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Natural scene statistics account for the representation of scene 
categories in human visual cortex

Dustin E. Stansbury1, Thomas Naselaris2,†, and Jack L. Gallant1,2,3

1Vision Science Group, University of California, Berkeley, CA 94720, USA

2Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA

3Department of Psychology, University of California, Berkeley, CA 94720, USA

Abstract

During natural vision, humans categorize the scenes they encounter: an office, the beach, and so 

on. These categories are informed by knowledge of the way that objects co-occur in natural 

scenes. How does the human brain aggregate information about objects to represent scene 

categories? To explore this issue we used statistical learning methods to learn categories that 

objectively capture the co-occurrence statistics of objects in a large collection of natural scenes. 

Using the learned categories, we modeled fMRI brain signals evoked in human subjects when 

viewing images of scenes. We find that evoked activity across much of anterior visual cortex is 

explained by the learned categories. Furthermore, a decoder based on these scene categories 

accurately predicts the categories and objects comprising novel scenes from brain activity evoked 

by those scenes. These results suggest that the human brain represents scene categories that 

capture the co-occurrence statistics of objects in the world.

INTRODUCTION

During natural vision, humans categorize the scenes that they encounter. A scene category 

can often be inferred from the objects present in the scene. For example, a person can infer 

that she is at the beach by seeing water, sand, and sunbathers. Inferences can also be made in 

the opposite direction: the category “beach” is sufficient to elicit the recall of these objects 

plus many others such as towels, umbrellas, sandcastles, and so on. These objects are very 

different from those that would be recalled for another scene category such as an office. 

These observations suggest that humans use knowledge about how objects co-occur in the 

natural world to categorize natural scenes.
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There is substantial behavioral evidence to show that humans exploit the co-occurrence 

statistics of objects during natural vision. For example, object recognition is faster when 

objects in a scene are contextually consistent (Biederman, 1972; Biederman et al., 1973; 

Palmer, 1975). When a scene contains objects that are contextually inconsistent then scene 

categorization is more difficult (Davenport and Potter, 2004; Joubert et al., 2007). Despite 

the likely importance of object co-occurrence statistics for visual scene perception, few 

functional magnetic resonance imaging (fMRI) studies have investigated this issue 

systematically. Most previous fMRI studies have investigated isolated and decontextualized 

objects (Kanwisher et al., 1997; Downing et al., 2001), or a few, very broad scene categories 

(Epstein and Kanwisher, 1998; Peelen et al., 2009). However, two recent fMRI studies 

(Walther et al., 2009; MacEvoy and Epstein, 2011) provide some evidence that the human 

visual system represents information about individual objects during scene perception.

Here we test the hypothesis that the human visual system represents scene categories that 

capture the statistical relationships between objects in the natural world. To investigate this 

issue, we used a statistical learning algorithm originally developed to model large text 

corpora to learn scene categories that capture the co-occurrence statistics of objects found in 

a large collection of natural scenes. We then used fMRI to record blood-oxygenation-level-

dependent (BOLD) activity evoked in the human brain when viewing natural scenes. Finally, 

we used the learned scene categories to model the tuning of individual voxels and we 

compared predictions of these models to alternative models based on object co-occurrence 

statistics that lack the statistical structure inherent in natural scenes.

We report three main results that are consistent with our hypothesis. First, much of anterior 

visual cortex represents scene categories that reflect the co-occurrence statistics of objects in 

natural scenes. Second, voxels located within and beyond the boundaries of many well-

established functional ROIs in anterior visual cortex are tuned to mixtures of these scene 

categories. Third, scene categories and the specific objects that occur in novel scenes can be 

accurately decoded from evoked brain activity alone. Taken together, these results suggest 

that scene categories represented in the human brain capture the statistical relationships 

between objects in the natural world.

RESULTS

Learning Natural Scene Categories

To test whether the brain represents scene categories that reflect the co-occurrence statistics 

of objects in natural scenes, we first had to obtain such a set of categories. We used 

statistical learning methods to solve this problem (Figure 1A–B). First, we created a learning 

database by labeling the individual objects in a large collection of natural scenes (Figure 

1A). The frequency counts of the objects that appeared in each scene in the learning 

database were then used as input to the Latent Dirichlet Allocation (LDA) learning 

algorithm (Blei et al., 2003). LDA was originally developed to learn underlying topics in a 

collection of documents based on the co-occurrence statistics of the words in the documents. 

When applied to the frequency counts of the objects in the learning database, the LDA 

algorithm learns an underlying set of scene categories that capture the co-occurrence 

statistics of the objects in the database.
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LDA defines each scene category as a list of probabilities that are assigned to each of the 

object labels within an available vocabulary. Each probability reflects the likelihood that a 

specific object occurs in a scene that belongs to that category (Figure 1B). LDA learns the 

probabilities that define each scene category without supervision. However, the number of 

distinct categories the algorithm learns and the object label vocabulary must be specified by 

the experimenter. The vocabulary used for our study consisted of the most frequent objects 

in the learning database.

Figure 1B shows examples of scene categories learned by LDA from the learning database. 

