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Abstract: The retina is a complex and fragile photosensitive part of the central nervous system which
is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies
exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell
transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or
the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells,
retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation
therapies. The success of retinal transplantation based on cell suspension injection is hindered by
limited cell survival and lack of cellular integration. Recent advances in material science helped
to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for
transplantation into the eyes. Such implants are found to be more promising than the bolus injection
approach. Tissue engineering techniques are specifically designed to construct biodegradable or
non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts.
The engineered cell construct along with the extracellular matrix formed, can hold the cells in place
to enable easy survival, better integration, and improved visual function. This article reviews the
advances in the use of scaffolds for transplantation studies in animal models and their application in
current clinical trials.

Keywords: retinal degenerative diseases; age-related macular degeneration; biomaterials; stem cells;
retinal pigment epithelium; tissue engineering

1. Introduction

The human retina, which is situated in the posterior part of the eye is a transparent,
light-sensitive tissue containing multiple cellular layers. It originates from the anterior neu-
ral tube during early embryogenesis as a part of the central nervous system [1]. The retina
is composed of the light transducing neural retina, as well as the supportive blood-retinal
barrier. In the neural retina, after absorption of photons of light energy by the photorecep-
tors (PR)—the rods and cones, the visual information is converted into chemical signals
and then to neural signals that are transmitted to retinal ganglion cells (RGC). The RGC
axons form the optic nerve that transmits this information to the brain visual centers where
the image is processed [2]. The blood–retina barrier consists of a polarized monolayer
of hexagonal cells—the retinal pigment epithelial cells (RPE) which support and nourish
the PR; Bruch’s membrane (BM)—a specialized basement membrane which transports
nutrients to the retina, and retinal vascular endothelial cells of the underlying choroid [3].
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Although there are variations in the pathologies typical of retinal degenerative diseases
(RDs) including age-related macular degeneration (AMD), retinitis pigmentosa (RP), and
Stargardt’s disease (SD), it is currently considered that RPE dysfunction and the resultant
deterioration of photoreceptors are the most common pathologies. Furthermore, BM may
thicken and alter its composition, resulting in compromised nutrient transport to the
retina. Degeneration of RPE and photoreceptors result in significant visual disability which
eventually leads to irreversible vision loss. The existing therapies can only delay the
progression of retinal diseases, except for anti-angiogenic treatments for patients with
neovascular age-related macular degeneration [4]. Currently, there are no established
treatment strategies to completely halt the degenerative process or reinstate regular retinal
function to restore vision. Although electronic retinal interface devices [5] and gene
therapies [6] are under clinical trials, the extent of achievable results is likely a long way
from permanent visual recovery.

In many instances of retinal degeneration, even after RPE and PR loss, the inner
layers of the retina with its intricate neural connectivity maintain their architecture for
an extended period. If a population of healthy RPE/PR are delivered to the subretinal
space, they can survive and integrate with the host retina to restore vision. Based on this,
a cell replacement strategy is a promising approach for the treatment of AMD and RP.
Reports from initial clinical trials involving transplantation of human embryonic stem cell-
derived RPE (hESC-RPE) as suspension [7,8] are encouraging and found to be safe for the
treatment of AMD and SD. Simple bolus injection of stem/progenitor cell suspension into
subretinal space may result in injection reflex and poor cell localization. The compromised
cell survival will lead to ineffective cell integration into the damaged retina. Even though
cells appear to be well tolerated in relatively short-term animal studies, non-integrated cells
will lead to potential complications such as subretinal gliosis [9,10]. To ensure that the cells
are in correct orientation and proper interface with the photoreceptor cells, it is desirable
to transplant cells as a preformed monolayer along with a supporting substrate. A recent
implantation study used, stem cell-derived RPE grown on a bioengineered scaffold (RPE
patch), that helps to maintain the polarity and laminar structure of the transplanted RPE
cells [9–12]. Results of the on-going Phase1/2a clinical trials indicate good safety and
tolerability for surgical implantation of RPE grown on parylene scaffolds [13].

In addition to RPE transplantation, recent advances in the development of pluripotent
stem cell (PSC)-derived 3D neural retina in the culture dish and construction of cellular,
three-dimensional structures using robotics and 3D bioprinting have provided new insights
in the field of tissue engineering of the retina. In this review, we discuss various tissue
engineering strategies for retinal repair using stem cell-derived grafts.

2. Cell Types Used for Therapies in the Eye

Initial transplantation studies using autologous RPE sheets and RPE isolated from fetal
or adult donor eye tissue showed “proof of concept” for photoreceptor preservation and
visual functional improvement in human patients [14–21]. Later, transplantation of different
stem cell suspensions of the neuronal and non-neuronal lineage including mesenchymal
stem cells from umbilical cord [22,23], bone marrow [24–26], adipose tissue [27], human
neural progenitor cells [28], embryonic stem cell (ESC)-derived neural progenitors [29], iris
pigment epithelium (IPE) derived cells [30,31], and RPE [32,33] were shown to provide
trophic support and visual functional improvement in preclinical models of RD diseases.
Protocols to differentiate human embryonic stem cells (hESC) and induced pluripotent
stem cells (iPSC) to RPE, retinal progenitor cells (RPC), photoreceptor precursor cells, and
retinal organoids (RO) have been successfully established by various investigators [34–41].

