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Identification of supraventricular tachycardia
mechanisms with surface electrocardiograms using a
convolutional neural network
Satoshi Higuchi, MD,*1 Roland Li, BA,†1 Edward P. Gerstenfeld, MD, FHRS,*
L. Bing Liem, DO, FHRS,*‡ Sung Il Im, MD,* Shadi Kalantarian, MD, MPH,*
Minhaj Ansari, MSc,† Sean Abreau, MSc,† Joshua Barrios, PhD,†

Melvin M. Scheinman, MD, FHRS,* Geoffrey H. Tison, MD, MPH†x
From the *Section of Cardiac Electrophysiology, Division of Cardiology, University of California, San

Francisco, San Francisco, California, †Division of Cardiology, Department of Medicine, University of
California, San Francisco, San Francisco, California, ‡Division of Cardiology, San Francisco VA
Medical Center, San Francisco, California, and xBakar Computational Health Sciences Institute,
University of California, San Francisco, San Francisco, California.
BACKGROUND It remains difficult to definitively distinguish sup-
raventricular tachycardia (SVT) mechanisms using a 12-lead electro-
cardiogram (ECG) alone. Machine learning may identify visually
imperceptible changes on 12-lead ECGs and may improve ability
to determine SVT mechanisms.

OBJECTIVE We sought to develop a convolutional neural network
(CNN) that identifies the SVT mechanism according to the gold stan-
dard of SVT ablation and to compare CNN performance against expe-
rienced electrophysiologists among patients with atrioventricular
nodal re-entrant tachycardia (AVNRT), atrioventricular recipro-
cating tachycardia (AVRT), and atrial tachycardia (AT).

METHODS All patients with 12-lead surface ECG during sinus
rhythm and SVT and had successful SVT ablation from 2013 to
2020 were included. A CNN was trained using data from 1505 surface
ECGs that were split into 1287 training and 218 test ECG datasets.
We compared the CNN performance against independent
adjudication by 2 experienced cardiac electrophysiologists on the
test dataset.
1The first two authors contributed equally to this article. Address reprint
requests and correspondence: Dr Geoffrey H. Tison, Division of
Cardiology, Department of Medicine, Bakar Computational Health
Sciences Institute, University of California, San Francisco, 555 Mission
Bay Boulevard, South Box 3120, San Francisco, CA 94158. E-mail
address: geoff.tison@ucsf.edu; Twitter: @GeoffTison
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RESULTS Our dataset comprised 1505 ECGs (368 AVNRT, 304 AVRT,
95 AT, and 738 sinus rhythm) from 725 patients. The CNN areas un-
der the receiver-operating characteristic curve for AVNRT, AVRT, and
AT were 0.909, 0.867, and 0.817, respectively. When fixing the
specificity of the CNN to the electrophysiologist adjudicators’ spec-
ificity, the CNN identified all SVT classes with higher sensitivity: (1)
AVNRT (91.7% vs 65.9%), (2) AVRT (78.4% vs 63.6%), and (3) AT
(61.5% vs 50.0%).

CONCLUSION A CNN can be trained to differentiate SVT mecha-
nisms from surface 12-lead ECGs with high overall performance,
achieving similar performance to experienced electrophysiologists
at fixed specificities.

KEYWORDS Convolutional neural network; Machine learning; Artifi-
cial intelligence; Supraventricular tachycardia; Electrocardiogram;
Long RP tachycardia

(Heart Rhythm O2 2023;4:491–499) © 2023 Heart Rhythm Society.
Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
Introduction
Catheter ablation is the treatment of choice for most patients
with supraventricular tachycardias (SVTs).1–3 It is important
for clinicians to be able to discern the underlying mechanism
of SVTs including atrioventricular nodal re-entrant tachy-
cardia (AVNRT), atrioventricular reciprocating tachycardia
(AVRT), and atrial tachycardia (AT) in order to estimate
chances of ablation success and possible adverse effects.
The 12-lead electrocardiogram (ECG) is the most common
diagnostic modality for preprocedural assessment. Current
clinical paradigms emphasize the importance of both the
morphology and relationship of the P-wave to the QRS dur-
ing tachycardia in order to establish the SVT diagnosis.4–12

However, existing 12-lead ECG paradigms can result in
overlap in distinguishing between these SVT mechanisms.