Each of the learned categories can be named intuitively by inspecting the objects they are 

most likely to contain. For example, the first category in Figure 1B (left column) is aptly 

named “Roadway” because it is most likely to contain the objects “car,” “vehicle,” 

“highway,” “crash barrier,” and “street lamp.” The other examples shown in Figure 1B can 

also be assigned intuitive names that describe typical natural scenes. Once a set of scene 

categories has been learned, the LDA algorithm also offers a probabilistic inference 

procedure that can be used estimate the probability that a new scene belongs to each of the 

learned categories, conditioned on the objects in the new scene.

Voxel-wise Encoding Models Based on Learned Scene Categories

To determine whether the brain represents the scene categories learned by LDA we recorded 

BOLD brain activity evoked when human subjects viewed 1260 individual natural scene 

images. We used the LDA probabilistic inference procedure to estimate the probability that 

each of the presented stimulus scenes belonged to each of a learned set of categories. For 

instance, if a scene contained the objects “plate,” “table,” “fish,” and “beverage,” LDA 

would assign the scene a high probability of belonging to the “Dining” category in Figure 

1B, a lower probability to the “Aquatic” category, and near zero probability to the remaining 

categories (Figure 1C, green oval).

The category probabilities inferred for each stimulus scene were used to construct voxel-

wise encoding models. The encoding model for each voxel consisted of a set of weights that 

best mapped the inferred category probabilities of the stimulus scenes onto the BOLD 

responses evoked by the scenes (Figure 1C, green hexagon). Model weights were estimated 

using regularized linear regression applied independently for each subject and voxel. The 

prediction accuracy for each voxel-wise encoding model was defined to be the correlation 

coefficient (Pearson’s r score) between the responses evoked by a novel set of stimulus 

scenes and the responses to those scenes predicted by the model.

Introspection suggests that humans can conceive of a vast number of distinct objects and 

scene categories. However, because the spatial and temporal resolution of fMRI data are 

fairly coarse (Buxton, 2002), it is unlikely that all these objects or scene categories can be 

recovered from BOLD signals. BOLD signal-to-noise ratios (SNR) also vary dramatically 

across individuals, so the amount of information that can recovered from individual fMRI 

data also varies. Therefore, before proceeding with further analysis of the voxel-wise 

models, we first identified the single set of scene categories that provided the best 

predictions of brain activity recorded from all subjects. To do so, we examined how the 

amount of accurately-predicted cortical territory across subjects varied with specific settings 
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of the number of individual scene categories and object vocabulary size assumed by the 

LDA algorithm during category learning. Specifically, we incremented the number of 

individual categories learned from 2 to 40 while also varying the size of the object label 

vocabulary from the 25 most frequent to 950 most frequent objects in the learning database 

(see Experimental Proceduresfor further details). Figure 2A shows the relative amount of 

accurately-predicted cortical territory across subjects based on each setting. Accurate 

predictions are stable across a wide range of settings.

Across subjects, the encoding models perform best when based on 20 individual categories 

and composed of a vocabulary 850 objects (Figure 2A, indicated by red dot; for individual 

subject results, see Supplemental Figure S3). Examples of these categories are displayed in 

Figure 2B (for an interpretation of all 20 categories, see Supplemental Figures S4–S5). 

Previous fMRI studies have only used 2–8 distinct categories and 2–200 individual objects 

(see Walther et al., 2009; MacEvoy and Epstein, 2011). Thus, our results show there is more 

information in BOLD signals related to encoding scene categories than has been previously 

appreciated.

We next tested whether natural scene categories were necessary to accurately model the 

measured fMRI data. We derived a set of null scene categories by training LDA on artificial 

scenes. The artificial scenes were created by scrambling the objects in the learning database 

across scenes, thus removing the natural statistical structure of object co-occurrences 

inherent in the original learning database. If the brain incorporates information about the co-

occurrence statistics of objects in natural scenes, then the prediction accuracy of encoding 

models based upon these null scene categories should be much poorer than encoding models 

based on scene categories learned from natural scenes.

Indeed, we find that encoding models based on the categories learned from natural scenes 

provide significantly better predictions of brain activity than do encoding models based on 

the null categories, and for all subjects (p < 1×10−10 for all subjects, Wilcox rank-sum test 

for differences in median prediction accuracy across all cortical voxels and candidate scene 

category settings; subject S1: W(15025164) = 9.96×1013 ; subject S2: W(24440399) = 

3.04×1014 ; subject S3: W(15778360) = 9.93×1013 ; subject S4: W(14705625) = 1.09×1014). 

In a set of supplemental analyses, we also compared the LDA-based models to several other 

plausible models of scene category representation. We find that the LDA-based models 

provide superior prediction accuracy to all these alternative models (see Supplemental 

Figures S12–S15). These results support our central hypothesis that the human brain 

encodes categories that reflect the co-occurrence statistics of objects in natural scenes.

Categories Learned From Natural Scenes Explain Selectivity in Many Anterior Visual ROIs

Previous fMRI studies have identified functional regions of interest (ROIs) tuned to very 

broad scene categories, such as places (Epstein and Kanwisher, 1998), as well as to narrow 

object categories such as faces (Kanwisher et al., 1997) or body parts (Downing et al., 

2001). Can selectivity in these regions be explained in terms of the categories learned from 

natural scene object statistics?
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We evaluated scene category tuning for voxels located within the boundaries of several 

conventional functional ROIs: the fusiform face area (FFA; Kanwisher et al., 1997), the 

occipital face area (OFA; Gauthier et al, 2000), the extrastriate body area (EBA; Downing et 

al., 2001), the parahippocampal place area (PPA; Epstein and Kanwisher, 1998), the 

transverse occipital sulcus (TOS; Nakamura et al., 2000; Grill-Spector, 2003; Hason et al., 

2003), retrosplenial cortex (RSC; Maguire, 2001) and lateral occipital cortex (LO; Malach et 

al., 1995).

