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Abstract
Following the elucidation of the critical roles they play in numerous important biological processes, long noncoding RNAs
(lncRNAs) have gained vast attention in recent years. Manual annotation of lncRNAs is restricted by known gene annotations
and is prone to false prediction due to the incompleteness of available data. However, with the advent of high-throughput
sequencing technologies, a magnitude of high-quality data has become available for annotation, especially for plant species such
as wheat. Here, we compared prediction accuracies of several machine learning algorithms using a 10-fold cross-validation. This
study includes a comprehensive feature selection step to refine irrelevant and repeated features. We present a crop-specific,
alignment-free coding potential prediction tool, LncMachine, that performs at higher prediction accuracies than the currently
available popular tools (CPC2, CPAT, and CNIT) when used with the Random Forest algorithm. Further, LncMachine with
Random Forest performed well on human andmouse data, with an average accuracy of 92.67%. LncMachine only requires either
a FASTA file or a TAB separated CSV file containing features as input files. LncMachine can deploy several user-provided
algorithms in real time and therefore be effortlessly applied to a wide range of studies.
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Introduction

With current advances in high-throughput sequencing tech-
nologies, a vast number of transcripts have been experimen-
tally determined for a plethora of different species, including a
number of plants, animals, insects, and microbes (Szymański
and Barciszewski 2002; Claverie 2005; Mercer et al. 2011;
Cagirici et al. 2017; IWGSC 2018). Transcriptomic and geno-
mic studies have revealed that although the lengths of many of
these transcripts are greater than 200 nucleotides, the majority
do not code for functional proteins (Pennisi 2012; Budak et al.

2020). Such transcripts have been defined as long noncoding
RNAs (lncRNAs). Initially, the lack of evidence for their func-
tion and evolutionary conservation raised concerns about the
potential importance of lncRNAs (Struhl 2007). However,
many of these concerns have now been experimentally ad-
dressed by the functional characterization of lncRNAs in
many important biological processes (i.e., COOLAIR/
COLDAIR) (Heo and Sung 2011). Studies in the last decade
have revealed diverse regulatory functions, including biolog-
ically significant interactions such as between lncRNA:RNA
and lncRNA:chromatin (Chekanova 2015) and involvement
in several important biological processes, such as vernaliza-
tion (Swiezewski et al. 2009), photo morphogenesis (Wang
et al. 2014), reproduction (Ding et al. 2012), nodulation
(Campalans 2004), and environmental stress adaptation (Liu
et al. 2012).

Furthermore, lncRNAs appear to exhibit tissue-specific ex-
pression and functional conservation (Cabili et al. 2011;
Ulitsky et al. 2011). Although sequence conservation almost
always accounts for the functionality of a sequence, vice versa
is not always true (Shannon et al. 2003). Instead of full-length
sequence conservation, lncRNAs may have conserved small
binding sites at the structural level to maintain functional

* Hikmet Budak
hikmet.budak@icloud.com

1 US Department of Agriculture - Agricultural Research Service, Crop
Improvement Genetics Research Unit, Western Regional Research
Center, 800 Buchanan St, Albany, CA 94710, USA

2 Faculty of Engineering and Natural Sciences, Sabanci University,
Tuzla, Istanbul, Turkey

3 ETSI Informatica, University of Malaga Andalucía Tech.,
29071 Malaga, Spain

4 Montana BioAgriculture Inc., Missoula, MT, USA

Functional & Integrative Genomics
https://doi.org/10.1007/s10142-021-00769-w

http://crossmark.crossref.org/dialog/?doi=10.1007/s10142-021-00769-w&domain=pdf
http://orcid.org/0000-0002-2556-2478
mailto:hikmet.budak@icloud.com


interactions with proteins or other DNA/RNAs (Militti et al.
2014). Therefore, the understanding of the diverse functions
of lncRNAs has the potential to provide insights into the dif-
ferent constraints that also drive conservation of other RNA
classes, such as messenger RNAs (mRNAs) and micro RNAs
(miRNAs) (Hezroni et al. 2015).

