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ABSTRACT OF THE DISSERTATION

Decoding the Genome of Disordered Materials

by

Qi Zhou

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2023

Professor Mathieu Bauchy, Chair

Despite their critical role in various technological applications (e.g., optical fibers, display

application, nuclear waste immobilization, etc.), the atomic structure of silicate glasses re-

mains only partially understood. This is largely since, although conventional experiments

(e.g., nuclear magnetic resonance, neutron or X-ray diffraction, etc.) offer useful “finger-

prints” of the glass structure (e.g., pair distribution function, coordination numbers, etc.),

they do not provide direct access to the atomic structure itself (i.e., the cartesian positions

of the atoms). Indeed, although experimental data offer important constraints on the glass

structure, these constraints cannot uniquely define the structure itself. For instance, a vir-

tually infinite number of very different structures can present the same pair distribution

function.

Atomistic simulations can offer direct access to the atomic structure of glasses, which

is otherwise invisible from conventional experiments. However, molecular dynamics (MD)

simulations of glasses based on the melt quenching technique remain plagued by the use

of high cooling rates, while reverse Monte Carlo (RMC) modeling can yield non-unique

solutions. Here, we adopt the force-enhanced atomic refinement (FEAR) method to overcome
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these limitations and decipher the atomic structure of a sodium silicate glass. We show that

FEAR offers an unprecedented description of the atomic structure of sodium silicate, wherein

the simulated configuration simultaneously exhibits enhanced agreement with experimental

diffraction data and higher energetic stability as compared to those generated by MD or

RMC. This result allows us to reveal new insights into the atomic structure of sodium silicate

glasses. Specifically, we show that sodium silicate glasses exhibit a more ordered medium-

range order structure than previously suggested by MD simulations. These results pave the

way toward an increased ability to accurately describe the atomic structure of glasses.

Upon a change in temperature, non-crystalline solids exhibit some variation in their vol-

ume—which is captured by their coefficient of thermal expansion. In that regard, glassy

silica—an archetypical oxide glass—exhibits an anomalously low bulk thermal expansion,

which is more than an order of magnitude lower than the thermal expansion of the inter-

atomic bonds within its atomic network. Here, by combining in-situ neutron diffraction

experiments and force-enhanced atomic refinement simulations, we investigate the effect of

temperature on the atomic structure of glassy silica at various scales. We reveal that the low

thermal expansion of glassy silica is governed by a compaction of the shape of the silicate

rings in the medium-range order, which counterbalances the interatomic expansion in the

short-range order.

On the other hand, Silicate glasses have no long-range order and exhibit a short-range

order that is often fairly like that of their crystalline counterparts. Hence, the out-of-

equilibrium nature of glasses is largely encoded in their medium-range order. However, the

ring size distribution—the key feature of silicate glasses’ medium-range structure—remains

invisible to conventional experiments and, hence, is largely unknown. Here, by combining

neutron diffraction experiments and force-enhanced atomic refinement simulations for two

archetypical silicate glasses, we show that rings of different sizes exhibit a distinct contribu-

tion to the first sharp diffraction peak in the structure factor. Based on these results, we

demonstrate that the ring size distribution of silicate glasses can be determined solely from
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neutron diffraction patterns, by analyzing the shape of the first sharp diffraction peak. This

method makes it possible to uncover the nature of silicate glasses’ medium-range order.

Overall, FEAR refinement yields a silicate glass structure that simultaneously exhibits

enhanced agreement with diffraction data and higher energetic stability as compared to

configurations generated by MD, RMC, or HRMC. As such, FEAR offers an unprecedented

description of the atomic structure of sodium silicate glasses. We find that the enhanced

thermodynamic stability offered by FEAR primarily finds its roots in the Qn and ring size

distributions of the network. Our findings thus suggest that the structure of silicate glasses

is more ordered, less random than previously suggested by MD simulations. Overall, this

study establishes FEAR as a promising tool to explore the complex, largely hidden atomic

structure of disordered solids.
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especially in low-Q region (Q ≤ 4Å−1) as shown in panels (a-II) and (b-II). . . . 45

4.2 King’s, Guttman’s, and primitive ring size distributions in (a) silica and (b)

Jade® glasses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Guttman’s ring size distribution (I), reduced pair distribution function Gn(r)

of individual (II) and grouped (III) rings computed from the FEAR simulations.

Note the individual pair distribution functions are associated with fixed ring sizes

n (with n = 3-to-7), while grouped pair distribution functions are associated with

groups of rings (i.e., ≤ 4-, 5 and ≥ 6-membered rings, as defined in the RingFSDP

method). They are compared to the experimental neutron data (black dot curve). 50

4.4 Individual reduced structure factor Fn(Q) associated with individual ring size for

(a) silica and (b) Jade glasses computed from the FEAR-based glass structures.

All four panels adopt the same color scheme for different n-membered rings with

the legend shown in panels (a-II) and (b-II). In the whole range panels of FS

(a-I) and Jade (b-I), resemblances are shown for the same high-Q peaks (Q > 4
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CHAPTER 1

Introduction

The physical properties of materials are determined by their atomic structure. By relating

the experimental data with the structure, we could understand the properties of certain

structures1. However, the desired information is not easy to obtain because for glass, cemen-

titious materials and liquid, structural disorder leads to complexity. To facilitate progress

at a large scale and exploit the unique properties that these materials may offer, the under-

standing of atomic-level structure is necessary, and the boundaries of amorphous material

engineering technology has to be pushed forward2–5.

As one of the most vital and influential materials, glass becomes essential to our daily

life1. Throughout the history, the understanding for glass was mostly empirical. Recent

years, theoretical and experimental advances help us built a more rigorous scientific prin-

ciples on glass science. On the other hand, applications of glass become more and more

impactful. Modern high-tech glasses like electrochromic windows can improve energy effi-

ciency for applications in transportation. Strengthened glasses with high chemical durability

have been critical for healthcare applications such as pharmaceutical packaging. These ad-

vancements not only offer a remarkable level of understanding but also contribute to the

atomic level design of novel functional glasses. Atomic-level descriptions of the glassy state

are complex due to the lack of long-range order that we found in crystalline materials 6.

Since there are infinite combinations of compositions can give us successful glass formation,

nearly every element of the periodic table can be incorporated into a glass. it is difficult to

understand all the possible structures. Our understanding of glass structure and properties
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is also blocked due to the non-equilibrium thermodynamic state of glass. Glass is continually

relaxing from this non-equilibrium state toward a metastable or stable liquid phase. Such

transition and relaxation effects play an essential role in determining the property evolution

of all glass compositions. Despite of the grand progress in understanding glass transition

and relaxation phenomena, the structural origins for such relaxation modes in glass remain

unclear7.

Different from glass, crystalline solid is a material with atoms that are arranged in a highly

ordered microscopic structure. By forming a crystal lattice that extends in all directions,

crystal has a periodic arrangement, and through X-rays characterization, we can observe

the so called “Bragg diffraction”. These diffraction peaks are sharply defined and when we

analyze with a wave theory of the X-rays, lead to clear evidence of periodic order in the

crystalline state8. We can understand the full structure of the crystal by analyzing the

diffraction angles at which the peaks appeared and the wavelength of the X-rays. Here, the

X-ray structure factor of a single crystal consists of a sequence of sharp peaks. If cooled fast

enough, the crystallization of a liquid can be avoided, the system accesses the metastable

supercooled liquid state. In contrast with crystals, amorphous materials and liquids have

smooth peaks, thus provides less specific structure information5. This is due to the lack

of long-range order within the structure in amorphous state. Owing to this non-crystalline

structure, glass does not need to satisfy the same stoichiometric requirements as in crystal

chemistry. Yet it is obvious that there are some well-defined local structures on the nanometer

scale3,9. Often, such local structure is important for some physical properties. Since the

composition of glass can be continuously adjustable, the properties can also be change during

the relaxation, opening the possibilities for refined combinations of properties. This presents

a far more difficult problem of structural determination of amorphous solids that need new

tools.

As I mentioned above, one of the main problems of glass science is to relate its com-

plicated compositions and time dependence of glass properties. Recently, a popular and
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natural approach to address the problem is to apply the computer simulations, either with

conventional Molecular dynamics simulations or Monte Carlo method 4,9,10, along with the

suitable interatomic potentials. Classical molecular dynamics have proved to be a useful tool

in studying the properties of amorphous materials like silicate glasses, which are not always

easily accessible from experiments. Silica-based glasses have great importance in various

technological fields11–15. With the combination of advanced techniques like X-ray absorp-

tion fine structure, neutron diffraction, and molecular dynamics simulations, we can reveal

the structural features of certain glass compositions. Since MD simulations can provide some

valuable details about the atomic mechanism which cannot be observed with experiments,

we investigate the early-age precipitation of an amorphous calcium carbonate gel. Calcium

carbonate is ubiquitous in nature and plays an important role in biomineralization, it is a

common binding phase formed by organisms that produce an exoskeleton. Large amount

of carbon dioxide flows into the atmosphere and has becomes a hazard primarily due to

their greenhouse gas effect2,16,17. Thus, understanding the mechanism for precipitation of

calcium carbonate becomes the key for carbon dioxide utilization and provides a promising

route to turn carbon dioxide into a resource like concrete binders. Although the existence

of some stable prenucleation clusters has been suggested, the atomic scale mechanism of

calcium carbonate in aqueous condition remains largely unknown2,18,19. The precipitation

of amorphous calcium carbonate is barrierless in supersaturated calcium carbonate solutions

and does not follow conventional nucleation pathways Although MD simulations are limited

to small systems and timescales, they can offer us a direct access to the time-dependent

structure and properties of disordered materials based on an accurate forcefield. From the

molecular positions, the forces acting on each molecule are calculated, these are used to

advance the positions and velocities through as mall timestep, and then the procedure is

repeated.

However, one serious question regarding the reliability of MD simulations is that the

cooling rate used in simulations for glass is much higher than that typically achieved exper-
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imentally. We need more powerful tools to improve the ability to predict properties such

as mechanical strength, elastic constants, chemical durability, and conductivity in order to

meet some specific need or applications. Similar to silicate glass, the X-ray diffraction pat-

tern from Calcium–silicate–hydrates (C¬–S–H) have shown to exhibit only a few broad and

weak diffraction maxima, it has been described as an amorphous material20–22. C–S–H

is the main hydration product in cementitious systems, and it is the binding phase in the

paste. Thus, it is important to understand the structure to control its strength, durability

and creep properties. Such understanding requires an accurate description of the atomic

structure of C–S–H, which is presently lacking. In contrast with the X-ray pattern, most

experimental studies suggest that its structure is close to the one of tobermorite despite of

different compositions. Previous studies have proven that C–S–H has a structure closer to

the one of a glass than to the one of a crystal.

Alternatively, non-physics-based modeling approaches have been proposed to refine the

atomic structure of disordered materials based on experimental data only. The most popular

approach is the Reverse Monte Carlo (RMC) method. We can invert the diffraction data

by “Reverse Monte Carlo” (RMC) 23or other methods without applying any interatomic

potential but relies on information only. RMC modelling is a general method of structural

modeling based on experimental data. Many different types of data and systems can be

modelled. It is a variation of the standard Metropolis Monte Carlo (MMC) method. By

producing a structural model that is consistent with one or several sets of experimental

data and also a set of constraints like force or potential energy. To this end, diffraction

data are commonly used as they offer a description of the short- and medium-range order

atomic structure of disordered materials. Despite its wide use, the RMC methods comes

with some serious limitations and often fails to predict a realistic atomic structure for non-

crystalline solids. This comes from the fact that a virtually infinite number of distinct atomic

structure can yield the same PDF—so that obtaining a good agreement between simulated

and experimental PDF is not sufficient to ensure that the structure is realistic24. Here, the
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experimental data provide incomplete information about the correlations between atoms.

