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Abstract
We have devised a unified framework with which we 
can make predictions about several types of human 
error—omissions, perseverations, and PCE—across 
multiple tasks with data collected from multiple labs. 
Previously we have demonstrated this model for PCE 
from two tasks (Tamborello & Trafton, 2013). Now we 
demonstrate it for omissions and perseverations in 
Altmann, Trafton and Hambrick’s (Altmann, Trafton, & 
Hambrick, 2014) UNRAVEL task.
Keywords: memory; architecture; cognitive model; 
action selection; error

Introduction
Error is a common occurrence in everyday and in working 
life. Studying human error is important not only for what it 
reveals about the normal operation of cognitive mechanisms 
but also because with increasing capability and complexity 
of our technological systems (e.g., transportation, power 
generation) the amount of damage that can result from error 
is magnified. But studying human error is difficult because 
of the variability of error behavior. Furthermore, error often 
arises from the dynamic interactions of several cognitive 
processes that normally perform very reliably.

We have devised a unified framework which explains 
multiple types of human error—omissions, perseverations, 
and postcompletion error (PCE)—across multiple tasks with 
data collected from multiple labs. A unified framework is 
important because one cognitive system, i.e. the human 
mind,  produces all error types. Obtaining the correct 
explanation for one error type then acts as a constraint for 
explaining other error types. Furthermore, if we are to 
predict error in complex task environments then multiple 
error types must fall naturally out of the theory. This model 
mainly draws upon two previous works, the working 
memory hypothesis of Byrne and Bovair (Byrne & Bovair, 
1997) and Memory for Goals (Altmann & Trafton, 2002). 

Our model predicts error to occur as a combination of a 
limited-capacity to spread activation from working memory 
to long term memory as well as goal decay. Previously we 
have demonstrated this model for PCE from two tasks 
(Tamborello & Trafton, 2013). Now we demonstrate it for 

omissions and perseverations in Altmann, Trafton, and 
Hambrick’s (2014, 2015) UNRAVEL task.

The UNRAVEL task is a sequential memory task in which 
subjects perform a two-choice decision regarding features of 
a simple alphanumeric display.  UNRAVEL is an acronym 
for the stimuli features subjects must respond to, such as 
that one item is Underlined or italicized, the letter is Near to 
or far from the beginning of the alphabet, etc. It is in several 
ways an ideal tool for studying sequential behavior because:

• Subjects must adhere to the prescribed sequence,
• Each decision has only two options,
• Each of the fourteen potential responses is indicated by a 

unique letter of the alphabet so that intended but incorrect 
actions are easily inferred,

• The interface provides no cues that may aid subjects’ 
recall of their current position within that sequence,

• It is well-suited to frequent interruptions.

Interruptions
The context we focus on is post-interruption resumption 

of a task. With the rapid rise of communication technologies 
that keep people accessible at all times, issues of 
interruptions and multitasking have become mainstream 
concerns.  For example,  Time magazine (Wallis, 2006) and 
the New York Times (Thompson, 2005) both reported 
stories about interruptions and multitasking and how they 
affect performance.  The information technology research 
firm Basex issued a report on the economic impact of 
interruptions, which they estimated to be around $588 
billion a year (Spira, 2005). Given the prevalence of 
interruptions, building systems that can help remind an 
individual what they were doing or where they were in a 
task can have a large impact on productivity. 

Being interrupted also greatly increases the number of 
errors (Trafton, Altmann, & Ratwani, 2011). People will 
frequently repeat a step that has already been performed or 
skip a step that needs to be performed after an interruption. 
Sometimes these errors are irritating (e.g., ruining a meal by 
leaving out a crucial ingredient), but sometimes they can 
have disastrous consequences (e.g., taking medicine twice or 
not configuring the flaps for airplane takeoff).
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Theories of Action Selection and Error
Working Memory Capacity Patterns of error types 

constrain explanations of memory processes involved in 
action selection, and a few computational theories of 
memory have attempted to explain specific error types. 
Byrne and Bovair (Byrne & Bovair, 1997) explained 
postcompletion error as a function of limited-capacity 
working memory. They addressed high and low working 
memory demand as well as individuals’  high and low 
working memory capacities.  Their model assumed a 
hierarchical goal representational structure. This was based 
on a GOMS (Card, Moran,  & Newell, 1983) analysis of an 
experiment task also reported in their study. Their CAPS 
model (Just & Carpenter, 1992) propagated activation 
necessary for retrieval of step representations downward 
from the task supergoal to subgoals to individual steps. 
Subgoals had to have their activations maintained above a 
certain threshold in order for them to remain accessible. 
Crucially,  the main goal of the procedure would be satisfied 
before it was time to perform the postcompletion step. The 
presence of other information to maintain in an active state, 
in this case a three-back memory task, taxed the system to 
capacity such that it failed to maintain the postcompletion 
subgoal above threshold.

