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ABSTRACT OF THE DISSERTATION

Resource-Aware Predictive Models in Cyber-Physical Systems

By

Maral Amir

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Tony Givargis, Chair

Cyber-Physical Systems (CPS) are composed of computing devices interacting with physical

systems. Model-based design is a powerful methodology in CPS design in the implementation

of control systems. For instance, Model Predictive Control (MPC) is typically implemented

in CPS applications, e.g., in path tracking of autonomous vehicles. MPC deploys a model to

estimate the behavior of the physical system at future time instants for a specific time hori-

zon. Ordinary Differential Equations (ODE) are the most commonly used models to emulate

the behavior of continuous-time (non-)linear dynamical systems. A complex physical model

may comprise thousands of ODEs that pose scalability, performance and power consumption

challenges. One approach to address these model complexity challenges are frameworks that

automate the development of model-to-model transformation.

In this dissertation, a state-based model with tunable parameters is proposed to operate as

a reconfigurable predictive model of the physical system. Moreover, we propose a run-time

switching algorithm that selects the best model using machine learning. We employed a

metric that formulates the trade-off between the error and computational savings due to

model reduction.

Building statistical models are constrained to having expert knowledge and an actual under-

standing of the modeled phenomenon or process. Also, statistical models may not produce

xii



solutions that are as robust in a real-world context as factors outside the model, like disrup-

tions would not be taken into account. Machine learning models have emerged as a solution

to account for the dynamic behavior of the environment and automate intelligence acquisi-

tion and refinement. Neural networks are machine learning models, well-known to have the

ability to learn linear and nonlinear relations between input and output variables without

prior knowledge. However, the ability to efficiently exploit resource-hungry neural networks

in embedded resource-bound settings is a major challenge.

Here, we proposed Priority Neuron Network (PNN), a resource-aware neural networks model

that can be reconfigured into smaller sub-networks at runtime. This approach enables a

trade-off between the model’s computation time and accuracy based on available resources.

The PNN model is memory efficient since it stores only one set of parameters to account

for various sub-network sizes. We propose a training algorithm that applies regularization

techniques to constrain the activation value of neurons and assigns a priority to each one.

We consider the neuron’s ordinal number as our priority criteria in that the priority of the

neuron is inversely proportional to its ordinal number in the layer. This imposes a relatively

sorted order on the activation values. We conduct experiments to employ our PNN as the

predictive model in a CPS application. We can see that not only our technique will resolve

the memory overhead of DNN architectures but it also reduces the computation overhead

for the training process substantially. The training time is a critical matter especially in

embedded systems where many NN models are trained on the fly.
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Chapter 1

Introduction

1.1 Cyber-Physical Systems

The term cyber-physical systems (CPS) refers to a generation of systems that are composed

of computing devices interacting with the physical world. The expanded capabilities of

the physical world through computation, communication ,and control is the key to many

emerging advanced technologies. In today’s applications, CPS is designed to control physical

plants such as industrial machines, land vehicles, medical equipment, spacecraft, jet engines,

etc. The control systems that are implemented to manage these complex physical systems

also have a relatively high level of complexity.

Sequential methodologies [50] are well-established techniques to cope with the complexity

of designing CPSs. The idea is, first, to select a promising physical system, then define the

controller and finally address design challenges of the embedded computer system. To this

end, system and control engineers have developed novel engineering methods based on time

and frequency domain processing, state space modeling, filtering, prediction, optimization,

and advanced control technologies. At the same time, computer scientists have pioneered in

1



advancing computing techniques, programming languages, embedded system architectures.

Such sequential separation of decisions reduces the complexity of the design efforts. However,

like most greedy approaches, the overall solution is unlikely to be the best possible design

due to missed trade-offs between cyber and physical design knobs.

CPS is effectively developed in a real world environment in which its control system is

connected to a ”real physical system”. However, important criterion for efficient development

and testing of CPS may include three factors: cost, time-to-market, and safety. The multi-

dimensional and demanding design cycle of CPS motivates developers to leverage techniques

that reduce development duration and cost. Moreover, difficulty and safety considerations

in online testing of CPS with real systems lead to a need for simulation and offline design

methodologies with high accuracy.

CPS research has emerged as solution to integrate the science and engineering principles

and requires professionals from multiple fields from computer science and network engineer-

ing to automation and control to collaborate closely. Emerging CPS solutions is based on

developing computer and network systems while monitoring and controlling the physical pro-

cesses on the basis of environmental perception. This integration facilitates real-time, safe,

reliable development of computing devices interacting with the physical systems through net-

work commutations. The data acquisition modules in physical systems collect data through

advanced sensing devices in CPS system and pass data to the computing devices. These com-

puting devices complete a given task such as fault detection, signal processing data security

processing ,and feedback control through actuation technologies.

2



1.2 Model-Based Design

Model-based design is a powerful methodology that utilizes mathematical models in CPS

design. Modern CPS design approaches is based on synergistic interaction of software,

hardware, and physical aspects with equal importance. Therefore, physical models have to

be treated as equally important as cyber models. Fast executable models of physical systems

are needed especially for Model-based Predictive Control (MPC) or real-time Hardware-In-

the-Loop (HIL) simulations.

1.2.1 Model Predictive Control

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC), is an

advanced model-based control method. MPC makes explicit use of a model of the physical

system to estimate its behavior for a given stream of inputs in a predetermined prediction

horizon. The predicted outputs depend on the past inputs/outputs, and the future control

signals [17]. As shown in Figure 1.1, these future control signals are calculated by the

optimizer taking into account the cost function and enforced constraints. The cost function

usually takes the form of a quadratic function of errors between the predicted output signal

and the reference trajectory. In the standard approach, Ordinary Differential Equations

(ODE) are employed as the predictive model to represent the dynamic behavior of a physical

system. Iterative methods to approximate a solution for non-linear ODEs have introduced

challenges in the design of embedded MPCs in terms of scalability, performance, and power

consumption [31].

The computational overhead in traditional MPC grows exponentially with the length of the

prediction horizon [11]. Research shows that a stable MPC controller requires a sufficiently

large prediction horizon [47]. On the other hand, short prediction horizons are preferred

3



Figure 1.1: Model predictive control loop.

for improved prediction accuracy of predictive models. This is because harmful effects of

the poor estimates are amplified over a long prediction horizon time. Here, the problem is

addressed by proposing an MPC approach that uses an adaptive prediction horizon with

respect to quality measures [23]. However, the numerical effort needed in order to solve the

optimal control problem for a long prediction horizon still remains significant.

1.2.2 Physical Models

Physical models that capture and emulate the behavior of real physical systems have gained

extensive research attention in CPS design. The dynamic behavior of a physical system is

typically calculated from the physical laws governing the mechanical, electrical and ther-

modynamic attributes of the system. The variations of physical quantities such as motion,

velocity, pressure, volume and temperature as a function of time or space, may be captured

as a set of equation-driven models, e.g. ODEs. As such, system engineers model physical

problems using mathematical equations, and then solve these equations to study the behavior

of the targeted cyber physical system.

Complex models of physical systems may be comprised of thousands of non-linear Ordinary

Differential Equations (ODE), requiring considerable computing power to execute. These

ODE models introduce challenges in terms of scalability, performance, power consumption

and accuracy [31, 62]. Discretization methods (Euler, zero-order hold, etc.) are applied

4



to transform the continuous-time differential equations into discrete-time equivalents, ap-

propriate for numerical computing. The discretized differential equations are solved using

numerical algorithms. Iterative solutions are used to solve the non-linear ODE models of

physical systems, where a series of linear equations are solved iteratively to converge to the

solution for the non-linear ODEs [52]. Therefore, the computation complexity of solving or-

dinary differential equations may grow with respect to type of the discretization algorithm,

numerical ODE solver, number and order of the ordinary differential equations in the physi-

cal model. Moreover, the demand for higher accuracy and more mathematically sound CPS

solutions cause an increase in resource and energy consumption that must be taken into

account during the design cycle [59].

The work in [9] proposes a state space model of a physical system augmented with state

and output disturbance variables. The dynamic behavior of a physical system can be de-

scribed using state machine-based models. The state machines are comprised of states and

transitions between those states that are triggered with respect to conditional expressions or

predicates. State machines may be used to break complex systems into manageable states

and state transitions. Therefore, state-space representation of physical systems can be re-

formulated as concurrent state machines with time-interval behavior, where a global clock

conducts the trigger to update the state variables and output actions.

Another method that is proposed to handle the computational issue associated with MPC

systems is to use accelerated predictive models of the physical system. Different variants

of NNs (e.g., recurrent neural networks [14]) hold promising performance for time-series

prediction as they can easily be built to predict multiple steps ahead all at once. These

models are well-known to have the ability to learn linear and non-linear relations between

input and output variables without prior knowledge [27]. However, the use of NN models for

long prediction horizon MPC problems could raise scalability and computational complexity

challenges. The state-of-the-art methodologies are focused on reducing the size of the NN

5



models without significantly affecting the performance [70, 73, 97]. These methodologies

leverage the intrinsic error tolerance property of the NN models due to their parallel and

distributed structure. Therefore, model reduction schemes could be exploited to employ

the NN as the predictive model in the MPC loop. Several recent studies have focused on

rescaling the size of the NN to adjust the resource usage on the embedded platform with

respect to response time, power, and accuracy targets [74]. In other words, several sizes of

the neural network are available at runtime to manage resources for inference time-, safety-,

and energy-constrained tasks. Moreover, continuous learning of neural networks in data-

driven modeling [87], transfer learning techniques [44], and adaptive modeling [38] impose

significant training-time constraints at runtime.

1.3 Reconfigurable Predictive Models

A real physical system is under constant change from the effects of the environment. More-

over, limited hardware resources impose a burden on the development of CPS applications.

In model-based design applications such as MPC, the complexity of the model under control

has a direct influence on the global performance of the system. Specifically, different levels

of complexity for the target physical system shall be provided by the user for a specific ap-

plication. The work in [100] evaluates the performance of a hybrid controller to steer a car in

straight and curved trajectory segments. It suggests employing a relatively more advanced

model of the vehicle dynamics [72] in curvature path as opposed to fast and simple kinematic

model of the vehicle to follow straight lines on the path. Therefore, it has been recognized

that predictive models that can be reconfigured to adjust their accuracy from coarse-grained

time critical situations to fine-grained scenarios in which safety is paramount are central in

designing resource-constrained cyber-physical systems.
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1.4 Thesis Contributions and Organization

In this dissertation, we propose novel abstraction techniques to address trading off gran-

ularity against complexity in predictive models for cyber-physical systems. Our proposed

abstraction formulations can be dynamically reconfigured to different precision granularities

at runtime. The organization of the rest of this thesis can be summarized as follows:

• In Chapter 2 a Harmonic Equivalent State (HES) Machine model generation frame-

work is proposed. This model captures sampled data of a physical signal as the input in

respective time windows. HES Machine generates reconfigurable state-machine model

of the physical system with an intrinsic disturbance feature to adjust the overall model

accuracy with respect to proposed tuning parameters for dynamic accuracy. Moreover,

the execution time of the model may be adjusted in tradeoff with accuracy in order

to adapt to coarse-grained time critical situations or fine-grained safety critical sce-

narios. The main contribution of the proposed modeling framework is the inclusion of

frequency domain properties in signal synthesis to adopt the reconfigurability feature

to the model. Also, as opposed to ODE equivalents, the proposed framework do not

perform compute-intensive and iterative tasks to solve the proposed physical model.

The input to this model is constrained to be periodic.

• In Chapter 3 machine learning is employed to use the previously introduced HES Ma-

chine model in non-periodic runtime applications. That is, the output of the proposed

physical model can adapt to variations in inputs at runtime. ODE models are employed

to train the proposed model at design-time. The effectiveness of the proposed model

is evaluated in a closed-loop MPC for path tracking application. The performance of

the model is compared with state-of-the-art ODE-based models, in terms of execution

time and model accuracy.

• in Chapter 4 a better implementation of HES Machine model is proposed in that its
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performance in terms of execution time and model accuracy is improved. The machine

learning model is modified to better estimate the dynamic behavior of the physical

system. A novel switching model predictive control methodology is proposed based

on HES Machine as the predictive model. Machine Learning techniques are employed

to design this runtime switching algorithm that determines the optimal granularity

level of the current predictive model in use. Simulation experiments are conducted to

evaluate the switching controller in a path tracking application containing curved and

straight routes.

• in Chapter 5 a reconfigurable Neural Networks (NN) model is proposed. This NN

model can be reconfigured to various network sizes at runtime while storing only one

set of weight parameters for memory efficiency. a training algorithm is developed that

controls the priority of each neuron in the computation of the model’s output. Reg-

ularization techniques are applied to enforce a priority on each neuron. The neuron’s

ordinal number is considered as our priority criteria in that the priority of the neuron

is inversely proportional to its ordinal number. Therefore, the NN model can be recon-

figured to smaller sizes by eliminating low priority neurons. This approach allows the

trade-off between the model’s computation time and accuracy in resource-constrained

systems.

• In Chapter 6, the thesis is concluded and future research directions are addressed.
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Chapter 2

HES Machine: Harmonic Equivalent

State Machine Model

2.1 Introduction

In this chapter, we present a framework to generate a Harmonic Equivalent State (HES) Ma-

chine model of the physical systems. One of the merits of the proposed state machine-based

model is that the state machines can eliminate execution of compute-intensive and iterative

tasks for describing the behavior of the physical systems. The model accommodates recon-

figurable parameters that allow the user to have trade-off between accuracy and execution

time in CPS design. For validation purposes, we compare our model performance with state-

of-the-art models in terms of execution time and accuracy. The simulation results indicate

that our generated HES model executes 38% faster than ODE-based equivalent model with

same level of model accuracy.

Model-based design in Cyber-Physical Systems (CPS) provides abstraction and modeling

techniques to integrate the dynamics of the physical processes with software and communi-
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cation components. As opposed to desktop computing, CPS should be dynamically recon-

figurable and adapt to changes in the environment. Application-specific disturbance models

may be included to predict the effect of unknown physical disturbances that perturb system

behavior and incorporate these effects on the input and state variables for control system

design. Complex CPS applications such as in industrial machines, land vehicles, medical

equipment, spacecraft, jet engines require new computer-aided methods for modeling, simu-

lation and offline design. These methodologies are influenced by the need for lower time to

market and higher quality, reliability and safety for the CPS design.

In the literature, some research has applied Hardware-in-the-Loop (HIL) real-time simulation

as a technique to improve estimation accuracy and validate the developed strategies. In real-

time simulation methods, the input and output signals show the same time-dependent values

as the real dynamic system. The HIL technique aims to model the real world scenarios in

an abstracted environment in which the ”real physical system (plant)” is replaced with

the ”simulated physical system”. The models of the physical systems may be employed to

emulate their real behavior with regards to the laws of physics and enable execution of test

scenarios that would be prohibitively dangerous in a real system. Moreover, the physical

model should account for the impact of measurable and unmeasurable intruding components

caused by the surrounding environment (e.g. wind, noise, etc.) in order to evaluate and verify

the robustness of the system under test. Therefore, dynamic model reduction in terms of

accuracy may benefit HIL in emulating real-life scenarios during testing and verification.

Figure 2.1 illustrates the application of a real-time HIL simulation to test the performance

of the Controller Unit in a closed-loop powertrain system model [86]. The Powertrain block

includes a group of fully assembled components, e.g. engine, transmission, drive shafts,

differentials, etc., that generate power and transfer it to the road surface. The power con-

sumption in the loop is also dependent on the speed of the vehicle which may be modeled

as a time-varying variable in a Driving Route Model block. For this purpose, the standard
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driving cycles such as NEDC, ECE and UDDS [90, 91] as a set of sampled data from the

environment may be applied.

Figure 2.1: Hardware-in-the-loop testing for power train system model.

Another use of model-based design in CPS application is Model Predictive Control (MPC).

MPC systems are a class of control algorithms that estimate the behavior of the physical

system under control through the use of computational models. The control inputs are

optimized to drive the predicted outputs of the model towards the desired trajectory. Closed-

loop performance of MPC algorithms is directly correlated with the accuracy of the physical

model. Two general techniques to eliminate the steady-state offset error in the closed-loop

systems are: 1) including the tracking error in the objective function of the controller, 2)

augmenting the predictive model with a data-based disturbance model [71]. Most industrial

MPC applications add a constant step disturbance to the output of the physical model to

consider the impact of the disturbance in the closed-loop system. The work in [66] proposes

a robust MPC algorithm in which a linearized model of a ship is integrated with a wind

disturbance model to solve the problem of the ship’s control actions in the presence of wind

disturbance. This approach requires the user to design a disturbance model and integrate it

in the loop with predictive model of the physical system [96]. The state-of-the-art modeling

techniques for HIL simulations and MPC applications followed by our contributions are

summarized in Section 2.2.
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2.2 Related Work

In control system study, the model of the physical system is developed to conform with

dynamical system analysis and control system design requirements; that is, simplification

and adaptation with respect to state of the system is required [77]. In model-based design

applications such as MPC or real-time HIL simulations, the complexity of the model under

control has direct influence on the global performance of the system. Specifically, different

levels of complexity for the target physical system shall be provided by the user for a specific

application. The work in [26] proposes an integrated library of electro-hydraulic models with

different complexities. The purpose of the work is to provide the appropriate model with

regards to the domain and timing requirements in design-time. However, run-time dynamic

disturbance caused by the environment remains neglected.

Complex physical system models may be implemented as thousands of ODEs. The ODE

description of a system requires approximations via solver methods such as Euler and Runge-

Kutta, to be suitable for computations in computing devices [78]. The demand for more

accurate and mathematically sound CPS solutions, cause an increase in resource utilization

and energy consumption [59]. Research in model-based design techniques for CPS have in-

troduced solutions to overcome some of the challenges induced by the complexity of ODE

models. One approach is to implement the ODEs on Field-Programmable Gate Arrays

(FPGA) using Lookup Tables (LUTs) to speed up simulation and enable parallel execu-

tion [45]. In general, even though the FPGA implementation of ODE models may improve

the execution efficiency for real-time applications, it has implementation challenges regarding

limited resources especially for complex ODE models. Hence, a better approach of modeling

and solving of ODE may be required to reduce the complexity not only on FPGAs but also

on general CPUs.

A state space representation of ordinary differential equations is described in [28] to obtain
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a discrete-time solution prior to FPGA implementation. Here, a state space meta model is

introduced to model the ordinary differential equation and the respective discrete-time solu-

tion. Atlas Transformation Language (ATL) [49] is employed as the framework to implement

the model transformation. Here in this work, the experimental results are based upon simple

first order differential equations and their technique may not be applicable to more complex

ODE physical models. Moreover, the proposed meta models may still carry the complexity

of thousands of ODEs, resulting in an implementation overhead that is prohibitive in most

constrained system architectures.

The work in [48] proposes a state-based heart model generated from real specifications to

be used in a closed-loop system. Implantable cardiac pacemakers monitor and repair the

abnormalities in heart rhythms. HIL simulation of a pacemaker is essential to test and verify

its functionality with respect to a heart model prior to real implantation. The heart model

is implemented in Simulink environment and the HDL coder toolbox is used to generate

Verilog code for hardware implementation. The proposed approach is application specific

which requires user expertise to implement the model of the heart. Moreover, relying on the

HDL coder toolbox for more complex models may require fundamental modifications in the

generated Verilog code.

