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Abstract

Background: Biological aging estimators derived from DNA methylation data are
heritable and correlate with morbidity and mortality. Consequently, identification of
genetic and environmental contributors to the variation in these measures in
populations has become a major goal in the field.

Results: Leveraging DNA methylation and SNP data from more than 40,000
individuals, we identify 137 genome-wide significant loci, of which 113 are novel,
from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks
and epigenetic surrogate markers for granulocyte proportions and plasminogen
activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci
associated with the Horvath clock and expression of transcripts encoding genes
linked to lipid metabolism and immune function. Notably, these loci are independent
of those reported to regulate DNA methylation levels at constituent clock CpGs. A
polygenic score for GrimAge acceleration showed strong associations with adiposity-
related traits, educational attainment, parental longevity, and C-reactive protein levels.

Conclusion: This study illuminates the genetic architecture underlying epigenetic
aging and its shared genetic contributions with lifestyle factors and longevity.

Keywords: DNA methylation, GWAS, Epigenetic clock

Background
Aging is associated with an increased risk of physical, cognitive, and degenerative disor-

ders [1]. While the rate of chronological aging is constant between individuals, there

are inter-individual differences in the risk of age-associated morbidities. Biological

aging is influenced by both environmental and genetic factors [2]. Multiple measures of

biological age exist, several of which have drawn information from DNA methylation

(DNAm) across the genome. DNAm is a common epigenetic modification typically

characterized by the addition of a methyl group to a cytosine-guanine dinucleotide

(CpG). DNAm levels can be influenced by both genetic and environmental factors, and

in recent years, DNAm signatures have become established correlates of multiple

health-related outcomes [3–5]. Such signatures include “epigenetic clocks”, accurate

markers of aging which associate with several health outcomes [6, 7]. Epigenetic clocks

use weighted linear combinations of CpGs to predict an individual’s chronological age

and have common single-nucleotide polymorphism (SNP)-based heritability estimates

ranging from 0.15 to 0.19 [8, 9]. Individuals with epigenetic clock estimates greater than

their chronological age display “age acceleration” and have been shown to be at a

greater risk of all-cause mortality and multiple adverse health outcomes [10]. Conse-

quently, identification of genetic and environmental contributors to the variation in

these measures in populations has become a major goal in the field [11].

The first generation of epigenetic aging clocks used penalized regression models to

predict chronological age on the basis of DNA methylation data, e.g., the widely used

clocks from Hannum (2013) and Horvath (2013) apply to blood and 51 human tissues/

cell types, respectively [12–14]. A derivative of the Horvath clock, intrinsic epigenetic

age acceleration (IEAA) has since been developed, conditioning out (i.e., removing) es-

timates of blood cell composition. An increasing literature supports the view that IEAA

relates to properties of hematopoietic stem cells [2, 8, 15]. The second generation of

epigenetic clocks move beyond estimating chronological age by incorporating
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information on morbidity and mortality risk (e.g., smoking, plasma protein levels, white

blood cell counts), and chronological age. Two such predictors, termed PhenoAge (a

DNAm predictor trained on a measure that itself was trained on mortality, using 42 clin-

ical measures and age as input features) and GrimAge (trained on mortality, including a

DNAm measure of smoking as a constituent part), outperform both Hannum and Hor-

vath clocks in predicting mortality and are associated with various measures of morbidity

and lifestyle factors [16, 17]. DNAm GrimAge outperforms PhenoAge and the first gener-

ation of epigenetic clocks when it comes to predicting time to death [8, 18, 19].

While nothing is known about the genetics of the second generation of epigenetic

clocks, 13 genetic loci have been associated with the first generation of epigenetic

clocks. A study of nearly ten thousand individuals revealed a regulatory relationship be-

tween human telomerase (hTERT) and epigenetic age acceleration [8]. More recently, a

larger genome-wide association study (GWAS; n = 13,493) revealed that metabolic and

immune pathways share genetic underpinnings with epigenetic clocks [9].

Here, we greatly expand on these studies across several dimensions. First, we analyze

a large, multi-ethnic dataset comprised of over 41,000 individuals from 29 European

ancestry studies, seven African American studies, and one Hispanic ancestry study. Sec-

ond, we characterize for the first time the genetic architecture of the second-generation

epigenetic clocks, GrimAge and PhenoAge. All of these clocks have been trained on

European ancestry populations. Third, we also conduct GWAS of two important

DNAm-based surrogate markers: DNAm plasminogen activator inhibitor-1 (PAI1)

levels and granulocyte proportion, respectively. Although not considered in risk predic-

tion scores such as the Framingham Heart score, DNAm PAI1 was chosen because it

exhibited stronger associations with cardiometabolic disease than the epigenetic clocks

[16]. The DNAm-based estimate of granulocyte proportions was chosen because it ex-

hibited significant associations with several epigenetic clocks (including GrimAge and

PhenoAge) and with health outcomes such as Parkinson’s disease [16, 17, 20]. The un-

precedented sample size of the current study allowed us to develop polygenic risk

scores for these six epigenetic biomarkers.

We report 137 independent loci, including 113 novel loci (i.e., not previously identi-

fied in previous GWAS meta-analyses of epigenetic age estimators [8, 9]), and examine

the genetic and causal relationships between epigenetic aging, lifestyle behaviors, health

outcomes, and longevity.

Results
To identify genetic variants associated with six methylation-based biomarkers, genome-

wide association studies of 34,710 European ancestry and 6195 African American indi-

viduals were performed (Additional file 1 and Additional file 2: Tables S1-S2). A fixed

effects meta-analysis was performed to combine the summary statistics within each an-

cestry group (summary statistics available at https://datashare.is.ed.ac.uk/handle/102

83/3645). Genomic inflation factors ranged between 1.01 and 1.06 (Additional file 3:

Figure S1-S6) for the European-only meta-analyses, indicating appropriate adjustment

for population stratification, and from 1.11 and 1.21 for the meta-analyses comprising

African American participants (Additional file 3: Figures S7-S12; Table 1). Inflation was

present and consistent across all allele frequencies in the African American analyses;

there was much greater variability in the effect sizes in the African American analyses
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(Additional file 4). Phenotypic correlations were examined in Generation Scotland,

the largest participating cohort in the study. Correlations ranged from 0 (IEAA

and granulocyte proportions) to 0.48 (PhenoAge acceleration and Hannum age ac-

celeration (Additional file 2: Table S3). We examined the relationship between

means and standard deviations of predicted age versus means and standard devia-

tions of chronological age for each cohort, separated by ancestry group, observing

weaker mean correlations in the African American cohorts. There was little differ-

ence in the relationship between the standard deviations of age acceleration and

chronological age by ancestry group (Additional file 3: Figure S13). Heterogeneity

between studies may decrease power to detect genetic associations. We found little

evidence of systematic between-study heterogeneity in both the European ancestry

and African American meta-analyses, as determined by M-statistic outlier analysis,

meta-regressions against cohort characteristics, and analysis of heterogeneity I2 sta-

tistics [21] (Additional file 4).