The RPE cells derived from pluripotent stem cells (PSC) form a monolayer of pig-
mented cells and show typical features of RPE such as polarity, tight junction formation,
and phagocytosis of photoreceptor outer segments [42–44]. Transplantation of pluripotent
stem cell-derived retinal cells including RPE, PR, and RO into animal models of retinal de-
generative diseases demonstrated their effectiveness in supporting visual function [45–52].
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Clinical trials based on subretinal implantation of hESC-RPE and iPSC-RPE as a suspen-
sion in AMD and Stargardt’s disease patients showed possible RPE engraftment without
significant adverse events [7,53]. There are at least three different clinical trials currently
progressing at different centers but they are yet to publish results based on long-term
assessments [54–56].

Previous studies have shown that the transplantation of healthy photoreceptor pre-
cursors into the diseased retina improves visual function [57–59]. Initial investigators
considered this as a result of the donor cell integration into the retina, but later studies
proved that donor photoreceptors take part in a cytoplasmic exchange with the host pho-
toreceptors instead of “true integration” [60–62]. Retinal progenitor cells (RPCs) found
in the developing neural retina located in the inner layer of the optic cup are capable of
differentiating into diverse retinal cell types. Human clinical trials conducted in patients
with RP using fetal derived RPCs (fRPCs) demonstrated acceptable safety and tolerabil-
ity of RPCs [63]. The results of two other clinical trials are on the way (NCT02464436,
NCT03073733).

Recent studies show that 3D retinal organoids (ROs) developed from iPSCs and ESCs
can produce retinal progenitors that differentiate into RPE, PR, inner nuclear layer (INL)
neurons, and ganglion cells (RGCs) [64–67]. In preclinical studies, RO-derived retinal sheets
formed structured outer nuclear layers (ONLs) with inner and outer segments [49,51,68].
Transplantation of PRs alone is also appealing but so far only a few protocols to produce
PRs are suitable to use in clinical studies [69].

Identifying the right disease stage for cell replacement is an important factor that
determines the success of the therapy. In AMD, during the initial stages, only the BM and
RPE are affected whereas the photoreceptors (PRs) remain preserved. In this scenario, only
RPE replacement may be necessary to cure the disease condition. Combined BM-RPE-PR
transplantation may be required for visual recovery in advanced stages of the diseases
where the retina is irreversibly damaged (both PR and RPE are dysfunctional).

3. Tissue Engineering of the Retina

The environment in which the cells grow and mature can influence their survival and
functionality after transplantation. Tissue engineering of the retina is based on the concept
that the transplantation of normal healthy cells derived from various stem cell sources
needs to be implanted as an intact layer or sheet rather than injected as a suspension.
Previously, subretinal delivery of cells through bolus injection has laid the groundwork
and provided the "proof of concept" that healthy donor stem and progenitor cells can
be transplanted into a diseased retina to contribute to visual functional recovery [70,71].
These preclinical studies emphasized the requirement of improved cell delivery systems to
enhance donor cell survival, integration, and neural connectivity.

Advanced AMD is characterized by complete loss of PRs, dysfunctional RPE, and
abnormal BM. BM is a 2–4 µm thick extracellular matrix (ECM) composed of collagen types I
and IV, laminin, fibronectin, hyaluronic acid, heparan sulfate chondroitin/dermatan sulfate,
and elastin [72]. The specialized morphology of BM facilitates the reciprocal exchange
of nutrients to and from the retina. In the diseased state, the BM show increased lipid
body accumulation and a higher level of collagen cross-linking [73]. The degenerating RPE
monolayer and its disrupted tight junctions further alter the BM morphology. These age-
related changes result in decreased adhesion and survival of transplanted donor cells [12].
Several groups attempted to resurface BM to facilitate RPE attachment. Although coating
the BM with a mixture of laminin, fibronectin, and vitronectin improved cell survival
and phagocytosis of fluorescein isothiocyanate (FITC)-labeled bovine photoreceptor outer
segments in both adult RPE and fetal RPE, the improvement was not comparable to healthy
BM [74].

Transplantation of healthy RPE/PR seeded in a carefully designed scaffold that can
mimic the BM morphology and properties can better rescue the deteriorating visual func-
tion [9]. The central fovea has a neural retina thickness of 100 µm whereas the BM is only



Appl. Sci. 2021, 11, 2154 4 of 19

5 µm [75]. In general, the ideal scaffold should be biocompatible, nonimmunogenic, and
mechanically robust enough to resist manipulation during implantation. Scaffolds need to
be thin enough to allow the exchange of nutrients and metabolites between the choriocapil-
laris and the retina [76]. After transplantation, it should not lead to physical distortion of
the photoreceptor layer. Low elasticity of the material prevents adverse events like retinal
detachment, retraction, or visual distortion. Carefully designed, cutting-edge biomaterials
with fine-tuned topographical properties and micro/nanopatterned structures with extra-
cellular matrix (ECM) properties can hold stem and progenitor cell populations effectively
and help to deliver them as a retinal patch into the subretinal space.

