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Optimal Individualized Treatments in Resource-Limited Settings

Alexander R. Luedtke* and Mark J. van der Laan
Division of Biostatistics, University of California, 101 Haviland Hall, Berkeley, California 
94720-7358, USA

Abstract

An individualized treatment rule (ITR) is a treatment rule which assigns treatments to individuals 

based on (a subset of) their measured covariates. An optimal ITR is the ITR which maximizes the 

population mean outcome. Previous works in this area have assumed that treatment is an unlimited 

resource so that the entire population can be treated if this strategy maximizes the population mean 

outcome. We consider optimal ITRs in settings where the treatment resource is limited so that 

there is a maximum proportion of the population which can be treated. We give a general closed-

form expression for an optimal stochastic ITR in this resource-limited setting, and a closed-form 

expression for the optimal deterministic ITR under an additional assumption. We also present an 

estimator of the mean outcome under the optimal stochastic ITR in a large semiparametric model 

that at most places restrictions on the probability of treatment assignment given covariates. We 

give conditions under which our estimator is efficient among all regular and asymptotically linear 

estimators. All of our results are supported by simulations.

Keywords

asymptotic linearity; individualized treatments; efficient influence curve; influence curve; resource 
constraint

1 Introduction

Suppose one wishes to maximize the population mean of some outcome using some binary 

point treatment, where for each individual clinicians have access to (some subset of) 

measured baseline covariates. Such a treatment strategy is termed an individualized 

treatment regime (ITR), and the (counterfactual) population mean outcome under an ITR is 

referred to as the value of an ITR. The ITR which maximizes the value is referred to as the 

optimal ITR or the optimal rule. There has been much recent work on this problem in the 

case where treatment is an unlimited resource (see Murphy [1] and Robins [2] for early 

works on the topic, and Chakraborty and Moodie [3] for a recent overview). It has been 

shown that the optimal treatment in this context is given by checking the sign of the average 

treatment effect conditional on (some subset of) the baseline covariates, also known as the 

blip function [2].
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The optimal ITR assigns treatment to people from a given strata of covariates for which 

treatment is on average beneficial, and does not assign treatment to this strata otherwise. If 

treatment is even slightly beneficial to all subsets of the population, then such a treatment 

strategy would suggest treating the entire population. There are many realistic situations in 

which such a treatment strategy, or any strategy that treats a large proportion of the 

population, is not feasible due to limitations on the total amount of the treatment resource. In 

a discussion of Murphy [1], Arjas observed that resource constraints may render optimal 

ITRs of little practical use when the treatment of interest is a social or educational program, 

though no solution to the constrained problem was given [4].

The mathematical modeling literature has considered the resource allocation problem to a 

greater extent. Lasry et al. [5] developed a model to allocate the annual CDC budget for HIV 

prevention programs to subpopulations which would benefit most from such an intervention. 

Tao et al. [6] consider a mathematical model to optimally allocate screening procedures for 

sexually tranmitted diseases subject to a cost constraint. Though Tao et al. do not frame the 

problem as a statistical estimation problem, they end up confronting similar optimization 

challenges to those that we will face. In particular, they confront the (weakly) NP-hard 

knapsack problem from the combinatorial optimization literature [7, 8]. We will end up 

avoiding most of the challenges associated with this problem by primarily focusing on 

stochastic treatment rules, which will reduce to the easier fractional knapsack problem [9, 

8]. Stochastic ITRs allow the treatment to rely on some external stochastic mechanism for 

individuals in a particular strata of covariates.

We consider a resource constraint under which there is a maximum proportion of the 

population which can be treated. We primarily focus on evaluating the public health impact 

of an optimal resource-constrained (R-C) ITR via its value. The value function has been 

shown to be of interest in several previous works (see, e.g., Zhang et al. [10], van der Laan 

and Luedtke [11], Goldberg et al. [12]. Despite the general interest of this quantity, 

estimating this quantity is challenging for unconstrained deterministic regimes at so-called 

exceptional laws, i.e. probability distributions at which the blip function is zero in some 

positive probability strata of covariates [2]; a slightly more general assumption is given in 

Luedtke and van der Laan [13]. Chakraborty et al. [14] showed that one can develop 

confidence intervals for this parameter using m-out-of-n bootstrap, though these confidence 

intervals shrink at a slower than root-n rate. Luedtke and van der Laan [13] showed that root-

n rate confidence intervals can be developed for this quantity under reasonable conditions in 

the large semiparametric model which at most places restrictions on the treatment 

mechanism.

We develop a root-n rate estimator for the optimal R-C value and corresponding confidence 

intervals in this same large semiparametric model. We show that our estimator is efficient 

among all regular and asymptotically linear estimators under conditions. When the baseline 

covariates are continuous and the resource constraint is active, i.e. when the optimal R-C 

value is less than the optimal unconstrained value, these conditions are far more reasonable 

than the non-exceptional law assumption needed for regular estimation of the optimal 

unconstrained value.
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We now give a brief outline of the paper. Section 2 defines the statistical estimation problem 

of interest, gives an expression for the optimal deterministic rule under a condition, and 

gives a general expression for the optimal stochastic rule. Section 3 presents our estimator of 

the optimal R-C value. Section 4 presents conditions under which the optimal R-C value is 

pathwise differentiable, and gives an explicit expression for the canonical gradient under 

these conditions. Section 5 describes the properties of our estimator, including how to 

develop confidence intervals for the optimal R-C value. Section 6 presents our simulation 

methods. Section 7 presents our simulation results. Section 8 closes with a discussion and 

areas of future research. All proofs are given in the Appendix.

2 Optimal R-C rule and value

Suppose we observe n independent and identically distributed (i.i.d.) draws from a single 

time point data structure (W, A, Y)~P0, here the vector of covariates W has support 𝒲, the 

treatment A has support {0,1}, and the outcome Y has support in the closed unit interval. 

Our statistical model is nonparametric, beyond possible knowledge of the treatment 

mechanism, i.e. the probability of treatment given covariates. Little generality is lost with 

the bound on Y, given that any continuous outcome bounded in [b, c] can be rescaled to the 

unit interval with the linear transformation (y – b)/(c – b). Suppose that treatment are 

resources are limited so that at most a κ ϵ (0,1) proportion of the population can receive the 

treatment A = 1. Let V be some function ofW, and denote the support of V with 𝒱. A 

deterministic treatment rule d takes as input a function of the covariates v ∈ 𝒱 and outputs a 

binary treatment decision d v . The stochastic treatment rules considered in this work are 

maps from 𝒰 ∈ 𝒱 to {0,1}, where 𝒰 is the support of some random variable U~PU. If d is a 

stochastic rule and u ∈ 𝒰 is fixed, then d(u,·) represents a deterministic treatment rule. 

Throughout this work we will let U be drawn independently of all draws from P0.

For a distribution P, let QP(a, w) ≜ EP[Y A = a, W = w]. For notational convenience, we let 

Q0 ≜ QP0
. Let d be a deterministic treatment regime. For a distribution P, let 

Ψd ≜ EP0
[QP(d(V), W)] represent the value of d. Under causal assumptions, this quantity is 

equal to the counterfactual mean outcome if, possibly contrary to fact, the rule d̃ were 

implemented in the population [15, 16]. The optimal R-C deterministic regime at P is 

defined as the deterministic regime d̃ which solves the optimization problem

Maximize Ψd(P) subject toEP0
[d(V)] ≤ κ . (1)

For a stochastic regime d, let Ψd(P) ≜ EPU
[Ψd(U, . )(P)] represent the value of d. Under 

causal assumptions, this quantity is equal to the counterfactual mean outcome if, possibly 

contrary to fact, the stochastic rule d were implemented in the population (see Ref. [17] for a 

similar identification result). The optimal R-C stochastic regime at P is defined as the 

stochastic treatment regime dwhich solves the optimization problem
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Maximize Ψd(P) subject toEPU × P[d(U, V)] ≤ κ . (2)

We call the optimal value under a R-C stochastic regime Ψ(P). Because any deterministic 

regime can be written as a stochastic regime which does not rely on the stochastic 

mechanism U, we have that Ψ(P) ≥ Ψ(P). The constraint EPU × P[d(U, V)] ≤ κ above is 

primarily meant to represent a clinical setting where each patient arrives at the clinic with 

covariate summary measure V, a value of U is drawn from PUfor this patient, and treatment 

is then assigned according to d(U, V). By Fubini’s theorem, this is like rewriting the above 

constraint as EPEPU
[d(U, V)] ≤ κ. Nonetheless, this constraint also represents the case where 

a single value of U = u is drawn for the entire population, and each individual is treated 

according to the deterministic regime d(u, ·), i.e. EPU
EP[d(U, V)] ≤ κ. This case appears less 

interesting because, for a fixed u, there is no guarantee that EP[d(u, V)] ≤ κ.