The key findings of the post GWA analyses are summarized in Table 1 along with a

summary of the input features of each clock in Table 2. The latter highlights the value

in discriminating novel associations from those that are likely driven by the construc-

tion of the clocks.

European ancestry GWAS meta-analysis: 56 independently associated loci

We identified 56 conditionally independent associations (P < 5 × 10−8) across the six

epigenetic biomarkers in European ancestry populations using a stepwise model (Add-

itional file 3: Figures S14-S19; Table 1; Additional file 2: Table S4) [22, 23]. We repli-

cated 10/10 loci associated with IEAA and 1/1 locus associated with a cell-adjusted

Table 1 Summary of key findings of post GWA analyses. African American meta-analyses based on
6195 participants from 7 cohorts; European ancestry meta-analyses based on 34,710 participants
from 28 cohorts

McCartney et al. Genome Biology          (2021) 22:194 Page 4 of 25



Hannum-based measure of epigenetic age acceleration identified in an earlier GWAS

(P < 0.05/11 = 0.0045) [9]. All but three loci (associated with IEAA) were replicated at

the genome-wide significant level. To validate the associations with DNAm-derived

granulocyte counts, we compared our results to a previous GWAS of FACS granulocyte

counts which identified 155 independent loci [24]. In the current meta-analysis, we rep-

licated 13/129 present loci (P < 0.05/129 = 3.88 × 10−4; Additional file 2: Table S5;

Additional file 3: Figures S20-S21), two of which replicated at the genome-wide signifi-

cant level. Effect sizes at the 129 loci were strongly correlated between studies (r =

0.85). Conversely, we failed to replicate four genome-wide significant lead SNPs from a

previous GWAS of measured PAI1 levels (P ≥ 0.327) [25]. There was no clear concord-

ance of effect sizes at these loci in the current study (r = -0.59; P = 0.41)

To examine whether genetic variation across the six epigenetic biomarkers was shared,

we performed genetic colocalization analyses of the 56 loci [26]. There was evidence for

colocalization at 30 loci between epigenetic biomarkers (posterior probability (PP) > 0.8;

Additional file 2: Table S6). IEAA was associated with the greatest number of independent

loci (n = 24), whereas granulocyte proportion was associated with the fewest (n = 2).

African American GWAS meta-analysis: 81 independently associated loci

We identified 81 conditionally independent associations for the six epigenetic bio-

markers in the African American analyses (Additional file 3: Figures S22-S27; Table 1;

Additional file 2: Table S4). The number of associated loci per epigenetic biomarker

ranged from 9 (IEAA) to 27 (granulocyte proportion).

Trans-ethnic meta-analyses identify 69 loci

To determine if any loci were shared across the European and African American popu-

lations, a trans-ethnic meta-analysis was carried out for each of the six epigenetic bio-

markers using MR-MEGA [27]. Sixty-nine risk loci were identified across the six

predictors that were common to all ancestries, ranging from 6 (GrimAge acceleration)

Table 2 Summary of input features of first-generation (Hannum and Horvath) and second-
generation (DNAm PhenoAge, GrimAge) epigenetic clocks
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to 23 (IEAA). Ten loci were significant in the African American analyses, 33 were sig-

nificant in the European analyses, and five were significant in both. This left 21 novel

loci from the trans-ethnic meta-analyses (Additional file 2: Table S7). Among the allele

frequencies of the lead SNPs for these loci, 11/21 differed by > 10% between European

and African American populations (Additional file 2: Table S8).

We compared effect sizes of the lead SNPs from these loci in a Hispanic-American

ancestry subset of the MESA cohort (n = 287). Correlations between the respective ef-

fect sizes ranged from very weak (r = 0.16 for 10 granulocyte proportion SNPs) to near

unit (r = 0.92 for 10 Hannum age acceleration SNPs; Additional file 2: Table S9 and

Additional file 3: Figure S28).

Gene-based GWAS identifies 364 significant genes

Gene-based GWASs carried out using MAGMA identified between two and 46 genes

(111 unique genes in total) associated with the six epigenetic biomarkers in the

European ancestry data (Additional file 2: Table S10) [28]. In the African American

data, between nine and 209 genes (264 unique genes in total) were associated with the

epigenetic biomarkers (Additional file 2: Table S10). Across all epigenetic biomarkers

and ancestries, there were 364 unique gene-based associations.

Independently associated loci are associated with DNA methylation levels

One obvious genetic effect that may influence our GWA findings is the overlap with cis

methylation quantitative trait loci (mQTLs) for epigenetic clock DNAm sites. To ex-

plore whether any of the 56 loci from the European GWAS shared genetic variation in-

fluencing epigenetic clock DNAm sites, colocalization analyses were conducted using

GoDMC summary statistics [29] (“Methods”). We found strong evidence (PP > 0.8)

that 1/4 loci (25%) for GrimAge acceleration, 3/12 loci (25%) for PhenoAge acceler-

ation, 11/24 loci (46%) for IEAA, and 5/9 loci (56%) for Hannum age acceleration had

shared genetic variation influencing epigenetic clock DNAm sites (Additional file 2: Ta-

bles S11-S12). Next, we used genetic colocalization to assess whether GWAS loci for

aging biomarkers were associated with methylation levels at established DNAm sites

for BMI [30] and smoking [31]; 29/56 loci (52%) colocalized with genetic variation in-

fluencing smoking-associated DNAm sites and 1/56 loci (1.8%) was colocalized with

genetic variation influencing a BMI-associated DNAm site. Specifically, GrimAge accel-

eration (75%) and Hannum age acceleration (78%) loci showed a large overlap of gen-

etic variation influencing smoking DNAm sites.