Recent work has shown that machine learning can be
effectively applied to ECGs to identify well-understood as
well as novel ECG-based diagnoses.13–19 Machine learning
algorithms such as convolutional neural networks (CNNs)
n access article
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KEY FINDINGS

- In this study, we trained a convolutional neural
network (CNN), a type of artificial intelligence algo-
rithm, to analyze raw 12-lead electrocardiogram
waveforms to identify 2 supraventricular tachycardia
classes according to a gold standard of electrophysi-
ology study diagnosis: atrioventricular nodal re-
entrant tachycardia, atrioventricular reciprocating
tachycardia, and atrial tachycardia.

- The CNN area under the receiver-operating character-
istic curve for atrioventricular nodal re-entrant tachy-
cardia, atrioventricular reciprocating tachycardia, and
atrial tachycardia were 0.909, 0.867, and 0.817,
respectively.

- The CNN performed similarly to cardiac electrophysiol-
ogists who adjudicated supraventricular tachycardia
using 12-lead surface electrocardiograms alone,
achieving similar sensitivities to electrophysiologists
at fixed specificities.
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allow for providing a valuable data-driven complement to
human-defined rules that consider only a fraction of the total
available ECG data. Therefore, the focus of the current study
was to determine whether the use of machine learning anal-
ysis of surface 12-lead ECGs alone can accurately determine
arrhythmia mechanisms of SVT as adjudicated by intracar-
diac recordings during an electrophysiology study. In this
study, we developed and trained a CNN to discriminate
between the SVTs of AVNRT, AVRT, and AT against the
gold-standard SVT mechanism diagnosis derived from
successful electrophysiology ablation studies for each pa-
tient. We then compared CNN performance to discriminate
SVT mechanisms against independent adjudication by 2
experienced cardiac electrophysiologists.
Figure 1 Diagram of study electrocardiogram (ECG) datasets. AT 5 atrial tachy
trophysiology; PJRT5 permanent junctional reciprocating tachycardia; SVT5 su
Methods
Study population
We retrospectively reviewed 981 consecutive patients who
underwent an electrophysiology study and catheter ablation
at UCSF Medical Center between January 2013 and January
2020. Among them, a total of 256 patients were excluded:
148 patients failed to have inducible sustained SVT; 34 had
noise due to bad electrode contacts, motion artifacts, and
electromyography noise; 9 had missing leads; 12 had multi-
ple tachycardia mechanisms or uncertain SVT diagnosis; and
21 had rare SVT forms including 3 nodo-ventricular/
fascicular accessory pathways, 7 antidromic reciprocal tachy-
cardias, 2 junctional tachycardias, and 9 permanent junc-
tional reciprocating tachycardias. Moreover, 32 patients
with ATs or AVNRTs with a 2:1 atrioventricular ratio were
also excluded, as those forms can exclude AVRT with this
finding alone. A total of 725 patients were included in the
study analysis (Figure 1). This study was conducted accord-
ing to the principles of the Declaration of Helsinki, and the
study protocol was approved by the University of California
San Francisco Institutional Review Board. All electrophysi-
ology studies were initially performed with a signed
informed consent; the need for informed consent for the
research analysis was waived by the Institutional Review
Board in the setting of anonymized retrospective record
review.
Electrophysiology study
Twelve-lead surface ECGs and intracardiac ECGs were re-
corded and stored on the Prucka CardioLab (GE Healthcare,
Waukesha, WI) recording system. Twelve-lead ECGs were
filtered between 0.05 and 100 Hz and bipolar intracardiac
electrograms between 30 and 500 Hz and recorded at a speed
of 100 mm/s. Tachycardia cycle length, VA interval, and
QRS interval during SVTs were measured in each patient us-
ing digital calipers of the intracardiac electrogram. The
cardia; AVNRT5 atrioventricular nodal re-entrant tachycardia; EP 5 elec-
praventricular tachycardia; UCSF5 University of California, San Francisco.



