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For the harmony of the world is made manifest in Form and Number,

and the heart and soul and all the poetry of Natural Philosophy

are embodied in the concept of mathematical beauty.

D’Arcy Wentworth Thompson, On Growth and Form (1917) [246]
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Abstract

Getting in shape: physical principles underlying order generation and shape change in

the morphogenesis of thin tissues

by

Dillon Jeffrey Cislo

In plants and animals, developmental programs transform single-celled zygotes into

fully formed and functional organisms. Understanding morphogenesis, the collective set

of mechanisms that transduce discrete genetic information into the 3D form of tissues,

organs, and appendages, is a foundational problem at the interface of biology and physics.

While great progress has been made characterizing the molecular components that deter-

mine the initial body plan, the subsequent dynamics of cellular rearrangements and tissue

deformations that ultimately shape the organism are far less understood. A thorough de-

scription of morphogenesis necessitates an understanding of the intricate interplay among

genetics, mechanics, and geometry.

This dissertation presents a body of work aimed at understanding how mechanics and

geometry sculpt thin tissues into complex shapes during development. We apply a com-

bination of theoretical, computational, and experimental methods to build quantitative

descriptions of a variety of morphogenetic processes, including germband organization,

organogenesis, and limb growth. In each setting, careful analysis reveals how physical

mechanisms dynamically coordinate the self-organization of shape and form across mul-

tiple scales, from the cellular to the organismal. The synthesis of these various results

contributes towards building a quantitative and predictive understanding of morphogen-

esis.

In Chapter 2, we present set of computational methods for the characterization and

viii



analysis of tissue deformation in tubelike surfaces. These methods, contained within

our open-source TubULAR package, enable users to extract dynamic surfaces, construct

2D parameterizations optimized for tracking tissue parcels, measure whole-organ tissue

deformation, and compute signatures of 3D motion. We showcase the power of these

methods by quantifying tissue flow during the development of the Drosophila midgut and

the zebrafish heart. Decomposition of complicated flow fields in to simple components

with straightforward physical interpretations enable novel insights that would be difficult

or impossible to find with exisiting methodologies.

In Chapter 3, we demonstrate how actively oriented cell divisions organize the ecto-

dermal germband in Parhyale hawaiensis. Live imaging and computer vision reveal that

waves of cell proliferation sweep across the embryo in such a way that the initially fluid

germband flows towards a fourfold orientationally ordered state. We develop a hydrody-

namic model that can predict coarse-grained flow fields from division events, bridging the

gap between cell-scale and tissue-scale dynamics. Vertex model simulations demonstrate

that oriented cell divisions constitute a robust mechanism for generating orientational

order in living tissues far from thermal equilibrium.

In Chapter 4, we study the transformation of the Drosophila midgut from a simple

tube into a complex, coiling configuration of folds and compartments. We demonstrate

that tissue shape is controlled by gene expression via mechanical interactions between

heterologous tissue layers. Hox genes mediate calcium signaling that regulates muscle

contractions at precise locations along the length of the gut. These muscle contractions

induce sharp folds and convergent extenstion in the gut endoderm, which is strongly con-

strained by tissue incompressibility. We show that the tissue scale flow is mediated by

anisotropic cell shape change resulting from the mechanical coupling to muscle contractil-

ity. Taken together, these results form a concrete link from genes to cell-scale mechanics

to tissue morphodynamics via active forces.
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In Chapter 5, we present a theoretical and computational framework for tackling

the problem of growth pattern selection in epithelial morphogenesis. We show that de-

velopmental programs can be quantified in terms of anistropy and areal growth rates.

Arbitrarily complicated growth patterns can be built up by composing simple infinites-

imal updates to the system’s intrinsic geometry. We proposed an action principle that

selects for simple growth patterns that minimize spatiotemporal variation in these quan-

tities. We then applied this formalism to seveal synthetic and experimental systems,

including limb morphogenesis in Parhyale.
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Chapter 1

Introduction

What does it take to build a body? In plants and animals, the adult organism develops

from a single cell, called a zygote. This cell divides repeatedly, its progeny growing

exponentially in number, until the embryo eventually adopts a nontrivial multicellular

configuration. Initially identical cells differentiate through cascades of cell fate decisions

and associate preferentially to form specialized tissue architectures. These tissues stretch,

fold, bend, and twist into the complicated and specific shapes of organs and appendages.

Order and structure emerge across scales, from the cellular to the organismal, until a

final synthesis of morphology and patterning is achieved that ensures the biomechanical

functionality of the adult body parts. All the while, from before the first division and

continuing after the assembly of the complete adult body, each and every element of

this process is informed by spatio-temporal patterns of gene expression. Morphogenesis,

the collective set of mechanisms by which discrete genetic information is transduced into

the 3D form of tissues, organs, and organisms via the coordinated behavior of cells, is

arguably the most monumental task of self-assembly in nature. Building a quantitative

and predictive understanding of morphogenesis continues to be a fundamental endeavor

in the life sciences.
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Introduction Chapter 1

Naively, one might expect that all of the necessary ingredients for morphogenesis are

conveniently stored in the genetic code. In fact, this idea has dominated the field of de-

velopmental biology since the mid 20th century. At least as far back as the re-discovery of

Mendelian inheritance in 1900, it was widely understood that discrete parcels of hered-

ity could segregate during reproduction and be associated with particular phenotypes

according to simple statistical laws [268, 52]. Around this time, Boveri and Morgan

first promulgated the notion that continuously varying properties or substances that

form ‘gradients’ may dictate the spatial coordination of cell fates in embryos [136, 86].

Advances in biochemistry during the 1920s and 1930s encouraged increasingly concrete

thinking about the nature of these molecules and their mechanism of action in pattern

formation [90].

The notion of ‘chemical embryology’ [170] was finally given a firm mathematical

foundation by Alan Turing, in his landmark 1952 paper entitled The Chemical Basis of

Morphogenesis [250]. Setting aside considerations of ‘mechanical morphogenesis’, i.e. the

movement and shape change of cells and tissues, Turing postulated that patterns may

spontaneously arise in the embryo as a result of simple chemical reactions among diffus-

ing molecules, called morphogens. In Turing’s model, and its conceptual descendants,

fast-diffusing, long-range inhibitors couple to and react with slow-diffusing, short-range

activators to spontaneously generate tunable, spatially periodic concentration landscapes

from an initially homogeneous state[250, 84]. These morphogens could then instruct

the spatial coordination of cell fate based on their concentration profiles. In the late

1960s and early 1970s, Lewis Wolpert introduced the idea of positional information to

explain a complementary problem. Rather than asking how patterns can arise from

nothing, Wolpert sought to understand how increasingly complex patterns could be built

from prior asymmetries in the tissue [266, 267]. By introducing an ‘interpretation’ step,

Wolpert showed how smooth monotonic morphogen concentration gradients can gener-

2



ate arbitrary patterns, including not only the periodic spots and stripes typical of Turing

patterns, but also non-period arrangements like the sequence of red, white, and blue in

the French flag.

There was now a solid theoretical basis for viewing morphogenesis as the result of

chemical patterning, but the precise nature of these theoretical morphogens and their

connection to heredity remained ambiguous. A major breakthrough came less than a year

after the publication of The Chemical Basis of Morphogenesis, when Watson and Crick

discovered the molecular structure of DNA [258]. This discovery was followed by a flurry

of work over the next decade elucidating the central dogma of molecular biology, which

details how sequential information in the genetic code is transferred residue-by-residue

into the structure of proteins [56]. The first bona fide morphogens were identified in the

late 1970s, when Christiane Nüsslein-Volhard and Eric Wieschaus performed large-scale

mutagenesis screenings for the genes required during early development in Drosophila

[179]. For example, Nüsslein-Volhard and Wieschaus discerned that gradients in the

concentration of the diffusible transcription factor bicoid, which is maternally deposited

at the anterior pole of the embryo, provided the necessary positional information to

distinguish the head of the animal from its tail [178]. This initial anterior-posterior

symmetry breaking lies upstream of cascade of pattering genes that subdivide the embryo

into discrete regions which each undergo bespoke morphogenetic programs that generate

specific domains of the body [268].

The synthesis of these many theoretical and experimental breakthroughs yielded a

tidy picture of how genes might instruct morphogenesis. Genetic codes are unpacked

according to specific expression patterns into concentration landscapes of morphogens

(nucleic acids, proteins, etc.). Multiple species of morphogens may react with each other

to generate patterns de novo from initially homogeneous states (à la Turing) or simple

asymmetries may build upon each other to generate progressively more complex patterns

3



Introduction Chapter 1

(à la Wolpert). These morphogens then orchestrate embryonic development through

concentration dependent induction of cell fate. Heavily influenced by the success of this

synthesis, developmental biologists set about producing prodigious lists of molecules and

documenting their corresponding regulation of specific embryonic phenotypes [13].

Simple narratives, however, rarely tell the whole story. The techniques used to probe

the genetic orchestration of morphogenesis were essentially discrete in nature. Experi-

menters could either disable the effects of a particular gene, for instance, through the use

of genetic knockout mutants, or, alternatively, induce that gene’s ectopic expression. The

primarily qualitative results of such investigations were sufficient to describe dramatic

phenotypes, such as, in the case of Drosophila, the loss of entire body segments [261] or

the growth of legs where antennae normally should be [218]. Constructing descriptions

of more subtle phenotypes proved to be challenging. The most glaring gap, however, was

that subsequent molecular characterization in Drosophila and other systems revealed that

patterning genes do not, in general, directly control cell and tissue shape [86]. Despite

the fruitful investigations into how patterning genes dictate long-range tissue patterning

and coordinate cell fate, it remains unclear how these patterns actually sculpt tissues

into the complex shapes produced during morphogenesis.

In this context, physics offers a natural route toward resolving these gaps in our

understanding. Cells and tissues can only move and rearrange when they are subject to

a net force. Surely then, an accounting for the forces that shape living systems can help

to build a more complete description of morphogenesis. Contextualizing morphogenesis

as resulting from the spatio-temporal coordination of mechanical forces across scales is

not a new school of thought. In the late 19th and early 20th century, embryologists

of the Entwicklungsmechnik (developmental mechanics) movement sought to understand

morphogenesis as the result of physical forces produced by cells [86, 122]. These included

the forced generated by oriented cell division, cell growth, directed cell crawling, and
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cell shape change [101]. Seminal contributions from Holtfreter, Steinberg, and others

elucidated this viewpoint by analyzing how selective cell affinities and integrated cell

motile behaviors coordinate to drive morphogenesis [122].

Perhaps the most enduring early contribution to this school of thought was given

by D’Arcy Wentworth Thompson in his monumental opus On Growth and Form (1917)

[246]. Applying mathematical principles to a broad range of examples, Thompson’s book

establishes a compelling and exhaustive case that morphogenesis is the result of physical

processes and mechanical forces. Thompson achieved a variety of fresh insights, including

the notion that diverse biological shapes could be related through simple deformations

of a coordinate system. At the scale of the entire organism, shape and form could be

understood as resulting from a spatio-temporal field of growth rates and directions. As

summarized by Thompson, “It is obvious that the form of an organism is determined by

its rate of growth in various directions; hence rate of growth needs to be studied as a

preliminary to the theoretical study of form”.

In recent years, new experimental techniques and computational methodologies have

revolutionized our ability to probe and monitor morphogenesis [224]. High-resolution 3D

time-lapse imaging [88], precise genetic manipulations [97], optogenetics [63], and a slew

of other techniques have provided unprecedented insight into developmental dynamics,

from the scale of individual molecules within cells to individual cells to the collective

behavior of cells in tissues. The result has been a rich and beautiful synthesis of the

chemical and mechanical viewpoints of morphogenesis. Morphogen expression patterns

and force generating motor protein distributions actively depend on dynamical stresses

and tissue geometry [177, 236, 142]. In some situations, mechanical interactions can

organize tissues prior to the expression of associated genes [184] or generate complex

long-range patterning over length and time scales that are inaccessible by the diffusion

of molecular morphogens [208, 37].
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Introduction Chapter 1

From Thompson through to the present day, interpretations of the dynamics of in-

vivo development have been primarily qualitative in nature [180, 60]. Moreover, what

progress has been made towards codifying quantifications of morphogenesis has largely

been constrained to piecemeal descriptions of distinct developmental processes. The

recent explosion of live-imaging data and the advent of powerful computational techniques

have positioned the field at an exciting precipice. Now, more than ever, is the opportune

time to synthesize quantitative descriptions of mechanistic behaviors of cells and tissues

and relate them to biochemical patterning, thereby initiating a transition to a predictive

understanding of developmental biology.

This dissertation presents a body of work comprised of disparate projects, all of which

are are connected by the following goal: to construct quantitative, predictive models

of morphogenesis and to extract, to whatever extent is possible, the unifying principles

underlying development. If the reader makes it all the way to the end, they should not be

surprised to find that this goal is far from having been achieved. Accomplishing this task

will take the collective effort of a diverse community of scientists, including physicists,

biologists, mathematicians, computer scientists, and engineers, combining their skill sets

and expertise to generate novel insights and discoveries in the coming years. I would like

to think, however, that the work contained herein is at least a step in the right direction.

Since this dissertation is essentially an anthology, the goal of each chapter is to tell

an interesting and self-contained story. A great amount of work and care was invested

to ensure that the statements and conclusions in each project are based on rigorous

and honest analysis. Including these substantiating details and methods in the main

text would render each chapter virtually unreadable, but I feel that the text would be

incomplete if I were to omit them entirely. Instead, they have been compiled into the

unusually long appendices at the end of the dissertation. As a theoretically minded

physicist working on problems in biology, I have found that a great deal of hard work
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Section 1.1 Growth and shape change in thin tissues

usually gets consigned to the supplementary text. It is somewhat fitting, therefore, that

my dissertation is no exception.

The projects presented in this dissertation focus specifically on the morphogenesis of

thin sheets of cells. In the next section, I clarify the important role these tissue architec-

tures play in development. Next, I briefly review a set of relevant experimental and com-

putational technologies used to extract the dynamics of development in living systems.

The following sections contain a discussion of the ways in which complex morphogenetic

programs are modularized into simpler, local processes thanks to the construction of seg-

mented body plans and a framework for quantifying geometric order in certain relevant

body plan architectures. After that, I examine how coarse-grained modeling can offer

important insights by framing descriptions of morphogenesis in terms of a small set of

crucial dynamical variables and parameters. Finally, I discuss the prospect of unearthing

unifying principles constraining growth pattern selection.

1.1 Growth and shape change in thin tissues

Epithelial tissues are the primary building blocks of multicellular systems [86, 92].

They are composed of cohesive sheets of cells joined together by cell-cell contacts such as

adherens junctions [89]. This direct coupling enables the output of intracellular machines

to be coordinated across muitlple cells and facilitates the emergence of tissue-scale or-

ganization. Another important feature of epithlia is the presence of apicobasal polarity.

This polarity, maintained by polarity protein complexes, distinguish the apical and baso-

lateral surfaces of the cell, allowing them to adopt distinct behaviors during development

[86]. In the early embryo, epithelia are typically organized into monolayers, but can

form multi-layered arrangements, such as the skin. During morphogenesis, these sheets

of cells undergo dramatic changes in shape in order to support the structure of embryos
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Introduction Chapter 1

and organs and also to serve as effective barriers against pathogens [92].

The adhesive contacts linking epithelial cells to each other are mainly supported by E-

cadherin molecules. E-cadherin forms complexes that connect the cytoskeletal elements

of neighboring cells via molecules such as β-catenin, α-catenin, and vinculin.[89, 271].

Additional adhesive complexes, primarily integrins, also couple epithelial cells to the ex-

tracellular matrix (ECM). The ECM is a rigid network of secreted proteins that provides

support and structure to the embedded cells [79]. This zoo of adhesive interactions joins

epithelial cells and their external environment into a unified trans-cellular mechanical

network that integrates and coordinates forces throughout the tissue [101]. Cellular force

generation is typically mediated by the activity of motor proteins, such as myosin, that

interact with cytoskeletal structures, such as actin fibers (F-actin), to change their or-

ganization [106, 211]. These changes are then transmitted to neighboring cells and the

extracellular environment through cell-cell and cell-matrix contacts, respectively. The

global mechanical network can also transmit tissue wide forces originating from extrinsic

sources in the extracellular environment [64]. The structure of this mechanical network

at the cell and molecular scales is illustrated in Figure 1.1.

