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Abstract
Many different equations have been proposed to describe quantitatively one-

dimensional soil water infiltration. The unknown coefficients of these equations char-

acterize soil hydraulic properties and may be estimated from a n record, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1,
of cumulative infiltration measurements using curve fitting techniques. The two-term

infiltration equation, 𝐼(𝑡) = 𝑆
√
𝑡 + 𝑐𝐾s𝑡, of Philip has been widely used to describe

measured infiltration data. This function enjoys a solid mathematical–physical under-

pinning and admits a closed-form solution for the soil sorptivity, S [L T−1/2], and mul-

tiple, 𝑐 [−], of the saturated hydraulic conductivity, 𝐾s [L T−1]. However, Philip’s

two-term equation has a limited time validity, 𝑡valid [T], and thus cumulative infil-

tration data, 𝐼(𝑡), beyond 𝑡 = 𝑡valid will corrupt the estimates of S and 𝐾s. This

paper introduces a novel method for estimating S, c, 𝐾s, and 𝑡valid of Philip’s two-

term infiltration equation. This method, coined parasite inversion, use as vehicle

Parlange’s three-parameter infiltration equation. As prerequisite to our method, we

present as secondary contribution an exact, robust and efficient numerical solution

of Parlange’s infiltration equation. This solution admits Bayesian parameter estima-

tion with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm and

yields as byproduct the marginal distribution of Parlange’s β parameter. We evaluate

our method for 12 USDA soil types using synthetic infiltration data simulated with

HYDRUS-1D. An excellent match is observed between the inferred values of S and

𝐾s and their “true” values known beforehand. Furthermore, our estimates of c and

𝑡valid correlate well with soil texture, corroborate linearity of the 𝑐(β) relationship

for 0 ≤ 𝑡 ≤ 𝑡valid, and fall within reported ranges. A cumulative vertical infiltration

of about 2.5 cm may serve as guideline for the time-validity of Philip’s two-term

infiltration equation.

Abbreviations: BIC, Bayesian information criterion; DREAM, DiffeRential Evolution Adaptive Metropolis; MAP, maximum a posteriori density; MVG,
Mualem–van Genuchten; SWIG, Soil Water Infiltration Global
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1 INTRODUCTION AND SCOPE

The topic of water infiltration into unsaturated soils has
attracted the attention of vadose zone hydrologists early
on. This process lends itself for detailed experimentation,
mathematical–physical analysis, and spatiotemporal model-
ing and is central to hydrologic studies by water resource
and hydraulic engineers, hydrogeophysicists, hydrogeolo-
gists, plant scientists, agronomists, and ecologists (Philip,
1969b). Infiltration not only determines how much rainfall
(irrigation) will accumulate on the soil’s surface or runoff
elsewhere following topographical gradients, but it also exerts
control on the soil moisture status of the root zone, which, in
turn, regulates processes such as the absorption of soil water
by plant roots, evaporation, sensible heat fluxes, and ground-
water recharge (Liu et al., 2011). Infiltration will also gov-
ern the transport of pollutants through the vadose zone, slope
stability, and land subsidence in areas that rely heavily on
groundwater pumping as primary water source (Chen et al.,
2014). Farmers in the Central Valley of California, for exam-
ple, rely heavily on infiltration to maintain an adequate soil
moisture status of the root zone in pursuit of an optimal crop
yield (Hellin & Schrader, 2003; Schoups et al., 2005).

After the topsoil has absorbed sufficient rainfall (or irri-
gation water), the water moves downward in the soil profile
under the influence of gravity and/or capillary action, soaking
and/or filling up the pore space, replenishing the root zone,
and possibly seeping into rocks through cracks. Infiltrability
is a term native to soil physics and hydrology that defines
the maximum rate at which rain or irrigation water can be
absorbed by a soil under given conditions (Horton, 1933).
The infiltration rate under natural conditions is not necessarily
readily deducible from soil moisture measurements, certainly
at larger spatial scales, and infiltration modeling with the aid
of measurable quantities is of fundamental importance.

In the past decades, numerous mathematical–physical
approaches have been developed to describe water infiltra-
tion into the vadose zone (Assouline, 2013). These models
or functions can be classified as empirical, semiempirical and
(quasi-) mechanistic. Empirical infiltration models are math-
ematical functions that have been crafted by trial and error
with the sole purpose of matching laboratory or field mea-
sured cumulative infiltration, 𝐼(𝑡) [L], data, where t [T]
denotes time. The resulting black-box function offers no
insights into the underlying data-generating process nor pro-
vides evidence why the function would accurately portray the
n vector of measured cumulative infiltration data. Examples
include the infiltration equations of Kostiakov (1932), Hug-
gins and Monke (1966), modified Kostiakov (Smith, 1972),
and Collis-George (1977). As the parameters of empirical
infiltration models lack a theoretical foundation, it is typi-
cally difficult, if not impossible, to relate their fitted values
to physical soil properties. Semiempirical (gray-box) infiltra-

Core Ideas
∙ We describe a method that can determine the time

validity of infiltration equations.
∙ This method infers as well the hydraulic properties

of unsaturated soils.
∙ We present a robust and efficient numerical

solution of Parlange’s three-parameter infiltration
equation.

∙ Posterior distribution determines how well param-
eters are defined by calibration to data.

∙ Two and a half centimeters of cumulative infiltra-
tion is a good proxy for time validity Philip’s two-
term equation.

tion models conserve mass with a flux–concentration (stor-
age) relationship that relates the infiltration rate, i [L T−1],
to the cumulative infiltration, I, which is usually hypothe-
sized. Examples include the models of Horton (1941), Holtan
(1961), Singh and Yu (1990), and Grigorjev and Iritz (1991).
Then, the last group of quasi-deterministic (white-box) infil-
tration models adopt a reductionist approach and describe
the downward and/or horizontal movement of water using
mass balance principles coupled with a macroscopic law
for soil moisture flow. This use of first principles offers a
robust protection against invalid assumptions and conven-
tions and includes the mechanistic models of Green and Ampt
(1911), Philip (1957, 1969a), Mein and Larson (1971, 1973),
Smith (1972), Braester (1973), Stroosnijder (1976), Brut-
saert (1977), Smith and Parlange (1978), Haverkamp et al.
(1994), Salvucci and Entekhabi (1994), Basha (1999, 2000,
2002), Zhu and Mohanty (2002), Chen and Gallipoli (2004),
and Valiantzas (2010). These models vary in complexity and
degree of sophistication and differ in their assumptions about
infiltration source type (point, circular, strip, and rectangular)
and location (above- or belowground), the shape of the infil-
tration front, soil heterogeneity, dominant processes and flow
dynamics, the hydraulic functions, and initial and boundary
conditions.

The mathematical–physical description of the infiltration
process has benefited tremendously from the theories and
heavy lifting of Dr. John Philip (1927–1999). While he has
been recognized internationally for his many contributions to
the topics of water, gas, and energy movement, his research
on infiltration is arguably the most acclaimed worldwide. Dr.
Philip’s advanced mathematical training and deep intuition
about physical processes enabled him to make fundamental
advances to the theory and practice of water infiltration. In a
classic treatise on one-dimensional infiltration, Philip (1957)
describes the cumulative vertical infiltration, I(t), as a finite
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(convergent) series of d > 3 expansion terms:

𝐼(𝑡) = 𝑎1𝑡
1
2 + 𝑎2𝑡 + 𝑎3𝑡

3
2 +⋯ + 𝑎𝑑𝑡

𝑑

2

=
∑𝑑

𝑗=1 𝑎𝑗𝑡
𝑗

2 ,
(1)

where 𝑎1 [L T−1/2], 𝑎2[L T−1], 𝑎3 [L T−3/2], and 𝑎𝑑 [L T−d/2]
are soil-dependent constants, and t denotes time. Philip (1957)
showed that a1 is synonymous to the sorptivity, S [L T−1/2],
a measure of the soil’s capacity to take up and release liquids
by capillarity, and a2 is equal to a multiple, c, of the saturated
hydraulic conductivity, 𝐾s [L T−1], which articulates a soil’s
ability to transmit water under the influence of gravity. Philip
(1969a) expressed the soil sorptivity as follows

𝑆(θi) = ∫
θs

θi
λ(θ)dθ (2)

where θi [L3 L−3] denotes the initial water content of the soil
(assumed uniform), θs [L3 L−3] is the volumetric moisture
content at saturation, and λ(θ) [L T−1/2] is the so-called Boltz-
mann variable:

λ(θ) = 𝑧(θ, 𝑡)𝑡−1∕2 (3)

The characteristic function, 𝑧(θ, 𝑡), expresses the relationship
between soil depth, z [L], and the volumetric water con-
tent, θ [L3 L−3], at time 𝑡 ≥ 0 during an infiltration event
under gravity-free conditions, where θi ≤ θ ≤ θs. For nota-
tional convenience, we omit the explicit functional depen-
dence of the soil sorptivity, S, on the initial moisture con-
tent. Thus, the first two coefficients, 𝑎1 and 𝑎2, of Philip’s
time series expansion exhibit a sound physical underpinning,
adjustable to the initial and boundary conditions of the infil-
tration event.

The finite series of expansion terms of Philip (1957) not
only benefits a solid theoretical underpinning but also enjoys a
more practical advantage. As the cumulative infiltration, 𝐼(𝑡),
is written as a multiple of the coefficients, 𝑎𝑗 (𝑗 = 1,… , 𝑑),
of the d expansion terms, Equation 1 admits the application of
linear regression to determine the optimum parameter values
and their associated uncertainty from a dataset, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1, of n
cumulative infiltration measurements, 𝐼1, 𝐼2,… , 𝐼𝑛, observed
at 𝑡1, 𝑡2,… , 𝑡𝑛. Indeed, as Equation 1 belongs to the class
of linear regression models, we can write Philip’s infiltra-
tion function as an inner product, 𝐼(𝑡) = 𝐝(𝑡)⊤𝐚, of a 𝑑 × 1
design vector, 𝐝(𝑡) = [𝑡1∕2 𝑡 𝑡3∕2 ⋯ 𝑡𝑑∕2]⊤, and the d vec-
tor, 𝐚 = [𝑎1 𝑎2 𝑎3 ⋯ 𝑎𝑑]⊤, of parameters. If we stack the
design vectors, 𝐝(𝑡) of the n measurement times, 𝑡1, 𝑡2,… , 𝑡𝑛,
in a n × d design matrix, 𝐃, then the least squares parame-
ter values, �̂� = [�̂�1 �̂�2 �̂�3 ⋯ �̂�𝑑]⊤, of the measured cumu-
lative infiltration data, �̃� = [𝐼1 𝐼2 … 𝐼𝑛]⊤, will equal, �̂� =
(𝐃⊤𝐃)−1𝐃⊤�̃�.