Figure 2 Adjudication by the expert electrophysiologists. Twelve-lead electrocardiograms of supraventricular tachycardia (SVT) and sinus rhythm (as a refer-
ence) were provided to ask the most likely SVT mechanism among atrioventricular nodal re-entrant tachycardia, atrioventricular reciprocating tachycardia, atrial
tachycardia, or undetermined.
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diagnoses of 3 SVT mechanisms were confirmed according
to (1) conventional electrophysiological criteria using right
ventricular overdrive pacing, right ventricular extrastimuli,
and atrial extrasimuli during tachycardia; and (2) the results
of a successful ablation site.20–23 All electrophysiological
studies and ablation studies were reviewed by
electrophysiologists (S.H., S.I.I.), and the SVT mechanisms
were reconfirmed again by a senior electrophysiologist
(M.M.S.).
Datasets and ECG data
All raw ECG waveform data were extracted from the Prucka
CardioLab recording system. Ten seconds of surface 12-lead
ECGs during SVT were extracted from all patients. More-
over, 10 seconds of surface 12-lead ECGs during sinus
rhythm were also extracted from the same patients in order
to provide data for an ancillary task of sinus rhythm classifi-
cation, which improves algorithm training for SVT identifi-
cation. The extracted ECG data included only those during
SVT or sinus rhythm; any other rhythms were excluded.
All ECG data were split into training (1287 [sinus rhythm:
630, AVNRT: 308, AT: 82, AVRT: 267]) and test (218
[sinus rhythm: 108, AVNRT: 60, AT: 13, AVRT: 37]) data-
sets, with each dataset containing nonoverlapping patients.
During CNN training, to address class imbalance, minority
classes were upsampled randomly with replacement to a ratio
of sinus:AVNRT:AT:AVRT of 1:0.75:0.75:0.75. The CNN
was trained and evaluated using labels of SVT mechanisms
defined by the electrophysiology study and successful
catheter ablation.
Adjudication by cardiac electrophysiologists
An adjudication dataset was identified, which contained a to-
tal of 200 SVT examples drawn from the full dataset. All 110
SVT examples in the test dataset (including 60 AVNRT, 37
AVRT, and 13 AT) were included in the adjudication dataset,
along with 90 other SVT examples randomly selected from
the training dataset. Two expert electrophysiologist physi-
cians (E.P.G., L.B.L.) used standard surface ECG approaches
or criteria to independently adjudicate the SVT mechanism
(AVNRT, AVRT, AT, or undetermined) from the surface
12-lead ECG alone (see Discussion).4–12 This provided
cardiac electrophysiologist SVT adjudication performance
to compare against CNN performance for the entire test
dataset, along with a larger adjudicated dataset for long RP
SVT substrata, which are more rare but clinically relevant.
In each dataset, sinus rhythm 12-lead ECGs from each patient
were also extracted (Figure 2).
CNN algorithm architecture
ECG lengths were standardized to the 75th percentile of ECG
lengths in our dataset (19,532 sample voltages) by either
cropping or zero-padding. ECGs voltage values were
normalized per lead per ECG via the Yeo-Johnson power
transform to achieve a gaussian distribution around zero of
the deep neural network input.24 CNN models were trained



Figure 3 Convolutional neural network (CNN) model development. AT5 atrial tachycardia; AVNRT5 atrioventricular nodal re-entrant tachycardia; AVRT
5 atrioventricular reciprocating tachycardia; EP 5 electrophysiology.
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to predict the presence of each of the 4 diagnostic classes:
AVNRT, AVRT, AT, and sinus rhythm. For CNN training,
sinus rhythm was included as a fourth non-SVT class as an
ancillary task, which served to improve overall CNN perfor-
mance on the 3 target SVT classes of primary interest. In the
first model, an autoencoder,25 took all ECGs, each sized
19,532 ! 12, and extracted embeddings of size 611 !
128 for each ECG (Figure 3). An autoencoder reduced input
data into smaller embeddings that retained important features
and learned to recreate the original input from those embed-
dings. These embeddings were then passed into a 1-
dimensional ResNet-based CNN architecture similar to that
previously described.15,16 The outputs of this CNN were 4
continuous predictions between 0 and 1 corresponding to
probability for each diagnosis. The model consisted of 13
Table 1 Demographic and Diagnosis Characteristics

AVN

1. Patients (N5725)* 356
Age, y 45
Female 203
Long RP tachycardia 34
Short RP tachycardia 322
2. ECGs (N5767) 368
Mechanisms ・ Ty

・ A

12-lead ECG presentation
Bundle branch block (QRS width

S120ms)
37

Tachycardia cycle length, ms 354
Intracardiac ECG findings VA interval during SVT, ms 43