Figure 3A shows the boundaries of these ROIs, identified using separate functional localizer 

experiments, and projected on the cortical flat map of one representative subject. The color 

of each location on the cortical map indicates the prediction accuracy of the corresponding 

encoding model. All encoding models were based on the 20 best scene categories identified 

across subjects. These data show that the encoding models accurately predict responses of 

voxels located in many ROIs within anterior visual cortex. To quantify this effect, we 

calculated the proportion of response variance explained by the encoding models, averaged 

across all voxels within each ROI. We find that the average proportion of variance explained 

to be significantly greater than chance for every anterior visual cortex ROI, and for all 

subjects (p < 0.01; see Experimental Procedures for details). Thus, selectivity in many 

previously identified ROIs can be explained in terms of tuning to scene categories learned 

from natural scene statistics.

To determine whether scene category tuning is consistent with tuning reported in earlier 

localizer studies, we visualize the weights of encoding models fit to voxels within each ROI. 

Figure 3C shows encoding model weights averaged across all voxels located within each 

function ROI. Scene category selectivity is broadly consistent with the results of previous 

functional localizer experiments. For example, previous studies have suggested that PPA is 

selective for presence of buildings (Epstein and Kanwisher, 1998). The LDA algorithm 

suggests that images containing buildings are most likely to belong to the “Urban/Street” 
category (see Figure 2B), and we find that voxels within PPA have large weights for the 

“Urban/Street” category (see Supplemental Figures S4–S5). To take another example, 

previous studies have suggested that OFA is selective for the presence of human faces 

(Gauthier et al., 2000). Under the trained LDA model, images containing faces are most 

likely to belong to the “Portrait” category (see Supplemental Figures S4–S5), and we find 

that voxels within OFA have large weights for the “Portrait” category.

Although category tuning within functional ROIs is generally consistent with previous 

reports, Figure 3C demonstrates that tuning is clearly more complicated than assumed 

previously. In particular, many functional ROIs are tuned for more than one scene category. 

For example, both FFA and OFA are thought to be selective for human faces, but voxels in 

both these areas also have large weights for the “Plants” category. Additionally, area TOS, 

an ROI generally associated with encoding information important for navigation, has 

relatively large weights for the “Portrait” and “People Moving” categories. Thus, our results 

suggest that tuning in conventional ROIs may be more diverse than generally believed (for 

additional evidence, see Huth et al., 2012 and Naselaris et al., 2012).
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Decoding Natural Scene Categories From Evoked Brain Activity

The results presented thus far suggest that information about natural scene categories is 

encoded in the activity of many voxels located in anterior visual cortex. It should therefore 

be possible to decode these scene categories from brain activity evoked by viewing a scene. 

To investigate this possibility, we constructed a decoder for each subject that uses voxel 

activity evoked in anterior visual cortex to predict the probability that a viewed scene 

belongs to each of 20 best scene categories identified across subjects. To maximize 

performance, the decoder used only those voxels for which the encoding models produced 

accurate predictions on a held-out portion of the model estimation data (for details, see 

Experimental Procedures).

We used the decoder to predict the 20 category probabilities for 126 novel scenes that had 

not been used to construct the decoder. Figure 4A shows several examples of the category 

probabilities predicted by the decoder. The scene in the upper right of Figure 4A depicts a 

harbor in front of a city skyline. The predicted category probabilities indicate that the scene 

is most likely a mixture of the categories “Urban” and “ Boatway”, which is an accurate 

description of the scene. Inspection of the other examples in the Figure suggests that the 

predicted scene category probabilities accurately describe many different types of natural 

scenes.

To quantify the accuracy of each decoder, we calculated the correlation (Pearson’s r) 
between the scene category probabilities predicted by the decoder and the probabilities 

inferred using the LDA algorithm (conditioned on the labeled objects in each scene). Figure 

4B shows the distribution of decoding accuracies across all decoded scenes, for each subject. 

The median accuracies and 95% confidence interval on median estimates are indicated by 

the black cross-hairs. Most of the novel scenes are decoded significantly for all subjects. 

Prediction accuracy across all scenes exhibited systematically greater-than-chance 

performance for all subjects (p < 0.02 for all subjects, Wilcox rank-sum test; subject S1: 

W(126) = 18585; subject S2: W(126) = 17274; subject S3: W(126) = 17018; subject S4: 

W(126) = 19214. The voxels selected for the decoding analysis summarized in Figure 4 

were located throughout the visual cortex. However, we also find that accurate decoding can 

be obtained using the responses of subsets of voxels located within specific ROIs (see 

Supplemental Figures S16–S19).

Predicting the Objects that Occur in Decoded Natural Scenes

Our results suggest that the visual system represents scene categories that capture the co-

occurrence statistics of objects in the natural world. This suggests that we should be able to 

predict accurately the likely objects in a scene based on the scene category probabilities 

decoded from evoked brain activity.