Changes in tissue shape and geometry resulting from cellular behavior can gener-

ically be decomposed into contributions from a small set of cell scale motifs [74, 93].

In particular, cells can change their size [174], change their shape [199, 165], or rear-

range in a way that modifies the topological connectivity of the tissue [169, 36]. The

elemental topological rearrangements are local neighbor exchanges (T1 transitions), cell

death/delamination (T2 transitions), and cell divisions (T3 transitions). These various

cell scale motifs are illustrated in Figure 1.2. Epithelial folding frequently involves polar-

ized cell shape change that transforms columnar cells into a wedge-like or bottle shape

[192]. The shrinking or expanding of one side of the tissue relative to the other generates

curvature. This type of shape change is typically due either to polarized constriction
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Section 1.1 Growth and shape change in thin tissues

membrane

E-cadherin 
trans 
complexes

E-cadherin 
cis 
complexesE-cadherin 

clusters

F-actin myosin II β-catenin α-catenin vinculin

Figure 1.1: Structure of epithelial junctions during tissue stretching and re-
modeling. In epithelial tissues, adhesive contacts and the actomyosin network are
organized in belt-like structures around the apical cortex of the cell. The arrangement
of the epithelial cells is determined by competition between actomyosin contractility
and cell-cell adhesion. Inset shows a close up of the structure of a single epithe-
lial junction between two neighboring cells. E-cadherin forms cis and trans clusters
stabilized by interaction between the extracellular domains and the actin filaments
(F-actin) comprising the cytoskeletial structure of the cell. Contacts are constructed
via β-catenin, α-catenin, and vinculin. Myosin II utilizes ATP to actively contract
the network by sliding filaments relative to each other.
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[216], which can occur on either side of the epithelium, or to to the relaxation and ex-

pansion of one of the tissue surfaces [216, 238]. The lateral sides and height of cells in

epithelia can also play a crucial role in tissue shape changes. For instance, the stereo-

typic dorsal folds appearing during Drosophila gastrulation are initiated by the dramatic

shortening of cells within the fold, leading to an apical indentation within the tissue [257].

Interestingly, the same mechanism of cell shortening can also cause highly curved tissues

to flatten out and extend, as seen during the eversion of the Drosophila leg during limb

morphogenesis [67].

geometric motifs

cell growth

A

cell shape change

B

topological motifs

cell intercalation (T1)

C

cell death (T2)

D

cell division (T3)

E

Figure 1.2: Cell-scale motifs underlying tissue-scale morphogenesis. (A to B)
Geometric motifs do not change cell connectivity. (A) Cell growth. (B) Area-preserv-
ing cell shape change. (C to D) Topological motifs change cell connectivity. (C ) Cell
neighbor exchange. (D) Cell death or delamination. (E ) Cell division.

Since cells in epithelia are mechanically coupled, the forces generated both by these

autonomous cell-scale motifs and from external sources can be propagated across the

tissue to determine how it folds. The pressure and movement of many cells towards high

density regions can promote bending [64]. In some scenarios, folds can be shaped and

oriented through tension generated by anisotropic supracellular actomyosin networks that

stiffen the tissue preferentially along a particular axis [43]. The constriction of actomyosin
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Section 1.1 Growth and shape change in thin tissues

cables or the differential motility of cells crawling along the ECM may lead to apicobasally

polarized pressures and tensions that initiate tissue buckling [64]. Folds can also be

shaped by forces normal to the plane of the epithelium, such as differential fluid pressure

on either side of the tissue [135]. Tissues may also change their configuration without

any remodeling of cell shape at all. Differential growth due to oriented cell division

may change the intrinsic geometry of the tissue in such a way that induces curvature.

For example, differential growth was demonstrated to be crucial for generating a precise

pattern of fold in the Drosophila wing [247].

polarized constriction

lateral shortening

polarized expansion

external pressure

external tension

normal forces

cell-scale forces tissue-scale forces
A

F

E

D

C

B

Figure 1.3: Force generating mechanisms underlying epithelial folding.. (A to
C ) Cell-autonomous forces leading to tissue folding. (A) Polarized constriction. (B)
Lateral shortening. (C ) Polarized expansion. (D to F ) Tissue-scale forces leading to
tissue folding. (D) External pressure. (E ) External force normal to the plane. (F )
External tension. Figure inspired by the presentation in [64].

While epithelia may be the main building block of multi-cellular systems, they are not

the only way that cells organize themselves into thin sheets. The other principal architec-
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ture of cells during embryonic development is the mesenchyme. In contrast to epithelia,

mesenchymal cells exhibit only limited adhesion to their neighbors and therefore form a

loose aggregate of cells capable of rapid migration along the ECM. Cell migration is one

of the key drivers of morphogenesis and the process through which epithelia adopt mes-

enchymal properties, termed an epithelial mesenchymal transition, has been extensively

studied [244]. Muscle tissue may also be organized into thin sheets during organogen-

sis, such as during the development of the beating structure of the heart [228]. These

disparate types of cellular sheet architectures may also combine to form more complex

multi-layered structures. As we will discuss in Chapter 4, the complicated pattern of

folds in the Drosophila midgut is controlled by the mechanical interaction between an

epithelial layer and two ensheathing layers of orthogonally oriented muscle fibers [165].

Determining how biochemical signalling couples to cell-scale and tissue-wide forces

to sculpt thin tissues is a crucial step towards improving our understanding of morpho-

genesis. Despite the wealth of live-imaging data and previous research on the topic,

there remains a dearth of quantitative modeling that synthesizes the many behaviors

governing shape change. Towards this goal, this dissertation presents multiple projects

wherein geometry and mechanics are exploited to generate testable predictions for the

developmental dynamics of thin tissues.

1.2 Quantiative methods for the live-imaging and

analysis of epithelial morphogenesis

Extracting quantitative measurements of developmental dynamics in-vivo presents a

considerable experimental challenge. In this section, we briefly review the cutting-edge

microscopy methods driving the current revolution in the live-imaging of morphogenesis.

12
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We also discuss the computational techniques scientists employ to analyze and interpret

the immense quantities of data produced by these microscopy platforms. We first note

that the recent explosion of quantitative data has been spurred by the creation of geneti-

cally encoded fluorescence markers such as the green fluorescent protein (GFP) [249] and

its derivatives. Upon transgenic implantation in to a targeted gene, these markers enable

researchers to optically measure the expressed concentration of particular proteins within

live cells using a fluorescent microscope [40]. This technology, in addition to non-genetic

fluorescent labels, allows for the dynamic mapping of gene expression patterns and also

the identification and tracking of particular organs, organelles, and macrocmolecules.

The traditional method for obtaining 3D data sets in biology is through the use of a

confocal microscope [190]. Confocal microscopes can provide excellent optical sectioning

and produce high resolution images of fluorescent samples. By construction, however,

confocal systems rely on scanning and are therefore limited in the number of optical slices

they can produce per second (generally ∼ 10 − 100 Hz) [88]. As a result, volumetric

imaging can be relatively slow, possibly missing rapid dynamic effects. Additionally, the

excitation light produced by a confocal microscope illuminates not only the volume of

interest, but also a cone of the sample above and below the focal volume. These factors

increase the risk of phototoxic events and photobleaching of the fluorophore.

Light-sheet fluorescence microscopy (LSFM) is an exciting alternative that addresses

many of the shortcomings of confocal microscopy [235, 204, 88]. The basic concept behind

LSFM is that a sheet of light is produced by an excitation arm that illuminates a single

plane of the sample. A second detection arm, oriented at 90 to the excitation arm,

then collects the emitted light from the entire optical section. Generally, the sample is

then moved through the light sheet to collect the next optical plane. This construction

means that only the fluorophores in a thin cuboid centered on the illumination plane are

excited, greatly decreasing the risk of photobleaching and phototoxic events. Samples
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may be exposed to up to 5000 times less energy than from a confocal microscope when

recording stacks of similar quality, greatly increasing the viability of the sample [235].

LSFM also offers drastic improvements in imaging speed, allowing one to record millions

of pixels in parallel. Further customization of LSFM platforms, such as the multiview

selective-plane illumination microscopy (MuVi-SPIM) [127], allow for rapid imaging of

large fluorescent specimens from multiple directions over biologically relevant timescales.

The views of the sample collected from multiple angles can then be computationally fused

in to a common frame [195], producing high quality, in toto recordings of developmental

dynamics. An schematic of the light-sheet microscopy set up used in Chapter 4 is shown

in Fig. 1.4.

100 μm

volumetric 
views

fused 
volumes

A

B

C

Figure 1.4: Multi-view light sheet microscopy enables volumetric imaging.
(A) We illuminate embryos embedded in an agarose column via a laser beam emerging
from two illumination objectives (green). The laser sweeps along the long axis of the
column to raster a sheet of light. Two detection objectives capture fluorescence in the
orthogonal axis (red arrows). (B) By translating, rotating, and repeating, we build
volumetric views from a series of angles. (C ) Through fusion and deconvolution, mul-
tiple volumetric views build data volumes with nearly isotropic resolution for analysis.

No matter which fluorescence microscopy platform is employed, the output is strucu-

turally identical: a time series of voxelized sample volumes, with an associated intensity

for each voxel corresponding to the number of channels used during the recording. These
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data sets can be massive. A SPIM platform equipped with an sCMOS camera can record

as much as 90 Tb in a 24 hour period [204]. Storing, processing, and transferring data

sets of this size can be challenging. Recordings of thin sheets pose additional conceptual

challenges. In such samples, the surface of interest occupies only a small fraction of the

sample volume. Even when it is computationally feasible to process such data in 3D,

interpreting the results via orthographic projects or cross-sections can be difficult.

Tissue cartography is a computational technique developed to address these chal-

lenges in the investigation of 4D recordings of shape-shifting sheets [217, 99, 102, 164].

In this approach, curved tissue surfaces are extracted from data volumes and endowed

with a planar representation that preserves the integrity of the geometric properties of

the surface. This process reduces the data from 3D to 2D, greatly decreasing the compu-

tational complexity of common analysis steps such as cell segmentation and cell tracking.

A typical tissue cartography pipeline begins with the detection of the surface of interest.

This can be accomplished, for instance, through the use of derivative-based edge detec-

tion methods [187] or level-set segmentation methods [168]. Next, the detected surface

is endowed with an atlas of coordinate charts. For simple surfaces, like the fly embryo,

it is generally sufficient to approximate the true shape of the tissue with an idealized

surface, like a cylinder [99]. Arbitrarily complicated surfaces can be fit with more flexible

discrete approximations, such as a mesh triangulation, through a surface reconstruction

step [164]. Typically, the surface is then partitioned into disk-like patches, each of which

is computationally mapped into the plane. Properly constructing and maintaining this

correspondence between the 3D surface and its 2D representations enables the accurate

measurement of quantities such as size, shape, direction, and velocity without suffering

from geometric distortion.

Tissue cartography has facilitated insights in a wide variety of biological systems

[99, 236, 46, 164]. In some form or another, the tissue cartography approach is utilized
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in every chapter of this dissertation. Despite having fuelled so many tremendous results,

existing packages for tissue cartography suffer from several shortcomings. One major

limitation is the difficulty constructing consistent global representations of topologically

non-trivial surfaces, such as tubes. For instance, while it is possible, using the Im-

SAnE package [99], to generate representations of arbitrary surfaces, constructing planar

parameterizations of topologically non-trivial surfaces requires chopping them up into

separate disk-like patches. This means that analysis pipelines must be run separately

for each patch and subsequently fused together, increasing complexity and decreasing

the transparency of data visualization. Another caveat is the difficulty generating robust

analysis of dynamical data in a consistent material frame. Understanding the dynamic

mechanisms by which the thin tissues change shape requires not only capturing instanta-

neous motion in 3D, but following the material as it deforms. In Chapter 2, we present a

TubULAR, a tissue cartography suite extending the functionality of the ImSAnE pack-

age, to efficiently construct robust parameterizations of tube-like surfaces and generate

dynamical parameterizations that follow material parcels of the surface as it grows and

deforms.

1.3 Segmentation and the developmental body plan

Whenever confronted with a daunting task, it always helps to have a plan. A common

feature of animal development conserved in a broad variety of creatures is the presence

of a segmented body plan. Simply put, segmentation is the organization of the body into

a series of repeated units arranged along the anterior-posterior axis of the organism. The

construction of segements modularizes development and enables complicated body plans

to be built through bespoke, local morphogenetic programs. While serial morphologi-

cal repitition is widespread in the animal kingdom [163], discussion of segmented body
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plans is typically limited to three phyla: Annelida, Arthopoda, and Chordata [44]. In

arthropods and chordates in particular, segmentation plays the important role of helping

to organize and orient external limbs and appendages in a manner than ensures proper

biomechanical functionality.

Despite serving a convergent organizing role, the methods through which different

types of organisms construct their segments vary wildly. Perhaps the most celebrated

example of segmentation is found in Drosophila. As previously mentioned, the diffusible

transcription factor bicoid is maternally deposited at the anterior pole of the embryo and

provides the positional information for patterning the anterior-posterior axis. The gradi-

ent of bicoid is sequentially processed by a through a hierarchy of genes, beginning with

the so-called ‘gap genes’, such as hunchback [268]. Broad expression of these gap genes

is refined into the sharp expression of 14 segment forming ‘pair-rule’ genes that further

subdivide into ‘segment polarity’ genes. Adult appendages such as wings, halteres, and

legs can be associated to the segments that are created during this process. Misexpres-

sion of any gene in this hierarchy will lead to the loss of the corresponding segments in

the larvae. For instance, the deletion of even-skipped will lead to the loss of every other

larval denticle band [179].

Another important example of segmentation is the process of somitogenesis in verte-

brates, which has been studied extensively in a wide variety of systems including zebrafish,

chickens, and mice [268]. Somites are epithelial structures that contain precursors of ver-

tebrae, ribs, and skeletal muscles [17]. Somites are formed from a pool of tissue at the

posterior pole of the embryo called the presomitic mesoderm (PSM). New somites pinch

off from the anterior tip of the PSM in pairs, on either side of the neural tube, rythmically

so that the segmented body structure is formed sequentially in an anterior-to-posterior

fashion. The delineation of somites is determined by the displacement of an oscillator at

the posterior end of the animal, which has been described theoretically in the ‘clock and
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wavefront’ model [51]. A wavefront, defined by morphogen gradients produced by a puls-

ing source at the extending tip of the tail, freeze oscillating genetic expression patterns

of cells in the PSM [181]. In this way, the clock and wavefrom mechanism translates the

temporal information of the genetic oscillations into a fixed periodic pattern in space.

In Chapter 3, we employ cutting edge experimental methods and theoretical mod-

eling to describe the formation of the segmented body plan of the crustacean Parhyale

hawaiensis. Parhyale presents a unique solution to the problem of tissue organization.

In contrast to Drosophila, the pattering process in Parhyale does not appear to require

complicated biochemical cascades. Additionally, unlike the segments of the Drosophila

and vertebrate body plans, which consist of thousands of disordered cells, the organiza-

tion of the segmented body plan in Parhyale is evident all the way down to the cellular

scale. Cells in the Parhyale germband arrange themselves into a rectangular grid, consti-

tuting a pattern akin to a coordinate system spanning the entire embryo. This cellular

grid subsequently acts as a template for the patterning of limbs on the adult body [263].

The biological organization of Parhyale is therefore best described using the physical and

geometric concept of order.

1.4 Orientational order and tissue organization

One of the most fundamental challenges of condensed matter physics, i.e. the physics

of everyday length and energy scales, is to understand and characterize the various pos-

sible phases of matter. Distinct phases of matter are typically identified by the presence

or absence of particular symmetries [132]. Order, in this context, refers to a broken

symmetry. For example, a translationally ordered system is one in which translational

invariance has been broken. Symmetry broken phases can be quantitatively distinguished

from symmetry preserving phases using an ‘order parameter’, an idea originally intro-
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duced by Landau [131]. Landau subsequently exploited this framework to develop pow-

erful effective field theories capable of describing phases and phase transitions in terms

of a small number of phenomenological parameters. Since the inception of this formalism

and Landau’s groundbreaking application to the theory of superconductivity [87], it has

since been generalized to describe an incredibly broad variety of physical phenomena, in-

cluding ferromagnetism, superfluidity, liquid crystals, and gauge theories in high-energy

physics [222, 61, 50].