The atomics coordinates in the simulated model are of themselves of no direct interest. We

want to make sure the models are useful. That is to say, RMC modelling is a method of

structural modelling, we need the models help us understand some important aspect of the

materials, like the relationship between structure and some physical properties. Afterall, it

is important to have models that are both quantitatively predictive and broadly applicable

across the large range of possible compositions. Here, we adopt (and optimize) an atomic

structure refinement method recently proposed by Drabold et al.25, called force-enhanced

atomic refinement (FEAR). This new method consists in combining RMC (to ensure that

the simulated structure matches with experimental data) with some energy minimization

(to ensure that the simulated system is as energetically stable as possible). In details, the

initial structure is first optimized by RMC. The resulting structure is then subjected to an

energy minimization (EM, using the conjugate gradient method) to ensure the stability of

the system. Here, we refine the original FEAR method by optimizing the enthalpy rather

than the potential energy, that is, by allowing the system to adjust its volume and shape to

release the presence of stress, if any. The RMC and RM steps are then iteratively repeated

until convergence is obtained. The different steps of this refinement method are summarized

in Figure below. Unlike alternative hybrid approaches—wherein structure and energy are

optimized simultaneously—the interatomic forces are here only computed during the EM

steps, which results in an improved computational efficiency. In addition, the present method

does not rely on any assumption regarding the weight attributed to structure and energy

during the optimization.
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Figure 1.1: A schematic diagram of the atomic structure refinement method used herein.
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CHAPTER 2

Revealing the Medium-Range Structure of Glassy

Silica using Force-Enhanced Atomic Refinement

Despite the ubiquity and technological importance of silicate glasses 26–29, their atomic

structure remains only partially understood 30. In that regard, even the structure of pure

glassy silica (SiO2) remains subject to debate 31. The short-range order base structure of

SiO2 is well understood, with SiO4 tetrahedral units that are interconnected via bridging-

oxygen atoms 32. At larger distances, the SiO4 polytopes form some closed-loop rings, which

largely dictates silica’s medium-range order 10,33. However, even basic features of silica’s

medium-range order (e.g., ring size distribution) remain debated 34,35.

This lack of knowledge regarding the atomic structure of glassy silica—especially at the

medium-range order—partially arises from the lack of experimental techniques that can

directly probe the atomic structure of silicate glasses 36, although recent developments offer

exciting perspectives in that regard 37. Indeed, even though conventional experiments can

offer useful “fingerprints” of the glass structure, they often do not provide a direct access

to the atomic structure itself 38. For instance, diffraction experiments offer some signatures

of the medium-range order of silicate glasses, e.g., as captured by the first-sharp diffraction

peak (FSDP) 39–41. Although this information places some constraints on the nature of the

medium-range order, it does not directly reveal the medium-range order structure itself—e.g.,

it does not provide a direct access to the ring size distribution 42.

As an alternative route to experiments, atomistic simulations offer a direct and full access

to the atomic structure of glasses 14,43,44 and, hence, can reveal some atomic details that
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are invisible to conventional experiments 14,31,45. However, atomistic simulations come

with their own challenges and limitations 46,47. On the one hand, molecular dynamics

(MD) simulations solely rely on the knowledge of the interatomic forcefield. Following the

melt-quench method, melts are equilibrated at high temperature to lose the memory of their

initial configuration and subsequently quenched to the glassy state with a high cooling rate

13,44,48. Although this melt-quenching approach roughly mimics the experimental synthesis

protocol of glasses, MD simulations are limited to very large cooling rates (typically 102 to

10-2 K/ps) due to their computational cost 49. This is a serious limitation since, as out-of-

equilibrium materials, the structure and properties of glasses depend on their thermal history

13. In that regard, glasses simulated by MD using the conventional melt-quench approach

typically exhibit a larger fictive temperature than their experimental counterparts, which,

in turn, causes their structure to be unrealistically disordered (especially at the medium-

range order) 44,46,48,50–54. On the other hand, conventional reverse Monte Carlo (RMC)

simulations solely rely on the knowledge of some experimental constraints (e.g., experimental

pair distribution function) 23,24,55. As a key advantage, RMC simulations can yield glasses

structures that are compatible with such constraints while bypassing the melt-quenching

route, thereby avoiding the issue of the cooling rate 56–59. However, a RMC simulation

remains an ill-defined problem, since, for instance, numerous atomic structures can exhibit

the same pair distribution function 60. As such, glass structures that are generated by

RMC typically exhibit an excellent agreement with the experimental data that are used as

constraints during the refinement, but may nevertheless be fairly unrealistic (e.g., showing

extremely high potential energy) 61. Overall, these challenges limit the ability of atomistic

simulations to provide fully trustable atomic structures for silicate glasses.

To address this challenge, Drabold et al. recently introduced a new atomic refinement

approach that seamlessly combine the knowledge of (i) the interatomic forcefield (which is

typically used by MD simulations) and (ii) experimental constraints (which are typically used

by RMC simulations) 25. In detail, Drabold‘s force-enhanced atomic refinement (FEAR)
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method relies on an iterative combination of sequential RMC refinements and energy min-

imizations 25,38,61,62. Unlike hybrid RMC approaches—which simultaneously refine the

experimental constraints and minimize the energy through a single, unified cost optimiza-

tion function accounting for both experimental constraints and energy—FEAR does not

rely on any arbitrary choices regarding the weights attributed to energy and experimental

constraints. The fact that the energy of the system is only computed during the energy

minimizations steps (rather than at every step in hybrid RMC approaches) also results in

enhanced overall computational efficiency 25.

Recently, we demonstrated that FEAR yields an atomic structure for a sodium silicate

glass that is more realistic than that offered by MD or RMC 61. In this contribution, we

extend this approach to the archetypical case of glassy silica. Indeed, despite its apparent

simplicity as compared to modified silicate glasses like sodium silicate, glassy silica comes

with unique challenges. In particular, the structure and properties of silica have been shown

to be more affected by the cooling rate than those of sodium silicate 63. Here, we show that

the SiO2 structure generated by FEAR simultaneously (i) exhibits an excellent agreement

with experimental data and (ii) is more energetically stable than those obtained by MD

or RMC simulations. This allows us to investigate the nature of the medium-range order

structure in glassy silica.

2.1 Method

In the following, we compare the ability of MD, RMC, and FEAR to offer a realistic

description of the atomic structure of glassy silica, which is an archetypical model glass

and offers a structural basis for more complex modified silicate glasses. The simulated

system comprises 3000 atoms. For this system, we adopt the Beest–Kramer–Santen (BKS)

forcefield 64, which has been extensively used to investigate the structure, dynamics, and

thermodynamics of silica 44,48,63. In line with previous studies, we use a cutoff of 5.5 Å and

10.0 Å for the short-range and long-range Coulombic interactions, respectively 48,65. The

long-range Coulombic interactions are evaluated with the Particle-Particle Particle Mesh
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(PPPM) algorithm 66 with an accuracy of 10-5—wherein the PPPM approach relies on the

particle mesh method, which consists of interpolating the particles onto a three-dimensional

grid for improved computational efficiency.

In order to further assess whether or not the outcome of the FEAR method depends on

the choice of the interatomic potential (i.e., BKS) used during the energy minimizations, we

repeat the FEAR simulations while using selected alternative forcefields, namely, the inter-

atomic potentials from Guillot-Sator 67 and Pedone et al. 68 et al. We select these potentials

as, although they all present a two-body formulation, they rely on different analytical forms,

different parameterizations, and different partial charges (i.e., the charges attributed to Si

and O atoms). Note that, to ensure consistency, all the other simulation parameters are kept

identical. All simulations are carried out using the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) package 69

2.2 Melt-quenching simulations by molecular dynamics (MD)

To establish benchmark silica structures that can be compared with that generated by

FEAR, we first prepare a series of glassy silica structures by melt-quenching using MD simu-

lations, as detailed in the following. An initial silica configuration is first created by randomly

placing the atoms in a cubic box while ensuring the absence of any unrealistic overlap. The

system is then melted at 5000 K under zero pressure in the isothermal-isobaric (NPT) en-

semble for 100 ps to ensure the complete loss of the memory of the initial configuration. The

melt is then linearly cooled down to 300 K under zero pressure in the NPT ensemble with

varying cooling rates ranging from 102 down to 10–2 K/ps. For all simulations, we adopt

the Nosé–Hoover thermostat and a fixed timestep of 1 fs 70.

2.3 Reverse Monte Carlo (RMC) simulations

As a second benchmark, we then use experimental neutron diffraction data 71 to create

a glassy silica structure by RMC simulation 23,55, as implemented through an in-house fix

in LAMMPS. This method iteratively refines the position of the atoms in a simulation box

until the glass exhibits a structure that matches target experimental data—here, we use the
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neutron pair distribution function (PDF) sourced from Ref. 71 as experimental constraint.

To compare the simulated structure with neutron diffraction data, we first calculate the

neutron PDF gN(r) of the simulated structures by combining the partial PDFs gij(r) as:

gN(r) =
1∑n

i,j=1 cicjbibj

n∑
i,j=1

cicjbibjgij(r) (2.1)

where ci are the molar fractions of element i (i = Si or O), bi are the neutron scattering

lengths of the species 72 (equal to 4.1491 and 5.803 fm for Si and O atoms, respectively),

and r is the real-space distance. Note that, to ensure a meaningful comparison between

simulated and experimental PDFs, the simulated PDFs need to be broadened 73. Here, this

is achieved by convoluting the computed PDFs with a normalized Gaussian distribution with

a full width at half-maximum (FWHM) given by FWHM = 5.16/Qmax 13, where Qmax is

the maximum wave vector used in the diffraction test (here, Qmax = 50 Å-1). The level of

agreement between the simulated and experimental PDFs is then captured by the Rχ factor

proposed by Wright (which is here calculated over r = 0-to-10 Å) 73:

R2
χ =

∑
i

[gexp(ri)− gsim(ri)]
2/

∑
i

[gexp(ri)]
2 (2.2)

The RMC method is used to “invert” the experimental neutron pair distribution into a three-

dimensional atomic structure. This method includes the following steps. (i) Starting from

an initial random structure (identical to that used for the MD simulation), we first calculate

the pair distribution function of the simulated structure and the Wright’s coefficient Rold
χ (see

Eq. 2). (ii) An atom is randomly selected and then displaced with a random direction and

distance. (iii) The pair distribution function of the new configuration and the new coefficient

Rnew
χ are calculated. (iv) Following the Metropolis algorithm, the new configuration is ac-

cepted if Rnew
χ ≤ Rold

χ , that is, if the level of agreement between simulated and experimental

structure is improved by the Monte Carlo move. If not, the atomic displacement is accepted
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with a certain probability P shown below or refused otherwise:

P = exp[−
Rnew2

χ −Rold2
χ

Tχ

] (2.3)

where Tχ plays the role of a (unitless) “effective temperature” that controls the probability

of acceptance (that is, higher values of Tχ result in higher probability of acceptance of

the Monte Carlo moves). Here, the term
Rnew2

χ −Rold2
χ

Tχ
is equivalent to the quantity (Unew −

U old)⁄kT in the conventional energy-based Metropolis algorithm, where U is the energy

of the system—wherein, here, the Wright’s coefficient Rχ plays the role of an “effective

energy.” Here, we use Tχ = 0.01, which is found herein to result in the lowest final Rχ

value upon convergence. Atomic displacements and directions are randomly chosen, with a

uniform displacement probability distribution between 0 and 0.2 Å. The simulation box size

is kept fixed throughout the simulation, with a length of 35.248 Å, so that density is fixed

according to the experimental value of 2.20 g/cm3. A total number of 140,000 RMC moves

are attempted until convergence.

