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Abstract
Introduction—While the anti-resorptive effects of the bisphosphonates (BPs) are well
documented, many questions remain about their mechanisms of action, particularly following
long-term use. This study evaluated the effects of alendronate (Ale) treatment on TGF-β1
signaling in mesenchymal stem cells (MSCs) and osteocytes, and the relationship between
prolonged alendronate treatment on systemic TGF-β1 levels and bone strength.

Methods—TGF-β1 expression and signaling were evaluated in MSCs and osteocytic MLO-Y4
cells following Ale treatment. Serum total TGF-β1 levels, a bone resorption marker (DPD/Cr),
three-dimensional microCT scans and biomechanical tests from both the trabecular and cortical
bone were measured in ovariectomized rats that either received continuous Ale treatment for 360
days or Ale treatment for 120 days followed by 240 days of vehicle. Linear regression tests were
performed to determine the association of serum total TGF-β1 levels and both the trabecular
(vertebrae) and cortical (tibiae) bone strength.

Results—Ale increased TGF- β1 signaling in the MSCs but not in the MLO-Y4 cells. Ale
treatment increased serum TGF-β1 levels and the numbers of TGF-β1-positive osteocytes and
periosteal cells in cortical bone. Serum TGF-β1 levels were not associated with vertebral
maximum load and strength but was negatively associated with cortical bone maximum load and
ultimate strength.
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Conclusions—The increase of serum TGF-β1 levels during acute phase of estrogen deficiency
is likely due to increased osteoclast-mediated release of matrix-derived latent TGF- β1. Long-term
estrogen-deficiency generally results in a decline in serum TGF-β1 levels that are maintained by
Ale treatment. Measuring serum total TGF-β1 levels may help to determine cortical bone quality
following alendronate treatment.
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Alendronate; TGF- β1; cortical bone; bone quality

INTRODUCTION
Osteoporosis is a disease characterized by reduced bone mass and strength such that the risk
of bone fracture is greatly enhanced. Currently, anti-resorptive agents are the first line of
treatment for osteoporosis. Randomized controlled clinical trials demonstrate that 3–6 years
of treatment with anti-resorptive agents, especially bisphosphonates (BPs), reduce bone loss
as well as the risk of vertebral and non-vertebral fractures through the inhibition of
osteoclast lifespan and activity. During the early phase of treatments with BPs, there is a
rapid reduction in osteoclastic bone resorption, followed by a delayed but continual
reduction in osteoblast activity and new bone formation [1–4]. Over time, these changes
result in reduced overall bone turnover, a modestly prolonged secondary mineralization
phase, increased degree of bone mineralization and density, and improved bone strength [5–
12]. However, despite over 15 years of clinical investigation of bisphosphonates, their
mechanisms of action on osteoclasts and osteoblasts are still unclear.

Recently, prolonged bisphosphonate use has been associated with atypical or subtrochanteric
femoral fractures, which has motivated further study of the cellular mechanisms of
bisphosphonate action. In addition to the pro-apoptotic effect of bisphosphonates on
osteoclasts, they also have anti-apoptotic effects on osteocytes [13–17]. Normally, the
activity of osteoblasts and osteoclasts is coupled to maintain a constant bone mass, such that
osteoclastic bone resorption is followed by migration of osteoblasts into the resorption site
and the formation of osteoid that later fully mineralizes to provide bone strength. This
coupling is attributed, in part, to the release of matrix derived osteogenic growth factors
including TGF-β and IGFs [18–23]. However, in acute estrogen deficiency, this coupling is
disrupted such that bone turnover is elevated; as is the release of matrix derived growth
factors [24]. While the increased growth factor release may temporarily increase bone
formation, eventually, prolonged estrogen deficiency may be associated with low bone
turnover. The effect of prolonged bisphosphonate treatment on release of these growth
factors into the bone marrow is not known.

