meshes, solutions 
of the discrete set (5) have been obtained up to a critical 
value ~ beyond which the iterative scheme failed to converge, 
whatever be the magnitude of increments of We in the continua­
tion procedure. This fact, together with the associated sing­
ularity of the Jacobian matrix at ~, indicates a limit point 
of the discrete set (5). We find, however, that i) the 
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location of the limit point is highly mesh-dependent, ii) the 
quality of the discrete solution degenerates dramatically 
before the limit point is reached. 

Table 3 gives the values of ve for the three grids. They 
correlate with the degree of refinement near the re-entrant 
corner. 

Ml M2 M3 

0.87 0.56 0.11 

Table 3. Location of the limit point as a function of the 
mesh. 

We observe that ve decreases when the degree of refinement 
increases; it attains a very frustrating value of 0.11 with 
the highly refined grid M3. Solutions for We sufficiently 
smaller than ve are smooth and Will not be shown here. When 
We is incremented towards ~, however, spurious oscillations 
appear in the stress and velocity fields. Fig. 2 shows velo­
city and extra-stress contour lines obtained with M3 at the 
limit point. The Newtonian (mixed) solution is also shown for 
the sake of comparison. Although the velocity is devoid of 
large-amplitude oscillations at We = 0.11, the pxtra-stress 
field is highly oscillating downstream of the re-entrant 
corner. The numerical values of Tyy in the corner elements 
are two orders of magnitude larger than those plotted in Fig. 
2. The Ga1erkin technique fails to accurately resolve such 
large stress gradients. It is known that the combination 
[T+~I/Al must be definite-positive in the interior of the flow 
dOmaIn (see e.g., [121). We have observed in the present 
study that the discrete solution loses this property at a few 
nodes in the corner elements. The loss of the definite­
positive property precedes the occurrence of the limit point 
(it occurs at We a 0.05 with M3, for example). 

From what we have presented above, it is clear that the 
loss of convergence of the iterative scheme is associated with 
the breakdown of the discretization scheme. A possi ble cause 
is the failure of the Galerkin method to produce stable ap­
proximations of the non-self-adjoint operators that character­
ize viscoelastic constitutive equations. This can be tested 
by solving the constitutive equation (3) alone, for a given 
well behaved velocity field. The reduced problem becomes 
linear in T and can thus be solved for any value of We. The 
velocity f:Le1d chosen here is the finite-element Newtonian (u­
v-p) solution for the flaw in the contraction. The constitu­
tive equation (3) is solved by the Galerkin method with the 
same basis functions used in the coupled problem (1-3). 
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We=O. 0.11 

Tyy 

Fig. 2. Contour lines of the velocity Vx and the extra-stress 
Tyy; We ~ O. and 0.11; M3. 

Fig. 3 shows extra-stress contour lines obtained with M3 
for We ~ 0.03, 0.11 (the limit point of the coupled problem) 
and 1. As in the coupled problem, results for low lole are 
quite smooth, but they degenerate when We increases. At We = 
O. II, contour lines of the extra-stress Ty calculated on the 
basis of the Newtonian velocity field are Indeed very similar 
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0.03 0.11 

Fig. 3. Contour lines of the shear stress -Txy ; We = 0.03, 

0.11 and 1.; calculations based on the Newtonian velocity 
field; M3. 

to those of the coupled problem (Fig. 2). The solution for 
We = 1. is extremely poor; it exhibits a loss of the positive­
definite character of [T~I/A] far away from the corner and 
inside the flow domairi. - Similar observations have been made 
with M 1 and M2. 

4. CONCLUS IONS 

The main observations of this particular study can be 
summarized as follows: 

A. The loss of convergence of the iterative scheme is due 
to the presence of a limit point of the discrete 
solution, 

B. The location of the limit point is highly mesh­
dependent, 

C. The quality of the discrete solution degenerates when 
the Weissenberg number is increased up to the critical 
value, 

D. The critical value of the Weissenberg number monotoni­
cally decreases when the mesh is refined; in other 
words, intensive mesh refinement is not the solution to 
the high Weissenberg number problem. 
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These observations lead us to conclude that lI.dt points 
observed at the discrete level are not intrinsic properties of 
the continuous proble.. but rather are the consequence of 
discretization errors. Our conclusion is based on a very 
intensive mesh refinement analysis of a single flow problem, 
using a single discretization procedure and a single consti­
tutive model. We show in [7], however. that statements A, B, 
and C appear to hold quite generally with currently available 
numerical methods. Statement D is fortunately not as general; 
we show in [7] that it has to be amended when the flow problem 
does not contain a singularity or when the constitutive equa­
tions allow for shear thinning effects. 

Finally, our numerical experiments on the solution of the 
~axwell constitutive equations alone indicate the failure of 
the Galerkin principle to produce a stable approximation of a 
non-self-adjoint operator in regions of high solution gradi­
ents. The recent development of consistent Petrov/Galerkin 
formulations for first-order hyperbolic systems ([13], [14]) 
should provide useful guidelines in the search for improved 
numerical techniques for viscoelastic flows. 
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