Defects in ordered media have been shown to play an essential role in many aspects of

condensed matter physics. Vacancies and interstitials mediate particle diffusion in solids,

dislocations determine the strength of crystalline materials, and vortex motion controls

the resistance of superconductors [173]. Mathematically, defects are identified as sin-

gularities in the order parameter field mediating topologically non-trivial configurations

[159]. An exciting result of investigations into defect mediated phase transitions, was the

discovery of orientationally ordered phases [173]. Orientationally ordered phases are in-

termediate between the rigid order of a crystalline solid. Orientationally ordered phases,

in particular the sixfold ordered ‘hexatic’ phase, were predicted theoretically in the cele-

brated Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) model of two-dimensional

melting [126, 94, 273]. They have since been observed in multiple non-living systems,

including magnetic bubble lattices [221], colloidal crystals [167], and liquid crystal films

[45]. More recently, it has also been observed in the living systems in the late stages of

development in the absence of cell proliferation, for instance in zebrafish retina [210] and

the organization of hair cells in the mammalian ear [49].

Briefly, crystalline solids are distinguished from liquids by two separate broken sym-

metries. The regular rows of atoms in a crystal reflect a breakdown in the translational

invariance characteristic of a liquid. In a 2D crystal at finite temperature, the transla-

tional correlations GT (r) = 〈ρ̂G(r) ρ̂G(0)〉, where ρ̂G(r) is the number density of a crystal

19



Introduction Chapter 1

at a reciprocal lattice vector G, will decay algebraically to zero, i.e. GT (r) ∼ r−η(T ) for

some materially and temperature dependent exponent η(T ). In contrast, the directions

of the crystallographic axes represent a different, broken orientational symmetry. The n-

fold orientational order at a lattice site rj is characterized by a complex order parameter

ψn(rj) defined in terms of the ‘bonds’ between neighboring sites

ψn(rj) =
1

N

∑
k∈N (j)

en i θkj , (1.1)

where n is an integer (n = 6 for a hexatic phase and n = 4 for a fourfold ordered tetratic

phase), N is the number of sites contained in the neighborhood of N (j) of site rj, and

θkj denotes the angle of the bond between sites rj and rk relative to a fixed axis. The

connectivity of the medium may be inferred, for instance, through the use of a Voronoi

construction. The construction of the n-fold orientational order parameter is illustrated

in Figure 1.5. The presence of a broken translational symmetry implies the existence

of long-range orientational order. In such a situation, one would expect that the ori-

entational correlations, defined as Gn(r) = 〈ψn(r)ψ∗n(0)〉, decay to a non-zero constant

at long distances, i.e limr→∞Gn(r) = constant 6= 0. In a fluid, both the translational

and orientational correlations decay exponentially. In contrast, an orientationally or-

dered phase is characterized by short-range translational correlations, GT ∼ e−r/ξ(T ), but

spatially extended orientational correlations, Gn(r) ∼ r−ηn(T ).

As previously mentioned, the transition between these states is mediated by the

dynamics of defects. A crystalline lattice transitions into an orientationally ordered

phase in the presence of freely roaming dislocations [173]. These gas of dislocations

destroys translational order, but preserves orientation order [54]. As the medium becomes

increasingly agitated, dislocations can unbind into disclinations, which completely destroy

the orientational order and facilitate the transition into a fluid state. In Chapter 3,
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Figure 1.5: Orientational order parameter. A graphical illustration of the n-fold
orientational order parameter. Middle image shows a perfectly ordered sixfold lattice.
Right image shows a perfectly ordered fourfold lattice.

we demonstrate the the segmented structure of the developing Parhyale germband is,

in fact, a fourfold orientationally ordered phase. This constitutes an exciting example

of how physical principles such as order and symmetry can help us understand how

morphogenetic programs organize developing embryos.

1.5 Bridging cell scale behaviors and tissue scale mor-

phogenesis

Morphogenesis proceeds through the coordination of biological and physical mecha-

nisms across every relevant scale in the embryo, from the molecular to the cellular to

the organismal. Shape change at the tissue scale results, in a proximal sense, from the

collective mechanics of thousands of interacting cells. Each of the many cellular pro-

cesses mediating these behavior are in turn controled by gene regulatory networks, which

frequently consist of numerous elements and interactions of dizzying complexity [144].

At present, constructing a comprehensive, predictive understanding of morphogenesis ab

initio from the regulatory function of genes is impossible. Similar to the way in which

high-energy physics has become effectively decoupled from physics at ångström unit scales
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[173], the most promising path to answering the “fundamental” questions surrounding de-

velopment almost certainly not a naively reductionist approach. Instead, coarse grained

theories, which seek to describe morphogenesis using a limited set of releveant physical or

mechanical parameters, offer a a promising route towards the construction of a predictive

developmenal biology.

Continuum mechanics is an effective method for capturing how force balance is as-

sociated with local deformation and flow [133]. In the simplest models, the forcing that

generates flow can be neatly decomposed into a set of separate passive and active con-

tributions. The tendency of cells to resist deformation and the viscous coupling between

cells translate local forces into long range flows. Interactions among these various con-

tributions, both locally and over large scales, can be then be built up with increasing

degrees of complexity to create more accurate descriptions of biological realities. This

framework has proved effective in numerous biological applications elucidating how active

forces generate non-trivial flow fields [74, 236, 208].

In the continuum approach, a thin tissue is represented by a continuous curved surface

S ⊂ R3. We assign to each material parcel in the tissue a set of curvilinear coordinates

~x = (x1, x2) ∈ B defined over a planar domain of parameterization B ⊂ R2. We define

the embedding of the surface by a map ~R : B → R3. Each point ~R(x1, x2) on the surface

is characterized by its tangent vectors ~e1 = ∂ ~R/∂x1, ~e2 = ∂ ~R/∂x2 and its unit normal

vector n̂ = ~e1 ×~e2/||~e1 ×~e2||. In what follows, Greek indices vary in the set {1, 2}. The

covariant geometry of the surface is captured by two objects. The first fundamental form

or induced metric tensor

gαβ =
∂ ~R

∂xα
· ∂

~R

∂xβ
(1.2)

quantifies lengths and angles between points on the surface. The inverse metric tensor gαβ

is defined by gασgσβ = δαβ , so that indices of tensorial quantities are raised and lowered
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with respect to the first fundamental form. The second fundamental form

bαβ = n̂ · ∂2~R

∂xα∂xβ
= − ∂

~R

∂xα
· ∂n̂

∂xβ
(1.3)

characterizes the intrinsic and extrinsic curvature of the surface via the change in the

surface unit normal vector. In particular, the mean and Gaussian curvatures of the

surface are given by

H = (gαβbαβ)/2, K = det [gασbσβ] , (1.4)

respectively. If we take the coordinates (x1, x2) to constitute a time independent, La-

grangian parameterization, the changing shape of the surface is simply captured in the

time dependence of the embedding ~R(t).

: parameter domain : surface in 3D

Figure 1.6: Surface geometry. The surface S is defined as an embedding ~R of an
arbitrary region of the plane B ⊂ R2 into R3.

The geometry of the system is coupled to its mechanics through the choice of a

constitutive relation. It is well known that tissues can adopt both elastic and fluidlike

behaviors, depending on the situation and the relevant timescales. In general, at short
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time scales, tissues behave elastically [75, 220]. Incremental increases in strain, defined

relative to some intrinsic geometry, generate corresponding increases in stress. Overtime,

however, stresses created in this fashion can then be relaxed either locally, via inter-

nal rearrangement of the cytoskeletal cortex [120, 269], or at the tissue scale, via cell

rearrangements [74]. The result is an exotic type of viscoelasticity, wherein the tissue

responds elastically to active stresses over short timescales and then reverts to a fluidlike

flow at longer timescales as the tissue adaptively relaxes stress. The choice of model

therefore depends on the scenario under consideration. For instance, some models have

been constructed that represent growing tissues purely as active fluids [212]. Such mod-

els frequently include phenomenological features, such as the inclusion of of an active

nematic term to describe the influence of actomyosin contractility on the growth and

regeneration of tentacles in Hydra [104].

Of particular relevance to this dissertation is the formalism of incompatible elasticity

[71, 223]. An incompatible elastic shell is assumed to be governed by the following energy

functional

E =
h

8

∫
B
d2~x
√
ḡ

{
Aαβγδ (gαβ − ḡαβ) (gγδ − ḡγδ) +

h2

3
Aαβγδ (bαβ − b̄αβ) (bγδ − b̄γδ)

}
,

(1.5)

where h is the thickness of the tissue,

Aαβγδ =
Y

1 + ν

(
ν

1− ν
ḡαβ ḡγδ + ḡαγ ḡβδ

)
(1.6)

is the isotropic elastic tensor, Y is Young’s modulus, ν is the Poisson ratio, and ḡ and b̄

are a pair of tensors specifying the instrisic target geometry of the system. The target ge-

ometry is presumed to be set by internal biological processes. Essentially, the system will

adopt an equilibrium configuration that balances the comptition between the stretching
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contribution and the bending contribution. Importantly, it is not assumed that ḡ and b̄

satisfy the Gauss-Codazzi-Mainardi-Peterson (GCMP) compatibility conditions [78]. If

this is the case, then there is no attainable 3D configuration for which the energy vanishes

identically and the equilibrium configuration will harbor residual stresses. Such residual

stresses have been shown to exist in biological systems, for instance, in the Bauhinia

plant, where they facilitate the dispersal of seeds from residually stressed pods [223].

When the timescale of growth in the system (i.e. rate of cell division, etc.) is long com-

pared to the timescale of mechanical relaxation, the tissue will always effectively remain

in mechanical equilibrium. In this quasistatic regime, active growth dynamics can be

characterized by assigning a time dependence to the target geometry, ḡ(t) and b̄(t), and

determining the resulting equilibrium configurations as a function of time.

In some form or another, all of the chapters in this dissertation exploit coarse grained

modeling and continuum approaches to extract novel insights from developing systems.

In Chapter 2, discretizations of continuous surface geometries enable the construction

of a suite of methods for analyzing complex tissue flow fields. In Chaptar 3, a simple

2D hydrodynamic model is employed to characterize the role that actively oriented cell

divisions play in mediating the fourfold order of the Parhyale germband. In Chapter 4,

nontrivial coupling between cell shape and curvature illuminate a novel mechanism for

tissue folding. Finally, in Chapter 5, mathematical properties of continuous deformations

are exploited to build a quantitative formalism to understand the problem of growth

pattern selection.
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1.6 Emergent simplicity and the search for principles

in growth pattern selection

According to Albert Einstein, “A theory is the more impressive the greater the sim-

plicity of its premises, the more different kinds of things it relates, and the more extended

its area of applicability” (quoted in [28]). The beautiful and broadly applicable quantiti-

ave theories of physics are possible because macroscale phenomena are often independent

of microscopic details. Diffusive behvaior, such as the type observed in the formation

of Turing patterns, is largely independent of the underlying random collision processes

[222]. The Navier-Stokes equations provide an accurate description of fluid mechanics

since macroscopic fluid motions do not depend in great detail on the shapes and interac-

tions of the constituent molecules [130]. Elementary quantum mechanics relies on the fact

that the behavior of elections, nuclei, and photons is is largely independent of the way in

which the nucleus is assembled - non-relativistic quantum mechanics emerges from more

complicated unified theories at low energies [209]. In the 1970s, renormalization group

methods, exported from particle physics by Kenneth Wilson, revealed that the behavior

of systems near critical-points is almost totally insensitve to the physics of matter at mi-

croscopic length scales [222, 173]. It is possible to make accurate quantitative predictions

about certan universal critical exponents or scaling functions without precise knowledge

of the microscopic physics. Instead, what matters is symmetry, conservation laws, the

range of interactions, and the dimensionality of space. The task of building up theories

of macroscopic phenomena from microscopic physics, the purview of kinetic theory, is

worthwhile and has yielded many important results [117]. However, the immense success

of these coarse-grained, effective theories suggest that, rather than trying to catalogue

each minute aspect of a large and complex system, we should seek to find simple effective

laws that emerge at each new level of complexity.
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While this goal is beautiful and pleasing to the aesthetic preferences of a physicist,

it is not clear a priori that such an enterprise can be accomplished in developmental

biology. Are we doomed to be ‘stamp collectors’, constructing patchwork phenomeno-

logical theories of disparate developmental processes? Fortunately there is evidence to

suggest otherwise. As we have already mentioned, coarse-grained theories of tissue me-

chanics have yielded exciting insights into a broad set of applications in morphogenesis.

Develepmental processes, genetic regulatory complexes, stages of embryonic morphology,

and even entire body plans are strongly conserved among species [207, 111]. There are

also numerous cases of convergent evolution of organismal form, despite massively diver-

gent evolutionary paths [231]. Taken together, these observations tenuously suggest that

physical laws and common selective pressures constrain the types of growth patterns we

can expect to find in developing systems.

Of particular relevance to this disseration is the problem of growth pattern selection.

From a purely geometric perspective, thare exists an infinite famility of tissue scale

growth patterns that can transform the same initial configurtation of cells into a specified

target shape. Despite this degeneracy, all typical individauls of the same species follow

virtually the same stereotypic growth trajectories to grow their organs and appendages.

Understanding how these stereotypic growth patterns are selected will require a set of

tools to simplify and navigate the enormous ‘morpho-genetic’ spaces [140] of potential

shapes that living forms can assume and the evolutionary trajectories from which these

shapes arise. Chapter 5 details both the construction of such a mathematical toolkit and

a formalism for generating quantitative predictions for growth pattern selection.
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1.7 Dissertation outline

This dissertation presents a series of projects investigating the morphogenesis of thin

tissues. The subject matter is varied. We showcase results in multiple model organisms,

including Drosophila, Parhyale hawaiensis, and zebrafish (Danio rerio). All projects

contain a sythesis of experimental observation, data analysis through numerical methods,

and theoretical modeling. While the topics covered may appear disparate, they are

connected by the common goal of building a predictive machinery for understanding

tissue growth and the principles underlying morphogenesis.

In Chapter 2, we present the Tube-like sUrface Lagragian Analysis Resource (TubU-

LAR) software package. TubULAR combines cutting edge computational geometry and

computer vision methods to provide a single, comprehensive tissue cartography pack-

age for the analysis of growth and deformation in tube-like surfaces. In addition to its

topology handling, the major contribution of TubULAR is the ability to easily construct

deformation maps that follow tissue parcels in the material frame of reference. TubU-

LAR also contains a variety of analysis tools that enable users to decompose complex

deformation maps into simple elementary contributions. We demonstrate the power of

the TubULAR package by analyzing the growth of the midgut in the Drosophila embryo

and the beating of the embryonic zebrafish heart.

In Chapter 3, we demonstrate how actively oriented cell divisions coordinate the

organization of the ectodermal germband in the developing Parhyale embryo. Using in

toto live-imaging and conformal tissue cartography, we show that tightly choreographed

waves of oriented cell proliferation sweep across the embryo is such a way that the initially

fluid germband flows towards a fourfold orientationally ordered state. The role of cell

divisions in producing the tissue scale flow fields are elucidated through the use of an

active hydrodynamic model. Finally, we implement simple vertex model simulations
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to directly investigate the conditions underwhich oriented divisions constitute a robust

ordering mechanism in living tissues far from thermal equilibrium.

In Chapter 4, we investigate the transformation of the �Drosophila midgut from a

simple tube into a complex, coiling configuration of folds and compartments. A combi-

nation of in toto light-sheet microscopy and computational techniques reveal that Hox

genes control spatiotemporally patterned calcium pulses that trigger muscle contractions

in the developing gut. These muscle contractions induce cell shape change in the the

adjacent tissue, driving a convergent extension pattern. In-plane shape change is linked

to out-of-plane organ folding by tissue incompressibility. Taken together, these results

describe a novel mechanism for gene expression to generate shape change in visceral

organs.