Different types of biomaterials have been used to design scaffolds for retinal tis-
sue engineering. This includes natural polymers, synthetic polymers, hybrid polymers,
decellularized tissues, and thermoresponsive hydrogel polymers.

4. Biomaterials and Scaffolds Used for Tissue Engineering
4.1. Natural Biomaterials Used as Scaffolds

Biomaterials mainly include ECM proteins and polysaccharides which possess bioac-
tive properties. The natural polymers used for retinal tissue engineering are easily available
and include collagen types I, III, and IV, gelatin, alginates, laminin, fibronectin, matrigel,
silk fibroin, and vitronectin. These scaffolds constitute nanofibers that have very similar
physiological properties as BM in terms of morphology, mechanical properties, protein
concentrations, and biocompatibility. Collagen I is a major component of the inner col-
lagenous layer of BM and studies have proved them as a viable substrate for RPE cell
reattachment [77]. Usually, this polymer is too thick for subretinal implantation, hence spe-
cially designed ultrathin (7 µm) membranes were designed for testing. Thumann et al. [78]
showed that ultrathin collagen membranes can remain stable for at least 10 weeks and
completely degrade within 24 weeks. By then the transplanted RPE were able to restructure
the BM. In another study, collagen films supported by Teflon showed RPE attachment and
viability [79]. Human primary RPE cells and the immortalized retinal pigment epithelial
cell line (ARPE-19) have been previously cultured on equine, bovine, and rat collagen type
I membranes as well as on human collagen type I thin films [80,81]. Gelatin, a denatured
form of collagen proteins, is advantageous over collagen because of lower immunogenic-
ity, crosslinking ability, and better solubility in aqueous systems. Gelatin membranes in
the shape of a sandwich with encapsulated retinal grafts were used for transplantation
studies in rabbits to demonstrate biocompatibility, improved survival, and formation of
laminar structures [82]. Gelatin membrane cross-linked with carbodiimide when used for
retinal sheet implantation was found to be more stable against hydrolysis and mechanical
stress [83].

Alginate is an anionic polysaccharide that is usually found in the cell walls of brown
algae. In a study, a thin film of purified alginate was used to demonstrate its ability
to support the growth of RPE cells and their high proliferative rates [84]. In another
study, alginate beads were used to demonstrate RPE cell sustenance and proliferation [85].
An arginine-glycine-aspartic-alginate (RGD-alginate) scaffold demonstrated feasibility
for cell derivation and transplantation of RPE and neural retina [86]. Bombyx mori silk
fibroin (BMSF) that possesses unique structural properties and mechanical strength, is
another suitable candidate to be used in the eye [87]. BMSF pre-coated with vitronectin
is used to fabricate a membrane up to 3 µm in thickness as a carrier substrate for human
RPE transplantation. Although the cells were grown on BMSF for approximately 8 weeks
with expressing RPE characteristics, the duration required to establish the culture was
comparatively long [88].

Recent advances in decellularized scaffold techniques are expected to better preserve
tissue architecture and chemistry. Kundu et al. [89] used ionic detergents to decellular-
ize bovine eyes and processed them into stable thin films. The decellularized matrix-
supported adherence and proliferation of human RPCs. The gene expression of CRX,
ROM1, RHODOPSIN, and NRL on these retinal films indicated photoreceptor differentia-
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tion [90]. In another study, an amniotic membrane was used as a BM substitute, in which
it supported RPE ingrowth in the pig eyes with choroidal neovascularization [90]. Areas
of hypo and hyperpigmentation observed in this study were attributed to the migration
of RPE cells into the affected region in the presence of an amniotic membrane. Interest-
ingly, the amniotic membrane was not stated as being beneficial or detrimental to choroidal
neovascularization, as there was an initial hemorrhage but no additional leakage [90].

4.2. Synthetic Biomaterials Used as Scaffolds

Synthetic scaffolds have better mechanical properties that can resist the transplantation
procedure. Suitable bulk properties can be obtained in a controlled way by modifying
the porosity, topographical parameters, and dimensional shape. Synthetic scaffolds are
more advantageous than natural scaffolds because of their reproducibility and longer
shelf life. Biocompatible, inert materials can be free from immunogenicity and their
biodegradation rates can be manipulated. A number of polymers meet many of these
requirements and have been approved by the food and drug administration (FDA) for an
array of biodegradable suture applications including poly(lactic-co-glycolide acid) (PLGA),
poly(l-lactic acid) (PLLA), PLLA–PLGA copolymer systems, poly(glycerol-sebacate) (PGS),
polydimethylsiloxane (PDMS), polydimethylsiloxane (PDMS), poly(methyl methacrylate)
(PMMA), poly(ethylene glycol) diacrylate (PEGDA), parylene-C and polycaprolactone
(PCL).

