
Abstract— Taxis provide an important market for electric 
vehicles (EVs), but long charging durations and limited charger 
availability have prevented rapid adoption. Leveraging over two 
weeks of high-resolution GPS and battery data from almost 20,000 
EVs in the all-electric Shenzhen taxi fleet, we analyze the potential 
to improve fleet-wide operations by optimizing both the location 
and timing of vehicle charging. We construct machine learning 
models to predict travel time, queuing time at charging stations, 
and charge consumption by time of day. Contrary to the emphasis 
on charging station siting in the literature, we find that optimizing 
charging locations would have a relatively limited impact. Instead, 
providing drivers with better real-time information about queuing 
times at charging stations, and enabling flexibility in battery 
charge during shift changes could reduce down-time per vehicle 
by over 30 minutes per day, while increasing the number of 
economically viable charging stations by over 50%. Moreover, 
taking full advantage of break periods and nighttime to charge 
could reduce downtime per vehicle by over one hour per day, 
reducing revenue losses due to charging by roughly 90%. These 
results are verified with evidence from real-time charging station 
data and driver shift-change data. Policy recommendations from 
this study include establishing citywide open data platforms to 
integrate real-time data on vehicle trajectory, battery charge, and 
charger availability, and providing drivers and companies with 
training on best charging practices. As a number of cities 
worldwide move toward fully electrified taxi fleets, this analysis 
has large-scale implications for decarbonized, cleaner urban 
areas. 
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I. INTRODUCTION 
EETING the Paris Climate Agreement’s initial 2°C 

(now 1.5°C) target will require a wholesale shift to 
electrified transportation [1]. Transportation represents the 
fastest-growing source of the world’s greenhouse gas (GHG) 
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emissions, with passenger cars accounting for close to a sixth 
of carbon dioxide emissions and car sales set to more than 
double by 2050 [2]. Battery electric vehicles (BEVs) could 
reduce transportation-related carbon emissions and urban air 
pollution, [3], [4] but adoption has been slow due to several 
barriers, including higher upfront cost, limited driving range, 
and slower charging speed relative to conventional vehicles [5], 
[6]. 

In this study, we test the hypothesis that if electrified and 
operated in a coordinated way, taxi fleets hold the potential to 
overcome these barriers and drive dramatic increases in 
transportation electrification. Because taxis accumulate 
mileage more quickly than vehicles used only for personal use, 
BEVs used as taxis  capture more savings from lower operating 
costs  than personal BEVs [7], [8], and they provide better 
returns on public electrification investments in terms of reduced 
carbon emissions and air pollution per vehicle [9]. Because 
taxis are typically driven in urban cores, BEVs used in this 
context could increase public health benefits while also 
exposing many consumers to the technology, which might 
increase private BEV sales [10]. 

Previous studies have shown that many challenges lie in the 
way of complete taxi electrification. In a London pilot project, 
Uber found that over 80% of BEV drivers lacked access to 
home charging, and insufficient public infrastructure prevented 
drivers from serving as many rides as they could with internal 
combustion engine vehicles (ICEVs) [10]. Furthermore, 
transportation network company (TNC) drivers with BEVs 
have reported declining rides because their vehicles lacked 
sufficient charge as well as revenue losses owing to time spent 
charging and looking for charging stations [11], [12]. In a study 
in South Korea, BEV taxis provided a lower benefit-to-cost 
ratio compared with natural-gas-powered taxis because of 
limited charging infrastructure and battery range [13]. In 
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Beijing, researchers found that EV taxis with 130 to 160 km of 
battery range travel only 118 km per day, compared to 250 km 
for conventional vehicles, suggesting that they do not earn 
nearly as much revenue [14]. 

China is rapidly pushing toward the adoption of BEVs, and 
an increasing number of cities have set ambitious targets for 
taxi fleet electrification including: Taiyuan [15], Shenzhen [16], 
Guangzhou [17], Chengdu [18], and Beijing [19]. Shenzhen, 
China represents an especially interesting case study because it 
is the first top-tier Chinese city to have fully replaced its taxi 
fleet of over 20,000 vehicles with BEVs, using the BYD e6 
model with 400 km battery range (80 kWh capacity with an 
average consumption of 0.2 kWh/km) [20].  

To build a sustainable roadmap for taxi electrification that 
can be adapted and adopted elsewhere, the Shenzhen electric 
fleet must provide the same level of service as a conventional 
fleet at low cost and with significant carbon benefits. Local 
interviews conducted with drivers and reports in the media 
suggest, however, that time spent charging – in some cases over 
three hours per day – results in lost revenue, compounded by 
problems with queuing at popular charging stations [21]. 