Despite their importance, computational identification of
lncRNA during genome annotation is challenging. To distin-
guish lncRNAs from classes of small noncoding RNAs, such
as miRNAs, the size of the transcript can be used. But dis-
crimination based on length is not sufficient for identification:
for example, both lncRNAs and mRNAs are long and share
similar splicing and poly-A tailed structures, and in this case,
other discriminants such as structural and functional features
need to be used (Ulitsky and Bartel 2013). Additionally,
lncRNA transcripts cannot be identified solely through ho-
mology, as the sequences are less conserved between species
than protein-coding genes (Pang et al. 2006), and the presence
of open reading frames in lncRNAs adds another layer of
complexity. Another challenge is the growing evidence sug-
gesting that some lncRNAs may not be noncoding but in fact
code for short functional peptides. The best known example is
the lncRNA known as early nodulin 40 (ENOD40)
(Campalans 2004), whose conserved nucleotide sequence at
the 5′ end encodes two short peptides with lengths of 12 and
24 amino acids (Rohrig et al. 2002). Proteogenomic and mass
spectrometry have also been carried out to identify peptides
using small ORFs (Andrews and Rothnagel 2014; Zhu et al.
2018).

In recent years, several predictive tools have been devel-
oped to distinguish between lncRNAs and coding RNAs
using a range of different features and algorithms. The most
popular of these tools are also among the most accurate and
informative: Coding Potential Calculator (CPC) (Kong et al.
2007), Coding Noncoding Index (CNCI) (Sun et al. 2013),
and Coding Potential Assessment Tool (CPAT) (Wang et al.
2013).

CPC uses a Support Vector Machine (SVM) algorithm
with a standard radial basis function kernel to differentiate
coding RNAs from ncRNAs based on both the extend and
quality of the ORFs and the evidence of sequence similarity
to proteins (Kong et al. 2007). In 2017, the CPC algorithm
was updated to an alignment-free CPC2 (Kang et al. 2017),
which has increased the speed and accuracy of identification.
As an alignment-free tool, CPC2 has become species neutral
that does not require training for different species. Selected
features were evolved in CPC2 to include ORF length, ORF
integrity, isoelectric point, and Fickett score. Fickett score was
adapted from CPAT and refers to the asymmetrical distribu-
tion of each base favored in a sequence (Wang et al. 2013).

Another algorithm, CPAT, evaluates coding potential
using an alignment-free Logistic Regression model (Wang
et al. 2013). Its features include ORF length, Fickett score,

and hexamer score. Hexamer score captures the score for co-
don usage bias of adjacent amino acids in a sequence (Wang
et al. 2013). CPAT has an advantage over CPC2 as it allows
users to create a model with their own data.

In comparison, CNCI is an alignment-free tool using SVM
with a radial basis function kernel. It differentiates coding
RNAs and ncRNAs based on the intrinsic composition of
the sequence (Sun et al. 2013). Similar to hexamer score in
CPAT, CNCI estimates the codon bias using unequal distri-
bution of adjoining nucleotide triplets (ANTs) via a sliding
window approach. The most likely coding domain sequence
(MLCDS) is selected after scanning each sequence six times
within each potential reading frame. Although this quantity
shows similarities with the hexamer score, the ANT approach
performs a more comprehensive downstream analysis to in-
clude the classification of partial transcripts (Han et al. 2016).
CNCI was later upgraded to CNIT (Coding-Noncoding
Identifying Tool) to provide faster and more accurate evalua-
tion of sequences using the same features (Guo et al. 2019).