While a number of studies have reported that the transcriptional regulation of osteoclast
apoptosis is responsible for the anti-resorptive action of bisphosphonates, the TGF-β1
pathway also has direct effects in regulating osteoblast differentiation [19, 25, 26]. In
response to bone resorption, active TGF-β1 recruits bone marrow stromal cells to bone
remodeling sites [19, 23, 27–29]. Reduction in TGF-β signaling in osteoblasts has been
shown to improve the elastic modulus of bone matrix, its mineral concentration, fracture
toughness and bone mass in mice [30–32]. Based on these data, we hypothesize that
prolonged bisphosphonate treatment might alter TGF-β1 production and activity including
its influence on bone turnover, bone material and mechanical properties. To address this
hypothesis, we evaluated a possible role for TGF-β1 signaling in vitro and in vivo following
alendronate treatment. We report that exposure to alendronate treatment resulted in higher
serum TGF-β1 levels, likely by increasing the level of TGF-β1 activity in osteoprogenitor
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cells. Additionally, serum total TGF-β1 levels were found to negatively associate with
cortical bone maximum load and ultimate strength with alendronate treatments in rats.

MATERIALS AND METHODS
Animal studies

Six-month old female Sprague Dawley rats were either sham operated or ovariectomized
(OVX). Sixty days after OVX, the OVX rats received continuous alendronate treatment (0.5
ug/kg/3×/week, by subcutaneous injection, SC) for 120 days (Ale-120d) or 360 days (Ale-
Ale- Ale), or alendronate treatment for 120 days (0.5 ug/kg/3×/week) followed by vehicle
treatment for 120 days (Ale-120d/Veh-120d) or 240 days (Ale-120d/Veh-240d). Groups of
animals (n=12) were sacrificed on days 60, 180 (Ale-120d), 300 (Ale-120d/Veh-120d) and
420 (Ale-120d/Veh-240d). University of California Davis Institutional Animal Care and Use
Committee approved all the study protocols.

Urine samples were collected from all experimental groups, stored at −80°C until analyzed
for deoxypyridinoline / creatinine, a marker of bone resorption (DPD/Cr (mmol/nmol),
Quidel, San Diego, CA). Serum samples were used to measure total levels of TGF-β1(pg/
mL) in its latent form using ELISA (R&D Systems, Minneapolis, MN). Bone mechanical
properties were examined by compression tests on the 6th lumbar vertebra (LVB6) and
three-point bending tests on the left tibia (MTS Model 831, Eden Prairie, MN) [5, 11, 33–
40].

MicroCT measurements of bone architecture and mineral density of bone
tissue—The 5th lumbar vertebral bodies and tibial shafts from all the studied animals were
obtained for micro-computed tomography (microCT) (viva CT 40, Scanco Medical,
Bassersdorf, Switzerland). A total of 424 slices covering the entire body region of each
vertebra was scanned at the energy level of 70 kVp and intensity of 85 µA with an isotropic
resolution of 10.5 µm in all three spatial dimensions. In addition, the tibial shafts were
scanned at the tibial - fibular level (95 slices with 10.5 µm resolution and 325 ms integration
time) to evaluate changes in the bone volume/tissue volume (BV/TV) and the degree of
bone mineral density (DBM). The scan region was selected using reference lines positioned
at the top of femoral head and at the base of medial condyle [11, 41].

Cell culture and treatment protocols
Mouse bone marrow derived-MSCs were obtained under a material transfer agreement
between UC Davis and Texas A&M Institute for Regenerative Medicine. These cells are a
relatively pure population of stromal cells negative for CD11b, CD45 and CD34 and
positive for CD29, CD31, CD106. Passage 6 mouse MSCs were used [42]. The P-6 MSCs
were seeded either treated with alendronate (Ale, Sigma, St. Louis, MO) at 10−10-10−6M for
6 hours or cultured in osteogenic medium that contained alendronate. RNA was collected
from the cultures at 6 hours, day 3, 7 and 14 to perform real-time reverse transcript PCR
(RT-PCR) for genes encoding proteins in TGF-β1signaling pathway (TGF-β1, Smad2 and
Smad3) and markers of osteoblast differentiation (Runx2), maturation (osteocalcin, Bglap)
or mineralization (osteopontin, Opn) [42–44].