2.4 Force-enhancement atomic refinement (FEAR) simulation

Finally, we assess the ability of the FEAR refinement method to offer an improved de-

scription of the atomic structure of glassy silica as compared to those generated by MD or

RMC. To this end, we adopt the FEAR methodology introduced by Drabold et al.25, which

is here implemented via an in-house fix in LAMMPS. It should be noted that there exist some

RMC-based approaches that are more elaborated than the one used herein. For instance, the

hybrid reverse Monte Carlo approach (HRMC) consists in explicitly adding the computed

potential energy of the system as an additional contribution in the RMC cost function to

be minimized56,57. Although such advanced approaches can likely offer accuracies that are

competitive with that offered by FEAR 61, FEAR presents two key advantages: (i) it is more

computationally efficient since the energy does not need to computed at every RMC step and

(ii) it does not rely on any assumption regarding the weights associated with the structural
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and energy terms in the cost function.To ensure a meaningful comparison between FEAR,

RMC, and MD, all simulated systems have the same size, and all simulation parameters are

kept identical (e.g., forcefield, cutoff, etc.). In detail, we first start from a “randomized”

structure generated by RMC while using a very high effective temperature, namely, Tχ =

5000. Following the original implementation of the FEAR method, the system is then it-

eratively subjected to a combination of RMC refinements and energy minimization steps,

wherein each FEAR iteration consists of (i) 3000 RMC steps and (ii) an energy minimiza-

tion (conducted with the conjugated gradient method). We find that 20 of such iterations

are sufficient to achieve a convergence of potential energy and Rχ for glassy silica. During

the refinement, we dynamically adjust the average acceptance probability of the Metropolis

algorithm by linearly decreasing the effective temperature Tχ from 103 down to 10−4 during

the course of the FEAR refinement. These parameters are found to yield a glass structure

exhibiting minimum Rχ and potential energy values.

2.5 Short-range order structural analysis

We analyze the short-range order radial environment around each atom by computing

the partial PDFs. In addition, we explore the short-range angular environment of the atoms

by computing the partial bond angle distribution (PBAD) using the RINGS package 74.

Specifically, we focus on the O–Si–O and Si–O–Si PBADs, which characterize the intra- and

inter-polytope angular structure of the SiO4 tetrahedral units, respectively. The distance

cutoff used to define the Si–O bonds is chosen as the position of the first minimum after the

first peak of the partial Si–O PDF (1.90 Å).

2.6 Medium-range order structural analysis

To further explore the structure of glassy silica over intermediate length scales, we cal-

culate the partial structure factors Sij(Q) from the Fourier transform of the partial PDFs:

Sij(Q) = 1 + ρ0

∫ R

0

4πr2(gij(r)− 1)
sin (Qr)

Qr
dr (2.4)
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where Q is the scattering vector, ρ0 is the average atomic number density, and R is the

integration cutoff (half of the simulation box length). The total neutron structure factor is

then evaluated by combining the partial structure factors as follows:

SN(Q) = (
n∑

i,j=1

cicjbibj)
−1

n∑
i,j=1

cicjbibjSij(Q) (2.5)

To further magnify high-Q fluctuations in the structure factor, we then calculate the reduced

structure factor:

F (Q) = Q[S(Q)− 1] (2.6)

Finally, to further explore the medium-range order structure of glassy silica, we compute

the ring size distribution of each simulated system by using the RINGS package 74, wherein

rings are defined as the shortest closed paths within the glassy silica network. The size of

a ring is here defined in terms of the number of Si atoms it comprises. Here, we use the

Guttman definition for the calculation 75. This definition was chosen as it yields, on average,

the expected value of 6 rings per Si atom 42,51. We adopt a maximum ring size of 7, since

no larger rings are found in the simulated structures (with the Guttman criterion).

3. Results

3.1 Evolution of structure upon force-enhanced atomic refinement

Figure 1 shows selected snapshots of the atomic structure of the simulated silica glass

upon FEAR refinement. Si–O bonds (i.e., when the distance between a Si/O pair of atoms

is lower than the 1.9 Å cutoff) are shown as edges in the snapshots. We observe that, the

degree of connectivity (i.e., the number of Si–O bonds) increases during refinement.

Figure 2a shows the neutron PDF of the three structures shown in Fig. 1, that is, after

different increasing numbers of FEAR refinement steps. The computed PDFs exhibit all

the typical features that are expected for an SiO2 glass, namely, (i) a first peak around

1.6 Å that corresponds to Si–O correlations, (ii) a second peak around 2.7 Å associated to

O–O correlations, and (iii) a plateau toward 1 at long r-distance, which is indicative of the
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(a) (b) (c)

Figure 2.1: Snapshots of the simulated glassy silica structures obtained after (a) 1, (b) 10,
and (b) 20 iterations of force-enhanced atomic refinement (FEAR). Si–O bonds (i.e., when
the distance between a Si/O pair of atoms is lower than the 1.9 Å cutoff) are shown as edges.

absence of any long-range order. Overall, all these PDFs show a fair agreement with available

experimental neutron diffraction data 71 in terms of the positions of the first and second

peaks. This indicates that, even at early stage of the FEAR refinement, the simulated

structures exhibit a realistic description of the interatomic distances in SiO4 tetrahedra.

Nevertheless, we observe that, initially, the peaks of the computed PDF are notably broader

than those of the experimental PDF. This indicates that, initially, the simulated structure

is unrealistically disordered. Upon FEAR refinement, we observe that the shape of the first

peak becomes reasonably well described (in terms of position, intensity, and width) after

about 10 FEAR iterations, whereas the second peak becomes well reproduced after about 15

FEAR iterations. This suggests that the short-range order (i.e., low-distance correlations)

is refined faster than the medium-range order (i.e., intermediate-distance correlations). This

can be understood from the fact that refining the short-range order only involves some slight

displacements of the neighbors of each atom, which only requires small energy barriers to

be overcome. In contrast, refining the medium-range order requires some collective atomic

displacements, including the breakage and formation of interatomic bonds, which requires

hopping over higher energy barriers.
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(a) (b)

Figure 2.2: (a) Neutron pair distribution functions (PDFs) of the glassy silica structures
formed by force-enhanced atomic refinement (FEAR) that are shown in Fig. 1. (b) Neutron
PDFs of the final glassy silica structures generated by FEAR, molecular dynamics (MD,
using a standard cooling rate of 1 K/ps), and reverse Monte Carlo (RMC). All the PDFs
are compared with the same experimental neutron diffraction data 71.

After 20 FEAR iterations, we observe that the PDF of the final simulated configura-

tion shows an excellent agreement with experimental neutron data, both for the short and

medium-range length scales. As a measure of the level of agreement between simulations

and experiments, we find that, at the end of the refinement, the Wright factor Rχ reaches a

value of 5.2%. We note that this value is higher than the one that we previously obtained

upon FEAR refinement of a sodium silicate glass 61, which highlights the unique challenges

associated with the structure of glassy silica. Nevertheless, this final value is judged as sat-

isfactory since Rχ values that are lower than 10% are typically considered to be indicative

of a good agreement between simulations and experiments 73.

3.2. Comparison with molecular dynamics and reverse Monte Carlo

First, we compare the glass structure generated by FEAR with that offered by RMC.

Figure 3a shows the evolution of the Rχ factor of the glass structure upon RMC refinement.

We observe that the Rχ factor monotonically decreases and eventually reaches a final value of

4.2%, which is slightly lower than the value achieved by FEAR. This only indicates that RMC

yields a pair distribution function that is in very good agreement with experimental neutron
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diffraction data (see Fig. 2b). Such high level of agreement is not surprising since RMC

refinement solely aims to decrease Rχ (i.e., Rχ is the only cost function during refinement). It

is worth noting that, since they comprise energy minimization steps, FEAR simulations come

with an additional computational burden as compared to traditional RMC. However, since

the energy minimization is herein only performed every 3,000 RMC steps, the computational

cost of FEAR simulations remains fairly dominated by the RMC steps. In practice, for a

constant number of 20 (RMC or FEAR) iterations, a single simulation conducted on a single

core of an Intel Xeon E5-2600 V2 processor is found to require 75h27 and 72h10 for FEAR and

RMC, respectively—so that FEAR involves a 4.8% increase in computing cost. Nevertheless,

we note that RMC requires slightly more iterations than FEAR to converge. This suggests

that periodically minimizing the energy of the simulated structure (i.e., as done during FEAR

refinement) effectively accelerates the refinement, that is, it decreases the number of RMC

steps that are needed to achieve convergence—in line with previous findings.61 Overall, these

results highlight the computational efficiency of the FEAR approach.

Figure 2b shows the neutron PDF of the glass structure generated by the melt-quench MD

approach. We note that the PDF offered by MD only matches well with neutron diffraction

data at low distance (i.e., for the first peak in the PDF), which indicates that MD offers

a realistic description of the Si–O interatomic distance. Nevertheless, we find that, overall,

MD yields a notably decreased level of agreement with experimental neutron diffraction

data at larger distances (as compared to FEAR and RMC), which is illustrated by the larger

value of the Rχ factor (16.1%, see Fig. 3b). The discrepancy between the experimental and

MD-based PDFs mostly manifests itself in the second peak of the PDF, indicating that,

in contrast with FEAR and RMC, MD partially misrepresents second-neighbor (O–O and

Si–Si) correlations within the glass structure.

Next, we focus on the thermodynamic stability of the configuration generated by FEAR,

RMC, and MD. Figure 3b shows the evolution of the molar potential energy of the system

upon RMC refinement. Overall, we observe that RMC yields a potential energy that is
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significantly higher than that offered by the other simulation approaches. Specifically, the

molar potential energy of the structure generated by RMC is eventually about 360 kJ/mol

larger than that of the structure simulated by MD. This is not surprising since RMC does not

consider the interatomic energy of the system in its cost function. However, such high energy

exemplifies the fact that, although the PDF calculated from the glass structure generated by

RMC offers an excellent match with experimental neutron diffraction data, the configuration

yielded by RMC is thermodynamically unstable. This echoes the fact the PDF is not a very

discriminative metric to evaluate the soundness of a glass structure, that is, various structures

featuring very different energies can nevertheless feature similar PDFs. Overall, these results

indicate that, despite the apparent agreement with neutron diffraction data, RMC does not

yield a realistic structure for glassy silica.

In contrast, Fig. 3b shows that FEAR eventually yields a potential energy that is sig-

nificantly lower than that offered by both RMC and MD simulations. This is a key result

since it implies that, although FEAR and MD rely on the same interatomic forcefield, the

FEAR refinement scheme allows the simulated glass to reach more stable energy states. This

arises from the fact that, during MD-based melt-quenching, the simulated glass quickly gets

trapped within a given basin of the energy landscape as temperature decreases 76. The low

value of the thermal activation then prevents the glass from escaping for this basin—so that

the simulated glass retains a large fictive temperature (i.e., high-energy state). In contrast,

upon FEAR refinement, the RMC steps that are performed in between each energy mini-

mization tend to induce some slight structural perturbations that allow the simulated glass to

overcome some large energy barriers that would be inaccessible during the limited timescale

of MD simulations and, thereby, to reach deeper basins within the energy landscape. This

establishes FEAR as a powerful method to generate simulated glass structures that are more

stable than those created by MD. Overall, these results show that FEAR refinement can

produce glass structures that simultaneously feature an unprecedented level of agreement

with experimental neutron diffraction data and increased energetic stability.
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(a) (b)

Figure 2.3: (a) Wright’s coefficient R and (b) molar potential energy as a function of the
number of iterations of force-enhanced atomic refinement (FEAR) and reverse Monte Carlo
(RMC) refinement. Values obtained for a melt-quenched glass generated by molecular dy-
namics (MD) with a standard cooling rate of 1 K/ps are shown as horizontal dashed lines
for comparison.

It is insightful to compare the differences in Rχ and potential energy yielded by the

different simulation techniques considered herein with the level of variation that results from

the use of different cooling rates in melt-quench MD simulations. To this end, Fig. 4a

first shows the metric Rχ offered by MD simulations as a function of the cooling rate. As

expected, Rχ decreases upon decreasing cooling rate. This indicates that, as the cooling rate

decreases, the glass structure produced by MD gradually converges toward the experimental

neutron diffraction data. On the other hand, independently of the cooling rate, the Rχ

coefficient of the glass structures simulated by MD remains significantly higher than those

obtained by RMC and FEAR refinement. In agreement with previous results 61, we find

that the evolution of Rχ as a function of the cooling rate can be well described by a power

law function—in line with mode-coupling theory 77. Using as a reference the power law

relationship fitted based on the Rχ vs. cooling rate data obtained from MD (see Fig. 4a), we

find, by extrapolation, that a cooling rate of about 10 K/s (i.e., 10-11 K/ps, vs. 10-2 K/ps

for the longest MD simulation considered herein) would be needed for the MD simulation to

yield an Rχ coefficient that is comparable to that offered by FEAR. Although this cooling
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Figure 2.4: (a) Wright’s coefficient R and (b) molar potential energy of melt-quenched
glasses generated by molecular dynamics (MD) simulations as a function of the cooling rate.
The dashed lines are some power law fits to guide the eye. Values obtained for the glasses
generated by force-enhanced atomic refinement (FEAR) and reverse Monte Carlo (RMC)
are shown as horizontal lines for comparison.

rate echoes typical experimental values, it is completely out-of-reach from MD simulations.