One solution to challenges that arise from the complexity of the ODE-based physical models

is frameworks and associated tools that automate model generation and transformation for

the target application [75]. Model transformations conduct automated and semi-automated

mapping of one or couple of models into another alternative models in order to incorporate

flexibility and compatibility in model-based design for CPS [6].
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2.3 Contributions

In this work we present an automation framework to generate dynamic state machine model

of a physical system augmented with a disturbance feature for Cyber-Physical Systems (CPS)

applications. The model accommodates reconfigurable parameters that allow the user to have

tradeoff between accuracy and execution time in CPS design. The accuracy of the physical

signal may get adjusted during runtime to adopt to the system performance and robustness

in the case of sudden changes that may impact the system dynamics. Our contributions in

this work can be summarized as follows:

1. Designing a dynamic reconfigurable state machine model for targeted physical systems.

2. Providing tunable parameters to adjust the granularity of the generated model for adap-

tation to coarse-grained time critical situations or fine-grained safety critical scenarios.

3. Develop an automated framework to generate the model and its executable C code. The

code may be implemented in a hardware-in-the-loop for final system testing and inte-

gration. Design objectives, model accuracy, and execution time, facilitate the evaluation

and verification of the model for embedded systems implementation.

The rest of the chapter is organized as follows; Section 2.4 describes the proposed automated

framework that captures physical systems as a set of generated state machine equivalents.

We demonstrate the performance of our framework using two benchmarks and present the

results in Section 2.5. Finally, we state our conclusions in Section 2.6.
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Figure 2.2: High level architecture of the proposed framework illustrates the HES machine
model generation process.
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2.4 Methodology

The high-level architecture of the proposed framework is depicted in Figure 2.2. The whole

framework is based on the concept of signal decomposition and synthesis to generate a re-

configurable state machine model of a target physical system. The input to the framework

is sampled signal of size N . Fast Fourier Transform (FFT) algorithm is employed to decom-

pose the signal and derive the frequency information. A synthesis algorithm is presented to

integrate the decomposed components of the physical signal in the form of a set of concurrent

state machines. The synthesis algorithm employs (N/2+1) inverse of the signal harmonic

frequencies and respective FFT coefficient values, as the periods and output magnitudes

of concurrent state machines respectively. Band-pass filter is used to translate the output

square waves of the concurrent state machine models into sinusoidal signals. The sinusoidal

output signals, one per state machine, represent the signal harmonic components. Finally,

the harmonic components are integrated to generate a dynamic state machine model for the

target physical system. The decomposition (analysis) and synthesis algorithms are described

in details in the following sections.

2.4.1 Decomposition

The input to the proposed framework is N number of samples for a given physical signal

in time windows of length T . The FFT algorithm is used to derive the frequency spectrum

of the physical signal on each time window. Later on, this frequency domain information is

employed to synthesize the signal into a state machine model representation.
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Frequency Domain Information

The FFT algorithm on a sampled signal of size N decomposes the signal into a series of

(N/2+1) sine and cosine wave components which are referred to as basis functions. The

process of calculating the frequency domain information of the signal from time domain

representation is called decomposition and the inverse process is signal synthesis [79]. The

basis functions are a set of sine and cosine waves oscillating at signal harmonic frequencies.

For a sample signal represented as array x[] of size N in time domain, the FFT algorithm

calculates the frequency domain signals X[] as two arrays of size (N/2+1). The arrays

contain the coefficients (amplitudes) of the sine and cosine components as imaginary part

imX[] and real part reX[] of X[] respectively for harmonic frequencies frX[]. The output

values of the FFT algorithm, frX[], reX[], and imX[] are defined as input parameters for

the subsequent synthesis process.

2.4.2 Synthesis

The synthesis function for sampled signal x[i] of size N is represented in equation 2.1 [79].

The arrays reX[] and imX[] are the normalized coefficients of the sine and cosine waves with

index k running from 0 to N/2 for the respective harmonic frequencies.

x[i] =

N/2∑
k=0

reX[k]cos(2πki/N) +

N/2∑
k=0

imX[k]sin(2πki/N) (2.1)

HES Machine Synthesis Algorithm

State machines can be used to break complex systems into manageable states and state

transitions. Therefore, the state machine model of computation fits the synthesis function
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components as concurrent state machines with time-interval behavior. A global clock con-

ducts the trigger to update the state variables and output actions. The components of the

physical signal may all be generated by a five-state synchronous harmonic state machine

(HES Machine).
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Figure 2.3: 5-State synchronous state machine with the inverse of the signal harmonic fre-
quency as the period.

The architecture of the five-state synchronous harmonic equivalent state machine is depicted

in Figure 2.3. Each state machine is designed to represent a harmonic frequency component of

the physical signal. Outputs of each state machine are two square wave signals approximating

the sine and cosine components in equation 2.1. The square waves will later be integrated into

the synthesis function. Inverse of the harmonic frequency is the period and FFT coefficient

values are the magnitudes for the corresponding square waves. One period of the square
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wave signals is divided into four phases that are represented by the outputs of the states S1,

S2, S3, and S4. The transitions between theses four states and phases are triggered at each

Period/4 elapse of time. Finally, (N/2+1) harmonic equivalent concurrent state machines

are integrated to synthesize the physical signal. We have utilized this five-state synchronous

state machine architecture for our model to highlight the strength of state machines in

representation of physical systems.

Algorithm 1 illustrates the structure of the Tick function for the executable state machine

model of computation. HES[i] represents a data structure that includes associated data

values per harmonic state machine. Here, i is the index for harmonic state machine ranging

from 0 to (N/2+1). The parameter HESsize stores the number of concurrent harmonic state

machines which are synthesized in a signal synthesis process and may be selected as frame-

work parameters for design configuration. The output array values computed by the FFT

algorithm, reX[] and imX[] and frX[], are placed in the HES data structure to represent

HES[i].real, HES[i].imag and HES[i].period respectively. The variable HES[i].elapsedT ime

is tracked on each call of the Tick function. When (HES[i].elapsedTime ≥ HES[i].period/4)

condition evaluates to true, a state transition occurs and an output action is determined

with respect to the current state. N samples of signals are fed into the HES machine model

generator in intervening time windows of T . Each execution of the Tick function updates the

HES[i].elapsedT ime variable by adding Tres values. The values for the new time window are

evaluated when the HES[i].elapsedT ime variable surpasses the value T and resets to zero.

The generated square waves are to be translated into sinusoidal equivalents to represent the

sine components of the original physical signal. A band-pass filter is applied to attenuate the

unwanted square wave frequencies. (N/2+1) sinusoidal signals are integrated to synthesize

the decomposed signal according to Equation 2.1. The tool generates an executable C code in

state machine representation for the physical signal to be implemented on a target platform.
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ALGORITHM 1: Global Tick Function
Input: index of the state machine i

1 global variable HES
2 global variable magnitude1,magnitude2
3 const TimeResolution
4 switch HES[i].state do
5 case −1
6 HES[i].state = S1
7 case S1
8 if HES[i].elapsedTime ≥ HES[i].period/4 then
9 HES[i].state = S2

10 HES[i].elapsedTime = 0

11 else
12 HES[i].state = S1

13 case S2
14 if HES[i].elapsedTime ≥ HES[i].period/4 then
15 HES[i].state = S3
16 HES[i].elapsedTime = 0

17 else
18 HES[i].state = S2

19 case S3
20 if HES[i].elapsedTime ≥ HES[i].period/4 then
21 HES[i].state = S4
22 HES[i].elapsedTime = 0

23 else
24 HES[i].state = S3

25 case S4
26 if HES[i].elapsedTime ≥ HES[i].period/4 then
27 HES[i].state = S1
28 HES[i].elapsedTime = 0

29 else
30 HES[i].state = S4

31 otherwise
32 HES[i].state = −1

33 switch HES[i].state do
34 case S1
35 magnitude1[i][HES[i].N1] = HES[i].real× 1.0 magnitude2[i][HES[i].N1] = HES[i].imag× 1.0
36 case S2
37 magnitude1[i][HES[i].N1] = HES[i].real×−1.0 magnitude2[i][HES[i].N1] = HES[i].imag× 1.0
38 case S3
39 magnitude1[i][HES[i].N1] = HES[i].real×−1.0

magnitude2[i][HES[i].N1] = HES[i].imag×−1.0
40 case S4
41 magnitude1[i][HES[i].N1] = HES[i].real× 1.0 magnitude2[i][HES[i].N1] = HES[i].imag×−1.0
42 otherwise
43 magnitude1[i][HES[i].N1] = HES[i].real× 1.0 magnitude2[i][HES[i].N1] = HES[i].imag× 1.0

44 HES[i].elapsedTime+ = TimeResolution
45 HES[i].N1++
46 return
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HES Machine Tuning Parameters

Two tuning parameters HESsize and Tres are proposed to adjust the HES Machine model in

order to meet system requirements (e.g., accuracy and timing).

1. Machine Size (HESsize) is the number of harmonic concurrent state machines to be

integrated during the synthesis process ranging from 1 to (N/2+1). The model accu-

racy may be adjusted with respect to this parameter by inclusion/elimination of certain

harmonic frequencies.

2. Time Resolution (Tres) parameter indicates the smallest time unit in the proposed

framework by which the generated state machine will be executed. The proposed frame-

work tracks the value of Tres as an actual wall-clock (real) time. The parameter Tres

specifies the timer values for the periodic programmable interval timers to trigger the

interrupt service routine (ISR).

2.5 Experimental Results

2.5.1 Implementation and Setup

Simulation experiments are conducted using data for real physical signals and the global

clock of the state machine model is updated by interrupt handlers of the operating system.

The framework is implemented using C/C++ programming language in order to enable it

to be highly portable for compilation and execution. The process from data acquisition to

model generation is automated and reconfigurable with respect to model parameters. Our

specific experiments were performed on a PC with a quad-core Intel Core i5 and 8 GB of

DDR3 RAM. The performance of the proposed model generation framework is evaluated

using two examples of ECG signal and NEDC signal. It needs to be noted that one of
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Figure 2.4: HES Machine’s generated signal of ECG and NEDC.

the merits of our framework is its applicability to any example and application of physical

signals.

• ECG Signal: The electrocardiogram (ECG) digitized signal is provided by PhysioBank

[30] as the reference signal. The signal consists of 7200 double-sized sample values recorded

with 720 Hz sampling frequency and 12-bit resolution in T=10-seconds window of time.

The model is reconfigured at run-time to serve for HIL testing of implantable medical

devices such as pacemaker, smart ECG monitor, etc. [10].

• NEDC Signal: The New European Driving Cycle (NEDC) is selected from driving cycle

standards (ECE, UDDS, etc.) that are typically employed in model-based vehicle design

applications [90]. The NEDC signal contains vehicle velocity data that is captured from a

Simulink block [1]. The signal is 8192 double-sized values sampled at frequency of 10 Hz

in T=819.2-seconds window of time. The generated dynamic HES Machine model may

be reconfigured at run-time to emulate the system behavior in presence of environment

disturbance or mis-prediction of trajectory.

The generated signal models of the proposed framework for ECG and NEDC examples are

compared in Figures 2.4(a) and 2.4(b) with their original signals. The results justify the

validity of our proposed model generation framework for signal synthesis and state machine

model generation with average of 0.1% error in model accuracy.
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2.5.2 Analysis and Verification

Performance Metrics

Two performance metrics of execution time and precision are considered for comparing the

performance of our HES Machine model with state-of-the-art models.

• Execution Time: is the time required by the computer to perform a given set of com-

putations.

• Root Mean Squared Error (RMSE): is the quality factor to measure the error between

the values evaluated by the model and the corresponding expected values for N number

of samples.

RMSE =

√
(
∑

(Expected− Evaluated)2)

N
(2.2)

Parameter Analysis

The performance of the proposed state machine model generation framework is evaluated

under variations of two parameters by which the model may be configured:

1. Time Resolution (Tres): Figure 2.5(a) illustrates the change in model accuracy for

NEDC and ECG examples with respect to variations in Tres parameter values. The

results shows improvement in model accuracy for smaller values of Tres in case of need

for finer physical model.

2. Machine Size (HESsize): the variations in model accuracy with respect to different

values of parameter HESsize is illustrated in Figure 2.5(b). Here, The accuracy of the
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Figure 2.5: Analyses for different parameter configurations.

model improves for larger values of HESsize. In our experiments, the harmonic frequencies

and their corresponding state machines are sorted in ascending order to select HESsize

number of state machines for integration. Other selection algorithms may be applied

in accordance with target application which may further improve the precision of the

generated model.

Comparison to State-of-the-Art

We evaluated the performance of the proposed framework and generated model in compar-

ison with an ODE-based ECG signal generator, ECGSYN [65]. The model in [65] emu-
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lates the quasi-periodic waveform of the ECG signal by tracing around a limit cycle in x-y

plane. The ECG signal is generated by using a series of exponentials formulated to follow

PQRST-waveform in the z-direction. (P,Q,R, S, T ) represent the peaks in ECG signal for

one complete heartbeat. The model of motion dynamics is defined as a set of following

differential equations

ẋ = αx− ωy (2.3)

ẏ = αx+ ωy (2.4)

ż = −
∑

i∈P,Q,R,S,T

ai∆θi exp(−∆θi
2/2bi

2)− (z − z0) (2.5)

where ω is the angular velocity, α equals to (1−
√
x2 + y2) and ∆θ equals to (θ − θi)%2π.

Also, θ = arctan(y, x) and ai and bi are model coefficients. The fourth-order Runge-Kutta

method [84] is applied to solve the ordinary differential equation model. The performance

of HES and ECGSYN models in terms of execution time and accuracy is evaluated for

time interval of T=16 seconds. The functions involved in execution of the HES model are

FFT function, state machine, band-pass filter, and integration for signal synthesis. The

experimental results in Figures 2.6 and 2.7 illustrate the behavior of the generated HES

model in terms of execution time and accuracy based on variations in framework parameters:

Tres and HESsize. The execution time overhead of the generated HES model is attributed to

three main functions: state machine, filter and integrator. The figure shows variations in

execution time for different model parameter configurations. Table 2.1 shows the execution

time values for state-of-the-art model ECGSYN with respect to corresponding accuracy of

the model. The frequency fs represents the step size for the ODE solver and is considered

as the model parameter to adjust the accuracy accordingly.
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The results in Figure 2.6 shows that the execution time increases as the model accuracy

improves with smaller values for Tres parameter. Moreover, Figure 2.7 show that smaller

values of HESsize reduce the execution time since less number of state machines are to be

generated and integrated. As shown in the picture, for HESsize larger than a certain value,

the change in model accuracy will be marginally negligible. We can use this property to

improve the execution time for coarse-grained time critical situations. The generated ECG

signal with fs=720 is considered as the reference signal for HES and ECGSYN models to

be evaluated; that is, this reference signal is given as the input to our proposed framework
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Figure 2.6: Time complexity and error analysis of the proposed HES model with respect to
”Time Resolution” parameter.
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Table 2.1: Complexity analysis of the ECGSYN state-of-the-art model with respect to ”fre-
quency” parameter.

720 0.988 0.000
718 0.966 0.178
715 0.960 0.176
710 0.956 0.164
705 0.949 0.151
700 0.949 0.170
690 0.949 0.179
650 0.911 0.244
600 0.919 0.213

RMSE	(volts)

ECGSYN

Model Execution	
Time	(sec)!"

to generate the equivalent of reconfigurable HES model. For fairness of comparison, the

execution time of the proposed HES model is compared with ECGSYN for the same range

of accuracy as shown in Figure 2.8. The results for HES model is derived for HESsize=50

which includes 50 harmonics in synthesis of the generated signal. The experimental results

show that for same level of model accuracy, the HES model may be executed 38% faster

than ECGSYN model.

The improvement in execution time is due to the novel approach to solve the HES model
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in contrast to ODE models (ECGSYN). The proposed state machine-based model do not

execute compute-intensive and iterative tasks to describe the behavior of a physical system.

Moreover, concurrent operation of the state machines are perfectly suitable for intrinsic

parallel characteristics of physical systems. In other words, it allows multiple sub-state

machines to react to a set of events at the same time. In general, the time complexity of a

solver to solve N samples of ordinary differential equations may grow with respect to c′N ,

where c′ is a constant factor defined by the type of the discretization algorithm, numerical

ODE solver, number and order of the ordinary differential equations in the physical model.

On the other hand, the time complexity of the proposed HES model grows with the term

cN , where c is determined by the model parameters HESsize and Tres. Therefore, our HES

Machine model is suitable for systems that are more tolerable against model error in tradeoff

for reduction in execution time. Here, the ECGSYN includes three simple first-order ordinary

differential equations which results in small value of c′. However, we expect that execution of

the HES model equivalent to more complex ODE models with larger values of c′ will present

even smaller values for execution time.

2.6 Conclusion

In this work, we presented an automated model generation framework for physical systems

in CPSs. The proposed method utilizes frequency information properties to generate a dy-

namic state machine model of the physical system. Two tuning parameters are provided to

adjust the granularity of the generated model for adaptation to coarse-grained time critical

situations or fine-grained safety critical scenarios. Simulation is conducted to evaluate per-

formance of the framework and model using two real physical signals of ECG and NEDC.

Moreover, the generated state machine model is compared with ODE-based state-of-the-art

equivalent model in terms of accuracy and execution time. The simulation results indicate

28



that our generated model surpasses the state-of-the-art model by 38% in execution time

for same level of model accuracy. The proposed dynamic state machine system may be an

excellent replacement for complex ODE solvers when used for testing or embedding CPSs.
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Chapter 3

Machine Learning HES Model

3.1 Introduction

Cyber-Physical Systems (CPS) in today’s applications are designed to control physical plants

such as industrial machines, land vehicles, medical equipment, spacecraft, Unmanned Aerial

Vehicles (UAVs), jet engines, etc. The control systems that are implemented to manage these

complex physical plants also have relatively high level of complexity. Model-based design is a

powerful methodology for the implementation of CPS control systems. For instance, Model

Predictive Control (MPC) is typically implemented in CPS applications, e.g., path tracking

of autonomous vehicles [76], HVAC control in electric vehicles [90, 91] and formation flying

spacecraft [15]. MPC refers to a range of control algorithms in which a dynamic model of

the physical system is used to predict the future outputs in a determined horizon [83]. These

future outputs of the system are estimated with respect to known input and output values

up to the current state and future control signals. An optimization problem is evaluated

as a parametric quadratic function to calculate the set of future control inputs subject to

constraints enforced by the environment and the dynamic of the system.
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Ordinary Differential Equations (ODE) are the most commonly used models to replicate the

dynamic behavior of the real physical system in presence of environmental constraints. The

ODE models are derived from the conservation laws of physics. A complex physical model

may be formulated as thousands of non-linear ODEs which pose scalability, performance,

and power consumption issues. Iterative methods are applied to solve non-linear ODEs using

quadratic programming paradigms [53]. The execution time of this non-linear programming

problem may grow with regards to the algorithms used for discretization and integration of

the ODE models and the number or order of ODEs representing the dynamic behavior of the

physical system. Development and implementation of techniques to resolve the execution

time of non-linear complex ODEs for online control systems are fundamental requirements

in CPS design.