Memory for Goals Another account of systematic error, 
Memory for Goals (Altmann & Trafton, 2002),  posits that 
we encode episodic traces of our goals as we complete 
tasks. Each goal is encapsulated in an episodic memory, 
which sparsely represents a behavioral context at the time of 
its encoding. The strength of these memories decay over 
time such that it may be difficult to remember the correct 
point at which we resume a task after an interruption. 
Memory for Goals provides a process-level theory for why 
certain types of errors are made during a well-learned task 
as a consequence of retrospective, episodic memory 
(Altmann & Trafton, 2007; Ratwani & Trafton, 2010; 
Trafton, Altmann, & Ratwani, 2009). Memory for Goals 
implies that people are able to retrieve suspended goals 
successfully if and only if there are cues that prime them 
(Altmann & Trafton, 2002). 

The Remember-Advance Model Altmann et al. 
developed a formal model of the UNRAVEL task describing 
it as a two-phase retrieval process. The model carried over 
no task context from step to step in any sort of buffers or 
working memory. Instead, at the beginning of each step it 
retrieved an episodic encoding of the last action it 
performed. It then used that memory as the cue for an 
associative retrieval from long-term memory of the action to 
perform for the current step of the task. Perseverations 
occurred due to interference in the retrieval of the episodic 
codes during the first retrieval phase. Omissions were a 
consequence of associative interference during the 
prospective phase of retrieval.

ACT-R Process Model We developed our computational 
process model using the ACT-R 6 cognitive architecture 
(Anderson, 2007; Anderson et al.,  2004). ACT-R is a hybrid 
symbolic and subsymbolic computational cognitive 
architecture that takes as inputs knowledge (both procedural 
and declarative about how to do the task of interest) and a 
simulated environment in which to run. It posits several 

modules, each of which perform some aspect of cognition 
(e.g., long-term declarative memory, vision). Each module 
has a buffer into which it can place a symbolic 
representation that is made available to the other modules. 
ACT-R contains a variety of computational mechanisms and 
the ultimate output of the model is a time stamped series of 
behaviors including individual attention shifts, speech 
output, button presses, and the like. It can operate 
stochastically and so models may be non-deterministic. 

Like the Remember-Advance Model, ours uses a two-
phase retrieval process. Unlike the Remember-Advance 
Model, it only uses the retrospective phase for resumption of 
an interrupted task. Prospective retrieval is accomplished by 
storing a task state representation as the contents of a set of 
buffers as a working memory capacity. Associative 
activation spreading from those buffers to long-term 
declarative memory retrieves the next step in the sequence.

One of the benefits of embodying a theory in a 
computational architecture,  such as ACT-R, is that it allows 
researchers to develop and test concrete,  quantitative 
hypotheses and it forces the theorist to make virtually all 
assumptions explicit.  To the extent that the model is able to 
simulate human-like performance the model provides a 
sufficiency proof of the theory. Furthermore, the constraints 
on model development imposed by the cognitive 
architecture are critical for building a cumulative science, an 
enterprise not traditionally one of cognitive science’s strong 
suits (Anderson, 2002; Newell, 1973).

The UNRAVEL Task

Method
Participants Three hundred Michigan State University 
undergraduates participated for credit toward course 
requirements or payment of $10. Participants were randomly 
assigned to one of three interruption duration conditions.
Design and Materials Figure 1 illustrates two example 
stimuli from the UNRAVEL task. Stimuli always consisted 
of one letter and one numeral, always with one inside a box 
in the center of the display and the other either above or 
below, one item was always either italicized or underlined, 
and one item in red or yellow. Aside from those constraints, 
items were presented in random order.
Procedure The experiment presented a display such as in 
Figure 1. Subjects were to remember which step of the 
UNRAVEL sequence they were currently on and to respond 
to the stimulus appropriately.  As soon as subjects pressed a 
key indicating one of the fourteen potential responses, the 
experiment advanced to the next trial.