Utilizing results from a published GWAS of IEAA in brain tissue [32], we tested

whether genetic variation influencing IEAA in blood and brain was shared for the 24

blood-related IEAA loci (cross-tissue plot for lead SNPs shown in Additional file 3: Fig-

ure S29). Colocalization analysis showed that there was no strong evidence (PP > 0.80)

for a single SNP being associated with both traits. However, the true extent of sharing

is difficult to estimate because the sample size of the brain study (n = 1796) is much

smaller than our blood-based study, limiting power to detect shared loci. Previous sim-

ulations using a sample size of 2000 individuals have indicated that the shared variant

must explain close to 2% of the variance of a biomarker to attain a posterior probability

> 0.8 for shared genetic effects [26]. Nevertheless, we observed suggestive evidence for
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colocalization (PP = 0.53; LocusZoom plot in Additional file 3: Figure S30) for a locus

mapping to DSCR6 on chromosome 21. This locus also shares genetic variation with

an IEAA clock CpG, cg13450409 (PP = 0.99; Additional file 2: Table S12).

SNP- and gene-based enrichment within published GWAS

To determine whether any of the 56 lead SNPs in the European ancestry meta-analyses

for the six epigenetic biomarkers showed evidence for pleiotropic associations, a lookup

of published GWAS significant associations (P < 5 × 10−8) was carried out (Additional

file 2: Table S13). Four of the IEAA-associated SNPs (rs2736100 in TERT, rs2275558 in

PBX1, rs144317085 in TET2, and rs2492286 in RPN1) were associated with 16 unique

traits including multiple cancers (e.g., lung cancer, glioma) [33, 34] and blood cell

counts (e.g., platelet count, eosinophil count, red blood cell count) [24, 35]. Whereas

there was considerable overlap with cell-related traits (e.g., white/red blood cell, plate-

let, and eosinophil counts, and mean corpuscular volume) [24, 35, 36], there were no

associations with non-cancer-related disease or lifestyle measures (Additional file 2:

Table S13). A gene-based test of enrichment among traits within the GWAS catalog

output (Additional file 2: Table S14) showed genes associated with IEAA, GrimAge,

and granulocyte proportion were enriched among those associated with white blood

cell counts [24, 35]. Several genes associated with granulocyte proportions were also

enriched among those associated with inflammatory traits (e.g., inflammatory bowel

disease, rheumatoid arthritis, asthma) [37–42]. IEAA-associated genes were also signifi-

cantly enriched among those identified in a previous GWAS of IEAA [8, 9].

Colocalization to identify GWAS loci that might regulate expression levels

Colocalization analyses were conducted to investigate whether any of the 56 loci from

the European ancestry GWASs showed evidence of regulating gene expression levels

(“Methods”). There was strong evidence (PP > 0.8) that eight loci had shared genetic ef-

fects with expression quantitative trait loci (eQTLs; Table 1; Additional file 2: Table

S15). Of these, one was associated with GrimAge acceleration and seven were associ-

ated with IEAA. The locus associated with GrimAge acceleration was linked to the ex-

pression of C6orf183 whereas IEAA-associated loci were linked to the expression of 11

transcripts including genes related to lipid transport and immune function (e.g.,

ATP8B4, CD46, TRIM59). Colocalization plots are presented in Additional file 5. Not-

ably, four loci (all associated with IEAA) were independent of variants associated with

DNAm levels at constituent clock CpGs (Additional file 2: Table S12; Table S15).

Functional enrichment analysis

To gain an understanding of the regulatory properties of the variants that underlie the

six epigenetic biomarkers, we performed functional enrichment analyses across various

gene annotations and regulatory and cell-type specific elements on the summary statis-

tics for each of the European ancestry GWAS results (see “Methods,” Additional file 2:

Table S16) [43]. At an epigenetic biomarker-specific adjusted P value calculated from

the effective number of annotations, significant enrichments were present for IEAA (n

= 191) and Hannum age acceleration (n = 3). Associations with IEAA were enriched in

DNaseI hypersensitive site (DHS) hotspots in several tissues, which might reflect that
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Horvath’s pan-tissue clock applies to all tissues. The strongest enrichment of associa-

tions with IEAA could be observed for mobilized CD34 primary cells (OR = 6.06, P =

6.1 × 10−12), which supports the view that IEAA reflects properties of hematopoietic

stem cells [2, 8, 15].

Pathway enrichment analysis

In the African American analysis, genes associated with granulocyte proportions were

enriched among 35 Gene Ontology (GO) terms (Bonferroni P < 0.05), the majority of

which were immune-related (e.g., adaptive immune response, lymphocyte activation,

regulation of immune system process, or skin development; Additional file 2: Table

S17). By contrast, there was no significant enrichment among Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways or GO terms for the significantly associated

genes in the European ancestry analysis.

Overlap with Mendelian disease genes

In order to characterize the potential overlap of Mendelian disease genes and associated

pathways with our findings, a series of enrichment analyses were conducted

(“Methods”) [44]. In the European ancestry analysis, enrichment of Mendelian disease

genes was observed for IEAA and two gene sets (“disorders of platelet function” and

“vascular skin abnormality”: bootstrapped P = 0.027 and 0.049, respectively). Enrich-

ment analysis of PhenoAge loci revealed overrepresentation of methylation-related

Mendelian disease genes (Additional file 2: Table S18; bootstrapped P = 0.04) with

MTR (methyltetrahydrofolate-homocysteine S-methyltransferase) present in addition to

TPMT. No significant over-representations of Mendelian disease gene sets were ob-

served for any of the genes identified in the African American analysis.

Heritability and LD score regression

We quantified the proportion of variance in the six epigenetic biomarkers from the

European ancestry meta-analyses that can be explained by our SNP sets using Linkage

Disequilibrium (LD) Score regression [45]. The GWAS summary statistic SNP-based

heritability ranged from 0.02 (SE = 0.02) for PAI1 levels, to 0.17 (SE = 0.02) for IEAA

(Table 1; Additional file 3: Figure S31; Additional file 2: Table S19). We omitted DNAm

PAI1 from the genetic correlation analysis due to its low heritability estimate. Several

of the remaining five epigenetic biomarkers exhibited significant (P < 0.05) pairwise

genetic correlation coefficients ranging from r = 0.28 (GrimAge acceleration and IEAA)

to r = 0.66 (GrimAge acceleration and PhenoAge acceleration; Fig. 1; Additional file 2:

Table S20).