PLGA is a biodegradable polyester-based polymer having remarkable mechanical
properties, adjustable degradation rates, and good processability [91]. It degrades by
hydrolysis of ester linkages forming lactic and glycolic acids which are further degraded
in the body. By varying the amount of lactic and glycolic acids, the degradation rate can
be controlled. A clinical-grade PLGA scaffold was seeded with AMD patient–derived
iPSC-RPE to demonstrate safety and cell integration in the eye [45]. This cell patch showed
improved efficacy in rodent and porcine preclinical models. Concurrent PLGA scaffold
degradation and ECM production by the donor cells aided integration with the host
BM [45]. Biodegradable PCL scaffolds are the thinnest scaffolds available for retinal tissue
engineering. This will act as a permeable and slowly degrading transient structure without
any pathological increase in local acidity [92]. Bernards et al. [93] conducted in vivo studies
in rabbits to assess the tolerance and durability of micro and nanostructured PCL thin films.
Adverse tissue responses like fibrosis or biodeposits were not observed and a good ocular
tolerance was observed.

Poly (trimethylene carbonate) (PTMC) is flexible and elastic in nature and a biodegrad-
able polymer. In one of the studies, PTMC film was compared with an often-used
biodegradable polymer namely poly (D, L-lactide) (PDLLA) film. The mechanical proper-
ties of PTMC film were found to be comparable to that of native Bruch’s membrane (BM)
and it also supported the formation of a functionally active hESC-RPE monolayer. On the
other hand, PDLLA did not support the formation of hESC-RPE merging monolayers and
had inappropriate mechanical properties when used for in vivo applications [94].

Synthetic polymers are generally hydrophobic in nature and usually not favorable
for cell attachments. Oxygen-plasma processing, hydrogel blending and surface modifica-
tions such as coating surface with extracellular matrix proteins allow greater cell adhesion
and survival. Tao et al. [95] designed thin PMMA scaffolds of 6 µm that were easy to
implant and with reduced risk of trauma after transplantation into the rodent eyes. RPC
on laminin-coated porous scaffolds resulted in increased cell survival and the delivery
could be localized to specific retinal regions. Redenti et al. [96] generated a laminin-coated
novel biodegradable nanowire PCL scaffold on which mouse RPCs were cultured. A mi-
crofabricated, elastic poly (glycerol sebacate) (PGS) scaffold was found suitable for initial
RPC differentiation in vitro. Subretinal delivery into C57bl/6 and rhodopsin knockout
mice allowed the passage of nutrients and cells through its 50 µm diameter pores. Polymer
topology allowed photoreceptor maturation and migration of RPC into the retina demon-
strating localized delivery of a predetermined number of cells to a specific region of the
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damaged retina. PGS has proved to be a potential scaffold for RPC delivery as indicated
by high levels of survival, adherence, and proliferation [97]. Lavik et al. [98] showed
that RPCs seeded on PLLA-PLGA copolymers, down-regulated immature “stemness” cell
markers (Hes5, nestin, Hes1, and Pax6), and upregulated mature retinal markers such as
glial fibrillary acidic protein (GFAP), nevertheless, there was no photoreceptor-specific
expression [98].

Parylene-C is a class VI biocompatible polymer having several biomedical applications
including the fabrication of Argus® II Retinal Prosthesis System [99]. Our preclinical and
translational studies showed that composite implant of RPE and parylene is a feasible
option to rescue visual function [9,13,100,101]. The parylene material used was semiper-
meable to molecules of a certain molecular weight when its thickness was reduced to
a sub-micron range. Lu et al. [102] designed a mesh-supported sub-micron parylene-C
membrane (MSPM). To get better cell adherence, both sides of the membrane were treated
with low-power oxygen plasma and coated with matrigel. RPE cells demonstrated good
adherence and showed epithelial-like morphology. They developed microvilli, right polar-
ization, and tight intracellular junctions [102]. Survival of the transplanted RPE cells in the
subretinal space of Royal College of Surgeons (RCS) rats up to 21 weeks post-implantation
was demonstrated by Thomas et al. [100]. The implanted hESC-RPE cells remained as a
monolayer on the surface of the parylene substrate and performed photoreceptor outer
segment phagocytosis (Figure 1). A partially blinded randomized study was conducted on
Yucatan minipigs before human clinical trials. Results showed structural preservation of
the implant; the RPE cells remained intact and survived in the form of a monolayer [103].
Following this, an RPE+ parylene implant named California Project to Cure Blindness–
Retinal Pigment Epithelium 1 (CPCB-RPE1) was developed for use in clinical studies which
are currently being conducted in patients with dry AMD.

In another in vitro study, specifically designed porous honeycomb PLA films coated
with collagen IV were seeded with pigmented hESC, showed cell survival and proliferation
during the 6 weeks of the study period [104]. A biomimetic scaffold sheet of plasma
modified polydimethylsiloxane (PDMS) coated with laminin was found to facilitate the
functional maturation and survival of RPE cells [105]. PCL–gelatin scaffold, poly(lactic-co-
glycolic acid) (PLGA)- collagen type I, poly(ethylene glycol) diacrylate (PEGDA)- RGDS
peptide motif (arginine-glycine-aspartic acid-serine) are the other polymer types shown to
support RPE survival and maturation [106–108].