For a distribution P, define the blip function as

Qb, P(v) ≜ EP[QP(1, W) − QP(0, W) V = v] .

Let SP represent the survival function of Qb, P, i.e. τ PrP(Qb, P > τ). Let

ηP ≜ inf τ:SP(τ) ≤ κ

τP ≜ max ηP, 0 . (3)

For notational convenience we let Qb, 0 ≜ Qb, P0
, S0 ≜ SP0

, η0 ≜ ηP0
, and τ0 ≜ τP0

.

Define the deterministic treatment rule dP as v I(Qb, P(v) > τP), and for notational 

convenience let d0 ≜ dP0
. We have the following result.

Theorem 1

If PrP(Qb, P(V) = τP) = 0 , then the dP is an optimal deterministic rule satisfying the resource 

constraint, i.e. ΨdP
(P) attains the maximum described in eq. (1).

One can in fact show that dP is the P almost surely unique optimal deterministic regime 

under the stated condition. We do not treat the case where PrP(Qb, P(V) = τP) > 0 for 

deterministic regimes, since in this case (1) is a more challenging problem: for discrete V 
with positive treatment effect in all strata, eq. (1) is a special case of the 0–1 knapsack 
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problem, which is NP-hard, though is considered one of the easier problems in this class [7, 

8]. In the knapsack problem, one has a collection of items, each with a value and a weight. 

Given a knapsack which can only carry a limited weight, the objective is to choose which 

items to bring so as to maximize the value of the items in the knapsack while respecting the 

weight restriction. Considering the optimization problem over stochastic rather than 

deterministic regimes yields a fractional knapsack problem, which is known to be solvable 

in polynomial time [9, 8]. The fractional knapsack problem differs from the 0–1 knapsack 

problem in that one can pack partial items, with the value of the partial items proportional to 

the fraction of the item packed.

Define the stochastic treatment rule dP by its distribution with respect to a random variable 

drawn from PU:

PrPU
(dP(U, v) = 1) =

κ − SP(τP), if Qb, P(v) = τPand τP > 0

I(Qb, P(v) > τP), otherwise .

We will let d0 ≜ dP0
. Note that dP(V) and dP(U, V) are PU × P almost surely equal if 

PrP(Qb, P(V) = τP) = 0 or if τP ≤ 0, and thus have the same value in these settings. It is easy to 

show that

EPU × P[dP(U, V)] = κ if τP > 0. (4)

The following theorem establishes the optimality of the stochastic rule dP in a resource-

limited setting.

Theorem 2

The maximum in eq. (2) is attained at d = dP, i.e. dP is an optimal stochastic rule.

Note that the above theorem does not claim that dP is the unique optimal stochastic regime. 

For discrete V, the above theorem is an immediate consequence of the discussion of the 

knapsack problem in Dantzig [9].

In this paper we focus on the value of the optimal stochastic rule. Nonetheless, the 

techniques that we present in this paper will only yield valid inference in the case where the 

data are generated according to a distribution P0 for which Pr0(Qb, 0(V) = τ0) = 0. This is 

analogous to assuming a non-exceptional law in settings where resources are not limited [13, 

2], though we note that for continuous covariates V this assumption is much more likely if 

τ0 > 0. It seems unlikely that the treatment effect in some positive probability strata of 

covariates will concentrate on some arbitrary (determined by the constraint κ) value τ0. 

Nonetheless, one could deal with situations where Pr0(Qb, 0(V) = τ0) > 0 using similar 

martingale-based online estimation techniques to those presented in Luedtke and van der 

Laan [13].
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3 Estimating the optimal optimal R-C value

We now present an estimation strategy for the optimal R-C rule. The upcoming sections 

justify this strategy and suggest that it will perform well for a wide variety of data generating 

distributions. The estimation strategy proceeds as follows:

1. Obtain estimates Qn , Qb, n, and gn of Q0, Qb, 0, and g0 using any desired 

estimation strategy which respects the fact that Y is bounded in the unit interval.

2. Estimate the marginal distributions of W and V with the corresponding empirical 

distributions.

3. Estimate S0 with the plug-in estimator Sn given by τ 1
n ∑i = 1

n I(Qb, n(vi) > τ).

4. Estimate η0 with the plug-in estimator ηn ≜ inf τ:Sn(τ) ≤ κ .

5. Estimate τ0 with the plug-in estimator given by τn ≜ max ηn, 0 .

6. Estimate d0 with the plug-in estimator dn with distribution

PrPU
(dn(U, v) = 1) =

κ − Sn(τn), if Qb, n(v) = τnand τn > 0

I(Qb, n(v) > τn), otherwise .

7. Run a TMLE for the parameter Ψdn
(P0):

(a)
For a ∈ 0, 1 , define H(a, w) ≜

PrPU
(dn(U, v) = a)

gn(a w)
. Run a univariate 

logistic regression using:

Outcome : (yi : i = 1,..., n)

Offset : (logit Qn(ai, wi): i = 1, …, n)

Covariate : (H(ai, wi) : i = 1,..., n).

Let εn represent the estimate of the coefficient for the covariate, i.e.

εn ≜ argmax
ε ∈ ℝ

1
n ∑

i = 1

n
[Qn

ε(ai, wi) logyi + (1 − Qn
ε(ai, wi)) log(1 − yi)],

where Qn
ε(a, w) ≜ logit−1(logit Qn(a, w) + εH(a, w)).

(b)
Define Qn* ≜ Qn

εn.

(c) Estimate Ψdn
(P0) using the plug-in estimator given by
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Ψdn
(Pn*) ≜ 1

n ∑
i = 1

n
∑

a = 0

1
Qn*(a, wi)PrPU

(dn(U, vi) = a) .

We use Ψdn
(Pn*) as our estimate of Ψ(Ρ0). We will denote this estimator Ψ, where we have 

defined Ψ so that Ψ(Pn) = Ψdn
(Pn*). Note that we have used a TMLE for the data dependent 

parameter Ψdn
(P0), which represents the value under a stochastic intervention dn. 

Nonetheless, we assume that PrP0
(Qb, 0(V) = τ0) = 0 for many of the results pertaining to our 

estimator Ψ, i.e. we assume that the optimal R-C rule is deterministic. We view estimating 

the value under a stochastic rather than deterministic intervention as worthwhile because one 

can give conditions under which the above estimator is (root-n) consistent for Ψ(P0) at all 

laws P0, even if non-negligible bias invalidates standard Wald-type confidence intervals for 

the parameter of interest at laws P0 for which PrP0
(Qb, 0(V) = τ0) > 0.

We will use Pn* to denote any distribution for which QPn*
= Qn*, gPn*

= gnand Pn* has the 

marginal empirical distribution of W for the marginal distribution of W. We note that such a 

distribution Pn* exists provided that Qn* and gn fall in the parameter spaces of P QP(W) and 

P⟼gP, respectively.

In practice we recommend estimating Q0 and Qb, 0 using an ensemble method such as super-

learning to make an optimal bias-variance trade-off (or, more generally, minimize cross-

validated risk) between a mix of parametric models and data adaptive regression algorithms 

[18, 19]. If the treatment mechanism g0 is unknown then we recommend using similar data 

adaptive approaches to obtain the estimate gn. If g0 is known (as in a randomized controlled 

trial without missingness), then one can either take gn = g0 or estimate g0 using a correctly 

specified parametric model, which we expect to increase the efficiency of estimators when 

the Q0 part of the likelihood is misspecified [20, 21].