In Chapter 5, we use the mathematical formalism of quasiconformal maps [1] to build

a machinery to describe arbitrary deformations of growing thin tissues are compositions

of elementary infinitesimal updates. We use this framework to construct a simple action

principal that allows us to quantiatively compare different growth patterns. We propose

that stereotypic growth patterns are the ‘simplest’ growth patterns, in the sense that the

minimize spatiotemporal variation in growth rates and anistropy. We demonstrate the

power of this framework by generating a prediction for the growth patterns of limbs in

Parhyale hawaiensis.

Finally, Chapter 6 is a brief conclusion, summarizing the work presented in each

chapter and detailing possible future directions.

1.8 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Noah Mitchell [164].

2. The content of chapter 3 is the result of a collaboration with Fengshuo Yang,
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Haodong Qin, Anastasios Pavlopoulos, Mark Bowick, and Sebastian Streichan [46].

3. The content of chapter 4 is the result of a collaboration of Noah Mitchell, Suraj

Shankar, Yuzheng Lin, Boris Shraiman, and Sebastian Streichan, which has previ-

ously appeared in the journal eLife [165].

4. The content of chapter 5 is the result of a collaboration with Boris Shraiman [47].
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Chapter 2

TubULAR: in toto tissue

cartography, material

parameterization, and flow field

analysis in tube-like surfaces

A common motif in biology is the arrangement of cells into tube-like sheets, which fur-

ther transform into more complex morphologies. Traditionally, analysis of the dynamic

surfaces of growing tissues has relied on inspecting static snapshots, live imaging of

cross-sections, or tracking isolated cells in 3D. However, capturing the interplay between

in-plane and out-of-plane behaviors requires following the full surface as it deforms and

integrating cell-scale motions into collective, tissue-scale deformations. The advent of

methods for whole-organ live imaging accentuates the need for in toto analysis meth-

ods to understand these collective tissue dynamics. Here, we introduce an approach

to build in toto maps of surface deformation that follow tissue parcels in the material

frame of reference. The Tube-like sUrface Lagrangian Analysis Resource (TubULAR)
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provides an open-source MATLAB implementation whose functionality is accessible ei-

ther as a standalone toolkit or as an extension of the ImSAnE package used in the

developmental biology community. TubULAR provides a framework for linking in-plane

and out-of-plane behaviors and decomposing complex deformation maps into elementary

contributions defining physically meaningful signatures of motion. We underscore the

power of our approach by analyzing shape change in the embryonic Drosophila midgut

and beating zebrafish heart. Following deformations in the tissue/material frame reveals

the signatures of tissue flow and a reduced-dimensional mode decomposition of the dy-

namics. The method naturally generalizes to in vitro and synthetic systems, including a

stem cell model of neural tube morphogenesis and deforming condensates in a reconsti-

tuted cytoskeletal system. This work was produced in collaboration with Noah Mitchell

[164].

2.1 Introduction

In biological and synthetic settings alike, the morphogenesis of tube-like sheets and

films is driven by a dynamic interplay between in-plane and out-of-plane behaviors [150,

118, 113, 138, 30, 252, 125, 223]. Tissue morphogenesis is a particularly rich example of

this interaction, in which the dynamics of shape generation are intertwined with mechan-

ical forces, cellular fates, and organ function. In epithelia [95, 96], visceral organs [9, 165],

vasculature [206], elastic shells [72], and whole organisms [154], quasi-2D surfaces deform

in 3D space, contracting and dilating in-plane and bending out-of-plane in a coupled

fashion. Understanding the dynamic mechanisms by which the systems change shape

requires not only capturing instantaneous motion in 3D, but following the material as

it deforms to build so-called ‘Lagrangian’ measures of deformation [219, 208, 142]. Fur-

thermore, decomposing that motion into in-plane and out-of-plane components enables
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Figure 2.1: TubULAR is a toolkit for following the dynamics of evolving
tube-like surfaces, such as visceral organs and in vitro biological surfaces.
(A) TubULAR first extracts dynamic surfaces of interest from volumetric datasets.
(B) Whole-surface parameterization using a generalized cylindrical coordinate sys-
tem facilitates tracking tissue deformations. Since pullback images of adjacent time-
points are optimized to be nearly stationary in the parameterization space, 3D tissue
velocities are obtained by linking the pre-image of the pullback coordinates across
timepoints. (C) By extracting in-plane and out-of-plane tissue motion, TubULAR
decomposes the underlying motion, here shown by a 2D pullback representation of
the in-plane tissue velocity v‖ (colored quiverplot) and the normal motion, vn (red
for inward velocity, blue for outward). (D) Finally, the toolkit tracks tissue defor-
mations over time in the tissue’s frame of reference (the Lagrangian frame). Here,
a whole organ is colored by the location of each tissue parcel in its intrinsic ma-
terial coordinate system (s0, φ0). Patches retain their original color as they move,
stretch, and bend. (E) Computational microscopy enables dynamic tissue surface ex-
traction and cell tracking. After selectively imaging the endodermal layer in a w;48Y
GAL4/UAS-CAAX::mCh;klar embryo, we track and highlight the motion of four
cells that exhibit intercalations. Scale bars are 10 µm. (F) Performing a radon trans-
form on a patch of circular visceral muscle cells – which form a ‘palisade’ structure
ensheathing the midgut endoderm – returns a measure of tissue anisotropy aligned
with the circumferential direction (φ = π/2, violet). (G) Constructing material-frame
pullback images facilitates measurements of tissue shape change, cell shape change,
and cell intercalation rates. (H) Following the tissue’s deformation enables mode de-
composition of the dynamics, offering descriptions with reduced complexity, shown
schematically as a path of the system through mode space after performing principal
component analysis (PCA). (I-L) This method tracks deformations for organs and in
vitro systems alike, including the Drosophila midgut, the beating zebrafish heart, a
stem-cell-based neural tube, and a phase-separated droplet deforming in a cytoskeletal
gel. Scale bars are 100 µm for all panels. (K) Characterizing the tissue surface offers a
route to study neural tube development [118]. (L) We follow a DNA-nanostar-based
droplet (red) deforming in an active fluid. Here, mechanical coupling between the
interface of a liquid-liquid phase separated DNA droplet and a surrounding active mi-
crotubule fluid (cyan rods) generates continuous deformation towards droplet breakup.
In the time series, microtubule fluorescence within 10 µm of the interface is projected
onto the deforming droplet surface.
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insights into the (bio)material’s constitutive behavior, the processes generating its shape,

and its physiological function [139, 162, 165, 77].

Much of of our understanding of morphogenesis built during the last century has

relied on qualitative analysis of 2D live imaging and static snapshots of dynamic growth

processes in 3D [13, 143, 179]. Emerging computational approaches in the life sciences

have enabled quantitative characterizations that often challenge traditional assumptions

and clarify the complex relationship between gene expression patterns, physical forces,

and tissue geometry [215, 11, 74, 138, 236, 263, 123, 142]. In a particularly fruitful

methodological advance, the community has applied ‘tissue cartography’ methods that

map curved tissues to a planar representation, dramatically reducing the computational

power required to store and analyze 3D data [217, 99, 102, 166]. This framework has facil-

itated insights in a wide variety of systems including fly wings [277], eyes [81], egg cham-

bers [57], ascidian vasculature [153], zebrafish endoderm [217], and mouse intestines [39].

While these methods are sufficient to track cells rearranging within static geometries

and in local patches of complex shapes [99], in toto measurements of tissue deformation

in more complex, dynamic geometries have remained elusive. Here we propose automated

methods for registering dynamic tube-like surfaces across time – with arbitrarily complex

geometry – and classifying the signatures of tissue deformation underlying organ-scale

shape change. As shown in Fig. 2.1, this provides a framework for tracing the dynamics

of complex shapes. This method then naturally decomposes tissue-frame measurements

for interpretation, handling all computational subtleties that arise from the surface’s

curvature and motion.

By applying this approach to the developing embryonic digestive tract in the fly

Drosophila melanogaster [109, 22, 21, 165] and the beating heart of the embryonic ze-

brafish Danio rerio [9, 20, 77, 232, 20, 41], we extract the signatures of in-plane and

out-of-plane tissue deformation. Despite the complexity of their motion, we obtain sim-
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ple geometric descriptions underlying shape change.

2.2 Implementation and application to a model or-

gan

Contemporary microscopy methods generate volumetric data, wherein each voxel

carries a (potentially multi-channel) intensity measured at a specific location in the sam-

ple [127]. At the same time, many biological processes harness quasi-2D, thin tissues or

interfaces to sculpt complex 3D forms. To probe the interplay between in-plane inter-

actions and out-of-plane dynamics in such systems, we must extract the tissue surface,

track motion within the surface as it deforms, and decompose the resulting motion into

signatures of deformation.

We package this functionality in the Tube-like sUrface Lagrangian Analysis Resource

(TubULAR). TubULAR is publically available on GitHub, with documentation and ex-

ample scripts at https://npmitchell.github.io/tubular/. The package includes (and

uses) independent toolkits for surface visualization (TexturePatch), conformal mapping

(RicciFlow), and discrete exterior calculus (DECLab). A typical workflow passes through

(1) level sets segmentation for surface detection, (2) generation of a pullback representa-

tion for surface parameterization and visualization, (3) flow analysis using TubULAR’s

discrete exterior calculus implementation, and, if appropriate, (4) mode decomposition

of the dynamics. In addition to the standalone toolkit, we have incorporated the core

functionality of TubULAR within the ImSAnE environment [99], with updates available

at https://github.com/npmitchell/imsane.
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Figure 2.2: Coordinate parameterization follows 3D deformations of the
evolving surface, enabling quantification of geometric dynamics, shown
here for the fly midgut as it folds into a coil of compartments. (A) Con-
structing a dynamic map to fixed material coordinates, we label the midgut’s intrinsic
longitudinal axis as the surface deforms into a convoluted shape. (B) A 2D pullback
representation of the material frame reflects the longitudinal coordinates colored in
(A). (C) Dynamic mapping to fixed material coordinates tracks circumferential motion
of the tissue. (D) Colors correspond to the surfaces shown in (C). (E-F) After com-
puting centerlines of the surface directly from the parameterization (brown curves),
we then measure a cross-sectional width of the organ (effective radius) as a function
of longitudinal position. In (F), as before, s is a measure of proper distance along the
organ surface in the material frame. The shaded band represents the minimum and
maximum effective radii along each circumference (each defined by s =constant). The
narrowing shaded band near each constriction reflects the increasingly circular cross–
sectional shape of each constriction. (G) Computational sectioning of the midgut
shows that constrictions adopt circular shapes in the intrinsic material cross-sections.
When viewed in their intrinsic, dynamically tilting cross-sectional planes, midgut con-
strictions are shown to adopt circular shapes as they tighten. Note that these intrinsic
cross-sectional planes stray far from the Eulerian anterior-posterior axis, making this
a difficult measurement if not for our material parameterization.

2.2.1 From volumetric data to dynamic textured surfaces

We first set out to identify and extract 2D surfaces of interest from 3D data. For the

tube-like shape of the systems we address here, TubULAR segments the data space into

an ‘inside’ (i.e. everything within the tube) and an ‘outside’ (i.e. everything outside the

tube), modulo the potentially necessary inclusion of virtual ‘end caps’ to close off the

interior of an open tube [182]. As illustrated in Fig. 2.1A, level set methods are a robust

and powerful tool used to dynamically segment data volumes into complex watertight

geometries whose boundaries are defined as the null contours of a signed distance function

u(x). The signed distance function is taken to be positive, u(x) > 0, on the interior of

the test surface and u(x) < 0 on the exterior. The problem of surface detection is thereby

reduced to optimizing the signed distance function so that u(x) = 0 matches the tissue

surface.

Once a level set partitions the data volume for a given time point, we the point cloud
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Figure 2.3: Discrete exterior calculus measurements of tissue velocity re-
turn signatures of motion. (A) 2D pullback representation of in-plane (tangen-
tial) tissue motion shows a line defect near the middle constriction, then defects at the
anterior and posterior constrictions, followed by increasingly complex in-plane flows.
The orientation of flow relative to the longitudinal axis ŝ is denoted by color and the
magnitude of the motion reflected by opacity and arrow length. (B) The underlying
out-of-plane velocity vn is positive (inwards) near constrictions. (C) DEC computa-
tion of the divergence of the in-plane velocity ∇ · v‖ shows patterns of sinks in the
constrictions and sources in the chambers’ lobes, in synchrony with the out-of-plane
deformation. (D) As a result of the match between in-plane and out-of-plane, the
areal growth rate – defined as Tr

[
g−1ġ

]
/2 – remains relatively quiescent. Here g is

the first fundamental form of the tissue surface. (D) DEC computation of the rota-
tional component of motion reveals vortices of alternating sign along the longitudinal
axis. For this sign convention, positive rotational flow corresponds to a curl aligned
with the inward surface normal.
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defined by the voxels on the boundary of the segmented region to generate a smooth

mesh triangulation. The surface triangulation is the mathematical workhorse we use to

measure material motion. The result is a dynamic set of surfaces tracing the tube-like

surface over time, as illustrated in Fig. 2.1B-D. Users may alternately generate surfaces

via other software (such as Imaris), then use TubULAR for subsequent analysis. A toolkit

for rendering the data onto the surface (TexturePatch) is included and implemented

within TubULAR – and is also functional as a standalone tool.

2.2.2 Constrained surface parameterization enables tracking sur-

face dynamics in the material frame

Understanding the ways in which shape dynamics couple to biological processes such

as cell shape change, intercalation, intracellular patterning, and gene expression requires

the ability to identify and follow patches of tissue as they move and deform. On its

own, the previous surface extraction step provides an instantaneous description of the

surface geometry, but does not identify how particular patches of cells move and deform

from time point to time point. Generating a consistent, time-dependent coordinate sys-

tem taking into account tissue flow and deformation presents a considerable technical

challenge, particularly in the presence of dramatic shape change. In the language of con-

tinuum mechanics, we must advance from an Eulerian description, wherein dynamical

observables are measured at particular locations in space, to a Lagrangian description,

wherein the dynamics – whether of deformation, anisotropy, morphogen concentration,

or any another observable – are queried by following material parcels along the surface

as morphogenesis proceeds [130].

As illustrated in Fig. 2.1B and Fig. 2.2A-D, we build a parameterization scheme such

that the motion of the cells (or other objects) in the pullback representation move as
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little as possible. This enables us to easily follow a virtual representation of in-plane

deformations in pullback space, which we can then project into 3D to follow the true

motion. To this end, TubULAR first cartographically maps the surface to the plane –

defining a material frame of reference – then stabilizes virtual motion of the material in

the pullback plane. The end result is a dynamic map ϕ(t) mapping the dynamic surface

to a fixed material frame of reference, with no movement of the tissue over time in the

material frame.

We first map the mesh at a single reference timepoint into the plane to define the

material frame. To do so, we cut small ‘endcaps’ at the poles and create a virtual seam

along the long axis so that the now-cylindrical mesh topology can be ‘unrolled’ into the

plane. To facilitate the analysis of anisotropic tissue deformations later in the pipeline,

this mapping into the plane is conformal – i.e. a totally isotropic, angle-preserving map.

This conformal map is constructed either by discrete Ricci flow [276] (included as a

custom package within TubULAR, also a fully independent, standalone package) or can

be approximated quickly via minimizing the Dirichlet ‘energy’ of the mapping [194]. We

ensure that the choice of virtual seam along the mesh’s long axis does not affect the

resulting mapping by placing periodic boundary conditions in the φ direction, with an

implementation inspired by recent work on orbifold mappings of spherical surfaces [2].

Finally, we advance from this initial map to follow the tissue motion. We do so by

adjusting the mapping to the plane at other timepoints ϕ(t) so that any virtual tissue

motions are subtracted off in the pullback image. As detailed in the Appendix A, we

found that a four-step approach to constructing this map aided in numerical stability for

the systems we have considered: ϕ(t) = J ◦ Φ ◦ Z ◦ f , where f is a conformal map, Z

adjusts the longitudinal axis, Φ minimizes motion along the circumferential axis, and J

accounts for residual motion through optical correlation of adjacent pullback images. We

are then able to follow extreme deformations of the tissue in 3D space simply by reading
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off the dynamic inverse map ϕ−1(t) as sketched in Fig. 2.1D.