For each epigenetic biomarker, large-scale genetic correlation analyses were con-

ducted with 693 different traits. A selection of significant associations after Bonferroni

correction for multiple testing (P < 0.05/693 = 7.22 × 10−5) is presented in Fig. 2.

PhenoAge acceleration had significant genetic correlations with 36 health-related

traits including educational and cognitive traits (e.g., years of schooling, intelligence; rg
= − 0.26 and − 0.30; P ≤ 3.29 × 10−5) [46–48], anthropometric traits (e.g., waist circum-

ference, obesity, extreme BMI, hip circumference; rg = 0.22-0.31; P ≤ 3.61 × 10−5) [49,

50], (http://www.nealelab.is/uk-biobank/), adiposity (e.g., leg, arm, and trunk fat mass;
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rg = 0.22–0.23; P ≤ 3.46 × 10−6) (http://www.nealelab.is/uk-biobank/), and longevity

(e.g., father’s age at death: rg = − 0.34; P = 9.66 × 10−6) (http://www.nealelab.is/uk-

biobank/). GrimAge acceleration was genetically correlated with similar traits to Pheno-

Age (e.g., father’s age at death: rg = − 0.64; P = 6.2 × 10-13), along with smoking-related

traits (e.g., current tobacco smoking: rg = 0.62; P = 1.5 × 10−15) (http://www.nealelab.is/

uk-biobank/) and cancer-related traits (e.g., lung cancer: rg = 0.48; P = 8.3 × 10−6) [51].

The shared genetic contributions to GrimAge and smoking/mortality are expected

given that GrimAge uses a DNAm-based estimator of smoking pack-years in its defin-

ition. There were no significant genetic correlations between Hannum age acceleration,

IEAA, or granulocyte proportions and any of the traits tested after correction for mul-

tiple testing (Additional file 2: Table S21).

Polygenic risk score (PRS) profiling

To determine how well SNP-based genetic scores can approximate the six epigenetic

biomarkers and investigate whether these genetic scores associate with health out-

comes, a polygenic risk score analysis was conducted on the European ancestry data.

Re-running the meta-analysis with an iterative leave-one-cohort-out process (and on

the full summary statistics in a completely independent cohort—the Young Finns

Study), the mean polygenic predictions explained between 0.21 and 2.37% of the epi-

genetic biomarkers (Table 1; Fig. 3; Additional file 2: Table S22). The maximum predic-

tion for a single cohort was 4.21% for PAI1 levels in ARIES. Parsimonious predictors

Fig. 1 Genetic correlations and standard errors for the epigenetic biomarkers. IEAA (intrinsic epigenetic
age acceleration)
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(built using SNPs with P < 5 × 10−8) performed well for IEAA, PAI1 levels, and Pheno-

Age acceleration, whereas predictors including more SNPs (P < 0.01–P < 1) tended to

explain the most variance in GrimAge acceleration and granulocyte proportions.

In order to investigate the association between the polygenic risk scores and health

outcomes, we utilized a PRS Atlas to model associations with 581 heritable traits (nrange
= 10,299 to 334,915) from the UK Biobank study [52]. The PRS inputs included the in-

dependent SNPs with P < 1 for GrimAge acceleration and granulocyte proportion and

P < 5 × 10−8 for the other four epigenetic biomarkers, with thresholds based on the

results from the leave-one-out predictions (Fig. 3). Using a false discovery rate (FDR)-

corrected P value for each of the six epigenetic biomarkers, we found between 7 and

250 significant associations for GrimAge acceleration, granulocyte proportions, and

Hannum age acceleration (PFDR < 0.05; Additional file 2: Table S23). The strongest as-

sociations were between the GrimAge acceleration PRS and the following traits:

adiposity-related traits (e.g., body fat percentage: β = 0.02; PFDR = 7.3 × 10−39); educa-

tion (e.g., college or university degree: β = − 0.06; PFDR = 2.6 × 10−43); and parental lon-

gevity (e.g., father’s age at death: β = − 0.02; PFDR = 5.7 × 10−16; mother’s age at death:

β = − 0.02; PFDR = 1.6 × 10−11). Higher C-reactive protein was associated with a higher

Fig. 2 Significant genetic correlations between GrimAge acceleration (A) and PhenoAge acceleration (B)
and a selection of GWAS traits. *This variable was originally coded with a high score representing lower
health rating. We have multiplied the genetic correlation by − 1 for interpretability
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PRS for both granulocyte proportions and GrimAge acceleration (granulocyte propor-

tions: β = 0.01; PFDR = 8.2 × 10−4; GrimAge acceleration: β = 0.02; PFDR = 2.1 × 10−29),

and a lower score for Hannum age acceleration (β = − 0.006; PFDR = 0.02). A higher

Hannum age acceleration PRS was also associated with an increased likelihood of tak-

ing insulin medication and lower total protein levels.

Mendelian randomization between age acceleration phenotypes and health and lifestyle

outcomes

To investigate if the epigenetic measures were causally influenced by lifestyle fac-

tors and had a causal effect on aging and disease outcomes, we performed Mendel-

ian randomization (MR) analyses on 150 traits for the European ancestry data

(Additional file 2: Table S24). We found 12 inverse-variance weighted MR effects

between the main exposures and epigenetic outcomes (GrimAge acceleration, Phe-

noAge acceleration, and PAI1 levels), after adjustment for multiple testing (Table

1; Additional file 2: Table S25). Of these, three remained significant (P < 0.05)

across the other three MR methods. All of these consistent effects were with

GrimAge as the outcome. Greater adiposity was associated with greater GrimAge

acceleration: body mass index (BMI; BetaIVW = 0.76 years per standard deviation

(SD) increase in BMI, P = 3.7 × 10−16); hip circumference (BetaIVW = 0.42 years

per SD increase in hip circumference, P = 2.5 × 10−5); waist circumference

(BetaIVW = 0.59 years per SD increase in waist circumference, P = 5.9 × 10-6; Fig. 4).