Many studies have developed methods to optimize the siting 
of charging stations [22]–[25], but despite the unplanned nature 
of charging infrastructure siting in Shenzhen, sub-optimal 
station locations may not be the fundamental cause of 
operational inefficiencies. Drivers report that charging activity 
is concentrated during the afternoon because dayshift drivers 
feel obligated to fully charge their vehicle before delivering it 
to the nightshift driver – most vehicles are driven by two drivers 
for 12 hours per day each, and most dayshift drivers end their 
shift between 5 and 7 PM [26]. Some drivers use apps to find 
available stations, but others go to the same preferred station 
each day near the shift change location, leading to problems 
with queuing at popular stations. In turn, this uncertainty in 
waiting time means drivers go to charge two to three hours 
before a shift change, long before they typically need to: most 
drivers go to charge around 50% state of charge, and most 
afternoon charging events take less than one hour (this charging 
pattern is similar between weekdays and weekends). If left with 
extra time between charging and the end of their shift, drivers 
are often unwilling to accept trips that travel too far from the 
shift change location, reducing revenue opportunities during 
this period. 

In this study, we use over two weeks of GPS and battery state 
of charge (SOC) data from about 20,000 electric taxis in 
Shenzhen to evaluate the potential of different interventions to 
mitigate the problems described above. The data come from 
January, May, and June 2019, and they consist of snapshots 
taken every five minutes from each vehicle. Using these data, 
we conduct simulations of four proposed interventions that 
could reduce the charging burden: 1) optimizing the location of 
charging stations to minimize travel time to charging stations, 
2) optimizing the dispatch of vehicles to charging stations to 
minimize both travel and queuing times, 3) shifting more 
daytime charging to early morning hours when demand for taxi 
trips is low, and 4) shifting charging to times when vehicles are 
idle. 

Several previous simulation studies have found that 
optimization strategies could improve the efficiency of electric 
taxi fleets. Lu et al. (2012) showed that having a dispatching 
strategy for electric taxis in Taipei, Taiwan successfully reduces 
charging wait times [27]. Bauer et al. (2018) conducted 
simulations on electrification scenarios for automated taxis in 
Manhattan and found that optimization of charging enabled the 
electric fleet to operate at lower cost than a fleet with 
conventional vehicles [9]. Bauer et. al (2019) expanded this 
work to TNC fleets in San Francisco and New York City and 
found similar results [28]. Tian et al. (2016) proposed a 
framework to recommend charging station locations to e-taxi 
drivers in Shenzhen [29]. However, the study was limited as the 
SOC data were crudely inferred from estimated charging 
locations. Tian et al. (2017) considered the scenario of a major 
shutdown of an EV charging station in Shenzhen and developed 
a strategy to re-allocate the charging demand to reduce queuing 
time and increase the usage rate of charging stations [30]. 
Finally, Dong et al. (2018) proposed a real-time framework to 
recommend location and charging time to electric taxi drivers 
in Shenzhen, and conducted simulations that showed significant 
potential improvements in charging station use and queuing 
times at charging stations [31]. 

No previous study, however, has analyzed impact on 
revenues or compared the effectiveness of multiple 
interventions. This deeper analysis is facilitated by the rich 
granularity of the data, including both vehicle state-of-charge 
and the timing and locations of shift changes. More importantly, 
no previous study has explored the underlying causes of the 
apparent inefficiencies in fleet operations. In particular, we find 
that inefficient charging behavior may be caused in large part 
by taxi drivers’ preference for changing shifts at full charge in 
the afternoon, and that changing shifts at partial charge could 
significantly improve fleet operations.  

 In this study, we develop several machine learning models 
to predict operational characteristics of the taxi fleet and present 
a framework for how this modeling platform can be 
implemented in practice. We conduct simulations to estimate 
and compare the potential impact of these various interventions 
on fleet performance, driver revenue, and charging 
infrastructure use. Finally, using one day of driver shift-change 
data, we compare the performance of groups of drivers with 
different charging patterns to verify the simulation results.  

II. METHODOLOGY 
Our study methodology consists of the following steps 

employing GPS and charging data. Vehicle data for 
approximately 19,224 electric taxis in Shenzhen were prepared 
by Aspiring Citizens Cleantech (ACC) between May 27 and 
June 9 and between January 17 to 19, 2019, for a total of 17 
days of data. Data include snapshots of location, state of charge 
(% of battery capacity), and operation status (hired or available) 
every five minutes for each taxi while the vehicle is turned on. 
To verify simulation results, ACC also provided vehicle data 
and driver shift change data for July 25, 2019, including 
timestamps for when each driver logged in or out of each 
vehicle. Finally, ACC also provided summaries of interviews 
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conducted with approximately 30 drivers in June and July 2019. 
These interviews were conducted with drivers who were 
approached at charging stations by ACC or while ACC staff 
were taking taxi trips. Our analysis with these data consists of 
four key methodologies: 1) charging inference; 2) queuing 
inference; 3) developing predictive models; and 4) simulation-
based optimization analysis focused on four intervention 
strategies: a) charging station location, b) dispatch to charging 
stations, and c) shifting more charging to nighttime and d) 
shifting more charging to break periods. Each of these 
interventions involves an optimization problem that is solved 
through simulation, maximizing the objective function for each 
vehicle or charging station while obeying a series of constraints. 
While this method does not guarantee global optimality, it 
shows what might be feasibly achieved in the real world. With 
more advanced optimization methods, it is possible that even 
greater savings than those described in this study could be 
achieved. 