To investigate this issue, we estimated the probability that each of the 850 objects in the 

vocabulary for the single best set of scene categories identified across subjects occurred in 

each of the 126 decoded validation set scenes. The probabilities were estimated by 

combining the decoded category probabilities with the probabilistic relationship between 

categories and objects established by LDA learning algorithm during category learning (see 
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Experimental Procedures for details). The resulting probabilities give an estimate of the 

likelihood that each of the 850 objects occurs in each of the 126 decoded scenes.

In Figure 4A, labels in the black boxes indicate the most likely objects estimated for the 

corresponding decoded scene. For the harbor and skyline scene at upper right, the most 

probable objects predicted for the scene are “building,” “sky,” “tree,” “water,” “car,” “road,” 

and “boat.” All of these objects either occur in the scene or are consistent with the scene 

context. Inspection of the other examples in the Figure suggests that the most probable 

objects are generally consistent with the scene category.

To quantify how accurately the objects were decoded, we used the distribution of object 

probabilities estimated for each scene to calculate the likelihood of labeled objects in the 

scene. We then calculated the likelihood of the labeled objects from a naive distribution that 

assumes all 850 objects are equally likely to occur. The ratio of these likelihoods provides a 

measure of accuracy for the estimated object probabilities. Likelihood ratios greater than one 

indicate that the estimated object probabilities better predict the labeled objects in the scene 

than by picking objects at random (see Experimental Procedures for details).

Figure 4C shows the distribution of likelihood ratios for each subject, calculated for all 126 

decoded scenes. The medians and 95% confidence intervals of the median estimates are 

indicated by the black cross-hairs. Object prediction accuracy across all scenes indicates 

systematically greater-than-chance performance for all subjects (p <1 × 10−15 for all 

subjects, Wilcox rank-sum test; subject S1: W(126) = 9983; subject S2: W(126) = 11375; 

subject S3: W(126) = 11103; subject S4: W(126) = 10715).

The estimated object probabilities and the likelihood ratio analysis both show that the 

objects that are likely to occur in a scene can be predicted probabilistically from natural 

scene categories that are encoded in human brain activity. This suggests that humans might 

use a probabilistic strategy to help infer the likely objects in a scene from fragmentary 

information available at any point in time.

DISCUSSION

This study provides compelling evidence that the human visual system encodes scene 

categories that reflect the co-occurrence statistics of objects in the natural world. First, 

categories that capture co-occurrence statistics are consistent with our intuitive 

interpretations of natural scenes. Second, voxel-wise encoding models based on these 

categories accurately predict visually evoked BOLD activity across much of anterior visual 

cortex, including within several conventional functional ROIs. Finally, the category of a 

scene and its constituent objects can be decoded from BOLD activity evoked by viewing the 

scene.

Previous studies of scene representation in the human brain used subjective categories that 

were selected by the experimenters. In contrast, our study used a data-driven, statistical 

algorithm (LDA) to learn the intrinsic categorical structure of natural scenes from object 

labels. These learned, intrinsic scene categories provide a more objective foundation for 

scene perception research than is possible using subjective categories.
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One previous study of scene perception used a similar statistical learning approach to 

investigate the intrinsic category structure of natural scenes (Fei-Fei and Perona, 2005). In 

that study the input to the learning algorithm was visual features of intermediate spatial 

complexity. Because our goal was to determine whether the brain represents the object co-

occurrence statistics of natural scenes, we used object labels of natural scenes as input to the 

learning algorithm rather than intermediate visual features.

The voxel-wise modeling and decoding framework employed here (Kay et al., 2008; 

Mitchell et al., 2008; Naselaris et al., 2009; Naselaris et al., 2012; Nishimoto et al., 2011; 

Thirion et al., 2006) provides a powerful alternative to conventional methods based on 

statistical parametric mapping (Friston et al., 1996) or multivariate pattern analysis (MVPA; 

Norman et al., 2006). Studies based on statistical mapping or MVPA do not aim to produce 

explicit predictive models of voxel tuning, so it is difficult to generalize their results beyond 

the specific stimuli or task conditions used in each study. In contrast, the goal of voxel-wise 

modeling is to produce models that can accurately predict responses to arbitrary, novel 

stimuli or task conditions. A key strategy for developing theoretical models of natural 

systems has been to validate model predictions under novel conditions (Hastie et al., 2008). 

We believe that this strategy is also critically important for developing theories of 

representation in the human brain.

Our results generally corroborate the many previous reports of object selectivity in anterior 

visual cortex. However, we find that tuning properties in this part of visual cortex are more 

complex than reported in previous studies (see Supplemental Figures S7, S8–S11, and S16–

S19 for supporting results). This difference likely reflects the sensitivity afforded by the 

voxel-wise modeling and decoding framework. Still, much work remains before we can 

claim a complete understanding of what and how information is represented in anterior 

visual cortex (Huth et al., 2012 and Naselaris et al., 2012).

Several recent studies (Kim and Biederman, 2011; MacEvoy and Epstein, 2011; Peelen et 

al., 2009) have suggested that the lateral occipital complex (LO) represents, in part, the 

identity of scene categories based on the objects therein. Taken together these studies 

suggest that some sub-regions within LO should be accurately predicted by models that link 

objects with scene categories. Our study employs one such model. We find that the encoding 

models based on natural scene categories provide accurate predictions of activity in anterior 

portions of LO (Figure 3A–B). Note however, that our results do not necessarily imply that 

LO represents scene categories explicitly (see Supplemental Figures 16–19 for further 

analyses).