Current tobacco smoking showed evidence for a causal effect on increased GrimAge in

two of the MR methods (BetaIVW = 3.42 years for smokers, P = 9.0 × 10−6; Fig. 4), as antic-

ipated given that it incorporates a DNAm-based estimator of smoking pack-years [8]. Past

tobacco smoking showed evidence for an inverse causal effect (BetaIVW = − 1.09

years, P = 6.6 × 10−9), indicating that GrimAge acceleration is reduced upon smok-

ing cessation. As a DNAm-proxy for leptin was included in the derivation of

GrimAge, the smoking and adiposity findings may act as positive controls. There

was evidence from three of the four MR methods to support a link between higher

educational attainment (both years of schooling and college/university degree) and

lower GrimAge acceleration (Fig. 4). For the secondary exposures, there was evi-

dence across all methods for a causal effect of a greater body size at age 10 on

higher GrimAge acceleration (BetaIVW = 0.70, P = 1.6 × 10−4; Additional file 2: Ta-

bles S24; S26). Consistent findings across all four MR methods provided evidence

to support a causal effect of 13 cell count traits and DNA methylation-estimated

granulocyte proportions, and between lower lymphocyte proportions and higher

Hannum and GrimAge acceleration (Additional file 2: Table S27). There was evi-

dence for heterogeneity in the causal effects for most of the cell types on epigen-

etic age measures, as well as years of schooling on GrimAge acceleration, although

weaker evidence for directional pleiotropy was detected, based on the Egger inter-

cept (Additional file 2: Table S28).

The biomarker analyses with epigenetic measures as outcomes identified no consist-

ent effects across all four MR methods (Additional file 2: Table S29). We found limited

evidence to support any causal effects of the epigenetic measures (as exposures) on key

disease and health outcomes, including longevity (Additional file 2: Tables S30-S31).
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Discussion
Epigenetic biomarkers of aging and mortality have been extensively studied in relation

to a plethora of health and disease outcomes. Here, we conducted a comprehensive

suite of analyses in a meta-analysis sample of over 40,000 individuals, including the first

GWA studies of two DNAm-based estimators of mortality risk (PhenoAge and

GrimAge), as well as for DNAm-based proxies for granulocyte proportion and plas-

minogen activation inhibitor 1 protein levels. We identified 137 loci, of which 113 were

novel, related to the six epigenetic biomarkers. Whereas previous studies have shown a

general decline in longitudinal Hannum and Horvath age acceleration [53], there was

no evidence of heterogeneity by cohort age for the lead independent loci. Although our

comparison of genetic architectures across different ancestries was limited by sample

size, particularly in the Hispanic ancestry lookup cohort of just 287 individuals, our

European and African American trans-ethnic meta-analyses implicated many shared

genetic loci. However, heterogeneity of effect sizes between European and African

American ancestries was found for genome-wide significant loci which may reflect

Fig. 3 A Polygenic predictions for the six epigenetic biomarkers in LBC1921, LBC1936, SABRE, Born in
Bradford, ARIES, FHS, and the Young Finns Study. IEAA (intrinsic epigenetic age acceleration), PAI1
(plasminogen activator inhibitor-1). B Associations between GrimAge polygenic risk score (P < 1) and UK
Biobank GWAS traits
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differential tagging of underlying causal variants. Alternatively, gene-environment inter-

actions or poor prediction of epigenetic biomarkers in African Americans, possibly due

to the construction of the clocks relying on European ancestry individuals, may explain

heterogeneity in these effect sizes.

The IEAA clock is a derivative of Horvath’s pan-tissue predictor that regresses out

DNA methylation-based estimates for naive CD8+ T cells, exhausted CD8+ T cells,

plasmablasts, CD4+ T cells, natural killer cells, monocytes, and granulocytes. Although

other cell sub-types may influence the findings, the GWAS results that are shared be-

tween IEAA and the other epigenetic clocks (Hannum clock, PhenoAge, GrimAge) are

less likely to be influenced by differences in cell composition. However, there was still

an enrichment in the GWAS results for IEAA and GrimAge with findings from previ-

ous white blood cell GWASs, such as basophils. Mendelian randomization analyses in-

dicated putative causal effects of lymphocyte count on PhenoAge, GrimAge, and

Hannum age acceleration but not on IEAA. Furthermore, whereas we observed enrich-

ment of Mendelian disease genes for IEAA relating to platelet disorders, the Mendelian

randomization analyses did not support evidence for a causal link between platelets

and IEAA. IEAA and PhenoAge acceleration share the following genome-wide

Fig. 4 Causal effects of UK Biobank GWAS traits on GrimAge acceleration. Effects correspond to increase/
decrease in GrimAge acceleration per SD increase in waist circumference, hip circumference, and BMI; or
per log odds increase for university/college education and current smoker status
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significant gene-based associations: TPMT, TERT, NHLRC1, KDM1B, EDARADD.

IEAA and Hannum age acceleration share the following associations: TERT, TRIM59,

KPNA4, RP11-432B6.3, IFT80, and TET2. TET2 is particularly interesting in light of its

mechanistic role (catalyzing the conversion of methylcytosine to 5-

hydroxymethylcytosine) and its established role in several aging/regenerative pheno-

types [54, 55].

Several of the GWAS overlapping genes in the European ancestry analysis (e.g.,

TRIM59, KPNA4) are also implicated by our eQTL colocalization analysis. While it is

important to note that these analyses do not test for causality, we identified regulatory

relationships between SNPs associated with IEAA and expression of nearby genes.