A. Charging inference 
The development and ownership of charging infrastructure 

in Shenzhen has been highly decentralized, so there is no 
database of locations and numbers of chargers at each station. 
While regulators are assembling this data, it is incomplete. New 
infrastructure is still being added frequently, so any data that 
exists will soon be out of date. Thus, as with other issues 
analyzed in this paper, the best source of data for inferring 
charging station locations and charger availability is vehicle 
GPS location and state of charge.  

To begin our data analysis, we first inferred charging events 
by finding locations where the vehicle SOC increased. We 
discarded potential charging events where SOC changes by less 
than 10% to filter out events caused by erroneous SOC 
readings; these discarded events account for almost 5% of 
charging events but less than 0.5% of total charging (see 
supplemental information for cumulative distributions). We 
then performed hierarchical clustering on all of these locations, 
using 200 m as the maximum distance between any two 
vehicles in the same cluster. This cluster diameter was 
considered appropriate because it is roughly the size of a city 
block in downtown Shenzhen and also roughly the distance 
between the two most distance charging plugs at the largest 
inferred charging station in Shenzhen (see supplemental 
information for satellite image). To infer charging locations, we 
then took the mean values of latitude and longitude of all points 
in each cluster, and then removed outlier charging events 
greater than 200 m from the closest charging location.  

To estimate the total number of chargers at each station, we 
found the maximum number of vehicles charging 
simultaneously at the location across the total period in the 
dataset. Note that this estimate of the number of chargers at each 
station does not account for usage aside from taxis. To validate 
these inferred estimates, we collected data on actual charger 
availability for 18 charging stations, whose locations match the 
charging station locations we inferred from the taxi data. We 
collected these data by taking a sequence of screenshots of two 
different charging apps each hour over the course of four days 

between July 19 to 22, 2019, then using Google Vision API [32] 
to extract the number of available chargers from each 
screenshot. The estimated availability for these 18 charging 
stations inferred from the taxi data closely tracks the availability 
displayed by the apps, especially during peak charging periods 
in the early morning and late afternoon (see supplemental 
information for details). As such, we assume our estimates of 
the number of chargers at each charging station is sufficiently 
accurate for the simulations conducted in this work. Future 
work can improve accuracy by expanding data collection from 
the charging apps and integrating it with taxi data more 
thoroughly. 

B. Queuing inference 
For every timestamp, we identified which vehicles were 

relocating to each charging station (i.e., idle vehicles whose 
next activity was charging). We inferred these vehicles to be 
queuing, if they satisfied the following criteria: 1) the vehicle 
moved less than 1 km over the previous five minutes and was 
either: a) the closest vehicle to the charging station and within 
500 m or b) within 100 m of another vehicle queuing at the same 
station. In other words, after finding the closest queuing vehicle 
to each station, we inferred lines of queuing vehicles by 
sequentially adding the next-nearest queuing vehicle. We 
define queuing time as the time elapsed between the start of a 
vehicle joining a charging queue and the beginning of the 
charging event. 

C. Predictive models 
We developed all predictive models with the h2o package 

using R 3.5.1. We tuned hyper-parameters using five-fold 
cross-validation, and we validated model performance with 
10% of the data left out of model training for testing purposes. 
We found the difference in performance between the gradient 
boosting models and other model types to be negative or 
insignificant, so we only report results using gradient boosting 
machines for all models (see supplemental information for 
more details).  

First, we constructed a model to predict the average queuing 
time before charging at each charging location for 30 minutes 
into the future. Several studies have proposed methods for 
optimal scheduling of charging to maximize charging operator 
profit while minimizing wait time and power grid impacts [33], 
[34]. However, these studies do not consider how drivers acting 
independently without the ability to reserve a timeslot for 
charging might use a forecast of queue times to identify the best 
station for their needs. Our approach based on machine learning 
has several advantages over classical queuing theory: we can 
forecast queue times even though we do not have exact data on 
which vehicles are queuing (queuing is inferred as described in 
the previous section), or data on how many vehicles other than 
taxis are queuing; and we can analyze the impact of data that 
could be easily displayed to drivers, i.e. forecasts for average 
queue times 30 minutes in the future, rather than theoretical 
estimates for current queue times. The predictive model 
includes the following features: the number of vehicles queuing 
at the charging station, the number of vehicles charging, the 
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flows in and out of the station and queue, the size and location 
of the station, fixed effects for each station, and a variety of 
transformations of each of these variables. As reliable 
prediction requires sufficient charging events at each charging 
station, we only applied the predictive model to charging 
stations with at least 20 inferred chargers, resulting in 93 
charging stations accounting for over 75% of charging events, 
for a total of 374,976 observations. The model prediction tracks 
the actual queuing time during peak hours quite well, with a 
root mean squared error of 4.3 minutes (see supplemental 
information for details). 