2.2.3 Following surface geometry in the material frame enables

insights into midgut formation

Before analyzing tissue dynamics on deforming curved surfaces, we first underscore

the insights afforded from following the surface geometry alone, without reference to

velocity fields. Our approach to material parameterization naturally returns geometric

descriptors which otherwise can be challenging to obtain. In particular, we show here

that Drosophila midgut constrictions become increasingly circular as they deepen, despite

their initially anisotropic shape.

During embryonic development in Drosophila, the midgut closes into a tube and

takes on a rectangular shape in its anterior and tapers to an irregular shape towards

the posterior [38, 124, 203, 21, 203, 265]. Subsequently, the midgut forms a constriction

midway along its length, then two more constrictions subdividing the organ into four

chambers [109, 165].

Using the computational sectioning offered by TubULAR’s surface parameterization,

we can quantify the degree of azimuthal symmetry about the organ’s centerline. A

useful byproduct of the surface parameterization is a time-dependent centerline curve

spanning the full length of the surface (Fig. 2.2E). Despite being desirable for medical

and scientific purposes alike [272], constructing such a centerline via traditional methods

raises numerous technical hurdles [53] (see Appendix A). With a material coordinate

parameterization, however, we need only link the centroids of each circumferential ‘ring’

(s = constant) to return an organ-spanning curve with association between each point

along the curve and points in the tissue surface.

As shown in Fig. 2.2F-G, we find that though the gut tube initially has irregular
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cross sections, the constrictions rapidly adopt circular cross sections. This tightening

of the cross-sectional geometry suggests that the tension is uniform throughout the DV

direction, consistent with a model in which the highly elongated circular visceral muscles

drive force generation during this process (c.f. [165, 203]). We note that these mea-

surements would be challenging without a consistent method for constructing a single,

organ-spanning centerline with associations between the surface and each point along the

curve. Nonetheless, these features all follow trivially from our approach.

2.2.4 Covariant measures of motion access signatures of defor-

mation

By constructing material pathlines, we have already obtained velocity vectors of the

tissue defined over the surface and over time. In order to interpret these tissue flows,

we now decompose the velocity fields into their underlying components. A given parcel

can move both along the surface and normal to the surface, and separating these mo-

tions is needed to parse whether tissue is rotating or shearing, contracting or dilating,

and protruding or ingressing – and to find the spatiotemporal pattern in which these

motifs occur. After computing a Lagrangian reference frame for the tissue, the default

implementation in a TubULAR pipeline therefore (1) extracts the in-plane divergence

and the local rotation rate of the tissue velocity, (2) relates the in-plane divergence to

the out-of-plane motion vn to determine the rate of areal growth across the surface, and

(3) measure area-preserving shear deformations in the tissue.

Dealing with velocity fields on curved surfaces requires certain computational care:

parallel lines cross and diverge, and the orientation of a cell may change by simply trav-

eling along ‘straight’ lines (geodesics). In TubULAR, our calculations therefore rest on

an implementation of the discrete exterior calculus (DEC) formalism [65, 55]. Signals
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are represented as discrete differential forms on the simplicial structure of the triangu-

lated mesh which yield natural definitions for linear differential operators. These basic

operations can be combined together to form covariant representations of more compli-

cated differential operators, including the divergence, curl, and Laplacian operators that

are a part of TubULAR’s default workflow. These operators can be directly applied to

geometric data (e.g. surface curvature), kinematic data (e.g. surface velocities), and be-

yond (e.g. surface data intensity, surface data anisotropy fields etc.) to understand the

ways in which spatiotemporal variation in observable fields generate 3D shape change.

Advanced users can use these operators to construct soluble, discrete representations of

physical models (e.g. diffusion of morphogens or the Navier-Stokes equations [6, 175])

and directly test their predictions on evolving non-trivial geometries.

In order to make these methods accessible to the broadest possible audience, we

have packaged all of this functionality within DECLab, a simple and flexible framework

for discrete geometry processing. It is included with TubULAR and also functions as

a standalone toolkit. No deep knowledge of differential geometry or exterior calculus is

necessary to use our implementation. Appendix A and online documentation describe

the DEC methods.

Fig. 2.3 displays examples of these calculations applied to the developing Drosophila

midgut. Whole-organ measurements of the tangential velocity are represented in the 2D

pullback coordinates for snapshots of a representative embryo in Fig. 2.3A, with normal

velocities shown in Fig. 2.3B. Further processing via DEC of the in-plane velocity fields

shows localized sinks in the flow (∇·v‖ < 0) near constrictions, as shown in Fig. 2.3C. The

strong divergence in the tissue velocities is compensated by the out-of-plane deformation,

such that the rate of area change is relatively small Fig. 2.3D. The rotational component

of the flow, meanwhile, adopts a pattern of vorticity in each chamber, with alternating

sign (Fig. 2.3E).
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2.2.5 Lagrangian measures of time-integrated tissue strain

Endowing the evolving surface with a set of Lagrangian coordinates enables the con-

struction of a material metric. The metric tensor, g(t), is a geometric object enabling

the measurement of distances and angles between nearby points on the surface. The

rate-of-deformation tensor describes how lengths and angles change locally as the surface

deforms in time:

dgij(t)

dt
= ∇ivj +∇jvi − 2 vn bij, (2.1)

where vi, i ∈ {1, 2}, and vn denote the tangential and normal components, respectively,

of the Lagrangian surface velocity, ∇i denotes the covariant derivative with respect to the

ith tangential coordinate, and bij denote the components of the second fundamental form

– another geometric tensor object that contains all information about both intrinsic and

extrinsic measurements of surface curvature. Essentially, Eq. (2.1) tells us that lengths

and angles deform under the surface motion when there are gradients in the tangential

velocity and/or when there is normal motion in curved regions of the tissue. We can

then integrate the rate-of-deformation tensor along pathlines to construct a Lagrangian

measurement of cumulative tissue strain, i.e.

ε(t) =
1

2

∫ τ=t

τ=0

dτ
dg(τ)

dτ
=

1

2
(g(t)− g(0)). (2.2)

In the language of geometric elasticity, this is equivalent to the Green-St. Venant strain

tensor [71], defined relative to the ‘undeformed’ reference configuration at time t = 0.
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2.2.6 Field decomposition simplifies complicated deformations

Frequently, seemingly complicated patterns of motion can be decomposed into a sum

of contributions from simpler components. This strategy has been successfully adopted

in various contexts within morphogenesis, including analysis of the complicated tissue

motions observed in zebrafish gastrulation [205] and in reconstructing the 4D growth

patterns generating vertebrate limbs [58]. The TubULAR package deconstructs complex

observable fields into elementary components at multiple stages of analysis.

We include the capability to decompose surface vector fields (e.g. material tissue

velocities) into their geometric components. Our implementation generates a Helmholtz-

Hodge decomposition of tangential vector fields [55], i.e. a decomposition into dilata-

tional, rotational, and harmonic parts. This procedure determines the relative contribu-

tion of the geometric signatures of the in-plane flow to the out-of-plane deformation.

TubULAR also constructs mode decompositions of arbitrary tensor fields on the sur-

face. This functionality comes in two forms. First, our DEC implementation decomposes

signals onto a basis of the eigenfunctions of the discrete Laplace-Beltrami operator [145].

More simply, this compares the relative importance of long-wavelength modes (with

smooth spatial variation) and short-wavelength modes (with rapid spatial variation) in

generating the observed signals. Second, we include functions to decompose signals us-

ing principal component analysis (PCA) [115], as demonstrated in the next section. This

type of analysis lets users extract more general patterns of motion that contribute most

strongly to the variance observed across time or across datasets.
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Figure 2.4: Tracing the in-plane and out-of-plane dynamics of a beating
heart reveals the phased coupling between dilatational and transverse de-
formations. (A) Segmentation of a beating zebrafish heart shows cyclic deforma-
tions in 3D, shown at three equally spaced timepoints within a beat period, T . (B)
Decomposing tissue motion into in-plane and out-of-plane demonstrates how pulsed
deformation travels along the long axis of the tube. The tangential velocity is repre-
sented as a color denoting its direction along the long axis (purple or orange) or along
the circumferential axis (green or pink), with magnitude denoted by opacity. Inward
motion corresponds to vn > 0. (C) Both the total enclosed volume and the surface
area oscillate over time. (D) A kymograph of the radius of the tube measured along
the long axis shows cyclic beating. We average the radius around the circumferential
axis for each axial position s in this plot. (E) During each cycle, tissue undergoes
both out-of-plane motion and in-plane deformation. These two are coupled, such that
the rate of area change depends on both the normal motion and the divergence of
the in-plane velocity. F) Kymographs of in-plane and out-of-plane motion averaged
along the circumferential axis highlights waves of contraction. During each cycle, the
in-plane and out-of-plane deformations are nearly out of phase, so that the rate of
local tissue area change is large. (L) Because of the phase difference between in-plane
motion and out-of-plane deformation, cross correlation of the two motions indicates an
offset phase relationship. The curve shown is a fit to the data by an offset sinusoidal
wave, with a peak at ∆ = 0.416± 0.006 T .

2.3 Decomposing deformations during heart morpho-

genesis

To demonstrate the generality of the method, we analyzed a beating zebrafish heart

during during the second day of development post fertilization. In toto imaging of the

heart relied on light-sheet illumination of a transgenic Tg(cmlc2:eGFP) embryo express-

ing GFP in cardiomyocytes [107]. These data were taken using a temporal superresolution

approach [41], in which acquisition was synchronized with the beating of the developing

heart to build volumetric data at 11 equally-spaced phases of the heart beat cycle. The

3D shape of the beating heart is shown for a set of illustrative time points in Fig. 2.4A.

Passing the volumetric data through TubULAR returns covariant measures of in-plane

and out-of-plane deformation.
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Figure 2.5: Decomposition of tissue motion in the beating heart reveals two
principal components with non-reciprocal dynamics. (A-C) Visualization of
the principal components of Lagrangian tissue velocities. The first image in each
panel shows the deformation induced by moving along the associated component axis,
colored by the alignment of the component axis with the surface normal direction.
Subsequent images illustrate the Helmholtz-Hodge decomposition of the tangent part
of the mode and also the normal part of the mode. Color in the dilatational part,
rotational part, and harmonic part are given by the scalar potential, vector potential,
and norm of the harmonic mode respectively. Color in the normal part is given by
the norm of the normal component of the mode. (D-E) Principal component analysis
on the time course of deformations returns two dominant modes of deformation with
a phase relationship of nearly π/2, such that the system winds in state space along
a nearly planar, circular pattern. (F) A comparison of the relative contribution of
the first 24 modes. Mode contribution is defined as the time averaged ratio of the
squared length of the projection of the velocity along each mode normalized by the
total squared length of each velocity vector in state space.
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2.3.1 Beating heart exhibits a phase delay between in-plane

motion and out-of-plane deformation

Cyclic deformations of the heart result in in-plane velocities v‖, colored by their

orientation in Fig. 2.4B-D and out-of-plane motion vn that constricts or dilates the

tube Fig. 2.4E-G. The extracted heart shape changes both surface area and volume

as it beats, shown in Fig. 2.4H. We highlight the waveform of the beat by plotting a

kymograph of the radius as a function of time and position along the long axis of the

tube in Fig. 2.4I. In this measurement, we average along the circumferential axis of the

tube, given that the developing heart is reasonably symmetric along its circumference at

this stage.

Unlike in midgut morphogenesis, the beating heart’s in-plane velocities are not di-

rectly correlated with the out-of-plane deformation so as to produce incompressible mo-

tion. While both the in-plane divergence and out-of-plane motion display directional

waves in their kymographs, the two fields are out of phase. As shown in Fig. 2.4L, we

measure a phase offset between the two fields of 0.42T , where T is the period of heart

beating. In other words, as the tube constricts in the normal direction, the tangential

velocities are compressive, such that the tissue locally changes area in an oscillating man-

ner. This feature contrasts sharply with the irreversible constrictions of the fly midgut

during embryonic stages 15-16, in which nearly incompressible kinematics lead to a 97%

correlation between the two fields [165].

2.3.2 Mode decomposition of the heart reveals two out-of-phase

characteristic deformations.

Finally, we applied TubULAR’s mode decomposition tools to extract the extent to

which the complex cyclic beating of the embryonic zebrafish heart can be explained by
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simpler constituent motions. In order to do so, the 3D tissue velocities defined along

material pathlines were first lifted to reside in a high-dimensional space where each

point was defined by the set of all velocities on the surface at a given time point. We

then performed principal component analysis (PCA) to determine the axes in this high-

dimensional space that explained the majority of the variance in the data over time. The

three most important modes are displayed in Fig. 2.5A-C. We performed a Helmholtz-

Hodge decomposition of the mode velocities using the built-in functionality of the DEC

package contained in TubULAR to probe the signatures of motion contributing to each

mode.

We find that two modes dominate the dynamics, offering insight into the kinematics

driving unidirectional pumping. As shown in Fig. 2.5E, the system oscillates between

the first two modes, sweeping out a roughly circular trajectory subtending a nonzero

area. Other pairings, in contrast, generate trajectories that subtend balanced virtually

zero area (Fig. 2.5D). This phased oscillation between the first two principal components

indicate unidirectional pumping of the heart. Computing the contribution of each mode

to the total motion validates this 2D state representation: the first two modes capture

nearly 90% of the deformation (Fig. 2.5G).

2.4 Discussion

We have developed a computational framework for unravelling the complex, dynamic

shapes of tube-like surfaces into their principal signatures of deformation, providing a

documented, open-source MATLAB implementation to the community. Our implemen-

tation unifies the core elements of this toolkit with the existing ImSAnE package [99].

This framework computes Lagrangian measures of strain and strain rate, decomposing

dilatational and rotational signatures and mapping them onto the a reference mate-
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rial configuration. Using this approach, we characterized the geometry of constrictions

during midgut morphogenesis, revealing symmetric constrictions in the moving material

reference frame and linking in-plane tissue flows to organ shape. We then characterized

the cyclic deformations of the beating zebrafish heart – highlighting a phase difference

between in-plane motion and out-of-plane deformation – and captured the heart’s direc-

tional pumping motion with a two-dimensional principal component analysis.

As sketched in Fig. 2.1K-L, an efficient method for tracing surface dynamics in the

Lagrangian frame of reference offers new opportunities for understanding not only organ

dynamics during morphogenesis, but also organoid systems and sub-cellular structures.

To illustrate this, we captured a surface representation of a developing neural tube de-

rived from human stem-cells [118] and tracked a deforming phase-separated droplet in a

microtubule gel [240].

A remaining challenge is to extend methods of tracking deformation through changes

in topology of the surface. While here we address the challenges of complex and dynamic

geometries, we focus our efforts to follow tubes with a single opening on each end. Ex-

tending to higher-order networks of tubes [160] and shapes which fuse or separate [118]

poses additional challenges.
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A geometric body plan: active cell

divisions organize Parhyale embryo

into fourfold ordered state

Morphogenesis, the process through which genes generate form, establishes tissue scale

order as a template for constructing the complex shapes of the body plan. The extensive

growth required to build these ordered substrates is fuelled by cell proliferation, which,

naively, should destroy order. Understanding how active morphogenetic mechanisms

couple cellular and mechanical processes to generate order, rather than annihilate it,

remains a crucial outstanding question in animal development. Using live imaging and

tissue cartography, we quantitatively analyze the dynamics of fourfold tissue ordering in

the trunk segmental ectoderm of the crustacean Parhyale hawaiensis beginning 72 hours

after egg lay (AEL). We show that cell divisions are the primary drivers of tissue flow

leading to a fourfold orientationally ordered phase. Waves of anisotropic cell proliferation

propagate across the embryo with precise choreography. Defects introduced into the

nascent lattice by cell divisions are ferried out of the tissue bulk towards the boundary
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by subsequent divisions. Orchestrating cell proliferation rates and orientations enables

cell divisions to organize, rather than fluidize, the tissue. The result is a robust, active

mechanism for generating global orientational order in a non-equilibrium system that

sets the stage for the subsequent development of shape and form. This work was the

result of a collaboration with Fengshuo Yang, Haodong Qin, Anastasios Pavlopoulos,

Mark Bowick, and Sebastian Streichan

3.1 Introduction

Ordered cellular geometries in developing tissues serve as patterned substrates from

which complex arrangements of body parts can be built. The crucial organizing role

that order plays in morphogenesis is particularly apparent in direct developers. These

animals assemble a complete, miniature version of the adult body during embryogenesis

[13]. The limbs and organs comprising the adult form are arranged according to specific

body plans that ensure proper biomechanical functionality [146, 268]. Body parts develop

with ordered placements and are aligned and oriented relative to distinct principal body

axes [268]. In order to reliably generate the correct arrangements of limbs and organs,

direct developers create organizational templates from ordered regions of tissue, akin to

a coordinate system spanning the entire body.