There are several other, but less popular lncRNA prediction
tools, which use different prediction models and feature sets.
Some of these include PLEK (Li et al. 2014), BASiNET (Ito
et al. 2018), LncRNA-ID (Achawanantakun et al. 2015), and
DeepLNC (Tripathi et al. 2016). In short, PLEK facilitates
Support Vector Machine using k-mer-based features to distin-
guish lncRNAs from coding RNAs (Li et al. 2014). BASiNET
uses decision tree algorithms trained with alignment-free fea-
tures (Ito et al. 2018). In comparison, DeepLNC facilitates
deep learning (Tripathi et al. 2016), where LncRNA-ID uses
Random Forests (Achawanantakun et al. 2015). Some tools
even construct an ensemble of models such as gradient
boosting and Random Forests for the prediction of plant
lncRNAs (Simopoulos et al. 2018).

Although current computational methods have yielded en-
couraging results, certain limitations are yet to be overcome.
Predictions are highly dependent on training data, and while
many tools aim to achieve high overall accuracy across sev-
eral species, some focus on a narrow set of species. Recent
studies have shown that species-specific predictions are opti-
mally obtained from training data of the same or a closely
related species (Singh et al. 2017). Singh et al. showed that
PLncPRO, a model built specifically for monocots, achieved
higher accuracy for lncRNA prediction when applied to
monocots, rather than dicots and vice versa.

We developed a lncRNA prediction model, LncMachine,
for crop plants and analyzed its performance for a wide range
of crop species, including wheat. Wheat is a major crop across
the globe, ranking second in human consumption worldwide
(FAO 2019). To accurately identify both lncRNA transcripts
and coding transcripts, we developed an alignment-free pre-
diction workflow that includes several machine learning algo-
rithms, which users can train for their species of interest. We
evaluated several features included in other studies and
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performed feature selection algorithms to extract the best set
of features to distinguish coding and noncoding se-
quences. Using this feature set and comprehensive train-
ing data, we first obtained 10-fold cross-validation ac-
curacies for nine different algorithms, including Support
Vector Machines, Logistic Regressions, and Random
Forests. We then compared the prediction accuracies
for two independent wheat transcript datasets for hexa-
ploid and tetraploid wheat species, as well as for the
plant lncRNAs that are available at the GreeNC data-
base. Last, we included the comparison of prediction
accuracies using the test data provided in the CPC2,
CPAT, and CNIT tools to show that the LncMachine
accuracies are not biased for a specific dataset.

Material and methods

Datasets

Training datasets were collected from two databases: lncRNA
sequences from CANTATAdb v2 (Szcześniak et al. 2019)
and mRNA sequences from Ensembl Plants (v37).
CANTATAdb v2 contained lncRNAs for a wide range of
plant species, and these lncRNAs were based on genome as-
semblies deposited in Ensembl Plants v37. We selected
lncRNAs from monocotyledons and eudicotyledons,
which had corresponding cDNAs deposited in Ensembl
Plants (v37). Sequences with >90% N stretches and
<200 bp in length were removed. Redundant sequences
having a sequence identity of at least 90% were also
removed using CD-HIT (Fu et al. 2012) at its default
settings. After filtering, an equal number of cDNAs and
lncRNAs were randomly selected for each species. A
total of 90,104 lncRNA sequences and 90,104 cDNA
sequences were included in the training dataset.

Test datasets included (1) lncRNAs from monocotyledons
and eudicotyledons deposited at GreeNC database
(Gallart et al. 2016), (2) an equal number of lncRNAs
from IWGSC wheat RefSeq v1.0 annotation and high-
confidence CDSs from IWGSC wheat RefSeq v1.1 an-
notation (IWGSC 2018) available through https://wheat-
urgi.versailles.inra.fr/Seq-Repository/Annotations, (3) an
equal number of lncRNAs and high-confidence CDSs
of tetraploid wheat (Svevo) (Maccaferri et al. 2019)
available through https://www.interomics.eu/durum-
wheat-genome, as well as at GrainGenes (https://wheat.
pw.usda.gov) (Blake et al. 2019), and (3) the datasets
used for testing in CPC2 (Kang et al. 2017), CPAT
(Wang et al. 2013), and CNIT (Guo et al. 2019).
These datasets were used for comparisons of accuracies
independent of the datasets chosen.