Second, we also constructed a model to estimate travel time 
between any two points in the city of Shenzhen, using 4.7 
million trip durations as training outcomes. We clustered trip 
origin and destination locations into 500-meter grid cells and 
downloaded travel-time estimates between each pair of grid 
cells from OpenStreetMaps. These travel-time estimates do not 
account for traffic congestion and served as inputs in our model 
to predict trip durations, along with straight-line distance, time 
of day, day of week, and origin and destination locations. Over 
85% of predictions fall within five minutes of the actual trip 
duration, with a root mean squared error (RMSE) of 4.7 minutes 
(see supplemental information for details). By forecasting 
travel times based on real-world taxi trips, this model 
incorporates average road congestion by time of day and day of 
the week. We assume that taxi re-routing does not significantly 
affect congestion because taxis represent less than 1% of all 
vehicles on the road in Shenzhen [35]. 

We also developed a model to predict surplus SOC at the end 
of the dayshift for each vehicle, as will be described in the next 
section. These three models are summarized in Table I below. 

 
TABLE I 

SUMMARY OF PREDICTIVE MODELS 

 
Outcome variable 

Queue time Travel time Surplus SOC 

Model type Gradient boosting machine 

Parameters Five-fold cross-validation 

Learning rate = 0.01 

Number of trees = 10,000 

Stopping condition: Measure RMSE every 100 trees, 
terminate if improvement < 0.001 

Sample 
size 

374,976 4,660,593 210,397   

Features vehicles queuing 
(count and flow) 

vehicles charging 
(count and flow) 

 total chargers 

station location 
(longitude, 

latitude) 

station fixed 
effects 

time-lagged 
variables of 

OpenStreetMaps 
estimate (min) 

straight-line 
distance (km) 

time of day 

day of week 

origin location 
(longitude, 

latitude) 

destination 
location 

average surplus 
SOC by vehicle 

average time of 
charging by 

vehicle 

average SOC 
after charging 

by vehicle 

time of day 

day of week 

  

vehicle counts 
and flows 

(longitude, 
latitude) 

SOC at start of 
charging event 

RMSE 4.3 minutes 4.7 minutes 13.5% SOC 

D. Optimization analysis  
1) Relocate charging stations:  

Using the travel time model described above, we identified 
the detour time required to visit a charging station in each grid 
cell C, defined as the additional travel time from the last drop-
off cell A to the next pick-up cell B via the charging station C 
(tAC + tCB), compared with the travel time directly from cell A 
to cell B (tAB, see Fig. 1 below). 

 

 
Fig. 1. Schematic of the calculation of detour time (dC) caused by driving to a 
charging station. 
 

We then used the following heuristic approach to analyze the 
impact of optimally locating charging stations. We relocated 
each existing charging station to the grid cell C that minimized 
total detour time of all charging events taking place there and 
then reassigned each charging event to the charging station that 
minimized detour time, following the objective function shown 
in (1) below. We repeated these two steps until the simulated 
detour times converged, as defined by changing by less than 
5%, which occurred after three iterations.  

 
min∑ 𝑡!!" +	𝑡"#! − 𝑡!!#!$        (1) 
 

2) Dispatch to charging stations:  
Using the queuing and travel time models described above, 

we predicted the average queuing time at all stations for the next 
30 minutes and assigned vehicles to the station with available 
chargers that minimized the total delay (the sum of detour time 
plus queuing time). Given potential inaccuracies in our estimate 
of the number of chargers available, as a conservative approach 
we only relocated vehicles to a new charging station if we 
estimated less than 90% of the chargers to be occupied. After 
reassignment, we updated the estimated queuing time and the 
number of available chargers at each station. We repeated these 
two steps until the simulated queuing times changed by less 
than 5%. This process is described by the objective function 
shown in (2) and constraints listed in (3-4) below, where qC is 
the estimated queuing time, dC is the travel detour time, and pC 

is the number of charging ports at the charging station. 
 

min( 𝑑" + 𝑞");        (2) 
𝑑" = 𝑡!!" +	𝑡"#! − 𝑡!!#!,      (3) 
𝑛%&'()$*) < 0.9 ∗ 𝑝"       (4) 
 

3) Shift more charging to nighttime:  
Based on our analysis and results from the driver interviews, 

A 

C 

B 
tAB 

tAC tCB 
𝑑! = 𝑡"! +	𝑡!# − 𝑡"# 
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we assumed that charging has a negligible opportunity cost 
between 1 AM and 7 AM on weekdays and between 2 AM and 
8 AM on weekends due to low trip demand. As such, we argue 
that the SOC that the nightshift driver had at the start of this 
“zero-cost” period could be interpreted as surplus SOC that the 
dayshift driver did not need to charge before the shift change.  

We defined these before-shift-change charging events as the 
last charging events for each vehicle before 8 PM or the first 
charging event after 8 PM in cases where there was no charging 
event between 10 AM and 8 PM. Based on the average amount 
of surplus SOC that each vehicle had on other days, the time of 
day, and the starting SOC, we trained a model to predict how 
much surplus SOC a vehicle would have at the start of the 
“zero-cost” period, if the dayshift driver charged to 100% 
immediately before changing shifts. For each prediction, we 
then calculated the SOC at the shift change that would give the 
vehicle a 95% and 99% chance of reaching the “zero-cost” time 
without falling below 10% SOC. Based on the average power 
of the charging station selected for the before-shift-change 
charging event, we then calculated the amount of time that 
could be saved by following our recommendation for the SOC 
at shift change. This process is described in (5) below, where 
tn,d is the time savings of taxi n on day d, t is time of day, and P 
is the power of the charging station. 