Philip (1957) postulated that coefficients a3, a4, . . . , ad, of
Equation 1 must satisfy the following constraint:

𝑎𝑗

𝑆
>
(𝑎2
𝑆

)𝑗−1
(4)

for all 𝑗 = (3,… , 𝑑). This constraint implies that all coeffi-
cients a3, a4, . . . , ad must exceed zero, and, as a result, Equa-
tion 1 will not converge to a constant infiltration rate at large t.
Instead, Equation 4 promotes significance of the higher order
terms at the potential risk of overfitting (Volpi et al., 2017).
This is also known as Runge’s phenomenon (polynomial wig-
gle) and cautions against the use of a large number of expan-
sion terms. The most popular variant of Equation 1 uses only
two expansion terms:

𝐼(𝑡) = 𝑆𝑡1∕2 + 𝑐𝐾s𝑡 (5)

where the multiplicative coefficient c is soil dependent.
This two-term formulation enjoys a rigorous mathematical–
physical underpinning. This includes recent work of Hunt
et al. (2017), who used percolation theory to interpret S and
𝑐𝐾s. The use of 𝑑 = 2 expansion terms, however, has an
important side effect. As the higher order expansion terms
of Equation 1 are discarded, Philip’s two-term equation can-
not describe adequately the infiltration at later times when
the higher order terms have an increasingly larger impact on
the cumulative infiltration. In other words, Philip’s two-term
equation has a limited time validity, 𝑡valid [T] and, conse-
quently, cumulative infiltration measurements beyond 𝑡valid
should not be used for parameter estimation purposes, as these
measurements will corrupt estimates of the soil sorptivity, S,
and saturated hydraulic conductivity, 𝐾s.

In his theoretic treatise, Philip (1957) derived a simple ana-
lytic expression for the so-called characteristic time, 𝑡char [T],
of Equation 1:

𝑡char =
(

𝑆

𝐾s −𝐾i

)2
(6)

at which gravity and capillary action contribute equally to
the instantaneous infiltration. In this equation, 𝐾i = 𝐾(θi) [L
T−1] is the soil hydraulic conductivity at the initial moisture
content. Philip (1957) used the characteristic time, 𝑡char , to
demarcate the window for which Equation 1 is valid. Specif-
ically, he postulated that the finite series of 𝑑 ≥ 3 expan-
sion terms is valid only for infiltration times up to 2𝑡char to
4𝑡char . We should be careful, however, in using these esti-
mates for Philip’s two-term infiltration (Equation 5). Without
doubt, the truncation of (1) to 𝑑 = 2 terms must deteriorate
the time validity of the two-term formulation. Indeed, prac-
tical guidelines are warranted on the time validity, 𝑡valid, of
Equation 5.
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In this paper, we introduce a new method for determining
the values of the dimensionless coefficient c, soil properties S
and𝐾s, and time validity 𝑡valid of Philip’s two-term infiltration
equation. We cannot infer these four quantities simultaneously
from measured cumulative infiltration curves as this consti-
tutes an ill-posed problem. Therefore, we divide the inference
in two separate steps using an approach coined parasite inver-
sion. The first step takes advantage of the infiltration equation
of Parlange et al. (1982), an quasi-exact solution of Richards’
equation to back out the values of S and 𝐾s from a collection
of measured (𝑡, 𝐼) data pairs using Bayesian inference with
the DREAM(ZS) algorithm with sampling from past states
(Vrugt, 2016). To this end, we present a robust, efficient, and
exact numerical solution of Parlange’s infiltration equation,
which generalizes existing solutions of Latorre et al. (2015)
and Fernández-Gálveza et al. (2019) to warrant treatment and
estimation of all its four parameters: S, 𝐾s, 𝐾i, and β. In a sec-
ond step, the maximum a posteriori density values of S and
𝐾s are admitted to Philip’s two-term infiltration equation to
yield estimates of c and 𝑡valid. We benchmark, test, and evalu-
ate our approach using synthetic infiltration data simulated by
HYDRUS-1D (Šimůnek et al., 2008). Our approach has some
elements in common with Dohnal et al. (2010), who used the
infiltration equation of Haverkamp et al. (1994) with β = 0.6
to estimate S and 𝐾s from synthetic infiltration data of a three-
dimensional axisymmetric soil model. The optimized values
of S and 𝐾s were entered in Philip’s two-term Equation 5 to
simulate one-dimensional infiltration.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the cumulative infiltration data that is used to
test, benchmark, and evaluate our two-step procedure. In Sec-
tion 3, we detail the different building blocks of our method-
ology. This is followed in Section 4 with a presentation and
discussion of our results. In Section 5, we briefly discuss
the main implications of this paper and present a simplified
implementation of our methodology. Finally, Section 6 con-
cludes this paper with a summary of the main findings.

2 SYNTHETIC INFILTRATION DATA

To benchmark, test, and evaluate our method, we are in need
of cumulative infiltration data and corresponding estimates of
the soil sorptivity, S, and the saturated hydraulic conductiv-
ity, 𝐾s. These two soil properties should be known before-
hand, otherwise we cannot verify that our estimates of S and
𝐾s are unbiased and accurate. Practical experience suggests
that it is not particularly easy to accurately determine the soil
sorptivity. This necessitates infiltration measurements under
gravity-free conditions when water flow is largely controlled
by capillary adsorption or desorption. This requires consider-
able experimental effort, particularly if we wish to evaluate
our method for many different soil types. What is more, our

analysis demands a high temporal measurement resolution to
accurately pinpoint the time validity of Philip’s two-term infil-
tration equation. Therefore, we resort to synthetic infiltration
data in this paper, as this allows control on data quality and
quantity. We did evaluate our method for measured data as
well using the more than 1,300 infiltration experiments docu-
mented in the Soil Water Infiltration Global (SWIG) database
(Rahmati, Weihermüller, Vanderborght, et al., 2018; Rahmati,
Weihermüller, & Vereecken, 2018). Only a small number of
these experiments have a data quality and quantity sufficient
enough to warrant application of our methodology. These
results (not shown here) corroborate our findings for the syn-
thetic infiltration data.

Vertical infiltration into a 200-cm-deep homogeneous
soil was simulated with HYDRUS-1D (Šimůnek et al.,
2008, 2016) using the hydraulic functions of Mualem–van
Genuchten (MVG) (Mualem, 1976; van Genuchten, 1980).
The soil is initialized as dry by setting the hydraulic head of
the column equal to −15,000 cm (except for sand, we used
−1,000 cm). Cumulative infiltration is then simulated for a
period of 240 h using a constant pressure head at the surface
and free drainage condition at the bottom of the soil profile
(see also Rahmati et al., 2020). Table 1 lists the MVG param-
eter values of the HYDRUS-1D catalog that were used to sim-
ulate the infiltration data for each soil type.

As soil column discretization may affect the numerical
results, we used HYDRUS-1D to simulate horizontal infil-
tration for an ensemble of discretized profiles. The simu-
lated infiltration was compared against an analytic solution for
infiltration without gravity, which is based on the Boltzmann
transform. For each discretized profile, the simulated water
content distribution in the soil column was plotted against the
Boltzmann variable, λ, in Equation 2. A discretized profile
is deemed accurate if the (θ, λ) relationships at many differ-
ent simulation times coalesce in one single curve. The high-
est simulation accuracy was achieved with a profile composed
of 401 nodes using an entrance node of 10−6 cm and gradu-
ally increasing size of the elements in the profile up to 1 cm
for the last node. This profile was subsequently used to simu-
late vertical infiltration. To negate numerical errors and pro-
mote accuracy of the simulated vertical infiltration, the inter-
nal interpolation tables of (θ, ℎ) and (ℎ,𝐾) were disabled,
and the default initial time step of HYDRUS-1D was adjusted
to satisfy convergence criteria for all different USDA soils.
What is more, a modified MVG model with air-entry value
of −2 cm was used for soils with 𝑛VG < 1.2 to avoid unreal-
istically large changes in the hydraulic conductivity near sat-
uration (Schaap & van Genuchten, 2006; Vogel & Cislerova,
1988; Vogel et al., 2000).

Before we can analyze the vertical infiltration experiments
of HYDRUS-1D, we must first post-process the simulated
output (between 1,200 and 13,000 print times) so as to yield
a common data length and format for each soil. First, we
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(a) (b) (c) (d)

(h)(e)

(i) (j) (k) (l)

(f) (g)

F I G U R E 1 HYDRUS-1D simulated cumulative infiltration, 𝐼 , data for a 200-cm homogeneous soil profile using the Mualem–van Genuchten
(MVG) hydraulic functions with parameter values of the 12 different textural classes documented in Table 1. A constant pressure head was assumed
at the soil surface, and a free drainage condition was imposed at the bottom boundary of the profile. The HYDRUS-1D output is post-processed to
limit the cumulative infiltration for each soil type to 5 cm

synchronize the print times of the datasets. To this end, we
discretize the 240-h simulation period into n = 100 equally
spaced print times on a logarithmic (base 10) scale. The cumu-
lative infiltration at each print time (query point) is then com-
puted from the raw HYDRUS-1D output using linear inter-
polation. Logarithmic scaling of the print times guarantees a
high measurement resolution at the beginning of the infiltra-
tion experiment. This is deemed necessary to portray accu-
rately the relatively high infiltration rates early on in the exper-
iment. Figure 1 presents the post-processed infiltration curves
of each USDA soil type using 100 logarithmically scaled mea-
surement times. The simulation period of 240 h is too large to
notice subtle differences in the functional shape of the infiltra-
tion curves at early times. Nevertheless, it is evident that the
soils differ substantially in the amount of cumulative infiltra-
tion. For example, sand (Figure 1E) has infiltrated more than
7,000 cm of water, whereas the clay soil (Figure 1A) barely
reaches 50 cm in the same time period of 240 h. In theory,
one would expect clay to infiltrate the least amount of water.
However, the sandy clay (Figure 1F), silty clay (Figure 1L),
and silty clay loam (Figure 1L) soils infiltrate only 32.2, 7.2,
and 17.6 cm of water, respectively, over the 240-h period. To
understand this finding, we must look at the hydraulic proper-
ties of the different soils. According to Table 1, the sandy clay,
silty clay, and silty clay loam soils exhibit the lowest sorptiv-
ity, S, and saturated hydraulic conductivity, 𝐾s, of all 12 soils.

Thus, the MVG parameter values, as documented in Carsel
and Parrish (1988) and used in the HYDRUS-1D catalog, may
not portray accurately the hydraulic properties of each textural
class. It should suffice to say that the post-processed infiltra-
tion curves are a nearly perfect match with the raw output of
HYDRUS-1D. Their distance is negligible small.

A last comment about the numerical accuracy of the sim-
ulated infiltration data is in order. Our experience suggests,
that it is not always easy to simulate accurately infiltration
experiments. For example, a careful examination of the sim-
ulated data of silty clay loam demonstrates a minor dip in the
cumulative infiltration at 𝑡 = 30 h. This artifact is small and
may not catch everyone’s attention; nevertheless, the subtle,
unexpected variations in the infiltration rate may explain in
part why silty clay loam is classified as one of our two dis-
sonant soils. As we have devoted special care and attention
to numerical errors, we are confident that the current dataset
is robust and accurate for all soils, with possible exception of
sandy clay loam and silty clay loam.

The logarithmically scaled infiltration curves use synchro-
nized measurement times yet correspond to an infiltration
event of 240 h. For most soils, this duration is excessive and
far exceeds the time at which a constant infiltration rate is
reached. What is more, in field experiments, the cumulative
infiltration is typically limited, as the soil underneath may not
be homogeneous over a very large depth. Hence, we should
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adjust the duration of the experiment so as to have a reason-
able amount of infiltration for each soil type. For example,
if we assume a porosity ϕ = 0.4 and initial moisture content
θi = 0.1, then about 3 cm of cumulative infiltration would suf-
fice to bring the top 10 cm of the soil to saturation. Continued
infiltration is not expected to yield more information about the
topsoil’s hydraulic properties.