A real physical system is under constant change from the effects of the environment. There-

fore, we are in need of methodologies to adapt the system to environmental changes and

determine the CPS application behavior in respond to such changes. In model-based design

applications such as MPC, the complexity of the model under control has a direct influence

on the global performance of the system. Specifically, different levels of complexity for the

target physical system shall be provided by the user for a specific application. The work in

[100] evaluates the performance of a hybrid controller to steer a car in straight and curved

trajectory segments. It suggests employing a relatively more advanced model of the vehicle

dynamics [72] in curvature path as opposed to fast and simple kinematic model of the vehi-

cle to follow straight lines on the path. The state-of-the-art modeling techniques to design

physical models in model-based CPS applications followed by our contributions in this work

are summarized in section 3.2.
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3.2 Related Work

Cyber-physical systems integrate various engineering areas such as control-, computer-,

mechanical-, and network engineering. The complex and heterogeneous design aspects of

CPS requires methodologies to combine the corresponding disciplines. Physical models that

capture and emulate the behavior of the real physical system have gained extensive research

attention in CPS design. A wide variety of physical phenomena such as heart motion, the

flow of electric signal and chemical reactions are well described by equations in the litera-

ture. Complex physical systems models may be implemented as thousands of ODEs. The

mathematical modeling of fuel cells as a power resource in automobile applications is used to

explore the reduction in CO2 emissions [64]. The model-based design approach in a vehicle

simulation software (ADVISOR) evaluates the operation of fuel cell models under physical

settings such as temperature variation in different driving cycles (NEDC, UDDS [12]).

Complex ODE models introduce challenges in terms of scalability, performance, power con-

sumption, and accuracy [31]. The ODE description of a system requires approximations

via solver methods such as Euler and Runge-Kutta, to be suitable for computations in

computing devices [78]. The demand for more accurate and mathematically sound CPS so-

lutions, cause an increase in resource utilization and energy consumption [59, 88]. Research

in model-based design techniques for CPS has introduced solutions to overcome some of the

challenges induced by the complexity of ODE models. One approach is to implement the

ODEs on Field-Programmable Gate Arrays (FPGA) using Lookup Tables (LUT) to speed

up the simulation and enable parallel execution [45]. In general, even though the FPGA

implementation of ODE models may improve the execution efficiency for real-time applica-

tions, it has implementation challenges regarding limited resources, especially for complex

ODE models. Hence, a better approach to modeling and solving of ODE may be required

to reduce the complexity not only on FPGAs but also on general CPUs.
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Another technique to resolve the challenges raised from complex ODE models is model-to-

model transformations and developing frameworks and tools to automate this process. Model

transformation introduces flexibility and compatibility in model-based design. Frameworks

have been developed to perform automated and semi-automated model transformation [75].

A heart-on-a-chip model [48] is introduced to employ timing behavior of the heart signal and

generate different state-based heart conditions as hardware-in-the-loop to test pacemaker

software. The heart model is implemented in the Simulink environment and the HDL coder

toolbox is employed to generate Verilog code for hardware implementation. The proposed

approach is application specific which requires user expertise to implement the model of the

heart. Moreover, relying on the HDL coder toolbox for more complex models may require

fundamental modifications in the generated Verilog code.

The work in [100] proposes a hybrid MPC method for path planning in path following

applications. The technique considers two models of vehicle dynamics with different levels

of complexity as predictive models in an MPC application. A metric is introduced based on

values of speed and steering angle to select among the two predictive models. The level of

complexity for the selected predictive model determines the tradeoff in accuracy for execution

time. The technique is application specific and limited to only two levels of complexity for

the vehicle model. Moreover, the overhead for complex ODE models remains unresolved.

The observations from state-of-the-art to design physical models in model-based CPS appli-

cations, categorize the approaches as follows:

• Application specific models of the physical system are selected at design-time. This

approach is bounded to existing mathematical models of the target physical system.

• Ordinary Differential Equation models are commonly used to replicate the dynamic be-

havior of the physical system. The execution time of non-linear ODE models is often

impeding real-time analysis of cyber-physical systems in model-based techniques, e.g.,
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MPC.

• Real hardware implementation approaches on FPGA and model-to-model transformation

solutions are proposed to overcome the bottlenecks raised from ODE complexity.

3.3 Contributions

Relative to existing literature, we extended our work in Chapter 2. Our contributions in this

work can be summarized as follows:

1. We include a harmonic prediction module in our HES [4] model design. This module

enables runtime prediction of output signal in physical system given control inputs.

2. We conduct simulation using ODE model of the physical system to collect training data.

3. We evaluate the effectiveness of our predictive machine learning HES model in application

of MPC for path tracking.

The Harmonic Predictor block is developed to enable the adaptive feature of the proposed

model in run-time applications. The control inputs are given to the Harmonic Predictor block

to generate the harmonic information of output signal z(t). Machine learning techniques are

applied to develop the Harmonic Predictor block as a prediction model to fit the relation

between the control input vector ~u and the harmonic information vectors ~Rez and ~Imz.

The rest of the chapter is organized as follows. In Section 3.4 the architecture of the pro-

posed methodology, tuning parameters, and MPC formulation is described in details. We

demonstrate the workings and effectiveness of our framework for path tracking application

in Section 3.5. Finally, we state our conclusions in Section 3.6.
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3.4 Methodology

In this work, we introduce the Hybrid Harmonic Equivalent State Machine model of a phys-

ical system to be integrated in control systems for fast and dynamic performance to model-

based design approaches. The proposed model is the includes frequency domain properties to

synthesize the outputs of the dynamic model for hybrid accuracy. Moreover, the execution

time of the model may be adjusted in tradeoff with accuracy to adapt the model coarse-

grained time critical or fine-grained safety critical maneuvers. The model uses notions of

state, input, outputs, and dynamics to describe the behavior of a system as following:

z(t) = f(s, ~u) (3.1)

where ~u represent the vector data of control inputs for a specific time window which we call

the HES Horizon. The variable z(t) stands for the measured output of the system dynamics

at time instant t. The state variables of the proposed model are presented as s ∈ States.

The high-level architecture for the proposed model contains two main blocks:

1. State Machine Generator.

2. Harmonic Predictor.

This State Machine Generator block is introduced in Chapter 2 Section 2.4. We give a

more elaborated explanation here. This block captures frequency information of the output

signal for the determined HES Horizon and generates the reconfigurable output signal for the

target physical system. The generated output can be reconfigured by the proposed tuning

parameters which are introduced in sections 3.4.2. The inputs to State Machine Generator

block are vectors ~Rez and ~Imz of size (N/2+1) which represent the real and imaginary
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components of the frequency spectrum for the output signal z(t). A synthesis algorithm

is developed to integrate these imaginary and real components of frequency harmonics

~Frz and generate a reconfigurable representation of output z(t) in the form of concurrent

state machines. The synthesis algorithm employs (N/2+1) inverse of frequency harmonics

and corresponding real and imaginary components, as the periods and output magnitudes

of concurrent state machines respectively; this generates N samples of output signal z(t)

in the so-called HES Horizon. A band-pass filter is implemented to translate the output

square waves of the concurrent state machine models into sinusoidal signals. The sinusoidal

output signals, one per state machine, represent the signal harmonic components. Finally,

the harmonic components are integrated to generate the output signal for the target physical

system. The Harmonic Predictor block is developed to enable the adaptive feature of the

proposed model in run-time applications. The control inputs are given to the Harmonic

Predictor block to generate the harmonic information of output signal z(t). Machine learning

techniques are applied to develop the Harmonic Predictor block as a prediction model to fit

the relation between the control input vector ~u and the harmonic information vectors ~Rez

and ~Imz.

3.4.1 Model Architecture

The detailed descriptions of the model sub-blocks are presented in the following sections.

State Machine Generator

The Harmonic Generator block captures frequency spectrum information of the output for

the physical system and resynthesizes the signal in the form of state machine model rep-

resentation. A synthesis algorithm is designed and implemented to integrate the harmonic

information vectors ~Rez and ~Imz and generate concurrent state machines with respective
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frequency harmonics ~Frz as the update rates. The synthesis equation of FFT for signal

z[k] of size N is employed as presented in Equation 3.2. In this equation, k stands for the

index of samples running from 0 to N -1. The vectors ~Rez[i] and ~Imz[i] are the normalized

frequency spectrum coefficients for the sine and cosine waves with index i running from 0 to

N/2 for the respective harmonic frequencies [79].

z[k] =

N/2∑
i=0

~Rez[i]cos(2πik/N) +

N/2∑
i=0

~Imz[i]sin(2πik/N) (3.2)

The state machines are represented as a set of states and transitions between those states

that are triggered with respect to conditional expressions or predicates. Designers use state

machines to break complex systems into manageable states and state transitions. There-

fore, the state machine model of computation can fit the synthesis function components as

concurrent state machines. In this model, the components of the physical signal may all be

generated by a five-state synchronous harmonic state machine (HES Machine). Specifically,

the proposed harmonic state machine model definition is a 5-tuple,

StateMachine=(States,AuxVar,Outputs,Update, InitState)

where States, Aux Var and Outputs are sets, Update is a function, and Init State ∈ States.

These variables are defined as follows:

• States (State Variables): are state space variables enumerated as −1, S1, S2, S3 and

S4. The system is always in the ”current” state.

• Auxiliary Variables : refers to the conditional expressions or predicates which trigger

the state transition process. The proposed methodology tracks the value of elapsed time

variable to perform state transition when the conditions are met.

• Outputs: is a set of actions per state which assigns FFT coefficients as output values.
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• Update: is referred to as the Tick function in the proposed methodology. On each call of

the Tick function the state machine executes and the current state’s outgoing transitions

are examined to set the new current state. The actions of the new current state are then

executed.

• Initial State: is the initial current state and its actions are executed once. The execution

of the harmonic state machine is initialized at state −1.

In the integration process, (N/2+1) concurrent state machines are implemented with vectors

~Rez and ~Imz as output values and the harmonic frequencies vector ~Frz is used to calculate

the period of each state machine. These concurrent state machines are executed at a global

rate of Tres which is configured by the user as a framework parameter. This global clock

represents the time resolution of the state machine. It can be measured as an actual wall-

clock (real) time by periodic programmable interval timers [94] that call an interrupt service

routine (ISR). The global period is designated as the timer value to iterate the ISR calls. We

define one global Tick function to execute (N/2+1) concurrent state machines per call of

the ISR. In other words, the synthesis components are generated as square waves with user-

specified global time resolution. The framework parameters are described in Section 3.4.2.

Harmonic Predictor

Harmonic Predictor block enables the run-time adaptive feature of the proposed model—it

provides a relationship between the control inputs and values of the harmonic components for

the respective output signal. Machine learning as non-parametric modeling approaches has

gained attention to establish the relation between some measured responses for complex and

non-deterministic system behavior. We apply a machine learning technique to fit a predictive

model that maps the control input vector ~u of size N to respective harmonic information

vectors ~Rez and ~Imz of size (N/2+1). We interpret our input and output vectors for the
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predictive model as time series data to leverage time series prediction approaches [16].

Neural Networks (NN) have solved time series prediction [93] and hold promising performance

to learn linear and non-linear models without prior knowledge of the relation between input

and output variables[19, 67]. Feedforward networks are a class of neural networks, where the

input feeds forward through the network layers to the output. This network is arranged as

three input, hidden and output layers. Each layer includes a set of nodes with edges to pass

the information. The nodes in the hidden layer and output layer are active and data may

be modified as opposed to nodes in the input layer that are passive with no permission to

change the data. The edges entering the active nodes are associated with a weight that are

factors to inputs of the nodes—these weights are adjusted to yield good performance for the

predictive model. A nonlinear mathematical function, e.g., the sigmoid function, is used to

limit the node’s output [79]. The prediction of the time series data is conducted using the

direct NN method in which the time series of output is predicted all at once [33].

The Harmonic Predictor block is implemented in two offline and online phases. The imple-

mentation of these phases in for MPC application is illustrated in Figure 3.1.

1. Offline Training Phase: In this phase the weight values are adjusted and determined

with respect to the iterative flow of training data through the network. The network learns

the pattern that maps the vector of input values to the associated output signal. As shown

in Figure 3.1(a), simulation is conducted on the ODE model of the target physical system to

record the control inputs ~u and respective output values z to be employed as the data set for

the training phase. The recorded current output values zc are fed into Fast Fourier Transform

algorithm in time windows of so-called HES Horizon to derive the frequency information.

The frequency domain of a signal carries the same information as the time domain; that

is, you can calculate one domain symmetrically from the other one, which is addressed as

the duality property [79]. The vector data of control inputs ~u and the output value from
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(a) Training.

(b) Prediction.

Figure 3.1: Training and Prediction phases of the Harmonic Predictor block in MPC.

previous time step zp are considered as the input features and the respective output signals

~Rez and ~Imz are the target values of the training data sets.

2. Online Prediction Phase: The mapping that is fitted in the NN layers during the

training phase is automatically retrieved in online prediction. The Harmonic Predictor block

is used to predict harmonics information of the output signal from the respective run-time

values of control inputs ~u. The predicted harmonic information is fed into the State Machine

Generator block for output generation as shown in Figure 3.1(b). That is, the output of the

proposed physical model z can adapt to variations in control inputs u in run-time.
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3.4.2 HES Machine Tuning Parameters

In this section three tuning parameters HESsize, Tres and Q for the proposed framework are

described by which the model may be adjusted to meet system requirements (e.g. accuracy

and timing).

Machine Size (HESsize) specifies the number of harmonic concurrent state machines to

be integrated during the synthesis process ranging from 1 to (N/2+1). The model accuracy

may be adjusted with respect to this parameter by inclusion/elimination of certain harmonic

frequencies.

Time Resolution (Tres) parameter indicates the smallest time unit in the proposed frame-

work by which the generated state machine will be executed. The proposed framework tracks

the value of Tres as an actual wall-clock (real) time. Tres specifies the timer values for the

periodic programmable interval timers to trigger the interrupt service routines.

Q-Array (Q) is an array of filter quality factors that characterize the band-pass filter

response with respect to its center frequency. A filter with a high-quality factor will have

a narrow pass-band and vice versa. The quality factor is calculated as the ratio of cut-off

frequency to bandwidth. The band-pass filter is required to translate the generated square

waves for the harmonic state machine output to sinusoidal equivalents.

The following section describes the application of the proposed framework in model predictive

control systems.

3.4.3 MPC Formulation

The proposed model is integrated into the context of model predictive control for CPS

applications. Model predictive control designates an ample range of control techniques that
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incorporate three elements[17]:

1. Prediction Model: a predictive model to replicate the dynamic behavior of the real

physical system with regards to laws of physics.

2. Objective Function: the objective function is usually formulated as a Least Squares

(LSQ) objective to obtain the control law. The future output values z should follow the

desired reference signal zr in a determined prediction horizon Tp. Moreover, the deviation

from a given reference ∆z and the control effort ∆u should be penalized.

3. Obtaining the Control Law: the controller employs a mathematical formula called

the control law to determine the output u that is sent to the physical model f(s, u).

The predictive model of the physical system is employed to estimate the future outputs

z(t + k|t) at time instant t for k = 1...Tp. The notation z(t + k|t) refers to value of the

output variable z in time instant t + k, estimated at time t. The future output values are

determined by the past input and output values up to instant t and future control inputs

u(t + k|t), k = 0...Tp − 1. These future control inputs are calculated in an optimization

problem that forces the system to satisfy a determined criterion and follow the reference

values for the output signal. This optimization problem is a parametric quadratic function

to be solved with analytical or iterative solutions using the linear or non-linear model of a

physical system respectively[99]. The optimized control input value for the first instant of

the prediction horizon u(t|t) is sent to the physical system under control and the process is

repeated for the next sampling time. The MPC formulation taken from [99] is the solution
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to the following optimization problem at each time instant

min.
z,u

‖z(Tp)− zr(Tp)‖2Pc

+

Tp∑
t=0

‖z(t)− zr(t)‖2Qc
+ ‖u(t)− ur(t)‖2Rc

(3.3a)

s.t.

z(t) = f(s(t), u(t)), (3.3b)

s(0) = ŝ(0), (3.3c)

q(z(t), s(t), u(t)) ≥ 0 t ∈ [0, Tp] (3.3d)

Equation (3.3a) represents the LSQ objective function where Pc, Qc and Rc are weight

matrices. The model of system dynamics is defined in Equation (3.3b), where z(t), s(t)

and u(t) represent outputs, state variables and control inputs respectively. Equation (3.3c)

initializes the state variables at time s(0) with current estimates ŝ(0). Additional physical

limits and constraints may be imposed for system variables through Equation (3.3d).

Ordinary Differential Equations are the most commonly used models to emulate the behav-

ior of continuous-time (non-)linear dynamical systems in response to all possible inputs and

initial conditions [83]. Discretization methods (e.g. Euler and zero-order hold) are applied

to transform the continuous differential equations into discrete difference equivalents, ap-

propriate for numerical computing. The discretized differential equations are solved using

numerical methods with regards to the linearity of the model. The approach to solve non-

linear ODEs is iterative methods, where a series of linear equations are solved iteratively to

converge to the solution for the non-linear ODE. Therefore, the computation complexity of

solving N samples of ordinary differential equations may grow with respect to c′N , where c′

is a constant factor defined by the discretization algorithm, numerical ODE solver, number

43



and order of the ordinary differential equations in the physical model.

In an MPC application, the ODE solver method is evaluated per equation to estimate the

future control inputs u(t + k|t) at each prediction horizon time instant k = 0...Tp − 1; that

is, to calculate the control inputs in the next k future steps, one equation in the ODE model

of the physical system should be solved k times. Therefore, nk iterations of the solver are

computed to solve n equations comprising the ODE model of the physical system.

As mentioned before, The proposed state machine model for the physical system is featured

with vector data for control inputs ~u. At each simulation time step: 1. The Harmonic

Predictor block generates the frequency information of the output signal for the next k time

instants for k = 0...Tp − 1 all at once where Tp represents the HES Horizon, 2. The State

Machine Generator block generates the output z(t) as a signal for time interval Tp. The

execution time to generate the output signal in time window Tp is based on the term cN ,

where c may be adjusted by the proposed tuning parameters HESsize, Tres and Q in tradeoff

with accuracy. Therefore, for c � c′ the proposed model can surpass the ODE equivalent

in terms of execution time. The MPC application may leverage this feature of the proposed

model to reduce its return time for fast estimation of future control inputs.

3.5 Experimental Results

3.5.1 Setup

The State Machine Generator block is implemented using the C/C++ programming lan-

guage in order to enable it to be highly portable and compatible with various platforms

for compilation and execution. The global clock of the state machine model is updated by

interrupt handlers of the operating system.
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Table 3.1: Error analysis for NN with respect to variations in number of steps in the predic-
tion horizon.