 
𝑡*,, = 𝑓(𝑡, 𝑆𝑂𝐶) ∗ 𝑃   (5) 
 

4) Shift more charging to break times:  
First, we identified break periods for each vehicle, defined as 

periods when the vehicle was neither serving a trip nor charging 
and the vehicle’s odometer reading did not increase for more 
than 30 minutes. Using the queuing and travel time models 
described above, we estimated the amount of time available for 
charging during each break period, and the maximum amount 
of SOC that could be charged. We then conducted a simulation 
to determine the potential to satisfy charging needs during these 
break periods by removing all charging events, i.e. assuming 
the vehicles’ SOC did not change during existing charging 
events. We then added charging during break periods 
incrementally to keep SOC between 0% and 100% and 
calculated the amount of additional charging time needed to 
maintain SOC above 10% between each break (see 
supplemental information for example profile). This process is 
described by the objective function in (6) and constraints listed 
in (7-12) below.  

𝑚𝑖𝑛(𝑆𝑂𝐶-.-()) ;       (6) 
𝑆𝑂𝐶-*, > 10,        (7) 

    ∆𝑆𝑂𝐶.'/ = (𝑡$,0- −min𝑑" + 𝑞") ∗ 𝑃" ,   (8) 
∆𝑆𝑂𝐶1(-'2 = min(∆𝑆𝑂𝐶.'/ , 100 − 𝑆𝑂𝐶34'(4), (9) 

𝑆𝑂𝐶-*, = 𝑆𝑂𝐶34'(4 +	∆𝑆𝑂𝐶1(-'2 ,   (10) 
∆𝑆𝑂𝐶-.-()-*%5 = max(0,−1 ∗ 𝑆𝑂𝐶-*,), (11) 

𝑆𝑂𝐶34'(4 = 𝑆𝑂𝐶-*, +	∆𝑆𝑂𝐶-.-()-*%5   (12) 
 

E. Study limitations 
There are several limitations to this analysis that can be 

addressed with expanded data access. First, without complete 
real-time data from existing charging stations, there may be 
inaccuracy in our estimates of charger availability. In the next 
phase of our research, we will expand charging station data 
collection efforts to conduct more accurate and detailed charger 
availability analysis. Similarly, we also plan to obtain and 
integrate data on driver shift change locations and times to 
inform our estimates of detour time and surplus SOC during the 
afternoon shift change. Given the limited timespan of the 
vehicle data available to us, it is possible the interventions we 
analyze would have different impact at other times of year. 
However, as shown in Table II, the standard deviation of results 
between days is less than 5%, and we also found no significant 
difference between results from January and May-June, 
suggesting that our results are generalizable. 

Finally, this analysis does not consider a variety of 
behavioral factors that influence decisions on where and when 
to charge including: the availability of rest places and food, 
opportunities to meet friends and other drivers, and desire to 
maintain a large SOC buffer at all times (for example, it appears 
some drivers never let their batteries fall below 50% SOC). To 
analyze these factors in depth and to test potential strategies in 
the real world, we plan to conduct a pilot project via a 
smartphone app that will provide drivers with real-time 
information on queuing times at charging stations as well as an 
accounting tool to keep track of SOC charged across shifts, to 
facilitate changing shifts at partial charge. 

III. RESULTS 
As shown in Fig. 2 below, analysis of the Shenzhen taxi data 

shows there are two major peaks in charging events in the early 
morning and late afternoon (likely preceding shift changes), 
along with a smaller peak during the lunchtime period. Each 
peak is accompanied by a significant number of taxis queuing 
at charging stations, especially in the afternoon. Notably, this 
afternoon peak is also accompanied by a decreased number of 
hired vehicles serving trips and an increased total number of 
active vehicles, suggesting that these charging events result in 
significant lost revenue.  
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Fig. 2.  Number of taxis by operating status over time of day, for both weekends 
and weekdays. 
 

A comparison with TNC trip volumes in Shenzhen across 
three months in 2019 shows correlation between decreased taxi 
trip volumes and increased TNC trip volumes during the 
afternoon period, suggesting that taxi trip volumes are 
constrained by vehicle supply (TNC data are not shown here 
due to issues with confidentiality). 

Drawing on our literature review, our analysis, and taxi 
driver interviews, we identify three key problems in taxi fleet 
operations: 1) queuing time due to inefficient routing of 
vehicles to charging stations, 2) spatial mismatch between 
charging station locations and charging demand, and 3) 
temporal mismatch between charging events and the time 
periods of lowest opportunity cost of charging. In the following 
sections, we analyze each of these problems and the impact of 
proposed interventions. Table II below summarizes the 
intervention results. 
 