Such templates must be ordered to delineate the body plan, but also retain sufficient

fluidity to facilitate the large deformations necessary during development. Orientational

order, an intermediate state between solid and and liquid matter, has been previously

studied in non-living, thermally equilibrated systems [94, 221, 167, 45, 274]. More re-

cently, orientational order has been demonstrated in the late stages of development, where

organs use planar polarized signals to arrange cells into an ordered phase in the absence

of proliferation [48, 210, 12, 49]. In contrast, the initial structuring of the body plan
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during early embryonic stages occurs via the sequential outgrowth of segments and is

fuelled by cell proliferation [13]. Generically, cell proliferation should give rise to fluidlike

rearrangements that mix cells and prevent the initially fluid tissue from ever achieving an

ordered state [198, 201, 129]. Orientationally ordered phases occupy only small fractions

of their respective phase spaces in thermally equilibrated systems [19, 5, 148, 69, 188].

Thus, it remains unclear how non-equilibrium mechanisms in living systems can generate

the requisite order to specify the body plan in the presence of cell divisions.

Here, we used Parhyale hawaiensis, an emerging model system of direct limb mor-

phogenesis [233, 262], to study the interplay of growth and order. Parhyale implements

its body plan sequentially via extensive cell proliferation [34]. Prior to appendage out-

growth, the ectoderm forms a grid of locally ordered cells [239, 34] (Fig. 3.1, A and C

to E), a feature shared among malacostracans [262]. The rows of this grid correspond

to segments of the adult body [239, 34]. Limb buds form at specific locations in the

grid and give rise to numerous functionally specific appendages [233]. Importantly, limb

orientation, in terms of the dorso-ventral (D-V) and antero-posterior axes (A-P), can be

traced back to the local arrangement of precursor cells at the grid stage [263, 34].

3.2 In toto live imaging of Parhyale embryo reveals

fourfold ordered state

We performed whole embryo live imaging of Parhyale using multiview light sheet

microscopy [127]. Transgenic embryos with fluorescently labeled nuclei were imaged

for 35 hours beginning three days after egg lay (AEL) (Fig. 3.1A). For the duration

of this period, the ectoderm is a monolayer [34] and can be well approximated as a

curved 2D surface. Tissue cartography, a computational technique wherein curved tissue
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Figure 3.1: Live imaging reveals the dynamics of a fourfold orientationally
ordered phase in living tissue. (A) Multiview light sheet microscopy allows for
non-invasive 3D imaging of growing Parhyale hawaiensis embryos. (B) Conformal
tissue cartography faithfully captures relative orientations of cells and streamlines
data analysis via dimensional reduction. (C to E ) The trunk ectodermal germband
pulled back to the plane by tissue cartography. (F ) The number of cells in a tracked
region within the tissue, shown on a log scale. Dotted line is an exponential fit to the
cell doubling time.
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surfaces are endowed with 2D parameterizations, could therefore be used to facilitate data

analysis by exploiting the inherent low dimensionality of the system [99]. The surface

of interest corresponding to the ectoderm was dynamically extracted at each time point

via a combination of machine learning [18] and level-set methods [168] (see Appendix B,

Fig. B.1). We then used discrete Ricci flow [276] to define conformal charts that mapped

the curved surface into the plane in a way that preserved angles (Fig. 3.1, B to E and

Fig. B.2). Conformal tissue cartography ensures that the relative cell orientations, and

therefore the orientational order, can be faithfully quantified from the planar data.

Working in the 2D conformal parameterization space, we implemented automated

image segmentation routines to detect cells (see Appendix B). We found that the num-

ber of cells increases exponentially with a typical doubling time of 10 h (Fig. 3.1F). Next,

we constructed a complex order parameter to quantify the relative orientations of neigh-

boring cells (Fig. 3.2). Cell positions were taken to be the centers of mass of the nuclei.

Instantaneous cell-cell connectivity was approximated by Voronoi tessellation (Fig. B.3).

The order parameter assigns to each cell a pair of quantitative measures, magnitude

and phase, indicating the extent to which neighboring cells are coherently positioned

according to a specific n-fold lattice structure and the local orientation of the ordered

neighborhood, respectively. Explicitly, the n-fold order parameter of cell j is given by

ψn(j) =
1∑
k `

2
jk

∑
k∈N (j)

`2
jk e

i n θjk , (3.1)

where the sum runs over all the nearest neighbors k of cell j, i.e. k ∈ N (j), θjk is the

angle formed by the separation vector between cells j and k and the horizontal axis in

2D, and `jk denotes the length of the Voronoi edge shared by cells j and k. Weighting the

sum by the squared Voronoi edge lengths `2
jk reduces the influence of noise in the centroid

positions on the final value of the orientational order parameter. The magnitude of the
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order parameter ranges between 0 (no n-fold order) and 1 (maximal n-fold order). For

n = 4, i.e. the fourfold order parameters, the magnitude of the order parameter peaks

when all neighbors of a cell are organized in a rectangular fashion (Fig. 3.2, B and C).

Our analysis reveals that the tissue initially exhibits no four fold order (Fig. 3.3, A and

B). Gradually, as the number of cells grows, the tissue adopts an increasingly fourfold

ordered state, which peaks in magnitude around 82.5 h AEL (Fig. 3.3, A and C).

We also calculated the two point correlation functions of the order parameter, Cn(r) =

〈ψn(r)ψ∗n(0)〉 (n = 4, 6), which measure the agreement of the magnitude and phase of lo-

cal order between cells as a function of their separation (Fig. 3.3, D and E and Fig. B.13,

A and B). At early times, orientational order is short range, restricted to less than a cell

length. In contrast, at later times, when the global fourfold order parameter peaks, ori-

entational order is quasi-long range, with correlations that decay algebraically across the

entire surface (Fig. 3.3A and Fig. B.13A). Therefore, strongly ordered local cell neighbor-

hoods are coherently ordered, in both magnitude and phase, across the whole embryo.

No significant sixfold order was detected at any time during this stage (Fig. 3.3, A and E,

and Fig. B.13B). In particular, while the global sixfold order parameter does transiently

rise to a modest | 〈ψ6〉 | ∼ 0.3 (for comparison the sixfold order parameter observed in

hexagonally ordered arrangement of hair cells in the mammalian inner ear peaks & 0.7

[49]), the sixfold order correlations always decay exponentially. Exponentially decaying

correlation functions categorically prohibit the possibility of a hexatically ordered phase

[19].

Next, we tested if the ectodermal grid exhibits translational order, which would be

reflected in a periodic positioning of cells along the D-V or A-P axis (Fig. B.8). Po-

sitional order was investigated using the 2D pair correlation function g(∆r), i.e. the

high-resolution histogram of pair distances, ∆rij = ri − rj, between cells normalized by

the number of pairs expected for a Poisson distributed set of cell centers. Integrating this
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D E

ψ6 = 1
ψ4 = 0

ψ6 = 0
ψ4 = 1

CA B

Figure 3.2: Construction of the orientational order parameter. (A) A
schematic of the discrete n-fold complex orientational order parameter. Here, ~xj and
~xk denote the centroids of cells j and k, respectively, θjk denotes the angle between
the horizontal axis and the separation vector ~xk−~xj , and `jk denotes the length of the
Voronoi edge shared by cells j and k. The sum runs over all cells k in the neighbor-
hood of cell j, i.e. k ∈ N (j). The weighting of the sum by the squared Voronoi edge
lengths `2jk reduces the influence of noise in centroid positions on the final value of
the orientational order parameter. Inset at panel bottom shows the order parameter
for a schematic pair of perfectly ordered lattices. (B and C ) Specific examples of
the construction of the single cell order parameter. Value shown in the inset is the
magnitude of the order parameter of the seed cell highlighted by an orange boundary.
Cell color and arrows indicate the magnitude and phase of the single cell order param-
eters, respectively. The color and thickness of the bonds between the seed cell and its
neighbors indicate the relative weight with which each bond contributes to the sum
defining the order parameter. (B) A disordered cell. (C ) A highly ordered cell. (D
and E ) Average fourfold order parameter over the third order natural neighborhood
of the single cells shown in (B) and (C ). The dotted orange boundary denotes the
seed cell. The solid orange boundary denotes the averaging region. Arrows indicate
the orientation of the single cell order parameter for each cell in the averaging region.
(D) Average order parameter in a disordered region. (E ) Average order parameter in
a highly fourfold ordered region. In general, small differences in orientation will result
in significantly lower mean order parameters compared to the magnitude of the single
cell order parameters. This effect is especially noticeable in the high order case.
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Figure 3.3: Parhyale germband achieves a fourfold orientationally orderd
phase. (A) The absolute value of the mean fourfold and sixfold orientational order
parameters over the whole embryo. Shaded contours show standard errors. (B and C )
The absolute value of the single cell fourfold orientational order parameter in the left
ectodermal compartment. (D) The two-point correlator of the fourfold orientational
order parameter C4(r) ≡ 〈ψ4(r)ψ∗4(0)〉. Vertical line shows the largest lateral di-
mension of the system. (E ) The two-point sixfold orientational correlation functions,
C6(r) ≡ 〈ψ6(r)ψ∗6(0)〉, at three representative time points. All time points exhibit
exponential decay. Vertical dotted line indicates largest lateral length scale in the sys-
tem. (F ) The isotropic pair correlation function. Vertical dotted lines indicate length
scale of the system along the A-P and D-V axes. All time points exhibit exponential
decay, implying no isotropic translational order. (G - H ) Anisotropic variations of
the pair correlation function. All time points for both variations decay exponentially.
The lack of anisotropic translational order along any preferred direction preclude the
possibility of smectic order in the system. (G) The pair correlation function mea-
sured along the D-V axis. (H ) The pair correlation function measured along the A-P
axis. (I ) Table enumerating the types of translational and orientational correlations
associated with the different material phases. Translational correlations are measured
using the pair correlation function g(r). Note that, unlike a crystal, an orientationally
ordered phase is characterized by a gas of defects. Inset image shows edge defects
introduced into rows of cells by division during a time when the germband is fourfold
ordered.

function over all orientations of the separation vectors yields the isotropic pair correlation

function g(r), which gives information about the positional order present in all directions

as a function of distance. Anisotropic characteristics of positional order were investigated

by analyzing a cut through g(∆r) along specific directions [19, 188], i.e. the A-P and

D-V axes. More details about the construction of all types of orientation and positional

correlation functions, including a discussion of finite size effects (Fig. B.5), can be found

in Appendix B. Analysis of the pair correlation functions indicates that the tissue has no

isotropic positional order (Fig. 3.3F and Fig. B.13C) and that cell spacing is not periodic

along any axis (Fig. 3.3, G and H). Thus, the tissue exhibits neither translational nor

smectic order, i.e. positional order along a single spatial direction, despite its seeming

regularity. The significance of these measurements was confirmed by extensive valida-

tion against synthetic data sets with similar cell densities and system sizes (Fig. B.7 and
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Appendix B). The different spatial ranges of translational and orientational correlations

associated with the various material phases are summarized in Fig. 3.3I. This lack of

periodic cell spacing can be partly explained by the presence of edge defects in rows of

cells. Edge defects are locations where a lattice row freely terminates in the interior,

i.e. three rows become two. In elasticity theory, such defects are called ‘dislocations’

and are well-known to disrupt translational order, but preserve orientational order [173].

In the Parhyale germband, these defects are disordered, reminiscent of the defect gases

characteristic of orientationally ordered phases (Fig. 3.3I). Cell divisions are the primary

mechanism mediating both defect generation and subsequent defect dynamics within the

tissue. While defects are generally isolated during the time the tissue peaks in orienta-

tional order, many defects can be associated with one another by a row of ordered cells

with a defect on the left and right sides, respectively (Fig. 3.3I). Together, these results

show that the tissue achieves a true orientationally ordered phase extending over the

entire trunk ectodermal germband.

3.3 Ectodermal grid is build by waves of oriented cell

divisions

We performed single cell tracking to reconstruct the flow fields that organize the

ectoderm during the rise of fourfold order. A parasegment pre-cursor row (PSPR) is

the fundamental supercellular unit of morphogenesis in the trunk ectodermal germband

during this phase of growth [34, 239]. A PSPR is a single row of cells, oriented perpen-

dicularly to the A-P axis, that can be directly associated with particular segments of the

adult body. As a unit, PSPRs are appended to the grid sequentially. Cells are recruited

from a pool of unorganized ectoderm at the posterior pole of the embryo and assembled
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into nascent rows so that each newly constructed PSPR lies immediately posterior to

the PSPR that preceded it (Fig. 3.4A). Despite being arranged as a row and in general

not containing any edge defects, newly built PSPRs do not yet exhibit fourfold order

(Fig. 3.3A and Fig. B.15).
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Once a PSPR is assembled, its constituent cells characteristically undergo two rounds

of highly choreographed cell divisions. Within each parasegment, mitotic waves are

initiated at the ventral midline and spread outward towards the dorsal regions of the

embryo (Fig. 3.4B). The timing of these intra-segment waves is stereotypic among all

segments (Fig. 3.4G and Fig. B.14C) and, since PSPRs are constructed sequentially,
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Figure 3.4: Waves of actively oriented divisions generate fourfold order.
(A and B) A schematic of parasegment formation and cell proliferation in the trunk
ectodermal germband. Inset in (A) shows the spatial distribution of cell populations
delineated by number of divisions since parasegment formation once parasegments are
assembled from the pool of unorganized ectoderm at the posterior pole. (B) shows
the proliferation of a single parasegment. (C ) Snapshot of elapsed time since division
reveals two orthogonal phase waves within and across parasegments. (D) Distribution
of cell cycle durations throughout growth. Solid lines are Weibull distributions fit
to the cell cycle duration histograms. Average duration and standard deviation for
mitotic wave 1 is 10.7 ± 2.2 hours from N = 117 cell cycles. Average duration and
standard deviation for mitotic wave 2 is 8.7 ± 1.5 hours from N = 27 cell cycles.
Average duration and standard deviation for differential cleavage is 4.6 ± 2.0 hours
from N = 7 cell cycles. (E to G) The location of mitotic wave division events over
time. Shapes indicate the parasegment within which a division occurs. Indicated
lines are linear fits to all division events associated to a particular mitotic wave. (E )
shows the location of each division along the A-P axis. The speed of mitotic wave
1 is 7.5 ± 0.3 µm/hr. The speed of mitotic wave 2 (AB) is 6.9 ± 0.9 µm/hr. The
speed of mitotic wave 2 (CD) is 6.1 ± 0.9 µm/hr. (F ) and (G) show the location of
each division along the D-V axis. Division times in (G) have been normalized to the
occurrence of the first division event associated with a particular wave in a specific
parasegment. The speed of mitotic wave 1 is 19.2± 2.1 µm/hr. The speed of mitotic
wave 2 (AB) is 13.9 ± 1.2 µm/hr. The speed of mitotic wave 2 (CD) is 13.1 ± 0.9
µm/hr.
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their onset is staggered between adjacent PSPRs (Fig. 3.4, E and F and Fig. B.14, A

and B). This choreography leads to two orthogonal phase waves of cell divisions with

distinct wave velocities: a fast wave within each PSPR spreading ventral-to-dorsal and a

slower one across PSPRs that moves anterior-to-posterior (Fig. 3.4C). After completing

these two mitotic waves, each PSPR subsequently undergoes rapid differential cleavage

in localized regions adjacent to the ventral midline (Fig. 3.4B). The total duration of the

cell cycle differs during these stages, with cells dividing faster during differential cleavage

than during the mitotic waves (Fig. 3.4D). Together, these results indicate that PSPRs

behave as weakly coupled, independent units running the same modular proliferation

program. In other words, cells in different PSPRs begin to divide at different times, but

the relative timing of division waves is shared among segments.