#	of	Steps HES	Error	
(RMSE)

ODE		Error	
(RMSE)

ODE	Compute	
Overhead	(ms)

Time	
Resolution

Machine	
Size

5 1.5 0.075 0.0435 0.001 6

9 1.400 0.084 0.093 0.001 10

15 1.200 0.130 0.135 0.001 16

21 1.200 0.147 0.820 0.001 22

25 1.000 0.983 1.430 0.001 26

35 0.929 1.559 1.300 0.001 36

41 0.92328 0.21 1.7 0.001 42

51 1.1 0.177 1.9 0.001 52

#	of	Steps HES	Error ODE	Error Time	Resolution Machine	Size

5 3.40E-03 3.40E-03 0.001 6
9 7.80E-03 7.80E-03 0.001 10
15 3.90E-03 4.00E-03 0.001 16
21 3.60E-03 2.50E-03 0.001 22
25 3.07E-02 2.70E-03 0.001 26
35 1.20E-02 3.13E-04 0.001 36
41 5.20E-03 2.92E-05 0.001 42
51 7.06E-02 1.00E-03 0.001 52

#	of	Steps Input	Size Output	Size Train	Error	
(MSE)

Validation	
Error(MSE)

5 13 8 2.59E-10 6.32E-10
9 21 12 4.92E-10 8.96E-10
15 27 18 4.42E-08 1.20E-07
21 45 24 2.58E-07 3.78E-07
25 53 28 8.23E-04 4.91E-03
31 65 34 3.31E-07 6.89E-06
35 73 38 2.50E-07 6.78E-06
41 85 44 2.10E-07 6.90E-06
51 105 54 1.08E-07 1.07E-07

The Harmonic Prediction model is trained by using the Matlab neural networks module

(nftool). The training algorithm used in this work is the Levenberg-Marquardt (LM) al-

gorithm also known as damped least-squares (DLS). The LM algorithm is an edition to

Gauss-Newton method using a trust region approach [60] which is initially designed as a nu-

merical method to minimize functions that are sums of squares of nonlinear functions. This

benefits the neural network training, where the performance metric is the mean squared

error. As mentioned before the training phase is offline and applies no additional execution

time to the run-time application. The input features and the target outputs for the training

phase are the control input vectors ~u and frequency harmonic components ~Rez and ~Imz

respectively.

The experiments are conducted for prediction horizon of size Tp which determines the size

for vectors ~u, ~Rez and ~Imz as Tp, (Tp/2)+1 and (Tp/2)+1 respectively. We concatenate

the control input vectors with the output values from the previous time step to create the

vector for input features. The output values from the previous time step are concatenated

to the time series to consider past behavior of the system. The target outputs dataset is a

time series of size Tp for ~Rez vector of size (Tp/2)+1 followed by the same size vector ~Imz.

The dataset is acquired from 2 seconds simulation of MPC application with 0.01 seconds
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sampling time and 2 iterations of FFT algorithm for output signal z(k) for k = 0...Tp − 1.

Table 3.1 illustrates the configurations for the neural network and corresponding train and

validation error.
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Figure 3.2: Schematic view of the vehicle model.

For our control application, we adopt the software framework based on the ACADO Toolkit

[42]. ACADO Toolkit is an open source software written in C++ for automatic control

and dynamic optimization. It provides a self-contained environment to implement control

algorithms including model predictive control as well as state and parameter estimation.

The framework contains efficient implementations for numerical integrators, Runge-Kutta

[84] and BDF [8] to solve ODEs and differential algebraic equations(DAEs). ACADO is

designed with the object-oriented paradigm and may easily be extended to link external

packages and existing algorithms. Our experiments are performed on a PC with a quad-core

Intel Core i5 and 8 GB of DDR3 RAM.
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3.5.2 Model Performance Metrics

Two performance metrics of computation time overhead and precision are considered for

comparing the performance of our HES Machine model with state-of-the-art models.

• Execution Time: refers to the processing time required by the operating system and

any utility that supports application programs. One of the merits of the proposed state

machine-based model is that the state machines do not execute compute-intensive and

iterative tasks to describe the behavior of a physical system. Moreover, concurrent op-

eration of the state machines is perfectly suitable for intrinsic parallel characteristics of

physical systems. In other words, it allows multiple sub-state machines to react to a set

of events at the same time.

• Accuracy: is a quality factor to measure the error between the values evaluated by a

model and the corresponding expected real values. Root Mean Squared Error (RMSE)

is considered to quantify the accuracy as in Equation 3.4. The Expected variable holds

the sample values of the real physical signal, Evaluated variable is the output of the

HES Machine model for the respective physical system, and N represents the number of

samples.

RMSE =

√
(
∑

(Expected− Evaluated)2)

N
(3.4)

3.5.3 Implementation for Path Tracking Application

To evaluate the effectiveness of the proposed design, we implement our generated model of

vehicle dynamics to be integrated into the MPC closed-loop for path tracking application.
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The path tracking problem is dependent on the vehicle modeling to design multi-constraints

model predictive control law. As mentioned in the methodology section, the training phase

for the Harmonic Predictor block performs the offline simulation with the ODE model of the

target physical system to acquire training datasets. The ODE model of the vehicle dynamics

[100] shown in Figure 3.2 is given in equation form as:

ẋ = v sin(θ) (3.5a)

ẏ = v cos(θ) (3.5b)

v̇ = cos(δ)a− 2

m
Fy,fsin(δ) (3.5c)

θ̇ = φ (3.5d)

φ̇ =
1

J
(La(masin(δ) + 2Fy,fcos(δ))− 2LbFy,r) (3.5e)

δ̇ = ω (3.5f)

where x and y are longitudinal and lateral positions, v is the longitudinal velocity, θ is the

azimuth, φ and δ represent the angular speed and steering angle respectively. The variable

La is the distance of sprung mass center of gravity from the front axle, Lb is the distance of

sprung mass center of gravity from rear axle and J is te angular momentum. The variables

Fy,f and Fy,r stand for front and rear tire lateral force. These forces are computed from the

following equations:

Fy,f = Cy(δ −
Laφ

v
) (3.6)

Fy,r = Cy(
Lbφ

v
) (3.7)
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where Cy refers to the lateral tire stiffness. The model is parametrized with respect to real-

world specifications. La=Lb=1.5m, mass m=1700 kg and tire stiffness data for a 2011 Ford

Fusion is applied. The following cost function is considered for tracking a path subject to

track and input constraints:

min.
x,y

Tp∑
t=0

‖x̂(k + 1|k)− xr(k + 1|k)‖2Qc
(3.8a)

+ ‖ŷ(k + 1|k)− yr(k + 1|k)‖2Qc
(3.8b)

s.t.

−0.25 ≤ δ ≤ 0.25 (3.8c)

−1.25 ≤ ω ≤ 1.25 (3.8d)

−30 ≤ a ≤ 30 (3.8e)

The performance of the proposed HES model of the vehicle dynamics in run-time MPC for

ML time
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Figure 3.3: Analysis of performance for HES model and ODE model in trajectory tracking
application.
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Table 3.2: Error comparison of ODE model and HES model for different step size in the
prediction horizon.

#	of	Steps HES	Error	
(RMSE)

ODE		Error	
(RMSE)

ODE	Compute	
Overhead	(ms)

Time	
Resolution

Machine	
Size

5 1.5 0.075 0.0435 0.001 6

9 1.400 0.084 0.093 0.001 10

15 1.200 0.130 0.135 0.001 16

21 1.200 0.147 0.820 0.001 22

25 1.000 0.983 1.430 0.001 26

35 0.929 1.559 1.300 0.001 36

41 0.92328 0.21 1.7 0.001 42

51 1.1 0.177 1.9 0.001 52

#	of	Steps HES	Error ODE	Error Time	Resolution Machine	Size

5 3.40E-03 3.40E-03 0.001 6
9 7.80E-03 7.80E-03 0.001 10
15 3.90E-03 4.00E-03 0.001 16
21 3.60E-03 2.50E-03 0.001 22
25 3.07E-02 2.70E-03 0.001 26
35 1.20E-02 3.13E-04 0.001 36
41 5.20E-03 2.92E-05 0.001 42
51 7.06E-02 1.00E-03 0.001 52

#	of	Steps Input	Size Output	Size Train	Error	
(MSE)

Validation	
Error(MSE)

5 13 8 2.59E-10 6.32E-10
9 21 12 4.92E-10 8.96E-10
15 27 18 4.42E-08 1.20E-07
21 45 24 2.58E-07 3.78E-07
25 53 28 8.23E-04 4.91E-03
31 65 34 3.31E-07 6.89E-06
35 73 38 2.50E-07 6.78E-06
41 85 44 2.10E-07 6.90E-06
51 105 54 1.08E-07 1.07E-07

Table 3.3: Execution time comparison of ODE model and HES model for different step size
in the prediction horizon.

#	of	Steps
Train	Compute	
Overhead	in	
Offline	(sec)

Train	Error	
(MSE)

Validation	
Error(MSE)

5 5 2.59E-10 6.32E-10

9 8 4.92E-10 8.96E-10

15 1 4.42E-08 1.20E-07

21 3 2.58E-07 3.78E-07

25 1 8.23E-04 4.91E-03

31 6 3.31E-07 6.89E-06

35 2 2.50E-07 6.78E-06

41 1 2.10E-07 6.90E-06

51 1 1.08E-07 1.07E-07

#	of	Steps Input	Size Output	Size Train	Error	
(MSE)

Validation	
Error(MSE)

5 13 8 2.59E-10 6.32E-10

9 21 12 4.92E-10 8.96E-10

15 27 18 4.42E-08 1.20E-07

21 45 24 2.58E-07 3.78E-07

25 53 28 8.23E-04 4.91E-03

35 73 38 2.50E-07 6.78E-06

41 85 44 2.10E-07 6.90E-06

51 105 54 1.08E-07 1.07E-07

#	of	Steps

Predict	
Harmonic	

Execution	Time	
(ms)

State	Mchine	
Generator	

Execution	Time	
(ms)

HES	Overall	
Execution	Time	

(ms)

ODE	Execution	
Time	(ms)

5 1.50 0.08 1.58 0.04
9 1.40 0.08 1.48 0.09
15 1.20 0.13 1.33 0.14
21 1.20 0.15 1.35 0.82
25 1.00 0.98 1.98 1.43
35 0.93 1.56 2.49 1.30
41 0.92 0.21 1.13 1.70
51 1.10 0.18 1.28 1.90

1000
path tracking application is compared with the model in Equation 3.5a. The performance

of two models in tracking a static path for a certain time horizon is illustrated in Figure

3.3. The HES model is capable to follow the reference path with the average of 1% error

in comparison to ODE model with an average error of 0.2%. The small loss in accuracy in

using HES model is in the tradeoff for improved performance for applications that are error

tolerant.

We compare the error values for ODE model and HES machine for different prediction

horizon time steps in Table 3.2. The HES Machine is configured with respect to framework
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Figure 3.5: ”Time Resolution” analysis considering RMSE for the HES Model

parameters, Time Resolution and Machine Size. The Machine Size parameter is set to

the maximum value for fair comparison of HES and ODE models. The results indicate

comparable error values for two models. The variations in the error for HES model is due

to the non-deterministic behavior of the neural network model. For future work, machine

Learning techniques could be employed that consider the step size in the prediction model.

The models are analyzed in terms of execution time over different prediction horizon time

steps. The results in Table 3.3 indicate that the performance of HES model surpasses the

ODE equivalent for large values of step size. The execution time for both ODE and HES

models are compared in Figure 3.4 with respect different number of steps. The results in

Figure 3.4 illustrate that the performance of ODE model drops below HES model after a
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certain cross point; that is, HES model of vehicle surpass the ODE equivalent by 32% in terms

of performance for large prediction horizon time steps. Therefore, HES Machine models of

physical systems may be an appropriate reconfigurable replacement for ODE equivalents in

applications with large prediction horizon requirements that are tolerant to 1% error.

Figures 3.5 depicts the accuracy of the generated model for Pareto-optimal configurations

of model parameters. The Pareto-optimal points were explored for the precision metric of

RMSE as the optimization cost function. The results justify our claim to reduce the value

of HESsize parameter for faster execution of the model with minor loss of accuracy. The

proposed hybrid state machine system may be an excellent replacement for complex ODE

solvers when used for in CPSs.

3.6 Conclusion

We presented a model generation framework to transform ODE models of physical systems

to Hybrid Harmonic Equivalent State (HES) Machine model equivalents. The proposed

model may be reconfigured to adjust its accuracy and execution time from coarse-grained

time critical situations to fine-grained scenarios in which safety is paramount. Experiments

on a closed-loop MPC for path tracking application is performed using a model of vehicle

dynamics. We analyze the performance of MPC when applying our HES Machine model. The

performance of our proposed model is compared with state-of-the-art ODE-based models, in

terms of execution time and model accuracy. Our experimental results show 32% reduction

in MPC return time for 0.8% loss in model accuracy.

52



Chapter 4

Switching Predictive Control Using

Machine Learning HES Model

4.1 Introduction

With the recent developments in autonomous driving and the futuristic vision offered by

automated vehicles, it has been acknowledged that it is just a matter of time before this

technology continues to take over humans in driving autonomous and semi-autonomous

vehicles [100]. Advanced control methodologies have emerged to empower the development of

modern vehicles for path planning and path following applications. As mentioned in Chapter

1 Section 1.2.1 nonlinear Model Predictive Control (MPC) is leveraged to develop path

following control systems while handling model uncertainties, constraints and nonlinearities.

A predictive model of the physical plant is used to estimate the future outputs for a prediction

horizon within a window of time and with respect to known input and output values. The

disadvantage of MPC arise from its strong dependence on the model. However, improvements

in data-driven modeling and collection of massive amount of sensor data, this may not be as
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much of a difficulty.

We are aware that complex models of physical systems may be comprised of thousands of

non-linear Ordinary Differential Equations (ODEs), requiring considerable computing power

to execute. These ODE models introduce challenges in terms of scalability, performance,

power consumption and accuracy [31, 62]. Discretization methods (Euler, zero-order hold,

etc.) are applied to transform the continuous-time differential equations into discrete-time

equivalents, appropriate for numerical computing. The discretized differential equations

are solved using numerical algorithms. Iterative solutions are used to solve the non-linear

ODE models of physical systems, where a series of linear equations are solved iteratively to

converge to the solution for the non-linear ODEs [52]. Therefore, the computation complexity

of solving N samples of ordinary differential equations may grow with respect to the type

of the discretization algorithm, numerical ODE solver, and the number and order of the

ordinary differential equations in the physical model. Moreover, the demand for higher

accuracy and more mathematically sound control solutions causes an increase in resource and

energy consumption that must be taken into account during the design cycle [3, 59, 61, 92].

Autonomous behavior in advanced control systems is desirable so they perform well under

changing conditions in the physical plant and the environment [4, 5]. Therefore, we proposed

a novel switching control methodology to augment the control system to adapt to changes

affecting the operating region of the system. In switching predictive control schemes, the

controller switches between predictive models of different granularities based on a metric that

computes the current dynamic state of the system. An optimal switching control problem

consists of: 1) a sequence of switching events, 2) a sequence of modes, 3) a sequence of

control inputs associated with each mode [13]. Switched systems are used to model classes

of systems with multi-mode features and switching control schemes may be applied as a

solution to address the online computational complexity [100, 102]. We reviewed the state-

of-the-art strategies to address the computational overhead specifically in MPC systems in
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the following section.

4.2 Related Work

Advanced techniques have been proposed to resolve the MPC computational burden. A com-

mon approach to reduce the computational complexity of traditional MPC is the switching

MPC [57, 100] methodology. Here, the controller combines the use of predictive models of

different granularities in a switching control scheme. The controller switches between the

predictive models based on a metric that computes the trade-off between the error and com-

putational savings due to model reduction. Zhang et al. [100] proposed a binary switching

controller based on two coarse-grained and fine-grained predictive models of the vehicle for

path planning and path following application. The proposed method considers only two

levels of complexity to be included in the MPC application. Gao et al. [29] designed a

hierarchical MPC scheme for path planning and path following application to overcome the

computational complexity. The high-level controller is formulated to plan an obstacle free

path using a simplified-point mass model of the vehicle. Moreover, a low-level controller

is designed based on a nonlinear dynamic model of the vehicle to follow the planned path

as the reference. More levels of complexities for the physical model enables the MPC to

adapt its performance to a wider range of environmental constraints and uncertainties [102].

Jadbabaie et al. [47] suggested that a stable MPC controller requires a sufficiently large

prediction horizon. On the other hand, short prediction horizons are preferred for improved

prediction accuracy of predictive models. This is because harmful effects of the poor esti-

mates are amplified over a long prediction horizon time. Here, the problem is addressed by

proposing an MPC approach that uses an adaptive prediction horizon with respect to quality

measures [23]. However, the numerical effort needed in order to solve the optimal control

problem for a long prediction horizon still remains significant.
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Erlien et al. [24] adopted variable length time-steps in the prediction horizon as a solution

to the computational complexity and cost of nonlinear MPCs. This method can associate

different prediction horizons targeted for stabilization and collision avoidance tasks. The

approach adjusts the sampling time to allow longer prediction horizon in obstacle avoidance

steering task as well as short time steps in the prediction horizon for more detailed dynamic

behavior prediction. In [98] the prediction horizon is a function of the vehicle speed and the

sample time in path following applications. Mahadevan et al. [63] suggested flattening the

non-linear differential equation model of the physical system to reduce the computational

overhead. For nonlinear ODE systems, flatness is achieved if all the states and input vari-

ables can be written in terms of a set of variables—flat outputs and their derivatives. For

the dynamic ODE systems that can be recast as a differentially flat system, the runtime

optimization problem is reformulated with simpler constraints, and hence smaller computa-

tional complexity. Linear Time-Varying (LTV) MPC is a method that employs a model of

the physical system linearized along the simulated path at each time step [25]. Even though

successful applications of this approach have been presented in the literature, the overhead

raised from the linearization over successive time steps is not resolved. Ferreira et al. [26]

proposed a methodology to organize libraries of models for electro-hydraulic elements with

variations in terms of model complexity. The purpose of the work is to use the appropriate

model with regards to the kind of physical domain and the timing requirements for platform.

Specifically, different levels of complexities for the target physical system under test shall

be provided by the user for a specific application. Here, the sudden changes to the physical

system caused by the environment may not be considered at runtime.

In general, the main burden in managing the computational complexity of nonlinear MPC

applications is the concurrent solving of a large number of nonlinear ordinary differential

equations. To overcome this computational overhead, we proposed a more general approach

that integrates all the above outlined techniques while eliminating the limitations associated

with ODE models. The following motivational case study will discuss this further.
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4.2.1 Motivational Case Study

The work in [5] presented a framework to generate Harmonic Equivalent State (HES) ma-

chine, a state-based model of the physical system. HES is applied as the predictive model in

the MPC loop to estimate the behavior of the physical system at future time instants based

on the calculated future control inputs. The proposed framework uses the Fast Fourier

Transform (FFT) decomposition and synthesis functions to generate a reconfigurable model

of various granularities. The granularity is adjusted based on the trade-off between model ac-

curacy and computation time. A machine learning model is trained to estimate the dynamic

behavior of the target physical system. MPC simulation is conducted with ODE model of

the physical system to collect the training dataset. A Neural Network (NN) model fits the

relation between the future control inputs and harmonic frequency information of the pre-

dicted outputs in prediction horizon of size T . Then, a state machine generation algorithm

uses the harmonic frequency information to produce a reconfigurable representation of the

model in the form of concurrent state machines. Each concurrent state machine is executing

at the rate of one of the harmonic frequencies to generate a square-wave output. Tuning

parameters are provided to reconfigure the model and tune it for the desired execution time

and granularity level. A band-pass filter is used to translate the generated square-waves to

sinusoidal equivalents. Finally, the sine-wave harmonics are integrated into the final output

signal. Figure 4.1 compares the execution time of HES model of a vehicle in comparison with

an ODE-based predictive model for MPC in a path following application. The performance

of the models is evaluated over different prediction horizon sizes for a constant time step. To

further analyze the performance of the proposed HES in comparison with the ODE model,

we computed the execution time of the HES model as the sum of its two main components:

the Harmonic Predictor block and State Machine Generator block as shown in Figure 4.1(a).