The experiment did not indicate to subjects when they 
erred.  Sequence errors were coded with respect to the 
previous step. For example, if steps U, R, and A were 
performed in succession, R would be a +1 sequence error, 
because N was skipped,  but A would be correct, because A 
follows R in the UNRAVEL sequence.

Participants worked in one of three between-subjects 
conditions according to duration of the interruption: one, 
two, or three consecutive interruption task trials. On 
average, the interruptions lasted 13, 22, or 32 seconds, 
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respectively, depending upon how quickly subjects 
completed the interrupting transcription typing task.

The experiment entailed 4 trial blocks with 10 
interruptions each, averaging 6 trials between each 
interruption. Results appear together with the model results.

Model
The model works by incorporating and coordinating two 
distinct systems underlying prospective and retrospective 
memory. Those systems are associative spreading activation 
(Anderson et al., 2004) and functional decay (Altmann, 
2002), respectively.

Correct Behavior
A task like UNRAVEL requires prospective memory to 

remember what comes next and retrospective memory to 
remember what was done last. Our model uses these two 
memory processes during the two phases of the UNRAVEL 
task, selecting the next step and remembering where it left 
off (Figure 2).  Both processes are activation-based, though 
they differ in how they use memory activation.

Selecting the next step Most trials function using 
prospective memory to remember what step comes next. We 
assume that action selection is a prospective memory task. 
We use ACT-R’s spreading activation mechanism to 
implement prospective memory. Furthermore,  activation 
propagates from active buffer contents to long-term memory 
according to what we assume to be learned association from 
each context to its subsequent action (Botvinick & Plaut, 
2004). During selection, the current step serves as a context 
which cues subsequent steps.

Resuming post-interruption With a task like 
UNRAVEL, wherein participants must resume after having 
been interrupted, it is necessary to remember the last action 
performed and then to use that memory to continue task 
execution. Resumption trials, that is,  those trials 
immediately following an interruption,  require the 
retrospective retrieval of the last step of the UNRAVEL 
sequence that was performed. Of course, subjects in the 
UNRAVEL task are instructed to expect interruptions 
frequently.

Our model constructs a sort of breadcrumb trail as it 
executes the UNRAVEL task. Upon completion of each 
step, the model creates a memory uniquely encoding that 
one instance of the trial event. Using ACT-R’s concept of 

base level activation, that memory has high activation at the 
time that it is encoded. As time passes, that memory’s 
strength decays and this decay serves a function. This allows 
old episodic memories to decay to unretrievability so that 
they do not interfere with the retrieval of new memories. As 
the model continues task execution and time passes, newer 
episodic memories are encoded. Newer memories with 
strong activations keep getting stored in memory while old 
memories’ activation strengths decay gradually until those 
memories can no longer be reliably retrieved. But decay 
occurs gradually so that relatively recent episodes still have 
some small chance of interfering with the most recently 
encoded episode.

When the model is interrupted, it immediately tries to 
remember the last UNRAVEL step it executed, which is 
encoded in one of these episodes. The model tries to retrieve 
one of these breadcrumb memories. Retrieval provides a 
renewal of activation to the retrieved memory, effectively 
resetting its decay process. Because the model has limited 
capacity within its buffers, it must dedicate those buffers to 
the interrupting task. However, it can to some extent 
interleave operations for two separate tasks, in this case the 
interrupting task and rehearsal (Salvucci & Taatgen,  2008). 
Throughout the interruption, the model performs this 
threading of rehearsal with the interrupting task as an 
explicit rehearsal strategy. The model diverts just sufficient 
cognitive resources from the interrupting task to keep the 
episodic memory of the primary task active enough to 
provide a good chance of its retrieval at resumption.

The model uses rehearsal as a means to preserve reference 
to a particular piece of information across time. Each time it 
retrieves a memory, that memory’s activation is 
strengthened (Altmann & Trafton,  2002; Anderson, 2007; 
Anderson et al., 2004). Meanwhile, other memories not used 
during rehearsal decay. This decay serves a function, which 
is to limit retrospective interference caused by other 
memories.

By threading rehearsal (Salvucci & Taatgen, 2008), the 
model can maintain easy access to a memory despite its 
need to apply the limited resources of its buffers to the 
interruption task. When the interrupting task ends,  the model 
no longer requires its limited buffer resources be dedicated 
to that task, and so it can again put them to use on the main 
UNRAVEL task. To resume the UNRAVEL task, the model 
again retrieves its episodic memory. Having done so, it uses 
the reference to a step of UNRAVEL contained within the 
episodic memory—the last UNRAVEL step performed—to 
start the next cycle of that task’s execution. 