Moreover, four of these loci were not merely mQTLs for CpG sites that were used to

construct the clocks. The IEAA-associated locus on chromosome 3 (lead SNP

rs1047210) colocalized with an eQTL for TRIM59. DNA methylation levels at TRIM59

have been robustly associated with chronological age and its expression has been noted

in multiple cancers [56–60]. The same locus was associated with IEAA in a previous

GWAS (lead SNP rs11706810) [8]. In addition to TRIM59, the eQTL colocalization

also implicated this locus in the expression of the pseudogene KRT8P12, along with

SMC4 and KPNA4. There is evidence that SMC4 inhibits cellular senescence, an estab-

lished hallmark of aging [61]. SMC4 is a core subunit of condensin complexes, which

contribute to senescence processes, possibly through reorganization of genomic struc-

ture and transcriptional regulation [62]. KPNA4 is a member of the importin family of

nuclear transport receptors, which work through the nuclear pore complex to select-

ively transport proteins from the cytoplasm to the nucleus. Like cellular senescence,

dysfunction of nuclear transport has been proposed as a marker of aging [63]. More-

over, importin levels have been associated with impaired myocardial angiogenesis in

aging [64]. A chromosome 1 locus associated with IEAA (lead SNP rs7550821) coloca-

lized with an eQTL for CD46, encoding a regulator of T cell function and the comple-

ment system—a key component of the innate immune system where it promotes

inflammation [65, 66]. There was also strong evidence for colocalization between an

IEAA-associated locus on chromosome 15 (lead SNP rs12903325), and an eQTL for

the lipid transporter gene ATP8B4, which contains variants that have been reported in

relation to centenarian status in Italians and Alzheimer’s disease [67, 68]. An eQTL for

CXXC4, encoding Idax, an inhibitor of Wnt signalling, colocalized with an IEAA-

associated locus on chromosome 4 (lead SNP rs144317085). CXXC4 levels, along with

KPNA4 and SMC4, have been associated with cancer progression [69–71].

Using the findings from the European ancestry meta-analyses, we observed shared

genetic contributions between PhenoAge and GrimAge acceleration with education,

cognitive ability, adiposity, and smoking. There were also significant epigenetic

biomarker-specific genetic correlations with numerous other health and modifiable life-

style factors. These are the first reported genetic correlations between GrimAge and

PhenoAge acceleration and health and utilize much better powered GWAS results for

IEAA and Hannum age acceleration. The best epigenetic biomarker of mortality risk,

GrimAge acceleration, exhibited strong genetic correlations with parental longevity and

lung cancer. As GrimAge uses a DNA methylation-based estimator of smoking pack-

years in its definition, it is possible that the significant genetic correlation with lung

cancer is mediated by smoking. Whereas many studies have observed phenotypic

McCartney et al. Genome Biology          (2021) 22:194 Page 14 of 25



correlations between epigenetic clocks and health/aging outcomes, other than pre-

vious small-scale efforts [8, 9], none have done so through shared genetics. Fur-

thermore, this is the first large-scale epigenetic clock study to attempt to separate

correlation from causation. By comprehensively examining the genetic architectures

of each clock, we begin to uncover the shared and unique biological signals that

each clock is tracking.

Four different Mendelian randomization methods provide directional evidence of

a causal influence of adiposity-related traits on GrimAge acceleration, while smok-

ing cessation was inversely related to GrimAge acceleration. Several MR analyses

indicate that increased educational attainment is associated with lower GrimAge

acceleration. However, there was no causal evidence for associations with other

lifestyle traits, such as alcohol consumption. There was limited evidence from MR

to implicate any of the DNAm predictors as playing an important causative role in

longevity or disease risk.

This is the first study to present polygenic risk scores for six epigenetic bio-

markers of aging. A phenome-wide scan of the six polygenic risk scores (PRS)

yielded highly significant associations between the PRS of GrimAge acceleration

and adiposity-related traits, education, and parental longevity. Both the PRS ana-

lysis and the MR analyses suffer from two limitations: (i) the geographical structure

in the UK Biobank cohort might confound these analyses [72] and (ii) low herit-

ability estimates for some of the phenotypes (e.g., longevity or epigenetic bio-

markers such as PAI1). The lack of replication of previous PAI1 GWAS findings,

despite an equivalent sample size, questions the validity of the DNAm PAI1 proxy

for GWAS analyses [25]. Limited statistical power due to low heritability or low

sample size may help explain the disconnect between the genetic correlation ana-

lysis (which revealed a plethora of significant genetic correlations for GrimAge and

PhenoAge) and the MR analysis (which led to a dearth of significant findings). In

general, careful interpretation of the MR findings is required. Causal MR analyses

that modelled epigenetic biomarkers as exposures and disease states as outcomes

suffered from weak genetic instruments (e.g., for GrimAge acceleration and gran-

ulocyte proportions, where the variance explained was < 1%) or inadequate power

in two-sample analysis. Future multivariate MR analyses will be required to test

whether the protective causal effect of education on GrimAge is mediated by

smoking, obesity, or other factors. These studies could also explore potential plei-

otropy between the clocks, health outcomes, and white blood cell proportions. Fur-

thermore, while the assumption of non-pleiotropic associations can be examined in

the MR framework, this is not the case for the genetic correlation and polygenic

risk score analyses.

Since carrying out these analyses, more accurate DNAm-based age predictors have

been developed [73]. Compared to the original Hannum and Horvath clocks, the Zhang

clock is less sensitive to cellular heterogeneity. Future studies should consider this clock

for GWAS analysis. Furthermore, whereas we selected the original Hannum clock over

a slightly modified version (labelled extrinsic epigenetic age acceleration), the correl-

ation between the two age acceleration measures was > 0.95 in the two subsets (nSet1 =

5087; nSet2 = 4450) of the Generation Scotland study, the largest single cohort study in

the meta-analysis.
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Conclusions
Overall, this study highlights the shared genetic architecture between epigenetic aging,

lifestyle factors (smoking, obesity), and parental longevity, which shows that DNAm-

based biomarkers are valuable endophenotypes of biological aging.

Methods
Study cohort information

The meta-analysis sample comprised 36 datasets from 30 cohorts encompassing 40,905

participants (controls/healthy volunteers). Of these, 28 included individuals of

European ancestry comprising 34,710 participants, and seven were of individuals of

African American ancestry comprising 6195 participants. The total meta-analysis sam-

ple age range was 27.2–79.1 years (mean 54.0 years overall; 54.8 years across European

ancestry cohorts; 50.4 years across African American cohorts) and comprised 0–100%

females (mean 58.3%; 57.3% across European ancestry cohorts; 62.6% across African

American cohorts). A Hispanic ancestry subset of the MESA cohort comprising 287

participants was used to compare effect sizes from trans-ethnic meta-analysis outputs

and a European ancestry cohort comprising 1402 individuals (Young Finns Study) was

used for polygenic prediction. Cohort-level descriptive data are presented in Additional

file 2: Table S1 and described in Additional file 1.