Feature extraction

Initially, we extracted 93 features based on sequence intrinsic
properties (File S1) which later were subject to feature selec-
tion. The initial features were composed of the following:

1 ORF length
2 ORF coverage
3 Sequence length
4 GC%

5–8 k-mer (k=1) frequencies; monomer frequencies of the
four nucleotides

9–24 k-mer (k=2) frequencies; dimer frequencies of the four
nucleotides

25–88 k-mer (k=3) frequencies; trimer frequencies of the
four nucleotides

89 Fickett score from full length sequence
90 Fickett score from CDSs
91 Hexamer score
92 ORF integrity
93 Isoelectric point

To remove irrelevant and collinear features, we applied
several feature selection methodologies available through py-
thon scikit-learn package (Pedregosa et al. 2011). These in-
cluded the following:

– Variance threshold
– Univariate feature selection with ANOVA F-test
– Random Forest Classifier
– Recursive feature elimination
– Lasso regularization
– Pearson correlation

Each methodology provided a list of best features, includ-
ing collinear features. For feature selections, collinearity was
reduced by Pearson pairwise correlation of the best features.

Model construction and evaluation

LncMachine can build prediction models using several ma-
chine learning algorithms although the default was set to
Random Forest. The script was provided in supplementary
files (File S2) and available at GitHub at https://github.com/
hbusra/lncMachine.git. Prediction models were built
using nine machine learning algorithms from the python
scikit- learn package: (1) LogisticRegression, (2)
RandomForest, (3) Multilayer Perceptron (NeuralNet), (4)
NearestNeighbors, (5) DecisionTree, (6) Gaussian Naïve
Bayes (NaiveBayes), (7) AdaBoost , (8) Quadric
Discriminant Analysis (QDA), and (9) Support Vector
Machines with linear kernel (LinearSVM). Training accura-
cies were calculated by a 10-fold cross-validation. Using the
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StratifiedKFold function of the scikit-learn package, training
data were split into 10 different training/test sets. For each
training/test set, the prediction accuracies for prediction
models were calculated using the different feature sets sug-
gested for each algorithm. Training performance was assessed
by the mean and the standard deviations of the accuracy
scores. Due to their computational cost, Support Vector
Machine (SVM) algorithms were not included for further
analyses after cross-validation (Table 1).

Testing of the prediction models on several plant datasets
was then completed. The prediction performance was evalu-
ated based on statistic metrics: accuracy (ACC), precision
(PRE), sensitivity/recall (SN), specificity (SP), and F-score
(Powers 2007). These were defined as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Precision ¼ TP
TP þ FP

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Fscore ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity

TP true positive
TN true negative
FP false positive
FN false negative

Additional performance assessments were performed
through plotting the Receiver Operating Characteristic
(ROC) curve for visualization and calculating the respective

Area Under the Curve (AUC) score from the ROC curve
(Bradley 1997).

To compare the prediction performance of the LncMachine
against other tools, CPC2, CPAT, and CNITwere utilized. All
three tools were updated recently and have been considered
among the most popular coding prediction tools. CPC2 is a
species-neutral tool that does not provide a training option for
different species; therefore, it was run at its default settings
without training. CNIT was run in plant mode using 20
threads. CPAT was trained with the same training data used
in the current study. The cutoff for the identification of coding
and noncoding transcripts was determined as described in its
manual (Wang et al. 2013).

Results

Experimental setup and model construction

Using a set of publicly available lncRNA and mRNA se-
quences for 18 plant species, we constructed a plant-based
lncRNA prediction tool, LncMachine, by evaluating the per-
formance of eight machine learning algorithms and selecting
the best features. For a total of 93 sequence intrinsic features,
we assessed five feature selection methodologies: Lasso,
RandomForest, recursive feature elimination, variance thresh-
old, and univariate feature selection, all followed by Pearson
pairwise correlation in addition to elimination of features by
Pearson correlation alone (Table S1). After 10-fold cross-val-
idations, the feature set was selected by variance threshold
followed by Pearson correlation resulted in the highest accu-
racy and AUC score of ROC (Area Under the Receiver
Operating Characteristics) (Bradley 1997) for the Random
Forest Classifier (Table S1). Random Forest Classifier and
the features selected by variance threshold followed by
Pearson correlation were selected for further analysis.

