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An electrostatically suspended contactless platform✩

Michael Andonian, Robert T. M’Closkey ∗
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A R T I C L E I N F O
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A B S T R A C T

Electrostatic suspension of a silicon disk with explicit control of the lateral translational degrees-of-freedom is
reported. The transduction subsystem configures electrode pairs to exert electrostatic forces on the disk and
to also measure differential capacitances related to the disk position. Disk sidewall forcing electrodes are not
necessary to control the disk’s lateral position because tilting the disk relative to the plane of the electrodes
exerts lateral forces on the disk. Despite the fact that the disk’s lateral and angular degrees-of-freedom are
strongly coupled, the system is not strongly stabilizable using only the disk’s vertical position and tilt estimates
derived from electrode–disk gap measurements. Nevertheless, a stabilizing controller is proposed and lateral
position measurements are added for regulating the disk’s in-plane position. Extensive experimental results
corroborate the model and analysis.
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1. Introduction

This paper describes the fabrication, modeling, analysis, and test-
ing of a system that electrostatically suspends a silicon disk situated
between two sets of electrodes. The rigid body motion of the disk is con-
trolled with the exception of yaw as this variable is not observable with
the electrode arrangement. Electrostatically levitated structures in the
context of suspended proof masses for sensors have been reported in [1–
4], however, the spherical proof masses described in these references
only require stabilization of three translational degrees-of-freedom. It
is demonstrated in the present paper how the stabilization problem
significantly differs for the disk since the three translational degrees-
of-freedom are strongly coupled to the two tilt degrees-of-freedom.
Furthermore, the system presented herein does not rely on fringe field
forces to passively stabilize the lateral degrees-of-freedom.

Contactless manipulation of disks has been demonstrated in [5–7]
for the purpose of handling storage media. The disks’ lateral degrees-
of-freedom were not explicitly modeled and in practice are passively
stabilized by fringe-field electrostatic forces which tend to center the
disk under the electrodes. In [8] it was reported how shifts in the
resonant frequencies of LC circuits in which the capacitances are es-
tablished by the electrode–plate gaps can be exploited to levitate a
square plate. This approach has the advantage of requiring no explicit
feedback control, however, like the prior references, it relies on passive
centering of the plate’s lateral translational degrees of freedom. The
electrode dimensions for the system reported in this paper do not

✩ This paper was recommended for publication by Associate Editor Jason J. Gorman.
∗ Corresponding author.
E-mail addresses: andonian23@g.ucla.edu (M. Andonian), rtm@seas.ucla.edu (R.T. M’Closkey).

exert strong fringe-field forces on the disk and so the lateral degrees-
of-freedom must be stabilized by the feedback controller. Including
the lateral degrees-of-freedom in the analysis reveals strong coupling
to the tilt, or angular, disk variables. From an analytical perspective,
stabilization of the disk’s vertical and angular variables also stabilizes
its lateral variables, however, in practice, regulation of the disk’s lateral
position requires direct measurements of these quantities. This is clearly
established in the analysis of the model and the experimental results.
The lateral degrees-of-freedom of the suspended ring gyro reported
in [9] are stabilized via in-plane electrodes. These electrodes constrain
the permissible lateral motion of the ring, however, this was not a
limitation for the proposed application.

One intended application of this research is a platform for studying
the dynamics of micro-scale systems in which system-substrate contact
has been eliminated. An example is the planar MEMS resonator re-
ported in [10]. Suspension of the resonator would provide controllable
and repeatable resonator boundary conditions. The transduction system
described herein can scale to accommodate such resonators: a platform
approximately 1 cm in diameter would require gaps of 2-3 μm to
preserve the same electrode–disk capacitances (77 pF) as the system
reported in this paper.

The transduction system is modeled after the approach used in the
North American Aviation Electrostatically Levitated Gyro (ESG) [1,2].
This approach configures the electrodes with transformers in order to
measure differential capacitances related to the disk position. The same
https://doi.org/10.1016/j.mechatronics.2021.102685
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Fig. 1. View of the glass plates and electrodes for suspending the silicon disk. The disk
is 8.2 cm in diameter. Spacers between the glass plates are used to set the electrode–disk
gaps to be 134 μm when the disk is centered between, and parallel to, the electrode
sets.

electrodes are also used to exert the controlled electrostatic forces on
the disk. By using a given pair of electrodes as both a capacitive pick-
off and an electrostatic forcer, the measured capacitance is maximized
and the voltages required for controlled suspension are minimized for
a given electrode size. While this dual function of the electrodes re-
duces the complexity of the electronics and system design, considerable
‘‘feedthrough’’ is produced from the control signal to measurements of
the electrode–disk gaps. This feedthrough must be removed from the
measurements prior to implementing the controllers. Compensation in
the ESG was achieved with a parallel ‘‘model transformer’’ –essentially
an analog feedforward filter based on using matched transformers with
fixed capacitances representing the electrode-proof mass capacitance
when the proof mass is centered. In the present paper, a filter imple-
mented in the DSP achieves the desired cancellation of the feedthrough.
The modeling paradigm for the transduction and the feedforward com-
pensation approaches were developed in [11,12] and are extended to
the system presented in this paper.

The paper is organized as follows: Section 2 describes the geom-
etry and electrical interface of the electrode–disk system; Section 3
briefly discusses fabrication; Section 4 develops and analyzes the sys-
tem model; Section 5 addresses controller design; Section 6 presents the
experimental results and validates the modeling paradigm; Section 7
concludes the paper.

2. System description

2.1. Electrode and disk geometry

The electrode–disk arrangement is shown in Fig. 1. The silicon disk
diameter is 8.2 cm and its thickness is 400 μm. The electrode patterns on
the top and bottom glass plates are identical. The plates are assembled
so that they are parallel and an electrode on the top plate is aligned
with a mirror-image electrode on the bottom plate. When the disk is
uniformly centered between the sets of electrodes there is an electrode–
disk gap of approximately 134 μm between the top of the disk and top
electrode set, and a 134 μm gap between the bottom of the disk and
the bottom electrode set. Additional details are given in the Appendix.
The schematic in Fig. 2 identifies the electrodes and shows an exploded
view of the assembly (the electrode–disk gaps are not to scale). The
four pie-shaped primary electrodes are labeled 1 through 4 for the top
set and 11 through 14 for the bottom set. The primary electrodes are
grouped into four pairs: the electrodes immediately facing each other
(with the disk between them) form one pair, e.g., 1 and 11 form one
primary pair. The primary pairs exert controlled electrostatic forces
on the disk and also measure differential electrode–disk capacitances.

The capacitance measurements are related to the electrode–disk gaps a
Fig. 2. View of the electrode configuration and disk. The primary electrodes are
abeled 1, 2, 3 and 4 for the top electrode set, and 11, 12, 13 and 14

for the bottom electrode set. The lateral electrodes are labeled 5, 15, 6 and
16. Note that a single lateral electrode has an element on both the top and
ottom. The disk center of mass is displaced from the inertial 𝑋-𝑌 -𝑍 frame.

ssociated with each primary pair and can be used to directly estimate
he disk’s center of mass vertical position and the two tilt angles (the
isk is treated as a rigid body). It will be shown that the primary
lectrodes can stabilize the rigid body motion of the disk with the
xception of ‘‘yaw’’ motion about the 𝑍 axis. Yaw is not observable
sing these measurements and so is not controlled.

Lateral motion in the 𝑋-𝑌 plane is also stabilized using only the
rimary electrodes because the lateral and tilt degrees-of-freedom are
oupled in the suspended disk. It is possible, in principle, to control
he lateral position of the disk without lateral measurements, however,
ffective regulation requires direct measurement of these quantities.
o wit, the disk’s position in the 𝑋-𝑌 plane is measured with lateral
lectrodes. In reality there are only four lateral electrodes because
irror image electrodes on the top and bottom plates actually form
single electrode as suggested by the labels in Fig. 2. The lateral

lectrodes are also grouped into (two) pairs with antipodal electrodes
reating a pair, e.g., 5 and 15 form a lateral pair, and 6 and 16
orm the second pair. A lateral pair provides a differential capacitance
easurement proportional to the lateral position of the disk relative to

he pair, e.g., 5 and 15 measure disk displacement in the 𝑋 coordinate
irection. The lateral electrode configuration also largely rejects the
isk’s vertical and tilting rigid body motion.

The differential capacitance measurements provide convenient null
ositions: if all differential capacitances of the primary pairs are zero
hen the disk is parallel to the electrodes with uniform and equal
aps between the disk and primary electrodes (this assumes an ideal
ransformer model with no parasitic capacitance; in practice, there
xist measurement offsets, but these are easily removed). Similarly, if
he differential capacitances of the lateral pairs are zero then the disk
s symmetrically centered relative to the lateral electrodes. Deviation
rom the null positions generate non-zero measurements that are acted
pon by the controller.