These results highlight that the FEAR approach is able to generate atomic configurations

that are comparable to well-annealed glass structures formed using slow cooling rates.

Figure 4b presents the evolution of the molar potential energy of the MD-simulated

glasses as a function of the cooling rate. We observe that the potential energy decreases

upon decreasing cooling rate. As expected, this implies that, as the cooling rate decreases,

the system becomes more stable and be able to reach a deeper state within the energy

landscape 76. Notably, even at the highest cooling rate (100 K/ps), the energy of the glass

simulated by MD remains significantly lower than that of the RMC-based glass. This further

illustrates the unrealistic nature of the glass generated by RMC. In contrast, we find that

the energy of the glass generated by FEAR remains systematically lower than those of the

glasses simulated by MD, even in the case of the slowest cooling rate (0.01 K/ps). This

further confirms that FEAR yields a very stable glass structure that is associated with a low

fictive temperature.

3.3 Effect of force-enhanced refinement on the short-range structure
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In the following, we explore how the increased thermodynamic stability of the glass

generated by FEAR is encoded in its structure. We first focus on the short-range order

(<3.5 Å) structure. Figure 5 shows the Si–O, O–O, and Si–Si partial PDFs obtained by

MD, RMC, and FEAR. We first observe that the first peak in the Si–O and O–O partial

PDFs (around 1.6 and 2.6 Å, respectively) remains largely similar in the three simulated

glasses. This indicates that FEAR refinement does not notably affect the average Si–O and

O–O interatomic distances, which are already well predicted by MD and RMC (see Tab.

1). These average interatomic distances are in good agreement with available experimental

data 78. In contrast, we find that, when compared with the MD-based glass, the Si–Si peak

shifts toward higher distance upon FEAR refinement. This signals that, as compared to

MD, FEAR predicts a higher average Si–Si interatomic distance, which exhibits an excellent

match with experimental data (see Tab. 1) 78. Since the Si–O average distance remains

constant, the increase in the Si–Si distance arises from an increase in the Si–O–Si angle (see

below). In addition, the first Si–Si peak offered by FEAR is sharper than those predicted

by MD and RMC. This indicates that FEAR yields a more pronounced degree of ordering

between neighboring SiO4 tetrahedra than MD and RMC, which may explain the increased

stability of the glass generated by FEAR.

Table 2.1: Average Si–O, O–O, and Si–Si interatomic distance values computed by force-
enhanced atomic refinement (FEAR), molecular dynamics (MD), and reverse Monte Carlo
(RMC) simulation. Experimental values sourced from Ref. 78 are provided for comparison.

& Si–O (Å) & O–O (Å) & Si–Si (Å)
Fear & 1.611 & 2.624 & 3.067
MD & 1.598 & 2.590 & 2.962
RMC & 1.582 & 2.593 & 3.127

Experimental data & 1.608 ± 0.004 & 2.626 ± 0.006 & 3.077

Then, we direct our attention to the short-range angular environment of each element.

Figure 6 shows the O–Si–O (i.e., intratetrahedral) and Si–O–Si (i.e., intertetrahedral) PBADs

offered by FEAR, RMC, and MD. We first note that the average O–Si–O angles predicted
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Figure 2.5: (a) Si–O, (b) O–O, and (c) Si–Si partial pair distribution functions computed by
force-enhanced atomic refinement (FEAR), molecular dynamics (MD, using a cooling rate
of 1 K/ps), and reverse Monte Carlo (RMC) simulation. The vertical dashed lines indicate
experimental interatomic distances sourced from Ref. 78.

by these three simulation methods remain largely similar (around 109°). This value matches

with available experimental data (see Tab. 2). This signals that the tetrahedral environment

of Si atoms is already well-defined by MD and that FEAR does not induce any notable

further refinements. However, we note that the O–Si–O PBAD becomes sharper upon FEAR

refinement. This indicates that FEAR predicts a more ordered angular environment for Si

atoms, while in turn, MD and RMC yield more distorted SiO4 tetrahedral. This echoes the

fact that, based on previous MD results, the O–Si–O PBAD tends to become sharper upon

decreasing cooling rate, that is, as the glass becomes more stable 13.

We then focus on the Si–O–Si PBAD. We find that the Si–O–Si PBAD offered by FEAR

exhibits a notable shift as compared to MD and RMC data. The average Si–O–Si angle

predicted by FEAR is significantly larger than that predicted by MD. The opening of the

Si–O–Si angle predicted by FEAR is in agreement with the larger Si–Si distance observed

in Fig. 5c and is well supported by available experimental data 71,79–83 The shift of the

Si–O–Si angle toward larger values also echoes the fact that, based on previous MD results,

this angle tends to increase upon decreasing cooling rate, that is, as the glass reaches lower

fictive temperatures 13. We also note that FEAR yields a sharper Si–O–Si PBAD than MD,
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Figure 2.6: (a) O–Si–O and (b) Si–O–Si partial bond angle distributions computed by force-
enhanced atomic refinement (FEAR), molecular dynamics (MD, using a standard cooling
rate of 1 K/ps), and reverse Monte Carlo (RMC) simulation. The vertical dashed lines
indicate experimental average angle values obtained from different experimental data 80–84
(c) Si–O–Si partial bond angle distributions computed by FEAR, MD, and RMC simulation,
which are compared with reference PBADs computed from combined neutron and photon
diffraction 79 and nuclear magnetic resonance (NMR) experimental data 81

which, once again, matches with the fact that, based on previous MD results, this PBAD

tends to sharpen upon decreasing cooling rate 13. This is also in agreement with the sharp

PBAD that was inferred from experimental nuclear magnetic resonance (NMR) data in Ref.

83 (see Fig. 6c). This sharpening of the Si–O–Si PBAD indicates that FEAR predicts

an increased degree of ordering in between neighboring SiO4 tetrahedra compared to MD

and RMC. Overall, the distinctive features of the short-range order of the glass yielded by

FEAR are all supported by experimental data and offer a structural basis for the increased

thermodynamic stability of the glass generated by FEAR.

3.4 Effect of force-enhanced refinement on the medium-range structure

Finally, we explore how the increased thermodynamic stability of the glass generated by

FEAR manifests itself in its medium-range order structure of the simulated glass structure.

To this end, we compute the neutron structure factor for each of the simulated glasses (see

Sec. 2.6). Figure 7 shows the reduced structure factor predicted by FEAR, RMC, and

MD, which are compared with neutron diffraction data 71. We first observe that all the
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Table 2.2: Average interatomic angle values computed by force-enhanced atomic refinement
(FEAR), molecular dynamics (MD, using a cooling rate of 1 K/ps), and reverse Monte Carlo
(RMC) simulation. Computed data are compared with experimental values sourced from
Refs. 79–83, which are based on X-ray diffraction (XRD), high-energy X-ray diffraction
(HXRD), and 29Si Nuclear magnetic resonance (NMR) spectroscopy data. The full-width
at half-maximum (FWHM) of the Si–O–Si partial bond-angle distribution is also indicated
for.

& O–Si–O & Si–O–Si & FWHM of Si–O–Si
Fear & 109.2° & 152.9° & 23.4°
MD & 107.6° & 137.4° & 31.8°
RMC & 108.6° & 161.6° & 34.2°

Combined & & &
neutron and & 109.47° & 148.3° & 17.2°

photon diffraction79 & & &
29Si NMR80 & 109.47° & 150.1° & 21.4°
29Si NMR81 & 109.7° & 151° & 18.7°
HXRD82 & 109.3° & 147° & 35.5°

Combined & & &
neutron and x-ray83 & 109.47° & 141° & 22.1°

simulation techniques considered herein (MD, RMC, and FEAR) offer a realistic prediction

of the glass structure factor, since the positions of the peaks are well reproduced (see Fig.

7a). Especially, the structure factors predicted by all these techniques exhibit a good match

with experimental data in the high-Q domain, which echoes the fact MD, RMC, and FEAR

all offer a fairly realistic description of the short-range order structure of the glass. On the

other hand, we observe the existence of some discrepancies in the low-Q region between the

structure factor predicted by MD and experimental data (see Fig. 7b). In particular, the

intensity and degree of asymmetry of the first-sharp diffraction peak (FSDP) around 1.5

Å 1 is not well predicted by MD. This suggests that MD offers a poor description of the

medium-range order structure of the glass. In contrast, we find that both RMC and FEAR

refinements offer a significantly improved description of the low-Q region of the structure

factor. Importantly, the intensity, position, and the degree of asymmetry of the FSDP are

well-reproduced by RMC and FEAR. This suggests that, although the level of structural
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refinement enabled by FEAR (and RMC) does alter the Si–O–Si angular distribution (see

Fig. 6c), the refinement primarily affects the medium-range order structure of the simulated

glass. Specifically, the fact that FEAR predicts a sharper FSDP than MD suggests that the

glass refined using FEAR exhibits a more ordered medium-range structure than its MD-based

counterpart—which is the main structural feature that may explain the increased stability

(i.e., lower energy) of the FEAR-based glass.

In glassy silica, the medium-range order is primarily encoded in the ring size distribution,

wherein silicate rings are defined as the shortest closed paths made of Si–O bonds within

the atomic network 10,74. To further explore how the enhanced thermodynamic stability

enabled by FEAR refinement finds its origin in the medium-range order of the glass structure,

we compute the ring size distribution of each model by using the RINGS package 74 while

using the Guttman’s definition for the rings’ calculation (see Sec. 2.6).

Figure 8a presents the ring size distribution computed by FEAR, RMC, and MD simu-

lations. We note that the ring size distribution predicted by MD is in good agreement with

previous works 14,48,71,85, being centered around 5-to-6-membered rings—wherein the ring

size is expressed in terms of the number of Si atoms it comprises. However, we observe some

differences between the ring size distributions predicted by MD, RMC, and FEAR. Notably,

we observe that FEAR yields a sharper ring size distribution than that predicted by MD,

which, once again, highlights the fact that the glass generated by FEAR exhibits a more

ordered medium-range order structure than its MD counterpart. This result echoes previous

findings obtained for a sodium silicate glass 61. The sharpening of the ring size distribution

observed herein is also in agreement with recent MD results, which showed that the ring

size distribution tends to become sharper upon decreasing cooling rate, that is, as the glass

becomes more stable 45.

Although no direct measurement of the ring size distribution is available to date to vali-

date the computed ring size distributions for 3D silica glass 86, these results can be compared

with the outcomes of the RingFSDP approach introduced by Shi et al. 42,87. In brief, this
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(a) (b)

Figure 2.7: (a) Reduced neutron structure factor of the glassy silica structures generated by
force-enhanced atomic refinement (FEAR), molecular dynamics (MD, using a cooling rate
of 1 K/ps), and reverse Monte Carlo (RMC) simulation. The data are compared with the
same experimental neutron diffraction data 71. Panel (b) shows a zoom of the low-Q domain
of the same structure factors.

method consists in deconvoluting the FSDP of the structure factor into the contribution of

three types of rings: small (4-membered and smaller), intermediate (5-membered), and large

(6-membered and larger)—which makes it possible to estimate the fraction of these three

families of ring. Figure 8b shows the computed fractions of small, intermediate, and large

rings predicted by MD, RMC, and FEAR. When compared with MD results, we find that

FEAR refinement results in (i) a decrease in the fraction of small rings and (ii) an increase

in the fraction of large rings. Both of these behaviors are well supported by the outcomes

of the RingFSDP analysis 71. This confirms that FEAR yields a realistic description of the

medium-range order structure of glassy silica.