Human retinal progenitor cells (hRPCs), isolated from the fetal retina, need extracellu-
lar matrix proteins such as fibronectin or laminin for attachment and survival. A synthetic,
xeno-free vitronectin-mimicking surface (Synthemax) was fabricated by Baranov et al. to
grow RPCs; RPCs survived and self-renewed in the in vitro condition [109]. In another
study, the authors used xeno-free synthetic RGD peptides to coat the PCL scaffold. The coat-
ing promoted the differentiation of rods in vitro but not the differentiation of cones or other
retinal cell types. The expression of stem cell markers KLF4 and N-MYC remained high
due to which this construct is considered undesirable for human applications [110].

4.3. Biohybrid Scaffolds

Hybrid scaffolds have the advantage of combining the properties of both natural
and synthetic nanofibers by incorporating both materials to make composite scaffolds.
This combination approach is different from coating the synthetic scaffolds with natural
materials like extracellular matrices or proteins. The combination approach allows tailoring
scaffold properties of the synthetic component and gaining natural properties of proteogly-
cans, proteins, and glycosaminoglycans from the natural polymer. Thomson et al. [111]
manufactured five blends of PLLA with PLGA to evaluate a variety of suitable scaffolds
for RPE transplantation. The blend with a 25:75 (PLLA:PLGA) ratio was found to be the
thinnest and most porous with minimal cell death [111].



Appl. Sci. 2021, 11, 2154 7 of 19
Appl. Sci. 2021, 11, 2154 7 of 19 
 

 

                          Figure 1. Histologic assessment of Mesh-supported submicron parylene C membranes 
(rMSPM)+ Vitronectin and California Project to Cure Blindness–Retinal Pigment Epithelium 
1(rCPCB-RPE1) implants in Royal College of Surgeons(RCS) rats. Representative hematoxylin 
eosin (HE) staining images of rat retina after implantation. Implanted (a) parylene membrane 
(rMSPM+ Vitronectin) and (b) rCPCB-RPE1 in the subretinal space (large white arrow), surviving 
outer nuclear layer (ONL) (red arrows), and an area showing some cellular reaction (white stars). 
Relatively intact host retina, elevated and wavy inner nuclear layer (INL) and focal loss of INL 
cells can be observed in both (a) and (b). The choroidal layer that appears to be separated from the 
remaining retina is considered a histologic artifact. (c) Immunostaining of TRA-1-85/RPE65 shows 
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sin-positive phagosomes inside the implanted RPE65-positive hESC-RPE cells (small white ar-
row pointing to phagosomes)(reprinted with permission from Thomas et al., 2016). 
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Figure 1. Histologic assessment of Mesh-supported submicron parylene C membranes (rMSPM)+
Vitronectin and California Project to Cure Blindness–Retinal Pigment Epithelium 1(rCPCB-RPE1)
implants in Royal College of Surgeons (RCS) rats. Representative hematoxylin eosin (HE) staining
images of rat retina after implantation. Implanted (a) parylene membrane (rMSPM+ Vitronectin) and
(b) rCPCB-RPE1 in the subretinal space (large white arrow), surviving outer nuclear layer (ONL)
(red arrows), and an area showing some cellular reaction (white stars). Relatively intact host retina,
elevated and wavy inner nuclear layer (INL) and focal loss of INL cells can be observed in both
(a,b). The choroidal layer that appears to be separated from the remaining retina is considered a
histologic artifact. (c) Immunostaining of TRA-1-85/RPE65 shows implanted hESC-RPE cells (white
arrowhead). (d) Rhodopsin immunostaining showing rhodopsin-positive phagosomes inside the
implanted RPE65-positive hESC-RPE cells (small white arrow pointing to phagosomes) (reprinted
with permission from Thomas et al., 2016).

A novel scaffold fabricated from Silk Fibroin (SF) and Poly(L-lactic acid-co-ε-caprolactone)
(PLCL, 1:1) showed RPC growth, proliferation, and differentiation into photoreceptors [112].
A cationic chitosan-graft-poly(/textepsilon-caprolactone)/polycaprolactone (CS-PCL/PCL,20/80)
hybrid scaffold produced using electrospinning fabrication technique demonstrated great RPC
proliferation [113]. Previous studies have demonstrated that PCL with laminin and PCL with
chitosan electrospun nanofibers, can improve cell adhesion, proliferation, or differentiation and
promote the expression of genes specific to photoreceptor cells or bipolar cells [96,113,114]. Issues
related to reproducibility and batch variability while using natural polymers exist in the combi-
nation approach. Future studies should address these issues along with effective measures to
control the biodegradability and immunogenicity of the by-products of combination scaffolds. A
summary of different biomaterials used for retinal tissue engineering is included in Table 1.
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Table 1. A summary of biomaterials used for retinal tissue engineering. PLGA: poly(lactic-co-glycolide acid), PLLA: poly(l-lactic acid), PGS: poly(glycerol-sebacate), PTMC: Poly
(trimethylene carbonate), PCL: polycaprolactone, PMMA: poly(methyl methacrylate), SF: silk fibroin, PDLJA: poly (D, L-lactide), PLCL: poly(L-lactic acid-co-ε-caprolactone, hESC: human
embryonic stem cell, RPE: retinal pigment epithelium, RCS: royal college of surgeons, BM: Bruch’s membrane, BMSF: bombyx mori silk fibroin, RPC: retinal progenitor cells, AMD:
advanced macular degeneration, PNIPAAm: poly(N-isoproplyacrylamide).