The wide bars represent the mean of execution time for each component with respect to

changes in the prediction horizon size. The results in the figure indicate that the mean of
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execution time for the ODE model is 2 times more than the State Machine Generator block,

and the Harmonic Predictor block has the highest mean value for the execution time.

In order to evaluate the performance sensitivity to the size of the prediction horizon, we

also computed the variance of execution time for each component shown as in narrow bars.

The interesting observation here is that even though the Harmonic Predictor block has the

highest mean of execution time, it has a very small variance as opposed to other components

and ODE has the highest variance. To be exact, the variance of ODE is 4 times higher than

the variance of the Harmonic Predictor block and 2.5 times higher than the state machine

component. That is, the small variations in execution time of the Harmonic Predictor block

occurs for different values of prediction horizon size. On the other hand, the performance of

the ODE model varies more drastically for different prediction horizon sizes. Therefore, it can

be concluded that for larger values of prediction horizon, known as long prediction horizon

problems, the HES model can outperform the ODE model in terms of execution time. The

execution time for both ODE and HES models are compared in Figure 4.1(b) with respect to

the common parameter, the prediction horizon size. The dotted trend-lines represent linear

changes in the execution time for different values of prediction horizon size. The results show

that the HES model outperforms the ODE equivalent with 32% improvement in performance

for large prediction horizon. The improvement of performance is in a tradeoff for a minor

loss in accuracy for applications that are error tolerant [5].

(a) Mean and variance of execution time. (b) Performance of ODE vs. HES [5].

Figure 4.1: Comparison of execution time for ODE and HES models.
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Conclusion from the observations: The HES model holds promising properties to be

employed as the predictive model in novel control methodologies. The model can be recon-

figured into various levels of granularities at run-time to be employed as the predictive model

in switching MPC approaches. New features may be added to the model to enable run-time

reconfiguration subject to current state of the system. Our observations indicate that the

error is mostly caused by the filter and the challenges associated with automatic tuning of

the filter per harmonic component. Therefore, an alternative solution to replace the filter in

the proposed framework is preferred.

4.3 Contributions

Based on existing literature and the motivational example described in Section 4.2.1, we

proposed a computationally efficient MPC methodology. Our contributions in this work can

be summarized as follows:

1. The performance of the HES model is improved in terms of execution time and model

accuracy. The Neural Network model is modified to better estimate the dynamic behavior

of the physical system. Furthermore, the band-pass filter is eliminated and a Look-Up

Table (LUT) is included to generate sinusoidal signals.

2. A novel switching model predictive control methodology is proposed based on the recon-

figurable HES model as the predictive model.

3. Machine Learning techniques are employed to design a runtime switching algorithm that

determines the optimal granularity level of the current predictive model in use.

4. Simulation experiments are conducted to evaluate the switching controller in a path

following application containing curved and straight routes.
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The rest of the chapter is organized as follows. In Section 4.4, the high-level architecture

of the proposed switching predictive controller is described. The HES model is defined in

Section 4.5. The proposed switching algorithm is described in Section 4.6. We demonstrated

the workings and effectiveness of our framework for path following application in Section

4.7. Finally, we stated our conclusions in Section 4.8.

4.4 Switching Model Predictive Control

In general, a switching MPC system can be defined as a family of sub systems and a rule that

orchestrates the switching among these subsystems as shown in Figure 4.2. The switching

function can be classified into state-dependent or time-dependent based on the function that

governs the switching rule [101]. In state-dependent switching, the state space is partitioned

into several operating regions and the switching occurs when the system state reaches a cer-

tain switching surface. The switching system is defined as time-dependent, when a constant

function of time decides the switch among models. The discrete-time linear switched system

can be formulated as [101]:

~z(k + 1) = Aσ ~z(k) +Bσ
~u(k) (4.1a)

~y(k) = Cσ ~z(k) (4.1b)

where ~z is the state vector, ~u is the input vector and ~y is the output vector. At any

time instant k, the switching function σ formulated in Equation 4.2 may be dependent on

time, its past values, the state/output vectors and external signal and takes its value from

Im = 1, ...,M where M is the number of subsystems.

σ(ki) = Φ([k0, kN), σ([k0, kN)), z([k0, kN))/y([k0, kN)) i ∈ 0, ..., N (4.2)
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Figure 4.2: General Switching Model Predictive Control Architecture.

We proposed a state-dependent switching predictive control system based on HES models

as the predictive model. The switching algorithm monitors the current dynamic state of the

system and changes the configuration of the HES as a reconfigurable predictive model at run-

time. The high level architecture of the proposed switching predictive control methodology

is illustrated in Figure 4.3. MPC employs a predictive model to compute, at each sampling

step, an optimal control problem over a finite prediction horizon. In switching predictive

control, the controller selects among a library of predictive models with different levels of

granularity based on a switching function σ that considers the control performance trade-off

[100]. The predictive model in a discrete time domain can be expressed as:

~zi(k + n|k) = fm( ~zi(k|k), ~ui(k + n|k)) (4.3)

where n is the number of time steps in the prediction horizon T and i is the index for number

of variables. The notation ~zi(k + n|k) refers to the value of the state variable zi in time instant

k + n, estimated at time k. The index m ∈ 1, ...,M denotes the level of granularity for the

predictive model currently in use. As depicted in Figure 4.3, we employed the reconfigurable

predictive model HESm to estimate the state vector variables of the prediction horizon
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T . The HES model is described in Section 4.5. A switching algorithm is designed as a

part of the controller to compute the optimal tuning parameters of a HES model based on

the switching function σ, which is a function of state variables as described in [100]. This

switching approach is elaborated in Section 4.6.

4.5 HES Model as Reconfigurable Predictive Model

The three main merits of the HES model that makes it a valid candidate for a predictive

model in switching predictive control are:

• Adaptive: The adaptive term means that it can adapt to the behavior of real physical

systems for different inputs. The model incorporates machine learning blocks. This

empowers the HES model to be adaptive in run-time control applications in that it

can fit the relation between any features and targets with proper training. The neural

network model implemented in Section 4.5.2 and the experiments illustrated in Sec-

tion 4.7 validate the working of machine learning models to estimate dynamic behavior

of physical systems.

• Reconfigurable: Rather than designing a library of models, one HES model can be

reconfigured for different levels of granularities at run-time. The tuning parameters

introduced in Section 4.5.1 adopt this reconfigurability feature to the model.

• Computationally Efficient and Handling Model Uncertainty: HES model can

generate multiple outputs as time series data. MPC employs a dynamic model of the

physical system to predict the future outputs in a determined prediction horizon. The

HES model can advantage MPC application in that the future outputs in the specified

prediction horizon are generated all at once. This is as opposed to the ODE predictive

models, which are generally required to be solved iteratively to estimate future outputs
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in a certain prediction horizon. Moreover, the uncertainty is also handled by HES

model as poor estimates are not accumulated over a long prediction horizon. This

is as opposed to iterative methods that suffer from amplified noise in long prediction

horizons.

The high-level architecture of the reconfigurable HES model in the MPC loop is shown

in Figure 4.3. The model is composed of two main blocks: State Machine Generator and

Harmonic Predictor. The architecture of HES model is based on the concept of signal

decomposition and synthesis to generate a reconfigurable state machine model of a target

physical system. The process of calculating the frequency domain information of the signal

from time domain representation is called decomposition and the inverse process is signal

synthesis. The State Machine Generator block captures the harmonic components of

the output signal in a prediction horizon T provided by the Harmonic Predictor. These

harmonic components are integrated into the synthesis function and the future state vector

variables are computed as time series data. The granularity level of the final output is

determined by the switching algorithm during the integration process.

Figure 4.3: Switching model predictive control loop with HES as the predictive model.
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4.5.1 State Machine Generator Block

This block captures the harmonic components from the Harmonic Predictor block and the

tuning parameters from the switching algorithm to synthesize the future state vector variables

~zi(k + n|k) in the form of (N/2+1) concurrent state machines. These state machines are

updated at the rate of frequency harmonics ~Frz. The synthesis equation of FFT for signal

~zi(n) of size N is employed as presented in Equation (4.4). In this equation, n stands for

the index of samples running from 0 to N -1. The vectors ~Rz[i] and ~Iz[i] are the normalized

frequency spectrum coefficients for the sine and cosine waves with index i running from 0 to

N/2 for the respective harmonic frequencies [79].

z[n] =

N/2∑
i=0

~Rz[i]cos(2πin/N) +

N/2∑
i=0

~Iz[i]sin(2πin/N) (4.4)

The State Machine Generator block is established based on this synthesis Equation (4.4) to

generate the reconfigurable representation of the output signal for models with various levels

of granularity. A lookup table (LUT) is employed to collect the sinusoidal values for this

equation. The use of LUT has improved the performance of the block drastically. The level

of the granularity for the generated signal can be adjusted with respect to following model

parameters [4].

Machine Size (HESsize): defines the number of harmonic concurrent state machines to be

integrated in the synthesis Equation (4.4) ranging from 1 to (N/2+1).

Time Resolution (Tres): is the global period at which rate the generated state machine

will be executed.
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Figure 4.4: Concurrent state machine architecture.

Figure 4.4 illustrates the concurrent state machine architecture for the proposed methodol-

ogy. HESsize concurrent state machines are executed at a global rate Tres, which is configured

by the switching algorithm. This global clock represents the time resolution of the state ma-

chine. The outputs of these state machines are integrated into the synthesis equation 4.4 to

compute the future state vector variables ~z(k + n|k) in the form of time series data. The

HES model as the predictive model of the physical system expressed in Equation 4.3 should

compute future state variables ~z(k + n|k) as a function of current state variables ~z(k|k) and

future control inputs ~u(k + n|k). Therefore, the Harmonic Predictor block is designed to fit

these variables to a function of machine learning model as described in the following section.

4.5.2 Harmonic Predictor Block

Neural Networks (NN) are capable of solving complex nonlinear relations between the input

features and target outputs [7, 68, 89]. Classic NNs have a three layer structure, namely,

input, hidden, and output layers. Each layer contains a set of nodes with edges to pass
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forward the information. Each node carries an activation function e.g. sigmoid, that limits

the variation to output values with respect to changes in NN parameters. The edges entering

the nodes are associated with weights that are factors to inputs of the nodes—these weights

are selected in the neural network framework using a training algorithm that minimizes a

cost function. We applied neural networks to design the proposed Harmonic Predictor block.

We mentioned this block design in Chapter 3 Section 3.4. Here, we will elaborate more on

the details of the design. This block contributes the most to estimate the dynamic behavior

of the physical system as in Equation 4.3. The input features of the NN model are control

input ~ui(k + n|k) and current state ~zi(k|k) vector variables concatenated respectively. The

target outputs are real and imaginary— ~Rei(k + n|k) and ~Imi(k + n|k)—components of state

vector variables ~zi(k + n|k) in the next n time steps.

To better represent the behavior of the real physical system, we modified this block in [5] to

accept all the current state variables in addition to control inputs as the additional features

to the NN model. Moreover, we increased the number of nodes in the hidden layer to mean

of input features and target outputs sizes according to an empirically-derived rules-of-thumb

[40]. This is to fit a more complex pattern and improve the accuracy which comes as a trade-

off for more computational overhead. However, the HES model with better execution time

have space for more complex NN with better accuracy. This is due to the replacement of the

filter with the lookup table which not only enhances the accuracy but also saves computation

time. The results in Section 4.7.2 evaluate the performance of these two architectures. The

Harmonic Predictor block is employed in the following training and prediction steps:

1. Training: The process of training the NN is performed in two phases. First, the archi-

tecture of NN is determined with respect to the number of hidden layers, hidden neurons and

layer types (e.g. Fully-connected). This part of the design of the architecture is usually done

empirically. We employed all fully-connected layers with one hidden layer for our architec-

ture. Once the architecture is defined, a training algorithm is employed to adjust the weight
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values until the NN reaches the performance objective. The weight adjustment is frequently

done using the back-propagation algorithm or some extension of it [58]. For our training

algorithm we used the Damped Least-Squares (DLS) which is a combination of Gradient

Descent and Gauss-Newton methods [69]. This algorithm is initially designed as a numerical

method to minimize computing sums of squares of nonlinear functions. It also benefits the

neural network training, where the performance metric is the mean squared error. To collect

the input features and target output values for the training datasets, an offline simulation

of MPC application is conducted with ODE model of the physical system as shown in Fig-

ure 4.5(a). That is, the NN model aims to estimate the behavior of the ODE equivalent.

Therefore, this ODE model determines the maximum level of granularity available in the

proposed HES model. We assume that mathematical models are well designed to accurately

(a) Training.

(b) Prediction.

Figure 4.5: Training and prediction for Harmonic Predictor block [5].
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capture the dynamic behavior of real physical systems. Here, the proposed method is de-

scribed and evaluated in MPC for path following of autonomous vehicle application. It needs

to be noted that the proposed methodology is generic to all MPC applications. The ODE

model of the vehicle dynamics [100] as shown in Figure 4.6 is formulated as

ẋ = v sin(θ) (4.5a)

ẏ = v cos(θ) (4.5b)

v̇ = cos(δ)a− 2

m
Fy,fsin(δ) (4.5c)

θ̇ = φ (4.5d)

φ̇ =
1

J
(La(masin(δ) + 2Fy,fcos(δ))− 2LbFy,r) (4.5e)

δ̇ = ω (4.5f)

where x and y are longitudinal and lateral positions, v and a are longitudinal velocity and

acceleration, θ is the yaw angle, and φ is the yaw rate. The variables δ and ω represent the

steering angle and angular speed respectively. The variables La and Lb are the distance of

sprung mass center of gravity from the front and rear axles respectively, and J is the angular

momentum. The variables Fy,f and Fy,r stand for front and rear tire lateral force. More

details regarding the model may be found in [5, 100].

These forces are computed from the following equations:

Fy,f = Cy(δ −
Laφ

v
) (4.6)

Fy,r = Cy(
Lbφ

v
) (4.7)
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where Cy is lateral tire stiffness. We applied real-world parameters of 2011 Ford Fusion as

La=Lb=1.5m, mass m=1700 kg and tire stiffness data for our experiments. The MPC for-

mulation to follow the reference trajectory xr, yr is the solution to the following optimization

problem:

min.
x,y

Tp∑
t=0

‖x̂(k + 1|k)− xr(k + 1|k)‖2Qc
(4.8a)

+ ‖ŷ(k + 1|k)− yr(k + 1|k)‖2Qc
(4.8b)

s.t.

−0.75 ≤ δ ≤ 0.75 (4.8c)

−3 ≤ ω ≤ 3 (4.8d)

−40 ≤ a ≤ 40 (4.8e)

MPC is simulated to optimize the control input vector variables ~ui(k + n|k) for the predic-
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Fy,f
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v
v 	̇

Fx,f
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Figure 4.6: Schematic view of the vehicle model [5].
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tion horizon T with respect to the cost function and enforced constraints. These control

input vector variables are fed as the feature values to the NN model. To be a better rep-

resentation of Equation (4.3), we included the current state vector variables ~zc(k|k) from

the actual plant as additional features to the NN model. Therefore, for the ODE example

formulated in Equation (4.5), we considered the acceleration and steering angular speed as

our control input variables ui ∈ {a, ω} to predict future states ~zp(k + n|k) ∈ {x, y}. For

current state vector variables ~zc(k|k), we employed all the state variables from Equation

(4.5) as ~zc ∈ {x, y, v, θ, φ, δ}.

Next, the State Machine Generator block, accepts only frequency domain components as

the input. Therefore, the target outputs of the NN model should be the ~Rei(k + n|k) and

~Imi(k + n|k) as the frequency information of state vector variables ~zi(k + n|k) in the next n

time steps. Recall that the Fast Fourier Transform (FFT) algorithm on a sample signal of size

N decomposes the signal into real and imaginary components of size (N/2+1). Therefore,

here the predicted state vector variables ~zi(k + n|n) from simulation of ODE are fed into

FFT algorithm in time windows of T to derive the frequency information. The training

is performed offline and adds no additional computational complexity at run-time to the

application.

2. Prediction: The mapping function that is established during the training phase where

the NN learns to correctly associate input patterns to output patterns is automatically

retrieved during run-time prediction. Therefore, run-time control input vector variables

ui ∈ {a, ω} in the next n time steps and current state variables ~zi ∈ {x, y, v, θ, φ, δ} are fed

into the NN predictor as shown in Figure 4.5(b) and the harmonic components of the future

output vector variables— ~Rei(k + n|k) and ~Imi(k + n|k)—are estimated. The predicted har-

monic information is fed into the State Machine Generator block for output generation—that

is, the output of the proposed physical model ~zi(k + n|k) ∈ {x, y} can adapt to variations

in control inputs ~ui(k + n|k) at run-time as in Equation (4.3).
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Here, we must assume that the predictive model given as in Equation (4.5) is suitable for

the plant under control. Our approach is neither intended to stabilize systems with a large

model mismatch or guarantee if switching is sufficiently slow. Here, we assume that selecting

a model will not drive the system to a point of instability since otherwise that model would

not be selected a suitable predictive model for our MPC controller.

4.6 Switching Algorithm

We designed a run-time switching algorithm based on the HES model mentioned above. The

purpose here, is to choose values for the tuning parameters of HES model that reconfigures

the model for the desired optimal granularity level in run-time. Research shows that, the

optimal granularity level for the predictive model in MPC applications varies based on a

metric that formulates the trade-off between the error and computational savings due to

model reduction [100]. This metric can be associated with state variables of the physical

system as in Equation 4.2. For instance, the work in [18] proposed a multi-model switching

predictive control strategy that employs the speed variable to schedule the switching rules

of the controller. Accordingly, in switching predictive control application, the dynamic state

of the system may be monitored to select the optimal granularity level for the predictive

model. For that, we formulated two switching functions: σstate and σopt. The former that we

call the state metric is formulated as a function of dynamic state of the system. The latter,

optimal granularity metric, is to coordinate the trade-off between the error and computation

time for optimal configuration of HES model.

We used the following function of steering angle δ and velocity v from [100] as our switching
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function σstate to compute the dynamic state of autonomous vehicles for ~zi(k|k) ∈ {v, δ}:

σstate(k|k) = Φ ( ~zi(k|k)) = v(k)− c|1
δ
| (4.9)

The optimal granularity metric σopt is defined as the ratio of execution time e to model

divergence d. Model divergence captures the error between the current model and the model

with highest level of granularity.

σopt(k|k) = Φ (e, d) =
e

d
(4.10)

The current dynamic state of the system zi(k|k) at time instant k defines the range for σstate

switching function. Moreover, the range for σopt switching function is defined by the available

granularity levels m ∈ 1, ...,M for the predictive models HESm which are determined by

the its tuning parameters. The switching algorithm computes the current dynamic state of

the physical system from σstate and associates this value to a range for σopt as in Equation

4.11. That is, the switching algorithm maps the current dynamic state of the system to an

optimal granularity level for efficient performance throughout the reference trajectory. The

switching algorithm determines the parameter values for HES model with respect to the

computed optimal granularity level.