The fact that FEAR predicts a lower fraction of small rings echoes the fact that such small

rings, due to their topologically-over constrained nature, have been noted to be unstable due

to the existence of small atomic-level internal stress 45. Hence, small rings tend to disappear

as the glass relaxes toward lower energy states 45. This disappearance of small rings resulting

from FEAR refinement (as compared to MD) is also in agreement with the increase in the

average Si–O–Si angle observed in Fig. 6b. Indeed, it has been reported that small rings
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Figure 2.8: (a) Ring size distribution of the glassy silica structures generated by force-
enhanced atomic refinement (FEAR), molecular dynamics (MD, using a cooling rate of 1
K/ps), and reverse Monte Carlo (RMC) simulation. The dashed lines are to guide the eye.
(b) Computed fractions of small (≤ 4-membered), intermediate (5-membered), and large (≥
6-membered) rings in the glassy silica structures generated by FEAR, MD, and RMC. The
data are compared with reference data inferred from diffraction data using the RingFSDP
method 71.

are associated with strained, smaller Si–O–Si angle, which is another signature of the fact

that small rings are experiencing some internal stress. Overall, these results suggest that the

stable nature of the glasses generated by FEAR largely arises from the fact that such glasses

exhibit a more ordered medium-range order structure featuring fewer unstable small rings.

4. Discussion

Finally, we discuss to which extent the outcome of FEAR refinement depends on the

used interatomic forcefield. This is an important question since, for instance, the structure

of glasses simulated by MD simulations strongly depends on the details of the interatomic

potential that is used 5. To this end, Fig. 9a-e shows the pair distribution function, reduced

neutron structure factor, bond angle distributions, and ring size distribution predicted by

FEAR while using three distinct interatomic potentials (see Methods section). Overall, we

find that all these potentials yield virtually the same pair distribution function, neutron
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structure factor, bond angle distribution and, importantly, the same ring size distribution.

This contrasts with the case of MD simulations, wherein the forcefield has a direct and

significant impact on the simulated structure. Specifically, in MD simulations, the Si–O–Si

partial bond angle and ring size distributions are often very sensitive to the choice of the

interatomic forcefield. The fact that the outcome of the FEAR simulation does not notably

depend on the choice of the interatomic potential can be understood from the fact that, in

FEAR, the structure is mostly determined by the RMC steps, but only weakly impacted

by the energy minimization. Rather, here, the energy minimizations solely ensure that the

structure never deviates too much from an energetically stable state upon RMC refinement.

Overall, in the FEAR approach, the role of the interatomic potential is only to discriminate

stable from unstable structures generated by RMC, which effectively mitigates the ill-defined

nature of RMC refinement. This suggests that FEAR simulations are not largely sensitive to

the choice of the interatomic potential that is used and that, in contrast to MD simulations,

even a poorly parameterized forcefield might yield realistic results when used within the

FEAR approach.
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Figure 2.9: Comparison of the (a) pair distribution function, (b) reduced neutron structure
factor F(Q), (c) O–Si–O, (d) Si–O–Si partial bond angle distributions and (e) ring size
distribution computed by FEAR while using different interatomic potentials. The structure
factors are compared with the same experimental from neutron diffraction data 71.

5. Conclusions

All these results demonstrate that FEAR offers an improved description of the atomic

structure of glassy silica as compared to traditional MD simulations based on the melt-quench

method or RMC simulations. This is evident from the fact that FEAR yields a glass that

simultaneously exhibits enhanced agreement with available experimental data and increased

energetic stability. Overall, we find that the increased stability enabled by FEAR primarily

arises from the fact that the generated glass exhibits a more ordered medium-range order

structure and a lower fraction of unstable small silicate rings, which, in turn, tends to

induce an opening of the Si–O–Si inter-tetrahedral angle. These results establish FEAR as a
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promising technique to “invert” available experimental into realistic, stable glass structures

and to overcome the intrinsic limitations of traditional MD simulations. Importantly, unlike

MD simulations, FEAR simulations are not very sensitive to the details of the interatomic

potential that is used. This suggests that FEAR could be used to simulate a wide array of

glass families, even in the absence of a robust interatomic forcefield. Overall, this approach

could leapfrog one’s ability to reveal the hidden atomic structure of complex disordered

materials.
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CHAPTER 3

Origin of the Anomalous Low Thermal Expansion of

Glassy silica

Upon a change in temperature, non-crystalline solids exhibit some variation in their vol-

ume—which is captured by their coefficient of thermal expansion. In that regard, glassy

silica—an archetypical oxide glass—exhibits an anomalously low bulk thermal expansion,

which is more than an order of magnitude lower than the thermal expansion of the inter-

atomic bonds within its atomic network. Here, by combining in-situ neutron diffraction

experiments and force-enhanced atomic refinement simulations, we investigate the effect of

temperature on the atomic structure of glassy silica at various scales. We reveal that the low

thermal expansion of glassy silica is governed by a compaction of the shape of the silicate

rings in the medium-range order, which counterbalances the interatomic expansion in the

short-range order.

The coefficient of thermal expansion (CTE) captures the rate at which a phase expands

upon an increase in temperature. In particular, the thermal expansion of glasses is a phe-

nomenon that can induce thermal cracking or undesirable length variations in display sub-

strates. In contrast to crystalline solids, non-crystalline phases tend to exhibit more complex

responses upon varying temperature 88. In that regard, the thermal expansion of glassy sil-

ica (SiO2, an archetypical system that silicate glasses are based on) is unique in many ways.

Indeed, glassy silica features an unusually low linear CTE of 0.55×10−6 K–1, which is the

lowest out of those of all the major glass-forming binary oxides 88, including glassy germa-

nia (GeO2, 7.48 × 10−6 K–1) 89. The CTE of glassy silica is also more than one order of
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magnitude lower than those its isochemical crystalline phases, including -cristobalite (10.9

× 106 K–1) and α-quartz (15×106 K1).

The origin of the low CTE of glassy silica is necessarily structural—since, from a micro-

scopic viewpoint, thermal expansion is encoded in the response of the atomic structure to

temperature variations. At the atomic level, the thermal expansion of solids typically first

originates from the asymmetry of the interatomic potential energy, which results in an elon-

gation of the interatomic bonds upon increasing temperature. However, the bulk linear CTE

of glassy silica is surprisingly more than one order of magnitude lower than that of the Si–O

interatomic bonds (9.1 × 10−6 K–1, see Fig. 1a) 71, which suggests that the expansion of the

interatomic bonds is counterbalanced by the shrinkage of larger-scale structural features. At

the scale of the polytopes, the CTE of SiO2 polymorphs is also impacted by the amplitude

of the rigid unit modes, that is, the variations within the mutual orientation of neighboring

SiO4 polytopes, as captured by the Si–O–Si intertetrahedral angle. Identifying the origin of

the discrepancy between microscopic and bulk thermal expansion is further complicated by

the fact that, as an out-of-equilibrium phase, glassy silica’s properties depend on its thermal

history—although the effect of thermal history on silica’s CTE is limited to about ±20%

variations. Altogether, no clear structural mechanism has thus far been proposed to offer a

self-consistent, quantitative explanation of the low CTE of glassy silica.

In this Letter, we combine in-situ neutron diffraction experiments and force-enhanced

atomic refinement (FEAR) simulations to explore how temperature is affecting the atomic

structure of glassy silica at several scales (from the short- to the medium-range order). We

reveal that, ultimately, the answer to this question lies in the shape of the silicate rings

in the medium-range order, which, by becoming more elliptic upon increasing temperature,

tend to become more compact—thereby counterbalancing the expansion of the interatomic

bonds.

To establish our conclusions, we first rely on time-of-flight (TOF) neutron-scattering mea-

surements of fused silica 7940 samples performed from room temperature to 950°C. More
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detail on these measurements can be found in Supplementary Material and in Ref. 71. These

experiments allow us to extract the neutron structure factor and pair distribution function

of glassy silica under varying temperature. By following the methodology described in Ref.

71, we then extract the Si–O and O–O interatomic distances as a function of temperature

by fitting the peaks of the structure factor by some Gaussian distributions (see Ref. 71

for details). As mentioned before and shown in Fig. 1a, the rate at which the Si–O inter-

atomic bonds expands upon increasing temperature (as captured by the relative increase, or

strain) far exceeds that of the bulk volumetric expansion of glassy silica—which highlights

an intriguing mismatch the short-range and bulk thermal expansion.

Since glassy silica does not exhibit any long-range order, we then turn our attention to

the medium-range order. To this end, we track the temperature-dependence of the first-

sharp diffraction peak (FSDP) in the neutron structure factor, which captures the spatial

frequency of typical repetition distances in the medium-range order. Using the RingFSDP

method 90,91, we convert the FSDP into a real-space medium-range order distance by fitting

the FSDP by a series of Gaussian distributions (see Ref. 71 for details). As shown in Fig.

1a, the rate at which the medium-range order distance expands upon increasing temperature

also far exceeds that of the bulk volumetric expansion of glassy silica (as well as that of the

Si–O bonds). This indicates that the origin of the low CTE of glassy-silica is subtle and

might not be directly encoded in two-point correlation functions like the structure factor or

the pair distribution function.

Since one-dimensional two-point-projection signatures of the atomic structure are insuf-

ficient to resolve the origin of the CTE of glassy silica, we then turn to the analysis of the

three-dimensional atomic structure itself—which, to date, can only be accessed by atom-

istic simulations. However, conventional molecular dynamics (MD) simulations of silicate

glasses are plagued by the use of extremely high quenching rates (typically, 1 K/ps), which

far exceed that used in experiments (typically 1 K/s) 92,93. As a result, glass structures

generated by MD tend to be more disordered than that of experimental glasses and, rather,
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tend to mimic that of hyperquenched glasses. To overcome this challenge, we adopt the

force-enhanced atomic refinement (FEAR) technique—a powerful modeling approach that

efficiently combines several iterations of reverse Monte Carlo (RMC) refinements and energy

minimizations to generate glass structures that simultaneously exhibit good agreement with

experimental data and thermodynamic stability 94.

In detail, we generate SiO2 structures made of 3,000 atoms at varying temperatures.

Using the FEAR approach described in Ref. 95, we “invert” the pair distribution func-

tions of glassy silica obtained herein by neutron diffraction under varying temperatures into

three-dimensional structures. To ensure thermodynamic stability and address the ill-defined

nature of RMC, the energy generated structures are periodically minimized based on the

well-established BKS forcefield 96. We previously showed that this approach yields SiO2

glasses that simultaneously exhibit an excellent match with neutron diffraction data (no-

tably improved as compared to MD simulations) and an extremely high thermodynamic

stability (wherein the simulated structures reach an internal energy that is well below that

that can be achieved by melt-quenching MD simulations) 95. Here, we find that that the

same level of agreement with diffraction data and thermodynamic stability is maintained

for glasses associated with varying temperatures (see Supplementary Material). Note that,

here, the effect of temperature is solely encoded in the temperature-dependent diffraction

data used as input for the RMC refinements.

Altogether, the FEAR approach yields a series of realistic three-dimensional glass struc-

tures associated with varying temperatures that we can use as a basis to seek for the struc-

tural origin of the low thermal expansion. To this end, we analyze the generate structures at

various scales, starting with the short-range order. We first find that the computed thermal

expansion of the Si–O and O–O interatomic distances exhibit a good match with the neu-

tron diffraction data obtained herein (see Fig. 1b). Although this is not surprising since the

diffraction data are used as input for the FEAR simulation, this confirms that the simulated

structures are realistic and that interatomic distances expand significantly more than the
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Figure 3.1: (a) Relative expansion of the bulk volume, Si–O interatomic distance, and
medium-range order distance inferred from neutron diffraction as a function of temperature
71. (b) Relative expansion of the Si¬–O, O¬–O, and Si–Si interatomic distances computed
by FEAR as a function of temperature. The computed data are compared with experimental
data at the same temperatures 71.

bulk glass volume upon increasing temperature. In addition, the simulated structures allow

us to compute the Si–Si interatomic distance, which is otherwise “invisible” from neutron

diffraction. We observe that the thermal expansion of the Si–Si interatomic distance is no-

tably larger than that of the Si–O or O–O bonds (see Fig. 1b)—in agreement with previous

simulation. Note that, in contrast the Si–O and O–O, the expansion of the Si–Si distance

is non-linear with temperature. This expansion indicates that, in addition to the elongation

of the Si–O bonds, glassy silica also features an increase the intertetrahedral Si–O–Si angle

upon increasing temperature. The opening of the Si–O–Si angle further enhance the thermal

expansion of the short-range order of glassy silica and hence, further increases the mismatch

between short-range and bulk thermal expansion.