QRS interval during SVT, ms 83

All data are expressed as the mean6 SD or n (%). AVNRT5 atrioventricular nod
AT 5 atrial tachycardia, SVT 5 supraventricular tachycardia, FW 5 free wall, AP 5
*Some patients contributed more than one disease record and ECG.
stacked convolutional layers with a filter size of 11, each
with a ReLU nonlinearity layer26 and batch normalization
layer.27 For every second convolutional layer, a max-
pooling layer was applied, reducing the time resolution by
a factor of 2 starting from 611 and every other a residual
connection. The number of convolutional channels was
doubled every fourth layer starting from 128. The final hid-
den dense layer had a 128! 1 shape and was fed into a soft-
max activation layer to output probabilities of the 4 SVT
classes (Figure 3). Each CNN was trained to converge the
categorical cross-entropy loss function with an Adam opti-
mizer and an initial learning rate of 10–3, reduced by a factor
of 0.5 every 5 epochs with no significant reduction in valida-
tion loss.28 The optimal initial learning rate, dropout, and
learning rate decay patience and factor and the size and
RT AVRT AT P values

292 81
6 22 22 6 16 50 6 22 ,.001
(57) 118 (40) 47 (58) ,.001
(10) 26 (9) 62 (77)
(90) 266 (91) 19 (23)

304 95
pical form 89%
typical form 11%

・ Left FW AP 52%
・ Septal AP 36%
・ Right FW AP 12%

・ RA AT 58%
・ Septal AT 26%
・ LA AT 16%

(10) 41 (13) 13 (14) .36

6 75 318 6 58 397 6 83 ,.001
6 64 104 6 37 194 6 93 ,.001
6 26 82 6 19 85 6 21 .47

al re-entrant tachycardia, AVRT5 atrioventricular reciprocating tachycardia,
accessory pathway, RA 5right atrial, LA 5 left atrial.
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number of hidden layers were all found using a grid search
across values consistent with those used in previous work.
We used Keras version 2.2.4 29 and Python 3.7 to train the
models using an NVIDIA GTX 1080 Ti with 12 GB of
VRAM (NVIDIA Corporation, Santa Clara, CA).30

Statistical analysis
We evaluated our CNN performance using the area under the
receiver-operating characteristic curve (AUC) on the respec-
tive test datasets. We calculated bootstrapped confidence in-
tervals for all metrics. We evaluated our CNN using binary
decision thresholds for each diagnostic class chosen based
on the optimal F1 score. For the test dataset, we reported
other metrics including the positive predictive value (PPV),
negative predictive value (NPV), sensitivity, specificity,
and F1 score at these F1 score optimized thresholds. When
comparing the CNN with the SVT ECGs adjudicated by car-
diac electrophysiologists, for each class separately, we
changed the CNN threshold such that the CNN specificity
approximately matched the average specificity of the 2
electrophysiologist adjudicators for that class. This allows
comparison of relative sensitivities between the CNN and
expert electrophysiologist for each class separately.
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Results
Study population
A total of 1505 (767 SVT and 738 sinus rhythm) ECGs were
obtained (Figure 1). Table 1 summarizes patient age and sex
based on the SVT mechanism and SVT characteristics eval-
uated from the intracardiac ECG. Patients with AVNRT and
AT were older and more likely to be female, while patients
with AVRT were younger and more likely to be male. The
ECGs with AVNRT included 89% with a typical form and
11% with an atypical form. The ECGs with AVRT were
most frequently left free wall accessory pathways (52%), fol-
lowed by septal pathways (36%) and then right free wall
pathways (12%). Right-sided AT was found in 58% of the
AT ECGs, followed by septal AT (26%) and then left-sided
AT (16%). Around 90% of AVNRT and AVRT ECGs pre-
sented with short RP tachycardia, while 77% of AT ECGs
presented with long RP tachycardia forms. No significant dif-
ference in the prevalence of bundle branch block was found
among the 3 SVT mechanisms (P 5 .36). For the detailed
ECG characteristics, the tachycardia cycle length was short-
est in those with AVRT (318 6 58 ms) and the VA interval
was shortest in those with AVNRT (436 64 ms) followed by
AVRT (104 6 37 ms) and then AT (194 6 93 ms).