The diameter spanned by the primary electrodes is smaller than the
isk diameter and consequently when the disk is near its null position
he in-plane forces exerted on the disk by the primary electrodes’ elec-
rical fringe fields are, in a practical sense, zero. The lateral electrodes

re operated at lower potentials and their fringe field forces are not 80



M. Andonian and R.T. M’Closkey

1
2
3
4
5
6
7

8

9
10
11
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73

r 74
75

p 76
F 77
o 78
T 79
t 80
T 81
t 82
t 83
s 84
i 85
T 86
{ 87

3 88

89
e 90
o 91
r 92
l 93
b 94
e 95
d 96
t 97
o 98
a 99
b 100
s 101
m 102
modeled. It is possible to exert in-plane forces on the disk, however, this
requires that the disk be tilted relative to the plane of the electrodes:
the disk is an equipotential body so the field lines are normal to the
disk’s top and bottom surface; if the disk is titled to be non-parallel
to the primary electrodes, the electrostatic forces exerted on the disk
will have a non-zero in-plane component. It will be shown how this
property can be exploited to control the disk’s lateral position.

2.2. Interface to electrodes

The pairing of primary electrodes is achieved with transformers as
illustrated in Fig. 3. A given primary pair is connected to its trans-
former’s primary leads. The transformer’s primary windings have equal
inductances connected at the center tap (ct). The center tap is driven
with a sinusoidal current

𝑖ct(𝑡) = 𝑎ct cos
(

𝜔0𝑡
)

,

where 𝑎ct is the (constant) amplitude and 𝜔0 is the carrier frequency. An
auxiliary transformer is connected to the center taps of two transform-
ers linked to two primary electrode pairs. In this configuration, current
flowing onto the disk through one center tap is pulled off through
the ‘‘adjacent" center tap as indicated in Fig. 3. Thus, if the disk is
initially at ground potential, it is maintained at ground potential even
when suspended. By maintaining the disk at ground, any difference
between the capacitances in a pair of primary electrodes will produce
a sinusoidal voltage drop across the transformer’s secondary windings.
For example, the primary pairs 𝑘 and 1𝑘, 𝑘 = 1, 2, 3, 4, are associated
with capacitances 𝐶𝑘 and 𝐶1𝑘; if 𝐶𝑘 = 𝐶1𝑘, indicating that the average
gap between the disk and 𝑘 is equal to the average gap between the
disk and 1𝑘, then 𝑣s,𝑘 = 0, where 𝑣s,𝑘 is the ‘‘sense voltage’’ across
the secondary winding associated with the 𝑘th set of paired electrodes.
On the other hand, if the average gaps are not equal (𝐶𝑘 ≠ 𝐶1𝑘)
then 𝑣s,𝑘 is sinusoidal with frequency 𝜔0. Synchronous demodulation
of 𝑣s,𝑘 yields a signal proportional to the imbalance in the electrode–
disk gap associated with 𝑘 and 1𝑘. The phase of the demodulator is
chosen to maximize the component of 𝑣s,𝑘 due to disk displacement
from its null position. The center tap current provides the master phase
against which all sinusoidal signals are referenced. Furthermore, the
inductances of the transformer primary windings are large enough such
that the nominal inductor–capacitor resonant frequency is less than the
carrier frequency so, to first order, the center tap current is evenly split
between the primary inductances in a given transformer independent
of the electrode–disk capacitances. This effectively controls the charge
on the electrodes and softens the pull-in due to the electrostatic forces
because as an electrode–disk gap is decreased, the voltage potential
between them is also decreased. More details on controlling charge in
a parallel-plate actuator is discussed in [13].

The transformers are also used for exerting controlled electrostatic
forces on the disk. The ‘‘control potential’’ 𝑣c,𝑘(𝑡) = 𝑎c,𝑘(𝑡) cos(𝜔0𝑡+𝜙𝑐,𝑘)
is applied at resistor 𝑅c that is in series with the transformer secondary
load as shown in Fig. 3. This produces a differential sinusoidal potential
on each electrode in a primary electrode pair, i.e., electrode potentials
arising from 𝑣c,𝑘 invariably have a 180◦ phase difference due to the
magnetic coupling within the transformer windings. In contrast, the 𝑖ct-
induced potentials on both electrodes are in-phase with one another.
The superposed effects of 𝑖ct and 𝑣c,𝑘 are sinusoidal with frequency
𝜔0 and so the control signal phase 𝜙c,𝑘 is selected so the 𝑣c,𝑘-induced
component on electrode 𝑘 is in-phase with the 𝑖ct-induced voltage
and therefore the 𝑣c,𝑘-induced component of 1𝑘 is 180◦ out of phase
with the 𝑖ct-induced component. When 𝜙c,𝑘 is chosen in this manner,
changing 𝑎c,𝑘 produces a differential change in the amplitudes of the sinu-
soidal potentials on the paired electrodes while maintaining the disk at
ground potential. This creates the largest differential electrostatic force
on the disk for a given value of 𝑎c,𝑘 because the electrostatic forces are
proportional to the square of the electrode voltages. In fact, as far as

the disk is concerned, the mean square value of the electrode voltages d
Fig. 3. Circuit schematic illustrating the connection between the transformers and the
1-11 and 2-12 pairs of primary electrodes. The corresponding capacitances developed
between the electrodes and disk are also shown. The disk is not physically grounded,
however, the notation is used to convey that the disk is at ground potential due to the
coordination of the center tap currents. The connection to 3-13 and 4-14 is identical.

over a certain bandwidth creates ‘‘effective’’ forces can be used as a
proxies for the exact electrostatic forces because the disk acts as a low-
pass filter. This fact is exploited in deriving the linear, time-invariant
discrete-time model of the system described in Section 4.4.

The amplitude-modulated sinusoids 𝑣s,𝑘 and 𝑣c,𝑘 are related to base-
band signals that are sampled and manipulated by the discrete-time
controller. The modulation/demodulation shown in Fig. 4 is accom-
plished with analog electronics. A DSP implements the feedforward
filters, coordinate transformations, and feedback compensation. The
‘‘baseband’’ signals {𝑢1, 𝑢2, 𝑢3, 𝑢4} (input) and {𝜁1, 𝜁2, 𝜁3, 𝜁4} (output)
epresent an electro-mechanical model of the suspended disk.

The lateral electrodes, 5, 15, 6, and 16, measure lateral dis-
lacements of the disk and are connected to transformers according to
ig. 5. In this configuration, lateral translations of the disk change the
verlapping areas between the disk and the paired lateral electrodes.
he voltage drop across the transformer secondary is proportional
o differential capacitance arising from the differential area change.
hese electrodes are not biased by a control voltage and therefore
heir potentials are dictated by the potential established by the center
ap current and lateral electrode–disk capacitances. Although the same
ymbol is used to denote the center tap current for the lateral electrodes
t is typically 10% of the current supplied to the primary electrodes.
he lateral electrodes provide the additional baseband measurements
𝜁5, 𝜁6}.

. Electrode and disk fabrication

Two 3 mm thick glass substrates are patterned to produce the
lectrodes and wirebond pads. These patterns consist of a metal stack
f Ti, Ag, and Au, with thicknesses of 10 nm, 2 μm, and 200 nm,
espectively. The wire bond pads are used to connect the transformer
eads to the electrodes. To protect the electrodes and disk from voltage
reakdown, a 20 μm layer of photoresist is hard baked on top of the
xposed electrodes. This protective layer significantly increases the
ielectric strength between the disk and electrodes and also ensures
he disk never comes in contact with the electrodes. The disk is etched
ut of a 400 μm thick, double-side polished silicon wafer. A layer of
luminum is sputtered onto the disk to create an electrically conductive
ody so that the disk can be modeled as an equipotential body. The de-
ired electrode–disk gaps are created with precision spacers. Alignment
arkers on both glass plates assist with the assembly. The relevant

imensions are given in the Appendix. 103
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lectrodes use a similar demodulation scheme, however, since no control signals are associated with the lateral electrodes, the modulation path is not present for the lateral
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Fig. 5. Pairing of lateral electrodes for sensing the position of the disk in the 𝑋-𝑌
plane. Note 5 is antipodal to 15, and 6 is antipodal to 16, as shown in Fig. 2.

4. Model

The suspended disk dynamics and the circuit equations are cou-
pled by the electrode–disk capacitances and corresponding electrostatic
forces. The following are assumed in deriving the equations of motion:

1. The electrostatic forces exerted on the disk by the lateral elec-
trodes are neglected. These electrodes are significantly smaller
than the primary electrodes and are operated at lower potentials.

2. The disk is assumed to be thin so calculation of electrode–disk
gaps is determined by the deflection of disk center plane. Small
angle approximations are used for defining the gaps.

3. The electrode–disk capacitances are defined using a simple par-
allel plate model in which the plate separation is taken to be the
electrode–disk distance measured normally from the centroid of
the electrode to the disk surface.

4. The electrostatic forces exerted on the plate are computed using
the same parallel plate model as the capacitances.

5. Small-angle approximations are used when deriving the force
components in the inertial frame and the moment expressions
for the body-fixed frame.