Biomaterial Thickness (µm) Advantages Studies References

Collagen type I membrane 7
Non-toxic, no inflammatory

response, controllable, stability (10
weeks), degrade (within 24 weeks)

Long term biocompatibility and
membrane degradation evaluated

(rabbits)

(Bhatt et al., 1994; Booij et al., 2010;
Lu et al., 2007; Thumann et al., 2009)

Gelatin 30–35
Lower immunogenicity,

crosslinking ability, and better
solubility in aqueous systems

Biocompatibility, improved survival,
and formation of laminar structures

(rabbits)
(Hsiue et al., 2002; Lai and Li, 2010)

Alginate Thin film Purified alginate- high cell
proliferative rate

Ability to support the growth of
RPE cells and their high

proliferative rates (in vitro)

(Heidari et al., 2015; Hunt et al.,
2017; Jeong et al., 2011)

Silk Fibroin 3
Great mechanical strength, good

biodegradability, and
biocompatibility

Evaluate BMSF as a substrate for
RPE cell transplantation (in vitro)

(Shadforth et al., 2012; Tran et al.,
2018)

PLGA
Remarkable mechanical properties,
adjustable degradation rates (80-90

days), and good processability

To demonstrate safety and cell
integration in the eye (rodent and

porcine preclinical models)

(Pan and Ding, 2012; Sharma et al.,
2019)

PCL 20–40
Thinnest scaffold, permeable, slow

degradation, adverse tissue
responses not observed

Assess the tolerance and durability
of micro and nanostructured PCL

thin films (rabbits)

(Bernards et al., 2013; Redenti et al.,
2008)

PTMC 100 Elastomeric properties similar to
BM, thickness tunable

Demonstrate adherence and
maturation of hESC-RPE cells on
PTMC compared to PDLLA films

(Sorkio et al., 2017)

PMMA 6 Reduced risk of trauma
Evaluate adhesion of RPCs and its

differentiation and migration to host
retina (mice)

(Tao et al., 2007)

PGS 45 A suitable candidate for RPC
delivery with great novel properties Evaluate mechanical properties (Neeley et al., 2008)
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Table 1. Cont.

Biomaterial Thickness (µm) Advantages Studies References

Parylene-C

0.15–0.30, 0.3 µm thickness
supported on a 6.0 µm thick mesh

frame Macromolecules and nutrients can
diffuse, nonimmunogenic, Promotes

cell adhesion after vitronectin/matrigel
coating

Evaluate safety, survival, and
functionality of hESC-RPE cells on

parylene in animal models
(Kashani et al., 2018; Koss et al.,

2016; Lu et al., 2012; Thomas et al.,
2016)

0.3 µm thickness supported on a 6.0
µm thick mesh frame

Assess safety and efficacy of
hESC-RPE on parylene in patients

with AMD. (clinical study)

Check cell adherence and
proliferation (in vitro)

PLLA & PLGA
Week 1: 133.1
Week 2: 131.5
Week 3: 103.5

25:75 (PLLA: PLGA) thinnest, most
porous, and minimal cell death

Evaluate the variety of suitable
scaffolds for RPE transplantation

(in vitro)
(Thomson et al., 2011)

SF & PLCL 60–100
Quick RPC proliferation, preferential

differentiation towards retinal neurons
like photoreceptors

Understand effects of blended
nanofibrous membranes of silk

fibroin and PLCL (in vitro)
(Zhang et al., 2015)

Honeycomb like films and
collagen IV

Increased hydrophilicity, high
permeability

Investigate honeycomb-like film as
a promising scaffold for hESC-RPE

tissue engineering
(Calejo et al., 2016)

PNIPAAm – Thermoresponsive
polymer scalable Allows cell sheet harvest by

temperature reduction from 37–20 ◦C

Demonstrate fabrication of
transplantable retinal pigment

epithelium cell sheets

(Kubota et al., 2006; Kushida et al.,
1999)

Decellularized matrix 10–20

micro- and macro-scale structural
components and functional ECM

proteins present
Photoreceptor differentiation

Develop novel biomaterial by
decellularizing retina using ionic

detergents
(Kundu et al., 2016)
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4.4. Scaffold Free Cell Sheets Using Thermoresponsive Polymers