MLO-Y4 cells were cultured on collagen-coated (rat tail collagen type I, 0.15 mg/ml)
surfaces and were grown in phenol red-free α-modified essential medium (α-MEM)
supplemented with 2.5% FBS and 2.5% bovine calf serum, and incubated in a 5% CO2
incubator at 37°C, as described previously. The cells were treated with Ale at 10−10-10−4M
for 6 hours [45– 47].
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A separate set of mouse MSCs or MLO-Y4 cells were treated with Ale at 10−10-10−6M for 6
hours, from which conditioned media was harvested for a TGF-β1 reporter bioassay (TGF-
β1 Luciferase/GFP Assay, SABiosciences, a Qiagen Company Frederick, MD).

RNA preparation and RT-PCR
Tibiae were dissected free of the articular cartilage and soft tissue and then flash frozen in
liquid nitrogen. Total RNA from long bone and bone marrow or the cultured cells were
isolated using a modified two-step purification protocol employing homogenization
(PRO250 Homogenizer, 10mmX105mm generator, PRO Scientific IN, Oxford CT) in Trizol
(Invitrogen, Carlsbad, CA) followed by purification over a Qiagen RNeasy column
(Qiagen). Real-time PCR was carried out on ABI Prism 7300 (Applied Bioscience) in a 25
µl reaction that consisted of 12.5 µl 2× SYBR Green Mix (SABioscience Inc.), 0.2 µl cDNA,
1 µl primer pair mix and 11.3 µl H2O. Primer sets for real-time PCR were purchased from
SABioscience. All the test genes were expressed relative to a control gene, GAPDH using
the delta-delta Ct method. The results were expressed as fold changes from WT group,
where fold change is 2−ΔΔCt [43, 44, 48].

Immunohistochemistry
The right distal tibiae were decalcified in 10% EDTA for 2 weeks and embedded in paraffin.
Four micron-thick sections were prepared for immunohistochemistry (IHC) using primary
antibodies against TGF-β1 (Cell Signaling, Danvers, MA). TGF-β1 detection was performed
using Vectastain ABC system (Vector Laboratories, Burlingame, CA). Sections were
counterstained with methyl green. Results were presented as the percentage of the positive
stained osteocytes/total osteocytes counted at the tibial cortical bone region of ~3 mm2. A
Bioquant imaging analyzing system (Nashville, TN) was used for the measurements [43,
47–49].

Biomechanical testing
For the vertebrae, the endplates of the lumbar vertebral body were polished using an 800-grit
silicon carbide paper to create two parallel planar surfaces. The vertebral body’s height and
diameter were measured using digital calipers; the diameter represents an average of six
caudal and cranial diameter measurements. Samples were stored in Hanks’ Balanced Salt
Solution (HBSS) 12 hours prior to testing. Each lumbar vertebra was then loaded to failure
under far-field compression along its long axis using an electro-servo-hydraulic MTS 831
testing system (MTS Systems Corp., Eden Prairie, MN) at a displacement rate of 0.01mm/s
while continuously recording their corresponding loads and displacements. The load data
were used to calculate the maximum strength of the vertebrae by normalizing the maximum
load by both the vertebral height and bone volume / trabecular volume (BV/TV).

To analyze the biomechanical properties of the tibiae, the ends of each tibia were removed
with a low speed saw to decrease the possibility of buckling during testing. The tibia
samples were soaked in HBSS prior to three-point bending tests at a span of 14.5 mm with
the bone loaded such that the posterior surface was under tension and the anterior surface
was under compression using the EnduraTEC electro force 3200 testing system (Bose Corp.,
Eden Prairie, MN). Each tibia was loaded to failure in 37°C HBSS at a displacement rate of
0.01mm/s while its corresponding load and displacement were measured using a calibrated
225 N load cell. Following testing, a two-point average of the diameter and a six-point
average of the cortical shell thickness were measured at the fracture site of each tibia using
digital calipers. The ultimate strength, σ, of the tibiae was calculated from the standard
equation for a beam in three-point bending:
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where P is the maximum load reached during the bending test, L is the span between the
lower support pins, y is the distance from the center of mass, and I is the moment of inertia
of the cross-section [5, 11, 36, 39].