Data preparation

Age-adjusted DNA methylation-based estimates of Hannum age, Intrinsic Horvath age,

PhenoAge, GrimAge, plasminogen activator inhibitor-1 levels, and unadjusted granulo-

cyte proportion were calculated using the Horvath epigenetic age calculator software

(https://dnamage.genetics.ucla.edu/ or standalone scripts provided by Steve Horvath

and Ake Lu). The following outputs were assessed: intrinsic epigenetic age acceler-

ation—“IEAA”, Hannum age acceleration—“AgeAccelerationResidualHannum”, Pheno-

Age acceleration—“AgeAccelPheno”, GrimAge acceleration—“AgeAccelGrim”, estimate

levels of Plasminogen Activation Inhibitor 1, adjusted for age—“DNAmPAIadjAge”,

and estimated proportion of granulocytes—“Gran”. For each cohort, an outlier thresh-

old for methylation values of +/− 5 standard deviations was applied and outlier samples

were excluded from the analysis.

GWAS and meta-analysis

Quality control and imputation were done by each study separately (Additional file 1).

Genotypes were imputed to either Haplotype Reference Consortium (HRC) or 1000

genomes phase 3 panels [74, 75]. In each cohort, association testing was conducted

using imputed dosages using an additive model. Linear models were adjusted for sex

and genetic principal components. GWAS summary statistics were obtained for be-

tween 1,097,816 and 15,221,271 genetic markers. This was the case for all cohorts with

the exception of GOLDN (whole-genome sequence data) and the Sister Study (imputed

data not available at the time of analysis). For each cohort, summary statistics were

processed and harmonized using the R package EasyQC [76]. Multi-allelic variants were

filtered to contain the variant with the highest minor allele count. At the individual co-

hort level, variants that were monomorphic, with a minor allele count ≤ 25, genotyped
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in < 30 individuals, or with an imputation quality score < 0.6 were removed. Allele

codes and marker names were harmonized, duplicate variants were removed, and allele

frequency checks were performed against the appropriate population reference data.

Meta-analyses were performed with METAL using an inverse variance fixed effects

scheme [77]. Meta-analyses were performed on European ancestry and African

American studies separately (n = 34,710 and 6195, respectively). Variants were omitted

from the meta-analysis if they were absent from > 50% of the total meta-analysis sample

size. Cohort-specific genomic inflation factors ranged from 0.86 to 1.07. Genome-wide

significance was defined as P < 5 × 10−8. To summarize the associations in terms of

index SNP with the strongest association and other SNPs in linkage disequilibrium, we

used conditional and joint association analysis of GWAS summary data, including the

HLA region, in the GCTA-COJO software [22, 23]. A stepwise selection model was

used with default settings for SNP LD (R2 < 0.9), analysis window size (10Mb), and

genome-wide significance (P < 5 × 10-8) using HRC imputed genotype data from

Generation Scotland, and 1000G imputed genotype data from ARIC as the reference

panels for the European ancestry and African American analyses, respectively. Hetero-

geneity I2 statistics were obtained from the meta-analyses and plotted against both

−log10 p values and effect sizes to determine if SNPs with heterogeneous effects across

cohorts were more statistically significant or had larger effect sizes. Systematic

between-study heterogeneity was also investigated [21]. Meta-analyses were re-run after

excluding cohorts identified as outliers and effect sizes were visually compared with the

full meta-analysis output. Forest plots were prepared for all significant loci.

Trans-ethnic meta-analysis

A trans-ethnic meta-analysis of all European ancestry and African American cohorts

was conducted using default settings in the Meta-Regression of Multi-Ethnic Genetic

Association (MR-MEGA) tool [27]. We considered summary output for the first princi-

pal component of the meta-regression.

MR-MEGA summary statistics were uploaded to the Functional Annotation of Meta-

Analysis Summary Statistics (FUMA) (http://fuma.ctglab.nl) software for annotation of

the top loci using default settings, selecting 1000 Genomes phase 3 (all populations) as

the reference population [79]. Independent lead SNPs had P < 5 × 10−8 and were inde-

pendent of each other at r2 < 0.6; lead SNPs within this subset were required to have r2

< 0.1. A locus was defined by considering lead SNPs in a 250-kb range and all SNPs in

LD (r2 ≥ 0.6) with at least one independent SNP.

Functional annotation of meta-analysis summary statistics

The European ancestry and African American meta-analysis summary statistics were

uploaded to FUMA (http://fuma.ctglab.nl) for further annotation and functional ana-

lysis [78]. Genes were annotated from SNP-level data using the “SNP2GENE” tool, per-

mitting gene set and tissue expression analyses using MAGMA [28]. Positional

mapping was performed based on ANNOVAR annotations, applying a maximum dis-

tance of 10 kb between SNPs and genes. A Bonferroni-corrected significance threshold

(adjusting for 18,606 tested genes) of P < 2.69 × 10−6 was set for the gene-based

GWAS. Genes annotated to significant GWAS loci were further investigated using the
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“GENE2FUNC” tool in FUMA for enrichment of GWAS catalog gene sets, omitting

the MHC region [79]. Bonferroni-corrected P value thresholds were applied.

Functional enrichment

To test if the GWAS meta-analysis findings were associated with regulatory and func-

tional features of interest, enrichment analyses were conducted using GARFIELD [43].

SNPs were first pruned (r2 > 0.1) then annotated to categories (e.g., chromatin states,

histone modifications, DNaseI hypersensitive sites, and transcription factor binding

sites). Statistical enrichment was then carried out for SNPs at two P value thresholds (P

< 1 × 10−5 and P < 1 × 10−8) while accounting for MAF, distance to the nearest TSS,

and number of LD proxies.

Colocalization analysis

We hypothesized that some of the lead loci from the meta-analyses will have shared

variants (1) across the Epigenetic biomarkers, (2) with DNAm sites in blood, and (3)

with gene expression levels in blood. We used GoDMC summary statistics on 190,102

DNAm sites [29] to examine the overlap between loci and epigenetic clock DNAm

sites, BMI-associated DNAm sites, and smoking-associated DNAm sites. We used

eQTL Gen summary statistics on 19,942 transcripts [80] that were available in the MR-

Base database [81]. We used the Rpackage gwasglue (https://mrcieu.github.io/gwasglue/

) to extract SNPs that were +/− 1Mb of the lead SNP and to harmonize the datasets.