First, we applied a variance threshold to select features that
showed more than 80% of variance. Variance scores varied
between 0 and 21,496,995 among 93 features.We selected the
top ranking features with a score of at least 4. This highlighted
15 features: sequence length, ORF length, ORF coverage, GC
content, T content, A content, C content, G content, CG con-
tent, GC content, isoelectric point, TT content, AA content,
AT content, and TA content. Ranking of the features was
provided in the Supplementary Table S2. Later, we applied
Pearson pairwise correlation and selected only the highest
scoring features based on correlation coefficient. The final
set of features were sequence length, ORF length, GC content
(GC%), and isoelectric point (pI) (Table S2). The three fea-
tures except pI score were slightly higher in coding sequences
on average, whereas pI score showed a similar distribution
among coding and noncoding sequences but slightly higher
among noncoding sequences on average (Fig. 1). Figure 2

Table 1 Performance of prediction models using training data with a
10-fold cross-validation

Algorithm Training accuracy (%) Std (%)

RandomForest 94.09 ± 0.18

AdaBoost 93.62 ± 0.16

NearestNeighbors 93.40 ± 0.16

NeuralNet 93.39 ± 0.30

LinearSVM 91.85 *NA

LogisticRegression 91.69 ± 0.20

DecisionTree 90.86 ± 0.23

QDA 88.10 ± 0.44

NaiveBayes 87.38 ± 0.28

*NA: not available because Support Vector Machine (SVM) with linear
kernel was only run at 1-fold due to its computational cost
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shows these three major features (sequence length, ORF
length, and GC%) in three-dimensional space to assess the
separation of coding and noncoding sequences based on the
features selected. Our results showed that sequence length and
ORF length have high separation power for coding and non-
coding transcripts as even the largest noncoding sequences
tend to contain small ORFs. Table 1 shows 10-fold cross-
validation accuracies of the nine machine learning algorithms
using these four features. All of the algorithms resulted in over
87% cross-validation accuracy (Table 1), indicating a good fit
of the selected features in the prediction models. Given that
Support Vector Machine (SVM) algorithm with linear kernel
was not among the top performing algorithms, cross-

validation was only performed by 1-fold due to the computa-
tional cost of SVM algorithms. Our results showed that
LncMachine performs best with the RandomForest algorithm
on the training data.

Performance evaluation against other plant datasets

We evaluated the performance of machine learning models on
lncRNAs based on sensitivity in 6 plant species from the
GreeNC database (Table 2). Our results showed that some
algorithms perform very poorly on certain species. For exam-
ple, lncRNAs of Oryza sativa Japonica were identified with
only a range of 13–30 % sensitivity by five of the algorithms,

Fig. 1 The density distribution of the selected features to build the prediction model for coding (orange) and noncoding (blue) sequences. (a) Sequence
length, (b) ORF length, (c) pI score, and (d) GC content

Fig. 2 The three-dimensional plot
of the three features: sequence
length, ORF length, and GC %,
on coding (orange) and noncod-
ing (blue) sequences
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whereas QDA and Naïve Bayes provided a 99% sensitivity.
Interestingly, among all nine algorithms, QDA and Naïve
Bayes provided >96% sensitivity for all of the species.
These results suggest that QDA and Naïve Bayes algorithms
are better suited for the identification of lncRNAs for a wide
range of plant species.

Additionally, the prediction models with QDA, Naïve
Bayes, and Logistic Regression outperformed the three most
popular tools, CPC2, CPAT, and CNIT, for all of the species
tested from the GreeNC database. Among the popular tools,
CPC2 predicts lncRNAs with a sensitivity ranged between 77
and 93%, CPAT between 41 and 75%, and CNIT between 43
and 63%. It was interesting to observe that although CNIT and
CPAT were trained specifically for plants (i.e., in contrast to
CPC2), they provided the lowest sensitivities for identifying
plants lncRNAs.