These assumptions are quite reasonable since the disk is constrained to
very small rotations and its diameter-to-thickness ratio is approximately
100. The equations of motion for the disk and electrical subsystem
are derived in Sections 4.1 and 4.2. The model is linearized about an
equilibrium point for the disk and yields a linear, time-periodic model
in Section 4.3. An approximation technique is proposed in Section 4.4
that produces a linear, time-invariant discrete-time model that is used
for system analysis and control design.
Fig. 6. The kinematic variables used to define the disk position relative the inertial
𝑋𝑌𝑍-frame. Translations of the disk centroid relative to the 𝑋𝑌𝑍-frame are denoted
by {𝑥, 𝑦, 𝑧} while the rotation matrix 𝑅 specifies the orientation of the disk-fixed
𝑋𝑏𝑌𝑏𝑍𝑏-frame using Euler angles 𝜃 and 𝜑.

4.1. Disk equations

The disk kinematics are parameterized by {𝑥, 𝑦, 𝑧} and the Euler
angles {𝜑, 𝜃} (Fig. 6). Yaw motion is ignored and it is assumed that
o gyroscopic forces are present. The origin of the 𝑋-𝑌 -𝑍 inertial
eference frame is fixed at the centroid of the electrode sets. The disk’s
ody-fixed frame, 𝑋𝑏-𝑌𝑏-𝑍𝑏, has its origin at the disk center of mass and
s defined to be coincident with the inertial frame when the disk is in
ts equilibrium configuration (the values of the generalized coordinates
re equal zero). Translations of the disk centroid along the principal
xes 𝑋, 𝑌 , and 𝑍 are denoted by 𝑥, 𝑦, and 𝑧, respectively, while the
uccessive rotations about the 𝑋𝑏-axis and 𝑌𝑏-axis are given by the 𝜃-𝜑

Euler angle sequence. The body-fixed axes 𝑋𝑏 and 𝑌𝑏 remain in the disk
plane. To compute capacitances and electrostatic forces, electrode–disk
gaps must be defined. The change in an electrode–disk gap when the
disk is not in its equilibrium configuration is determined by computing
the 𝑍-displacement of the disk plane (defined by the 𝑋𝑏-𝑌𝑏 plane) from
the 𝑋-𝑌 plane along the line through the centroids of paired electrodes
— see Fig. 7. A positive change in gap is defined when the electrode
centroid projected onto the 𝑋𝑏-𝑌𝑏 plane is displaced in a positive 𝑍
sense relative to the 𝑋-𝑌 plane. There is only one gap change defined
for a given set of paired electrodes. The change in gaps are given by

𝑧1 = 𝑧 +
(

𝑟0 + 𝑥
)

𝜑 − 𝑦𝜃

𝑧2 = 𝑧 −
(

𝑟0 + 𝑦
)

𝜃 + 𝑥𝜑

𝑧3 = 𝑧 −
(

𝑟0 − 𝑥
)

𝜑 − 𝑦𝜃

𝑧4 = 𝑧 +
(

𝑟0 − 𝑦
)

𝜃 + 𝑥𝜑.

(1)

where 𝑟0 represents the radius of a circle in the electrode plane that
interpolates the primary electrodes’ centroids. Thus, the 1-disk gap
is given by 𝑧0 − 𝑧1, the 11-disk gap is given by 𝑧0 + 𝑧1, the 2-
disk gap is given by 𝑧0 − 𝑧2, and so forth. Similarly, the electrostatic
forces are replaced with point forces denoted

{

𝐹1,… , 𝐹4

}

for the top

electrode set and
{

𝐹11,… , 𝐹14

}

for the bottom electrode set (refer to
Figs. 2 and 7). The magnitude of these forces are indicated in the same
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Fig. 7. Side views of the disk in relation to the electrode configuration (not to scale).
The disk is assumed to be thin for the purpose of determining the locations of the
electrostatic forces acting on it.

manner, however, the vector notation is dropped, e.g., 𝐹1 represents the
magnitude of 𝐹1. Despite the fact that a parallel plate model is used to
determine the magnitude of the electrostatic forces, the point forces act
normal to disk surface since the disk is assumed to be an equipotential
body. Thus, when the 𝑋𝑏-𝑌𝑏 is not coplanar with 𝑋-𝑌 , forces in the

and 𝑌 directions are developed from the electrostatic forces. The
lectrostatic forces from the lateral electrodes are not modeled. The
apacitances are determined from a parallel plate model using the
ffective electrode–disk gaps

𝐶𝑘 (𝑞) =
𝜖0𝜖𝑟𝐴p

𝑧0 − 𝑧𝑘
𝑘 = 1,… , 4, (2)

1𝑘 (𝑞) =
𝜖0𝜖𝑟𝐴p

𝑧0 + 𝑧𝑘
𝑘 = 1,… , 4. (3)

here 𝐴p represents the primary electrode area. The area is fixed since
t is assumed the disk is always interposed between the electrodes,
.e. the electrodes in a primary pair are never exposed to each other.
n the disk’s equilibrium configuration, zero differential capacitance is
easured by the transformer secondary voltage drop because 𝐶𝑘(0) =
1𝑘(0).

The magnitudes of the electrostatic forces associated with a given
rimary electrode pair 𝑘 and 1𝑘 are similarly computed assuming a
arallel plate model,

𝐹𝑘 =
𝜖0𝜖𝑟𝐴p

2(𝑧0 − 𝑧𝑘)2
𝑣2𝑘

𝐹1𝑘 =
𝜖0𝜖𝑟𝐴p

2(𝑧0 + 𝑧𝑘)2
𝑣21𝑘.

(4)

Lagrange’s method yields the disk equations of motion,

𝑚𝑥̈ = 𝑄𝑥

𝑚𝑦̈ = 𝑄𝑦

𝑚𝑧̈ + 𝑚𝑔 = 𝑄𝑧 − 𝑐𝑧𝑧̇

(𝐽𝑥𝑦 cos2 𝜑 + 𝐽𝑧 sin
2 𝜑)𝜃̈ + 𝜑̇ sin(2𝜑)(𝐽𝑧 − 𝐽𝑥𝑦)𝜃̇ = 𝑄𝜃 − 𝑐𝜃 𝜃̇

𝐽𝑥𝑦𝜑̈ + 1
2
sin(2𝜑)(𝐽𝑥𝑦 − 𝐽𝑧)𝜃̇2 = 𝑄𝜑 − 𝑐𝜑𝜑̇

(5)

where 𝑚 and {𝐽𝑧, 𝐽𝑥𝑦} represent the disk mass and moments of inertia,
respectively. The terms 𝑐 , 𝑐 , and 𝑐 represent squeeze-film damping
𝑧 𝜃 𝜑
between the disk and the electrodes. The damping estimates are taken
from [14]. The generalized forces associated with the generalized
coordinates are computed assuming small angles. The details of these
routine calculations are not given, however, they yield,

𝑄𝑥 = 𝜑
4
∑

𝑘=1
𝐹𝑘 − 𝐹1𝑘

𝑄𝑦 = − 𝜃
4
∑

𝑘=1
𝐹𝑘 − 𝐹1𝑘

𝑄𝑧 =
4
∑

𝑘=1
𝐹𝑘 − 𝐹1𝑘

𝑄𝜃 = − (𝑟0 + 𝑦)(𝐹2 − 𝐹12) + (𝑟0 − 𝑦)(𝐹3 − 𝐹13) − 𝑦
∑

𝑘=1,3
𝐹𝑘 − 𝐹1𝑘

𝑄𝜑 = (𝑟0 + 𝑥)(𝐹1 − 𝐹11) − (𝑟0 − 𝑥)(𝐹3 − 𝐹13) + 𝑥
∑

𝑘=2,4
𝐹𝑘 − 𝐹1𝑘

A distinctive feature of these equations is the fact that forces in the
lateral directions are only produced when the disk angles are non-
zero. Thus, disk motion in the 𝑋-𝑌 plane may be controlled by tilting
the disk. Similarly, translation in the 𝑋-𝑌 plane changes the moments
applied to the disk and therefore affects the disk angles. Thus, the
lateral and rotational components are intrinsically coupled.

Consolidating (5) and the forces and moments, the disk equations of
motion can be represented as first-order differential equations the form

𝑑
𝑑𝑡

[

𝑞
𝑞̇

]

=
[

𝑞̇
𝑓 (𝑞, 𝑞̇, 𝑤)

]

(6)

where the kinematic variables are gathered in the vector 𝑞 = [𝑥, 𝑦, 𝑧,
𝜃, 𝜑]𝑇 , 𝑤 is the vector of transformer variables defined in Section. 4.2,
nd 𝑓 (𝑞, 𝑞̇, 𝑤) is the vector function of the normalized forces and torques
rom (5).