Functional MRI provides only a coarse proxy of neural activity and has a low SNR. In order 

to correctly interpret the results of fMRI experiments it is important to quantify how much 

information can be recovered from these data. Here we addressed this problem by testing 

many candidate models in order to determine a single set of scene categories that can be 

recovered reliably from the BOLD activity measured across all of our subjects (Figure 2A). 

This test places a clear empirical limit on the number of scene categories and objects that 

can be recovered from our data. These numbers are larger than what has typically been 

assumed in previous fMRI studies of scene perception (Epstein and Kanwisher, 1998; Peelen 
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et al., 2009; Walther et al., 2009; MacEvoy and Epstein, 2011), but they are still far smaller 

than the likely representational capacity of the human visual system.

Theoreticians have argued that the simple statistical properties of natural scenes explain 

selectivity to low-level features in peripheral sensory areas (Olshausen and Field, 1996; 

Lewicki, 2001; Smith and Lewicki, 2006). Behavioral data suggest that low-level natural 

scene statistics also influence the perception of scene categories (Oliva and Torralba, 2001). 

Though several qualitative theories have been proposed that link the object statistics of 

natural scenes with human scene perception (Biederman, 1981; Palmer, 1975), none have 

provided an objective, quantitative framework to support this link. The current study 

provides such a framework. Our data-driven, model-based approach shows that scene 

categories encoded in the human brain can bederived from the co-occurrence statistics of 

objects in natural scenes. This further suggests that the brain exploits natural scene statistics 

at multiple levels of abstraction. If this is true, then natural scene statistics might be used as 

a principled means to develop quantitative models of representation throughout the visual 

hierarchy.

The work reported here could be extended in several ways. For example, although the spatial 

distribution of objects within a scene appears to influence the representation of the scene 

(Biederman et al., 1982; Green and Hummel, 2006; Kim and Biederman 2011), the 

modeling framework used here makes no assumptions about the spatial distribution of 

objects within scenes. More sophisticated models that incorporate spatial statistics or other 

mediating factors such as attention may provide further information about the representation 

of scenes and scene categories in the human brain.

EXPERIMENTAL PROCEDURES

Functional MRI Data Acquisition

All fMRI data were collected at the UC Berkeley Brain Imaging Center using a 3 Tesla 

Siemens Tim Trio MR scanner (Siemens, Germany). For subjects S1, S3, and S4, a gradient-

echo echo planar imaging sequence, combined with a custom fat saturation RF pulse, was 

used for functional data collection. Twenty-five axial slices covered occipital, occipito-

parietal, and occipito-temporal cortex. Each slice had a 234 × 234 mm2 field of view, 2.60 

mm slice thickness, and 0.39 mm slice gap (matrix size = 104 × 104; TR = 2009.9 ms; TE = 

35 ms; flip angle = 74°; voxel size = 2.25 × 2.25 × 2.99 mm3).

For subject S2 only, a gradient-echo echo planar imaging sequence, combined with a custom 

water-specific excitation (fat-shunting) RF pulse was used for functional data collection. In 

this case thirty-one axial slices covered the entire brain, and each slice had a 224 × 224 mm2 

field of view, 3.50 mm slice thickness, and 0.63 mm slice gap (matrix size = 100 × 100; TR 

= 2004.5 ms; TE = 33 ms; flip andle = 74°; voxel size = 2.24 × 2.24 × 4.13 mm3).

Subject S1 experienced severe visual occlusion of the stimuli when the whole head coil was 

used. Therefore, for subject S1 the back portion (20 channels) of the Siemens 32 channel 

quadrature receive head coil was used as a surface coil. The full 32 channel head coil was 

used for subjects S2, S3 and S4.
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Stimuli

All stimuli consisted of color images selected from a large database of natural scenes 

collected from various sources. Each image was presented on an isoluminant gray 

background and subtended the central 20° × 20° square of the visual field. Images were 

presented in successive 4 second trials. On each trial a photo was ashed for 1 second at 5 

Hertz, followed by 3 second period where only the gray background was present. A central 

fixation square was superimposed at the center of the display, subtending 0.2° × 0.2° of the 

visual field. To facilitate fixation, the fixation square was randomly permuted in color (red, 

green, blue, white) at a rate of 3 Hertz. No eye tracking was performed during stimulus 

presentation. However, all subjects in the study were highly trained psychophysical 

observers having extensive experience with fixation tasks, and preliminary data collected 

during an identical visual task showed that the subject cohort maintained stable fixation. 

Note also that the visual stimuli contained no object labels.

Experimental Design

Functional MRI experiments consisted of interleaved runs that contained images from 

separate model estimation and validation sets. Data were collected over six sessions for 

subjects S1 and S4, and seven sessions for subjects S2 and S3. Each of the 35 estimation set 

runs was 5.23 minutes in duration and consisted of 36 distinct images presented two times 

each. Evoked responses to these 1260 images were used during model estimation. Each of 

21 5.23 minute-long validation set runs consisted of 6 distinct images presented 12 times 

each. The evoked responses to these 126 images were used during model validation. All 

images were randomly selected for each run with no repeated images across runs.

fMRI Data Processing

The SPM8 package (University College, London, UK) was used to perform motion 

correction, co-registration and reslicing of functional images. All other preprocessing of 

functional data was performed using custom software (MATLAB®, R2010a, MathWorks 

Inc. Natick, MA). Preprocessing was conducted across all sessions for each subject, using 

the first run of the first session as the reference. For each voxel, the preprocessed time series 

was used to estimate the hemodynamic response function (Kay et al, 2007). Deconvolving 

each voxel time course from the stimulus design matrix produced an estimate of the 

response amplitude—a single value—evoked by each image, for each voxel. These response 

amplitude values were used in both model estimation and validation stages of data analysis. 