Algorithm performance
Among the 3 SVT mechanisms, the CNN demonstrated the
highest AUC in the test dataset for AVNRT (CNN AUC
0.909, 95% confidence interval [CI] 0.874–0.934), followed
by AVRT (CNNAUC 0.867, 95%CI 0.796–0.913), and then
AT (CNN AUC 0.817, 95% CI 0.739–0.891). CNN sensi-
tivity and specificities in Table 2 are shown at thresholds opti-
mized by F1 score, resulting in relatively higher specificities
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and NPVs for all SVT classes. The CNN threshold can be
altered according to the target clinical application to favor
either higher sensitivity or specificity. For sensitivity anal-
ysis, we performed a 10-fold cross-validation whereby the
CNN was trained and evaluated on 10 different randomly
split training/development/test datasets, and averaged results
across the 10 folds were not materially changed.

Two experienced cardiac electrophysiologists adjudicated
all 110 SVT examples in the test dataset (Table 3). The CNN
threshold was then changed to fix CNN specificity at approx-
imately the (relatively high) average specificity of the cardiac
electrophysiologists. This enabled the comparison of sensi-
tivity between CNN and electrophysiologists for each SVT
class separately. At those fixed specificities, the sensitivity
of the CNN was higher than the averaged electrophysiologist
sensitivity for all SVT classes: AVNRT (91.7% vs 65.85%),
AVRT (78.4% vs 63.6%), and AT (61.5% vs 50.0%)
(Table 3, asterisks).

CNN performance was then calculated for strata of long
and short RP SVT tachycardia in the test dataset (Table 4).
Such stratification is informative because long RP tachycar-
dias are typically more challenging to identify and have fewer
12-lead ECG characteristics by which to discern the respec-
tive mechanisms. Due to the small sample sizes in respective
substrata, AVRT in long RP strata and AT in short RP strata
are excluded from stratified analysis. CNN performance in
long RP tachycardia strata was lower compared with
Table 2, though it remained moderately strong. CNN perfor-
mance was similar for the short RP tachycardia strata
compared with the unstratified analysis.

Because long or short RP stratification decreased sample
sizes in substrata, as a sensitivity analysis we compared the
performance of the CNN vs cardiac electrophysiologists in
all available electrophysiologist adjudicated data of 200
SVT examples (including all 110 in the test dataset).
The CNN threshold was fixed at the average specificity of
the cardiac electrophysiologists allowing comparison of
sensitivity among strata of long and short RP tachycardia
(Table 5). At those specificities, the sensitivities of the
Table 3 Performance of the experienced cardiac electrophysiologists vs
electrocardiogram in the test dataset

Experienced cardiac electrophysiologists (

Sensitivity Specificity PPV

AVNRT Adjudicator 1 75 64.0 73.8
Adjudicator 2 56.7 56.0 77.3
Average 65.9* 60.0† 75.6

AVRT Adjudicator 1 62.2 74.0 63.9
Adjudicator 2 64.9 52.1 50.0
Average 63.6* 63.05† 57.0

AT Adjudicator 1 69.2 70.1 81.8
Adjudicator 2 30.8 59.8 50
Average 50.0* 65.0† 66

AT 5 atrial tachycardia; AVNRT 5 atrioventricular nodal re-entrant tachycardi
neural network; NPV 5 negative predictive value; PPV 5 positive predictive value
*The average electrophysiologist sensitivity and the CNN sensitivity, at the fixed s
†The average electrophysiologist specificity and the CNN specificity approximately
CNN were higher for both long RP tachycardia (AVNRT
and AT) and short RP tachycardia (AVNRT and AVRT)
compared with the electrophysiologists. It is notable that
CNN performance demonstrated relatively high specificity
in both AVNRT and AT long RP strata, which is clinically
difficult to identify.
Discussion
This work demonstrates that CNN analysis of surface ECGs
achieves strong overall performance (AUC.0.8) to discrim-
inate all 3 SVTmechanisms against the gold standard of elec-
trophysiology study and catheter ablation, achieving similar
performance using surface 12-lead ECG to experienced car-
diac electrophysiologists but in an automated manner. At
fixed specificities approximately similar to experienced elec-
trophysiologists, the CNN exhibited higher sensitivity for
AVNRT, AVRT, and AT. At the CNN thresholds used, the
CNN had higher NPV and lower PPV compared with average
physician performance. These results demonstrate that SVT
subclasses can be distinguished using readily available sur-
face 12-lead ECGs analyzed by a CNN artificial intelligence
algorithm, achieving comparable performance to expert elec-
trophysiology physicians and offering a potential comple-
ment to existing clinical paradigms to discern underlying
SVT mechanisms.