.2. Electrical subsystem equations

The transformer-capacitance modeling approach has been exten-
ively described elsewhere and is only briefly reviewed. Figs. 3 and

show schematics to clarify how the transformers are connected to
he electrodes in Figs. 2. Let 𝑤𝑘 be the vector of currents and volt-
ges associated with the electrode pair {𝑘, 1𝑘} and its corresponding

transformer. Using the models from [11,12], the equations of motion
are
𝑀𝑘(𝑞)𝑤̇𝑘 = 𝐴𝑘𝑤𝑘 ± 𝐵1𝑘𝑖ct + 𝐵2𝑘𝑣c,𝑘

𝑣s,𝑘 = 𝐽𝑘𝑤𝑘
𝑘 = 1,… , 4 (7)

for the primary electrode pairs, and

𝑀𝑘(𝑞)𝑤̇𝑘 = 𝐴𝑘𝑤𝑘 ± 0.1𝐵1𝑘𝑖ct

𝑣s,𝑘 = 𝐽𝑘𝑤𝑘
𝑘 = 5, 6 (8)

for the lateral electrodes. As discussed in [11], these equations are
overdetermined but convenient to use when describing the transform-
ers. The ‘‘mass matrices’’ 𝑀𝑘(𝑞) depend on the disk coordinates 𝑞
because the disk position establishes the electrode–disk capacitances,
however, the 𝑀𝑘 are not full rank. Furthermore, the secondary voltages
𝑣s,𝑘 are states in the extended models and so their coupling to 𝑣c,𝑘 is not
evident in these expressions. All matrices and vectors are compatibly
dimensioned. The ‘‘±’’ associated with 𝐵1𝑘 is a consequence of a single
current source supplying the center tap currents to two transformers.
For example, in Fig. 3 the current source, which is itself a transformer
that is not shown for the sake of clarity, supplies current to electrode
pairs {1, 11} and {2, 12}. Thus, 𝐵11 would be assigned ‘‘+ ’’, whereas
𝐵12 would be assigned ‘‘−’’ due to the change in current polarity. The
lateral electrode 𝐵1𝑘 matrices have an additional 0.1 factor because
the center tap current supplied to the lateral electrode transformers is
one tenth that of the primary electrode transformers. Furthermore, the
 53
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lateral electrode voltages are not regulated with a control signal so 𝐵2𝑘,
𝑘 = 5, 6, are not present in (8). The transformer subsystems in (7) and
(8) are consolidated into a single state-space representation

𝑀(𝑞)𝑤̇ = 𝐴𝑤 + 𝐵1𝑖ct + 𝐵2𝑣c

𝑣s = 𝐽𝑤,
(9)

where

𝑀(𝑞) = diag(𝑀1,𝑀2,𝑀3,𝑀4,𝑀5,𝑀6),

𝐴 = diag(𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6),

𝐽 = diag(𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6),

𝐵1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵11
−𝐵12
𝐵13

−𝐵14
0.1𝐵15

−0.1𝐵16

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵21 0 0 0
0 𝐵22 0 0
0 0 𝐵23 0
0 0 0 𝐵24
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and where 𝑤 and the vectors of amplitude-modulated control voltages
and sense voltages are defined

𝑤 =
⎡

⎢

⎢

⎣

𝑤1
⋮
𝑤6

⎤

⎥

⎥

⎦

, 𝑣c =
⎡

⎢

⎢

⎣

𝑣c,1
⋮
𝑣c,4

⎤

⎥

⎥

⎦

, 𝑣s =
⎡

⎢

⎢

⎣

𝑣s,1
⋮
𝑣s,6

⎤

⎥

⎥

⎦

The notation ‘‘diag’’ indicates a block-diagonal matrix (not necessarily
square) whose diagonal blocks are given by the ordered matrices in the
argument (the matrices may be scalar-valued, too). The ‘‘0’’ partitions
in 𝐵2 are appropriately dimensioned matrices of zero elements.

Additional states are contributed by the analog anti-alias filters and
DAC smoothing filters shown in Fig. 4. The DAC smoothing filter trans-
fer functions are denoted 𝐻sm. The output of the smoothing filters are
the signals 𝑎c,𝑘. The 𝑣c,𝑘 signals are created by sinusoidally modulating
𝑎c,𝑘,

𝑣c,𝑘 = 𝑎c,𝑘 cos(𝜔0𝑡 + 𝜙𝑢,𝑘), 𝑘 = 1,… , 4 (10)

where the phases are selected to achieve the maximum change in dif-
ferential amplitude of the {𝑘, 1𝑘} electrode potentials. The smoothing
filters are identical and are collectively modeled by the continuous-time
state-space matrices (𝐴sm, 𝐵sm, 𝐶sm, 0) with state vector 𝑞sm, input 𝑎c =
[𝑎c,1, 𝑎c,2, 𝑎c,3, 𝑎c,4]𝑇 , and output 𝑣c. The diagonal matrix of modulating
sinusoids is defined,

c = diag
(

cos(𝜔0𝑡 + 𝜙𝑢,1), cos(𝜔0𝑡 + 𝜙𝑢,2), cos(𝜔0𝑡 + 𝜙𝑢,3), cos(𝜔0𝑡 + 𝜙𝑢,4)
)

so 𝑣c = c𝑎c.

Demodulating and filtering 𝑣s,𝑘 removes the 2𝜔0 harmonic com-
ponents. The filtering is accomplished using identical anti-alias filters
whose transfer functions are denoted 𝐻aa. The inputs to the anti-alias
filters are

𝑎s,𝑘 = 𝑣s,𝑘 cos(𝜔0𝑡 + 𝜙s,𝑘), 𝑘 = 1,… , 6, (11)

The outputs of the anti-alias filters are the baseband signals 𝜁𝑘 sampled
by the DSP. The anti-alias filters are gathered into a single state-
space representation (𝐴aa, 𝐵aa, 𝐶aa, 0) with state vector 𝑞aa, input 𝑎s =
[𝑎s,1,… , 𝑎s,6]𝑇 , and output 𝜁 = [𝜁1,… , 𝜁6]𝑇 . The diagonal matrix of
sinusoids that demodulate 𝑣𝑠 is defined

s = diag
(

cos(𝜔0𝑡 + 𝜙𝑠,1), cos(𝜔0𝑡 + 𝜙𝑠,2), cos(𝜔0𝑡 + 𝜙𝑠,3),
)

cos(𝜔0𝑡 + 𝜙𝑠,4), cos(𝜔0𝑡 + 𝜙𝑠,5), cos(𝜔0𝑡 + 𝜙𝑠,6)
so 𝑎s = s𝑣s. Collectively, the full coupled system is governed by

𝑞̇sm = 𝐴sm𝑞sm + 𝐵sm𝑢𝑐
𝑎c = 𝐶sm𝑞sm

𝑀(𝑞)𝑤̇ = 𝐴𝑤 + 𝐵1𝑖ct + 𝐵2c𝑎c

𝑣s = 𝐽𝑤

𝑞̇aa = 𝐴aa𝑞aa + 𝐵aas𝑣s

𝜁 = 𝐶aa𝑞aa

𝑑
𝑑𝑡

[

𝑞
𝑞̇

]

=
[

𝑞̇
𝑓 (𝑞, 𝑞̇, 𝑤)

]

.

(12)

.3. Linearization

The governing equations are overdetermined and nonlinear, how-
ver, a periodic solution exists in which mean-value of the electrostatic
orces and gravitational force sum to zero in the 𝑍 direction and exert
ero net moment on the disk. Such a solution can be found when the
isk’s kinematic parameters are zero, i.e. 𝑞 = 0, 𝑞̇ = 0. In this case,
he capacitances associated with each electrode pair are equal, that
s, 𝐶𝑘 = 𝐶1𝑘, 𝑘 = 1,… , 6. The center tap currents establish steady-
tate sinusoids for all the voltages and currents. The elements of 𝑢c are

adjusted such that mean value of the electrostatic forces balance the
force due to gravity. The offset of 𝑢𝑐 at this condition is denoted 𝑢̄. The
sinusoidal steady-state response of the transformer variables, denoted
𝑤0, is computed from

𝑀(0)𝑤̇0 = 𝐴𝑤0 + 𝐵1𝑖ct − 𝐵2𝑐𝐶sm𝐴−1
sm𝐵sm𝑢̄.

where 𝑖ct = 𝑎ct cos𝜔0𝑡. The disk is considered at equilibrium because
the mean values of the elements of 𝑓 (0, 0, 𝑤0) are equal to zero. In
this analysis the 2𝜔0 components of the electrostatic forces are ignored
because, as far as the kinematic variables are concerned, the disk acts
like low pass filter. The steady-state solution of the anti-alias filter
equations at equilibrium is denoted 𝑞aa and satisfies

̇̄aa = 𝐴aa𝑞aa + 𝐵aas𝐽𝑤0.

The filter output 𝜁 = 𝐶aa𝑞aa is essentially constant because the 2𝜔0
erms are severely attenuated.

Linear variational equations can be determined by introducing per-
urbation variables relative to the steady-state values:

𝑢𝑐 = 𝑢̄ + 𝑢, 𝑞 = 0 + 𝛿𝑞 ,

𝑞sm = −𝐴−1
sm𝐵sm𝑢̄ + 𝛿sm, 𝑞̇ = 0 + 𝛿𝑞̇ ,

𝑤 = 𝑤0 + 𝛿𝑤, 𝑞aa = 𝑞aa + 𝛿aa.