Retinotopic visual cortex was identified in separate scan sessions using conventional 

methods (Hansen et al. 2007). Standard functional localizers (Spiridon et. al., 2006) were 

also collected in separate scan sessions and were used to identify the anatomical boundaries 

of conventional ROIs.

Learning Database and Stimulus Datasets

Natural scene categories were learned using Latent Dirichlet Allocation (Blei et al., 2003; 

Supplemental Figure S1 for more details). The LDA algorithm was applied to the object 

labels of a learning database of 4116 natural scenes compiled from two image datasets. The 

first image dataset (Lotus Hill; Yao et al., 2007) provided 2903 (71 percent) of the learning 

Stansbury et al. Page 10

Neuron. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



database scenes. The remaining scenes were sampled from an image dataset that was created 

in house. In both datasets, all objects within the visible area of each image were outlined and 

labeled. Each in-house image was labeled by one of 15 naïve labelers. Since each image was 

labeled by a single labeler, no labels were combined when compiling the databases. In a 

supplemental analysis we verify that scene context created negligible bias in the statistics of 

the object labels (Supplemental Figure S2). Ambiguous labels, misspelled labels, and rare 

labels having synonyms within the learning database were edited accordingly (see 

Supplemental Procedures 1). Note that the 1260 stimulus scenes in the estimation set were 

sampled from the learning database. The validation set consisted of an independent set of 

126 natural scenes labeled in house.

Voxel-wise Encoding Modeling Analysis

Encoding models were estimated separately for each voxel using 80 percent of the responses 

to the estimation set stimuli selected at random. The model weights were estimated using 

regularized linear regression in order to best map the scene category probabilities for a 

stimulus scene onto the voxel responses evoked when viewing that scene. The category 

probabilities for a stimulus scene were calculated from the posterior distribution of the LDA 

inference procedure, conditioned on the labeled objects in the scene (see Supplemental 

Procedure 6 for details). Half of the remaining 20 percent of the estimation data was used to 

determine model regularization parameters and the other half of the estimation data was 

used to estimate model prediction accuracy (see Supplemental Procedure 7 for more details 

on encoding model parameter estimation).

Prediction accuracy estimates were used to determine the single best set of categories across 

subjects. For each of 760 different scene category settings (defining the number of distinct 

categories and vocabulary size assumed by LDA during learning), we calculated the number 

of voxels with prediction accuracy above a statistical significance threshold (correlation 

coefficient > 0.21; p < 0.01; see Supplemental Procedure 8 for details on defining 

statistically significant prediction accuracy). This resulted in a vector of 760 values for each 

subject, where each entry in the vector provided an estimate of the amount of cortical 

territory that was accurately predicted by encoding models based on each category setting. 

To combine the cortical territory estimates across subjects, the vector for each subject was 

normalized to sum to one (normalization was done to control for differences in brain size 

and signal-to-noise ratios across subjects) and the Hadamard (element-wise) product of the 

normalized vectors was calculated. This resulted in a combined distribution of 760 values 

(see Figure 2A). The peak of the combined distribution gave the single best set of categories 

across subjects. For more details on this issue see Supplemental Procedure 9.

When calculating the proportion of response variance explained in each ROI by the 

encoding models, statistical significance was determined by permutation. Specifically, the 

proportion of variance explained was estimated using the responses to the validation set for 

each voxel-wise encoding model. These explained variance estimates were then permuted 

across all cortical locations and the average was estimated within each functional ROI. Thus, 

each permutation produced a random sample of average explained variance within the 

boundaries of each functional ROI. Statistical significance was defined as the upper 99th 
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percentile of the distribution of average explained variance estimates calculated within each 

ROI after 1000 voxel permutations. For more details on this procedure see Supplemental 

Procedure 10.

Decoding Analysis

Voxels were selected for the decoding analysis based on the predictive accuracy of their 

corresponding encoding models on the held-out estimation data set. To control for multiple 

comparisons during voxel selection, the predictive accuracy threshold was defined as a 

correlation coefficient greater than 0.34; p < 5 × 10−5, which is roughly the inverse of the 

number of cortical voxels in each subject. Using this criterion, 512 voxels were selected for 

subject S1, 158 for S2, 147 for S3, and 93 for S4.

Decoders were estimated using the selected voxels’ responses to the scenes in the estimation 

set. Decoder weights were estimated using elastic-net-regularized multinomial regression 

(Friedman et al, 2008) using 80 percent of the estimation set data. The remaining 10 percent 

of the estimation responses were used to determine model regularization parameters. (The 

10 percent of the estimation responses that were used to calculate encoding model prediction 

accuracies for voxel selection were not used to estimate the decoder). After weight 

estimation, the decoders were used to predict the probability that each scene in the validation 

set belonged to each of the 20 best scene categories identified across subjects from the 

responses evoked within the selected population of voxels. For more details on the decoding 

parameter estimation see Supplemental Procedure 13.