The orientations of the divisions comprising the mitotic waves are tightly distributed

about the A-P axis (Fig. 3.5A). This coherence of cell division axes appears to be actively

maintained. We frequently found that condensed nuclei with the wrong orientation would

rapidly rotate to align with the global division axis (Fig. 3.5C). In fact, 7.4% of 770

tracked division events underwent a re-orientation of more than 45 in the 5 minutes prior

to dividing. This patterning of oriented and wave-like timed cell divisions ensures that

the defects inserted into the lattice by cell division are effectively ferried out of the tissue

towards the boundary (Fig. 3.5B). Explicitly, as the mitotic waves gradually insert new

rows into the bulk of the grid, the incomplete rows manifest defects at their left and

right edges (Fig. 3.3I). As the mitotic waves unfold, these defects are pushed out towards

the dorsal regions of the tissue, leaving behind an intact fourfold ordered grid. This

type of defect motion is known as ‘defect climb’. It can be contrasted against ‘defect

glide’, another familiar type of defect motion, wherein the nascent rows of cells would not

extend laterally and defects would instead jump between adjacent PSPRs. In non-living

systems, glide generally dominates climb since gliding only requires simple updates to
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the connectivity of nearest-neighbors, whereas climb requires the creation of vacancies

or interstitial defects [54]. Defect climb in non-living systems typically only becomes

the dominant mode of defect motion at extremely high temperatures [245]. Here, the

presence of cell divisions excites defect climb at room temperature, such that defects,

which would otherwise disorder the lattice, are healed by subsequent divisions. In this

way, cell divisions are able to serve as an order generating mechanism.

C

B

T = 82.3 h T = 84.5 h

20 μmA

mitotic wave
differential
cleavage

T = -15 min -5 min-10 min

|θdiv| = 95.2° |θdiv| = 11.7° A

P

Figure 3.5: Divsion orientations are actively aligned with the A-P axis.
(A) The orientation of cell division axes relative to the A-P axis. Indicated curves
are von Mises distributions fit to histogram counts. The circular mean division angle
and angular deviation for the mitotic waves are θMW = 0.00 rad and sMW = 0.41.
The circular mean division angle and angular deviation for the differential cleavage
are θDC = 0.15 rad and sMW = 1.27. (B) Schematic of division induced defect climb
along parasegments. (C ) Example of active re-orientation of a nucleus immediately
prior to cell division.

Next, we investigated how the division choreography dynamically shapes the ectoderm

at the tissue scale. For the purposes of this analysis, we focused on a subset of six PSPRs.

We determined that growth proceeds in two stages (Fig. 3.6A). In the first stage, mitotic
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waves extend the germband by inserting new rows without changing the average cell

density (Fig. 3.6, B to D). The tissue elongates along the A-P axis and increases in

total area, but its width remains approximately constant. In the second stage, the tissue

undergoes convergent extension. Its width is sharply pinched, but its length continues to

increase in such a way that the total tissue area is held approximately fixed. Since the

rate of cell division remains constant throughout both stages (Fig. 3.1F), the average cell

density necessarily increases during convergent extension.

 

A B C
Extension

Convergent
extension

D E

T = 85.8 hT = 72.5 h

30 μm

F

Figure 3.6: Germband extension proceeds in two stages defined by different
modes of tissue scale shape change. (A) Schematic of the two stages of tissue
scale growth observed in the germband. (B to C ) Tissue scale observable fields in
the germband. Tissue cartography ensures 3D geometry is properly accounted for.
Shading corresponds to the two observed stages of growth. (B) Mean cell density and
total tissue area . Blue shaded region shows standard deviation. (C ) The tissue length
measured along the A-P axis and the tissue width measured along the D-V axis. (D)
The mean cell area over time. Shaded region shows standard deviation. (E and F )
Cell areas at two representative time points in the left ectodermal compartment. Cell
size varies primarily as a function of timing in the cell cycle (recently divided cells
are smaller - see Fig. B.10B). However, cell size is essentially uniform in space at each
time point for cells in similar points in their respective cell cycles.

These two stages also feature markedly different dynamics of the global order pa-
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rameter (Fig. 3.3A). During the first stage, when the large scale motion of the tissue

appears to be dominated by the mitotic waves, the global order parameter consistently

increases. In the second stage, wherein the tissue experiences a reduction in width that

is not explained by the mitotic waves alone, the global order parameter is initially static,

but slowly falls off.

3.4 Active hydrodynamic model confirms divisions

generate tissue scale motion

Having separately elucidated the kinetics of cell proliferation and the time course

of tissue geometry, our next goal was to explicitly connect local cell behaviors with

global tissue shape and flow. We adopted a coarse-grained description of the tissue-scale

mechanics, similar to recent applications aimed at decoding how active forces generate

tissue flow patterns [74, 236, 208, 26, 197]. Motivated by our observation of exponential

growth through cell proliferation, we developed a hydrodynamic model, similar to the

Stokes equations, that directly links tissue flow to bulk contributions from oriented cell

divisions via an active sourcing term:

ν1∇2v + ν2∇ (∇ · v) = −∇ · σa ≡ −Fa, (3.2)

where v denotes the tissue velocities, σa are the active stresses, Fa are the corresponding

active forces, ν1 = τRµ is an effective shear viscosity, ν2 = τR(µ + λ) is an effective bulk

viscosity, τR is a time scale corresponding to mechanical relaxation due to growth/tissue

remodeling, and µ and λ are the familiar Lamé parameters of continuum elasticity (see

Appendix C). For simplicity, we assume in our model that cell divisions are the only

source of active stresses. During division, the mitotic spindle within cells generates
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extensile forces akin to a force dipole [201, 68]. These division events push on nearby cells,

deforming the dividing cell’s neighbors and generating local plastic strain. Viscoelastic

relaxation of this instantaneous strain leads to flow in the surrounding tissue (Fig. 3.9A).

In this way, many division events can combine to create large scale collective motion. We

investigated the extent to which the integrated deformations induced by divisions could

collectively account for the observed global tissue flow. We first deduced the average

plastic deformation induced by a single cell division by rotating all observed cell division

events into a common frame (Fig. 3.7 and Fig. 3.8). Informed by the features of this

average flow field, individual division events were modeled as circular inclusions, i.e.

finite regions within which the tissue undergoes a permanent plastic strain [73], with an

orientation chosen to align with each measured division axis. We then solved our model

using the finite element method (FEM) with Dirichlet boundary conditions to predict

the tissue flow from observed cell divisions (Fig. C.1).

A B C

Figure 3.7: Average velocity induced by division events in the tissue. (A)
The magnitude of the velocity of the mean cell division event. Arrows showing orien-
tation are scaled by the norm of the velocity. (B) The x-component of the velocity of
the mean cell division event. (C ) The y-component of the velocity of the mean cell
division event.

To benchmark accuracy of this model, we compared the predicted tissue flow to

velocity fields quantified from individual cell tracking. Measured tissue flow fields were

mostly harmonic, irrotational, and divergence-free, except at cell divisions, where the
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divergence, curl, and Laplacian of the flow fields all spiked (Fig. 3.9, C to E and Fig. B.6).

Visually, the flow fields predicted from our model appear strikingly similar (Fig. 3.9, F

to H).

A B C D

Figure 3.8: Gradients of the velocity of the mean cell division event. (A)
The divergence of the mean cell division velocity. (B) The ‘curl’ of the mean cell
division velocity. (C) The x-component of the Laplacian of the mean cell division
velocity. (D) The y-component of the Laplacian of the mean cell division velocity.

To compare the measured flow fields v(x) to the predicted flow fields u(x) in a

quantitative fashion, we defined a global measure for the spatial velocity residual that

was insensitive noise dominated fluctuations in the regions of slow flow. Let

< u >≡
√
< u(x) · u(x) >embryo (3.3)

define an overall magnitude of the field u(x). Here, < u(x) · u(x) >embryo denotes an

average of the spatially dependent field u2(x) = u(x) · u(x) over the entire embryo and

is therefore not space dependent. We define our velocity residual as

R =
(< u >2 v2(x) + u(x)2 < v >2)− 2

√
< u >2< v >2 v(x) · u(x)

2 < u >2< v >2
. (3.4)

This residual provides a spatial discrepancy map, indicated the prediction quality as a

function of location on the embryo. An identical velocity residual was used in [236].
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The velocity residual quantitatively confirms that our simple model accurately predicts

both the direction and magnitude of the observed tissue flow (Fig. 3.9, I to K) (see

Appendix C). During the first phase of growth, velocity residuals are typically below 10%

(Fig. 3.9B and Fig. C.2). This suggests that about 90% of the flow can be accounted for in

terms of cell divisions as the dominant bulk contribution. Velocity residuals subsequently

increase moderately during convergent extension, reaching a typical level around 20%.

This suggests divisions are still the main driver, but other mechanisms, currently not

accounted for by the model, provide small but measurable adjustments.

3.5 Active vertex model reveals how directed divi-

sions generate orientational order

Finally, we directly investigated the role of oriented divisions in mediating both cell

and tissue scale orientational order by simulating division waves using a simple vertex

model defined by the energy

E =
1

2

∑
c

[
(Ac − A0)2 + (Pc − P0)2

]
. (3.5)

where c is a label for cells, Ac is the area of cell c, Pc is the perimeter of cell c, A0 is a target

cell area, and P0 is a target cell perimeter. Both A0 and P0 were assumed to be the same

for all cells. For all simulations, we set the shape index parameter p0 = P0/
√
A0 = 4,

i.e. the preferred shape index of a perfect square. This choice was consistent with the

observation that actual cells in the tissue obtain p0 ≈ 4 throughout the entire process of

ectodermal grid formation (Fig. 3.10A). Initial conditions for our simulations consisted

of a hexatically, but not translationally, ordered arrangement of cells and a division order

constructed so that cells divided in a wave. We chose to use a hexatically ordered initial
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Figure 3.9: Active cell divisions dictate tissue velocities during germband
extension. (A) Schematic of the flow field induced by a single division event. (B)
Mean residual between the measured cell velocities and the cell velocities predicted
by the active hydrodynamic model. (C to E ) Cell velocities measured by single cell
tracking. (F to H ) Predicted cell velocities. (I to K ) Single cell velocity residuals
for the measured and calculated velocity fields shown in (C to E ) and (F to H ),
respectively.
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condition in order to ensure that the simulated tissue was comprised of well defined rows

with no fourfold order. Simulations then proceeded by growing and dividing a single

cell at a time. Each cell was selected to divide along an axis drawn from a circular von

Mises distribution with variable concentration k (Fig. 3.10F). The entire tissue was then

completely relaxed to an equilibrium configuration at the end of each growth/division

step. We also imposed a confinement constraint on the tissue that kept its total width

constant throughout the growth process, consistent with the behavior of the germband

during the first stage of growth (Fig. 3.6C). More details about our choice of algorithm

and parameters can be found in Appendix D. The results of a typical division wave

simulation are shown in Fig. 3.10, B and C.

After a single division wave, all simulations with division orientation concentrations

of k & 4 managed to produce global fourfold order parameters of similar magnitude

to those observed in the real tissue (Fig. 3.10D) and exhibited algebraically decaying

fourfold orientational correlations over the entire simulated domain (Fig. 3.10E). Simula-

tions with sufficiently random division orientations destroyed all order within the system

(Fig. 3.10D and Fig. D.1). Interestingly, the simulations also showed that the wave-like

spatiotemporal choreography of division timings was not strictly necessary to generate

fourfold order. In fact, while the time course of order through the simulations was

markedly different, simulations with random division timings produced almost identical

fourfold ordering once all of the cells had divided (Fig. 3.10G). This observation rein-

forces the conclusion that oriented divisions constitute a robust mechanism for fourfold

order generation without the need for micromanaged division timings. Our simulations

also provided a platform to directly test the extent to which defects introduced into the

ectoderm by cell division mediate the loss of order within the tissue (Fig. 3.10H).
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Figure 3.10: Oriented divisions generate fourfold order in vertex model
simulations. (A) The mean cell shape index p0 = P/

√
A as a function of time in the

trunk segmental ectoderm, where P is the cell perimeter and A is the cell area. Shaded
region shows standard deviation. The shape index remains close to 4 (the shape index
of a perfect square) for the entirety ectodermal grid formation. (B) A comparison
of cell geometry and fourfold order drawn from data (left) and simulation (right).
Magenta lines denote boundaries between adjacent parasegments. (C ) Illustration
of a typical division wave simulation. Hue corresponds to number of cell divisions
within a lineage and saturation represents orientational order (disordered regions are
less saturated). (D) The absolute value of the mean fourfold order parameter during
division wave simulations. Different curves correspond to different concentrations k of
distributions from which division orientations were randomly drawn (see panel (F )).
Above k & 5 the division wave reliably generates fourfold order. Shaded regions show
standard error. (E ) The two-point correlation function of the fourfold orientational
order parameter generated by division wave simulations with k = ∞. Vertical lines
indicate the length and width of the tissue, respectively. Final configurations obtain
quasi-long range fourfold order. (F ) Illustrations of the von Mises distributions from
which division orientations were drawn during simulation. k = 0 corresponds to
uniformly random divisions and k = ∞ correspond to perfectly oriented divisions.
(G) The absolute value of the mean fourfold order parameter generated using the
same parameters as panel D, but with random division timings rather than a division
wave. (H ) Illustration of the breakdown of orientational order in an initially square
lattice due to the presence of defects inserted by cell divisions.
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3.6 Discussion

In this work, we combined mathematical modeling with quantitative flow analysis

to show that cell divisions are the primary drivers of global tissue flow during Parhyale

germband extension. We uncovered a global fourfold bond orientationally ordered phase

that emerges via precisely oriented cell divisions. In a scheme we call defect driven

morphogenesis, cell proliferation introduces defects into the local tissue structure, which

are then mobilized by subsequent cell divisions, ultimately giving rise to a highly ordered

cell network (Fig. 3.11). The choreography of these events is arranged in a timed mitotic

wave, spreading at distinct wave velocities across the A-P and D-V axes. The anisotropic

timing of this wave of cell divisions results in defect climb at room temperature. Many

defects migrate out of the ectodermal bulk toward the boundary. The sparse set of defects

that remain destroy translational order, but leave the orientational order intact. Defect

driven morphogenesis is both an efficient and a highly robust mechanism for establishing

global orientational order in presence of cell divisions. Similarly to non-living matter [8],

the insertion of new particles is an efficient strategy for exploring regions of configuration

space corresponding to orientational order. Provided a preferred axis, order can then be

produced by having cells divide according to independent, internal timing mechanisms.

This timing does not have to be precise (Fig. 3.4D). Order within a local region is

preserved so long as most of the cells within that region divide once before any particular

cell divides twice.

We showed that defect driven morphogenesis at the single cell level relies on tightly

oriented cell divisions. Our analysis demonstrated that neither the orientation (Fig. B.9)

nor the timing of cell divisions (Fig. B.10, Fig. B.11, Fig. B.12) exhibit strong correla-

tions with mechanical or geometric signals. This suggests that cell division timing and

orientations are actively instructed by biochemical signals, such as morphogen gradients
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Mitotic waves lead to defect climb Order is restored

A

D D

P

V

Initial lattice

Figure 3.11: Defect driven morphogenesis generates fourfold order in grow-
ing tissue. A schematic summarizing the role of division choreography in generating
and maintaining orientational order. Hue corresponds to number of cell divisions
within a lineage and saturation and value represent orientational order (less ordered
regions are darker). Order is maintained and the grid is restored so long as the divi-
sions are oriented along a single axis and each cell divides once before any particular
cell divides twice. Cells divisions shown in the middle panels are highlighted in red.
Orange regions in the first and last panels show the direction of local order is coherent
over long distances and preserved by the division choreography.

or planar cell polarity, rather than by mechanical feedback. It would be interesting to

investigate the precise nature of these biochemical signals and, in particular, the role of

myosin, since heterogeneous distributions of junctional myosin have been shown to be

capable of generating similar cobblestone patterns in the absence of cell proliferation [12].