(13)

The mass matrix, 𝑀 , is continuously differentiable in a neighborhood of
= 0 and is represented (following elimination of higher order terms)

s

𝑀 (𝑞) =𝑀(0) + 𝜕𝑀
𝜕𝑥

(0)
⏟⏟⏟

𝑀𝑥

𝛿𝑥 +
𝜕𝑀
𝜕𝑦

(0)
⏟⏟⏟

𝑀𝑦

𝛿𝑦

+ 𝜕𝑀
𝜕𝑧

(0)
⏟⏟⏟

𝑀𝑧

𝛿𝑧 +
𝜕𝑀
𝜕𝜃

(0)
⏟⏟⏟

𝑀𝜃

𝛿𝜃 +
𝜕𝑀
𝜕𝜑

(0)
⏟⏟⏟

𝑀𝜑

𝛿𝜑
(14)

where 𝑀𝑥, 𝑀𝑦, 𝑀𝑧, 𝑀𝜃 , and 𝑀𝜑 are defined as shown. Substitut-
ing (13) and (14) into (12) and retaining terms linear in the
perturbation variables yields

𝛿̇sm = 𝐴sm𝛿sm + 𝐵sm𝑢

𝑀(0)𝛿̇𝑤 = 𝐴𝛿𝑤 + 𝐵2c𝐶sm𝛿sm

−
(

𝑀𝑥𝛿𝑥 +𝑀𝑦𝛿𝑦 +𝑀𝑧𝛿𝑧 +𝑀𝜃𝛿𝜃 +𝑀𝜑𝛿𝜑
)

𝑤̇0

𝛿̇𝑞 = 𝛿𝑞̇
𝛿̇𝑞̇ = ∇𝑤𝑓 (0, 0, 𝑤0)𝛿𝑤 + ∇𝑞𝑓 (0, 0, 𝑤0)𝛿𝑞 + ∇𝑞̇𝑓 (0, 0, 𝑤0)𝛿𝑞̇
𝛿̇aa = 𝐴aa𝛿aa + 𝐵aas𝐽𝛿𝑤

(15)
𝜁 = 𝐶aa𝑞aa + 𝐶aa𝛿aa
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where ∇𝑤𝑓 (0, 0, 𝑤0), ∇𝑞𝑓 (0, 0, 𝑤0), ∇𝑞̇𝑓 (0, 0, 𝑤0) are the gradients 𝑓
ith respect the variables 𝑤, 𝑞, and 𝑞̇.

The mass matrix 𝑀(0) is not full rank. The algebraic constraints
re eliminated using the method discussed in [11]. The variable 𝛿1
epresents the ‘‘essential’’ states associated with the transformer. The
inal time-periodic linear equations that describe the system in a neigh-
orhood of the equilibrium solution are

̇sm = 𝐴sm𝛿sm + 𝐵sm𝑢 (16)

𝛿̇1 = 𝛴−1
1 𝑈𝑇

1 (𝐼 − 𝐴𝑊 )
[

𝐴𝑉1𝛿1 + 𝐵2c𝐶sm𝛿sm (17)

−
(

𝑀𝑥𝛿𝑥 +𝑀𝑦𝛿𝑦 +𝑀𝑧𝛿𝑧 +𝑀𝜃𝛿𝜃 +𝑀𝜑𝛿𝜑
)

𝑤̇0

]

(18)

𝛿̇𝑞 = 𝛿𝑞̇ (19)

𝛿̇𝑞̇ = ∇𝑤𝑓 (0, 0, 𝑤0)𝛿𝑤 + ∇𝑞𝑓 (0, 0, 𝑤0)𝛿𝑞 + ∇𝑞̇𝑓 (0, 0, 𝑤0)𝛿𝑞̇ (20)

𝛿̇aa = 𝐴aa𝛿aa + 𝐵aas𝐽𝛿𝑤 (21)

𝜁 = 𝐶aa𝑞aa + 𝐶𝑎𝛿aa (22)

where 𝑈1, 𝑉1 and 𝛴1 are defined from a singular value decomposition
of 𝑀(0),

𝑀(0) =
[

𝑈1 𝑈2
]

[

𝛴1 0
0 0

] [

𝑉 𝑇
1

𝑉 𝑇
2

]

,

and 𝑊 = 𝑉2
(

𝑈𝑇
2 𝐴𝑉2

)−1 𝑈𝑇
2 . It is necessary to express 𝛿𝑤 in terms of 𝛿1,

𝛿𝑤 = (𝐼 −𝑊𝐴)𝑉1𝛿1 −𝑊𝐵2c𝐶sm𝛿sm

+𝑊
(

𝑀𝑥𝛿𝑥 +𝑀𝑦𝛿𝑦 +𝑀𝑧𝛿𝑧 +𝑀𝜃𝛿𝜃 +𝑀𝜑𝛿𝜑
)

𝑤̇0.

The states are merged to the compact representation

𝛿̇ = 𝐴𝛿(𝑡)𝛿 + 𝐵𝛿(𝑡)𝑢

𝜁 = 𝐶𝛿𝛿.
, where 𝛿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿sm
𝛿1
𝛿𝑞
𝛿𝑞̇
𝛿aa

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

The offset in 𝜁 has been dropped since it is removed in practice in any
case. The equations are time-periodic with period 1∕𝜔0.

4.4. Analysis of the linearized model

The stability of (23) is analyzed using the disk and electrical sub-
system parameters given in the Appendix and the following values for
the carrier frequency, center tap currents, and control voltage offset
to establish an equilibrium position for the disk: 𝜔0 = 2𝜋 ⋅ 25 krad/s,
𝑎ct = 15.5mA, and each element of 𝑢̄ is 1.77 V. The anti-alias filters and
smoothing filters are 2-pole Butterworth with 1 kHz corner frequencies.
This produces a system model with 66 states. An approximate time-
invariant model can be derived by noting that the disk acts like a
low-pass filter with regard to the electrostatic forces which rapidly
vary at twice the carrier frequency, i.e. 2𝜔0. Thus, the disk essentially
responds to the mean value of the electrostatic forces so 𝑧, 𝑥, 𝑦,
𝜑, and 𝜃 evolve on slow time scales compared to the currents and
voltages associated with the electrical subsystem. Since the outputs
of (23) are electrical analogs of the disk’s kinematic variables (demon-
strated below), and because there is additional band-limiting due to the
smoothing and anti-alias filters, it is possible to derive an approximate
discrete-time model of the system. First, consider the solution to an
initial value problem for (23),

𝛿(𝑡) = 𝛩(𝑡, 𝑡0)𝛿(𝑡0) + ∫

𝑡

𝑡0
𝛩(𝑡, 𝜏)𝐵𝛿(𝜏)𝑢(𝜏)𝑑𝜏, 𝑡 ≥ 𝑡0, (24)

where 𝛿(𝑡0) is the initial condition represented in the perturbation
variables, and 𝛩(𝑡, 𝑡0) represents the state transition matrix associated
with (23). The ‘‘start time’’ 𝑡0 determines the phase of the time-periodic
steady-state solution about which the linearization is computed. It was

shown in [11,12] that the choice of 𝑡0 has no practical impact on
the subsequent model, thus, it is assumed 𝑡0 = 0 for the remainder
of the analysis. For the experiments described in Section 6, the DSP
implements the control laws with a sample period of 𝑡𝑠 = 1∕5000
second, i.e. the DSP sample rate is five times slower than 𝜔0. Successive
samples at the DSP sample rate can be related using (24)

𝛿((𝑘 + 1)𝑡𝑠) = 𝛩((𝑘 + 1)𝑡𝑠, 𝑘𝑡𝑠)𝛿(𝑘𝑡𝑠)

+ ∫

(𝑘+1)𝑡𝑠

𝑘𝑡𝑠
𝛩((𝑘 + 1)𝑡𝑠, 𝜏)𝐵𝛿(𝜏)𝑢(𝜏)𝑑𝜏,

(25)

where 𝑘 is the integer sample index. Due to the periodicity of (23), the
state transition matrix satisfies 𝛩(𝑝∕𝜔0, 𝑚∕𝜔0) = 𝛩𝑝−𝑚(1∕𝜔0, 0) for any
integers 𝑝, 𝑚 so 𝛩((𝑘+1)𝑡𝑠, 𝑘𝑡𝑠) = 𝛩(𝑡𝑠, 0) = 𝛩5(1∕𝜔0, 0). An approximate
time-invariant system is derived by assuming the control variable, 𝑢,
is slowly varying over the time interval

[

𝑘𝑡𝑠, (𝑘 + 1)𝑡𝑠
]

, in other words,
𝑢(𝜏) is pulled out of the integral and replaced by 𝑢[𝑘] to yield

𝛿[𝑘 + 1] = 𝛷𝛿[𝑘] + 𝛤𝑢[𝑘]

𝜁 [𝑘] = 𝐶𝛿𝛿[𝑘],
(26)

where the notation 𝛿[𝑘] has replaced 𝛿(𝑘𝑡𝑠) and

𝛷 ∶= 𝛩(𝑡𝑠, 0), 𝛤 ∶= ∫

𝑡𝑠

0
𝛩(𝑡𝑠, 𝜏)𝐵𝛿(𝜏)𝑑𝜏. (27)

This analysis yields the four-input/six-output system denoted 𝑃 . The
frequency response of (26) is compared to empirical frequency response
estimates in Section 6 and it is confirmed that the model accurately
captures the disk dynamics. For sampling faster than the carrier, the
method proposed in [12] can be used to generate similar approximate
frequency responses.