SVTs denote tachyarrhythmias that originate from supra-
ventricular tissue (AVNRT or AT) or require it to be a part of
a re-entrant AV circuit (AVRT). AVNRT tends to be the pre-
dominant SVT mechanism (56%), followed by AVRT (27%)
and then AT (17%).3 Noninvasive differentiation of the un-
derlying SVT mechanism using surface 12-lead ECG is an
important clinical task, with the potential to assist in coun-
seling and determining the procedural complication risk
and facilitate the electrophysiology study planning and abla-
tion strategy, and may reduce the procedure duration as well
as radiation time. Current clinical paradigms that aim to
ascertain SVT mechanism by 12-lead ECGs emphasize the
importance of both the morphology and relationship of the
CNN to identify supraventricular tachycardia mechanisms by 12-lead

%) CNN (%)

NPV Sensitivity Specificity PPV NPV F1

68.1 91.7* 60.1† 46.6 95.0 61.8
50.0
59.1
75.0 78.4* 63.5† 30.5 93.5 44.0
73.1
74.1
70.1 61.5* 65.4† 10.1 96.4 17.4
63.0
66.6

a; AVRT 5 atrioventricular reciprocating tachycardia; CNN 5 convolutional
.
pecificity.
fixed to this value for each class.
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P-wave to the QRS during tachycardia. However, most
studies restrict the analysis to short RP tachycardia alone,
and few presently available approaches allow comprehensive
differentiation of SVT mechanisms across both long and
short RP tachycardias.4–12 Previous studies proposed
algorithms that have been shown to diagnose
approximately 70% to 90% of cases of AVRT and AVNRT
in settings of short RP tachcyardia.4–12 Because long RP
tachycardias are difficult to characterize using standard
clinical approaches with surface 12-lead ECG alone, they
often require a comprehensive and invasive cardiac electro-
physiologic study to confirm the underlying mechanism,
which informs the type of ablation required. The present
study demonstrates real-world application of a CNN artificial
intelligence algorithm to adjudicate all cases of SVT forms,
including in long RP tachycardia using surface 12-lead
ECGs.
Clinical benefit of utilizing the CNN for 12-lead
ECGs
Due to its reproducibility, widespread availability, and low
cost, the surface 12-lead ECG is very well positioned to assist
with providing a noninvasive SVT diagnosis. According to
the current clinical paradigm, SVTs are divided into short
RP tachycardias in which the P-wave is situated before the
half way point of the RR interval. This configuration can
be further divided into those with typical AVNRT and
AVRT supported by retrograde conduction over a robust
accessory pathway. Several studies have evaluated the value
of the 12-lead ECG parameters for the differentiation of those
2 mechanisms, for example, the presence of pseudo r’ waves
in V1, or pseudo s waves in the inferior leads4–8 and notches
in the aVL lead9 favor the diagnosis of typical AVNRT,
while visible retrograde P waves or an RP interval of .100
ms,4–8 QRS alternans,4,6,8,10 marked repolarization
change,5,11 and ST-segment elevation in aVR12 favor the
diagnosis of AVRT. They demonstrated that those algo-
rithms were able to accurately diagnose approximately 70%
to 90% of cases of AVRT and AVNRT, which were compat-
ible with our adjudication results in the short RP tachycardia
subset (Table 5).4–12 However, from a practical standpoint,
the important limitation of those studies was that the results
were not representative of all cases of SVT. For example,
in the latter analysis of the SVT mechanism, the so-called
long RP tachycardias as well as those with bundle branch
block during tachycardia are likely to be more challenging
to discern the mechanisms, and were not included in the eval-
uation. The long RP tachycardias raise the possibility of AT,
atypical AVNRT, or AVRT using a decremental accessory
pathway, making ECG characterization difficult.

Our results demonstrate that CNN analysis of 12-lead
ECGs may help to augment clinical assessment for AVNRT
and AVRT SVT mechanisms, wherein the CNN outper-
formed electrophysiology experts, and also for AT, which
showed high specificity, though sensitivity was lower.
Overall, the CNN’s high specificities even among long RP



Table 5 Performance of the experienced cardiac electrophysiologists vs CNN among subsets of long RP and short RP tachycardia

Experienced cardiac electrophysiologists (%) CNN (%)

Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV F1

Long RP tachycardia rowhead
AVNRT 25.9 78.1 30.4 74.0 100 78.1 8.5 100 15.7
AT 54.9 75.9 84.8 40.7 100 75.0 15.8 100 27.3
Short RP tachycardia rowhead
AVNRT 74.5 74.5 83.3 63.1 91.5 75.3 53.1 96.7 67.2
AVRT 72.3 76.4 64.2 82.6 91.4 76.5 45.1 97.7 60.4

Due to the very small sample size in respective substrata, AVRT in long RP tachycardia strata and AT in short RP tachycardia strata were excluded from the
analysis.