Having confirmed the mismatch between short-range and bulk thermal expansion, we

now revisit the role of the medium-range order. In that regard, the three-dimensional atomic

structures generated by FEAR allow us to directly access the medium-range order structure

of glassy silica and its temperature dependence. Indeed, although neutron diffraction only

offers a “signature” of the medium-range order (i.e., the FSDP), the FEAR can be used to
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describe the topology of the silicate rings forming within the atomic network—wherein the

rings are defined as the shortest closed paths made of Si–O bonds within the network. In line

with previous simulation, we observe that the silicate rings show an average size of around

5-to-6 (see Supplemental Material).

Next, based on the atomic structure generated by FEAR, we explore how the topology

of the silicate rings depends on temperature. We first note that the size of the rings (as

measured in terms of the number of Si atoms they are made of) does not notably change with

temperature. This is not surprising since all the temperatures considered herein are lower

than the glass transition temperature so that the network connectivity is expected to remain

largely frozen. As such, the average perimeter of the ring rapidly expands upon increasing

temperature since it is proportional to the Si–Si interatomic distance (see Supplemental

Material). Using a circular assumption, the perimeter length P can be converted into an

effective radius R following P= 2R. As shown in Fig. 3a, the thermal expansion of this

effective ring radius is notably higher than the bulk volumetric expansion of glassy silica,

which indicates that the size of the rings (as captured by their perimeter or effective radius)

is unable to explain the low CTE of glassy silica. Interestingly, we find that the relative

expansion of the effective radius of the rings matches that of the medium-range distance

inferred from the FSDP (see 1a), in agreement with the fact that the FSDP captures the

spatial frequency of the typical repetitions’ distances in the medium-range order (i.e., the

rings effective radius). This confirms that the low CTE of glass silica cannot be understood

from simple 2-point correlation analyses implicitly assuming that the atomic structure is

isotropic and that the silicate rings are circular.

To go beyond these assumptions, we further describe the topology of the silicate rings

by computing their effective area A. To this end, we first describe each ring based on the

coordinates of the Si atoms it is made of. This allows us to calculate the centroid of each

ring, as the geometric average of the position of the Si atoms. Next, to capture the ring

shape, we fit each ring by an ellipse centered around its centroid—wherein the major and
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minor radii a and b of the ellipse are optimized by gradient descent to minimize the mean

squared distance between the Si atoms and the ellipse (see schematic in Fig. 2a). This

analysis allows us to calculate the effective area A of each ring as A= ab. Note that, for

most of the rings (from 4-to-7 membered rings), no significant deviation from planarity is

observed so that we restrict our analysis to being two-dimensional.

Figure 3a shows the computed ring effective area A as a function of the effective radius

R, as averaged over distinct ring size (i.e., 4, 5, 6, and 7-membered rings). As expected,

both the radius and area of the rings increases with their size (from 4-to-7 membered rings).

Data are also shown for varying increasing temperatures (from room-temperature to 950°C),

wherein lighter colors indicate higher temperatures (see Fig. 3a). As expected, the effective

radius of the rings increases with temperature, irrespectively of the ring size. To appreciate

how temperature affects the area of the rings, Fig. 3a first shows what would be the effective

area of the rings if they were perfectly circular, that is, assuming that the area is given by A=

R2 (see the dashed line in Fig. 3a). Importantly, we note that the computed effective areas

of the rings (by fitting them by ellipses) are notably lower than those expected if the rings

were circular. This indicates that the shape (i.e., ellipticity) of the rings plays a significant

role in defining how much space they occupy within the atomic network. Importantly, we

note that the degree of ellipticity (as defined from the deviation from circularity) increases

upon increasing temperature, irrespectively of the ring size (see Fig. 3a). The effect of

ellipticity is especially pronounced for the smallest rings (i.e., 4-membered rings), for which

the increase in the degree of ellipticity upon increasing temperature is so large that their

average effective area eventually decreases with temperature (despite the increase of their

average effective radius). This is likely a consequence of the fact that such small rings are

topologically overconstrained and, as a result, experience some internal stress 15, which, in

turn, promotes relaxation upon heating 97.

Next, based on the computed effective areas of each ring, we calculate the average ring

area (averaged over all the ring sizes). Figure 2b shows the evolution of the average ring
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Figure 3.2: (a) Effective ring area A computed by FEAR as a function of the effective ring
radius R (see text). The area and radius values are averaged over groups of ring sizes (i.e., 4,
5, 6, and 7-membered rings). Data are showed for varying increasing temperatures, wherein
lighter colors indicate higher temperatures. The dashed line indicates the area that would
be expected if the rings were circular. The schematic illustrates how the rings are fitted
by ellipses, wherein Si and O atoms are indicated in blue and red, respectively. (b)Average
effective ring area (averaged over all the ring sizes) computed by FEAR as a function of
temperature. The dashed line is a linear fit.

area as a function of temperature. Since the degree of planarity of the rings does not notably

change upon varying temperature, we use the temperature-dependence of the average ring

area to define the relative expansion of the silicate rings. Figure 3a shows the relative

expansion of various structural features associated with varying scales (namely, in order of

increasing scale, Si–O, O–O, and Si–Si interatomic distance, ring effective radius, and ring

effective area). The data are compared with the bulk volumetric relative expansion of glassy

silica (black symbols in Fig. 3a) that is used to define its bulk CTE. All these data are then

used to calculate the CTE values associated with each of these structural features, which are

summarized in Fig. 3b. Note that the surface CTE obtained from the ring area is converted

into a linear CTE before being plotted in Fig. 3b to ensure a consistent comparison. These

results highlight that the CTE associated with the ring area exhibit a very close match with

the bulk CTE of glassy silica. This indicates that the macroscopic thermal expansion of

glassy silica is quantitively encoded in the shape of the silicate rings.
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Figure 3.3: (a) Relative expansion of the Si–O, O–O, and Si–Si interatomic distances, average
effective ring radius, and average effective ring area computed by FEAR as a function of
temperature. The data are compared with the macroscopic bulk volumetric expansion of
glassy silica. The dashes lines are linear fits. (b) Linear coefficient of thermal expansion
associated with all the structural features considered in panel (a).

Overall, Fig. 3b offers a self-consistent and quantitative description of the thermal expan-

sion of each structural feature of glassy silica, and how the distinct effects of these features

eventually accumulate and culminate into governing the macroscopic thermal expansion of

glassy silica. The following atomic picture emerges from these results. As temperature

increases, both the interatomic distances and angles increases, which results in a large ex-

pansion of the short-range order. However, this short-range order expansion is eventually

compensated by the fact that the silicate rings become more elliptic upon increasing temper-

ature and, hence, become more compact (since the area of an ellipse is lower than that of a

circle at constant perimeter). The competition between short-range expansion and medium-

range compaction eventually explains the very small CTE featured by glassy silica. In that

regard, it is worth noting that the area of the rings does not compensate the expansion of

the Si–O bonds; rather, the ring area capture the culminating and combined effects of the

interatomic bonds, angles, and ring shape—so that the CTE associated with the average

ring area can indeed directly and quantitatively be compared the bulk CTE of glassy silica.

Overall, besides unveiling the atomic origin of the low CTE of glassy silica, these results
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highlight the important role of the shape (i.e., ellipticity and, potentially, planarity) of the

silicate rings and, more generally, of anisotropy in the structure of glasses. Such complex

topological information cannot easily be extracted from experimental data—which typically

only offer two-point projections as indirect signatures of the three-dimensional atomic struc-

ture of glasses—and can only be accessed by advanced modeling techniques like FEAR.

These results also highlight the special roles played by small rings, which, on account of

their topologically-overconstrained nature, tend to behave differently than larger, topologi-

cally flexible rings. This suggests that tuning the size and shape of rings (e.g., via varying

thermal or pressure treatments or via the inclusion of network modifiers) offers an important

degree of freedom to discover new glasses with tailored properties.
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CHAPTER 4

Experimental Method to Quantify the Ring Size

Distribution in Silicate Glasses and Simulation

Validation Thereof

In contrast to their crystalline counterparts, glasses lack any long-range order. In turn, for

energetical reasons, glasses often exhibit a short-range order that is fairly similar to that of

crystals [1]. As such, the distinctive out-of-equilibrium nature of the glassy state is largely

associated with the uniqueness of glasses’ medium-range order. The existence of some level of

order in the medium-range structure of oxide and chalcogenide glasses is often linked with the

onset of a first-sharp diffraction peak (FSDP) in their diffraction pattern—which denotes that

some well-defined structural units associated with intermediate typical repetition distances

can be found in the structure of glasses [2]. In silicate glasses, the medium-range order

structure is primarily encoded in the ring size statistics—wherein a ring is defined as a

closed-path in the atomic network of glasses. Although the ring statistics play a key role

in governing glass properties [3], this structural feature is largely invisible to conventional

experimental techniques and, hence, remains mostly unknown.

As an alternative route to experiments, atomistic simulations can infer the structure of

a glass based on some available information (e.g., the interatomic forcefields) and, hence,

provide direct access to the ring statistics in simulated glasses [4] [5]. However, such modeling

techniques are affected by their own limitations [6]. On the one hand, molecular dynamics

(MD) simulations leverage the knowledge of interatomic forcefields to form glasses by “melt-
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quench,” but are plagued by the need to use high cooling rates. This raises questions about

their ability to offer a realistic description of glasses’ medium-range order—especially since

the ring statistics strongly depends on the cooling rate [7]. On the other hand, reverse

Monte Carlo (RMC) simulations are used to invert available experimental data into a three-

dimensional structure, but RMC-based structures are often thermodynamically unstable

[8]. More generally, constructing realistic atomic structures for glasses that match available

experimental signatures (e.g., diffraction patterns) is intrinsically an ill-defined problem since

an infinite number of atomic structures can yield the same signatures. As such, although it

is straightforward to determine that a model glass structure is invalid (if it does not match

with at least one experimental signature), it is virtually impossible to robustly demonstrate

that a model glass structure is valid. All these aspects demonstrate the difficulties associated

with the fact of revealing the true medium-range order structure of glasses.

To uncover glasses’ medium-range order, we developed a heuristic method (RingFSDP)

that, based on experimental data, aims to extract the ring size distribution in a silicate glass

from the shape of its neutron structure factor’s FSDP (FFSDP(Q)) [9]. In this method,

the FSDP is deconvoluted into three Gaussian distributions with fixed average reciprocal

lengths Q, wherein each distribution is ascribed to a certain family of rings: (i) large rings

(≥ 6-membered) centered at low Q, (ii) medium rings (5-membered) centered at intermediate

Q, and (iii) small rings (≤ 4-membered) centered at large Q. Note that the ring sizes are

here expressed in terms of the number of network-forming atoms they are made of. The

fraction of each of these three types of rings is then determined from the relative integrated

area under each of these three Gaussian distributions. However, like any empirical methods

developed from experimental data, the model-free RingFSDP approach relies on two core

assumptions regarding how each type of ring contributes to the FSDP: (i) FFSDP(Q) is

comprised of three Gaussian distributions Fn(Q) that are associated with different groups of

ring sizes and (ii) the average position of these Gaussian distributions is fixed and does not

depend on the glass composition (e.g., the identity of glass former species comprising the
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ring, namely, Al and Si in aluminosilicate glasses). In this contribution, we validate these

two assumptions, which offers a robust, sound foundation for the RingFSDP method.