5. Controller design

Numerical integration is used to compute 𝛷 and 𝛤 . The open-loop
system has three eigenvalues outside the unit disk,

{1.00128, 1.00140, 1.00140}

with continuous-time approximations 6.4 and 7.0 rad/s. It will be
shown that these eigenvalues can be associated with disk’s vertical
translation (the eigenvalue equal to 1.00128) and its two ‘‘tilt’’ degrees
of freedom (the repeated eigenvalues equal to 1.00140 have geometric
multiplicity two). This confirms that the disk dynamics evolve on a
much slower time scale than the carrier frequency. There are also
two pairs of stable lightly-damped eigenvalues that correspond two
resonant modes with natural frequencies near 0.2 Hz. A neighborhood
of these unstable eigenvalues are shown in Fig. 8.

The frequency response of 𝑃 from the perspective of the input 𝑢1 is
shown in Fig. 9 (the various input–output channels are denoted 𝜁1∕𝑢1,
etc.). Due to the symmetry of the disk and identical transformer models,
a permutation of indices will produce the plant response to the other
inputs, e.g., 𝜁2∕𝑢2 = 𝜁1∕𝑢1. Of particular interest is the presence of the
feedthrough coupling in 𝜁1∕𝑢1 and the other ‘‘diagonal’’ channels. This
coupling is caused by using each primary electrode for actuation and
sensing. The coupling must be reduced to practically stabilize the disk.
When manipulating the analytical model, this can be accomplished by
‘‘freezing’’ the disk dynamics and simply developing another model
relating the input and output signals. In practice, a MIMO FIR filter
is identified from measurements and is used as a feedforward filter
(discussed in greater detail in Section 6). The coupling obscures the
motional response of the disk — removing the feedthrough coupling
reveals true dependence of the electrode–disk gap on the input as
shown in Fig. 9.

A more convenient set of input–output variables is used for con-
trolling the disk. The new input and output variables are defined

{𝑢𝑧, 𝑢𝜑, 𝑢𝜃} and {𝑣𝑧, 𝑣𝜑, 𝑣𝜃 , 𝑣𝑥, 𝑣𝑦}, respectively, and are related to the 89
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Fig. 8. Eigenvalues of 𝛷 (far left) and detail of the unstable poles and zeros associated with the decoupled system transfer functions.
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Fig. 9. Frequency response of 𝑃 associated with input 𝑢1. The 𝜁1 output is shown with
and without the feedthrough. The feedthrough in the 𝜁𝑘∕𝑢𝑙 , 𝑘≠ 𝑙, channels is negligible
as is the feedthrough in the lateral measurement (not shown here).

Fig. 10. The feedforward-compensated and decoupled plant 𝑃 = 𝑀𝑃𝑁 − 𝐻fwd. The
decoupling matrices are defined in Eqs. (29) and (28).

original input–output variables according to Fig. 10 where the matrices
𝑀 and 𝑁 are defined,

𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.5 0.5 0.5 0.5 0 0
1
√

2
0 − 1

√

2
0 0 0

0 − 1
√

2
0 1

√

2
0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(28)

and

𝑁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.5 1
√

2
0

0.5 0 − 1
√

2
0.5 − 1

√

2
0

0.5 0 1
√

2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (29)

These transformations can be explained as follows. After removing
he feedthrough with the feedforward filter 𝐻fwd, summing the com-

pensated gap measurements and dividing by two yields the signal 𝑣𝑧. In
ther words, 𝑣 can be interpreted as the average gap between the disk
𝑧
able 1
cale factors (SF) from model.

𝑧 (μm/V) 𝜃, 𝜑 (mrad/V) 𝑥, 𝑦 (mm/V)

SF 16.5 1.03 2.2

and electrodes. Similarly, since 𝑣𝜑 is basically the difference between
𝜁1 and 𝜁3, it represents an angle. From the input perspective, a moment
is applied about the 𝑋 coordinate axis, respectively, 𝑌 coordinate
axis, when 𝑢𝜃 ≠ 0, respectively, 𝑢𝜑 ≠ 0. A vertical electrostatic
force is applied to the disk with 𝑣𝑧. With regard to compensating the
feedthrough, the compensation can be performed using the original
input–output variables, however, it is often more convenient to remove
the feedthrough after the input–output transformations as illustrated in
Fig. 10.

The system 𝑃 = 𝑀𝑃𝑁 − 𝐻fwd is used for controller design. It is
referred to as the ‘‘decoupled’’ plant because its transfer function has
the following form,

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋆ 0 0
0 ⋆ 0
0 0 ⋆
0 ⋆ 0
0 0 ⋆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where the ⋆ entries are non-zero. Note that the (1, 1) element of 𝑃 is
referred to as 𝑣𝑧∕𝑢𝑧, the (2, 2) element as 𝑣𝜑∕𝑢𝜑, and so forth. The fre-
quency response magnitudes of the non-zero elements of 𝑃 are shown
in Fig. 11. Also shown are the perturbation variables {𝛿𝑧, 𝛿𝜑, 𝛿𝜃 , 𝛿𝑥, 𝛿𝑦}
associated with the disk’s kinematic variables. The perturbation vari-
ables are not directly assessable in the physical system, however, they
can be extracted from the model and compared to the electrical mea-
surements {𝑣𝑧, 𝑣𝜑, 𝑣𝜃 , 𝑣𝑥, 𝑣𝑧}. It is evident from Fig. 11 that the electrical
measurements are excellent proxies for the disk’s kinematic variables.
This justifies the choice of subscript for the electrical measurements.
The scale factors associated with the electrical measurements can be
extracted from these graphs by comparing the magnitude of 𝑣𝑧∕𝑢𝑧 to
that of 𝛿𝑧∕𝑢𝑧 and so on. These estimated scale factors are given in
Table 1.

Classical loop-shaping design is applied to the decoupled plant in
which SISO controllers, denoted 𝐺𝑧, 𝐺𝜑 and 𝐺𝜃 , are separately designed
for 𝑣𝑧∕𝑢𝑧, 𝑣𝜑∕𝑢𝜑, and 𝑣𝜃∕𝑢𝜃 . The closed-loop system block diagram is
shown in Fig. 12. These controllers stabilize the closed-loop system.
If the lateral measurements are available, it is possible to effectively
regulate the lateral position of the disk, too. This is accomplished by
feeding back the lateral position error to the references for the tilt
degrees-of-freedom, denoted 𝑟𝜑 and 𝑟𝜃 . In other words, these references
are driven by the output of the lateral controllers, 𝐺𝑥 and 𝐺𝑦. Thus, the
lateral position of the disk is controlled by tilting the disk.

The pole-zero locations of the entries of 𝑃 are shown in Fig. 8.
The 𝑣𝑧∕𝑢𝑧 transfer function has only one unstable pole at 1.00128 —
the double eigenvalue at 1.00140 is canceled by a double zero at this
location. Thus, this unstable eigenvalue is called the ‘‘𝑧-instability’’ of
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Fig. 11. Frequency response of 𝑃 compared to the frequency response of the disk’s
inematic perturbation variables {𝛿𝑧 , 𝛿𝜑 , 𝛿𝜃 , 𝛿𝑥 , 𝛿𝑦}.

Fig. 12. Closed-loop block diagram.

the disk. The magnitude of 𝑣𝑧∕𝑢𝑧 exhibits a low-pass characteristic
whose corner frequency corresponds to this unstable pole. The lightly
damped resonances are also missing because there is a double pair of
zeros canceling the double pole pair slightly inside the unit disk. It is
a simple matter to stabilize 𝑧-instability using constant gain feedback,
however, due to uncertainty in the feedthrough cancellation at higher
frequencies in the actual system, the controller gain is rolled off after
100 Hz. Thus, the (continuous-time) transfer function of the 𝑧-DOF
ontroller, denoted 𝐺𝑧, is

𝑧 = 4 200𝜋
𝑠 + 200𝜋

. (30)

he magnitude of the loop gain and controller frequency response are
hown in Fig. 13 and the Nyquist plots are shown in Fig. 14.

Studying the tilt transfer functions reveals that 𝑣𝜑∕𝑢𝜑 only has one
unstable pole at 1.00140 — the other eigenvalue at this location is
canceled by a single zero; the 𝑧-instability eigenvalue is also canceled.
The unstable pole in 𝑣𝜑∕𝑢𝜑 is referred to as a ‘‘tilt-instability’’. The
resonance apparent in 𝑣𝜑∕𝑢𝜑 near 0.2 Hz is due to the fact that only one
pair of lightly-damped resonator poles is canceled in 𝑣𝜑∕𝑢𝜑. The same
conclusion regarding the poles and zeros of 𝑣𝜃∕𝑢𝜃 is reached. Thus,
the tilt instabilities associated with the double eigenvalue 1.00140 are
present in 𝑣𝜑∕𝑢𝜑 and 𝑣𝜃∕𝑢𝜃 , but only as a single unstable pole in each
of these transfer functions. Other notable features of the tilt transfer
functions are the double zeros at 1. This creates the 𝜔2 trend at low
frequencies in Fig. 11 and implies that the disk angles must be zero at
equilibrium in the stabilized system. This is sensible: there are no lateral
forces acting on the disk other than those created by the electrostatic
forces when the disk angles are non-zero (gravity is normal to the
electrodes), thus, when the disk is at equilibrium, the angles must be
zero.