We also evaluated the prediction performances on two real-
life case studies: hexaploid and tetraploid wheat datasets. An
equal number of lncRNAs and high-confidence CDS se-
quences were retrieved for both hexaploid (Chinese Spring)
and tetraploid (Svevo) wheats (Table 3). For the full set of
coding and noncoding sequences of the two wheat species,
all nine algorithms provided >92% accuracy. Overall, our de-
fault RandomForest model outperformed all the remaining
tools and algorithms for the wheat datasets with 98.65% and
99.25% accuracies for hexaploid and tetraploid wheats, re-
spectively (Fig. 3 and Table 4). CPC2, CPAT, and CNIT
provided accuracies >94%. For the wheat species, CPAT per-
formed better than both CPC2 and CNIT.

These results show that even when the same algorithm is
used, different parameters, platforms, feature sets, and training
data can affect prediction accuracies. For example, CNIT,

which uses LogisticRegression, and LncMachine, which uses
LogisticRegression, showed drastic differences in the predic-
tion accuracies for various test datasets. Across the test
datasets, LncMachine with LogisticRegression outperformed
CNIT (96.58% vs 98.06% for hexaploid wheat; 97.77% vs
97.43% for tetraploid wheat). There was a larger difference
in the prediction of GreeNC plant lncRNAs, where
LncMachine with LogisticRegression provided an average
of 91.44% accuracy as opposed to an average of 50.59% from
CNIT. Since CNITwas run in plants mode, our results suggest
that its prediction capability is highly dependent on the dataset
used. Interestingly, CPC2, which was by default trained on
human data, provided better prediction accuracies than CNIT
for both wheat datasets and GreeNC lncRNAs (Table 2 and
Table 4).

Performance evaluation against CPC2, CPAT, and
CNIT test datasets

To prevent any bias introduced by the selected datasets and to
test species other than plants, we used the test datasets provid-
ed by CPC2, CPAT, and CNIT for comparison of prediction
accuracies. It is important to note that the datasets provided by
these tools are mostly unbalanced datasets, which might intro-
duce a bias to prediction accuracies in the case when the pre-
diction model favors either coding or noncoding sequences.
Test datasets of CPC2 and CPAT were mostly non-plant spe-
cies. However, although our training data only included plant
sequences, the LncMachine with LinearSVM performed
93.59% (±2) accuracy for non-plant datasets (Table S3). The
LncMachine with LogisticRegression was also shown to be
efficient at identifying non-plant coding and noncoding

Table 2 Performance comparison
of prediction models on GreeNC
lncRNAs in terms of sensitivity

Model GreeNC (lncRNAs)

Arabidopsis
thaliana

Brachypodium
distachyon

Oryza sativa
Japonica

Sorghum
bicolor

Triticum
aestivum

Zea
mays

QDA 99.14 98.30 99.27 98.11 96.65 99.65

NearestNeighbors 63.56 74.82 27.06 74.63 82.01 69.71

DecisionTree 58.58 68.46 29.69 66.69 76.07 66.64

RandomForest 61.24 74.70 26.98 72.80 80.79 70.31

NeuralNet 44.78 48.14 13.40 44.18 54.20 55.09

AdaBoost 60.44 65.20 25.70 64.13 74.10 66.11

NaiveBayes 98.80 98.05 99.10 97.83 96.25 99.60

LogisticRegression 87.30 93.02 87.89 92.44 94.43 93.53

LinearSVM 74.57 85.24 66.64 84.98 90.35 83.34

Other tools

CPC2 80.46 88.76 77.42 88.60 93.19 88.57

CPAT 73.50 61.80 41.47 58.76 75.36 70.12

CNIT 46.86 50.56 51.81 47.38 43.95 62.96

Highest accuracy scores for each species were italicized
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sequences, with an average accuracy of 93.40 % (±2) and an
average F1-score of 0.92 (Table S3). The LncMachine with its
default RandomForest algorithm provided very similar re-
sults, with an average accuracy of 92.67% (±3) and an average
F1-score of 0.91. These results suggest that LncMachine
would also work well for non-plant species, such as human
and mouse.