For reasons detailed above, we do not proceed with this
first dataset but create a second dataset from the raw output
of HYDRUS-1D wherein we limit the cumulative infiltration
to 5 cm. In doing so, we divide the raw output of HYDRUS-
1D into equally spaced intervals of 0.05 cm. This results in
𝑛 = 100measurements of the cumulative infiltration. The cor-
responding measurement times are derived via linear interpo-
lation using the raw HYDRUS-1D output. Thus, the measure-
ment times in this second dataset correspond to cumulative
infiltration values of 0.05, 0.10, 0.15, . . . , 5.00 cm. The so-
obtained measurement times differ substantially among the
different soil types. Sand, for instance, only needs a hand-
ful of minutes to infiltrate 5 cm of water, whereas the silty
clay soil requires about 150 h to do so. This second dataset is
used throughout the remainder of this paper. In anticipation of
experimental data, we refer to this second dataset as measured
data or measured infiltration data. This fixes the notation.

Now we have discussed the vertical infiltration data sim-
ulated with HYDRUS-1D, we are left with estimation of the
“true” sorptivity, S, for each soil type. Unlike the saturated
hydraulic conductivity, 𝐾s, the sorptivity, S, is not invariant
but dependent on the soil’s initial moisture content. Hence,
S is not an innate property of the MVG model but a by-
product of the hydraulic parameters, θs, θr , α, 𝑛VG, and 𝐾s
listed in Table 1 and the uniform initial moisture content,
θi, of the 200-cm-deep soil column. We can express 𝑆 =
𝑓 (θs, θr , α, 𝑛VG, 𝐾s, θi) in closed form (e.g., Moret-Fernández
et al., 2017), but experience suggests that this relationship
does not always yield accurate estimates of the soil sorptiv-
ity. Therefore, we resort to the definition of the sorptivity in
Equation 2 and use numerical integration of the HYDRUS-1D
simulated λ(θ) curves for horizontal infiltration (no gravity).
The penultimate column of Table 1 documents the values of
the sorptivity for all our twelve soil types. This concludes the
description of the infiltration dataset.

To provide more insights into the hydraulic properties of
the soils in our data set, please consider Figure 2, which dis-
plays the textural triangle with color coding of each textural
class matching (a) the sorptivity, and (b) saturated hydraulic
conductivity. Thus, the two triangles map the listed values of
S and 𝐾s in Table 1 to their respective textural class. It is
evident that soil texture exerts a large control on the sorp-
tivity and saturated hydraulic conductivity. In general, the
sorptivity decreases with decreasing sand fraction. We note
again that the sorptivities of the silty clay and silty clay loam
soils are smaller than their counterpart of the clay soil. This

anomaly somewhat deteriorates the strength of the relation-
ship between the sorptivity, S, and texture of the soil.

Qualitatively similar findings are observed for the saturated
hydraulic conductivity of the USDA collection of soils. The
color variations of the textural triangle are less pronounced.
The saturated hydraulic conductivities of the silty clay, sandy
clay, and silty clay loam soils appear rather low in compari-
son with the documented 𝐾s value of the clay sample. Conse-
quently, these three soils cannot reach the infiltration rate of
the clay soil at late times, as is clearly evident from the shape
of the cumulative infiltration curves in our dataset. From the
textural triangles, we conclude that the silty clay and silty clay
loam soils exhibit the lowest values of the sorptivity, S, and
saturated hydraulic conductivity, 𝐾s. This explains why from
all USDA soils, these two soils infiltrate the least amount of
water.

Before we proceed to the section below, we store the infil-
tration dataset, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1, of each soil type in two sepa-

rate vectors, namely, a 𝑛 × 1 vector, �̃� = [𝐼1 𝐼2 … 𝐼𝑛], of
cumulative infiltration measurements, and a 𝑛 × 1 vector
of associated print (measurement) times, �̃� = [𝑡1 𝑡2 … 𝑡𝑛].
The corresponding values of the sorptivity and saturated
hydraulic conductivity are referred to as �̃� and �̃�s, respec-
tively. Although we use simulated data in the present analysis,
the tilde notation,∼, emphasizes use of observed quantities as
precursor to measured infiltration data from laboratory and/or
field experiments.

3 THEORY

In this section, we present the different building blocks of
our methodology for assessing the time validity, 𝑡valid [L],
of Philip’s two-term infiltration Equation 5 from measured
cumulative infiltration data. As part of this analysis, we also
yield estimates of the soil sorptivity, S [L T1/2], saturated
hydraulic conductivity, 𝐾s [L T−1], and dimensionless coeffi-
cient, c. As by-product, we also infer the marginal distribution
of coefficient, β, in the infiltration equation of Parlange et al.
(1982).

3.1 The infiltration equation of Parlange

The infiltration equation of Parlange et al. (1982) serves as
principal foundation of our methodology. This quasi-exact
analytic solution of the water content form of Richards’ equa-
tion simulates cumulative vertical infiltration, I(t) [L], into a
homogeneous soil at uniform initial moisture content:

(𝐾s−𝐾i )2

𝑆2
(1 − β)𝑡 = (𝐾s−𝐾i )[𝐼(𝑡)−𝐾i𝑡]

𝑆2

− 1
2
log

(
1
β
exp

{
2β(𝐾s−𝐾i )[𝐼(𝑡)−𝐾i𝑡]

𝑆2

}
+ β−1

β

) (7)
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F I G U R E 2 Textural triangle with the 12 USDA soil types and associated measurements of the (a) sorptivity, �̃�, in units of cm h−1/2 and (b)
saturated hydraulic conductivity, 𝐾s, in cm h−1, using a parula (blue–green–orange–yellow) color map. The colorbar at the right-hand side of both
triangles assigns values to the parula color palette

where t > 0 [T] is the elapsed time since the start of the infil-
tration event and β ∈ (0, 1) is a dimensionless integral shape
constant (Haverkamp et al., 1990). Equation 7 was general-
ized to nonponded conditions by Parlange et al. (1985) and
Haverkamp et al. (1990) with an expression in explicit form
presented by Barry et al. (1995). The coefficient β can be
computed as follows (Fuentes et al., 1992; Haverkamp et al.,
1994):

β = 2 − 2
∫ θsθi

[
𝐾(θ)−𝐾i
𝐾s−𝐾i

] (
θs−θi
θ−θi

)
𝐷w(θ)dθ

∫ θsθi 𝐷w(θ)dθ
(8)

where θ [L3 L−3] denotes the volumetric soil moisture con-
tent at time 𝑡 > 0, 𝐾(θ) [L T−1] and 𝐷w(θ) [L2 T−1] sig-
nify the unsaturated soil hydraulic conductivity and soil water
diffusivity functions, respectively, and θi ≤ θ ≤ θs. Notwith-
standing this theoretical definition for β, its value is difficult
to determine from measured infiltration data, as its impact
on the 𝐼(𝑡) relationship of Equation 7 is visible only at late
infiltration times, well beyond the length of most infiltra-
tion experiments. It is common practice, therefore, to treat β
as a known constant. For example, Haverkamp et al. (1994)
obtained β = 0.563 from application of equation (8), whereas
a value of β = 0.6 is commonly used in the literature (Dohnal
et al., 2010; Latorre et al., 2015, 2018; Moret-Fernández et al.,
2020; Rahmati et al., 2019). We treat β as an unknown quan-
tity.

Equation 7 has several desirable properties for infiltration
modeling and soil hydraulic parameter estimation. First and
foremost, Parlange’s equation is valid for all infiltration times.

Secondly, as Haverkamp et al. (1994) has shown for a three-
dimensional infiltration experiment, the equation is in close
agreement with measured data. Lastly, the parameters S, 𝐾s,
and β have a sound physical and/or mathematical underpin-
ning, adjustable to the initial and boundary conditions of the
infiltration event (Haverkamp et al., 1994; Rahmati et al.,
2020). Despite these desirable qualities, Parlange’s infiltration
Equation 7 has not entered into mainstream use for infiltra-
tion modeling and data analysis in lieu of Philip’s two-term
Equation 5. As Parlange’s equation is an implicit solution of
the infiltration process, some mathematical skill is required to
numerically solve Equation 7 in pursuit of the I(t) relationship.

To simplify practical application of Equation 7, Haverkamp
et al. (1994) derived three separate expressions for cumulative
infiltration at very short (VS), short (S), and long (L) times,
respectively:

𝐼VS(𝑡) = 𝑆
√
𝑡 (9a)

𝐼S(𝑡) = 𝑆
√
𝑡 +

[(
2 − β
3

)
(𝐾s −𝐾i) +𝐾i

]
𝑡 (9b)

𝐼L(𝑡) = 𝐾s𝑡 −
1

2(1 − β)
𝑆2

𝐾s −𝐾i
log (β) (9c)

These analytic expressions are much easier to evaluate yet
trade difficulties with the numerical solution of Equation 7
with problems about how to establish exact time validities of
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Equations 9a–9c and guarantee convergence of the simulated
I(t) relationship. Lassabatere et al. (2009) developed time lim-
its for each of the equations and their dependency on soil tex-
ture. These limits are only an approximation of the true time
validity and require knowledge of the soil texture and values
of S and 𝐾s. This undermines practical use. Note that the first
term of Equations 9a and 9b is synonymous with the capillary
term of Philip’s two-term infiltration Equation 5. The second
term at the right-hand side of Equation 9b must, therefore,
equal Philip’s gravity term. Thus, for very short to short infil-
tration times, we may write

𝑐𝐾s𝑡 =
[(
2 − β
3

)
(𝐾s −𝐾i) +𝐾i

]
𝑡 (10)

For 𝐾i = 0, the expression above simplifies to the following
relationship (Moret-Fernández et al., 2017):

𝑐 = 2
3
− 1
3
β (11)

between coefficients β and c in the infiltration equations of
Parlange et al. (1982) and Philip (1957) (two-term variant),
respectively.

In the Supplemental Information S1, we present theory
and implementation of an exact and robust numerical solu-
tion of Parlange’s infiltration equation. This solution consid-
ers time, 𝑡 ≥ 0 (h), as the independent (explanatory) variable
and cumulative infiltration, 𝐼 ≥ 0 (cm), as the dependent vari-
able. Our solution builds on the residual form of Equation 7
and uses root finding with the secant method to iteratively find
its zero-points. Unlike Newton’s method, this procedure does
not demand a closed-form expression for the derivative func-
tion but uses secant lines to converge the sequence of iterates
to the zero-point of Parlange’s residual function. Algorithm
S1.1 presents a detailed step-by-step recipe of our numerical
solution of Equation 7, and Appendix A presents its imple-
mentation in MATLAB. This subroutine called Parlange may
be executed from the MATLAB command prompt as I = Par-
lange(eta,t) and is synonymous to a vector-valued function,
𝐈 = 𝐟 (𝛈, �̃�), of the Parlange parameters, 𝛈 = [𝑆 𝐾s β 𝐾i]⊤,
and n measurement times, �̃� = [𝑡1 𝑡2 … 𝑡𝑛]⊤. The function
returns as output argument the 𝑛 × 1 vector of cumulative
infiltration values, 𝐈 = [𝐼1 𝐼2 … 𝐼𝑛]⊤, of Equation 7. Bench-
mark experiments (not shown herein) demonstrate that the
MATLAB implementation is exact, robust, and computation-
ally efficient requiring only a few milliseconds to complete a
240-h infiltration experiment on a modern desktop computer
with print step of 0.1 h.