σopt(k|k) = α× ~σstate(k|k) + β (4.11)
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The parameters α and β are adjusted to map the values of state-dependent switching function

σstate to the range for optimal granularity metric σopt. This mapping enables HES model

configuration based on the current dynamic state of the system for efficient performance. The

value for parameters α and β varies based on the form of the reference path and the number

of desired granularity levels. In order to compute the values for α and β, Equation 4.9 is

employed to approximate the range for current dynamic state throughout the reference path

r = [ xr , yr ]. The value for σstate defines higher optimal granularity levels for large steering

angles and small velocity values for the vehicle. On the other hand, the optimal granularity

level, decreases with smaller values for steering angle and larger velocities. This relation

can associate the optimal granularity level of the predictive model with the reference path’s

degree of curvature. Research shows that the optimal granularity level needed for curved

path where the vehicle is driving with slower speed and larger steering angle value is higher

than in straight routes [100].

We used the following equations to estimate the values of velocity v and steering angle δ to

travel the target reference path in distance intervals of ∆s meters.

∆sr =

√
∆x2r + ∆y2r (4.12)

vr =
∆sr

∆tr
(4.13)

θr = arctan
∆xr

∆yr
(4.14)

δr = ∆θr (4.15)

These values are employed in Equation (4.9) to approximate the vector σstate for the refer-

ence path r. To collect values for optimal granularity level as in σopt , the MPC simulation
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for path following application is conducted for t seconds with ODE model of a vehicle as the

predictive model. The predicted output values ~zi(k + n|k) ∈ {x, y} are recorded for predic-

tion horizon of size T each representing a vector of size n for n is the number of steps in

the prediction horizon. Then, these vector values are fed to FFT function to generate their

harmonic components which are used as inputs to HES model. The HES model is executed

for configurations of tuning parameters HESsize=[HESminsize , HESmaxsize ] and Tres=[Tminres , Tmaxres ]

dynamically and generates vectors of predicted outputs ~zi(k + n|k) ∈ {x, y} . The perfor-

mance metrics—execution time and model divergence— are recorded for each configuration

over different prediction horizons in the simulation time. We computed the mean of these

performance metrics throughout the simulation time. Design space exploration is performed

to select the Pareto optimal points from the possible pairs of model parameters (HESsize, Tres)

considering the trade-off between execution time and model error. The ratio of execution

time to model divergence for these Pareto optimal points defines the optimal granularity

metric σopt. Now that ample values for σstate and σopt are collected, the Equation 4.11 and

its respective parameters α and β from can be computed through data-fitting for later usage.

The optimal granularity valuesσopt and respective pairs of model parameters (HESoptsize, T
opt
res )

are later employed as the training data in the proposed machine learning model.

Machine learning techniques are applied to predict the tuning parameters of the HES model

for the desired optimal granularity level σopt. We employed linear regression machine learning

models that use i ∈ [1, n] number of feature values gi and their respective weights bi to predict

target outputs si as in Equation 4.16. The relation can be fitted on a line using least squares

method (LS) that minimizes the sum of the squares of the vertical distance from each data

point on the line [37]. The model is implemented in two training and prediction steps as

illustrated in Figure 4.7.

si = b0 + bigi (4.16)
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(a) Training.

(b) Prediction.

Figure 4.7: Training and prediction for the switching algorithm.

1. Training: The linear regression model is trained to fit the relation between the optimal

granularity level σopt as the input feature and respective HES model parameters —HESsize

and Tres— as the target outputs. The training data set is collected from the above mentioned

design space exploration experiment that collects corresponding optimal granularity values

σopt and respective pairs of model parameters (HESoptsize, T
opt
res ).

2. Prediction: As shown in the switching Algorithm 2, the values for current state variables

—velocity v and steering angle δ— are used to calculate the metric σstate from Equation (4.9)

at run-time. These values are captured from the simulation of predictive controller for path

following application with current HES model as the predictive model. The value of σstate is

inserted in Equation (4.11) to fit in the range of optimal metric σopt. Then, the σopt value

is fed to the linear regression model as the input feature to predict the corresponding HES

75



model parameter pair (HESsize, Tres)—that is, the switching algorithm estimates the values

for HES model’s tuning parameters in that the granularity level of the predictive model is

optimal with respect to performance metrics.

ALGORITHM 2: Switching Algorithm for MPC

Input: Current State Variables z
Output: Estimated (HESsize, Tres)

1 define α, β . equation 4.11

2 define b0, b1 . linear regression training function

3 v = z[0] . extract velocity and steering angle
4 δ = z[1]

5 σstate = v − c
δ

. calculate current dynamic state
6 σopt = α σstate + β . find optimal granularity

7 g ← σopt
8 s1 = b0 + b1 g1 . predict using the regression

9 Tres ← s[0] . extract HES parameters
10 MachineSize← s[1]

11 return [Tres,MachineSize]

4.7 Experimental Results

4.7.1 Experimental Setup

Our experiments are performed on a PC with a quad-core Intel Core i7 and 16 GB of DDR3

RAM. The MPC formulation is implemented in software using a framework based on the

ACADO Toolkit [42] which is an open source software written in C++ for automatic control

and dynamic optimization. It provides a self contained environment to implement control

algorithms including MPC as well as state and parameter estimation. The existence of

Lyapunov function ensures the stability of autonomous dynamical systems [54]. Therefore,

here the so-called LYAPINT integrator in ACADO Toolkit as an explicit Runge-Kutta45

integrator with an appropriate step size control is applied. The State Machine Generator
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Figure 4.8: Test error for neural network model in Harmonic Predictor block.

block is implemented using the C++ programming language in order to enable it to be

highly portable and compatible with various platforms for compilation and execution. The

Neural Network model is trained by using MATLAB’s neural networks module (nftool). The

regression model in the switching algorithm is also implemented in MATLAB. Figure 4.8

illustrates the values for test error of the NN model described in Section 4.5.2 for 13 sim-

ulation experiments. The Neural Network described in Section 4.5.2 is trained using 266

training batches for 70 features in the input layer and prediction horizon of size T= 1.55

seconds. The number of neurons in the hidden and output layers are 60 and 68 respectively.

As shown in the figure, the value for the error is in micro range which validates the the

performance of the NN described in Section 4.5.2 to predict the future dynamic behavior of

the physical system.

4.7.2 Comparison to State-of-the-Art

We compared the performance of the HES model described in Section 4.5 with respect to the

ODE model of a vehicle formulated in Equation 4.5 in a run-time MPC application in path

following. Figure 4.9 illustrates the error and execution time values of MPC using HES and

ODE models, simulated for different prediction horizon sizes. As shown in the figure, the

mean of execution time for ODE model and HES model are 7.63 ms and 1.25 ms respectively.

This improvement in performance is gained at the expense of a minor increase in model error

from average of 0.22 m to 0.25 m. The results indicate average of 83% reduction in MPC
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Figure 4.9: Performance comparison of ODE and HES models.

return time using HES model for negligible 13% loss in model accuracy. The improvement in

accuracy and execution time compared with the values reported in [5], is due to the removal

of the filter and the use of LUT and a more complex NN model in the new design.

Figure 4.10 illustrates the simulation results of MPC application in path following using the

HES model as the predictive model. Here, the HES model estimates the dynamic behavior

of the vehicle for 1.55 (sec) in the future. The initial velocity of the vehicle is taken as 24

(m/sec) to follow the reference trajectory as shown in the top left. As shown in the figure,

the steering control inputs {a, ω} demanded by the controller enables the HES model to

track the reference trajectory as the degree of curvature varies.

We conducted simulation experiments to evaluate the performance of the proposed switching

predictive control methodology in a run-time path following application of an autonomous

vehicle. As described in Section 4.6, we used a linear regression model in the switching

algorithm to predict the parameters of the HES model based on the optimal level of model

granularity in need. This optimal granularity level is aligned with the current dynamic state

of the system. In order to compute the α and β coefficient in Equation 4.11, Equations 4.12-

4.15 based on the the reference trajectory r = [ xr , yr ] are used. Figure 4.11(a) shows

the estimated values of σstate throughout the reference trajectory. Figure 4.11(b) shows the

Pareto optimal points of HES model parameters that are computed from the design space to

collect the training data for the regression model. These Pareto optimal points are associated
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Figure 4.10: The simulation results of the MPC using the HES model as the predictive
model.

with pairs of (HESsize, Tres) ∈ (13 : 17, 0.05) for five levels of granularity. We used these

values to compute the optimal granularity metric σopt as the ratio of execution time e to

model divergence d.

In order to compute the parameters α and β in Equation 4.11, we use the data collected in

Figure 4.11(a) in the following equation.

σopt =


1 σstate > a.

0 σstate < b.

α× ~σstate + β a 6 σstate 6 b.

(4.17)
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(a) σstate estimation for reference trajectory r. (b) σopt is computed as the ratio of execution time
to model error for pareto optimal points

Figure 4.11: Computing switching functions σstate and σopt.

Here, we consider α = 0.025 and β = 0.5. As mentioned in Section 4.6, the α and β

parameters depend on the form of the reference path and the number of desired granularity

levels. Figure 4.12 compares the approximated values of σopt using Equation 5.10 and actual

values computed using Equation 4.10. We can further tune the α and β parameters in order

to adjust the over/under estimations shown in the figure.

The linear regression model fits the relation between the optimal granularity level σopt as

the input feature and respective HES model parameters as the target outputs during the

training phase.

To better evaluate the effectiveness of the switching controller, we selected the reference

path to be a combination of straight and curved routes. For this purpose, we applied the

Figure 4.12: Comparing σopt as a function of (e, d) and as a function of σstatet.
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Figure 4.13: Switching predictive control application for path tracking. The red line shows
the computed position of HES model in the single granularity control mode and the blue
star markers represent the computed position for HES model in the switching control mode.

Lemniscate of Bernoulli function to generate our reference path. Figure 4.13 shows the per-

formance of the proposed switching predictive control methodology for tracking the Bernoulli

path. The red line is representing the x, y values for the single granularity control mode and

star markers are for switching control mode. The granularity level of the predictive HES

model configured by the switching algorithm is associated with the RGB value of the star

markers. That is, higher granularity levels are color mapped to higher RGB values, hence,

lighter blues. The gradual increase in granularity level (lighter blue) as the vehicle enters

the curved route validates the performance of the proposed switching algorithm in selecting

the parameters and reconfiguring the HES model appropriately.

The values for the optimal granularity level σopt calculated from Equation 4.11 and run-

time steering angle δ throughout the simulation of MPC are depicted in Figure 4.14. The

respective HES model parameters— HESsize and Tres— are predicted by the regression model

to adjust the desired optimal granularity level. The HES parameter Tres is set to constant

value of 0.05 seconds. Higher values of HESsize reconfigures the model for higher granularity

levels. The results show the switching of model parameter HESsize with respect to the desired

σopt value. As we expected, the optimal granularity level for when the vehicle is driving on

a curved route with large steering angle value is higher than when on straight paths.

We compared the performance of the new improved version of the HES model in single
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granularity and switching modes in Figure 4.15. The model in the single granularity mode

is configured for the highest level of granularity with static parameters (HESsize, Tres)= (17,

0.05) in this example. On the other hand, the switching algorithm is employed to reconfigure

the HES model’s parameters in run-time. Figure 4.15(a) illustrates the execution time values

of the HES model in the switching and single granularity control modes throughout the

simulation. These values represent the performance of the HES models in computation of

output vectors z(k + n|k) for the next n steps in the prediction horizon of size T . The

execution time values reported for the switching mode are computed as the sum of the

HES model’s execution time and the overhead caused by the switching process. Since the

linear regression model is formulated as a function of one input feature, the additional

computational overhead in the switching mode is O(1) which is negligible. As shown in the

figure, the mean execution time of MPC through the whole path using the HES model in

the switching mode is 45% less than single granularity mode, dropping from 10.52 (us) to

7.27 (us). This is due to the presence of the switching algorithm to reconfigure the HES

model for optimal performance with respect to dynamic state of the vehicle—that is the

switching algorithm selects higher values for (HESsize parameter and reconfigures the model

to maintain high execution time and granularity level on a curved route with large steering

angle value and vice versa.

Figure 4.15(b) compares the error values for the HES model in the switching and single

granularity control modes throughout the reference path. The results show 0.5 (m) and 0.62

Figure 4.14: HES model granularity levels.
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(a) Execution time.

(b) Error.

Figure 4.15: Performance analysis of HES model in two switching and single granularity
modes.

(m) as comparable mean of error values for the HES model, in the single granularity and

switching control schemes, respectively. This is because the switching algorithm is designed

to reconfigure the HES model for lower levels of accuracy when tolerated, as in tracking a

straight curve with high velocity and low steering angle values. That is, the changes in the

range of error values for HES model corresponds with the optimal granularity level. This

range is directly related to curvature of the path. It needs to be noted that, the drop in

accuracy is only observed in the generation of future output vectors z(k + n|k). However,

the error to track the reference trajectory is comparable between the switching and single

granularity modes with no drop in accuracy. Our experiments indicate that the use of HES

model in the proposed switching scheme acquires 45% decrease in execution time for no loss

in trajectory tracking accuracy. Moreover, our proposed switching control method is capable

of choosing the optimal model for different velocity and steering angle values.

83



4.8 Conclusion

In this chapter, a novel switching predictive control methodology is proposed that uses model

reduction to achieve a desired performance granularity for autonomous vehicles in path

following applications. This method is based on a state-based model of the physical system

that is able to adjust its granularity level dynamically. We apply machine learning models

to design a switching algorithm. Experimental results show that our proposed switching

control method decreases the overall execution time of MPC by 45% for a small 12% loss

of accuracy in prediction of future output values and no loss of accuracy in tracking the

reference trajectory.
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Chapter 5

Priority Neuron: A Resource-Aware

Neural Network for Cyber-Physical

Systems

5.1 Introduction

In previous chapters we discuss the computational overhead in traditional MPC which grows

exponentially with the length of the prediction horizon [11]. Research shows that a stable

MPC controller requires a sufficiently large prediction horizon [47]. On the other hand, short

prediction horizons are preferred for improved prediction accuracy of predictive models. This

is because harmful effects of the poor estimates are amplified over a long prediction horizon

time. Here, the problem is addressed by proposing an MPC approach that uses an adaptive

prediction horizon with respect to quality measures [23]. However, the numerical effort

needed in order to solve the optimal control problem for a long prediction horizon still

remains significant. One approach to overcome the computational burden of long horizon
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predictions is by implementing multi-rate prediction. In this approach, each look-ahead has

a separate weight in the estimation of the steering input, where the furthest look-ahead point

has the lowest weight [11].

Another method that is proposed to handle the computational issue associated with MPC

systems is to use accelerated predictive models of the physical system. Different variants

of NNs (e.g., recurrent neural networks [14]) hold promising performance for time-series

prediction as they can easily be built to predict multiple steps ahead all at once. These

models are well-known to have the ability to learn linear and non-linear relations between

input and output variables without prior knowledge [27]. However, the use of NN models for

long prediction horizon MPC problems could raise scalability and computational complexity

challenges. The state-of-the-art methodologies are focused on reducing the size of the NN

models without significantly affecting the performance [70, 73, 97]. These methodologies

leverage the intrinsic error tolerance property of the NN models due to their parallel and

distributed structure. Therefore, model reduction schemes could be exploited to employ

the NN as the predictive model in the MPC loop. Several recent studies have focused on

rescaling the size of the NN to adjust the resource usage on the embedded platform with

respect to response time, power, and accuracy targets [74]. In other words, several sizes of

the neural network are available at runtime to manage resources for inference time-, safety-,

and energy-constrained tasks. Moreover, continuous learning of neural networks in data-

driven modeling [87], transfer learning techniques [44], and adaptive modeling [38] impose

significant training-time constraints at runtime.

5.2 Related Work

Advanced control methodologies have emerged for path planning and path following appli-

cations in modern vehicles. Nonlinear MPC is leveraged to develop path following control
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systems while handling model uncertainties, constraints and nonlinearities. A predictive

model of the physical plant is used to estimate the future outputs for a prediction horizon

within a window of time and with respect to known input and output values. Mathematical

descriptions in the form of Ordinary Differential Equations (ODE) are used to model the

linear/nonlinear behavior of the physical system [90]. ODE solvers are applied to estimate

solutions that converge to the exact solution of an equation or system of equations [53]. A

runtime optimization routine is evaluated as a parametric quadratic function to calculate a

set of future control inputs subject to constraints enforced by the environment and system

dynamics. These routines are computationally intensive, and for nonlinear physical models,

the computational overhead grows with complexity of the model [57].

One of the challenges in classic MPC is that the computational overhead increases with the

length of the prediction horizon [11]. One approach to overcome the computational burden

of long horizon predictions is by implementing a multi-rate prediction control strategy, where

the prediction horizon is sampled in non-equidistant way [32]. In this approach, for a de-

termined prediction horizon of n time steps, the initial steps have a shorter sampling period

than the ones in the more distant future. In other words, fine tuning the control in such a way

as to reduce the importance of predictions that contribute to time steps further in the future.

Novel approaches are proposed for nonlinear dynamic system modeling and identification,

where the NN realizes the behavior of a set of ordinary differential equations with smaller

computation overhead [27, 41]. Moreover, data-driven neural networks are increasingly in

demand. Data-driven neural networks are based on direct use of input-output observations

collected from various real-world processes to perform system optimization, control and/or

modeling [80]. Classic NNs have a three-layer structure, namely, input, hidden, and output

layers. Each layer contains a set of neurons with edges to pass the information. The edges

entering the neurons are associated with weight parameters. The weight parameters are

adjusted in a training algorithm (e.g., by back propagation) so that the difference between

the network’s prediction and the target output is minimized.
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Developing resource-efficient neural networks for embedded systems with limited hardware

resources is a challenging task. To solve the memory complexity of NN models, many model

compression approaches are proposed based on the claim that NN models have natural error

tolerance because NNs usually contain more neurons than necessary to solve a given problem

[85]. Many network pruning and model reduction techniques are proposed in previous work

with promising results [20, 21, 34]. However, finding an optimal pruning solution is NP-

hard and requires a costly retraining process [22]. Many works have focused on selecting

weight parameters for pruning based on criteria such as magnitude of the weight, activation

value for the respective neuron, and increase in training error [35, 39, 95]. Han et. al [36]

proposed an iterative pruning method that removes all neuron connections whose weight is

lower than a certain threshold. This approach converts a dense fully-connected layer into

a sparser layer. The pruning is followed by a retraining process to boost the performance

of the trimmed neural network. A common approach to reduce the size of the ”parameter

intensive” fully-connected layers is to reduce the magnitude of the overall weight parameters

by including regularization terms in the model’s cost function. Pan et. al [73] exploited

regularization terms during the training process to simplify the NN model. At the end of

the training, the NN is trimmed by dropping neurons below a certain threshold.

Another approach to address resource-constrained deployment of neural networks for embed-

ded systems is to adapt the size of the neural network model to the performance requirements.

Park et. el [74] address the energy complexity of neural networks using a novel big/little

implementation, whereby a score margin metric is employed to select between the two sizes.