TABLE II 
SUMMARY OF IMPACTS OF ALL PROPOSED INTERVENTIONS 

Strategies/ 
interventions 

Time savings 
(min/vehicle/day) 

Revenue 
generated 

(USD/ 
vehicle/day) 

Electricity 
savings 
(USD/ 

vehicle/day) dayshift total 

Optimal charging 
station locations 

5 
± 0.2 

8  
± 0.4 

0.72 0 

Optimal dispatch to 
charging stations 

10  
± 0.5 

14 
± 0.7 

1.45 0 

Flexible SOC 
during shift change 

25 
± 3 

0 3.77 0.43 

Optimal charging 
during break 
periods 

72 
± 7 

123 
± 12 

11.16 0.58 

Impact on revenue is estimated by multiplying the daytime savings by the 
average revenue generated per vehicle during that time. Results for flexible shift 
change SOC are derived from the scenario providing 99% reliability of 
maintaining a 10% buffer in SOC between the last daytime charging event and 
early morning hours. Exchange rate between USD and Chinese Yuan (RMB) 

(0.14:1) was recorded on August 1, 2019. Error values show standard deviation 
of results between days of data. 

A. Optimal charging locations 
The charging market in Shenzhen is highly fragmented with 

over 100 different charging station operators [36], and planning 
has not been integrated with charging demand data, potentially 
leading to a spatial mismatch. Meanwhile, drivers report that 
they prefer larger charging stations to smaller ones due to 
greater reliability in expected queuing time. This is reflected in 
charger usage data; concentrating chargers into fewer large 
stations at the best locations may increase usage rates. Many 
studies have suggested siting taxi charging stations close to 
areas with high trip density can improve fleet performance 
[22]–[25], but given that drivers in Shenzhen typically charge 
near their shift-change location, we assume that the optimal 
infrastructure siting strategy would minimize the detour time 
incurred by visiting a charging station on the way to drivers’ 
next destination. As described in the methodology section D.1, 
we analyzed the impact of a scenario in which charging stations 
are relocated to the locations that minimize detour time. As 
shown in Fig. 3 below, this scenario results in a much higher 
density of charging stations in densely populated areas of the 
city close to major corridors. We find that on average, 
optimizing charging station locations could save each vehicle 
eight minutes per day.  

B. Optimal charging dispatch 
While existing charging network apps show real-time 

availability at charging stations, these data are fragmented 
between platforms and may not reflect actual queuing times due 
to many vehicles arriving during a short time window. Accurate 
queuing time predictions may help drivers locate charging 
stations with less queuing time and improve the certainty of the 
total time needed to charge, allowing drivers to start charging 
closer to the end of their shift. 
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Fig. 3.  Heat maps comparing the distribution of energy charged at current 
charging stations with the distribution after relocating stations to the locations 
that minimize the detour time. 
 

Using the queuing model described earlier, we estimated the 
amount of time vehicles could save if they charged at the station 
causing the least delay, which is defined as the sum of the 
detour and queuing time. We find that through optimization it 
is possible to reduce the time spent queuing per charging 
session by almost 50%, from over 10 minutes to about five, with 
a total time savings of 14 minutes per vehicle per day. While 
over 26% of vehicles currently spend over 30 minutes queuing 
per day, in the simulation we find that this proportion could be 
reduced to less than 10% (see supplemental information for 
details). We find that optimizing the dispatch of vehicles to 
charging stations could save almost 4,500 hours of aggregate 
downtime per day, potentially resulting in over $10 million per 
year in additional revenue. 
 

 
Fig. 4.  Heat maps depicting charger use and total queuing time (black rings) 
before (top) and after (bottom) dispatching optimization. 
 
Optimizing the dispatch of vehicles to charging stations could 
also greatly increase the economic sustainability of the charging 
network, which may be threatened by the pending removal of 
charger installation subsidies [37]. As shown in Fig. 4 above, 
currently most charging is concentrated in a few large charging 
stations with over 100 inferred chargers each, resulting in large 
total queuing times at each of these stations (shown by the black 
rings). Drivers report that they prefer larger stations because the 
queuing time is more certain due to higher turn-over rates. Not 
surprisingly, by providing accurate estimates of the expected 
queuing times at each station, we find that charging events can 
be dispersed among more charging stations. 

Due to the non-linear relationship between usage and 
amortized cost per kilowatt-hour, we find that this dispersion 
can have positive impacts on charging economics. Using the 
cost parameters reported by [36], including costs for charger 
construction, maintenance, and land, we calculated the cost of 
charging amortized per kilowatt-hour, assuming a 10% 
discount rate and a 10-year charging station lifetime. As shown 
in Fig. 5 below, the increased usage rate at many stations results 
in much lower amortized cost. Under the current pricing 
regulation, charging stations are not allowed to charge 
customers more than $0.11 per kWh on top of the electricity 
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price [36]. Without subsidies on charger installation, less than 
10% of inferred charging stations would be economically 
sustainable, including less than 50% of the top 93 inferred 
charging stations. In contrast, with optimal dispatching of 
vehicles to charging stations, 75% of inferred charging stations 
would be profitable without subsidies.  

Interestingly, once vehicles have been dispatched to optimal 
charging stations, repeating the heuristic location optimization 
described in the first section has little effect. We find that only 
stations on the city’s periphery are significantly affected, 
resulting in time savings of less than one minute per vehicle per 
day (see supplemental information for details). 