There is typically little downside to using data adaptive approaches to estimate the needed 

portions of the likelihood, though we do give a formal empirical process condition in Section 

5.1 which describes exactly how data adaptive these estimators can be. If one is concerned 

about the data adaptivity of the estimators of the needed portions of the likelihood, then one 

can consider a cross-validated TMLE approach such as that presented in van der Laan and 

Luedtke [20] or an online one-step estimator as that presented in Luedtke and van der Laan 

[13]. These two approaches make no restrictions on the data adaptivity of the estimators of 

Q0, Qb, 0, or g0.

We now outline the main results of this paper, which hold under appropriate consistency and 

regularity conditions.

- Asymptotic linearity of Ψ :
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Ψ(Pn) − Ψ(P0) = 1
n ∑

i = 1

n
D0(Oi) + oP0

(n−1/2),

with D0 a known function of P0.

- Ψ is an asymptotically efficient estimate of Ψ(P0).

- One can obtain a consistent estimate σn
2 for the variance of D0(O). An asymptotically valid 

95% confidence intervals for Ψ(P0) given by Ψ(Pn) ± 1.96σn/ n.

The upcoming sections give the consistency and regularity conditions which imply the above 

results.

4 Canonical gradient of the optimal R-C value

The pathwise derivative of Ψ will provide a key ingredient for analyzing the asymptotic 

properties of our estimator. We refer the reader to Pfanzagl [22] and Bickel et al. [23] for an 

overview of the crucial role that the pathwise derivative plays in semiparametric efficiency 

theory. We remind the reader that an estimator Φ is an asyptotically linear estimator of a 

parameter Φ (P0) with influence curve ICP0
 provided that

Φ(Pn) − Φ(P0) = 1
n ∑

i = 1

n
ICP0

(Oi) + oP0
(n−1/2) .

If Φ is pathwise differentiable with canonical gradient ICP0
 then Φ is RAL and 

asymptotically efficient (minimum variance) among all such RAL estimators of Φ(Ρ0) [23, 

22].

For o ∈ 𝒪, a deterministic rule d, and a real number τ, define

D1(d, P)(o) ≜ I(a = d(v))
gP(a w)

(y − QP(a, w))

D2(d, P)(o) ≜ QP(d(v), w) − EPQP(d(v), w),

where gP(a W) ≜ PrP(A = a W). We will let g0 ≜ gP0
. We note that D1(d, P) + D2(d, P) is the 

efficient influence curve of the parameter Ψd(P).

Let d be some stochastic rule. The canonical gradient of Ψd is given by
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ICd(P)(o) ≜ EPU
[D1(d(U, ⋅ ), P)(o) + D2(d(U, ⋅ ), P)(o)] .

Define

D(d, τ, P)(o) ≜ ICd(P)(o) − τ(EPU
[d(U, v)] − κ) .

For ease of reference, let D0 ≜ D(d0, τ0, P0). The upcoming theorem makes use of the 

following assumptions.

C1. g0 satisfies the positivity assumption: Pr0(0 < g0(1|W) < 1) = 1.

C2. Qb, 0(W) has density f0 at η0, and 0 < fο(η0) < ∞

C3. S0 is continuous in a neighborhood of η0.

C4. Pr0(Qb, 0(V) = τ) = 0 0 for all τ in a neighborhood of τ0.

We now present the canonical gradient of the optimal R-C value.

Theorem 3

Suppose C1 through C4. Then Ψ is pathwise differentiable at P0 with canonical gradient D0.

Note that C3) implies that Pr0(Qb, 0(V) = τ0) = 0. Thus d0 is (almost surely) deterministic and 

the expectation over PU in the definition of D0 is superfluous. Nonetheless, this 

representation will prove useful when we seek to show that our estimator solves the 

empirical estimating equation defined by an estimate of D(d0, τ0, P0).

When the resource constraint is active, i.e. τ0 > 0, the above theorem shows that Ψ has an 

additional component over the optimal value parameter when no resource constraints are 

present [11]. The additional componentis τ0 × (EPU
d0 U, v − κ , and is the portion ofthe 

derivative that relies on the fact that d0 is estimated and falls on the edge of the parameter 

space. We note that it is possible that the variance of D0 (O) is greater than the variance of 

ICd0
P0 O .If τ0 = 0 then these two variances are the same, so suppose τ0 > 0. Then, 

provided that Pr0(Qb, 0(V) = τ0) = 0, we have that

VarP0
(D0(O)) − VarP0

(ICd0
(P0)) = τ0κ(1 − κ) τ0 − 2EP0

Q0(1, W) d0(V) = 1 + 2EP0
Q0(0, W) d0(V) = 0 .

For any κ ∈(0,1), it is possible to exhibit a distribution P0 which satisfies the conditions of 

Theorem 3 and for which VarP0
(D0(O)) > VarP0

(ICd0
(P0)(O . Perhaps more surprisingly, it 

is also possible to exhibit a distribution P0 which satisfies the conditions of Theorem 3 and 

for which VarP0
(D0(O)) < VarP0

(ICd0
(P0)(O . We omit further the discussion here because 
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the focus of this work is on considering the estimating the value from the optimization 

problem (2), rather than discussing how this procedure relates to the estimation of other 

parameters.

5 Results about the proposed estimator

We now show that Ψ is an asymptotically linear estimator for Ψ(Ρ0) with influence curve D0 

provided our estimates of the needed parts of P0 satisfy consistency and regularity 

conditions. Our theoretical results are presented in Section 5.1, and the conditions of our 

main theorem are discussed in Section 5.2.

5.1 Inference for Ψ(Ρ0)

For any distributions P and P0 satisfying positivity, stochastic intervention d, and real 

number τ, define the following second-order remainder terms:

R10(d, P) ≜ EPU × P0
1 −

g0(d W)
g(d W) (QP(d, W) − Q0(d, W))

R20(d) ≜ EPU × P0
[(d − d0)(Qb, 0(V) − τ0)] .

Above the reliance of d and d0 on (U, V) is omitted in the notation. Let 

R0(d, P) ≜ R10(d, P) + R20(d). The upcoming theorem will make use of the following 

assumptions.

1. g0 satisfies the strong positivity assumption: Pr0(δ < g0(1|W) < 1 — δ) — 1 for 

some δ > 0.

2. gn satisfies the strong positivity assumption for a fixed δ > 0 with probability 

approaching 1: there exists some δ > 0 such that, with probability approaching 1, 

Pr0(δ < gn(1|W) < 1 — δ) — 1.

3. R0(dn, Pn*) = oP0
(n−1/2).

4. EP0
(D(dn, τ0, Pn*)(O) − D0(O))2 = oP0

(1).

5. D(dn, τ0, Pn*) belongs to a P0-Donsker class 𝒟 with probability approaching 1.

6. 1
n ∑i = 1

n D(dn, τ0, Pn*)(Oi) = oP0
(n−1/2).

We note that the τ0 in the final condition above only enters the expression in the sum as a 

multiplicative constant in front of −EPU
d U, vi − κ.

Theorem 4 (Ψ is asymptotically linear)—Suppose C2) through 6. Then Ψ is a RAL 
estimator of Ψ(Ρ0) with influence curve D0, i.e.
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Ψ(Pn) − Ψ(P0) = 1
n ∑

i = 1

n
D0(Oi) + oP0

(n−1/2) .

Further, Ψis efficient among all such RAL estimators of Ψ(Ρ0).

Let σ0
2 ≜ VarP0

(D0) By the central limit theorem, n Ψ(Pn) − Ψ(P0)  converges in distribution 

to a N(0, σ0
2) distribution. Let σn

2 ≜ 1
n ∑i = 1

n D(dn, τn, Pn*)(Oi)
2 be an estimate of σ0

2. We now 

give the following lemma, which gives sufficient conditions for the consistency of τn for τ0.