Statistical analysis
The group means and standard deviations (SDs) were calculated for all outcome variables.
We performed Pearson correlations and linear regression models to examine the effects of
Ale treatments on serum total TGF-β1 levels with DPD/Cr, and on the associations of serum
total TGF-β1 levels with vertebral and cortical bone architectural and biomechanical
parameters. In addition, one-way analysis of variance (ANOVA) with the Tamhane’s post-
hoc test was used to control for unequal variances using SPSS Statistics 20 (Chicago, IL). A
two-tailed p-value < 0.05 was considered statistically significant.

RESULTS
TGF-β1 signaling in osteoblasts or in osteocytes following BP treatment

To determine if there was a direct effect of Ale in inducing TGF-β1, we evaluated the effect
of Ale on the expression of components of the TGF-β1pathway and on TGF-β1 signaling
activity in vitro. We cultured mouse mesenchymal stem cells (MSCs) or osteocyte-like
MLO-Y4 cells with alendronate. We then evaluated TGF-β1 signaling using Cignal SMAD
Reporter Kit, and gene expression of specific components of the TGF-β1/Smad pathway
(TGF-β1, Smad2, Smad3) and of osteoblast differentiation (Runx2), maturation (osteocalcin,
Bglap) and mineralization (osteopontin, Opn).

When the MSCs were incubated with Ale for 6 hours, the activity of the TGF-β1 pathway
was increased, as detected by increased activation of the Smad3-luciferase reporter (p<0.05
vs. control-treated cells; Figure 1a). Smad2 and 3 gene expression was also increased by low
dose (10−10M) Ale (Figure 1b), along with the expression of osteocalcin and osteopontin
(Figure 1c). Higher doses of Ale (>10−10M) did not change TGF-β1/Smad2, or Runx2 and
Bglap gene expression in the MSCs. Ale suppressed Opn expression at a higher dose, 10−6M
(Figure 1c). Ale at all doses examined did not change Smad luciferase activity (Figure 1d),
gene expression in TGF-β1 signaling pathway (Figure 1e) or osteogenic gene expressions
(Figure 1f) in the MLO-Y4 cells.

When the MSCs differentiated in osteogenic medium for 3, 7 and 14 days in the presence or
absence of Ale, lower doses of Ale treatment (10−10M and 10−8M) increased Smad3 and
osteoblast differentiation as indicated by Runx2 expression but decreased osteoblast
maturation (Bglap) and mineralization (Opn) at day 3 (Figure 2). Ale did not alter either
TGF-β1 or osteogenic gene expression in MSCs differentiated for osteoblasts at 7 or 14 days
(Figure 2).

Bone turnover, degree of bone mineral density and bone strength with continuous Ale
treatment or withdrawal

Ovariectomized rats had a significant increase in DPD/Cr and losses in both the trabecular
and cortical bone DBM and bone stress at day 180 as compared to the sham groups. Ale
treatment for 120 days decreased DPD/Cr and cortical bone ultimate stress and did not
prevent the losses in trabecular and cortical bone DBM. Continuous Ale treatment for 360
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days suppressed DPD/Cr, restored trabecular and cortical DBM but decreased cortical bone
ultimate stress as compared to the OVX group at the same time period. Ale treatment for
120 days followed by 240 days of vehicle resulted in continued suppression of DPD/Cr,
partially restored trabecular DBM and maximum stress but cortical bone ultimate stress
remained low as compared to the sham or OVX controls at days 420 (Table 1).