Here, to establish our conclusions, we first uncover by simulation the valid structure of

two representative silicate glasses by combining neutron diffraction experiments and force-

enhanced atomic refinement (FEAR) [8] [10] [11]. We then compute the ring size distri-

bution from the FEAR-simulated structures and isolate the contribution of each ring size

to the structure factor FSDP. Based on these results, we offer a robust support for the

two core assumptions of the RingFSDP method. Eventually, we demonstrate that the ring

size distribution in silicate glasses can indeed be experimentally determined based on the

deconvolution of their FSDP.

Results

Uncovering glass structure by FEAR simulations

To establish our conclusions, we investigate the medium-range order of two representative

silicate glasses, namely, glassy silica and an industrial alkaline-earth aluminosilicate glass

named Jade® [12]. These two glasses are chosen so as to ensure that the method developed

herein applies to the archetypical SiO2 glass, as well as a more complex modified silicate

glass Jade®—(CaO)6(MgO)7(Al2O3)13(SiO2)74—which comprises some network modifiers

and two network-forming elements. The atomic structure of these two glasses is investigated

at room temperature by performing time-of-flight (TOF) neutron scattering measurements

on the Nanoscale-Ordered Materials Diffractometer (NOMAD) at the Spallation Neutron

Source (SNS), Oak Ridge National Laboratory (see Methods section). This yields the neutron

structure factor for each of these glasses.

To decode the linkages between ring size distribution and FSDP, we then use the measured

neutron structure factors to uncover the atomic structure of these glasses by adopting the

force-enhanced atomic refinement (FEAR) method [10]. The FEAR modeling approach relies

on an iterative combination of RMC refinement and energy minimization cycles. As such, by
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leveraging all the available information (i.e., both the interatomic forcefield and experimental

data), the FEAR approach yields glass structures that simultaneously exhibit excellent match

with experimental signatures and high thermodynamic stability [8]. Importantly, FEAR has

been shown to offer glass structures that correspond to slowly quenched glasses and yield

an improved description of glasses’ medium-range order as compared to conventional MD

melt-quench simulations [8].

Here, we implement the FEAR approach following Ref. [8] to reveal the atomic structure

of glassy silica and Jade®—wherein the RMC cycles are conducted by using as constraint

the neutron pair distribution functions measured herein (see Methods section). For compar-

ison, these two glasses are also simulated by conventional melt-quench MD simulations (see

Methods section). Figure 1 shows the experimental and computed reduced structure factor

F(Q) (where F(Q) = Q·[S(Q) – 1], S(Q) being the structure factor) for the silica and Jade

glasses. We observe that the FEAR-derived structure factors exhibit an excellent agreement

with experimental data over the entire Q range—which is not surprising since the neutron

pair distribution functions are used as input for the FEAR simulations. In contrast, the

MD-derived structure factors present some notable discrepancies with experimental data. In

detail, the level of agreement between MD and experimental data is satisfactory in the high-Q

region (Q ≥ 4Å) (see Figure 1 (a-I) & (b-I)), which suggests that MD offers a decent predic-

tion of the short-range order structure. However, the low-Q peaks are not well reproduced

by MD (see Figure 1 (a-II) and (b-II)), which indicates that MD fails at predicting a realistic

medium-range order structure (especially for glassy silica). The realistic nature of the glassy

structures generated by FEAR is further confirmed by their low energy (as compared to the

structures obtained by MD), which denotes their thermodynamic stability (see Methods).

The fact that FEAR offers an excellent description of the FSDP of the structure factor of

both glasses (significantly improved as compared to MD) offers confidence in the ability of

this simulation approach to yield a realistic description of the glasses’ medium-range order

and, especially, of their ring size distribution.

44



Figure 4.1: Measured and simulated total reduced structure factors (F(Q)) of (a) silica
and (b) Jade® glasses. The neutron experimental data are compared with simulation data
obtained by FEAR and MD. In both cases, F(Q) derived by FEAR simulation (blue solid
curve) matches well with neutron F(Q) (black dot curve), while significant discrepancy is
observed for those of MD simulation (red solid curve), especially in low-Q region (Q ≤ 4Å−1)
as shown in panels (a-II) and (b-II).
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Contribution of individual ring sizes to the FSDP

Having established the realistic nature of the glassy structures generated by FEAR, we

now use these model structures to decipher how each type of ring contributes to the FSDP.

As a prerequisite to this analysis, we discuss the role played by the various definitions that

have been proposed for “rings.” The very first ring definition—from King—was published

in 1967 and defined a ring as the shortest path between two of the nearest neighbors of a

given node—for silica, this refers to two oxygen atoms that are connected to a central silicon

atom [13]. The King’s definition was mostly used in the early studies revolving around ring

size analysis [4] [14]. In 1990, Guttman proposed a different way of ring definition for silica

materials by using the same shortest path concept. He first simplified the rings as being

formed by Si atoms only. He then defined a ring as the shortest path that comes back

to a given node (Si atom) starting from one of its nearest-neighbor Si atoms [15]. Since

Guttman’s criterion uses only one silicon nearest-neighbor as the reference to search the

shortest path ring, only the small-size rings (nmax 7 for silica glasses, wherein the ring size

n is defined as the numbers of Si atoms in a ring) fulfill Guttman’s definition. The large

rings (n ¿ 8) that are identified by King’s method, are not counted as Guttman rings, as

illustrated in Ref. [16]. In that regard, Guttman’s rings can be considered as a subset of

King’s rings, wherein both types of ring originated from the same “shortest path” definition.

The third ring definition—primitive—was first introduced by Goetzke and Klein [17] in 1991

and then further developed by Yuan and Cormack [18] in 2002. Primitive rings adopt a

different definition as rings that cannot be decomposed into two smaller rings. Another

definition—strong ring—was extended from the primitive ring definition, wherein strong

rings are not the sum of smaller rings. Therefore, strong rings are a subset of primitive rings,

wherein both types of rings originated from the same “indecomposable ring” definition.

In the context of ring size analysis, the RINGS code published in 2010 by Le Roux [16]

has been widely used. To describe the connectivity of topological networks, RINGS provides

five ways for ring counting, named: (i) all-rings (no rules), (ii) Guttman’s, (iii) King’s,
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(iv) primitive, and (v) strong. Two definitions—all-rings and strong—are not adapted to

enumerate rings in glassy structures. Indeed, the all-rings definition enumerates all the rings

without adopting any rules, which, in turn, results in an over-counting of the large-size rings

[13]. The strong-rings is a technically valid definition, but, in practice, does not apply to large

disordered networks. Since strong rings are a subset of primitive rings, searching for strong

rings can be performed by finding the strong rings among the primitive rings. However, such

strategy only applies to simple crystal structure, whereas, in turn, the ring search tends to

diverge for complex disordered structures (see Ref. [16]).

Therefore, only three definitions are eligible for ring size analyses in glass structures.

Among RINGS’ users, the primitive definition has been almost exclusively adopted [19],

[20], [21], at the exception of Ref. [22] wherein the Guttman’s definition was used. In most

papers focusing on rings, no reasons are provided as to why a specific definition is adopted.

Here, in order to uncover which one of these three definitions is relevant to describe the

ring size distribution derived from the FSDP of scattering patterns, we compute the King’s,

Guttman’s, and primitive ring size distributions for each FEAR-generated glass structure

(silica and Jade). Results are plotted in Figure 2. We find that the three definitions yield the

same numbers of small size rings (n ≤ 5), while we note the existence of differences starting

from 6-membered rings. Overall, the Guttman’s criterion yields the lowest total number

of rings and the identified rings feature a maximum ring size of 7. In contrast, the King’s

criterion offers the largest total number of rings, including a large portion of large rings (up to

n = 10). The total number of rings that are computed based on the primitive definition lies

in between those yielded by the Guttman’s and King’s criteria. These differences illustrate

the critical role played by the definition that is used when computing rings.

Note that these three definitions yield the same number of small size rings (n leq 5), while

some divergences are observed starting from 6-membered rings. The Guttman’s criterion

(black) yields the lowest total number of rings and a maximum ring size of 7. The King’s

criterion (red) yields the highest total number of rings. The total number of primitive rings
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Figure 4.2: King’s, Guttman’s, and primitive ring size distributions in (a) silica and (b)
Jade® glasses.

(blue) lies in between the number of rings identified by the Guttman’s and King’s definitions.

In the following, we argue that the Guttman’s ring definition is the most relevant to

describe the ring distribution derived from the FSDP of scattering patterns in terms of the

probed length scale. The FSDP originates from medium-range order patterns within the

glass structure that are associated with real-space typical repetition distances ranging from

3 to 4.5 Å. This range of distances matches with the typical diameter of the small-size rings

(n ≤ 7) that are identified by Guttman’s criterion, whereas, in contrast, the large rings (n

geq 8) that are identified by the King’s and primitive definitions are associated with larger

diameters and, hence, would be only very weakly captured by the FSDP. In addition, as

another important point, the Guttman definition yields a realistic total number of rings

per network-forming atom, namely, 5.8 and 6.5 for the silica and Jade glasses, respectively.

These numbers match with the value of 6 that is expected for fully-polymerized glasses

[13]. In contrast, the King’s and primitive definitions yield two-to-three times more rings,

which suggests that some of these rings are redundant. The method that is used herein to

calculate the total number of rings per network-forming atom is described in the Appendix B

of Ref. [9]. Based on these reasons, in the following, we systematically adopt the Guttman’s

definition for this study—since it matches with the typical length scale that is probed by the

FSDP and properly reflects the polymerization nature of the networks considered herein.
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However, note that this definition may not be appropriate for other types of structural

characterization, for instance, to track the large-size primitive rings (n > 10) forming in the

alkali-rich silicate glasses [18].

Based on the ring size distributions as shown in Figure 3 (a-I) and (b-I), we investigate

the contribution of each type of ring to the structure factor. This is achieved by isolating the

selected family of ring, removing the other types of ring (as well as network modifiers) from

the simulated structures, and finally calculating the associated partial pair distributions.

Using this approach, we compute the individual pair distribution functions associated with

fixed ring sizes n (with n = 3-to-7) and grouped pair distribution functions associated with

groups of rings (i.e., ≤ 4, 5 and ≥ 6-membered rings, which follows the group definitions

used in the RingFSDP method [9]). The computed reduced pair distribution functions Gn(r)

associated with individual and grouped rings are shown in Figure 3 (a-II and b-II, a-III and

b-III), respectively.

We then compute the associated reduced structure factors Fn(Q) by Fourier transforma-

tion of the individual and grouped pair distribution function Gn(r). Note that 3- (for glassy

silica) and 7-membered rings (for Jade) are excluded from this analysis as the low number of

such rings (< 20) does not allow for a statistically meaningful analysis. Figure 4 shows the

computed individual reduced structure factors Fn(Q) associated with each ring size, along

with the neutron diffraction data. Note that, at this point, we solely focus on the positions

of the peaks, since the decomposition of the structure factor into contributions from different

ring sizes renders the peaks’ intensity meaningless. We first note that, in the high-Q range (Q

> 4 Å−1), the computed structure factors of both glasses present peaks that are all located

at the same positions. This indicates that the different types of rings exhibit fairly similar

short-range orders (namely, the structure of the SiO4 and AlO4 polytopes does not depend

on the ring size)—which echoes the fact that the peak positions in the low-r region (r < 3

Å) of the pair distribution functions are unaffected by the ring size (see Figure 3 (a-II and

b-II)). However, interestingly, we observe that the computed structure factors exhibit some
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Figure 4.3: Guttman’s ring size distribution (I), reduced pair distribution function Gn(r)
of individual (II) and grouped (III) rings computed from the FEAR simulations. Note the
individual pair distribution functions are associated with fixed ring sizes n (with n = 3-to-7),
while grouped pair distribution functions are associated with groups of rings (i.e., ≤ 4-, 5
and ≥ 6-membered rings, as defined in the RingFSDP method). They are compared to the
experimental neutron data (black dot curve).
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notable differences in the low-Q region, at the vicinity of the FSDP (see Figure 4 (a-II and

b-II)). In both glasses, we find that the position of the FSDP in the individual structure fac-

tors systematically shifts toward higher-Q values upon decreasing ring size. This echoes the

fact that smaller rings present lower diameter and, hence, are associated with lower typical

repetition distances. These simulation results demonstrate that the ring size distribution is

encoded in the position and shape of the FSDP—so that, in turn, the deconvolution of the

FSDP indeed offers a robust mean to uncover the ring size distribution of glasses based on

their diffraction pattern (which is the basis of the RingFSDP method).