Parlange’s infiltration Equation 7 not only demands an iter-
ative method to solve for its I(t) relationship but also requires
use of a search method to estimate its parameters from mea-
sured cumulative infiltration data. This amounts to nonlinear

regression. The anticipated difficulties with the inference of
the coefficient β prompt use of a Bayesian method coupled
with the DREAM(ZS) algorithm (Vrugt et al., 2008, 2009;
Vrugt, 2016). Such methodology not only returns estimates
of the optimum parameter values but simultaneously also
assesses their associated uncertainty. Uncertainty quantifica-
tion is key, as deterministic estimates are difficult to interpret
by themselves without knowledge of their underlying confi-
dence intervals.

3.2 Step 1: Bayesian inverse modeling

We estimate the parameters in Parlange’s infiltration equation
using Bayesian inference with the DREAM(ZS) algorithm.
Bayesian inference allows for an exact description of param-
eter uncertainty (and other sources of uncertainty) by treating
the parameters, η, of Equation 7 as probabilistic variables with
joint posterior probability density function, 𝑝(η|̃𝐈). This mul-
tivariate distribution, the so-called posterior parameter distri-
bution, is the consequence of two antecedents, a prior distri-
bution, 𝑝(η), which captures our initial degree of beliefs in
the values of the model parameters, and a likelihood function,
𝐿(η|̃𝐈), which quantifies per the rules of probability theory
the level of confidence (= conditional belief) in the param-
eter values, η, in light of the cumulative infiltration data,
�̃� = [𝐼1 𝐼2 ⋯ 𝐼𝑛]⊤, alone. Bayes’ theorem expresses mathe-
matically the fundamental relationship between the prior, con-
ditional, and posterior (= updated) beliefs of the parameters.
In the present case, this results in the following formulation:

𝑝(η|̃𝐈) = 𝑝(η)𝐿(η|̃𝐈)
𝑝(̃𝐈)

∝ 𝑝(η)𝐿(η|̃𝐈) (12)

where the denominator, 𝑝(̃𝐈), the so-called evidence or
marginal likelihood, acts as a normalizing constant

𝑝(̃𝐈) = ∫𝐄 𝑝(η)𝑝(̃𝐈|η)dη = ∫𝐄 𝑝(η)𝐿(η|̃𝐈)dη = ∫𝐄 𝑝(η|̃𝐈)dη
(13)

so that the posterior distribution, 𝑝(η|̃𝐈), integrates to unity
over the prior (feasible) parameter space, η ∈ 𝐄 ⊆ ℝ𝑑 , where
d signifies parameter dimensionality. Knowledge of 𝑝(̃𝐈) is
strictly necessary for hypothesis testing to select the most
plausible infiltration function from a suite of different can-
didate models deemed valid a priori. If, however, we rely on a
single hypothesis, then the denominator, 𝑝(̃𝐈), in Equation 12
is of no particular interest, as all statistical inferences about
the parameters of Parlange’s infiltration Equation 7 can be
made from the unnormalized posterior distribution, 𝑝(η|̃𝐈) ∝
𝑝(η)𝐿(η|̃𝐈). This necessitates definition of a prior distribution,
𝑝(η), for the Parlange model parameters, a mathematical form
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of the likelihood function, 𝐿(η|̃𝐈), and a method that can infer
the posterior distribution, 𝑝(η|̃𝐈).

Before we move on to our choice of prior distribution,
we postulate that the hydraulic conductivity, 𝐾i, at the ini-
tial moisture content, θi, is equal to zero. This assumption
is certainly justifiable for our more coarse-textured soils, as
their initial moisture contents are relatively low and close to
residual saturation (see Table 1). For the more fine-textured
soils, the assumption that 𝐾i = 0 is questionable; neverthe-
less, numerical experiments have shown this has a negligible
effect on their posterior estimates of S, 𝐾s and β. With 𝐾i = 0,
Equation 7 simplifies to

(
𝐾s
𝑆

)2

(1 − β)𝑡 =
𝐾s𝐼(𝑡)
𝑆2

− 1
2
log

{
1
β
exp

[2β𝐾s𝐼(𝑡)
𝑆2

]
+
β − 1
β

}
(14)

which leaves us with three unknown parameters, namely,
η = [𝑆 𝐾s β]⊤. Note that this simplification is not given by
limitations of our parameter estimation algorithm, as the
DREAM(ZS) algorithm can handle a very large number of
parameters (Laloy et al., 2015; Linde & Vrugt, 2013; Qin
et al., 2018; Zhang et al., 2020). Indeed, a comparison of the
marginal prior and posterior distribution of each parameter
will convey how much information is available in the calibra-
tion data to constrain each parameter. Knowledge of the initial
moisture content is important when interpreting the inferred
values of S.

3.2.1 Prior distribution

The prior distribution should encode all the “subjec-
tive” knowledge about the Parlange model parameters, η =
[𝑆 𝐾s β]⊤, before collection of the measured cumulative
infiltration curve, �̃�. This distribution, often simply called the
prior, expresses one’s beliefs about the parameters before the
data (also referred to as evidence) are taken into account. In
the absence of detailed prior information about the values of
S, 𝐾s, and β, we treat all parameter values as equally likely
a priori and assign a multivariate uniform prior distribution
to the parameter space demarcated by the upper and lower
bounds listed in Table 2. This 𝑑 = 3-dimensional hypercube
is synonymous to the feasible parameter space, 𝐄, and implies
a prior density, 𝑝(η) = 5 × 10−4, so that ∫𝐄 𝑝(η) = 1.

The lower bounds of S, 𝐾s, and β are dictated by physical
limits and must be set to zero. Their upper limits, however, are
not unambiguous and warrant some discussion. The formal
definition of parameter β in Equation 8 implies that 0 < β < 2.
This exceeds the interval of β ∈ (0, 1) given by Parlange et al.
(1982) but has been used in other recent studies. Note that
β ≠ 1, otherwise the left- and right-hand sides of Equation 7
equal zero. The upper bounds of the soil sorptivity and sat-
urated hydraulic conductivity are not as clearly defined and
are far more diffuse. We specify rather liberal upper values of

T A B L E 2 Description of the parameters of Parlange’s infiltration
Equation 14 including symbol, units, and lower and upper bounds

Parameter Description Unit Min. Max.
S Soil sorptivity cm h−1/2 0 20

𝐾s Saturated
hydraulic
conductivity

cm h−1 0 50

β Dimensionless
coefficient

– 0 2

20 cm h−0.5 and 50 cm h−1 for S and 𝐾s, respectively, so as to
guarantee that our uniform prior, 𝑝(η), accommodates a diver-
sity of soils. If, for some reason, the upper limits of S and 𝐾s
truncate the posterior distribution, 𝑝(η|̃𝐈), then these bounds
can always be enlarged.

Note that one can exploit the SWIG database and construct
an informative prior for S, 𝐾s, and β for each soil type. Such
informative (nonuniform) prior may simplify the inference
of β, particularly for infiltration experiments with a limited
duration. This warrants further research. The consequence of
an uninformative prior is that the posterior parameter distri-
bution, 𝑝(η|̃𝐈), will depend only on the cumulative infiltra-
tion data, �̃� = [𝐼1 𝐼2 ⋯ 𝐼𝑛 ]⊤, through the likelihood func-
tion, 𝐿(η|̃𝐈). Indeed, with a uniform prior, the posterior den-
sity, 𝑝(η|̃𝐈), of the Parlange parameters, η = [𝑆 𝐾s β]⊤, will
simply equal a constant multiple of 5 × 10−4 of the likeli-
hood, 𝐿(η|̃𝐈), for all η ∈ 𝐄 ⊆ ℝ3. Thus, with an uninforma-
tive prior distribution, Bayesian inference reduces to maxi-
mum likelihood estimation, but with the important distinction
that our framework infers not only the peak of 𝑝(η|̃𝐈), but also
its underlying distribution.

3.2.2 Likelihood function

We are left with the definition of the likelihood function,
𝐿(η|̃𝐈), in Equation 12. The likelihood was designated as
mathematical quantity by Sir Ronald Fisher (1934) to mea-
sure our degree of belief (confidence) in simulated outcomes.
The likelihood principle states that all relevant information
about the parameters, η, is contained in the likelihood function
for the observed data given the assumed (statistical) model.
This offers a self-contained framework for statistical model-
ing and inference and has become the foundation of modern
statistics and probability theory with application to frequentist
and Bayesian inference.

In our application, the likelihood (function) quantifies in
probabilistic terms the distance between the observed cumu-
lative infiltration data, �̃�, and its counterpart, 𝐈 = 𝑓 (η, �̃�), sim-
ulated by Parlange’s infiltration Equation 14 using the param-
eter values, η = [𝑆 𝐾s β]⊤, at the n measurement times, �̃� =
[𝑡1 𝑡2 ⋯ 𝑡𝑛 ]⊤. The word likelihood is often used loosely in
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common speech as synonym for probability, yet probability
is inadequate as mathematical quantity to express our pref-
erences among different outcomes. In practice, the use of
the word probability is appropriate when describing possi-
ble future outcomes for fixed parameter values before data
become available. The term likelihood, on the contrary, should
be used to express the level of confidence for a given outcome
(parameter vector) after the infiltration data have become
available.

If we wish to quantify the likelihood of a simulated out-
come, 𝐼1, in light of an observation, 𝐼1, we need to define
a probability density function, 𝑓𝐼1 , for 𝐼1. In theory, we
could hypothesize any probability distribution for 𝐼1, and as
a result, many potential formulations of the likelihood func-
tion, 𝐿(η|̃𝐈). In practice, however, we often limit our choice to
common probability distributions that are easy to manipulate
analytically and evaluate numerically. We refer the interested
reader to Vrugt and Massoud (2019) for the derivation of a
suite of commonly used likelihood functions. In the present
application, we make the common assumption that the mea-
surement errors, ϵ = [ϵ1 ϵ2 ⋯ ϵ𝑛]⊤, of the 𝑛 × 1 vector of
cumulative infiltration data, �̃�, are independent (uncorrelated),
zero-mean normally distributed with a constant variance, σ2

𝐼
.

Thus, we assume that ϵ𝑗

̃  (0,σ2

𝐼
) for all 𝑗 = (1, 2,… , 𝑛),

where  (𝑎, 𝑏) signifies the normal distribution with mean,

𝑎, and variance, 𝑏 and symbol
∼ means distributed accord-

ing to. Our assumptions lead to the following definition of the
likelihood function:

𝐿(η|̃𝐈) ∝{
𝑛∑

𝑗=1

[
𝐼𝑗 − 𝐼(η, 𝑡𝑗)

]2}−12 𝑛

(15)

where 𝐼𝑗 denotes the observed cumulative infiltration at the
jth measurement time and 𝐼(η, 𝑡𝑗) signifies its simulated coun-
terpart at time 𝑡𝑗 using Equation 14 with parameter values,
η = [𝑆 𝐾s β]⊤. The summation term between the brackets is
the well-known sum of squared residuals (SSR) used in least
squares regression methods. Note that 𝐿(η|̃𝐈) is inversely pro-
portional to the SSR; hence, parameter values that minimize
the SSR will also maximize the likelihood. As a result, the
maximum likelihood solution of the Parlange parameters is
synonymous with the least squares solution derived from non-
linear regression methods. Therefore, in the remainder of this
paper, the maximum a posteriori density (MAP) solution of
𝑝(η|̃𝐈) is also referred to as least squares solution.