Dynamic changes in serum TGF-β1 levels with prolonged Ale treatment
To determine the effect of Ale on the level of serum TGF-β1, total TGF-β1 levels were
assessed in serum. This analysis revealed an increase of nearly 150% in serum TGF-β1
levels by within 60 days of OVX relative to the sham controls (Figures 3A, p<0.05). At a
later stage of estrogen deficiency (>180 days post-OVX), we observed a decrease in serum
total TGF-β1 levels in OVX rats relative to the sham-operated animals (Figure 3a).
Compared to the OVX, animals treated with Ale-Ale-Ale or Ale-Veh-Veh did not have the
decline in serum total TGF-β1 levels evaluated at 180, 300 and 420 days (Figures 3a). Ale
treatment for 120 days prevented this decline in serum total TGF-β1 levels for up to 240
days (Figure 3a). These studies reveal a biphasic effect of ovariectomy on serum total TGF-
β1 levels, such that serum total TGF-β1 levels are increased by OVX during the early stage
(60 days) of estrogen deficiency and the serum total TGF-β1 levels decreased thereafter but
remained elevated in Ale-treated groups at later stages (>180 days).

Immunohistochemistry (IHC) was then used to examine the effect of OVX and BP treatment
on TGF-β1 expression and localization in both the trabecular and cortical bone from the
tibiae [37, 38]. Following 120 days of Ale–treatment, OVX animals had 100% more TGF-
β1–positive osteocytes in cortical bone relative to vehicle treated controls (Figure 3b, 3d; p <
0.05 vs. OVX). Withdrawal of the alendronate treatment for 120 and 240 days yielded
similar numbers of TGF-β1-positive osteocytes and periosteal cells as the 120 days Ale-
treated group, and were significantly higher than the OVX + Vehicle treated group (Figure
3c, 3d). Bone marrow cells and osteocytes in the trabecular bone also stained positive for
TGF-β1 but there were no significant differences detected among the groups. Therefore, Ale
treatment prevented the long-term OVX-sensitive reduction in TGF-β1 protein in the serum
as well as in the osteocytes in the cortical bone.

To determine if the alterations in serum TGF-β1 levels were related to bone remodeling or
functional changes in bone quality, we performed linear regression analyses. The predictor
was serum TGF-β1 levels and outcome variables were DPD/Cr, a bone resorption marker,
and the vertebral compressive strength measured from the 5th lumbar vertebral bodies or
tibial cortical bone biomechanical parameters. In the period of rapid bone remodeling within
60 days of OVX, total serum TGF-β1 levels were significantly associated with DPD/Cr
(Figure 4a). There was no correlation between DPD/Cr and total serum TGF-β1 levels 120
days post-OVX (Figure 4b). DPD/Cr positively correlated with serum total TGF-β1 levels in
Ale-treated groups (Figure 4c). There were no associations between serum total TGF-β1
levels and biomechanical parameters measured at the vertebral bodies (Figure 5). A small
but statistically significant negative association between serum TGF-β1 levels and cortical
bone maximum load and ultimate strength was observed (Figures 6a and 6b). The maximum
load of the cortical bone was decreased by 0.147 N when TGF-β1 was increased by one pg/
mL (Figure 6a). The ultimate strength of the cortical bone was decreased by 0.171 MPa
when TGF-β1 was increased by one pg/mL (Figure 6b).

DISCUSSION
These studies suggest that long-term estrogen-deficiency causes a decline in serum TGF- β1
levels that are prevented by BP treatment through mechanisms that are indirect. Also, serum
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TGF-β1 levels were negatively associated with the cortical, but not the trabecular bone
strength.

TGF-β1 is a secreted factor that plays an important role in bone remodeling. It promotes
bone formation by augmenting progenitor recruitment, proliferation and differentiation into
matrix-producing osteoblasts [21, 50, 51]. TGF-β1 is associated with peak bone mass
acquisition [20] and TGF-β1 polymorphisms correlate with bone mineral density (BMD) in
humans [19, 29, 41, 52]. While the elevated TGF-β1 levels are associated with
osteosclerosis [53], reduced TGF-β1 levels are associated with osteopenia [23, 28, 54, 55].
Although in vitro experiments have reported on the effects of exogenous TGF-β1 on
osteoclast activities that were both time and dose dependent, the results were dependent on
the cell types used in these studies [56, 57]. TGF-β1, at low to moderately elevated levels,
stimulated early osteoblast proliferation but inhibited terminal differentiation and
mineralization [30, 58–60]. Mice that are null for TGF-β1 develop skeletal defects with
shortened long bones and decreased tibial BMD [61], while inhibition of TGF-β1 signaling
has been shown to lead to higher bone mass and improved bone quality [30, 32, 62].