This approach is memory intensive such that it requires storing separate sets of weights for

different sizes of neural networks. Tann et. al [82] address the memory complexity problem

by proposing a multi-step incremental training algorithm such that the weights trained in

earlier steps are fixed. In this method, multiple sub-networks with different sizes are formed

while storing and using only one sets of weight parameters. Although this approach is close

to ours, our proposed method is more computationally flexible in generating multiple sub-
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network sizes and does not suffer from a time-consuming retraining process. In the following

section, we describe PNN, our proposed reconfigurable neural network model and its training

algorithm.

5.3 Contributions

In this chapter, we propose Priority Neuron Network (PNN), a novel neural network model

that is featured with a reconfigurable architecture. Our objective is to design a resource-

aware reconfigurable NN model that not only computes the future outputs as time series

data in constant time, but is also memory efficient. The summary of our contributions in

this work are as follows:

• We develop a reconfigurable neural network model to fit the dynamic behavior of the

physical systems for multi-step-ahead prediction in receding horizon problems. Our

resource-aware NN model can be reconfigured to various network sizes at runtime

while storing only one set of weight parameters for memory efficiency.

• We propose a training algorithm that controls the priority of each neuron in the com-

putation of the model’s output. We regulate the priority of each neuron using regu-

larization techniques enforced on weight parameters. We consider the neuron’s ordinal

number as our priority criteria in that the priority of the neuron is inversely pro-

portional to its ordinal number. We can reconfigure our NN model to smaller sizes

by eliminating low priority neurons. This approach allows the trade-off between the

model’s computation time and accuracy in resource-constrained systems.

• We implement our reconfigurable NN model that contains multiple sub-networks using

one-time training, hence reducing overall training time.
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• Our priority-based training algorithm enforces a sorted distribution on activation val-

ues of neurons. This helps to reduce the computation complexity of the model reduc-

tion process when searching for n neurons below the pruning threshold, from O(n) to

O(logn). It needs to be pointed out that we are not proposing a pruning methodology,

but a memory efficient NN model that can be reconfigured to smaller sizes with less

computation complexity at runtime.

• We apply our method to train a three-layer fully-connected NN model to be employed

as the predictive model of a vehicle in MPC for path tracking application. We conduct

closed-loop simulation of MPC using ODE predictive models to collect the training

data. To evaluate the efficacy of our methodology, we compare it with two state-of-

the-art approaches-Inc [82] and Big/Little [74]- that are targeted for resource-aware NN

design in embedded systems. We show that our proposed PNN model outperforms the

BL method with 89% reduction in training time and 78% saving in memory storage.

The PNN model shows similar results to Inc method in terms of memory and model

reduction complexity. However, we show that PNN follows a single training process to

adjust weight parameters as opposed to Inc method that is based on multiple retraining.

Therefore, the PNN model can cut down the training time by 86% with respect to Inc

method while maintaining a better prediction performance from 0.25% to 0.21%.

The rest of the chapter is organized as follows. In Section 5.2, we summarize the state-

of-the-art approaches to solve the computational complexity of MPC systems and design

resource-efficient neural network models. We describe our proposed method in Section 5.4.

We demonstrate the effectiveness of our framework for path following application in Section

5.5. Finally, we give our conclusions in Section 5.6.
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5.4 Method

5.4.1 Application of Neural Networks in Model Predictive Control

Model predictive control exploits a predictive model of the physical system to produce an

optimized control input sequence. The predictive model computes the output of the system,

a number of time steps into the future based on the current output and future control input

values. Therefore, the predictive model to estimate future outputs at time k in the next n

time steps -Y (k + n|k)- can be formulated as a time series prediction function f of future

control inputs I(k+n|k) and a vector of current state variables S(k|k) for S = [S0, S1, ..., SNs ].

Time-series data is a sequence of time-ordered values as measurements of some physical

process [81].

Y (k + n|k) = f( ~S(k|k), I(k + n|k)) (5.1)

The prediction function in Equation 5.1 can be fitted in a multiple input multiple output

(MIMO) NN model with future control inputs and current state of the physical system as its

input features and the future outputs in the next n time steps as its target outputs. Once the

function is learned, the acyclic NN model computes the future outputs as a time-series data

in constant computing time [27]. We use a three-layer fully connected Feed-Forward Neural

Network (FFNN) to fit Equation 5.1 and approximate the dynamic behavior of the physical

system. The FFNN is a class of NNs, where the input signal feeds forward through the

network layers to the output in a single direction. Here, each layer of the network consists of

computing neurons with edges that typically have a weight parameter. The output ŷi of the

neural network model can be computed as follows given xk input features for i ∈ {1...No}
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and k ∈ {1...Ni}:

ŷi =

Nh∑
j=1

[w2
ji σ(

Ni∑
k=1

w1
kj ~xk + θ1j ) + θ2i ] (5.2)

where Ni, Nh, and No denote the numbers of input-layer, hidden-layer and output layer

neurons, respectively. The parameters w1
kj and w2

ji are weights connecting the first layer

to hidden layer and connecting the hidden layer to the output layer respectively and are

adjusted in the learning process. The threshold offsets for the hidden and output layers are

represented as θ1 and θ2. The function σ(.) represents an activation functions, e.g., sigmoid,

or Rectified Linear Unit (ReLU), that limits the variation to output values with respect to

changes in NN parameters.

5.4.2 Architecture of Priority Neuron Neural Network as a Pre-

dictive Model in MPC

We propose PNN, a resource-aware reconfigurable NN such that the full model can be recon-

figured to smaller sizes for less computation time and relatively comparable accuracy. Here,

we deploy our proposed NN model for multi-step ahead time-series prediction in constant

time for an MPC application. However, the proposed NN model can be generalized for other

prediction applications, e.g., computer vision. As stated in Section 5.4.1, the non-linear

model in Equation 5.1 is used by MPC to compute future behavior of the physical system

can be fitted into a three-layer fully connected FFNN. The future control inputs and current

state of the physical system are given as the input features to the FFNN to approximate

the future outputs in the next n time steps. The proposed NN model can be described as

in Equation 5.2 for Ni = (# of state variables(Ns) + No) and Nh = No = (# of time time

steps in the prediction horizon(n)). The value for Nh is set empirically equal to No. We have
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two weight matrices W 1 and W 2 with sizes (N i×Nh) and (Nh×No) containing connecting

weights of our hidden and output layers, respectively. We use the Rectified Linear Unit

(ReLU) activation function which is one of the most widely used activation functions and is

defined as:

σ(z) = max(0, z) (5.3)

During the prediction process of the NN, we would ideally want a few neurons in the network

to not activate, thereby making the activations sparse and efficient. The ReLU activation

function gives us the ability to design a sparser NN model because it outputs 0 for negative

input values and imposes no constraint on the positive inputs. Equation 5.2 is broken

down into Equations 5.4a and 5.4b to compute the outputs of hidden and output neurons,

respectively. Here, for brevity, the bias parameters are deleted.

hj = σ(

Ni∑
k=1

w1
kj ~xk) (5.4a)

ŷi =

Nh∑
j=1

(w2
ji hj) (5.4b)

Hereafter, we are seeking a methodology for an architecture of a NN that stores one set

of weight parameters yet can be reconfigured to smaller sizes of the NN with small drop

in accuracy. To adopt the reconfigurability feature in our model, we exploit the multi-rate

prediction idea suggested by [11] that assigns lower accent to further look-ahead points in the

computation of the future dynamic behavior of the system. Therefore, the proposed PNN

model follows a sequential priority-based architecture. This means we consider the neurons’
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ordinal numbers as our priority criteria such that the priority of each neuron is inversely

proportional to its ordinal number in the given layer. Therefore, the model can be reduced

starting from the neuron with the highest ordinal number. Our goal is to synchronize the

priority level of the output and hidden neurons so that the model reduction process is more

computationally efficient for runtime applications. We will elaborate more on this in Section

5.4.4. In Figure 5.1 we show the architecture of the proposed PNN as a three-layer FFNN

where higher priority neurons are colored darker. We can deploy PNN as a resource-aware

predictive model for closed-loop MPC to estimate the future outputs [Y0, Y1, ..., YNh
]. Here,

we use the future control inputs [I0, I1, ..., INh
] and current state variables [S0, S1, ..., SNs ] as

input features. In the following section, we describe our proposed training algorithm and

the associated cost function to develop the priority-based NN model.

Figure 5.1: Priority Neuron Network (PNN) model.
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5.4.3 Training Algorithm to Prioritize Neurons

During the training process of a NN, an optimization algorithm is exploited to minimize

an objective function E0(.), which is simply a mathematical function based on the model’s

learning parameters (e.g. weights, biases). We might use sum of the squared deviations

of our neuron’s output ŷi from the target output yi as the loss function for No number of

outputs denoted as:

E0(w, b) =
1

2No

No∑
i=1

(yi − ŷi)2 (5.5)

The learning parameters are optimized and updated in an iterative training process toward

a solution that minimizes the loss function. A learning rate η is assigned to the training

algorithm that determines the size of the steps we take at each iteration to reach a (local)

minimum. For a convex optimization problem like this, we use derivatives of the loss function

∇E. Therefore, the following updating rule is formulated for the weight parameters to be

updated after (t+1)-th update iteration:

wt+1 ← wt − η∇E0 (5.6)

For our optimization algorithm, we employ a variant of gradient descent called Adaptive Mo-

ment Estimation (Adam) [56] which computes individual adaptive learning rates for different

parameters from estimates of first and second moments of the gradients. In the proposed PNN

model, the priority of the neuron determines how important the value of that neuron is in the

overall performance of the NN. In order to control the priority of each neuron, we enforce
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constraints on the computation of its output value. This can be done through regularization

techniques that restrain the growth of weight parameters. From Equation 5.4, we see that the

weight parameters used to compute the hidden neuron hj are W 1[:, j] = [w1
1j, w

1
2j, ..., w

1
Nij

].

The output neuron ŷi is computed using weight parameters W 2[:, i] = [w2
1i, w

2
2i, ..., w

2
Nhi

]. We

call the weight parameters of each neuron its associated weights.

Regularization: A common approach to reduce the complexity and size of NN models is to

constrain the magnitude of the overall weight parameters by including regularization terms

in the model’s cost function. The L1 norm is one of the most commonly used regularization

techniques that penalizes weight values by adding the sum of their absolutes to the error

term. Therefore, the cost function E with the L1 regularization term is:

E(w, b) = E0(w, b) +
1

2
λ

2∑
l=1

Nl∑
i=1

|W l
i | (5.7)

where λ is the weight decay coefficient for which larger values lead to larger cost, and causes

the training algorithm to generate small weight values. Existing work sets the same weight

decay coefficient for all layers to avoid the computational costs required to manually fine-

tune each coefficient. However, to train our priority-based NN model, we penalize each

weight with a specific weight decay coefficient so that the value of the corresponding weight

is constrained to grow up only to a desired threshold point. Hence, the activation of each

neuron is governed by the weight decay coefficients of its associated weights. As shown in

Algorithm 3, we use a new cost function for our three-layer fully connected feed-forward

PNN:

E(w, b) = E0(w, b) +
1

2

Ni∑
k=1

Nh∑
j=1

|λ1kjw1
kj|+

1

2

Nh∑
j=1

No∑
i=1

|λ2jiw2
ji| (5.8)
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for λ1 ∈ Λ1 and λ2 ∈ Λ2 where Λ1 and Λ2 are two weight decay matrices of our hidden and

output layers, respectively. Therefore, the new updating rule for weight parameters is:

wt+1 ← wt − η(∇E0 + Λ1W 1 + Λ2W 2) (5.9)

In the following section, we describe our heuristic algorithm used to assign values to weight

decay coefficients such that a sorted priority-based architecture is enforced on the proposed

NN model.

ALGORITHM 3: Priority Neuron Training Algorithm

Input: input features - x
Input: output targets - y
Output: trained NN - PNN
Output: estimated outputs - ŷ

// initialize NN weights

1 init random W

// estimate outputs given W weights

2 ŷ = PNN (x) [W ]

// evaluate residual error

3 err =
∑No

i=0(yi − ŷi)2

// evaluate regularization penalty

4 reg =
∑
|Λ1

Ni×Nh
.W 1

Ni×Nh
|+

∑
|Λ2

Nh×No
.W 2

Nh×No
|

// evaluate loss function

5 loss = err + reg

// optimize W weights for minimal loss

6 W = AdamOptimizer (loss)

// estimate outputs given optimal W

7 ŷ = PNN (x) [W ]

8 return [PNN, ŷ]

97



5.4.4 Model Reconfiguration of PNN Model

In PNN, we want to force a priority onto each neuron during the computation of model output

so that the accuracy is maintained after reconfiguring the network to smaller sub-networks

by removing low priority neurons. Therefore, we consider larger weight decay coefficients for

associated weights of neurons that are desired to have lower level of priority and vice versa.

We are following the multi-rate prediction scheme that allocates less stress on accuracy of

further look-ahead points. We design our weight decay matrices so that a sorted priority-

based architecture for our PNN is developed during the training process. The intuition

behind the sorted priority-based architecture of the PNN is to reduce the complexity of the

model reconfiguration and reduction process. Model pruning approaches to constrain the

complexity of NN models by applying regularization techniques, have been around for a while

[21, 43]. These approaches are based on an exhaustive search process to remove neurons with

activation values below a certain threshold. In our proposed priority-based architecture, we

enforce a sorted priority on hidden neurons to compute the overall performance of the model.

This helps reduce the time complexity for searching neurons below a certain activation value

as we can employ a Binary Search algorithm. Therefore, the worst-case time complexity for

the model pruning process in our PNN model with n number of hidden neurons is O(logn)

as opposed to standard architectures that require O(n) worst-case time complexity to prune

the network. Moreover, the model can be reduced to smaller sub-networks at constant time

O(1) due to its reconfigurability feature that is adopted throughout the training process.

There is always a trade-off between the number of sub-networks and the accuracy of the

model. We assign the same level of priority to the number of neurons that are deleted at

each level of model reduction. We call this number the priority size and denote it as p.

Figure 5.2 illustrates the reconfiguration process of the original NN model where neurons

are sorted and colored in terms of priority and importance. At each level of reconfiguration,

p number of hidden neurons with the least level of priority are deleted from the end of the
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Figure 5.2: The model reduction process for a three-layer fully-connected NN with priority
size p=4.

hidden layer. Hence, their input and output weight connections are also removed from the

weight space of the neural network. These sub-networks can be deployed separately while

reducing the memory complexity to a single network. In other words, only one set of weight

parameters are stored for multiple sub-networks of different sizes. We consider neuron’s

ordinal number as our priority criteria which can be mapped into index values for neuron’s

associated weights. Therefore, the weight decays vary with respect to row and column in-

dices of the weight matrix where r and c denote the row and column indices, respectively.

Equations 5.10 and 5.11 are expanded from Equation 5.4. In Equation 5.11, we see No num-

ber of output formulas that are used to estimate the future output behavior of the physical

system in the next No time steps, hence the size of the prediction horizon is No. It needs to

be noted that, here we do not include the bias terms for simplification purposes.

h0 = w1
00s0 + w1

10s1 + ...+ w1
Ni0
INi

(5.10a)

h1 = w1
01s0 + w1

11s1 + ...+ w1
Ni1
INi

(5.10b)

...

hNh
= w1

0Nh
s0 + w1

1Nh
s1 + ...+ w1

NiNh
INi

(5.10c)
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y0 = w2
00h0 + w2

10h1 + ...+ w2
Nh0

hNh
(5.11a)

y1 = w2
01h0 + w2

11h1 + ...+ w2
Nh1

hNh
(5.11b)

...

yNo = w2
0No

h0 + w2
1No

h1 + ...+ w2
NhNo

hNh
(5.11c)

Let us assume that the model is trained for a priority-based architecture where the priority

of neurons decreases inversely with their ordinal number. For a pre-trained model with

priority size p = 1, we want to reduce the size of the model by removing hidden neuron

hNh
with the least priority level from the hidden layer. While removing the hidden neuron

hNh
, its associated weight connections W 1[:, Nh] = [w1

0Nh
, w1

1Nh
, ..., w1

NiNh
] and W 2[Nh, : ] =

[w2
Nh1

, w2
Nh2

, ..., w2
Nh(No−1)] are removed from W 1 and W 2, respectively. In the next section

we describe the selection of weight decay coefficients to enforce a sorted priority on hidden

and output neurons. For a simple implementation we use the same number of hidden and

output neurons. Therefore, the W 2 weight matrix is squared.

5.4.5 Decay Matrix

A graphical illustration of our W 1 and W 2 weight matrices for hidden and output layers with

p=1 is shown in Figures 5.3 and 5.4, respectively. The weight matrices in Figures 5.3 and

5.4 are darker colored based on the value of their corresponding weight decay coefficients.

This helps to visualize the selected distribution pattern for weight decay coefficients where

a priority-based architecture for our PNN model is developed. In order to maintain the

accuracy of the model after the removal of hidden neuron hNh
(computed in Equation 5.10c),
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we want the model reduction to affect the least number of output neurons possible. Therefore,

we seek to adjust the weight parameters so that removing the hidden neuron hNh
mostly

impacts the least priority output neuron yNo . Hence, we select weight decay coefficients for

the weight parameters in the vector [w2
Nh0

, w2
Nh1

, ..., w2
NhNo

] in a descending order so that the

least weight decay value is assigned for w2
NhNo

. Smaller weight decay coefficients push the

training algorithm to assign greater values for the weight parameters. In this method, we

try to zero out [w2
Nh0

, w2
Nh1

, ..., w2
Nh(No−1)] as much as possible such that the removal of hNh

has minimal impact on the values [y0, y1, ..., y(No−1)].
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Figure 5.3: Weight parameters of hidden layer.
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Figure 5.4: Weight parameters of output layer.

To expand this idea to other neurons in the hidden layer, we should change the weight decay

coefficients above the main diagonal of W 2, in descending order per column and in ascending

order per row, so that the least weight decay coefficients are placed on the main diagonal.

Moreover, we should adjust the weight decay coefficients below the main diagonal of W 2 in

ascending order per column and in a descending order per row. We use ascending order per

column so that the priority level of output neurons decreases for larger ordinal numbers and

descending order per row forces the weight parameters on the diagonal to contribute the

most to the computation of their corresponding output neuron. We propose Equation 5.12
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to compute the weight decay coefficient for each weight parameter in order to regulate the

sorted priority order of PNN neurons. Here, r and c denote the row and column index of

the weight matrix, respectively. The parameter p stands for the number of neurons deleted

at each model reduction process, hence the priority size.

f(x) =


[λrc : λr(c+p)] = βf(

r

c
), r > c.

[λrc : λ(r+p)c] = βf(
c

r
), r < c.

(5.12)

Here, f(.) can be considered as a linear, exponential, or logarithmic, etc. growth function

considering the target application. The type of function f(.) determines the variance of

the priority distribution among various neurons at each layer. The greater the variance of

the priority distribution is, the more ways the original NN can be reconfigured into sub-

networks. That means less neurons (p) are deleted per model reconfiguration (reduction)

process. Larger variance for the priority order of neurons decreases the model accuracy as

it enforces more constraints on weight parameters. Therefore, the function f(.) is assigned

based on design requirements of the target application and the trade-off between the model

accuracy and number of sub-networks embedded in one NN model. The parameter β maps

the computed value of weight decay from Equation 5.12 to a range as λ ∈ [λmin : λmax].

This range is empirically selected based on the trade-off between the model accuracy and

the number of hidden neurons deleted per reconfiguration of the model-priority size.