For each epigenetic biomarker–molecular trait pair (or pair of epigenetic biomarkers),

we then performed colocalization analysis using the coloc.abf function in the R/coloc

package [26], using default parameters. We only kept colocalized pairs with more than

50 shared SNPs and a posterior probability above 0.8 (PP > 0.80). We removed the

HLA region from the eQTL colocalization analysis.

Disease and phenotype ontology enrichment

The potential role of Mendelian disease genes and associated pathways in influencing

the epigenetic biomarkers was investigated with MendelVar [44], independently for

each marker phenotype. We did not limit our analysis to any particular phenotype class

among the Mendelian disease genes but looked for enrichment of any disease processes

found to be strongly linked to genes in the GWAS loci. MendelVar analysis was run

using intervals based on ± 0.5 Mbp window around the lead SNPs using the 1000 Ge-

nomes EUR population as LD reference [74]. Inside MendelVar, INRICH was run in

“target” enrichment mode, with the target gene set filter set at minimum 5 (-i option)

and maximum of 20,000 (-j option), and minimum observed threshold of 2 (-z option)

[82]. The nominal P values were corrected for multiple testing with two rounds of per-

mutation in INRICH.

Heritability and genetic correlation analysis

LD score regression, using LD scores and weights estimated from European ancestry

populations (downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/),

was used to assess genetic correlations between the six epigenetic biomarkers. Genetic

correlations were further assessed between the six epigenetic biomarkers and publicly
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available GWAS summary statistics using the LDHub web interface (http://ldsc.

broadinstitute.org/ldhub/) [45]. Meta-analysis results for each epigenetic biomarker

were uploaded to the LDHub website, selecting all available traits for genetic correl-

ation analysis. SNP heritability was estimated using univariate LD score regression. As

the majority of large-scale GWA studies have been based on European ancestry popula-

tions, heritability and genetic correlation analyses were limited to this group to

maximize statistical power. Filtering was performed to exclude traits where the LD

Hub output came with the following warning messages: “Caution: using these data may

yield less robust results due to minor departure of the LD structure” and “Caution:

using this data may yield results outside bounds due to relative low Z score of the SNP

heritability of the trait.” This left a total of 693 unique traits from 708 to 711 studies

per epigenetic biomarker. A Bonferroni-corrected significance threshold of P < 0.05/

693 = 7.21 × 10−5 was applied.

Polygenic risk scores

To determine the proportion of variance in the six epigenetic biomarkers that can be

explained by common genetic variants, we carried out a polygenic risk score analysis

using results from the European ancestry meta-analyses. Weights for the additive

genetic scores were created by re-running the meta-analyses excluding one cohort (test

cohort) at a time. Six weighted PGR scores (one for each epigenetic biomarker) were

generated using default settings of the PRSice software (clump-kb = 250, clump-p = 1;

clump-r2 = 0.25) [83]. P value thresholds were set at < 5 × 10−8, < 0.01, < 0.05, < 0.1, < 0.5,

and 1. Linear regression models were built to calculate the incremental R2 between the

null model (epigenetic biomarker~ sex) and full model (epigenetic biomarker ~ sex +

polygenic risk score) in the test cohort. The procedure was iterated after excluding differ-

ent test cohorts one by one (Lothian Birth Cohort 1921, Lothian Birth Cohort 1936, Fra-

mingham Heart Study, Born in Bradford, ARIES, and SABRE, respectively) from the

meta-analysis. Finally, these steps were repeated, using the full meta-analysis summary

statistic output to generate polygenic risk scores in a completely independent cohort

(Young Finns Study, n = 1320).

For Born in Bradford, ARIES, and SABRE, best-guess genotype files with a MAF cut-

off of 1% and info score > 0.8 were generated and the polygenic risk score analyses

were corrected for 20 genetic PCs.

A phenome-wide association study of 581 heritable traits from the UK Biobank study

was then carried out for polygenic risk scores based on independent SNPs with P < 5 ×

10−8 or P < 1 from each of the six GWAS meta-analyses (http://mrcieu.mrsoftware.org/

PRS_atlas/) [52]. The P value thresholds were based on the leave-one-out cohort PRS

analyses described above (GrimAge acceleration and Granulocyte proportions: P < 1;

IEAA, Hannum Age acceleration, PhenoAge acceleration, IEAA and PAI1 levels: P < 5

× 10−8). An FDR-corrected P value (PFDR < 0.05) was applied separately to each set of

PheWAS results.

Mendelian randomization

To investigate if the epigenetic biomarkers were (i) causally influenced by lifestyle fac-

tors and (ii) had a causal effect on aging and disease outcomes, Mendelian
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randomization (MR) was performed in MR-Base [81]. The epigenetic measures were

considered as both exposures (i.e., causally influencing the outcome) and outcomes

(i.e., the epigenetic measure being causally influenced by a trait of interest). The

analyses were further split into four sections: primary exposures/outcomes (common

lifestyle risk factors and aging/disease outcomes from the largest available GWAS in

MR-Base); secondary exposures/outcomes (traits identified as relevant via moderate

genetic correlations from the LD regression analyses); 34 cell count exposures [24]; and

38 biomarker exposures [84]. SNPs instrumenting each exposure were clumped using a

European LD reference panel and an r2 < 0.001. Harmonization of the SNP effects with

the exposure and outcomes were performed so that palindromic SNPs were aligned

when minor allele frequencies (MAFs) were < 0.3 or were otherwise excluded.

Inverse variance weighted (IVW) MR was carried out as the main analysis, with

pleiotropy-robust sensitivity analyses featuring MR-Egger [85], weighted median [86],

and weighted mode MR [87]. Significant associations were defined by a Bonferroni-

corrected P value < 0.05. Where there was evidence for a causal effect based of the

IVW model, we also assessed the potential for horizontal pleiotropy by means of het-

erogeneity assessment (Cochran’s Q-statistic) of individual SNP effects in both IVW

and MR-Egger analyses and the Egger intercept test for directional pleiotropy [85].
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