Lemma 5(Consistency of τn)—Suppose C2) and C3). Also suppose Qb, n is consistent 

for Qb, 0 in L1(P0) and that the estimate Qb, n belongs to a P0 Glivenko Cantelli class with 

probability approaching 1. Then τn → τ0 in probability.

It is easy to verify that conditions similar to those of Theorem 4, combined with the 

convergence of τn to τ0 as considered in the above lemma, imply that σn → σ0 in 

probability. Under these conditions, an asymptotically valid two-sided 1 — α confidence 

interval is given by

Ψ(Pn) ± z1 − α/2
σn

n
,

where z1—α/2 denotes the 1 — α/2 quantile of a N(0,1) random variable.

5.2 Discussion of conditions of Theorem 4

Conditions C2) and C3).—These are standard conditions used when attempting to 

estimate the κ-quantile η0, defined in eq. (3). Provided good estimation of Qb, 0, these 

conditions ensure that gathering a large amount of data will enable one to get a good 

estimate of the κ-quantile of the random variable Qb, 0. See Lemma 5 for an indication of 

what is meant by “good estimation” of Qb, 0. It seems reasonable to expect that these 

conditions will hold when V contains continuous random variables and η0 ≠ 0, since we are 

essentially assuming that Qb, 0 is not degenerate at the arbirtrary (determined by κ) point η0.

Condition C4).—If τ0 > 0, then C4) is implied by C3). If τ0 = 0, then C4) is like assuming 

a non-exceptional law, i.e. that the probability of a there being no treatment effect in a strata 

of V is zero. Because τ0 is not known from the outset, we require something slightly 

stronger, namely that the probability of any specific small treatment effect is zero in a strata 

of V is zero. Note that this condition does not prohibit the treatment effect from being small, 

e.g. Pr0( Qb, 0(V) < τ) > 0 for all τ>0, but rather it prohibits there existing a sequence τm ↓ 0 

with the property that Pr0(Qb, 0(V) = τm) > 0 infinitely often. Thus this condition does not 
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really seem any stronger than assuming a non-exceptional law. If one is concerned about 

such exceptional laws then we suggest adapting the methods in [13] to the R-C setting.

Condition 1.—This condition assumes that people from each strata of covariates have a 

reasonable (at least a δ > 0) probability of treatment.

Condition 2.—This condition requires that our estimates of g0 respect the fact that each 

strata of covariates has a reasonable probability of treatment.

Condition 3.—This condition is satisfied if R10(dn, Pn*) = oP0
(n−1/2) and 

R20(dn) = oP0
(n−1/2). The term R10(dn, Pn*) takes the form of a typical double robust term that 

is small if either or Q0 is estimated well, and is second-order, i.e. one might hope that 

R10(dn, Pn*) = oP0
(n−1/2), if both both g0 and Q0 are estimated well. One can upper bound this 

remainder with a product of the L2(P0) rates of convergence of these two quantities using the 

Cauchy-Schwarz inequality. If g0 is known, then one can take gn = g0 and this term is zero.

Ensuring that R20(dn) = oP0
(n−1/2)requires a little more work but will still prove to be a 

reasonable condition. We will use the following margin assumption for some α > 0:

Pr0(0 < Qb, 0 − τ0 ≤ t) ≲ tαfor all t > 0, (5)

where “≲” denotes less than or equal to up to a multiplicative constant. This margin 

assumption is analogous to that used in Audibert and Tsybakov [24]. The following result 

relates the rate of convergence of R20(dn) to the rate at which Qb, n − τn converges to 

Qb, 0 − τ0.

Theorem 6—If eq. (5) holds for some α > 0, then

1. R20(dn) ≲ (Qb, n − τn) − (Qb, 0 − τ0) 2, P0
2(1 + α)/(2 + α)

2. R20(dn) ≲ (Qb, n − τn) − (Qb, 0 − τ0) ∞, P0
1 + α .

The above is similar to Lemma 5.2 in Audibert and Tsybakov [24], and a similar result was 

proved in the context of optimal ITRs without resource constraints in Luedtke and van der 

Laan [13]. If S0 has a finite derivative at τ0, as is given by C2), then one can take α = 1. The 

above theorem then implies that R20 dn) = oP0
(n−1/2) if either (Qb, n − τn) − (Qb, 0 − τ0) 2, P0

is oP0
(n3/8) or (Qb, n − τn) − (Qb, 0 − τ0) ∞, P0

 is oP0
(n1/4)
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Condition 4.—This is a mild consistency condition which is implied by the L2(P0) 

consistency of dn, gn, and Qn* to d0, g0, and Q0. We note that the consistency of the intial 

(unfluctuated) estimate Qn for Q0 will imply the consistency of Qn* to Q0 given 2, since in 

this case εn → 0 in probability, and thus Qn* − Qn 2, P0
0 in probability.

Condition 5.—This condition places restrictions on how data adaptive the estimators of d0, 

g0, and Q0 can be. We refer the reader to Section 2.10 of van der Vaart and Wellner [25] for 

conditions under which the estimates of d0, g0, and Q0 belonging to Donsker classes implies 

that D(dn, τ0, Pn*) belongs to a Donsker class. We note that this condition was avoided for 

estimating the value function using a cross-validated TMLE in van der Laan and Luedtke 

[20] and using an online estimator of the value function in Luedtke and van der Laan [13], 

and using either technique will allow one to avoid the condition here as well.

Condition 6.—Using the notation Pf=∫f(o)dP(o) for any distribution P and function f : 
𝒪 ℝ, we have that

PnD(dn, τ0, Pn*) = PnD1(dn, Pn*) + PnD2(dn, Pn*) − τ0
1
n ∑

i = 1

n
EPU

[dn(U, vi)] − κ .

The first term is zero by the fluctuation step of the TMLE algorithm and the second term on 

the right is zero because Pn* uses the empirical distribution of W for the marginal distribution 

of W. If τ0 = 0 then clearly the third term is zero, so suppose τ0 > 0. Combining eq. (4) and 

the fact that dn is a substitution estimator shows that the third term is 0 with probability 

approaching 1 provided that τn > 0 with probability approaching 1. This will of course occur 

if τn → τ0 > 0 in probability, for which Lemma 5 gives sufficient conditions.

6 Simulation methods

We simulated i.i.d. draws from two data generating distributions at sample sizes 100, 200, 

and 1,000. For each sample size and distribution we considered resource constraints κ = 0·1 

and κ = 0·9. We ran 2,000 Monte Carlo draws of each simulation setting. All simulations 

were run in R [26].

We first present the two data generating distributions considered, and then present the 

estimation strategies used.

6.1 Data generating distributions

6.1.1 Simulation 1—Our first data generating distribution is identical to the single time 

point simulation considered in van der Laan and Luedtke [20] and Luedtke and van der Laan 

[18]. The outcome is binary and the baseline covariate vector W = (W1, ..., W4) is four 

dimensional for this distribution, with

Luedtke and van der Laan Page 13

Int J Biostat. Author manuscript; available in PMC 2018 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



W1, W2, W3, W4 ∼i . i . d . N(0, 1)

A W ∼ Bernoulli(1/2)

logit(EP0
[Y A, W , H = 0]) = 1 − W1

2 + 3W2 + A(5W3
2 − 4.45)

logit(EP0
[Y A, W , H = 1]) = − 0.5 − W3 + 2W1W2 + A(3 W2 − 1.5),

where H is an unobserved Bernoulli(1/2) variable independent of A, W. For this distribution 

EP0
[Q0(0, W)] ≈ EP0

[Q0(1, W)] ≈ 0.464.

We consider two choices for V, namely V = W3, and V = W1,..., W4. We obtained estimates 

of the approximate optimal R-C optimal value for this data generating distribution using 107 

Monte Carlo draws. When κ = 0.1, Ψ(Ρ0) ≈ 0.493 for V = W3 and Ψ(Ρ0) ≈ 0.511 for V = 

W1,..., W4. When κ = 0.9, Ψ(Ρ0) ≈ 0.536 for V = W3 and Ψ(Ρ0) ≈ 0.563 for V = W1,..., W4. 