Error Behavior
Errors arise out of the interaction of transient activation 

noise—an architectural feature of ACT-R—with the 
processes of normal task execution. Each of the two 
processes functions differently, and so the effects of their 
combinations with retrieval activation noise produces the 
two different sequence error types, omissions and 
perseverations.

Omission  We assume that association is somewhat 
imprecise in that there is not a clean one-to-one mapping of 
cue to target. Instead, some association “bleeds” over from 
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Figure 1:  (a) Two sample stimuli for the UNRAVEL task (the 9 is red and the X is yellow).   

(b) Response mappings for the UNRAVEL task, and responses for the two sample stimuli in (a).  

(c) Sample stimulus for the interrupting task, after four letters have been typed.  

Stimulus 1  Stimulus 2  

(a) Sample stimuli for UNRAVEL task: 

(b) Choice rules and candidate responses for UNRAVEL task, and responses to the stimuli in (a): 

(c) Sample stimulus for interrupting task: 

!"#$%&#"#'(%'#)*$+"'#,*-+.
/("$ 01%.2"'3-+"# /,*-+-#'4 /,*-+-#'5
! " # $%&'&$()'*#+*!,-)'.#,)-*/'*#,*0(&.#$+ " #
1 , 2 .)3)'*#+*1)&'*(/*/'*4&'*2'/5*+(&'(*/2*&.6%&7)( , 2
8 ' 9 $%&'&$()'*#+*8)-*/'*:)../; ' 9
< & 7 $%&'&$()'*#+*<7/=)*/'*>)./;*(%)*7/? 7 &
@ = $ .)3)'*#+*@/;).*/'*A/,+/,&,( $ $
B ) / -#C#(*#+*B=),*/'*D-- / )
E . 5 -#C#(*#+*E)++*(%&,*/'*F/')*(%&,*G 5 .

0)&6.6)("'
3"#$%&#"#

Figure 1. Left: The underlined numeral “9” is displayed in 
red in this example experiment display. Right: The italicized 
letter “X,” is yellow in this example.
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the target to a handful of subsequent items, with each 
subsequent item receiving less association than the one 
coming before it in sequence. The model may omit a step 
when transient noise is such that it simultaneously 
suppresses activation of the correct next step and enhances 
activation of one of these subsequent items.

Furthermore, we assume that the model retains some 
representation of its task context in active buffers during its 
task execution. We assume, as Altmann and Trafton (2007) 
have shown that people must rebuild such representations 
gradually at resumption. For the model this means that it has 
less retrieval activation available to spread for its first 
prospective retrieval attempt after the interruption. With the 
relative amount of activation provided by noise larger in this 
case, the model is more likely than normally to retrieve the 
representation for an action that should come one or two 
more steps in the future.

Perseveration The most recently performed step has the 
highest base level activation because it was referenced most 
recently.  However, the next most recently referenced step 
still has a high, albeit less so, base level activation level. 
Noise can temporarily make the next-most-recently 
performed step more active than the most recently 
performed step. Typically this happens at interruption onset, 
when the model begins its rehearsal. It then rehearses an 
incorrect, but near action (i.e. from one or two steps back).

Model Results
We used our model to simulate data from 1,000 subjects. 
This large number of model runs allowed effects to 
converge on the model’s true predictions. The model’s 
means closely matched those of the participants, R2 = .87, 
F(1, 34) = 227, p < .001. Figure 3 plots the model’s means 
against the participants’  means and 95% confidence 
intervals.

Discussion
The combination of single-phase associative prospective 
retrieval for normal task execution and dual-phase 
functional decay retrospective retrieval with the prospective 
retrieval explained the pattern of omissions and 
perseverations quite nicely. Furthermore, because this is the 
same model we used to explain PCE in Byrne and Bovair’s 
working memory capacity task and Ratwani et al.’s 
interruption task, it means that PCE is functionally identical 
to the omissions in this task with the exception that those 
steps happen to be functionally isolated within their tasks.

Normal Task Execution
Perseverations Subjects appear not to have perseverated 
reliably during normal task execution. This is consistent 
with the process model’s single-phase  prospective retrieval 
mechanism for action selection.