Contribution of ring size groups to the FSDP

When deconvoluting experimentally measured FSDPs, simultaneously considering all the

ring sizes presented in Figure 4 (i.e., 3-to-7) would require a large number of fitting pa-

rameters, which would render the deconvolution impossible. The RingFSDP method was

empirically developed from the analysis of 81 aluminosilicate glasses [9]. Each FSDP was

fitted in its real-space representation, by two-, three-, and four-Gaussian distributions with

all parameters being refined (including peak position, width, and intensity). Two-Gaussian

distributions only offer reasonable fittings for glasses containing low silica contents (which

exhibit small sized-rings), but not for silica-rich glasses (especially glassy silica) which tend

to contain larger populations of large sized-rings. Then, it is determined that three-Gaussian

distributions, corresponding to three groups of rings, is the minimum number to fit all the

81 glasses with satisfactory agreement with neutron measured FSDP. It is also found that

the positions of three-Gaussian distributions always converge to constant values, i.e., 3.15 ±

0.01, 3.70 ± 0.03, and 4.30 ± 0.04 Å, respectively, where the mean and standard deviation

values are calculated from 81 glass fittings. Four-Gaussian distributions definitely improves

the fitting quality for silica-rich glasses. For example, the low-Q side of FSDP from glassy

silica ( Figure 5 (a-II) ) can be fitted much better by adding a forth Gaussian peak. However,

the increased number of fitting parameters also leads to unrobust and unreliable fitting.

Therefore, the RingFSDP method is based on the core concept that the contributions
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Figure 4.4: Individual reduced structure factor Fn(Q) associated with individual ring size
for (a) silica and (b) Jade glasses computed from the FEAR-based glass structures. All four
panels adopt the same color scheme for different n-membered rings with the legend shown in
panels (a-II) and (b-II). In the whole range panels of FS (a-I) and Jade (b-I), resemblances
are shown for the same high-Q peaks (Q > 4 Å−1) from different sized rings, with their
positions in the vicinity range of the corresponding neutron F(Q) peaks (black dot curve).
Panels (a-II) and (b-II) show a zoom on the low-Q domain, in which the structure factors
are vertically shifted with respect to each other to improve readability and the red arrows
aim to guide the eye so as to visualize the shift in the position of the FSDP.
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to the FSDP of these three groups of rings are located at different fixed-Q positions—so

that the deconvolution of the FSDP enables the quantification of the fraction of these three

families of rings [9]. As such, in the following, we solely focus on the enumeration of grouped

families of rings (i.e., leq 4-, 5- and geq 6-membered rings, in line with the original RingFSDP

method). To support this approach, we compute each structure factor of these three groups

of rings from the FEAR model. Figure 5 shows the FSDP in the computed three grouped

structure factors, wherein, for clarity, a linear background is subtracted from the computed

structure factors to better isolate the FSDP peak. Once again, we find that the FSDPs in

these three grouped structure factors are located at notably distinct positions—wherein the

FSDP associated with small (≤ 4) and large ring groups (≥ 6) are systematically located at

larger and lower Q positions than for the intermediate (5-membered) rings, respectively. Im-

portantly, the positions of the FSDPs of the three grouped structure factors calculated from

FEAR-based structures (Figure 5 (a-I) and (b-I)) exhibit a very good agreement with the

three fixed-Q values (Figure 5 (a-II) and (b-II)) that were empirically derived from the FSDP

deconvolution of 81 silicate glasses [9]. These three Q values correspond to the real-space

typical repetition distances 3.15 ± 0.01, 3.70 ± 0.03, and 4.30 ± 0.04 Å, which correspond

to the typical effective diameter of small, intermediate, and large rings, respectively [9]. This

verifies our first assumption and strongly supports the core concept behind the RingFSDP

method.

Based on the grouped structure factor computed from the FEAR-based glass structures,

we find that the FSDPs associated with the three groups of rings exhibit a fairly similar peak

location in the silica and Jade glasses (see Figure 6). Intuitively, this seems surprising since

the rings found in glassy silica solely comprise Si–O bonds (1.62 Å), whereas, in contrast,

Jade glasses also present slightly longer Al–O bonds (1.74 Å). Nevertheless, the analysis of

the simulated structures reveals that the larger Al–O bonds are compensated by smaller

Al–O–Si or Al–O–Al angles [5] so that, overall, the A–A distance (wherein A = Si or Al)

remains fairly constant (around 3.1 Å). The value of this A–A distance appears to be a
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Figure 4.5: Deconvolution of the FSDP into contributions from different ring size groups. The
grouped Fn(Q)-FSDP contributions computed from FEAR-based glass structure match with
Fn(Q) deconvoluted by RingFSDP method for (a) silica and (b) Jade glasses. For clarity, in
panels (a-I) and (b-I) a linear background is subtracted from the computed structure factors
to better isolate the FSDP peak. Panels (a-II) and (b-II) show the decomposition of the
experimental FSDP following the RingFSDP approach.
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Figure 4.6: Same FSDP positions from same ring size groups regardless of former identities.
The Fn(Q) -FSDP derived by FEAR simulation for silica (red) and Jade® (blue) glasses
from the same ring size group are shown in (a) ≤4-membred, (b) 5-membred and (c) ≥6-
membred. The similar peak positions are observed in all three panels as guided by straight
black dot line except a little difference for ≤4-membred ring groups, indicating the ring size
is independent of the former identities which comprised the ring.

generic feature of oxide phases based on tetrahedral polytopes, including both crystalline

and amorphous SiO2 and GeO2 [23], alkaline-earth aluminosilicate glasses [5] [24], as well

as 39 tectosilicate crystalline materials with a wide range of Si/Al ratios and very different

framework structures ranging from open-structured zeolites to densely-packed coesite SiO2

[25]. The generality of the A–A distance suggests that, in oxide glasses, the A–O–A angle

tends to adapt its average value to achieve a constant A–A distance (rather than the A–A

distance being determined by the A–O–A angle). This observation is important since it

suggests that the perimeter (and effective diameter) of the rings is not notably affected

by the type of network former they are made of. As such, this supports the fact that the

positions of the three Gaussian distributions used to deconvolute the FSDP are constant and

do not significantly depend on the glass composition—which, in practice, is an important

prerequisite to applying the RingFSDP method [9]. Indeed, this implies that the reliable

deconvolution of the FSDP only involves six fitting parameters (i.e., the intensity and widths

of the three Gaussian distributions) rather than nine (i.e., if 3 additional fitting parameters

were to be needed for the positions).
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Revealing the ring size distribution in silicate glasses. Finally, having established a ro-

bust foundation behind the RingFSDP method, we now apply this approach to deconvolute

the FSDP in the experimental neutron structure factor to uncover the fractions of the three

groups of rings in the silica and Jade glasses. The decomposition of the FSDP is illustrated

in Figure 5 (a-II) and (b-II). In the case of the Jade glass, we find that the combination of the

three Gaussian distributions offers an excellent fit of the FSDP. Although a satisfactory fit

is also obtained in the case of glassy silica, we nevertheless observe some fitting discrepancy

in the low-Q range (around 1 Å-1) of the FSDP. The fitting could be improved by consider-

ing an additional group of very large rings (≥ 7-membered rings). However, adding a fourth

Gaussian distribution would increase the number of fitting parameters and, hence, negatively

affect the reliability of the deconvolution of the FSDP—so that we stick to the above men-

tioned three groups of rings. The fractions of each group of rings are then determined based

on the areas under these three fitted distributions (see Figure 7). Overall, we find that glassy

silica exhibits most large rings (≥ 6-membered), while, in contrast, Jade exhibits an excess

of 5-membered rings. The results obtained for Jade echo the ring size distribution that was

reported for another fully compensated aluminosilicate glass (CaO)13.5(Al2O3)13.5(SiO2)73

[9]. Importantly, these observations match with the outcomes of the direct enumeration of

the rings based on the analysis of the glass structures simulated by FEAR (see Figure 7). We

also note that, in the case of glassy silica, the ring size distribution obtained herein matches

with previous MD simulation results from Vashishta et al. [4] (see Figure 7). We compare

our results with Vashishta’s because the S(Q) calculated from their MD simulation matches

well with the measured pattern obtained by neutron diffraction, especially in the FSDP re-

gion (as shown in Figure 1 of Ref. [4]). This indicates that their MD simulation yields a

more realistic medium-range order structure than that predicted by the BKS forcefield used

herein (see Figure 1 (a-II)). This improved level of agreement is likely on account of the fact

that, unlike the present BKS forcefield, the Vashista forcefield is a complex potential that

features 3-body energy terms.

56



Figure 4.7: Ring size distribution comparison between the experimental RingFSDP and
FEAR/MD simulation analysis. The good match between experiment and modeling validates
the RingFSDP method.
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Conclusion Although the RingFSDP method is necessarily incomplete since it is limited

to small ring sizes (n ≤ 7), many studies (detailed in the following) have highlighted the

unique and critical role played by small size rings in glasses. As such, quantifying the

number of small rings is key to decipher the nature of composition-structure-properties

correlation in glasses and accelerate the development of new glass compositions with tailored

functionalities. Specifically, our previous in situ neutron scattering study on fused silica (FS)

revealed that the intensity of the FSDP associated with small size rings (n ≤ 4) decreases

more than those associated with large-sized rings upon increasing temperature [26]. This

denotes that small rings are fairly unstable, which echoes several recent observations: (i)

small-size rings (n = 3 and 4) are energetically unfavorable since they present much higher

relative energies as compared to that of 6-membered rings in FS [4], (ii) small size rings

(n < 6) in sodium silicate glass (0.3Na2O·0.7SiO2) exhibit some significant internal stress

on account of their over constrained topological nature, whereas large-sized rings (n ≥ 6)

do not [27], (iii) MD simulations echo our experimental in situ observations, namely, when

alkaline or alkaline-earth silicate glasses are heated above their respective glass transition

temperature, small-sized rings (n ≤ 4) show more dramatic change as compared to their

larger counterparts (n ≥ 5) [21].

Altogether, the overall harmony between the experimental (i.e., obtained from the de-

convolution of the FSDP) and simulated results (i.e., obtained from a direct enumeration

of the rings) that are reported herein strongly supports the soundness of the RingFSDP

approach. This is significant as, to the best of our knowledge, this approach is the only

method enabling a direct estimation of the ring size distribution in silicate glasses, while

solely relying on experimental diffraction data.
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CHAPTER 5

Summary

Despite the extraordinary importance of amorphous materials in our daily lives and the many

chances of exploring new materials to address many of the essential challenges for the future

development, current research on glassy materials remains weak. Much of the research being

conducted–such as molecular dynamics simulation of the transition for the glass in purely

model systems without evolving any real chemistry–is insufficient to solve practical problems

in real world materials14.

For previous research, we have introduced a new and practical method that enables the

combination of experimental information and the total-energy calculation. FEAR approach

provides us new tool to solve the old problem of structural inversion of diffraction data.

The whole ideal for the method is simple and robust. The convergence of Wright’s cost

function and total energy between two distinct systems. The method is unbiased since that

it starts with a completely random configuration and with a total-energy functional aided

by additional experimental information to reach a stable state. On the other hand, concrete

nanoengineering becomes important and may lead to the future development in cement and

concrete technology. Although nowadays, the technology remains poorly defined, with the

combination of experimental, numerical, and theoretical approaches, we can explore new

method to characterize how the nanoscale structure of concrete can be tuned to design

concretes with wanted macroscopic properties, or even reduce the carbon emission98.
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