3.2.3 The DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm

Now that the prior distribution and likelihood function have
been defined, what is left is to summarize the posterior dis-

tribution, 𝑝(η|̃𝐈), of the Parlange model parameters in Equa-
tion 14. As this model is nonlinear in its parameters, the
posterior distribution 𝑝(η|̃𝐈) cannot be obtained by analyti-
cal means nor by analytical approximation. We must there-
fore resort to iterative methods that approximate the poste-
rior distribution by generating a large sample from this dis-
tribution. In this paper, we approximate the target distribu-
tion, 𝑝(η|̃𝐈), using Markov Chain Monte Carlo (MCMC) sim-
ulation with the DREAM(ZS) algorithm (Vrugt, 2016; Vrugt
et al., 2008, 2009). This multichain MCMC method has found
widespread application and use in many different fields of
study, and it exhibits excellent sampling efficiencies on com-
plex, high-dimensional, and multimodal target distributions
(Laloy et al., 2015; Qin et al., 2018; Volpi et al., 2017;, Zhang
et al., 2020; to name a few). A detailed description of this
method and its different extensions appears in Vrugt (2016),
and interested readers are referred to this paper for more
information.

For each soil, we approximate the posterior distribution,
𝑝(η|̃𝐈), of the Parlange parameters, η = [𝑆 𝐾s β]⊤, using 𝑁 =
3 Markov chains and default settings of the algorithmic vari-
ables of the DREAM(ZS) algorithm. In doing so, we use a
fixed computational budget of 60,000 Parlange function eval-
uations and create 20,000 samples in each chain. This num-
ber of samples is much larger than required by convergence
criteria such as the multivariate scale-reduction factor, �̂�d,
of Brooks and Gelman (1998), which declared convergence,
�̂�d ≤ 1.2, after just a few thousand chain samples. Hence, we
can safely discard the first half of each chain (50% burn-in)
and use the last 10,000 samples in each chain to summarize
the posterior distribution of the Parlange parameters, S, 𝐾s,
and β for each different soil. This amounts to 30,000 posterior
parameter vectors, η, and requires about 2 min to complete
on a modern desktop computer. The MAP or least squares
solution is readily found among these posterior samples by
locating the parameter vector with highest posterior density,
𝑝(η|̃𝐈).
3.3 Step 2: Estimation of c and 𝒕𝐯𝐚𝐥𝐢𝐝 in
Philip’s two-term equation

The trivariate posterior distribution of the soil sorptivity S,
saturated hydraulic conductivity 𝐾s, and coefficient β of Par-
lange’s infiltration equation serves as input to our second step.
Specifically, among the samples of the 𝑁 = 3Markov chains
simulated by the DREAM(ZS) algorithm, we locate the solu-

tion that maximizes the posterior density, 𝑝(η|̃𝐈). Due to our
choice of prior distribution and likelihood function, the cor-
responding parameter values are maximum likelihood as well
as least squares estimates. We use this wording interchange-
ably. The least squares parameter values, η̂ = [�̂� �̂�s β̂]⊤, of
Parlange’s infiltration Equation 14 are hard-wired in Philip’s
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two-term infiltration equation to yield

𝐼(𝑡) = �̂�
√
𝑡 + 𝑐�̂�s𝑡 (16)

This leaves us with two unknowns for each soil, namely, the
dimensionless coefficient, c, and the time validity, 𝑡valid, of the
above expression. The least squares value, 𝑐, of Equation 16
can be derived by analytic means. For the first m observations,
�̃�𝑚 = [𝐼1 𝐼2⋯ 𝐼𝑚]⊤, of the n-record of cumulative infiltration
measurements, �̃�, we yield

𝑐 = (𝐝⊤𝐝)−1𝐝⊤(�̃�𝑚 − �̂� �̃�1∕2𝑚 ) (17)

where the 𝑚 × 1 design vector, 𝐝 = [�̂�s𝑡1�̂�s𝑡2 … �̂�s𝑡𝑚]⊤, the
𝑚 × 1 vector �̃�𝑚 = [𝑡1 𝑡2⋯ 𝑡𝑚]⊤ stores the measurement times
of �̃�𝑚 and 1 ≤ 𝑚 ≤ 𝑛. Estimation of the time validity, 𝑡valid,
of Philip’s two-term infiltration equation now boils down
to selection of an optimal value for the integer, m. For
𝑡 ≤ 𝑡𝑚, Equation 17 should provide an adequate description
of the measured cumulative infiltration curve. For infiltra-
tion times, 𝑡 > 𝑡𝑚, Philip’s two-term infiltration equation is
deemed invalid, and thus its goodness-of-fit is expected to
deteriorate substantially.

The Bayesian information criterion (BIC) will help find an
optimal trade-off between the quality-of-fit of Equation 17
and the length, m, of the measured infiltration curve. This met-
ric is commonly used for model selection among a finite set
of competing hypotheses. The BIC encodes a natural prefer-
ence for simpler models. This parsimony principle, known as
Occam’s razor, is traceable to the works of philosophers such
as Aristotle (384–322 BC) and Ptolemy (circa AD 90 to circa
AD 168) and consistent with requirements of falsifiability in
the scientific method of Popper (1992). The BIC is defined as
follows in our application:

BIC = −2 log
[
𝐿(η|̃𝐈𝑚)] + log(𝑚) (18)

where η = [�̂��̂�s𝑐]⊤ signifies the least squares values of
the Parlange parameters, 𝐿(η|̃𝐈𝑚) denotes the likelihood of
Philip’s two-term equation for subset, �̃�𝑚, and, again, m is the
length of the cumulative infiltration dataset (𝑚 ≤ 𝑛). Lower
values of the BIC are preferred.

We formalize the above ideas in Algorithm 1, which
presents a step-by-step recipe on our use of the BIC for deter-
mining the time validity, 𝑡valid, and least squares estimate, 𝑐,
of the dimensionless constant, c, of Philip’s two-term infiltra-
tion (Equation 5). In words, for each length, m, of the sub-
set, �̃�𝑚, of cumulative infiltration measurements, we resort to
Equation 17 to compute the least squares value of the mul-
tiplicative coefficient, c. This value, 𝑐, along with �̂� and
�̂�s from Parlange’s infiltration equation, enter Philip’s two-
term infiltration equation and are used to simulate cumula-

tive infiltration, 𝐈𝑚, at measurement times, �̃�𝑚. Next, we cal-
culate the likelihood, 𝐿(η|𝐈𝑚), of the simulated infiltration
curve, 𝐈𝑚, using Equation 15 and compute the BIC. We exe-
cute this recipe for 3 ≤ 𝑚 ≤ 𝑛 and look for the value of m
that minimizes the BIC. This equals the optimal trade-off
between data length and quality of fit and thus is synony-
mous to the time validity of Philip’s two-term infiltration
equation.

Algorithm 1. Determination of the time validity, tvalid
Input: Measured cumulative infiltration curve,
�̃� = [𝐼1𝐼2⋯ 𝐼𝑛]⊤ at times, �̃� = [𝑡1𝑡2⋯ 𝑡𝑛]⊤

Least squares values of sorptivity, �̂� > 0, and saturated
hydraulic conductivity, 𝐾s > 0
Output: Time validity, 𝑡valid, of Equation 14 and correspond-
ing least squares value, 𝑐, of c

1: begin
2: Set BIC1 = 1010, BIC2 = 1010, 𝑐1 = 0, and 𝑐2 = 0
3: for 𝑚 ← 3 to 𝑛 do
4: Define cumulative infiltration subset,

�̃�𝑚 = [𝐼1 𝐼2 ⋯ 𝐼𝑚]⊤, at �̃�𝑚 = [𝑡1 𝑡2 ⋯ 𝑡𝑚]⊤
5: Define the 𝑚 × 1 design vector, 𝐝, of coefficient

c, that is, 𝐝 = [�̂�𝑡𝑡1 �̂�𝑡𝑡2 ⋯ �̂�𝑡𝑡𝑚]⊤
6: Compute the least squares value, 𝑐𝑚, of

coefficient c, 𝑐𝑚 = (𝐝⊤𝐝)−1𝐝⊤(�̃�𝑚 − �̂� �̃�1∕2𝑚 )
7: Evaluate Philip’s two-term Equation 16 at �̃�𝑚

using η = [�̂� �̂�s 𝑐𝑚]⊤
8: Compute the likelihood, 𝐿(η|̃𝐈𝑚), of the simu-

latedinfiltration data, 𝐈𝑚, using Equation 15
9: Compute the Bayesian information criterion,

BIC = −2 log[𝐿(η|̃𝐈𝑚)] + log(𝑚)
10. end for
11. Find the index, �̂�, of the minimum BIC, thus,

�̂� = argmin1≤𝑚≤𝑛BIC(𝑚)
12. Define the time validity, 𝑡valid = 𝑡�̂�
13: return 𝑡valid and 𝑐�̂�
14: end

4 RESULTS AND DISCUSSION

In this section, we present the results of our framework
for the 12 different soil types considered in our analysis.
We first present the results of Step 1 of our methodology,
after which we move on to our findings for the second
step.

4.1 Results of Step 1: Parlange’s equation

Figure 3 displays time series plots of the HYDRUS-1D simu-
lated cumulative infiltration data (red circles) of each soil type
and their simulated counterparts (solid blue line) of the infil-



JAISWAL ET AL. 13 of 27Vadose Zone Journal

F I G U R E 3 Comparison of observed (red dots) and simulated cumulative infiltration, I, data using the semi-implicit equation of Parlange et al.
(1982) for the 12 different USDA textural classes. Each dataset is composed of 𝑛 = 100 measurements and differs in duration as the cumulative
infiltration is limited to 5 cm

tration equation of Parlange with least squares value of S, 𝐾s,
and β derived from Bayesian analysis using the DREAM(ZS)
algorithm. The simulated cumulative infiltration is in excel-
lent agreement with the measured data. For all soil types, the
solid blue line goes nearly perfectly through the measured
(𝑡, 𝐼) data pairs. This result may not come as a complete sur-
prise, as both the measured and simulated data equal a solu-
tion of Richards’ equation, albeit in numerical and analytic
form and with and without specification of the initial mois-
ture content, respectively.