We note that the resource constraint is not active (τ0 = 0) when κ = 0.9 for either choice of 

V.

6.1.2 Simulation 2—Our second data generating distribution is very similar to one of the 

distributions considered in Luedtke and van der Laan [13], though has been modified so that 

the treatment effect is positive for all values of the covariate. The data are generated as 

follows:

W ∼ Uniform −1, 1

A W ∼ Bernoulli 1/2

Y A, W ∼ Bernoulli Q0 A, W ,

where for W ≜ W + 5/6 we define
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Q0(A, W) − 6
10 ≜

0, if A = 1 and − 1/2 ≤ W ≤ 1/3

−W3 + W2 − 1
3W + 1

27, if A = 1 and W < − 1/2

−W3 + W2 − 1
3W + 1

27, if A = 1 and W > 1/3

− 3
10 otherwise .

For this distribution EP0
[Q0(0, W)] = 0.3 and EP0

[Q0(1, W)] ≈ 0.583.

We use V = W. This simulation is an example of a case where Qb, 0(V) > 0 almost surely, so 

any constraint on resources will reduce the optimal value from its unconstrained value of 

0.583. In particular, we have that Ψ(Ρ0) ≈ 0.337 when κ = 0.1 and Ψ(Ρ0) ≈ 0.572 when κ = 

0.9.

6.2 Estimating nuisance functions

We treated g0 as known in both simulations and let gn = g0. We estimated Q0 using the 

super-learner algorithm with the quasi-log-likelihood loss function (family = binomial) and a 

candidate library of data adaptive (SL.gam and SL.nnet) and parametric algorithms 

(SL.bayesglm, SL.glm, SL.glm. interaction, SL.mean, SL.step, SL.step.interaction, and 

SL.step.forward). We refer the reader to table 2 in the technical report Luedtke and van der 

Laan [18] for a brief description of these algorithms. We estimated Qb, 0 by running a super-

learner using the squared error loss function and the same candidate algorithms and used W 

to predict the outcome Y ≜ 2A − 1
g0(A W)

(Y − Yn) + Yn, where Yn represents the sample mean of Y 

from the n observations. See Luedtke and van der Laan [18] for a justification of this 

estimation scheme.

Once we had our estimates Qn, Qb, n and gn we proceeded with the estimation strategy 

described in Section 3.

6.3 Evaluating performance

We used three methods to evaluate our proposed approach. First, we looked at the coverage 

of two-sided 95% confidence intervals for the optimal R-C value. Second, we report the 

average confidence interval widths. Finally, we looked at the power of the α = 0.025 level 

test H0 : Ψ(Ρ0) = μ0 against H1 : Ψ(Ρ0) > μ0, where μ0 ≜ E0[Q0(0, W)] is treated as a known 

quantity. Under causal assumptions, μ0 can be identified with the counterfactual quantity 

representing the population mean outcome if, possibly contrary to fact, no one receives 

treatment. If treatment is not currently being given in the population, one could substitute the 

population mean outcome (if known) for μ0. Our test of significance consisted of checking 

of the lower bound in the two-sided 95% confidence interval is greater than μ0. If an 

estimator of Ψ(Ρ0) is low-powered in testing H0 against H1 then clearly the estimator will 

have little practical value.
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7 Simulation results

Coverage

The proposed estimation strategy performed well overall. Figure 1 demonstrates the 

coverage of 95% confidence intervals for the optimal R-C value. All methods performed 

well at all sample sizes for the highly constrained setting where κ = 0.1. The results were 

more mixed for the resource constraint κ = 0.9. All methods performed well at the largest 

sample size considered. This supports our theoretical results, which were all asymptotic in 

nature. For Simulation 1, in which the resource constraint was not active for either choice of 

V, the coverage dropped off at lower sample sizes. Coverage was approximately 90% in the 

two smaller sample sample sizes for V = W3, which may be expected for such an asymptotic 

method. For the more complex problem of estimating the optimal value when V = W1,..., 

W4 the coverage was somewhat lower (80% when n = 100 and 84% when n = 200). In 

Simulation 2, the coverage was better ( > 91%) for the smaller sample sizes. We note that the 

resource constraint was still active (τ0 > 0) when κ = 0.9 for this simulation, and also that 

the estimation problem is easier because the baseline covariate was univariate.

We report the average confidence interval widths across the 2,000 Monte Carlo draws. For n 
= 100, average confidence interval widths were between 0.25 and 0.26 across all simulations 

and choices of κ. For n = 200, all average confidence interval widths were between 0.17 and 

0.18. For n = 1000, all average confidence interval widths were approximately 0.08. We note 

that the usefulness of such confidence intervals varies across simulations and choices of κ. 

When V = W3 and κ = 0.1 in Simulation 1, the optimal R-C value is approximately 0.493, 

versus a baseline value μ0 = EP0
[Q0(0, W)] of approximately 0.464. Thus here the confidence 

interval would give the investigator little information, even at a sample size of 1,000. In 

Simulation 2 with κ = 0.9, on the other hand, the optimal R-C value is approximately 0.572, 

versus a baseline value of μ0 ≈ 0.3. Thus here all confidence intervals would likely be 

informative for investigators, even those made for data sets of size 100.

Figure 2 gives the power of the α = 0.025 level test H0: Ψ(Ρ0) = μ0 against the alternative 

H1: Ψ(Ρ0) >μ0. Overall our method appears to have reasonable power in this statistical test. 

We see that power increases with sample size, the key property of consistent statistical tests. 

We also see that power increases with κ, which is unsurprising given that Y is binary and 

g0(a|w) is 1/2 for all a,w. We note that power will not always increase with κ, for example if 

P0 is such that g0(1|w) is very small for individuals with covariate w who are treated at κ = 

0.9 but not at κ = 0.1. This observation is not meant as a criticism to the estimation scheme 

that we have presented because we assume that κ will be chosen to reflect real resource 

constraints, rather than to maximize the power for a test H0′ :Ψ(P0) = μ′ versus H1′ :Ψ(P0) > μ′

for some fixed μ’.

We also implemented an estimating equation based estimator for the optimal R-C value and 

found the two methods performed similarly. We would recommend using the TMLE in 

practice because it has been shown to be robust to near positivity violations in a wide variety 

of settings [27]. We note that g0(1|w) = 1/2 for all w in both of our simulations, so no near 

positivity violations occurred. We do not consider the estimation equation approach any 
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further here because the focus of this work is on considering the optimization problem (2), 

rather than on comparing different estimation frameworks.

8 Discussion and future work

We have considered the problem of estimating the optimal resource-constrained value. 

Under causal assumptions, this parameter can be identified with the maximum attainable 

population mean outcome under individualized treatment rules which rely on some summary 

of measured covariates, subject to the constraint that a maximum proportion κ of the 

population can be treated. We also provided an explicit expression for an optimal stochastic 

rule under the resource constraint.

We derived the canonical gradient of the optimal R-C value under the key assumption that 

the treatment effect is not exactly equal to τ0 in some strata of covariates which occurs with 

positive probability. The canonical gradient plays a key role in developing asymptotically 

linear estimators. We found that the canonical gradient of the optimal R-C value has an 

additional component when compared to the canonical gradient of the optimal unconstrained 

value when the resource constraint is active, i.e. when τ0 > 0.

We presented a targeted minimum loss-based estimator for the optimal R-C value. This 

estimator was designed to solve the empirical mean of an estimate of the canonical gradient. 

This quickly yielded conditions under which our estimator is RAL, and efficient among all 

such RAL estimators. All of these results rely on the condition that the treatment effect is 

not exactly equal to τ0 for positive probability strata of covariates. This assumption is more 

plausible than the typical non-exceptional law assumption when the covariates are 

continuous and the constraint is active because it may be unlikely that the treatment effect 

concentrates on an arbitrary (determined by κ) τ0 > 0. We note that this pseudo-non-

exceptional law assumption has implied that the optimal stochastic rule is almost surely 

equal to the optimal deterministic rule. Though we have not presented formal theorems here, 

it is not difficult to derive conditions under which our estimator of the optimal value under a 

R-C stochastic rule is (root-n) consistent even when the treatment effect is equal to τ0 with 

positive probability, though the bias will be non-negligible (converge to zero at the same 

root-n rate as the variance). One could use an analogue of the variance-stabilized online 

estimator presented in Luedtke and van der Laan [13] to get inference for the optimal R-C 

value in this setting.