Thermoresponsive polymers are stimuli-responsive smart materials that show re-
versible hydrophilicity/hydrophobicity around a critical temperature [115] (Figure 2).
This can be used to prepare cell monolayers or sheets for implantation without any sup-
porting matrix. The approach can enable the preparation of intact, scaffold-free monolayer
cell sheets along with the deposited ECM through phase separation. During transplanta-
tion, the ECM supports faster attachment of host tissue without any additional coating.
Poly(N-isoproplyacrylamide) (PNIPAAm) is one of the most popular thermoresponsive
polymers which allows cell sheet harvest by temperature reduction from 37–20 ◦C [116].
Kubuta et al. [117] has shown that RPE forms cell sheets over PNIPAAm and exists as a
monolayer structure with intact cell-to-cell junctions after transplantation [117]. Functional
three-dimensional (3D) tissues can also be fabricated using thermoresponsive polymers by
layering cell sheets. Micro-patterning technology combined with cell sheet technology can
be used to create more complex 3D functional tissues [118].
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ration of thermoresponsive polymer; (b) Cell seeding into the polymer at a temperature below 32 ◦C
(c) Schematic diagrams for the interactions of the thermoresponsive surface with the cells growing on
it (d) Cell sheet detachment from the thermoresponsive cell culture dish, where the cell sheet retains
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4.5. Co-Graft of RPE and Retinal Organoid

During advanced stages of AMD, when both PR and RPE are lost, RPE replacement
alone may not rescue vision. Retinal repair at this stage requires transplantation of both
tissues. Designing better models of photoreceptor-RPE interaction for transplantation is an
important goal that needs an urgent solution, for the treatment of advanced geographic
atrophy. Retinal organoids (ROs) are a considerable source of photoreceptor precursor
cells, but they lack a continuous and mature layer of RPE [119]. Using a co-graft made of
RO sheet and RPE is beneficial since it can address both the lack of photoreceptors and
RPE. In our lab, a composite graft made of RO sheets and polarized RPE sheets cultured
over parylene is used as a composite implant to determine its potential to repair retina
and rescue vision(unpublished data) in preclinical animal models of retinal degeneration
(Figure 3).
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Figure 3. Tissue- engineered RPE-Retinal organoid co-graft transplantation into subretinal space of RCS rats (a) schematic
representation, showing the transplantation of RPE-RO cograft into the degenerated retina. After transplantation to the
subretinal space, both pieces integrate to repair a damaged retina. GCL: ganglion cell layer, IPL: inner plexiform, INL: inner
nuclear, OPL: outer plexiform, ONL: outer nuclear, OS: outer segments, RPE: retinal pigment epithelium, BM: basement
membrane. (b) Immunohistochemical staining showing RPE-RO co-graft integration into the degenerative rat retina,
3 months post-implantation. (i) in (b) co-graft (red nuclei) in subretinal space of rat. The transplant has developed rosettes.
White arrows: migrated donor cells in the host (ii) in (b) bestrophin (green) shows donor RPE (red arrows) and host
RPE (blue arrows). (c) Ultrasound images after ROE-RO cograft transplantation. (i) in (c) ultrasound image of a co-graft
observed during fundus examination of RCS rat- 3 months post-implantation) (ii) in (c) vertical OCT B-scan image passing
through the transplant area. Blue arrow: RPE layer on synthetic Bruch’s membrane, white arrow: organoid layer above
RPE. Here the RPE-RO co-graft area appears like a normal retina whereas the outside area (indicated by the red arrow)
shows considerable loss of retinal thickness. (iii) in (c) Vertical OCT B-scan image of another RPE-RO cograft transplant at 5
months post-surgery (unpublished data).

5. Other Complex Tissue Engineering Approaches

Drop casting [120], solvent casting [120], electrospinning [113], soft lithography [120],
and microfabrication [97] are some of the techniques conventionally used to produce
scaffolds for retinal repair. These methods can be used to fabricate porous scaffolds.
The pore size and porosity can be controlled by choosing the correct particle size and the
right number of added particles. The robotic deposition is an upcoming technology in
tissue engineering for computerized and reproducible patterning of ultrathin membranes
for cell delivery [115]. This will allow controlled cellular deposition in micrometer levels.
Cell adhering surfaces can be manipulated to tailor the alignment and morphology of
the attached cells through the introduction of cell-aligning grooves. The viable cells are
delivered through a bio-ink which consists of a biocompatible polymer [121]. In 3D
bioprinting, the components are fabricated by layers directly from a computer-assisted
design file [120]. 3D bioprinting allows combining cells, biomaterials, and growth factors
to mimic the natural tissue characteristics. Conventional methods lack precision and
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the ability to create constructs having complex designs. Since the structure of the retina
is complex with a heterogeneous cell population and degenerative diseases affecting
photoreceptors, RPE, choriocapillaris, and BM; 3D bioprinting technology can be applied
to repair the damaged retinal layers. Using 3D bioprinting, Shi et al. printed a retina
model composed of a PCL ultrathin membrane, Y79 cell-laden alginate/pluronic bio-
ink, and ARPE-19 cell monolayer with potential applications in drug delivery, disease
mechanism, and treatment method discoveries [122]. In another study, to develop an
in vitro retina model, an inkjet bioprinting system was applied to PR cell layers placed on
top of bioprinted RPE. Results showed well-positioned layered structures expressing their
structural markers. Human vascular endothelial growth factors were released from RPE
printed layer confirming a functional RPE monolayer obtained by bioprinting [123].