Stabilizing the tilt-instability is an interesting problem because
𝑣 ∕𝑢 (and, hence, 𝑣 ∕𝑢 ) is not strongly stabilizable. Although this can
𝜑 𝜑 𝜃 𝜃
Fig. 13. Loop gains for 𝑣𝑧∕𝑢𝑧 and 𝑣𝜑∕𝑢𝜑.

Fig. 14. Left: Nyquist plot of 𝑣𝑧∕𝑢𝑧 and the loop gain illustrating one counterclockwise
encirclement of −1 (only 𝜔 > 0 shown). Right: Nyquist plot of 𝑣𝜑∕𝑢𝜑 and the loop gain
illustrating two counterclockwise encirclements of −1 (only 𝜔 > 0 shown). The loop gain
for 𝑣𝜃∕𝑢𝜃 is identical to that of 𝑣𝜑∕𝑢𝜑. The arrows indicate the direction of increasing
frequency.

be illustrated by analyzing the parity interlacing property of the poles
and zeros [15], analysis of the Nyquist plot is also insightful. The
Nyquist plot of 𝑣𝜑∕𝑢𝜑 is shown in Fig. 14. The fact that |𝑣𝜑∕𝑢𝜑| → 0
when 𝜔 → 0,∞ implies that the loop gain must always have an even
number of encirclements of −1+ 𝑗0. Since 𝑣𝜑∕𝑢𝜑 has one unstable pole,
𝐺𝜑 must necessarily have an odd number of unstable pole(s) if stability
is to be achieved. The following controller is implemented for 𝑣𝜑∕𝑢𝜑,

𝐺𝜑 = 14𝜋
𝑠 + 14𝜋

𝑠2 + 0.2𝜔𝑛𝑠 + 𝜔2
𝑛

𝑠2 + 2𝜔𝑛𝑠 + 𝜔2
𝑛

𝑠 + 3
𝑠 − 3

, 𝜔𝑛 = 0.4𝜋, (31)

where the unstable pole is located at 3 rad/s. The loop gain magnitude
is shown in Fig. 13 and the Nyquist plot is shown in Fig. 14. The
controller notches the low-frequency resonance in 𝑣𝜑∕𝑢𝜑. An identical
controller is used to stabilize the unstable pole in 𝑣𝜃∕𝑢𝜃 associated with
the second tilt-instability (𝐺𝜃 = 𝐺𝜑).

Analysis of the plant model with the controllers (30) and (31)
demonstrates that the closed-loop system is asymptotically stable —
see the left eigenvalue plot in Fig. 15. The two pairs of lightly damped
eigenvalues that correspond to the 0.2 Hz resonances are still present in
the closed-loop system due to their cancellation by the 𝐺𝜑 and 𝐺𝜃 con-
trollers. Regulation of the lateral position of the disk is also considered
using measurements of the disk’s lateral position. The transfer functions
𝑣𝑥∕𝑟𝜑 and 𝑣𝑦∕𝑟𝜃 are shown in Fig. 16 when the 𝐺𝑧, 𝐺𝜑, and 𝐺𝜃 loops are
losed, however, there is no feedback from the lateral measurements
𝐺𝑥 = 𝐺𝑦 = 0). These frequency responses are associated with a stable

system so the simple gains
𝐺𝑥 = 1, 𝐺𝑦 = −1, (32) 56
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Fig. 15. Left: Eigenvalues with 𝐺𝑧, 𝐺𝜑, and 𝐺𝜃 loops closed. Right: Eigenvalues after
losing the 𝐺𝑥 and 𝐺𝑦 loops.

Fig. 16. Closed-loop frequency responses (from the model) of 𝑣𝑥∕𝑟𝜑 and 𝑣𝑦∕𝑟𝜃 when
𝐺𝑥 = 𝐺𝑦 = 0. Constant gains can be chosen for 𝐺𝑥 and 𝐺𝑦 in order to achieve regulation
of 𝑣𝑥 and 𝑣𝑦. The phase of 𝑣𝑦∕𝑢𝜃 is 180 degrees offset from the phase of 𝑣𝑥∕𝑟𝜑.

are adequate for low-bandwidth regulation of 𝑥 and 𝑦. The system
eigenvalues are shown in Fig. 15.

6. Experimental results

6.1. Feedforward filter

The actuator-to-pick-off feedthrough must be reduced in order to
stabilize the system. Although this configuration reduces the electrode
voltages that are necessary for stabilizing the disk, it necessarily causes
significant coupling from controller commands to measurements. The
disk is not stabilizable in practice if the feedthrough is uncompensated.
An accurate estimate of the feedthrough is required so instead of relying
on the model to predict the feedthrough, it is simply measured when
the disk is at rest on the bottom electrodes (the photoresist and/or small
bumpers on the bottom glass plate ensure the disk does not come into
contact with the electrodes). A typical empirical frequency response
measurement is shown in Fig. 17 up to the sampling Nyquist frequency.
These measurements were taken in the decoupled coordinates and
represent the three-input/three-output feedthrough transfer function
from {𝑢𝑧, 𝑢𝜑, 𝑢𝜃} to the output of 𝑀 in Fig. 11. There is no coupling
to 𝑣𝑥 and 𝑣𝑦 so those elements in 𝐻fwd are zero. The feedforward filter,
𝐻fwd, that is used to cancel the feedthrough is simply an FIR fit to each
scalar frequency response.

6.2. Closed-loop tests

The controllers are discretized and implemented as given in (30)–
(32). Only minor adjustments to the gains {𝐾 ,𝐾 ,𝐾 } are performed.
𝑧 𝜑 𝜃
Fig. 17. Feedthrough estimates. The feedthrough associated with the 𝑣𝑧∕𝑢𝑧, 𝑣𝜑∕𝑢𝜑, and
𝜃∕𝑢𝜃 channels have magnitude close to 1. The remaining six channels have magnitude
lose to 0.1. In general, all nine scalar feedthrough transfer functions must be reduced
n magnitude by the feedforward filter 𝐻fwd.

he disk is demonstrated to be stably suspended by introducing pulse
isturbances into the closed-loop system at the input of 𝑃 . The pulse
s sequentially summed in with the controller outputs in order to
erturb 𝑢𝑧, 𝑢𝜑, and 𝑢𝜃 . The results of this experiment are shown in

Fig. 18. The disk returns to its equilibrium position (0 V represents
the equilibrium configuration of the disk because measurement offsets
have been removed). The scale factors given in Table 1 can be used to
convert the voltages into displacements and angles.

The input sensitivity function (𝑆𝑖) frequency response is measured
y injecting test signals at the input of 𝑃 . The norm of 𝑆𝑖 is shown as a
unction of frequency in Fig. 19. Although the closed-loop system is not
articularly effective in rejecting disturbances at the plant input, the
ensitivity function also shows that modest robustness to unstructured
lant uncertainty is achieved. Regulation of the disk’s lateral position
s demonstrated in Fig. 20. Step references with 0.2 V amplitude are
pplied to 𝑟𝑥 and 𝑟𝑦 in separate experiments (this corresponds to lateral

translational step values of approximately 0.44 mm).

6.3. Estimate of plant frequency response

An empirical frequency response of 𝑃 is derived from the measure-
ent of two closed-loop frequency responses. Broadband and sinusoidal

est signals are introduced at the plant input and yield the estimates
f the closed-loop frequency response functions 𝑃𝑆𝑖 and 𝑆𝑖. The open-
oop plant frequency response is derived from these measurements on a
requency-by-frequency basis [16]. The physical plant exhibits coupling
etween input–output channels that is not present in the model. For
xample, 𝑣𝜑 and 𝑣𝜃 do not respond to signals applied to 𝑢𝑧 in the decou-
led plant model, however, the actual system shows 𝑢𝑧 coupling to all

outputs (Fig. 21). Nevertheless, 𝑣𝑧∕𝑢𝑧 is the dominant transfer function
associated with 𝑢𝑧. Similarly, the decoupled plant model indicates that
only 𝑣𝜑 and 𝑣𝑥 respond to 𝑢𝜑, however, the estimates in Fig. 21 do show
𝑣𝜑∕𝑢𝜑 and 𝑣𝑥∕𝑢𝜑 are dominant but that all outputs respond to 𝑢𝜑. The
same conclusion can be made concerning 𝑣𝜃 and 𝑣𝑦 with respect to 𝑢𝜃 .

6.4. Discussion

The model compares quite favorably to the experimental estimates
of the open-loop plant. The open-loop frequency response estimates
confirm all features of the non-zero elements in the decoupled plant
model: the low-pass characteristic of 𝑣𝑧∕𝑢𝑧; the rolling off of 𝑣𝜑 and 𝑣𝜃
as 𝜔 → 0; the relatively large low frequency gain of 𝑣𝑥∕𝑢𝜑 and 𝑣𝑦∕𝑢𝜃 ; cf.
Fig. 11 and Figs. 21. The physical plant exhibits cross-channel coupling
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Fig. 18. Closed-loop experiments showing {𝑣𝑧 , 𝑣𝜑 , 𝑣𝜃 , 𝑣𝑥 , 𝑣𝑦} in response to pulse
disturbances applied at the input of 𝑃 . This demonstrates closed-loop stability, i.e., the
disk is suspended without contact.