To provide insights into the corresponding estimates of the
Parlange parameters, please consider Figure 4, which presents
marginal posterior distributions of the soil sorptivity, S, in cm
h−1/2, saturated hydraulic conductivity, 𝐾s, in cm h−1, and
unitless coefficient, β, for a representative group of five soils
including (a) clay, (b) clay loam, (c) sand, (d) silt loam, and
(e) silty clay loam. The relative frequencies on the 𝑦 axis are
scaled between 0 and 1 to yield a common empirical density
for each parameter and soil type. The least squares value of
each parameter is separately indicated in each graph using
a red cross. The Parlange parameters, S, 𝐾s, and β, appear
well defined by calibration against the measured cumulative
infiltration data. The histograms occupy only a small region
interior to their uniform prior distributions. This is a testa-
ment to the information content of the cumulative infiltration
data. The posterior marginal distributions of S, 𝐾s, and β are
generally well described by a normal distribution with mean

that coincides with their respective least squares estimates and
small dispersion. The only exception is parameter β for silty
clay loam (Figure 4E3). Its histogram is truncated at two by
the prior distribution and, consequently, differs markedly from
normality. A similar result is observed for sandy clay loam
(not shown). Our numerical solution of Parlange’s infiltration
equation detailed in Supplemental Section S1 and Appendix
A accommodates β values larger than 2. Thus, we temporar-
ily lift the restriction that 0 < β < 2 and use an upper bound,
β = 5, in our next trials with the DREAM(ZS) algorithm. The
use of such enlarged prior for β only changes the posterior
distribution of the sandy clay loam and silty clay loam soils.
The marginal distributions of their β values (not shown) now
become Gaussian as well (as all other histograms) with pos-
terior means of about 3.5 and 4.5, respectively, and small
variance. The desire of the posterior β values of sandy clay
loam and silty clay loam to exceed 2 defies the mathematical–
physical definition of β in Equation 8. Therefore, we revoke
that 0 < β ≤ 2 and classify sandy clay loam and silty clay
loam as dissonant soils in the remainder of this paper.

Table 3 documents summary statistics of the posterior
parameter distribution, 𝑝(η|̃𝐈), sampled with the DREAM(ZS)
algorithm. Specifically, for each soil type, we list the posterior
mean, median, and standard deviation of S, 𝐾s, and β. This
table reiterates the main findings of Figure 3. The Parlange
parameters are well defined with posterior standard devia-
tions that appear rather small. The total cumulative infiltra-
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F I G U R E 4 Histograms of the marginal posterior distribution of the parameters sorptivity (S), saturated hydraulic conductivity (𝐾s), and β
coefficient of Parlange’s semi-implicit infiltration Equation 14 for a representative set of five soils, including (a) clay, (b) clay loam, (c) sand, (d) silt
loam, and (e) silty clay loam. The least squares values of the parameters are separately indicated in each graph with the red cross symbol

tion of 5 cm is more than enough for each soil type to warrant
a precise determination of its sorptivity, saturated hydraulic
conductivity, and dimensionless coefficient, β, in Parlange’s
infiltration Equation 14. Whether the posterior estimates of
S and 𝐾s are accurate or not will soon be investigated. Note
that sandy clay loam suffers a similar problem with its β value
as silty clay loam, our other dissonant soil. Fortunately, as
we will demonstrate soon, the truncation of β at a value of
2 hardly affects the accuracy of the inferred S and 𝐾s values.

Next, we investigate the induced correlation structure
between the posterior samples of the Parlange parameters.
Figure 5 presents scatter plots of the bivariate posterior sam-
ples of (1) (𝑆,𝐾s), (2) (𝑆, β) and (3) (𝐾s, β) for the (a) clay,
(b) clay loam, (c) sand, (d) silt loam, and (e) silty clay loam
soils. The dashed black line presents the fit of a linear regres-
sion model to the scattered samples, and the red cross por-
trays the least squares solution of each parameter pair. The
bivariate scatter plots of the sampled posterior parameter val-
ues demonstrate the presence of considerable parameter cor-
relation. Indeed, for all but our two dissonant soils (sandy clay
loam not shown), the Parlange parameter pairs (𝑆,𝐾s), (𝑆, β),
and (𝐾s, β) exhibit an almost linear relationship with strength
of the correlation that depends on the spread of the samples
around the regression line and results in correlation coeffi-
cients that range between .80 and .95 (see Table 4). Thus, if
a small increment of the sorptivity is met by a proportionate
positive perturbation to parameters 𝐾s or β, then the cumula-

T A B L E 4 Pairwise linear correlation coefficients between the
parameters of Parlange’s infiltration equation for each of the soil types
considered herein

Parameter pairs
Soil type (𝑺,𝑲𝐬) (𝑺,𝛃) (𝑲𝐬,𝛃)
Clay 0.826 0.971 0.932

Clay loam 0.858 0.959 0.966

Loam 0.827 0.964 0.943

Loamy sand 0.817 0.954 0.949

Sand 0.849 0.950 0.970

Sandy clay 0.837 0.964 0.949

Sandy clay loam −0.663 0.553 0.120

Sandy loam 0.815 0.955 0.947

Silt 0.858 0.962 0.963

Silt loam 0.851 0.964 0.957

Silt clay 0.842 0.969 0.945

Silty clay loam −0.671 0.485 0.208

Note. The correlation coefficients are derived from the posterior samples of the
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm Parameter S is
sorptivity, 𝐾s is saturated hydraulic conductivity, and β is a coefficient.

tive infiltration simulated by the Parlange infiltration equation
may not change much, resulting in an approximately similar
value of the likelihood, 𝐿(η|̃𝐈). The truncated marginal distri-
bution of β for the silty clay loam and sandy clay loam soils is
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(b1)(a1)

(a2)

(c1) (d1)

(b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(e3)

(e1)

(e2)

F I G U R E 5 Scatter plots of the bivariate posterior samples of the parameter pairs, (1) (𝑆,𝐾s), (2) (𝑆, β) and (3) (𝐾s, β) of the Parlange
infiltration Equation 14 for a representative group of five soil types, including (a) clay, (b) clay loam, (c) sand, (d) silt loam, and (e) silty clay loam.
Parameter S is sorptivity, 𝐾s is saturated hydraulic conductivity, and β is a coefficient. The dashed black line characterizes the fit of a linear
regression function to the sampled data pairs. The red cross signifies the least squares solution of the Parlange parameters

responsible for an enhanced dispersion of the posterior sam-
ples along the regression line. This increased spread not only
reduces considerably the strength of the relationship between
the Parlange parameters, S, 𝐾s and β, but also changes to a
negative value the correlation between S and 𝐾s (see Fig-
ure 4E1).

The posterior correlation structure among S, 𝐾s, and β of
Parlange’s infiltration equation signals a warning. We should
not expect a method that can simultaneously determine the
time validity, 𝑡valid, and the parameters, S, 𝐾s, and c, of
Philip’s two-term infiltration equation. No method and/or
framework would allow us to do this with confidence. If noth-
ing else, we may be able to determine the product of c and
𝐾s, but their individual values are ill defined in calibration
against cumulative infiltration data. This testifies to the need
of our two-step inference method using Parlange’s infiltration
function as a vehicle for the soil sorptivity and saturated
hydraulic conductivity.

Finally, we conclude the results of our first step with a pair-
wise comparison of the observed and least squares (maximum
likelihood) estimates of the (a) soil sorptivity, S, and (b) satu-
rated hydraulic conductivity, 𝐾s (see Figure 6). For complete-
ness, Table 5 lists the maximum likelihood values of S and 𝐾s
including corresponding estimates of β̂. The maximum
likelihood estimates of �̂� and �̂�s derived from the
DREAM(ZS) algorithm are in excellent agreement with

T A B L E 5 Maximum likelihood estimates of the parameters,
sorptivity (S), saturated hydraulic conductivity (𝐾s), and β coefficient,
of Parlange’s infiltration equation derived from the joint samples of the
Markov chains of the DREAM(ZS) algorithm

Soil type �̂� �̂�𝐬 �̂�
cm h−1/2 cm h−1

Clay 1.042 0.214 1.644

Clay loam 1.491 0.307 1.505

Loam 2.267 0.969 1.507

Loamy sand 6.315 15.261 0.836

Sand 9.327 31.877 0.704

Sandy clay 0.799 0.136 1.363

Sandy clay loam 1.700 1.261 2.000

Sandy loam 3.907 4.443 1.053

Silt 1.381 0.205 1.766

Silt loam 1.704 0.379 1.699

Silt clay 0.353 0.021 1.702

Silty clay loam 0.519 0.058 1.999

Note. The “measured” values of the soil sorptivity, S, and saturated hydraulic con-
ductivity, 𝐾s, are listed in Table 1.

their measured counterparts listed in the last two columns
of Table 1. Indeed, the data pairs of the 12 soil types lie
almost exactly on the 1:1 line that is going from left to right
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F I G U R E 6 Scatter plots of the observed, ∼, and estimated, ˆ, values of the (a) soil sorptivity, S, in cm h−1/2 and (b) saturated soil hydraulic
conductivity, 𝐾s, in units of cm h−1. The solid black line characterizes the 1:1 relationship between the measured and estimated quantities

across the graphs. Thus, the maximum likelihood parameter
values of Parlange’s infiltration equation do not only describe
accurately the measured infiltration data but also match their
observed values. Setting 𝐾i = 0 in Parlange’s infiltration
equation does not seem to deteriorate the accuracy of the
inferred sorptivities and saturated soil hydraulic conductivi-
ties. The β values listed in Table 4 of Lassabatere et al. (2009)
for sand, loam, silt, and silt loam are in good agreement with
our estimates for these soil types.

Now, the MAP values of the sorptivity, S, and saturated
hydraulic conductivity, 𝐾s, are known for each soil type, we
can exploit this knowledge in Step 2 of our methodology and
determine the multiplicative coefficient, c, and time validity,
𝑡valid, of Philip’s two-term infiltration Equation 5.

4.2 Results of Step 2: Time validity of
Philip’s two-term equation

Figure 7 visualizes the results of Algorithm 1 and displays
traces of the BIC (in blue) and least squares value of the multi-
plicative coefficient, c (in green), of Philip’s two-term infiltra-
tion equation for all 12 USDA soil types. All graphs have the
exact same vertical axes (in blue and green) with tick labels
listed only for the three figures in the leftmost column. The
solid red dot at the intersection of the dashed red line and
the 𝑥 axis equals the time validity, 𝑡valid, of Philip’s two-term
infiltration equation. The different traces of the BIC and 𝑐

highlight several important findings. In the first place, notice
the strong similarities in the BIC and 𝑐 traces of the differ-
ent soil types. The BIC decreases rapidly at early times of
infiltration, then assumes rather similar values at intermedi-
ate times before increasing again towards the end of the infil-
tration experiment. The characteristic banana-shaped form of
each BIC trace is the net result of two competing model eval-
uation criteria, namely, the length of the data set, m, in Equa-

tion 18, and the quality of fit (likelihood) of Philip’s two-term
infiltration equation. The BIC will go down if a unit incre-
ment of the length of the cumulative infiltration dataset is
met by a sufficiently large increase in the likelihood, 𝐿(η|̃𝐈𝑚).
With exception of the loamy sand and sandy loam soils (see
Figures 7D, H), the least squares values of the multiplica-
tive coefficient, c, drop almost instantly to values between
0.05 and 0.30 at very early infiltration times and then increase
again with each length increment of the cumulative infiltration
dataset. Secondly, the BIC traces of the different soil types
exhibit a single well-defined minimum. This characteristic of
the BIC metric is crucially important in our search for an opti-
mum model complexity and allows for an accurate determi-
nation of the time validity of Philip’s two-parameter infiltra-
tion equation. Indeed, the minimum BIC presents an optimal
trade-off between the length of the cumulative infiltration data
set and the quality of fit of Philip’s two-term infiltration equa-
tion.