6. Current Clinical Trials Using Biomaterial Scaffolds

In a Phase1/2a clinical study, Kashani et al. [13] implanted clinical-grade hESC-RPE
grown on 3.5 mm× 6.25 mm parylene membrane substrate (CPCB-RPE1) in five patients
suffering from geographic atrophy (GA) associated with advanced non-neovascular AMD.
Postoperative findings demonstrated that there is no progression of vision loss. In one
eye, the improvement was seen by 17 letters, and improved fixation was seen in two eyes.
The appearance, size, position of the implant also did not change, and no adverse events
were noted [13]. Da Cruz et al. and his team engineered a 6 mm × 3 mm RPE patch which
constitutes of differentiated hESC derived RPE monolayer placed on a human-vitronectin-
coated polyester membrane (polyethylene terephthalate, PET). The patch delivered to the
subretinal space of the retina in patients with AMD using a microsurgical tool survived
and integrated with the host retina. There was a focal improvement in photoreceptor
anatomy over the transplant in both patients with a visual acuity improvement of 15 letters
or more [124].

In another clinical trial study from RIKEN Center for Developmental Biology (Japan),
iPSC-RPE cells were prepared as a sheet by growing them on collagen support. After
confluence, the cells were treated with collagenase to obtain a cell sheet on its own ECM.
The cell sheet was transplanted along with immunosuppression in a patient suffering from
neovascular AMD. When it was assessed at one year, the sheet remained intact, but the
best-corrected visual acuity had neither improved nor worsened. However, the trial was
forced to stop later because of mutations noticed in the second patient’s iPSCs and due
to changes in the regulatory rules in Japan [53]. In all the above clinical trials, specialized
surgical tools and devices were used for implant delivery. These devices minimized the
extent of the retinotomy and allowed precise positioning [125,126]. The main endpoints of
these studies were safety and some efficacy. In future studies, large multicentral clinical
trials with more patients are needed to measure the efficacy and statistical significance of
advanced phase clinical trials.

7. Challenges and Future Directions

Transplanted cells in the retina perform better in terms of physiology and cell survival
when they are supported by a scaffold, compared to cell suspension. Support from factors
provided by a cell monolayer (such as extracellular matrix and adhesion molecules) can
help the cells to function better when transplanted along with the substrate. There are
different methods to construct a scaffold including spun, machined, printed, assembled
stepwise, or casted. New methods to create microscale niches for cocultured stem cells are
also being explored. In the future, robotic and 3D bioprinting will allow several multiple
types of cells and tissue layers to be combined with new generation scaffolds, to construct
complex implants. Many scaffolds discussed here have not been assessed in vivo and
therefore, evaluation of each type of scaffold is required in animal models to establish "the
proof of concept". Implanting polymer scaffolds thicker than the size of the retina may
result in retinal trauma and detachment during surgery or during the post-surgery period.
It is also important to rule out inflammation caused due to scaffolds and their by-products.
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Using fast degrading polymers for clinical applications is limited mostly due to toxicity
issues [127]. Even though many fast degrading polymers are in the development stage,
slow degrading polymers might show lesser adverse events after transplantation. PLGA
and PGA have faster rates of degradation compared to PCL or PLA polymers (over 2 years).

Natural polymers have limited processability and it is difficult to control their batch
to batch variability and mechanical properties. There can be changes in the constituents
of natural polymers with age which can cause accumulation of debris in BM leading to
the dysfunction of the transplanted cells [73]. The poor mechanical properties of most of
the natural polymers make them difficult to handle surgical procedures. Methods like
cross-linking are used to improve mechanical properties but this can make them thicker,
poorly permeable, and non-biodegradable. Transplantation of tissue-engineered scaffolds
into the retina needs immunosuppressants at least provisionally until the blood-retinal
barrier heals [128]. In the future, different HLA-matched, genetically screened, cGMP grade
PSC-derived cells from the initial passages can be made available in cell banks, which will
make cross-matching easy, to find the most suitable cells to avoid an immune response.
Bringing together appropriately layered RPE with the multi-layered neural retina and
establishing connections with the retinal ganglion cells for the visual signals to reach the
brain through the optic nerve are the major challenges in tissue engineering the retina.
Fine-tuning of the combined aspects of advancements in material science, stem cell biology,
and clinical expertise along with the inputs from the ongoing clinical trials can resolve the
hurdles in developing a final clinical-grade protocol for the therapy of retinal degenerative
disease.

8. Conclusions

Retina tissue engineering is expected to make significant contributions to the treatment
of human blindness, especially for RD diseases in which RPE and/or PRs need to be
replaced. Most of the current clinical trials are in the early I/IIa phases. There is still a
long way to go before these findings can be applied to clinical practice. As the confirmed
biosafety and feasibility of RPE and RPC transplantation has laid a solid foundation for
vision repair, the next step is to enhance the visual improvements observed in RD patients.
There are still restrains regarding the appropriate cell type and method to be used to
improve neural integration with the host retina. Establishing robust and reproducible
protocols for the production of cGMP-grade hPSCs derived RPE/organoids from stem cell
banks, with normal karyotype without genetic abnormalities is a primary requirement.
In the future, the concept of making combinations of RPE/PR/BM microscale niches using
3D bioprinting can be a suitable approach to bring functional (synaptic) integration with
the host neural circuitries leading to improved visual function.
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