Our simulations confirmed our theoretical findings. We found that coverage improved with 

sample size, with near-nominal coverage at the largest sample size considered. This is not 

surprising given that most of our analytic results were asymptotic, though we note that the 

method also performed well at the smaller sample sizes considered. The confidence intervals 

were informatively tight when one considered the difference between the optimal R-C value 

and the value under no treatment. Further simulations are needed to fully understand the 

behavior of this method in practice.

Some resource constraints encountered in practice may not be of the form 

EPU × P0
[d(U, V)] ≤ κ. For example, the cost of distributing the treatment to people may vary 
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based on the values of the covariates. For simplicity assume V = W. If c : W → [0,∞)is a 

cost function, then this constraint may take the form EPU × P0
[c(W)d(U, W)] ≤ κ. If τ0 = 0, 

then an optimal stochastic rule under such a constraint takes the form (u, w) I(Qb, 0(w) > 0). 

If τ0 > 0, then an optimal stochastic rule under such a constraint takes the form 

(u, w) I(Qb, 0(w) > τ0c(w)) for w for which Qb, 0(w) ≠ τ0c(w) or c(w) = 0, and randomly 

distributes the remaining resources uniformly among all remaining w. We leave further 

consideration of this more general resource constraint problem to future work.

In this work our primary focus has been on estimating the optimal value under a resource 

constraint, rather than the optimal rule under a resource constraint. Nonetheless, our 

estimation procedure yields an estimate dn of the optimal R-C rule. It would be interesting to 

further analyze dn in future work to better understand how well this estimator will perform, 

or if there are better estimators which more directly frame the estimation challenge as a 

(weighted) classification problem [28, 29]. Note that we are not guaranteed that dn satisfies 

the constraint, i.e. it is quite possible that EPU × P0
[dn(U, W)] > κ, though concentration 

inequalities suggest that one can give conditions under which EPU × P0
[dn(U, W)] − κ is small 

with probability approaching 1. One could also seek an optimal rule estimate dn′  which 

satisfies that, with probability at least 1 — δ for some user-defined δ > 0, 

EPU × P0
[dn′ (U, V)] ≤ κ.

Further work is needed to generalize this work to the multiple time point setting. Before 

generalizing the procedure, one must know exactly what form the multiple time point 

constraint takes. For example, it may be the case that only a κ proportion of the population 

can be treated at each time point, or it may be the case that treatment can only be 

administered at a κ proportion of patient-time point pairs. Regardless of which constraint 

one chooses, it seems that the nice recursive structure encountered in Q-learning may not 

hold for multiple time point R-C problems. While useful for computational considerations, 

being able to express the optimal rule using approximate dynamic programming is not 

necessary for the existence of a good optimal rule estimator, especially when the number of 

time points is small. If the computational complexity of the procedure is a major concern, it 

may be beneficial to frame the multiple time point learning problem as a single optimization 

problem, using smooth surrogates for indicator functions as Zhao et al. [30] do when they 

introduce simultaneous outcome weighted learning (SOWL). One would then need to 

appropriately account for the fact that the empirical resource constraint may only be 

approximately satisfied.

We have not considered the ethical considerations associated with allocating limiting 

resources to a population. The debate over the appropriate means to distribute limited 

treatment resources to a population is ongoing (see, e.g., Brock and Wilder [31], Macklin 

and Cowan [32], Singh [33], for examples in the treatment of HIV/AIDS). Clearly any 

investigator needs to consider the ethical issues associated with certain resource allocation 

schemes. Our method is optimal in a particular utilitarian sense (maximizing the expected 
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population mean outcome with respect to an outcome of interest) and yields a treatment 

strategy which treats individuals who are expected to benefit most from treatment in terms of 

our outcome of interest. One must be careful to ensure that the outcome of interest truly 

captures the most important public health implications. Unlike in unconstrained 

individualized medicine, inappropriately prescribing treatment to a stratum will also have 

implications for individuals outside of that strata, namely for the individuals who do not 

receive treatment due to its lack of availability. We leave further ethical considerations to 

experts on the matter. It will be interesting to see if there are settings in which it is possible 

to transform the outcome or add constraints to the optimization problem so that the 

statistical problem considered in this paper adheres to the ethical guidelines in those settings.

We have looked to generalize previous works in estimating the value of an optimal 

individualized treatment regime to the case where the treatment resource is a limited 

resource, i.e. where it is not possible to treat the entire population. This work should allow 

for the application of optimal personalized treatment strategies to many new problems of 

interest.
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Appendix: Proofs

Proofs for Section 2

We first state a simple lemma.

Lemma 6

For a distribution P and a stochastic rule d, we have the following representation for Ψd:

Ψd(P) ≜ EPU × P[d(U, V)Qb, P(V)] + EP[QP(0, W)] .

Proof of Lemma 6. We have that

Ψd(P) = EPU × P[d(U, V)QP(1, W)] + EPU × P[1 − d(U, V)QP(0, W)]

= EPU × P[d(U, V)(QP(1, W) − QP(0, W))] + EP[QP(0, W)]

= EPU × P[d(U, V)(Qb, P(V) + EP[QP(0, W)],

where the final equality holds by the law of total expectation
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Proof of Theorem 1.

This result will be a consequence of Theorem 2. If PrP(Qb, 0(V) = τP) = 0, then dP (U, V ) is 

PU × P almost surely equal to dP(V), and thus ΨdP
(P) = ΨdP

(P). Thus (u, v) dP(v) is an 

optimal stochastic regime. Because the class of deterministic regimes is a subset of the class 

of stochastic regimes, dPis an optimal deterministic regime.

Proof of Theorem 2.

Let d be some stochastic treatment rule which satisfies the resource constraint. For (b, c) ∈ 
{0,1}2, define Bbc ≜ (u, v):dP(u, v) = b, d(u, v) = c . Note that

ΨdP
(P) − Ψd(P) = EPU × P[(dP(U, V) − d(U, V))Qb, 0(V)]

= EPU × P[Qb, 0(V)I((U, V) ∈ B10)] − EPU × P[Qb, 0(V)I((U, V) ∈ B01)]
(6)

The Qb, 0(V) in the first term in 1 can be upper bounded by τΡ, and in the second term can be 

lower bounded by τΡ. Thus,

ΨdP
(P) − Ψd(P) ≥ τP[PrPU × P((U, V) ∈ B10) − PrPU × P((U, V) ∈ B01)]

= τP[PrPU × P((U, V) ∈ B10 ∪ B11) − PrPU × P((U, V) ∈ B01 ∪ B11)]

= τP(EPU × P[dP(U, V)] − EPU × P[d(U, V)]) .

If τΡ = 0 then the final line is zero. Otherwise, EPU × P[dP(U, V)] = κ by eq. (4). Because d 

satisfies the resource constraint, EPU × P[d(U, V)] ≤ κ and thus the final line above is at least 

zero. Thus ΨdP
(P) − Ψd(P) ≥ 0 for all τΡ. Because d was arbitrary, dP is an optimal stochastic 

rule.

Proofs for Section 4

Proof of Theorem 3.