In the third place, notice that the time validity of each soil
is well within the time required to infiltrate 5 cm of water.
Whereas silty clay and silty clay loam warrant an infiltration
experiment of about 2–3 d, most other soils need only a few
hours. Furthermore, the inferred time validities correlate with
soil texture. This may help develop practical guidelines on
when to use Philip’s two-term equation. Lastly, the values of
coefficient c at 𝑡 = 𝑡valid are significantly smaller than one and
well within the ranges reported in the literature. This inspires
further confidence in our methodology and will be discussed
below.

Table 6 reports the least squares values of coefficient, c, and
corresponding estimates of 𝑡valid for Philip’s two-term infil-
tration equation. The last column lists the characteristic time,
𝑡char , of Equation 6 of Philip (1957). The optimum value of
coefficient c ranges between 0.3 and 0.5 for soils with a rela-
tively large sand fraction to values of 0.20–0.25 for soils with
a high loam and clay content and values of about 0.15–0.20
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F I G U R E 7 Relationship between the Bayesian information criterion, BIC (in blue) and least squares value, 𝑐 (in green), of the multiplicative
coefficient, c, of Philip’s two-term infiltration Equation 5 as function of the length of the infiltration experiment for all 12 soil types considered in our
analysis. The graphs in Columns 2, 3, and 4 share the same vertical axis (left and right) as Graphs a, e, and i in the leftmost column. The vertical
dashed red line pinpoints the minimum of the BIC. The solid red dot at the intersection of the red line and the x axis signifies the time validity of
Philip’s two-term infiltration equation

T A B L E 6 Least squares value of the multiplicative coefficient, c,
with corresponding estimates of the time validity, 𝑡valid, of Philip’s
two-term infiltration equation

Soil type 𝒄 𝒕𝐯𝐚𝐥𝐢𝐝 𝒕𝐜𝐡𝐚𝐫

h

Clay 0.210 4.909 23.745

Clay loam 0.235 3.799 23.616

Loam 0.245 1.169 5.471

Loamy sand 0.458 0.099 0.171

Sand 0.498 0.055 0.086

Sandy clay 0.282 7.800 34.464

Sandy clay loam 0.207 0.795 1.818

Sandy loam 0.395 0.369 0.773

Silt 0.157 5.541 45.451

Silt loam 0.181 2.949 20.197

Silt clay 0.192 54.454 288.160

Silty clay loam 0.178 31.425 79.799

Note. The last column lists the characteristic time, 𝑡char , derived from Philip (1957)
using Equation 6.

for silty soils. These values are not uncommon for the different
soil types. We can confirm these estimates by application of
our method to the soils of the SWIG database. The time valid-
ity of each soil type is much smaller than the characteristic

time, 𝑡char , of Philip (1957) and the gravity time, 𝑡grav, of the
characteristic time method of Rahmati et al. (2020). This reit-
erates the importance of an assumption-free and data-driven
methodology for assessing the time validities of infiltration
models. Nevertheless, 𝑡valid and 𝑡char (and for that matter 𝑡grav)
exhibit a strong linear relationship with correlation coefficient
that exceeds .95.

We have focused our attention on an assessment of the
multiplicative coefficient, c, and the time validity, 𝑡valid, of
Philip’s two-term equation without recourse to an assess-
ment of the quality of fit of this infiltration equation.
Figure 8 compares measured (red dots) and simulated infil-
tration data (solid blue line). Measured data beyond 𝑡valid
are separately displayed in light red. Philip’s two-term equa-
tion is in excellent agreement with the measured infiltra-
tion data for 𝑡 ≤ 𝑡valid. This is true for all soil types. For
infiltration times larger than 𝑡valid, Philip’s two-term equa-
tion is known to be deficient in describing the infiltration
process, and the simulated curves deviate more and more
from the measured data. The cumulative infiltration at 𝑡 =
𝑡valid ranges between 2.5 to 3.2 cm but is limited to about
1.8 cm for sandy clay loam. Thus, a cumulative infiltration
of about 2.8–3.0 cm may serve as a reasonable proxy for
the time validity of Philip’s two-term equation. In fact, at
𝑡 = 𝑡valid the soil has reached an approximately constant rate of
infiltration.
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F I G U R E 8 Comparison of observed (red dots) and simulated cumulative infiltration, I, using Philip’s two-term infiltration Equation 5 with
least squares values of the sorptivity, S, and saturated hydraulic conductivity, 𝐾s, derived from Parlange’s equation (Step 1, see Table 5) and
multiplicative coefficient, c, and time validity, 𝑡valid, from Step 2 of our methodology (e.g., see Table 6). Each graph corresponds to a different soil
type. Measured cumulative infiltration data beyond the time validity of Philip’s two-term equation are displayed with a tint of red

F I G U R E 9 Textural triangle of the 12 USDA soil types with
color coding of the least squares values of the time validity, 𝑡valid, of
Philip’s two-term infiltration equation. The colorbar assigns values to
the palette of the time validity

Figure 9 links the time validity of Philip’s two-term infil-
tration equation to soil texture using color coding for each
soil type. The rather large values of 𝑡valid for silty clay and
silty clay loam suppress the subtle color variations in the time

validity of the other soil types. Along with Table 6 it is not
too difficult to discern a trend in the inferred time validities
of Philip’s two-term infiltration equation. Indeed, the finer the
texture of the soil the larger the value of 𝑡valid will be. We may
turn this trend into a regression equation to anticipate the time
validity of Philip’s two-term expression for other soils, yet this
demands textural information. If, however, the interest is only
in the hydraulic properties of the soil, then Parlange’s infiltra-
tion equation will suffice to back out the soil’s sorptivity and
saturated hydraulic conductivity.

Next, we present the texture triangle with color of each
soil type proportional to the maximum likelihood value of
the multiplicative coefficient c (see Figure 10). The colored
triangle discloses a pattern in the optimum value of c in
Philip’s two-term infiltration equation. In general, the value
of c decreases along two of the principal axes of the triangle,
namely, the percentages of sand and clay. Not all soil types
honor this relationship—for example, sandy clay loam, one
of our two dissonant soils.

Now that we completed Step 2, we can investigate the
relationship between the least squares value of coefficient c
in Philip’s two-term infiltration equation, and the maximum
likelihood value of β in Parlange’s infiltration equation. Fig-
ure 11 visualizes this relationship.

The dashed black line plots the identity, 𝑐 = (2∕3) −
(1∕3)β, of Equation 11, valid for very short to short infiltration
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F I G U R E 1 0 Textural triangle of the 12 USDA soil types with
projection of the least squares values of the multiplicative
dimensionless coefficient, c, of Philip’s two-term infiltration equation.
The colorbar assigns values to coefficient, c

F I G U R E 1 1 Comparison of the DREAM(ZS)–derived maximum
likelihood value of parameter β of Parlange’s semi-implicit infiltration
equation (Step 1) and the least squares value of coefficient c of Philip’s
two-term infiltration equation derived in Step 2 of our methodology
(values tabulated in Table 6). The solid black line portrays the
theoretical relationship of Equation 11 between β and c, valid at short
infiltration times. The two red colored data points correspond to our
dissonant soils, sandy clay loam, and silty clay loam, whose histograms
of β are truncated by the prior distribution (see Figures 4E3, 5E2,
and 5E3). The dotted blue line equals the least squares fit through the
data, but without the two (β̂, 𝑐 ) pairs of the dissonant soils

times. The data points of sandy clay loam and silty clay loam
are marked in red as their respective β̂ values have been trun-
cated at 2. Thus, we discard the (β̂, 𝑐 ) data pairs of these two
dissonant soils in our subsequent analysis. The (β̂, 𝑐 ) scatter
plot illustrates several interesting findings. First and foremost,
the data pairs appear to lay on a line, confirming the presence
of a linear relationship between the dimensionless coefficients
β and c. Secondly, the linearity of the β(𝑐) relationship of
Equation 11 appears to extend beyond early infiltration times.
Third, the (β̂, 𝑐 ) data pairs do not match perfectly the dashed
black line, valid for very short to short infiltration times. Lin-
ear least squares of the (β̂, 𝑐 ) data without the two dissonant
soils produces the relationship 𝑐 = 0.723 − 0.317β between
coefficients β and c of Parlange and Philip’s infiltration equa-
tions, respectively. The slope and intercept of this regres-
sion function (dotted blue line) are only marginally differ-
ent from their counterparts of Equation 11; nevertheless, they
extend up to the time validity of Philip’s two-term infiltra-
tion equation. Thus, the identity 𝑐 = 0.723 − 0.317β produces
an almost perfect match with the maximum likelihood val-
ues of Parlange’s β coefficient derived from the DREAM(ZS)
algorithm in Step 1 of our methodology. This new identity is
approximately similar to

𝑐 = 1√
5
ψ − 1

π
β (19)

where ψ = (1∕2) + (1∕2)
√
5 ≈ 1.6180 denotes the so-called

golden ratio.

5 IMPLICATIONS

The scatter plot in Figure 11 confirms the presence of a linear
𝑐(β) relationship within the time validity of Philip’s two-term
infiltration equation. We can take advantage of this identity to
simplify our methodology. After Step 1 is completed, we can
turn the sampled posterior values of β into a marginal distribu-
tion of the dimensionless coefficient c, hereafter referred to as
𝑐β, using the relationship of Equation 19. Next, we can evalu-
ate Philip’s two-term infiltration equation for each augmented
vector, η+ = [𝑆 𝐾s β 𝑐β]⊤, of posterior parameter values and
compute the 2.5 and 97.5% simulation uncertainty ranges at
each measurement time.

Figure 12 presents the marginal distribution of 𝑐β and dis-
plays the associated 95% prediction ranges of Philip’s two-
term infiltration equation for (a) clay, (b) clay loam, (c) sand,
(d) silt loam, and (e) silty clay loam. Measured infiltration
data beyond 𝑡valid use a different red tint. The most impor-
tant results are as follows. The marginal distribution of 𝑐β cen-
ters on 𝑐 derived from Step 2 of our methodology and is well
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F I G U R E 1 2 Top panel: Marginal distribution of the multiplicative coefficient, c, of Philip’s two-term infiltration equation derived from
Equation 19, for a representative group of five soil types, including (a) clay, (b) clay loam, (c) sand, (d) silt loam, and (e) silty clay loam. The least
squares values of c from Step 2 of our methodology are separately indicated in each graph with the red cross symbol. Bottom panel: Comparison of
observed (red dots) and 95% prediction ranges of the cumulative infiltration (I, solid blue lines) simulated with Philip’s two-term infiltration
Equation 5 using the posterior samples of the sorptivity, S, saturated hydraulic conductivity, 𝐾s, and coefficient, 𝑐β, derived from Parlange’s equation
in Step 1 of our methodology. Thus, the two infiltration curves correspond to the 2.5 and 97.5% prediction quantiles derived from the posterior
samples. Measured data beyond the time validity of Philip’s two-term equation inferred in Step 2 of our methodology are displayed with a tint of red

described by a normal distribution for all but the two dissonant
soils. The histogram of 𝑐β for silty clay loam (Figure 12E1)
suffers from truncation at β = 2, resulting in a skewed distri-
bution with right tail. Its least squares value appears outside
the marginal distribution of 𝑐β as the (β̂, 𝑐 ) data pairs of the
two dissonant soils were omitted in the computation of the
𝑐(β) relationship of Equation 19. This discrepancy between 𝑐

and the histogram of 𝑐β values causes the 2.5 and 97.5% pre-
diction quantiles of Philip’s two-term equation for the silty
clay loam soil to deviate from the measured infiltration data
before 𝑡valid is reached. Upon closer inspection of the resid-
uals, one would anticipate a time validity for silty clay loam
on the order of 7–8 h. For the other four soils, Philip’s 2.5 and
97.5% prediction quantiles (Figure 12A2–D2) match perfectly
the measured infiltration data for 0 ≤ 𝑡 ≤ 𝑡valid. As expected,
at larger infiltration times, the two prediction quantiles deviate
systematically from the measured (𝑡, 𝐼) data pairs.