CNIT, on the other hand, provided several plant coding and
noncoding sequences for the test set. These plant datasets were
unbalanced, such that there were five lncRNA sequences for
Sorghum bicolor and 39,045 coding sequences (Table S3).
Based on the CNIT plant test datasets, LncMachine with
Neural Networks outperformed all the algorithms and the
tools CPAT, CPC2, and CNIT in terms of specificity and
accuracy on average. Sensitivity was >0.996 on average for
the LncMachine with Logistic Regression and with
LinearSVM and CPC2. However, CPAT provided a better
F1 score (0.44 on average as opposed to 0.41 of
LncMachine with Neural Networks). It should be noted that
the low number of lncRNAs available for most of the plant
species in CNIT datasets may have resulted in unreliable F1
scores. For the species with more than 2500 lncRNA se-
quences in their test sets, F1 scores should be considered more
accurate and reliable (Table S3). Overall, our results suggest
that there is not any single solution that can fit all the datasets

available. The users have the responsibility to select the best
fitting algorithm for their specific study.

Additional application

Although our main purpose was to develop a lncRNA predic-
tion tool specifically for crop plants, LncMachine can bemod-
ified to be used of any kind of species. When FASTA files for
coding and noncoding sequences are provided by a user,
LncMachine extracts features to distinguish lncRNAs from
mRNAs and performs prediction of the coding potential of
the sequences provided. Otherwise, if a features file in CSV
format is provided, this new tool can be run to train a specific
model other than lncRNA prediction using several machine
learning algorithms which can be subsequently used for pre-
diction of the test sets. The required columns for training a
prediction model include “class” and “features” as separate
columns. The samples can be specified as “readID” in the
CSV file.

Discussion

Genome annotation can be an arduous task, particularly when
distinguishing coding sequences from lncRNAs which

Table 3 Description of datasets
used in training and validation of
the wheat lncRNA prediction
model

Dataset Source Reference # of mRNA # of lncRNA

Chinese Spring Hexaploid wheat IWGSC et al. (2018) 87,511 87,511

Svevo Tetraploid wheat Maccaferri et al. (2019) 115,437 115,437

Table 4 Performance comparison
of prediction models on wheat
datasets

Model Hexaploid wheat Tetraploid wheat

ACC PRE SN F-
score

ACC PRE SN F-
score

QDA 92.79 0.88 1.00 0.93 94.27 0.90 1.00 0.95

NearestNeighbors 98.40 1.00 0.97 0.98 98.93 1.00 0.98 0.99

DecisionTree 96.19 0.99 0.94 0.96 97.03 0.99 0.95 0.97

RandomForest 98.65 1.00 0.98 0.99 99.25 1.00 0.99 0.99

NeuralNet 96.66 1.00 0.93 0.97 97.64 1.00 0.95 0.98

AdaBoost 97.84 1.00 0.96 0.98 98.75 1.00 0.98 0.99

NaiveBayes 93.00 0.88 1.00 0.93 94.27 0.90 1.00 0.95

LogisticRegression 96.58 0.94 0.99 0.97 97.77 0.96 1.00 0.98

LinearSVM 97.37 0.96 0.98 0.97 98.62 0.97 1.00 0.99

Other tools

CPC2 96.64 0.99 0.94 0.97 97.93 1.00 0.96 0.98

CPAT 98.06 0.98 0.98 0.98 99.03 0.98 1.00 0.99

CNIT 94.82 0.95 0.95 0.95 97.48 0.99 0.96 0.97

ACC accuracy, PRE precision, SN sensitivity, SP specificity. Highest values of the metrics were shown in italics
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resemble coding sequences. Homology and alignment-based
methods are highly dependent on the availability of prior data
and the evidence of sequence conservation between species.
However, this is insufficient when considering species-
specific sequences and/or non-conserved sequences.
Therefore, it is crucial to find better methods of classification
to promote accurate identification of coding and noncoding
sequences.