Fig. 19. Norm of input sensitivity function 𝑆𝑖.

hat does not exist in the model, however, this is not surprising because
mall differences in the transduction gains associated with the primary
lectrode pairs and their transformers will destroy the symmetry in
he model so that the decoupling transformations 𝑀 and 𝑁 actually
ix all of the measurements related to the disks kinematic variables.
he cross-channel coupling is especially evident in the lateral transfer
unctions 𝑣𝑥∕𝑢𝜑 and 𝑣𝑦∕𝑢𝜃 because the asymptotic magnitude of the
easurements has an 𝜔−1 trend as 𝜔 → ∞ whereas the model has an
−3 trend.

Importantly, the model and experimental results support the thesis
hat the lateral degrees of freedom must be included in the analysis
f the disk dynamics, regardless of whether additional lateral forces,
uch as fringe field effects, are present. In fact, inclusion of the lateral
egrees of freedom fundamentally changes the disk model: the model
eveloped in this paper demonstrates that it is not possible to hold
he disk at an equilibrium position in which the disk is not normal
o gravity (the model assumes the electrode planes are normal to
ravity), thus, equilibrium values of 𝜑 and 𝜃 are always 0. Nevertheless,
he lateral forces components created when the disk is not normal to
ravity can be used to position the disk in the 𝑋-𝑌 plane. The step
esponse experiments also confirm that the disk angles return their
quilibrium values as the lateral positions track step references.

The scale factors that have been estimated from the model (Table 1)
ave not been independently verified, however, vibrometer measure-
ents of the beam system described in [11], which uses a transduction
 i
Fig. 20. Response of disk to lateral step reference signals of 0.2 V amplitude.

scheme that is identical to the present work, shows that the model-
based scale factor deviates less than 10% from the measurement-based
scale factor so similar accuracy is expected in this work.

7. Conclusion

Stabilization of an untethered and contact-free platform – a silicon
isk – has been demonstrated. The disk is situated between pairs of
lectrodes that have been deposited on glass plates. The fringe-field
orces exerted on the disk by the electrodes are negligible because the
ootprint of the primary electrodes is smaller than the disk diameter.
hus, the disk’s lateral translational degrees-of-freedom are not con-
trained by fringe-field forces. An accurate disk model must include its
ateral degrees-of-freedom and it was shown they are strongly coupled
o the tilt degrees-of-freedom. Due to the lateral-tilt coupling, though,
tabilizing the disk’s tilt degrees-of-freedom also stabilizes its lateral
egrees-of-freedom. The model, however, is not strongly stabilizable
ith only electrode–disk vertical gap measurements. In other words,

he stabilizing controller is itself an unstable system. Outboard elec-
rodes also provided direct measurements of the disk’s lateral position.
hese measurements are used in an outer feedback loop to regulate the

ateral position.
A potential application of the platform is in the study of micro-scale

ystems. The transduction scheme, based on measuring differential
apacitances and exerting electrostatic forces using the same electrodes,
cales reasonably well and it is envisioned that platforms 1 cm in
iameter can be readily fabricated. Operating the disk in vacuo, how-
ver, will require adapting the controllers to the increased bandwidths
ssociated with the vertical and tilt degrees-of-freedom. Furthermore,
he low frequency lateral-tilt resonance will be essentially undamped.
here are further control design issues to address with regard to what
easurements are required in order for the system to be strongly

tabilizable. These questions will be addressed in future papers.
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Appendix. System parameters

Parameter Value
Disk and electrode parameters
disk radius 41 mm
disk thickness 400 μm
disk mass, 𝑚 4.92 × 10−3 kg
primary electrode area, 𝐴p 10.3 cm2

lateral electrode area 1.65 cm2

electrode geometric center, 𝑟0 22.2 mm
nominal electrode–disk gap, 𝑧0 134 μm
in-plane moment of inertia, 𝐽𝑧 4.13 × 10−6 kg m2

in-plane moment of inertia, 𝐽𝑥𝑦 2.07 × 10−6 kg m2

squeeze-film damping, 𝑐𝑧 3.3 × 104 s−1
squeeze-film damping, 𝑐𝜃 , 𝑐𝜑 1.79 × 104 s−1
Transformer parameters
primary inductance, 𝐿1, 𝐿2 2.1 H
secondary inductance, 𝐿𝑠 1.53 mH
leakage inductance, 𝐿𝑥 2.47 μH
mutual inductance, 𝑀𝑝 2.1 H
mutual inductance, 𝑀𝑠 57.6 mH
parasitic capacitance, 𝐶𝑝 17 pF
interwinding capacitance, 𝐶𝑖 70 pF
winding resistance (prim.), 𝑅1, 𝑅2) 504 Ω
winding resistance (sec.), 𝑅22 0.54 Ω
shunt resistor on secondary, 𝑅21 100 Ω
control resistor, 𝑅c 100 Ω
electrode capacitances at equilibrium, 𝐶𝑘, 𝐶1𝑘 77.4 pF

References

[1] Atkinson JL. Electrostatic bearing. 1967, 3334949.
[2] Atkinson JL. Electrostatic bearing sensing and control circuitry. 1975, 3891285.
[3] Toda R, Takeda N, Murakoshi T, Nakamura S, Esashi M. Electrostatically

levitated spherical 3-axis accelerometer, In: Proc. Fifteenth IEEE Intl. Conf.
Microelectromech. Sys. 2002. p. 710–3.

[4] Han F, Gao Z, Li D, Wang Y. Nonlinear compensation of active elec-
trostatic bearings supporting a spherical rotor. Sens. Actuator A Phys.
2005;119(1):177–86.

[5] Jin J, Higuchi T, Kanemoto M. Electrostatic levitator for hard disk media. IEEE
Trans Ind Electron 1995;42(5):467–73.

[6] Jeon JU, Higuchi T. Electrostatic suspension of dielectrics. IEEE Trans Ind
Electron 1998;45(6):938–46.

[7] van West E, Yamamoto A, Higuchi T. Manipulation of thin objects using
levitation techniques, tilt control, and haptics. IEEE Trans. Automat. Sci. Eng.
2010;7(3):451–62.
[8] Kumar S, Cho D, Carr WN. Experimental study of electric suspension for
microbearings. J. Microelectromech. Syst. 1992;1(1):23–30.

[9] Murakoshi T, Endo Y, Fukatsu K, Nakamura S, Esashi M. Electrostati-
cally levitated ring-shaped rotational-gyro/accelerometer. Japan J Appl Phys
2003;42(4B):2468–72.

[10] Behbahani AH, Kim D, Stupar P, DeNatale J, M’Closkey RT. Tailored
etch profiles for wafer-level frequency tuning of axisymmetric resonators. J.
Microelectromech. Syst. 2017;26(2):333–43.

[11] Andonian M, M’Closkey RT. Sensing and control interface for precise gap control.
Mechatronics 2018;56:277–86.

[12] Andonian M, M’Closkey RT. Identification and compensation of feedthrough in
an unstable electrostatic bearing. Mechatronics 2020;65:102315.

[13] Seeger JI, Boser BE. Charge control of parallel-plate, electrostatic actuators and
the tip-in instability. J. Microelectromech. Syst. 2003;12(5):656–71.

[14] Bao M, Yang H. Squeeze film air damping in MEMS. Sens. Actuator A Phys.
2007;136(1):3–27.

[15] Vidyasagar M. Control System Synthesis: A Factorization Approach. 3rd ed.. MIT
Press; 1985.

[16] Wellstead PE. Non-parametric methods of system identification. Automatica
1981;17(1):55–69.

44
Michael Andonian received the B.S. degree and M.A.
in mathematics from the University of Hawai’i at Manoa
in 2010 and 2012, respectively, and the M.S degree in
mechanical engineering from the University of California,
Los Angeles, in 2018. He is currently pursuing the Ph.D.
in mechanical engineering with a primary focus on control
and identification of electromechanical systems. His present
research is the development of a multi-degree of freedom
electrostatic suspension system to test the dynamics of
planar, micro-scale resonators.

46
Robert T. M’Closkey received the Ph.D. degree from the
California Institute of Technology in 1995. He is currently
a Professor in the Mechanical and Aerospace Engineering
Department, University of California, Los Angeles. He de-
velops micro-scale inertial sensors with a focus on Coriolis
vibratory gyros (CVGs). His group has developed noise
models, system identification approaches, and demonstrated
wafer-scale trimming for CVGs built around axisymmetric
resonators. He received the National Science Foundation
CAREER Award for his research on MEMS inertial sensors
and is a recipient of several teaching awards within the
School of Engineering at UCLA.


	An electrostatically suspended contactless platform
	Introduction
	System description
	Electrode and disk geometry
	Interface to electrodes

	Electrode and disk fabrication
	Model
	Disk equations
	Electrical subsystem equations
	Linearization
	Analysis of the linearized model

	Controller design
	Experimental results
	Feedforward filter
	Closed-loop tests
	Estimate of plant frequency response
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix. System parameters
	References