 

 
Fig. 5.  Usage rate of major charging stations (average percent of time each 
charger is occupied) by number of chargers at each station, before (left) and 
after (right) dispatching optimization. 

C. Shift more charging to early morning hours 
We also studied the potential for enhancing efficiency by 

shifting some charging from the dayshift to early-morning 
hours, when charging carries a lower opportunity cost due to 
lower demand for taxi trips.  

As seen in Fig. 6, during early-morning hours both the 
proportion of the fleet that is hired and the hourly revenue per 
vehicle drop substantially, suggesting there are more idle 
vehicles than are needed to serve demand. Based on this 
finding, we estimated the number of “surplus vehicles” that 
could go charge without affecting the fleet’s capacity to serve 
trip demand. This value is defined as the number of idle vehicles 
that could be removed from duty while maintaining the ratio of 
hired vehicles to idle vehicles at or below 1:1.25, the minimum 
hired ratio observed during the daytime. We find that the 
number of vehicles charging during early-morning hours 
(defined as 1 AM - 7 AM on weekdays and 2 AM – 8 AM on 
weekends) could almost double without affecting the fleet’s 
capacity to serve trip demand.  

Despite this apparent incentive to charge more during the 
nightshift, most drivers interviewed reported that they feel an 
obligation to charge to full SOC before the afternoon shift 
change to ensure that dayshift and nightshift drivers both pay 

for a fair share of the electricity and have an equal opportunity 
to serve long trips.  

There is no established policy by regulators or companies 
that requires drivers to change shift at full SOC. If there were a 
data-driven accounting tool to facilitate payment between 
drivers to compensate for time spent charging, the barrier to 
optimizing charging times among drivers could be overcome. 
Based on the prediction model described in the methodology, 
we find that starting with a 72% SOC during the afternoon shift 
change gives the nightshift driver a 95% probability (on 
average) of reaching the early-morning hours without falling 
below 10% SOC (see supplemental information for details). 
Based on the derived charging power of each charging station 
(33 kW on average), adding this SOC flexibility to the 
afternoon shift change would save each dayshift driver 40 
minutes per day and increase their fare revenue by over US $5 
per day. Given that electricity prices are also lower between 11 
PM and 7 AM, this intervention would also reduce charging 
costs by over US $1 per vehicle per day. Even if nightshift 
drivers require 99% probability that they will maintain at least 
10% SOC, a flexible SOC policy during shift changes would 
save each dayshift driver over 25 minutes per day. In aggregate, 
this intervention could save day shift drivers 8,000 to 12,000 
hours per day, potentially yielding over $25 million per year in 
additional revenue. This analysis does not include the potential 
for reducing queuing and detour times by increasing flexibility 
in when and where drivers charge, and so these estimates are 
likely conservative.  

D. Shift charging to break periods 
Early-morning hours are not the only time of day when 

charging has a negligible opportunity cost. We estimate that 
each vehicle takes over two hours of breaks per day on average, 
even when only including periods when the vehicle spends at 
least 30 minutes idle in the same location (not including 
charging). Over 60% of vehicles spend at least as much time on 
these breaks as they spend charging during the dayshift. When 
asked why they do not currently use break periods to charge, 
several drivers reported that they see no need to do so, because 
they must charge to full SOC before changing shift regardless. 
Without the constraint of changing shift at full SOC, drivers 
could save time by charging during breaks. Such an 
intervention could also reduce fatigue driving and improve 
safety by encouraging drivers to take longer breaks every few 
hours to ensure that they remain alert while driving. 

As described in the methodology, we developed a simulation 
model to estimate the minimum amount of additional charging 
time required given full use of both break periods and early 
morning hours, finding that on average vehicles could satisfy 
all their charging needs with only 10 additional minutes, saving 
over 70 minutes per vehicle per day.  
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Fig. 6.  From top (all hourly moving averages disaggregated by both time of 
day and day of week):  a) proportion of vehicles hired (not including vehicles 
that are disengaged or charging); b) average net revenue per vehicle per hour 
(fare revenue minus electricity cost); c) number of “suplus vehicles,” defined 
as the number of vehicles in the fleet that could be charging while keeping the 
fraction of vehicles hired below the minimum value observed during the 
daytime (44%); d) number of vehicle charging. 

This optimization strategy, shown as the “optimized” vehicle 
charging profile in Fig. 7, results in a larger early-morning peak, 
a broader lunchtime peak, and a substantially smaller afternoon 
peak. This reduced demand for charging during the afternoon 
increases the fleet’s capacity to serve trip demand during 
afternoon peak hours, yielding over $75 million per year in 
additional revenue. 

 

 
Fig. 7.  Number of vehicles charging by time of day in four different scenarios. 
The “flexible shift” scenarios allow drivers to change shift at a sufficient SOC 
to provide either 99% (green) or 95% (blue) confidence for the nightshift driver 
to operate without charging until the early morning hours (defined as 1am on 
weekdays and 2am on weekends). The optimized scenario assumes full usage 
of both break periods and early morning hours for charging. The large nighttime 
peak introduces the possibility of scarcity of available chargers. However, given 
that we inferred over 12,000 chargers in the taxi data, we expect that the 
dispatching optimization, described above, would be able to mitigate this 
potential issue. 