Although there have been many proposed lncRNA coding
prediction tools (Han et al. 2016; Ventola et al. 2017), only
limited sources are available for crop plants (Singh et al. 2017;
Guo et al. 2019; Negri et al. 2019). Additionally, most plant-
specific tools that have been developed are difficult to imple-
ment for further studies. The most trusted tools for the coding
potential predictions include CPAT (Wang et al. 2013), CPC2
(Kang et al. 2017), and CNIT (Guo et al. 2019), which have all
been improved and updated recently. Here, we investigated
several features to distinguish coding and noncoding se-
quences in crop plants, compared several algorithms for their
efficiencies with different sets of data, and provided perfor-
mance measures for these tools.

The performances of machine learning models highly de-
pend on the training data and the selected features. Several
features proposed by different studies have been shown to
be informative in the classification of coding and noncoding
transcripts (Wang et al. 2013; Kang et al. 2017; Ito et al. 2018;
Guo et al. 2019). These features include k-mers, basic struc-
tural features like length and GC content, Fickett score,
hexamer score, ORF integrity, and isoelectric point.
Although each of these features was proposed as good

representatives of the differences between coding and noncod-
ing sequences, no single feature has been proposed as the most
superior. A combination of several features has typically been
used in previous studies (Simopoulos et al. 2018; Negri et al.
2019). After collecting the features suggested by the most
commonly used prediction tools, we compiled a list of 93
features, most of which were collinear. Our results showed
that various feature selection algorithms, which proposed dif-
ferent sets of features, did not necessarily result in better clas-
sifications (Table S1). By comparing all feature selection strat-
egies, we were able to obtain the best representation of coding
and noncoding sequences. Overall, our results show that the
final set of features (sequence length, ORF length, GC%, and
pI) are suitable for the most algorithms. This combination of
features has not previously been used, although individually
each feature has been included in several other studies (Wang
et al. 2013; Kang et al. 2017; Simopoulos et al. 2018).

In this study, we proposed an accurate model, LncMachine
with RandomForest, for lncRNA and mRNA identification in
wheat and other crop species. As training data, we used the
comprehensive set of plant lncRNAs deposited in
CANTATAdb v2. Among many other lncRNA databases,
CANTATAdbwas updated recently and receives regular support
and maintenance (Szcześniak et al. 2019). As for the feature set,
we incorporated a final set of four features to achieve better
prediction accuracies. With comprehensive training data and a
substantial list of features, we compared nine different algorithms
for their prediction performances using the same training data
and the same feature sets. Interestingly, training accuracies were
over 87% for all the algorithms with the top performing at 94%

Fig. 3 The Receiver Operating Characteristic (ROC) curves of hexaploid and tetraploid wheat datasets using the LncMachine with the best three
algorithms and other tools (CPAT, CPC2, and CNIT)
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accuracy (Table 1), indicating a good fit between the selected
features and the training data.

Comparison of these algorithms and the most trusted tools
like CPAT, CPC2, and CNIT in various test sets showed that
no single prediction model outperformed all the other tools
and models in every setting. Instead, it was observed that each
tool performed differently for different datasets (Table S3).
Depending on the purpose of the study, we suggest using
LncMachine with different algorithms for different species:
Random Forest, as default algorithm, suitable for both plants
(Table 4) and non-plant species (Table S3), and Logistic
Regression and Neural Networks for unbalanced datasets or
to introduce a bias for lncRNA predictions. Finally,
LncMachine is able to implement several algorithms, provid-
ing the best adaptable model. As it is highly customizable, it
can be applied across a wide range of studies. LncMachine
will be a valuable contribution to the rapidly growing field of
biological machine learning.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10142-021-00769-w.
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