In Step 1, we made the assumption of normally distributed
infiltration data measurements errors. The variance of the
measurement errors was integrated out to yield a simple for-
mulation of the likelihood function. If we specify the cumula-
tive infiltration measurement error up front, then we can use
a χ2 test to turn each residual of Philip’s infiltration equa-
tion and the measured cumulative infiltration data into an
exceedance probability. This then can be used to pinpoint
the time validity of Philip’s two-term infiltration equation.
As we can repeat this exercise for each posterior simulation,
this gives rise to a probability distribution of 𝑡valid for each
soil type. This refined method carries forward any assump-
tions we may make with respect to the measurement errors of

the cumulative infiltration data, from definition of the likeli-
hood function, to the posterior samples of the DREAM(ZS)
algorithm, the marginal distribution of 𝑐β, the chi-squared
test statistic, and resulting time validities. Indeed, this refined
method address more explicitly the uncertainty inherent in our
estimates of 𝑡valid.

We would be remiss not to comment on the use of real-
world infiltration data. In our preliminary investigations pre-
sented herein, we purposely used synthetic infiltration data so
that we can benchmark our sorptivity and saturated hydraulic
conductivity estimates. Nothing prevents us from using either
of the two methods to measured infiltration data. As Par-
lange’s infiltration equation does not suffer a limited time
validity, we can always use Step 1 of our methodology to infer
the posterior parameter distribution of S, 𝐾s, and β. Then, in
Step 2, we can iterate over the measurements to determine
the time validity of Philip’s infiltration model and associated
value of the multiplicative coefficient, c. Alternatively, one
can use the refined approach describe above as replacement of
Step 2, and turn the sampled β values into a marginal distribu-
tion of c values, followed by computation of the exceedance
probabilities of the measured infiltration data. This ultimately
provides a distribution of time validities for each measured
infiltration dataset. Indeed, experiments carried out on mea-
sured data from the SWIG database confirm our main conclu-
sions. However, the inferred time validities are less subtle, as
the measured infiltration data generally exhibit a much poorer
temporal resolution.

We like to comment last on the practical usefulness of our
methodology. If the interest is only in the hydraulic properties
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of the soil, then Step 1 of our methodology will suffice. The
MATLAB code of Appendix A coupled with the DREAM(ZS)
algorithm realizes the full potential of Parlange’s infiltration
equation for inverse estimation of soil hydraulic properties
and will help rectify the abundant use by practitioners of more
convenient analytical infiltration functions that suffer physi-
cal underpinning and/or a limited time validity. The posterior
distribution of the Parlange parameters, S, 𝐾s, and β is a wit-
ness of data quality and quantity. With few or poor infiltration
measurements at early times, for example, the soil sorptivity
will suffer and exhibit a relatively large posterior uncertainty.
Short experiments, on the contrary, will complicate the infer-
ence of β as its impact on the simulated I(t) relationship is neg-
ligible at early times of infiltration. This is easy to verify from
the sensitivity matrix of Parlange’s infiltration equation and
promotes a flat posterior marginal distribution of β. The pos-
terior uncertainty of S, 𝐾s, and β can be propagated forward
to quantify prediction intervals. What is more, if we adopt the
𝑐(β) relationship of Equation 19, then Step 1 yields a marginal
posterior distribution of coefficient c as well. The trivariate
distribution of S, 𝐾s, and c can enter Philip’s two-term infil-
tration equation. The second step of our methodology serves a
perhaps more academic purpose. Nevertheless, knowledge of
the coefficient c and time validity, 𝑡valid, of Philip’s two-term
expression is of utmost importance in the practical application
of this infiltration equation.

6 SUMMARY AND CONCLUSIONS

The two-term infiltration equation, 𝐼(𝑡) = 𝑆
√
𝑡 + 𝑐𝐾s𝑡, of

Philip (1957) is widely used to infer the soil sorptivity, S, and
saturated hydraulic conductivity, 𝐾s, from a n-record of mea-
sured cumulative infiltration data, {𝑡𝑖, 𝐼𝑖}𝑛𝑖=1. This infiltration
equation is easy to use, supported by detailed mathematical–
physical analysis, and the optimum values of S and 𝐾s can be
obtained from linear least squares via a closed-form expres-
sion. Despite this progress made, Philip’s two-term infiltra-
tion function has a limited time validity, 𝑡valid, and conse-
quently, cumulative infiltration data, 𝐼(𝑡), beyond 𝑡 = 𝑡valid,
will corrupt the least squares estimates of S and 𝐾s.

The contributions of this paper were twofold. First, we
introduced a method that can successfully infer the sorptivity,
S, saturated hydraulic conductivity, 𝐾s, dimensionless coeffi-
cient, c, and time validity, 𝑡valid, of Philip’s two-term infiltra-
tion equation.

As prerequisite of this methodology, the second contribu-
tion of this work is a robust, exact and efficient numerical
solution of Parlange’s implicit infiltration equation. The pro-
posed methodology was tested on 12 USDA soil types using
HYDRUS-1D simulated infiltration data. Results demon-
strated an excellent match between the inferred values of S
and 𝐾s and their “true” values with estimates of c and 𝑡valid

that correlate well with soil texture and corroborate linear-
ity of the 𝑐(β) relationship for infiltration times up to 𝑡valid.
Additional experiments carried out on measured infiltration
data from the SWIG database of Rahmati, Weihermüller,
Vanderborght, et al. (2018) and Rahmati, Weihermüller, and
Vereecken (2018) confirmed our main findings.

In the penultimate section of this paper, we described a
modification to Step 2 of our method which takes advantage
of the 𝑐(β) relationship to determine the posterior parameter
distribution of Philip’s two-term infiltration equation. Its time
validity can then be inferred using a χ2 test of the cumula-
tive infiltration residuals of each posterior simulation. This
approach propagates forward assumptions made about the
measurement error of the infiltration data to a marginal distri-
bution of time validities for each soil.
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APPENDIX A
This appendix presents the implementation of our numeri-
cal solution of Parlange’s infiltration equation in MATLAB.
Based on the 4 × 1 vector, η, with values of the sorptivity,
S (cm h−1/2), saturated hydraulic conductivity, 𝐾s (cm h−1),
unitless coefficient, β, and initial hydraulic conductivity, 𝐾i,
and the 𝑛 × 1 vector, t, with discretized values of time in
dimension of hour, the MATLAB function Parlange returns
the cumulative infiltration, I, and infiltration rate, i (in units
of cm and cm h−1, respectively), and an exit flag, flag, which

reports the corresponding exit condition of the secant method
(see Figure A1).

The user may specify two additional input arguments, tol-
fun and maxiter, which equal the desired tolerance on the
function value at the final root and the maximum number of
iterations of the secant method, respectively. These last two
input arguments are optional. If omitted in the Parlange func-
tion call, tolfun and maxiter will be assigned default values of
10−12 and 20, respectively. Built-in functions are highlighted
with a underlining.

The Parlange function calls the function secant, which
solves for the zero-point of Parlange’s residual function (S1.7)
at each time, t (see Figure A2).

The secant function has three required input arguments—
namely, fun, an anonymous function handle of Parlange’s
residual function, and Ii1 and Ii2, which define the initial
search bracket, [𝐼(0), 𝐼(1) ], of the root of 𝑟(𝐼, 𝑡). The secant
method may not always be used in each iteration of the
Parlange function. For the secant method to work in prac-
tice, the residual function, 𝑟(𝐼, 𝑡), at the upper bound, 𝐼(1),
of the initial search bracket, [𝐼(0), 𝐼(1)], cannot be infin-
ity, nor be smaller than 10−10, hence, 10−10 < 𝑟[𝐼(1), 𝑡] <
∞. If 𝑟[𝐼(1), 𝑡] ≤ 10−10, then our upper bound, 𝐼(1), is very
close to the actual root. Hence, we can use, 𝐼(1), as our
solution of 𝐼(𝑡). A value of 𝑟[𝐼(1), 𝑡] equal to infinity is
a numerical artifact. The term exp[2βξ(𝐼 −𝐾i𝑡)] in Par-
lange’s residual function (S1.7) may return infinity for cer-
tain (often implausible) combinations of S, 𝐾s, and β, as
the exponential function grows larger than its limit on a 64-
bit computer. This is called numerical overflow and is typi-
cally restricted to saturated conditions. At this time, the soil
has reached a constant infiltration rate and, thus, we can
make use of the identity, 𝐼(𝑘) = 𝐼(𝑘−1) + [𝑡(𝑘) − 𝑡(𝑘−1)]𝐾s, to
solve for the remaining part of the cumulative infiltration
curve.

The Parlange function has been evaluated numerous times
for 𝐾i = 0 and 0 ≤ 𝑡 ≤ 240 using Monte Carlo simulation
with 𝑆 ∈ (0, 10] (cm h−1/2), 𝐾s ∈ (0, 50] (cm h−1), and β ∈
(0, 2). The resulting 𝐼(𝑡) curves were compared against a
direction solution of 𝑡(𝐼) derived with 𝐾𝑖 = 0 using a swap
of the independent and dependent variables. This comparison
has shown that the simulated cumulative infiltration curves
of the Parlange function are almost exact with a negligible
numerical error. In 1, 000 separate trials, the code would ter-
minate prematurely a handful of times in response to numeri-
cal underflow of the exponential function. This can be avoided
by setting a lower limit of, say, 10−4 on the values of β. Alto-
gether, our experiments have shown that the Parlange function
is robust, efficient, and exact.
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F I G U R E A 2 MATLAB code of the secant method


	Parasite inversion for determining the coefficients and time-validity of Philip’s two-term infiltration equation
	Abstract
	1 | INTRODUCTION AND SCOPE
	2 | SYNTHETIC INFILTRATION DATA
	3 | THEORY
	3.1 | The infiltration equation of Parlange
	3.2 | Step 1: Bayesian inverse modeling
	3.2.1 | Prior distribution
	3.2.2 | Likelihood function
	3.2.3 | The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm

	3.3 | Step 2: Estimation of c and in Philip’s two-term equation

	4 | RESULTS AND DISCUSSION
	4.1 | Results of Step 1: Parlange’s equation
	4.2 | Results of Step 2: Time validity of Philip’s two-term equation

	5 | IMPLICATIONS
	6 | SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AND SOFTWARE AVAILABILITY
	ORCID
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX A