E. Evidence from current driver behavior 
Using the fleet’s driver shift-change data, we find that some 

drivers have already adopted charging patterns aligned with 
some of the strategies described above. For example, for 1,251 
vehicles or roughly 7% of the fleet, dayshift drivers ended 
their shift with a 60 to 85% SOC. Compared with “full SOC” 
dayshift drivers in Fig. 8 below, “flexible SOC” dayshift 
drivers tend to charge earlier in the afternoon, likely 
coinciding with their lunch break, and “flexible SOC” 
nightshift drivers tend to charge slightly earlier in the early-
morning hours.  

As shown in Table III below, compared with drivers that 
change shifts at full charge, on average these “flexible SOC” 
drivers earn more revenue ($5 per vehicle per day), operate for 
slightly more time, and continue accepting trips with less time 
before their shift change (1.42 hours versus 2.25 hours). They 
also charge further from the shift-change location (6.1 km 
versus 2.9 km), meaning they have more choice of where to 
charge. This increased choice likely results in less queuing 
time and greater certainty of charging time, both of which 
reduce the overall opportunity cost of charging.  

Additionally, on average “flexible SOC” dayshift drivers 
stop charging at 92%, saving 10 minutes per charging event by 
avoiding slow charging speeds at close to full SOC. These 
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findings are consistent with our simulation results that suggest 
that flexibility in the SOC required at shift changes can 
increase driver earnings by enabling drivers to charge during 
break times and at charging stations with shorter queuing 
times. 
 

TABLE III 
VEHICLE STATISTICS BY CHARGING BEHAVIOR 

Attribute 

SOC at afternoon shift change (%) 
p-

value 60 to 85  
(flexible SOC) 

>85  
(full SOC) 

Number of vehicles 1251 10616 n/a 

Total revenue 
(USD/vehicle/day) 211.62 206.15 *** 

Dayshift revenue 
(USD/vehicle/day) 107.09 102.31 *** 

Distance between 
charging station and shift 
change location (km) 

6.1 2.9 *** 

Time between charging 
and shift change (hr) 3.63 2.30 *** 

Time between shift 
change and last trip 
dropoff (hr) 

1.42 2.25 *** 

Operating time (hr/day) 19.67 19.48 * 

Revenue per operating 
hour (USD/vehicle/hr) 10.79 10.57 ** 

Starting SOC of charging 
events (%) 53 52 x 

Ending SOC of charging 
events (%) 92 96 *** 

Charging time (hr) 1.09 1.26 *** 

p-values describe results of two-tailed t-tests, with the following significance 
levels: x >= 0.05, * < 0.05, ** < 0.01, *** < 0.001 
 

 
Fig. 8. Density profile of charging events by start time on July 25, 2019, 
grouped by shift-change type. “Flexible SOC” represents vehicles changing 
shift in the afternoon at 60 to 85% SOC, “full SOC” represents vehicles 
changing shift in the afternoon at 85 to 100% SOC, and “single shift” represents 
vehicles that did not report a shift change on this day.  

IV. CONCLUSION 
With the Shenzhen taxi fleet data on vehicle trajectory and 

battery state of charge, we illustrate the capability of big data to 
reveal system-level inefficiencies and inform simple 
optimization strategies to facilitate effective total 
electrification. Enabling flexible SOC during the afternoon shift 
change could reduce aggregate vehicle downtime by over 
10,000 hours per day, while fully using break periods and early 
morning hours to charge could save over 20,000 hours per day. 
We also find that optimizing vehicle dispatching to charging 
stations could improve the economic sustainability of charging 
infrastructure by increasing the percentage of viable chargers 
without subsidies from less than half to 75%. 

These findings naturally lead to recommendations for 
policies that encourage driver behavioral change and 
coordinated charging. By testing and implementing such 
strategies, cities and fleet operators could greatly alleviate the 
operating burden arising from electrification. For more 
effective fleet electrification, cities should consider developing 
data platforms that integrate demand-side data on the charging 
needs of various transportation modes with supply-side data on 
charger availability and construction. This combination would 
enable critical feedback control so cities can predict and balance 
the demand and supply for electrified transportation. Aside 
from the real-time fleet optimization discussed in this study, 
data integration can also be used to minimize the stress vehicle 
charging places on the power grid and maximize usage of 
intermittent renewable energy resources. Meanwhile, switching 
from conventional vehicles to BEVs effectively will require 
significant behavioral changes, and both taxi drivers and fleet 
operators could benefit from targeted training to better 
understand how to best use this new technology. 

Shenzhen provides a strong leadership model for municipal 
governments to consider as they seek full electrification of both 
fleets and private transportation. Given China’s goal of phasing 
out conventional vehicles over the next several decades [38], 
the findings of this study have large-scale implications for other 
Chinese megacities aiming to shift to low-carbon 
transportation.  
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