The pathwise derivative of Ψ(Q) is defined as d
dεΨ(Q(ε))

ε = 0 along paths Pε:ε ⊂ ℳ. In 

particular, these paths are chosen so that

dQW , ε = (1 + εHW W )dQW ,

where EHW W = 0 and CW ≜ sup
W

|HW(w) | < ∞
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dQY , ε(Y A, W) = (1 + εHY(Y A, W))dQY(Y A, W),

where E HY A, W = 0 and sup
w, a, y

|HY(y |a, w) | < ∞

The parameter Ψ is not sensitive to fluctuations of g0(a\w) = Pr0(a\w), and thus we do not 

need to fluctuate this portion of the likelihood. Let Qb, ε ≜ Qb, Pε
, Qε ≜ QPε

, dε ≜ dPε
, 

ηε ≜ ηPε
, τε ≜ τPε

 and Sε ≜ SPε
. First note that

Qb, ε(v) = Qb, 0(v) + εhε(v) (7)

for an hε with

sup
|ε | < 1

sup
v

|hε(v) ≜ C1 < ∞ . (8)

Note that C4) implies that d0 is (almost surely) deterministic, i.e. d0(U, ·) is almost surely a 

fixed function. Let d represent the deterministic rule v I(Qb, 0(v) > 0) to which d(u, ·) is 

(almost surely) equal for all u. By Lemma 1,

Ψ(Pε) − Ψ(P0) = ∫
w

EPU
[dε(U, V)] − d0(V) Qb, εdQW , ε

+∫
w

d0(V)(Qb, εdQW , ε − Qb, 0dQW , 0)

+EPε
Qε(0, W) − EP0

Q0(0, W)

= ∫
w

EPU
[dε(U, V)] − d0(V) (Qb, ε − τ0)dQW , ε

+τ0∫
w

EPU
[dε(U, V)]dQW , ε − d0(V)dQW , 0

−τ0∫
w

d0(V)(dQW , ε − dQW , 0)

+Ψd0
(Pε) − Ψd0

(P0) .

(9)

Dividing the fourth term by ε and taking the limit as ε → 0 gives the pathwise derivative of 

the mean outcome under the rule that treats d0 as known. The third term can be written as 

−ετ0∫w
d0(V)HWdQW , 0, and thus the pathwise derivative of this term is 
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−∫
w

τ0d0(V)HWdQW , 0. If τ0 > 0, then EPU×P0
[d0(V)] = κ. The pathwise derivative of this 

term is zero if τ0 = 0. Thus, for all τ0,

lim
ε 0

− 1
ε τ0∫w

d0(V)(dQW , ε − dQW , 0) = ∫w
−τ0(d0(v) − κ) HW(w)dQW , 0(w) .

Thus the third term in eq. (9) generates the v − τ0(d0(v) − κ) portion of the canonical 

gradient, or equivalently v − τ0(EPU
d0(U, v)] − κ). The remainder of this proof is used to 

show that the first two terms in eq. (9) are o(ε).

Step 1: ηε→η0.—We refer the reader to eq. (3) for a definition of the quantile P→nP. This 

is a consequence of the continuity of S0 in a neighborhood of n0. For γ > 0,

ηε − η0 > γimplies thatSε(η0 + γ) ≤ κor Sε(η0 + γ) > κ . (10)

For positive constants C1 and Cw,

Sε(η0 − γ) ≥ (1 − CW ε )Pr0(Qb, ε > η0 − γ) ≥ (1 − CW ε )S0(η0 − γ + C1 ε ) .

Fix γ > 0 small enough so that S0 is continuous at n0 — γ. In this case we have that S0(η0 

— γ + c1|ε|) → S0(η0 — γ) as ε → 0. By the infimum in the definition of η0, we know 

that S0(η0 — γ) >κ. Thus Sε(η0 — γ) >κ for all |ε| small enough.

Similarly, Sε(η0 + γ) ≤ (1 + Cw|ε|) S0(η0 + γ — C1|ε|). Fix γ > 0 small enough so that S0 is 

continuous at η0 + γ. Then S0(η0 + γ — C1|ε|) → S0(η0 + γ) as ε → 0. Condition C2) 

implies the uniqueness of the κ-quantile of Qb, 0, and thus that S0(η0 + γ) < κ. It follows that 

Sε(η0 + γ) < κ for all |ε| small enough.

Combining Sε(η0 — γ) > κ and Sε(η0 + γ) < κ for all ε close to zero with eq. (10) shows 

that ηε → η0 as ε → 0.

Step 2: Second term of eq. (9) is 0 eventually.—If τ0 = 0 then the result is 

immediate, so suppose τ0 > 0. By the previous step, ηε → η0, which implies that τε → τ0 > 

0 by the continuity of the max function. It follows that τε > 0 for ε large enough. By eq. (4), 

PrPU × Pε
dε U, V = 1 = κ for all sufficiently small |ε| and Pr0 d0 V = 1 = κ Thus the 

second term of eq. (9) is 0 for all |ε| small enough.

Step 3: τε - τ0 = 0(ε).—Note that κ< Sε(ηε — |ε|) ≤ (1 + Cw|ε|)S0(ηε — (1 + C1)|ε|). A 

Taylor expansion of S0 about η0 shows that
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κ < (1 + CW ε )(S0(η0) + (ηε − η0 − (1 + C1) ε )( − f 0(η0) + o(1)))
= κ + (ηε − η0 − (1 + C1) ε )( − f 0(η0) + o(1)) + O(ε)
= κ − (ηε − η0) f 0(η0) + o(ηε − η0) + O(ε) .

(11)

The fact that f0(η0) ε (0, ∞) shows that ηε — η0 is bounded above by some 0(ε) sequence. 

Similarly, κ ≥ S(ηε+|ε|) ≥ (1-CW|ε|)S0(ηε+(1+C1)|ε|)). Hence,

κ ≥ (1 + CW ε )(S0(η0) + (ηε − η0 + (1 + C1) ε )( − f 0(η0) + o(1)))

= κ − (ηε − η0) f 0(η0) + o(ηε − η0) + O(ε) .

It follows that ηε — η0 is bounded below by some 0(ε) sequence. Combining these two 

bounds shows that ηε — η0 = 0(ε), which immediately implies that τε — τ0 = max{0(ε), 0} 

= 0(ε).

Step 4: First term of eq. (9) is ο(ε).—We know that

Qb, 0(V) − τ0 + O(ε) ≤ Qb, ε(V) − τε ≤ Qb, 0(V) − τ0 + O(ε) .

By C4), it follows that there exists some δ>0 such that sup ε < δPr0(Qb, ε(V) = τε) = 0. By the 

absolute continuity of Qw,ε with respect to QW,0, sup ε < δPrPε
(Qb, ε(V) = τε) = 0 It follows 

that, for all small enough |ε| and almost all u, dε u, v) = I(Qb, ε(v) > τε) Hence,

∫w
EPU

[dε(U, V)] − d0(V) (Qb, ε − τ0)dQW , ε

= ∫w
(I(Qb, ε > τε) − I(Qb, 0 > τ0))(Qb, ε − τ0)dQW , ε

≤ ∫w
I(Qb, ε > τε) − I(Qb, 0 > τ0) ( Qb, 0 − τ0 + C1 ε )dQW , ε

≤ ∫w
I( Qb, 0 > τ0 ≤ Qb, 0 − τ0 − Qb, ε + τε ) ( Qb, 0 − τ0 + C1 ε )dQW , ε

= ∫w
I(0 < Qb, 0 − τ0 ≤ Qb, 0 − τ0 − Qb, ε + τε ) ( Qb, 0 − τ0 + C1 ε )dQW , ε

≤ O(ε)∫w
I(0 < Qb, 0 − τ0 ≤ O(ε))dQW , ε

≤ O(ε)(1 + CW ε )Pr0(0 < Qb, 0 − τ0 ≤ O(ε)),

where the penultimate inequality holds by Step 3 and eq. (7). The last line above is ο(ε) 

because Pr(0 < X ≤ ε) → 0 as ε → 0 for any random variable X. Thus dividing the left-

hand side above byε and taking the limit as ε → 0 yields zero.
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Proofs for Section 5

We give the following lemma before proving Theorem 4.

Lemma 7

Let P0 and P be distributions which satisfy the positivity assumption and for which Y is 

bounded in probability. Let d be some stochastic treatment rule and τ be some real number. 

We have that Ψd(P) - Ψ(P0)= -EP0 [D(d, τ0, P)(O)]+ R0(d, P).