Our results suggest a biphasic effect of ovariectomy on serum TGF-β1 levels, such that
serum TGF-β1 levels are increased by OVX during the early stage (60 days) of estrogen
deficiency. This finding is consistent with the previous report by Dallas et al. that matrix
bound TGF- β1 was released by osteoclasts [63] during the early stage of ovariectomy where
the osteoclasts were activated. We found that expression of TGF-β1 and Smad genes was
reduced after long-term estrogen deficiency in aged rats, consistent with prior reports that
estrogen induces TGF-β1 expression [44, 49]. The release of TGF-β1 from matrix stores in
the cortical bone upon the increased remodeling in cortical bone following ovariectomy and
the consequent rapid rise in serum TGF-β1 levels following OVX suggest that endogenous
TGF-β1 stores may become “depleted” after the rapid period of bone resorption has ceased.
At later stages of estrogen deficiency (>120 days post-OVX), serum TGF-β1 levels are
reduced relative to sham-operated animals, and alendronate treatment appeared to mitigate
this decline in serum TGF-β1 levels.

The ability of BPs to prolong the remodeling cycle may impact the deposition, storage and
activation of latent TGF-β1 in bone matrix. TGF-β1 represses the master osteogenic
transcription factor Runx2 through Smad3, to control extracellular matrix elastic modulus, a
key component that determines bone material properties [30, 52, 62, 64]. Smad3, which is
expressed during the osteoblast maturation phase, may be one of the most critical
mechanisms in coupling bone formation to bone resorption [60, 62, 64, 65]. Our gene
expression observations may be secondary to the alteration of bone turnover induced by the
anti-resorptive treatments. Like estrogen [66, 67], the bisphosphonates increase TGF-β1/
Smad3 as shown in our current and previous reports [5]. Low dose alendronate treatment in
vitro increased TGF-β1/Smad3 early on and may contribute to the bone sparing effects of
the bisphosphonates through maintaining osteoblast proliferation [1, 3, 68]. Although TGF-
β1-positive osteocytes increased with long-term alendronate treatment, this may not be due
to rapid direct effects of BP on TGF-β1 signaling in osteocytes. In contrast, alendronate
activated bone marrow MSC/stromal cells or osteoprogenitor cells at the periosteal surface
to sustain TGF-β1/Smad signaling and bone formation. Similar to the report by Bismar et
al., we did not find an association between TGF-β1 levels with trabecular bone density [54].
However, prolonged alendronate treatment sustained the elevation in serum total TGF-β1
levels and was associated with reduced cortical bone strength.

The mechanism by which bisphosphonates augment bone strength in relationship to the
changes in BMD is still being defined [41, 47, 53, 55]. Bisphosphonates increase BMD by
reducing osteoclast-mediated bone remodeling. This prolongs the secondary mineralization
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phase, resulting in more highly mineralized and uniform bone matrix, which is, associated
with, improved trabecular bone strength [7–10, 12, 69–71]. Our research group and others
have reported that the degree of mineralization in trabecular bone is a strong predictor of
bone strength [5, 11, 33, 40, 72]. A majority of studies of bisphosphonates on bone
mineralization are short-term intervention studies of 3–6 months, which report an increased
degree of bone mineralization that might benefit trabecular bone strength [6, 7, 10, 70].
However, these medications are used clinically for many years. Long-term use of oral
bisphosphonates appears to maintain vertebral bone strength over 10 years, and this benefit
may derives from changes in bone mass or the degree of bone mineralization [73].
Interestingly, we have previously reported that femoral fracture toughness tended to
decrease with higher doses of ibandronate and risedronate treatments [41], despite the ability
of these BPs to restore vertebral bone mass and the biomechanical property (vertebral
maximum load) and the biomaterial property, maximum stress, a parameter that is
independent of bone size and shape [74]. Fracture toughness is a parameter that describes
the material properties of the cortical bone which affect the whole bone fracture resistance
and is especially relevant if crack-like defects are present, as has been found with higher
doses of BP or prolonged treatment periods [41, 75]. Our observations in rats are similar to
the report by Donnelly et al., who studied bone tissue properties near fragility fracture sites
in the proximal femur in postmenopausal women treated with bisphosphonates. They found
that bisphosphonate treatments reduced mineral and matrix heterogeneity and they
hypothesized that this may diminish tissue-level toughening and permit fracture propagation
[47]. A recent report by Bala et al. also suggested long-term alendronate therapy in
postmenopausal women was associated with higher collagen maturity and lower mineral
crystallinity that was independent of bone mineralization in the iliac cortical bone [76].
Therefore, long term bisphosphonate treatments may have negative effects on cortical bone
mechanical and material property despites their well-known beneficial effects on the
trabecular bone sites.