5.4.6 Other Types of Neural Networks

The proposed priority-based approach is applied to a fully-connected FFNN architecture.

This is because state-of-the-art methods proposed fully-connected FFNN as a predictive

model to approximate dynamic behavior of physical systems in a MPC application. Previous
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state-of-the-art approaches has mostly focused on reducing the size of the fully-connected

layers in other NN architectures because these layers are well known to be parameter intensive

and occupy more than 90% of the model size [73]. Another popular architecture of NNs for

time series forecasting is Recurrent Neural Network (RNN) which is distinguished from

FFNN by having signals traveling in both directions and introducing loops in the network.

The RNN architecture can be converted into a FFNN by unfolding over time [14].

5.5 Experimental Results

5.5.1 Experimental Setup

Our implementation is based on the TensorFlow framework [2] executed on a PC with a

quad-core Intel Core i7 and 16 GB of DDR3 RAM. The MPC formulation is implemented

in software using the ACADO Toolkit framework [42], which is open source software written

in C++ for automatic control and dynamic optimization. To evaluate the efficacy of our

proposed methodology, we exploit the PNN as a predictive model in a MPC system for the

path following application. We describe the process on how we collect our training dataset

in the following section.

5.5.2 Simulation to Collect Training Data

As mentioned in Section 5.2, the dynamic behavior of a physical system formulated as ODE

can be fitted into a fully-connected FFNN. The future control inputs and current state of

the physical system are fed as the input features to the FFNN in order to predict the future

outputs in the next n time steps. To collect the training dataset, we exploit the following

ODE model of a vehicle [100] as shown in Equation 5.13 and Figure 5.5 to conduct offline
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simulation of MPC for a path following application.

ṡ =



v sin(θ)

v cos(θ)

cos(δ)a− 2

m
Fy,fsin(δ)

φ

1

J
(La(masin(δ) + 2Fy,fcos(δ))− 2LbFy,r)

ω


(5.13)

Here, s = [x, y, v, θ, φ, δ] is the vector of state variables with acceleration a and steering

angular speed ω as control inputs. The variables x and y stand for longitudinal and lateral

positions, v and θ are velocity and the azimuth. The variables δ and φ represent the steering

angle and speed, respectively. The distance from sprung mass center of gravity to the front

and rear axles are denoted as La and Lb, respectively, and J is the angular momentum. The

variables Fy,f and Fy,r stand for front and rear tire lateral forces. These forces are computed

from the following equations:

Fy,f = Cy(δ −
Laφ

v
) (5.14a)

Fy,r = Cy(
Lbφ

v
) (5.14b)

where Cy is the lateral tire stiffness. We applied real-world parameters of a 2011 Ford Fusion

as La=Lb=1.5m, mass m=1700 kg and tire stiffness data for our experiments. The MPC

formulation to follow the reference path xr, yr is the solution to the following optimization
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problem:

min.
x,y

Tp∑
t=0

‖x̂(k + 1|k)− xr(k + 1|k)‖2Qc
(5.15a)

+ ‖ŷ(k + 1|k)− yr(k + 1|k)‖2Qc
(5.15b)

s.t.

δmin ≤ δ ≤ δmax (5.15c)

ωmin ≤ ω ≤ ωmax (5.15d)

amin ≤ a ≤ amax (5.15e)

We simulate the MPC to predict 101 time steps in the future with time intervals of 5.05

seconds for a vehicle with an average speed of v = 10(m/sec). The appropriate value for the

prediction horizon and step size is bounded by some factors such as stability and accuracy

requirements and it varies based on plant dynamic characteristics. We implement a FFNN

with input size Ni = 6 + 102 for six values of current state variables and future control

inputs in the next 101 time steps. We select No = 102 as the output size for our NN to

predict the future output of the physical system in the next 101 time steps. The number of

hidden neurons in our three-layer FFNN are Nh = No.

5.5.3 PNN Training

In order to fine tune the range of weight decay coefficients λ ∈ [λmin : λmax] and select an

appropriate value for the constant factor β in Equation 5.12, we empirically pick the values

that yield the best performance on a held-out dataset. Therefore, we conducted experiments

based on five different ranges of coefficients. Figure 5.6 shows the error rate of the PNN

model with respect to variations in the range of weight decay coefficients. The optimal
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Figure 5.5: Schematic view of the vehicle model.

range of weight decay coefficients for each layer may change with respect to the size of the

next layer. In back propagation training, the gradient term in Equation 5.9 is scaled with

the size of the next layer [46]. Therefore, to compensate for the rescaling in the gradient

term of the update rule, the optimal range for weight decay coefficients might change. These

results are derived for priority size of p= 10, which denotes the number of hidden neurons

that are removed at each reconfiguration of the model to a smaller sub-network. Greater

values of p restrict the original NN model to be reconfigured to less number of sub-networks.

Naturally, there is always a trade-off between the accuracy of the model and the number of

sub-networks as shown in Figure 5.7. Considering this trade-off, the user might select an

optimal priority size based on the design requirements for the target application. The error

values in this figure are collected while reducing the size of the NN to 50% of its original

size. A trade-off still remains between the number of sub-networks with acceptable error

values and the percentage at which the size of the model is reduced. With respect to the

application and design requirements, the user may select the appropriate value for the hyper

parameter p.
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Figure 5.6: Performance of PNN for different ranges of weight decay coefficients.
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Figure 5.7: Performance of PNN for different priority sizes.5.5.4 Comparison to State-of-the-Art Methodologies

We evaluate the performance of our methodology in training a resource-aware NN model

with two state-of-the-art approaches that are proposed as solutions to implement resource

efficient NN in embedded system. By using the notation resource-aware NN model, we are

implying that these NN models are targeted for systems that monitor the resource usage

and dynamically manage the allocated resources to the NN model with respect to runtime

constraints. The results are collected for a three-layer fully-connected neural network of

108× 102 and 102× 102 inputs to its hidden and output layers, respectively. The Big/Little

approach [74], suggests multiple implementations of a NN model with small to bigger sizes.

In the Incremental method [82], which is the most similar to ours, the NN is trained based

on an iteratively incremental training algorithm where the weights computed in the earlier

steps are fixed. The Big/Little approach would require separate memory storage to hold
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model parameters of different sizes. Moreover, a retraining process is mandatory to generate

multiple sizes for the NN model. The Inc method is more memory efficient such that only

one set of model parameters are stored to implement a NN model that can be reconfigured

into sub-networks with different sizes. However, this approach suffers from the retraining

overhead per increment of size. In today’s embedded systems, where runtime continuous

learning of neural networks is required, retraining process overhead is prohibitive [87]. Our

proposed PNN model is memory efficient such that only one set of weights are computed for

multiple sub-networks. Furthermore, we compute the model parameters for PNN in a single-

training process. Throughout the examples, we use the following abbreviation to indicate

the three models. PNN: priority-based, Inc: Incremental, and BL: Big/Little.

Emerging research is based on developing approaches to estimate the number of neurons and

hidden layers required for a neural network [51]. However, these approximations also depend

on the type of the database samples for which the network is designed. Therefore, It is

still challenging to determine a good network topology for different applications. Therefore,

exhaustive pruning and model reduction methodologies are in demand to reduce the over-

sized NN models. One advantage of our proposed priority-based training algorithm is that it

enforces a relatively sorted distribution to the activation values. We compare the activation

value of hidden neurons for our proposed PNN model with respect to the incrementally

trained model and the Big/Little model that is trained with no constraint on its weight

parameters in Figure 5.8. For fairness of comparison, all experiments are conducted with

the same size for all three models. The ordinal number of the neuron denotes the position of

the respective neuron in the layer. The dotted red line shows the trend for linear changes in

activation values with respect to ordinal number of the neuron. As shown in Figure 5.8(a),

the activation values for the hidden neurons in PNN with priority size p = 10 is following

a sorted order. The trend line shows that the density of the model is mostly populated

throughout the first neurons and the activation values for the neurons further in the end

of the layer are forced to be very small. This is as opposed to the two other methods that
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(a) Activation values for neurons in PNN.

(b) Activation values for neurons in Inc.

(c) Activation values for neurons in Big/Little.

Figure 5.8: Comparing activation values of neurons with respect to their ordinal number.

show a more uniform distributions of activation values for the neurons. The incremental

approach in Figure 5.8(b) also shows slight sorted order among activation values. However,

as represented by the trend line, the rate of change for neuron’s activation value with respect

to its ordinal number is very slow compared to PNN method. In other words, in incremental

approach, the weight parameters are adjusted more uniformly throughout the network. This

decreases the number of sub-networks and the number of hidden neurons that can be pruned
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from the model without major drop in accuracy.

Table 5.1: Comparing the training process

Model #	of	Sub-
Networks

#	of	
Parameters

Model	
Reduction	
Complexity

Model	
Pruning	

Complexity
PNN 6 21522 O(logn) O(1)
Inc 6 21522 O(logn) O(1)

Big/Little 6 87292 O(n) O(n)

Model #	of	Sub-
Networks Retrain #	of	

Retrain	
Train	
Time	(s)

PNN 6 No 0 2627
Inc 6 Yes 6 21534

Big/Little 6 Yes 6 25020

Table 5.1 compares the training process for a three layer fully-connected FFNN using the

three aforementioned methods. The data is collected to train 6 separate sub-networks of

various sizes using the three methods. As we can see in the table, our proposed method

can generate 6 separate sub-networks in single training process. This is as opposed to the

two other methods that require retraining for each of the sub-networks. The performance of

these 6 sub-networks is evaluated in Figures 10.a and 10.b where the x-axis represents the

number of hidden neurons at each sub-network. The retraining process imposes additional

computation complexity to re-tune the parameters and hyper parameters. We can see that

our proposed model reduces the computation overhead for the training process substantially.

The training time is a critical matter especially in embedded systems for CPS applications

where many NN models are trained on the fly.

In Figure 5.9(a), we show the prediction time values over 6 different sub-network sizes. The

results show similar performance for all three approaches in terms of runtime prediction

overhead which increases for larger network size. As shown in the figure, by reducing the

number of hidden neurons to half of its original size, we can improve the computation

overhead by 30%. However, this saving in computation time comes as a trade-off for model

accuracy. Figure 5.9(b) shows the percentage prediction error values for different sub-network

sizes. The results for the BL [74] method that trains the sub-networks separately with no

additional constraints show that after a certain point the model error does not change with

110



(a) Execution time.

(b) Prediction error.

(c) Probability distribution of prediction error for full-size NN.

Figure 5.9: Performance comparison of three resource-aware approaches. In Figure 5.9(c)
we show the probability distribution of error for test data.

growth in the NN size. This justifies the over-parameterization phenomena in training the

neural network that urges pruning and model reduction methodologies. Moreover, the mean

of prediction error for 6 different sub-networks using our proposed PNN method and Inc [82]

are 0.2% and 0.25% respectively. Therefore, our proposed PNN method outperforms the Inc

approach for better prediction performance with no additional retraining process needed.
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In order to evaluate the comparability of model accuracy among the three methods, we also

show the probability distribution of prediction error values in Figure 5.9(c). These results

are collected for a full-size NN with no model reduction process performed. We can see in the

figure that the low variation in prediction errors using our proposed PNN model, confirms

its stable performance in prediction of various test data. Moreover, the average of prediction

errors for the PNN model is very close to that of BL method. This experiment ensures that

our proposed model is validated as a memory efficient architecture for NN models with small

drop in accuracy and comparable performance can be acquired using all three methods.

Table 5.2: Comparing memory reduction with respect to error.

0.21
0.25
0.125

Model #	of	Sub-
Networks

#	of	
Parameters

Memory	
Reduction

Mean	
Error	(%)	

PNN 6 21522 78% 0.2
Inc 6 21522 78% 0.25

Big/Little 6 87292 - 0.125

Model #	of	Sub-
Networks Retrain #	of	

Retrain	
Train	
Time	(s)

PNN 6 No 0 2627
Inc 6 Yes 6 21534

Big/Little 6 Yes 6 25020

We compare the efficiency of the three resource-aware methods in terms of memory require-

ments and model reduction complexity in Table 5.2. The PNN and Inc methods are both

memory efficient in that they need one set of weight parameters to store multiple sub-network

sizes. This is as opposed to the BL method that requires separate memory to store each

sub-network. Therefore, we can achieve 78% saving in memory to store 6 sub-networks with

very small loss in accuracy.

To summarize, our proposed PNN model outperforms the BL method with 89% reduction in

training time and 78% saving in memory storage. Moreover, the computation complexity of

the model reduction process to search for n neurons below the pruning threshold is improved

from O(n) to O(logn). The PNN model shows similar results to Inc method in terms of

memory and model reduction complexity. However, we show that PNN follows a single

training process to adjust weight parameters as opposed to Inc method that is based on
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multiple retraining. Therefore, The PNN model can cut down the training time by 86%

with respect to Inc method while maintaining a better prediction performance from 0.25%

to 0.21%.

5.6 Conclusion

In this chapter, we proposed Priority Neuron Network (PNN), a resource-aware neural net-

work model with a reconfigurable architecture. We proposed a training algorithm to exploit

regularization constraints on each neuron based on their ordinal number at a given layer.

This enforces a sorted order distribution for the activation value of the neurons. We im-

plemented our model for a three-layer fully-connected NN architecture to be employed as

the predictive model of a vehicle in MPC for path tracking application. To corroborate the

effectiveness of our proposed methodology, we compared it with two state-of-the-art meth-

ods for resource-aware NN design. We showed that compared to current state-of-the-art,

our approach achieves 75% reduction in memory usage and 87% less training time with no

significant drop in accuracy. Moreover, we improve the computational complexity of the

model reduction process in order to prune n number of neurons, from O(n) to O(logn).
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Chapter 6

Concluding Notes and Future

Directions

Advanced control methodologies have helped the development of modern vehicles that are

capable of path planning and path following. For instance, Model Predictive Control (MPC)

employs a predictive model to predict the behavior of the physical system for a specific time

horizon in the future. However, these prediction routines are computationally intensive and

the computational overhead grows with the complexity of the model. In general, mathemat-

ical descriptions in the form of Ordinary Differential Equations (ODE) are used to mimic the

linear/nonlinear behavior of the physical system. However, complex models of physical sys-

tems may be composed of thousands of non-linear ODEs, requiring considerable computing

power to execute. In general, the main burden in managing the computational complexity of

nonlinear MPC applications is the concurrent solving of a large number of nonlinear ordinary

differential equations. Switching MPC addresses this issue by combining multiple predictive

models, each with a different precision granularity. In switching predictive control schemes,

the controller switches between predictive models of different granularities. However, having

to store multiple predictive models of the physical system with various granularity levels
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introduce memory overhead. This is very crucial specially in embedded systems such as

autonomous vehicles where resource is limited. The dynamics of embedded systems is con-

stantly changing, so does the available resources for our computations, therefore the system

should be able to adapt to these changes. To address these issues, we propose resource-

aware solutions as predictive models and switching algorithms to dynamically manage the

granularity level of predictive models and trade performance metrics at runtime.

6.1 Main Contributions

The novel contributions of this thesis are:

• HES Machine: Harmonic Equivalent State Machine Model Generation Tool

for Cyber-Physical Systems: The main contribution of the proposed modeling

framework is the inclusion of frequency domain properties in signal synthesis to adopt

the enable multiple granularities and adjust the overall model accuracy at runtime.

• Hybrid State Machine Model for Fast Model Predictive Control: Appli-

cation to Path Tracking: In this work we integrate state machines with machine

learning neural networks to develop a predictive model which can adapt to variations

in inputs at runtime. ODE models are employed to train the proposed model at

design-time.

• Switching Predictive Control Using Reconfigurable State-Based Model: A

switching algorithm is proposed to change the configuration of the HES Machine as

a multi-grained predictive model at run-time. We adopt machine Learning models to

determine the optimal granularity level of the current predictive model in use based

on the current state and operating region.
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• Priority Neuron: A Resource-Aware Neural Network for Cyber-Physical

Systems: This model can be reconfigured to various network sizes at runtime while

storing only one set of weight parameters for memory efficiency. We proposed a training

algorithm that adjusts the priority of each neuron in the computation of the models

output. We assign the priority of each neuron using regularization techniques.

6.2 Future Research

• In order to further improve the accuracy of the NN in the HES model, we can increase

the number of training data. Moreover, a more complex ODE model can be adopted

during the simulation process to collect the training data.

• in Chapter 5 we computed the weight decay coefficients empirically based on the trade-

off between the model accuracy and the number of hidden neurons deleted per recon-

figuration of the model-priority size. This process of selecting optimal ranges for the

weight decay coefficients can be automated.

• In this thesis we exploited fully-connected feed forward neural networks architecture.

The proposed methods can be expanded to other NN architectures. For instance,

Recurrent Neural Networks (RNN) can be employed as a predictive model to estimate

the behavior of the physical system. RNN is a popular architecture for time series

forecasting and is distinguished from feed forward neural networks by having signals

traveling in both directions and introducing loops in the network. Furthermore, a stable

adaptive controller [55] may be exploited to reject controllers leading to instability .
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[33] C. Hamzaçebi, D. Akay, and F. Kutay. Comparison of direct and iterative artificial
neural network forecast approaches in multi-periodic time series forecasting. Expert
Systems with Applications, 36(2):3839–3844, 2009.

[34] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie:
efficient inference engine on compressed deep neural network. In Computer Architecture
(ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on, pages 243–254.
IEEE, 2016.

[35] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

119



[36] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[37] H. O. Hartley. The modified gauss-newton method for the fitting of non-linear regres-
sion functions by least squares. Technometrics, 3(2):269–280, 1961.

[38] W. He, Y. Chen, and Z. Yin. Adaptive neural network control of an uncertain robot
with full-state constraints. IEEE transactions on cybernetics, 46(3):620–629, 2016.

[39] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural
networks. In International Conference on Computer Vision (ICCV), volume 2, 2017.

[40] J. Heaton. Introduction to neural networks with Java. Heaton Research, Inc., 2008.

[41] N.-B. Hoang and H.-J. Kang. Neural network-based adaptive tracking control of mobile
robots in the presence of wheel slip and external disturbance force. Neurocomputing,
188:12–22, 2016.

[42] B. Houska, H. Ferreau, and M. Diehl. ACADO Toolkit – An Open Source Framework
for Automatic Control and Dynamic Optimization. Optimal Control Applications and
Methods, 32(3):298–312, 2011.

[43] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

[44] W. Hu, Y. Qian, F. K. Soong, and Y. Wang. Improved mispronunciation detection
with deep neural network trained acoustic models and transfer learning based logistic
regression classifiers. Speech Communication, 67:154–166, 2015.

[45] C. Huang, F. Vahid, and T. Givargis. A custom fpga processor for physical model
ordinary differential equation solving. IEEE Embedded Systems Letters, 3(4):113–116,
2011.

[46] M. Ishii and A. Sato. Layer-wise weight decay for deep neural networks. In Pacific-Rim
Symposium on Image and Video Technology, pages 276–289. Springer, 2017.

[47] A. Jadbabaie and J. Hauser. On the stability of receding horizon control with a general
terminal cost. IEEE Transactions on Automatic Control, 50(5):674–678, 2005.

[48] Z. Jiang, S. Radhakrishnan, V. Sampath, S. Sarode, and R. Mangharam. Heart-on-a-
chip: a closed-loop testing platform for implantable pacemakers. 2014.
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