Proof of Lemma 12. Note that

Ψd(P) − Ψ(P0) + EP0
[D(d, τ0, P)(O)]

=Ψd(P) − Ψd(P0) + ∑
j = 1

2
EPU × P0

[D j(d(U, ⋅ ), P)(O)]

+Ψd(P0) − Ψd0
(P0) − τ0EPU × P0

[d(U, V) − κ] .

Standard calculations show that the first term on the right is equal to R10(d,P) [21]. If τ0> 0, 

then eq. (4) shows that τ0EPU × P0
d − κ = τ0EPU × P0

[(d − d0)Qb, 0]. If τ0 = 0, then obviously 

τEpUxP0[d — κ] = τ0EpUxP0[d — d0] Lemma 1 shows that 

Ψd(P0) − Ψd0
(P0) = EPU × P0

[(d − d0)Qb, 0]. Thus the second line above is equal to R20(d).

Proof of Theorem 4.—We make use of empirical process theory notation in this proof so 

that Pf = EP [f (O)] for a distribution P and function f. We have that

Ψ(Pn) − Ψ(P0) = − P0D(dn, τ0, Pn*) + R0(dn, Pn*) (12)

= (Pn − P0)D(dn, τ0, Pn*) + R0(dn, Pn*) + oP0
(n−1/2)

= (Pn − P0)D0 + (Pn − P0)(D(dn, τ0, Pn*) − D0) + R0(dn, Pn*) . (13)

The middle term on the last line is oP0
(n−1/2) by 1, 2, 4, and 5 [25], and the third term is 

oP0
(n−1/2) by 3. This yields the asymptotic linearity result. Proposition 1 in Section 3.3 of 

Bickel et al. [23] yields the claim about regularity and asymptotic efficiency when 

conditions C2), C3), C4), and 1 hold (see Theorem 3).

Proof of Lemma 5.—We will show that ηη → η0 in probability, and then the consistency 

of τn follows by the continuous mapping theorem. By C3), there exists an open interval N 
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containing η0 on which S0 is continuous. Fix η ε N. Because Qb, n belongs to a Glivenko-

Cantelli class with probability approaching 1, we have that

Sn(η) − S0(η) = PnI(Qb, n > η) − P0I(Qb, 0 > η)

≤ P0(I(Qb, n > η) − I(Qb, 0 > η)) + (Pn − P0)I(Qb, n > η)

≤ P0(I(Qb, n > η) − I(Qb, 0 > η))
≜ Tn(η)

+ oP0(1),
(14)

where we use the notation Pf = EP [f (O)] for any distribution P and function f. Let 

Zn(η)(w) ≜ (I(Qb, n(w) > η) − I(Qb, 0(w) > η))2. The following display holds for all q> > 0:

Tn(η) ≤ P0Zn(η)

= P0Zn(η)I( Qb, 0 − η > q) + P0Zn(η)I( Qb, 0 − η ≤ q)

= P0Zn(η)I( Qb, 0 − η > q) + P0Zn(η)I(0 < Qb, 0 − η ≤ q)
(15)

≤ P0Zn(η)I( Qb, 0 − Qb, 0 > q) + P0Zn(η)I(0 < Qb, 0 − η ≤ q) (16)

≤ Pr0( Qb, n − Qb, 0 > q) + Pr0(0 < Qb, 0 − η ≤ q)

≤
P0 Qb, n − Qb, 0

q + Pr0(0 < |Qb, 0 − η | ≤ q) .

Above eq. (15) holds because C3) implies that Pr0(Qb, 0 = η) = 0 eq. (16) holds because 

Ζη(η) = 1 implies that Qb, n − Qb, 0 ≥ Qb, 0 − η  and the final inequality holds by Markov’s 

inequality. The lemma assumes that EP0
Qb, n − Qb, 0 = OP0

(1), and thus we can choose a 

sequence qn ↓ 0 such that

Tn(η) ≤ Pr0(0 < Qb, 0 − η ≤ qn) + oP0(1) .

To see that the first term on the right is o(1), note that Pr0(Qb, 0 = η) = 0 combined with the 

continuity of S0 on N yield that, for n large enough,

Pr0(0 < Qb, 0 − η ≤ qn) = S0( − qn + η) − S0(qn + η) .
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The right-hand side is 0(1), and thus Tn(η) = oP0
(1). Plugging this into eq. (14) shows that 

Sn(η) → S0(η) in probability. Recall that η € N was arbitrary.

Fix γ > 0. For γ small enough, η0 — γ and η0 + γ are contained in N. Thus Sn(η0 — γ) → 
S0(η0 + γ) and Sn(η0 + γ) → S0(η0 - γ) in probability. Further, S0(η0 - γ) > k by the 

definition of η0 and S0(η0 + γ) < κ by Condition C2). It follows that, with probability 

approaching 1, Sn(η0 — γ) >κ and Sn(η0 + γ) < κ. But |ηn — η0| > γ implies that S0(η0 - 

γ)— γ) ≤ κ or Sn(η0 + γ) > κ, and thus |ηn —η0| γ with probability approaching 1. Thus ηn 

→ η0 in probability, and τn → τ0 by the continuous mapping theorem.

Proof of Theorem 6.—This proof mirrors the proof of Lemma 5.2 in Audibert and 

Tsybakov [24]. It is also quite similar to the proof of Theorem 7 in Luedtke and van der 

Laan [13], though the proof given in that working technical report is for optimal rules 

without any resource constraints, and also contains several typographical errors which will 

be corrected in the final version.

Define Bn to be the function v Qb, n(v) − τn and B0 to be the function v Qb, 0(v) − τ0. 

Below we omit the dependence of Bn, B0 on V in the notation and of dn, d0 on U and V. For 

any t> 0, we have that

R20(dn) ≤ EPU × P0
[ (dn − d0)B0 ]

= EPU × P0
[I(dn ≠ d0)B0]

= EPU × P0
[I(dn ≠ d0) B0 I(0 < B0 ≤ t)] + EPU × P0

[I(dn ≠ d0) B0 I( B0 > t)]

≤ EP0
[ Bn − B0 I(0 < B0 ≤ t)] + EP0

[ Bn − B0 I( Bn − B0 ≤ t)]

≤ Bn − B0
2, P0

Pr0(0 < B0 ≤ t)1/2 +
Bn − B0 2, P0

2

t

≤ Bn − B0 2, P0
C0

1/2tα/2 +
Bn − B0 2, P0

2

t

where the second inequality holds because dn ≠ d0 implies that |Bn — B0| > |B0| when |B0| > 

0, the third inequality holds by the Cauchy-Schwarz and Markov inequalities, and the C0 on 

the final line is the constant implied by eq. (5). The first result follows by plugging 

t = Bn − B0 2, P0
2/(2 + α) into the upper bound above. We also have that
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R20(dn) ≤ EPU × P0
[I(dn ≠ d0) B0 ]

≤ EP0
[I(0 B0 ≤ Bn − B0 ) B0 ]

≤ EP0
[I(0 < B0 ≤ Bn − B0 ∞, P0

) B0 ]

≤ Bn − B0
∞, P0

Pr0 0 < B0 ≤ Bn − B0 ∞, P0
.

By eq. (5), it follows that R20(dn) ≲ Bn − B0 ∞, P0
1 + α
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Figure 1: 
Coverage of two-sided 95% confidence intervals. As expected, coverage increases with 

sample size. The coverage tends to be better for κ = 0.1 than for κ = 0.9, though the 

estimator performed well at the largest sample size (1,000) for all simulations and choices of 

κ. Error bars indicate 95% confidence intervals to account for uncertainty from the finite 

number of Monte Carlo draws.
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Figure 2: 
Power of the α = 0.025 level test of H0 : Ψ(Ρ0) = μ0 against H1 : Ψ(Ρ0) >μ0, where 

μ0 = EP0
[Q0(0, W)] is treated as known. Power increases with sample size and κ. Error bars 

indicate 95% confidence intervals to account for uncertainty from the finite number of 

Monte Carlo draws.
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