In summary, we found that prolonged reduction in bone turnover following alendronate
treatment in female rats increased TGF-β1 production by bone marrow stromal cells and
periosteal osteoprogenitors. Elevated serum total TGF-β1 levels had a modest negative
association with cortical bone biomechanical and material properties. These data motivate
further investigations to better understand the relationship between bisphosphonates, TGF-
β1, and cortical bone quality. Additional studies may lead to the use of serum TGF-β1 as a
biomarker to assess cortical bone strength with prolonged bisphosphonate treatment and
may help to guide clinical decisions regarding duration of bisphosphonate treatment in
osteoporotic patients.
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Highlight

1. Different alendronate treatment regiments on rats with established bone loss

2. Both in vivo and in vitro assessments of alendronate on TGF-beta1
transcriptional and post-transcriptional levels

3. Both trabecular bone and cortical bone were evaluated.
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Figure 1.
Effects of alendronate on TGF- β1 signaling in vitro. Mouse mesenchymal stem cells (a–c)
or MLO-Y4 cells (d–f) were cultured with alendronate (10−10-10−6M) for six hours. TGF-β1
signaling was present in MSCs and MLY-O4 cells; TGF-β1 gene expressions are shown in b
(MSCs) and e (MLO-Y4 cells) and mineralization gene expressions are shown in c (MSCs)
and f (MLO-Y4 cells). *, p < 0.05 vs. control. Data represented are the average from three
sets of cultures.
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Figure 2.
TGF-β1 gene and mineralization gene expressions were measured in mouse mesenchymal
stem cells cultured with alendronate (10−10-10−6M) in osteogenic medium for 3, 7 or 14
days. Data represented average from three sets of cultures.
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Figure 3.
Systemic TGFβ-1 levels and distributions in rats treated with alendronate: a, total serum
TGFβ-1 levels in latent form following continuous alendronate treatment or withdrawal.
Immunohistochemical staining of TGF-β1 in the tibial cortical bone (n=6/group). b, TGF-
β1+ osteocytes/total osteocytes at the tibial cortical bone from continuous alendronate
treatment or withdrawal; c, TGF-β1+ cells at periosteal surface of the tibial cortical bone
from continuous alendronate treatment or withdrawal; d, representative cortical bone images
from Sham, OVX or treated with alendronate for 120 days followed by 240 days of
withdrawal. #, p < 0.05 vs. sham; *, p < 0.05 vs. OVX.
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Figure 4.
Correlations between a, DPD/Cr and serum total TGF-β1 in animals ovariectomized for 60
days; b, DPD/Cr and serum total TGF-β1 in animals ovariectomized (OVX) for 120 days–
420 days; c, DPD/Cr and serum total TGF-β1 in animals treated with Ale.
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Figure 5.
Associations between serum total TGF-β1 and a, maximum compressive load, b, maximum
strength, c, elastic modulus and d, yield stress mineral density of the trabecular bone
measured at the 6th lumbar vertebral body.
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Figure 6.
Associations between serum total TGF-β1 and a, maximum load, b, ultimate strength, c,
elastic modulus and d, yield stress mineral density of the cortical bone measured at the tibial
shafts.
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