Decoder prediction accuracy for each scene was defined to be the correlation coefficient 

(Pearson’s r) calculated between the category probabilities predicted by the decoder and the 

category probabilities inferred using LDA, and conditioned on the objects that were labeled 

in each scene. Statistical significance of decoder prediction accuracy across all scenes was 

determined using a Wilcox rank-sum test comparing the distribution of decoder prediction 

accuracies to a null distribution of prediction accuracies. For more details, see Supplemental 

Procedures 13.

Using the category probabilities predicted by the decoder for each scene in the validation 

set, we repeatedly picked from the 850 objects comprising the object vocabulary for the 20 

best scene categories identified across subjects. Each object was picked by first drawing a 

category index with probability defined by the decoded scene category probabilities, 

followed by picking an object label with probability defined by the learned LDA model 

parameters. The learned LDA model parameters capture the statistical correlations of the 

objects in the learning database. Thus the frequency of an object being picked also obeyed 

this correlation. The frequency distribution resulting from 10,000 independent object label 

picks was then normalized. The result defined an estimated distribution of occurrence 

probabilities for the objects in the vocabulary. Statistical significance of object decoding 

accuracy across all scenes was determined using a Wilcox rank-sum test comparing the 

distribution of likelihood ratios for the decoder to a null distribution of likelihood ratios. For 

more details on this issue see Supplemental Procedures 14.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The brain represents scene categories that reflect co-occurrence statistics of 

objects in scenes

• These scene categories are represented in many anterior visual regions of 

interest

• Scene categories and individual objects can be decoded from measured brain 

activity

• fMRI signals contains more information about categories than previously 

appreciated
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Figure 1. Overview of Analyses
(A) Learning Database. We compiled a large database of labeled natural scenes. All objects 

in each of the scenes were labeled by naïve participants. See also Supplemental Figure S2.

(B) Scene Categories Learned by LDA. LDA was used to learn scene categories that best 

capture the co-occurrence statistics of objects in the learning database. LDA defines each 

scene category as a list of probabilities, where each probability is the likelihood that any 

particular object within a fixed vocabulary will occur in a scene. Lists of probable objects for 

four example scene categories learned by LDA are shown on the right. Each list of object 

labels corresponds to a distinct scene category; within each list saturation indicates an 

object’s probability of occurrence. The experimenters, not the LDA algorithm, assigned 

intuitive category names in quotes. Once a set of categories is learned, LDA can also be used 

to infer the probability that a new scene belongs to each of the learned categories, 

conditioned on the objects in the new scene. See also Supplemental Figure S2.

(C) Voxel-wise Encoding Model Analysis. Voxel-wise encoding models were constructed 

to predict BOLD responses to stimulus scenes presented during an fMRI experiment. Blue 
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represents inputs to the encoding model, green represents intermediate model steps, and red 

represents model predictions. To generate predictions, the labels associated with each 

stimulus scene (blue box) are passed to the LDA algorithm (dashed green oval). LDA is used 

to infer from these labels the probability that the stimulus scene belongs to each of the 

learned categories (solid green oval). In this example the stimulus scene depicts a plate of 

fish so the scene categories “Dining” and “Aquatic” are highly probable (indicated by label 

saturation), while the category “Roadway” is much less probable. These probabilities are 

then transformed into a predicted BOLD response (red diamond) by a set of linear model 

weights (green hexagon). Model weights were fit independently for each voxel using a 

regularized linear regression procedure applied to the responses evoked by a set of training 

stimuli.

(D) Decoding Model Analysis. A decoder was constructed for each subject that uses BOLD 

signals evoked by a viewed stimulus scene to predict the probability that the scene belongs 

to each of a set of learned scene categories. Blue represents inputs to the decoder, green 

represents intermediate model steps, and red represents decoder predictions. To generate a 

set of category probability predictions for a scene (red diamond), evoked population voxel 

responses (blue box) are mapped onto the category probabilities by a set of multinomial 

model weights (green hexagon). Predicted scene category probabilities were then used in 

conjunction with the LDA algorithm to infer the probabilities that specific objects occurred 

in the viewed scene (red oval). The decoder weights were fit using regularized multinomial 

regression applied to the scene category probabilities inferred for a set of training stimuli 

using LDA and the responses to those stimuli.
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Figure 2. Identifying the Best Scene Categories for Modeling Data Across Subjects
(A) Encoding model performance across a range of settings for the specified number of 

distinct categories learned using LDA (y-axis) and vocabulary size (x-axis). Each pixel 

corresponds to one of the candidate scene categories learned by LDA when applied to the 

learning database. The color of each pixel represents the relative amount of cortical territory 

across subjects that is accurately predicted by encoding models based on a specific setting 

for the number of individual categories and vocabulary size. The number of individual 

categories was incremented from 2 to 40. The object vocabulary was varied from the 25 

most frequent to the 950 most frequent objects in the learning database. The red dot 

identifies the number of individual categories and vocabulary size that produce accurate 

predictions for the largest amount of cortical territory across subjects. For individual results 

see Supplemental Figure S3.