Omissions UNRAVEL subjects exhibited at 1% rate of 
omission errors, even when the experiment did not interrupt 
them. Our process model explains this effect as a product of 
a relatively high ratio of associative spreading activation to 
retrieval noise during normal task execution. In this 
condition, the model operates with a representation of the 
current task context in two of its active buffers.  These 
representations serve as the cues to prime associative 
retrieval. Two buffers supply more retrieval activation to the 
memory most associated to the current context than does 
one buffer alone.

Interruption and Resumption
Perseverations The model uses decay to mitigate 
retrospective interference. However, decay takes time, and 
so the most recent one or two episodic codes may, with 
transient noise, have enough activation to interfere with the 
memory of the current task context. For this reason, the 
error-triggering interference tends to occur at the onset of 
rehearsal. The interruption occurs, the model retrieves an 
episodic code but because of interference that code is from 
one or two steps prior. Now that that older code has been 
strengthened by a retrieval instance it is the most active 
episodic code and so it is retrieved in each subsequent 
rehearsal cycle and at resumption.

Omissions For the process model, we assume that gradual 
rebuilding of task context representation (Altmann & 
Trafton, 2007) means that during resumption the model 
operates with less associative activation to spread than 
during normal task execution. The process model does this 
at resumption by copying the contents of the retrieved 
episode to only one of its active buffers. Then the model 
attempts prospective retrieval of the next step. However, 

Figure 2. Associative spreading activation is the prospective 
memory process underlying selection of correct actions. 
When transient activation noise,  a fundamental property of 
human memory, spikes during prospective retrieval it can 
lead to an omission. Likewise, the model implemented 
retrospective memory by an explicit rehearsal strategy that it 
threaded with the interrupting task. Spikes in transient 
activation noise during retrospective retrieval sometimes 
caused perseverations.

Prospective 
Memory

Associative 
Spreading Activation

Action 
Selection

Transient
Activation
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with only one buffer providing associative activation, the 
ratio of activation spreading to long-term memory versus 
noise is lower than it is during normal task execution. This 
means that spikes in noise are more likely to make other, 
slightly less-associated memories more active than the 
memory encoding the correct next step. When the model 
retrieves one of these other memories, it then omits the next 
correct step.

Comparison with Remember-Advance 
The Remember-Advance model claims that for normal task 
execution people perform the same two-phase retrieval that 
they use for resumption. This means that for each step 
people must recall what they did last step. The implication 
here is that people do not retain a current task context 
representation in any sort of working memory-like buffer.

The process model somewhat simplifies assumptions 
underlying task execution relative to the Remember-
Advance model. The process model uses two-phase retrieval 
sparingly because, time-wise, it is expensive,  and even 
small-scale time costs matter (Gray & Boehm-Davis, 2000). 
Instead, for normal task execution it is a simpler explanation 
and provides for more efficient task execution for the model 
to retain some task context representation in an available 
working memory capacity. This arrangement is congruent 
with the body of research supporting ACT-R, including Gray 
and Boehm-Davis’ finding that milliseconds matter.

Explicit Rehearsal Strategies
But it incurs this expense because of a necessity brought 
about by two factors: 1) it must persist state information 

over a longer duration than what decay would allow, and 2) 
it does not have the working memory capacity to retain this 
information and accomplish its interrupting task. One 
solution is to at interruption onset pack away task state 
information into a form that can be retrieved later (an 
episodic memory), use just a little bit of cognitive resources 
to rehearse throughout the interruption, and at resumption 
retrieve that episode and use it to reload the task context 
information to the active buffers.

Theories like ACT-R and Threaded Cognition are useful 
tools for exploring topics such as rehearsal in a busy task 
environment.  With those two theories, we were able to 
constrain the space of possible rehearsal strategies to the one 
used by the model: immediate retrieval followed by 
subsequent retrievals at .52 second intervals. 

Interruption duration impacts resumption performance 
because with every rehearsal iteration,  there is a chance that 
an incorrect episodic memory could be retrieved. By ACT-
R’s base-level learning mechanism, every time a memory is 
retrieved,  its activation is strengthened. Typically this 
manifested in the model’s behavior when the model would, 
at rehearsal onset,  retrieve by mistake an episodic memory 
from one or two trials ago rather than from the just-
completed trial. Although this would often lead to the model 
rehearsing the wrong memory from the outset, a mistaken 
rehearsal later on could also lead to error.
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