AT 5 atrial tachycardia; AVNRT 5 atrioventricular nodal re-entrant tachycardia; AVRT 5 atrioventricular reciprocating tachycardia; CNN 5 convolutional
neural network; NPV 5 negative predictive value; PPV 5 positive predictive value.
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tachycardia across all SVT mechanisms may help clinicians
to rule out cases with low pretest probability for specific
SVT mechanisms.
Future directions for developing CNNs
This study is the first to our knowledge to demonstrate strong
CNN performance for SVT mechanism as adjudicated by a
gold-standard electrophysiology study, and it corroborates
recent studies supporting strong CNN performance for
various ECG-based diagnoses. Our CNN algorithm provides
clinically relevant future directions to improve the perfor-
mance of CNNs for SVT diagnoses using a 12-lead ECG
alone. First, because CNNs incrementally improve as more
training data are made available,31,32 greater amounts of
training data (ideally similarly adjudicated by gold-standard
electrophysiology studies) would likely improve CNN per-
formance for all 3 SVT mechanisms and possibly allow
expansion to other tachyarrhythmic mechanisms to achieve
the fullest potential of CNN-augmented ECG diagnosis.
For example, recent work from Luongo and colleagues14

demonstrated that a machine learning classifier relying only
on noninvasive signals allowed identifying the origin of atrial
flutter. Second, a well-trained CNN has the ability to identify
novel ECG associations beyond what electrophysiology doc-
tors can perform with ECGs,15,17–19 raising the possibility of
expanding the diagnostic utility of ECGs beyond their
present scope. Ultimately, ECG analysis systems that
consistently achieve expert-level performance may poten-
tially allow for changing the clinical workflow, either by
providing accurate triage and screening for certain diagnoses
or by providing real-time feedback to clinicians reading
ECGs in the electrophysiology lab or inpatient or outpatient
clinics.
Limitations
Several limitations are evident in this study. We did not
perform an external validation, raising the possibility of a
lower CNN performance with data from another institution
on account of overfitting or the systematic differences in
ECGs. Also, the adjudication results from the 2 electrophys-
iologists display variability, reflecting the real-world
difficulties in precisely diagnosing SVT mechanisms using
12-lead ECG alone even among experienced electrophysi-
ology clinicians. A relatively large number of patients had
to be excluded for lack of induction of sustained arrhythmia
or technical problems as well as for having rare arrhythmias
that were felt to be important to remove confounders only
applicable to a very small part of the SVT population. For
example, the clinical finding of SVT with 2:1 AV block
allows for ready exclusion of AVRT as an etiology. We
thus excluded 2:1 AV block SVT from our population in or-
der to allow for facile comparison between clinicians and the
CNN, making the intended use of our SVT algorithm limited
to those with 1:1 AV conduction. Training any algorithm on
lower-prevalence diseases, such as AT here, presents chal-
lenges for training and evaluation, as low prevalence affects
F1 score and PPV, making it challenging to compare between
classes with variable prevalence. Future work may aim to
improve this by increasing the dataset size for the rare classes,
such as through cross-institutional collaborations. Therefore,
larger datasets are required to train deep learning–based algo-
rithms across the full range of SVT diagnoses. In addition,
because stratification by long or short RP tachycardia
decreased sample size, we opted to present results of our
sensitivity analysis comparing the CNNwith the electrophys-
iologists in these strata using all available adjudicated exam-
ples. The limitation in doing this is that the CNN performance
in this analysis (Table 5) may be overly optimistic because
some examples were drawn from patients in the training data-
set. However, Table 4 shows CNN performance alone in the
test dataset, and these results provide a foundation for future
work with larger patient cohorts of long RP tachycardia.
Conclusion
In this study, 12-lead surface ECG data were used to train a
CNN algorithm that achieved strong performance against
gold-standard electrophysiology study–derived diagnosis
and comparable performance to experienced cardiac



Higuchi et al SVT Identification by ECG With Neural Networks 499
electrophysiology doctors. Larger datasets may be required
to train deep learning–based algorithms across the full range
of SVT diagnoses.
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