(B) Ten examples taken from the 20 best scene categories identified across subjects 

(corresponding to the red dot in (A)). The seven most probable objects for each category are 

shown. Format is the same as in Figure 1B. See Supplemental Figures S4–S5 for 

interpretation of all 20 categories.
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Figure 3. Scene Categories Learned from Natural Scenes are Encoded in Many Anterior Visual 
ROIs
(A) Encoding model prediction accuracies are mapped onto the left (LH) and right (RH) 

cortical surfaces of one representative subject (S1). Gray indicates areas outside of the scan 

boundary. Bright locations indicate voxels that are accurately predicted by the corresponding 

encoding model (prediction accuracy at two levels of statistical significance—p < 0.01 (r = 

0.21) and p < 0.001 (r = 0.28)—are highlighted on the colorbar). ROIs identified in separate 

retinotopy and functional localizer experiments are outlined in white. The bright regions 
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overlap with a number of the ROIs in anterior visual cortex. These ROIs are associated with 

representing various high-level visual features. However, the activity of voxels in retinotopic 

visual areas (V1, V2, V3, V4, V3a, V3b) are not predicted accurately by the encoding 

models. Prediction accuracy was calculated on responses from a separate validation set of 

stimuli not used to estimate the model. ROI Abbreviations: Retinotopic Visual Areas 1–4 

(V1–V4); Para-hippocampal Place Area (PPA); FFA, Fusiform Face Area (PPA); 

Extrastriate Body Area (EBA); Occipital Face Area (OFA); Retrosplenial Cortex (RSC); 

Transverse Occipital Sulcus (TOS). Center key: A=anterior; P=posterior, S=superior; 

I=inferior. For remaining subjects’ data, see Supplemental Figure S6.

(B) Each bar indicates the average proportion of voxel response variance in an ROI that is 

explained by voxel-wise encoding models estimated for a single subject. Bar colors 

distinguish individual subjects. Error bars are standard error from the mean. For all anterior 

visual ROIs and for all subjects, encoding models based on scene categories learned from 

natural scenes explain a significant proportion of voxel response variance (p < 0.01, 

indicated by red lines).

(C) The average encoding model weights for voxels within distinct functional ROIs. 

Averages are calculated across all voxels located within the boundaries of an ROI, and 

across subjects. Each row displays the average weights for the scene category listed on the 

left margin. Each column distinguishes average weights for individual ROIs. The color of 

each pixel represents the positive (red) or negative (blue) average ROI weight for the 

corresponding category. The size of each pixel is inversely proportional to the magnitude of 

the standard error of the mean estimate; larger pixels indicate selectivity estimates with 

greater confidence. Standard error scaling is according to the data within an ROI (column). 

ROI tuning is generally consistent with previous findings. However, tuning also appears to 

be more complex than indicated by conventional ROI-based analyses For individual 

subjects’ data, see Supplemental Figure S7; see also Supplemental Figures S8–S15.
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Figure 4. Scene Categories and Objects Decoded from Evoked BOLD Activity
(A) Examples of scene category and object probabilities decoded from evoked BOLD 

activity. Blue boxes (columns 1 and 4) display novel stimulus scenes observed by subjects 

S1 (top row) through S4 (bottom row). Each red box (columns 2 and 5) encloses the top 

category probabilities predicted by the decoder for the corresponding scene to the left. The 

saturation of each category name within the red boxes represents the predicted probability 

that the observed scene belongs to the corresponding category. Black boxes (columns 3 and 

6) enclose the objects with the highest estimated probability of occurring in the observed 

scene to the left. The saturation of each label within the black boxes represents the estimated 

probability of the corresponding object occurring in the scene. See also Supplemental 

Figures S16–S19.

(B) Decoding accuracy for predicted category probabilities. Category decoding accuracy for 

a scene is the correlation coefficientbetween the category probabilities predicted by the 

decoder and the category probabilities inferred directly using LDA. Category probabilities 

were decoded for 126 novel scenes. Each plot shows the (horizontally mirrored) histogram 

Stansbury et al. Page 22

Neuron. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of decoding accuracies for a single subject. Median decoding accuracy and 95% confidence 

interval (CI) calculated across all decoded scenes is represented by black cross-hairs 

overlayed on each plot. For subjects S1–S4, median decoding accuracy was 0.72 (CI : [0.62, 

0.78]), 0.68 (CI: [0.53, 0.80]), 0.65 (CI: [0.55, 0.72]), 0.80 (CI: [0.72, 0.85]), respectively. 

For a given image, decoding accuracy greater than 0.58 was considered statistically 

significant (p < 0.01), and is indicated by the red line. A large majority of the decoded 

scenes are statistically significant, including all examples shown in (A).

(C) Decoding accuracy for predicted object probabilities. Object decoding accuracy is the 

ratio of the likelihood of the objects labeled in each scene given the decoded category 

probabilities, to the likelihood of the labeled objects in each scene if all were selected with 

equal probability (chance). A likelihood ratio greater than one (red line) indicates that the 

objects in a scene are better predicted by the decoded object probabilities than by selecting 

objects randomly. Each plot shows the (horizontally mirrored) histogram of likelihood ratios 

for a single subject. Median likelihood ratios and 95% CI are represented by the black cross-

hairs. For subjects S1–S4, the median likelihood ratio was 1.67 (CI: [1.57, 1.76]), 1.66 (CI: 

[1.52, 1.72]), 1.62 (CI: [1.45, 1.78]), 1.66 (CI: [1.56, 1.78]) for subjects S1–S4, respectively.
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