For small direct developers, like Parhyale, arranging cells in an ordered grid might be

one of very few possibilities to establish a coordinate system in the presence of growth

[262]. It is intriguing to speculate whether large embryos, with abundant cell numbers,

utilize a similar ordering strategy at the mesoscale when arranging bigger periodic units

comprised of many cells, such as the somites in vertebrates [225]. Future work will in-

vestigate how defect driven morphogenesis differs in implementation between relatively

small embryos and embryos with large cell numbers and the relationship between tissue

scale order and shape change (Fig. B.4).
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A kinetic mechanism links gene

expression to visceral organ

morphogenesis in Drosophila

Organ architecture is often composed of multiple laminar tissues arranged in concentric

layers. During morphogenesis, the initial geometry of visceral organs undergoes a se-

quence of folding, adopting a complex shape that is vital for function. Genetic signals

are known to impact form, yet the dynamic and mechanical interplay of tissue layers

giving rise to organs’ complex shapes remains elusive. Here, we trace the dynamics and

mechanical interactions of a developing visceral organ across tissue layers, from subcel-

lular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live

visualization with a novel computational framework for multilayer analysis of evolving

complex shapes, we find a dynamic mechanism for organ folding using the embryonic

midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ

shape, control the emergence of high-frequency calcium pulses. Spatiotemporally pat-

terned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle
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contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape

change collectively drives a convergent extension pattern. Through tissue incompressibil-

ity and initial organ geometry, this in-plane shape change is linked to out-of-plane organ

folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing

organ-scale folding to a high-frequency molecular mechanism. These findings offer a me-

chanical route for gene expression to induce organ shape change: genetic patterning in

one layer triggers a physical process in the adjacent layer – revealing post-translational

mechanisms that govern shape change.

4.1 Introduction

Visceral organ morphogenesis proceeds by the assembly of layered cell sheets into

tubes, which develop into complex shapes [172]. Through this process, genetic pattern-

ing instructs cellular behaviors, which in turn direct deformations in interacting tissue

layers to sculpt organ-scale shape. This motif arises, for instance, in the coiled chambers

of the heart, contortions of the gut tube, and branching airways of the lung [215, 138, 160].

Meanwhile, elastic bilayer sheets highlight the potential for mechanical interactions alone

to generate nontrivial 3D shape transformations [252]. While studies of monolayer tissue

development in planar geometries imaged near the embryo surface or ex vivo have uncov-

ered general principles [112, 236, 208, 202], following the dynamics of fully 3D visceral

organ shape change has remained out of reach [160, 200]. Physical models inferred from

static snapshots of organ morphology have proven useful in this regard, but connecting

dynamics at the cellular and sub-cellular level with the dynamics of shape change at the

organ scale through live imaging remains a new frontier [253, 215, 226].

Uncovering cell and tissue dynamics in a shape-shifting organ presents several chal-

lenges. A conceptual challenge is that visceral organs exhibit both genetic and mechanical
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interactions between multiple tissue layers [230, 108]. Technical challenges arise as well,

since their complex, dynamic shapes develop deep inside embryos. Capturing dynam-

ics in vivo therefore requires imaging methods that overcome image degradation due to

scatter [62] and a computational framework for analysis of complex shapes.

The embryonic midgut – composed of muscle cells ensheathing an endodermal layer,

linked by extracellular matrix (Fig. 4.1A) – offers a system in which we can overcome

these challenges and probe in toto organ dynamics across tissue layers at sub-cellular

resolution. Its size and the molecular toolkit of the model system render the midgut

ideal for light-sheet microscopy [127], tissue cartography [100], and non-neuronal op-

togenetics [91]. Hox genes expressed in the muscle layer are required for the midgut

to form its four chambers, but the mechanism by which genetic expression patterns

are translated into tissue deformation, and in turn to organ shape, remains unclear

(Fig. 4.1B-C) [21, 105, 265, 22, 109, 203, 186]. Here we connect this genetic patterning

to mechanical interactions between layers during development and track the kinematic

mechanism linking mechanical action to organ shape transformations. We find that

dynamic, high-frequency calcium pulses drive patterned muscle contraction, inducing

bending and convergent extension in the endoderm to sculpt stereotyped folds.

4.2 Live deep tissue imaging reveals bilayer morpho-

genesis

The midgut is a closed tube by stage 15 of embryonic development, residing 20-60µm

below the embryo surface [15]. The organ first constricts halfway along its length, then

constricts again to subdivide into four chambers. Within 75− 90 minutes after the onset

of the first fold, the constrictions are fully formed, and the organ beings to adopt a
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Figure 4.1: Deep tissue live imaging reveals bilayer gut morphogenesis.
(A-B) Muscle and endoderm layers compose the midgut and interact to generate
3D shape. (C ) Genetic patterning of hox transcription factors that govern midgut
morphogenesis appears in the circumferential muscles. (D) Automatic segmentation
using morphological snakes level sets enables layer-specific imaging, here shown for
muscle (yellow) and endoderm (blue) for a w,Hand>GAL4;UAS-Hand:GFP;hist:GFP
embryo. Morphogenesis proceeds first with a constriction cleaving the gut into two
chambers (stage 15b). Two more constrictions form a total of four chambers (16a)
before the gut begins to coil (16b onward). Stages follow [15]. (E ) Surface area of the
apical surface increases gradually during constrictions, but levels off by stage 16b. The
enclosed volume decreases gradually, while the effective length of the organ – computed
via the length of a centerline – nearly triples. Solid curves denote mean and shaded
bands denote standard deviation (N = 6). (F-G) Segmentation of the endoderm layer
from MuVi-SPIM imaging resolves individual cells, both in the endoderm and muscle
layers, shown here at stage 15a.
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contorted shape.

Quantitative characterization of these dynamics requires extraction of the full or-

gan’s geometry, which is challenging due to tissue scatter. We overcome this challenge

by in toto live imaging using confocal multi-view light sheet microscopy [62]. In con-

junction, we express tissue-specific markers using the GAL4-UAS system [29] in klarsicht

embryos [259], which exhibit genetically-induced optical clearing (see Appendix E). To

translate this volumetric data into dynamics of the midgut surface, we combine machine

learning [18] with computer vision techniques [168, 42] using an analysis package dubbed

‘TubULAR’ [164]. In this way, we are able to resolve sub-cellular structures with 1 minute

temporal resolution (Fig. 1.4, Fig. 4.1D and Fig. E.1).

We find that gut morphogenesis is stereotyped and exhibits reproducible stages (Fig. 4.1E).

The surface area grows by ∼ 30% during folding (stages 15a-16a) and remains constant

by the time constrictions are fully formed (16b), despite continued shape change. The en-

closed volume within the midgut decreases only gradually during this process, while the

effective length of the organ – the length along its curving centerline – triples (Fig. 4.1E,

Appendix E).

4.3 Endodermal cell shape change underlies tissue

shape change

How does this 3D shape change occur at the tissue and cellular scale? We first

analyzed the endoderm layer. Inspection of these cells reveals strikingly anisotropic

cell shapes before constrictions begin (Fig. 4.1F and Fig. 4.2A-B). In order to quantify

cell shape on this dynamic surface, we cartographically project into the plane using

TubULAR [164]. This projection generates a global coordinate system in which we
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unambiguously define the anterior-posterior (AP) and circumferential axes for all time

points, even when the organ exhibits deep folds and contortions (Fig. E.3 and [164]).

Figure 4.2: Endodermal cell shape changes underlie organ shape change. (A)
Cell segmentation in a computationally flattened coordinate patch shows endodermal
cells are initially elongated along the circumferential direction but change their shape
during organ folding. (B-C ) Cell aspect ratios evolve from a/b > 2 to a/b ≈ 1,
shown in 3D for cells near the anterior fold. (C ) Colored bands denote area-weighted
standard deviations for 600-1300 segmented cells per timepoint, and tick marks denote
standard error on the mean. (D) As cells change their aspect ratio, their orientations
do not rotate. (E ) Single-cell tracking shows gentle increase of cell areas through
violent folding events, suggesting that cell area changes do not drive organ shape
change. Blue curve and shaded region denote mean and standard deviation, with raw
traces in gray.

By segmenting cell shapes, we find that endodermal cells are strongly anisotropic,

with an average aspect ratio a/b > 2, and are globally aligned along the circumferen-

tial axis (Fig. 4.2A-C). As constrictions develop, cells loose this anisotropy and even

become elongated along the AP axis in posterior regions (Fig. 4.2B-C and Fig. E.4A).

Measurement of endodermal cell orientations reveal that this effect is not due to rotations

(Fig. 4.2D). As shown in Fig. E.4A, the initial anisotropy is patterned along the AP axis

so that cells near two of the constriction locations are most anisotropic. While we do not
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presently know the mechanism of this patterning, it suggests these tissue regions may be

primed for deformation by positional information before constrictions begin. Subsequent

cell shape change is greatest near each constriction, as shown in Fig. E.4B.

Despite the large changes in aspect ratio, cell areas in the endoderm change only grad-

ually (Fig. 4.2E), such that cells converge along the circumferential axis while extending

along the folding longitudinal axis. On a larger scale, the observed cellular deformation

would collectively generate tissue movement called convergent extension. At the same

time, other processes – such as oriented divisions or cell intercalations – could also con-

tribute or counteract tissue-scale convergent extension [74]. However, we find no signs of

cell division during this process, confirming previous observations [15]. Moreover, though

tracking quartets of cells in the anterior midgut revealed widespread intercalations (also

called T1 transitions), the orientations of these events were not significantly biased for

the early stages of constriction (Fig. E.5). This suggests that anisotropic cell shape

change may be the primary contributor to tissue-scale shape change. We next tested

this hypothesis, asking how in-plane, cell-scale shape change connects to out-of-plane,

tissue-scale deformations during constrictions.

4.4 Tissue-scale convergent extension via constric-

tion

To understand the kinematic mechanism underlying organ shape, we must bridge spa-

tial scales from cell deformation to meso-scale tissue deformation. Given that the midgut

tissue is thin compared to the organ radius, cells exert forces on one another primarily

through in-plane interactions, but in-plane mechanical stress can couple to curvature

to generate out-of-plane motion [6]. In a nearly incompressible tissue constricting out-
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of-plane, cells do not change area, but may change shape, collectively driving in-plane

motion. In such a situation, we make sense of dilatational flow and out-of-plane de-

formation and interpret their difference as the local area growth rate by the following

argument. The surface changes according to its tissue velocity, which has tangential and

normal components v = ∂tX = vi‖ei + vnn̂. The shape of the surface is encoded by the

metric gij = ∂iX ·∂jX, which describes lengths and angles measured in the tissue, and by

the second fundamental form bij = ∂i∂jX · n̂ = −∂iX · ∂jn̂, which contains information

relating to both intrinsic and extrinsic measures of surface curvature [55]. The time rate

of change of the metric, also called the rate-of-deformation tensor, is determined by the

superposition of velocity gradients and normal motion where the surface is curved [6, 156]:

∂tgij = ∇ivj +∇jvi − 2vnbij. (4.1)

Here, ∇ denotes the covariant derivative operator defined with respect to the embedding

metric g. The covariant mass continuity equation gives [6]

0 =
Dρ

Dt
+
ρ

2
Tr[g−1ġ] (4.2)

=
Dρ

Dt
+ ρ∇ · v‖ − ρ2vnH, (4.3)

where ρ is the mass density in the physical embedding, and the material derivative is

Dρ/Dt = ∂tρ+ ρ(∇ · v‖) + v · ∇ρ. Incompressibility (Dρ/Dt = 0) then implies

2Hvn = ∇ · v‖. (4.4)

Such a kinematic constraint guides the shape changes that result from prescribed patterns

of mechanical stresses in the tissue.

We hypothesized that the constricting midgut may behave as nearly incompressible,
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Figure 4.3: Incompressible tissue dynamics reveal convergent extension via
constrictions. (A) Localized constrictions couple dilatational in-plane velocity pat-
terns to out-of-plane deformation near folds. (B) In-plane divergence and out-of-plane
deformation are correlated at the 97% level, signaling nearly incompressible behav-
ior (N = 3 embryos, with kinematics sampled in 320 non-overlapping tissue patches
per minute for 0 < t < 90 min). Gray band denotes standard deviation and ticks
denote standard error on the mean for each bin. Here, H denotes mean curvature,
vn is the normal (out-of-plane) velocity, and ∇ · v‖ is the covariant divergence of the
in-plane velocity. (C ) The tissue converges along the circumferential direction as cells
sink into the constriction (blue) and extends along the bending longitudinal profile
(orange) to preserve the area of a tissue patch. (D) In contrast to the curved gut,
localized bending of a flat, incompressible sheet requires no cell shape change, and
thus no tissue-scale convergent extension. (E ) Cell shape deformations converging
along the circumferential axis and extending along the the AP axis would generate
tissue convergent extension corresponding to uniform constriction of a tube, but no
localized constrictions would form. (F ) Localized constriction of an incompressible
sheet exhibits cell shape change without cell area change in the absence of oriented
divisions or oriented cell intercalations. The cell shape extends along the bending lon-
gitudinal (AP) axis. (G) Convergent extension via constriction follows as a geometric
consequence of localized constrictions of the tubular organ without local area change.
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given that we found cell areas to vary only gradually during constrictions. To test this, we

extract whole-organ tissue deformation patterns and find strong out-of-plane motion and

in-plane dilatational flows concentrated near folds (Fig. 4.3A, and Fig. E.6). Remarkably,

we find that the pattern of out-of-plane deformation almost entirely accounts for in-plane

dilatational motion in the gut, with only a small change in local tissue areas. This tight

link suggests that the tissue behaves as an incompressible medium. As shown in Fig. 4.3B,

these terms match with 97% correlation, leaving a residual in-plane growth residue at the

level of ∼1% per minute. This slow residual area growth, which is primarily concentrated

in the lobes of rounding gut chambers, accounts for both the surface area growth noted

in Fig. 4.1E and the cellular area growth in Fig. 4.2E.

Because the organ is curved into a tube, constrictions converge the tissue along the cir-

cumferential axis, and tissue incompressibility couples inward motion to extension along

the longitudinal axis to preserve areas (Fig. 4.3C). We dub this kinematic mechanism

‘convergent extension via constriction’: as the tissue constricts with an inward normal

velocity, the length of the tissue along the circumferential direction shortens while curves

along the longitudinal (AP) axis of the organ lengthen, keeping the areas of cells approxi-

mately constant (Fig. 4.3D-F and Fig. E.8). As a consequence of tissue incompressibility

and localized constrictions, the resulting area-preserving deformations are largest near

constrictions (Fig. E.9), mirroring the pattern of cell-scale deformations. Though the

shape of the organ becomes increasingly complex, in-plane deformations remain globally

aligned in the material coordinate system: the tissue converges and extends along the

circumferential and longitudinal axes, respectively, even as these axes deform in 3D space

as morphogenesis proceeds (Fig. E.9). A more detailed explanation of this mechanism,

including some illustrative schematics, can be found in Appendix E.

Finally, we find that tissue convergent extension is accounted for primarily by our

previous measurement of cell shape change. Since the early stages of midgut constric-
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tions have no divisions or oriented cell intercalations, we hypothesized that cell shape

change alone can explain the tissue scale convergent extension. Fig. 4.4 shows a quan-

titative match between cell shape changes and tissue convergent extension, indicating

that local cell shape changes primarily mediate tissue-scale convergent extension dur-

ing the early stages of constrictions. During stage 16b, the tight association between

cell-scale and tissue-scale deformations loosens, corresponding to contributions from cell

intercalations [26].

In short, we established a link from endodermal cell shape change to tissue-scale
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Figure 4.4: Cell shape change quantitatively accounts for tissue-scale con-
vergent extension during early stages of midgut constrictions. (A) As con-
strictions form, cells change shape from elongated circumferentially to elongated along
the longitudinal axis of the organ. At the same time, the tissue deformation mirrors
the cell shape change, converging along the circumference and elongating along the
longitudinal axis of the organ. Cell intercalations (T1 events) could also contribute
to convergent extension if oriented. We find these make a small contribution at early
stages of constriction and a large contribution at later stages. No signs of divisions
are present, so we rule out oriented cell divisions as contributors to convergent ex-
tension. (B) Tissue-scale deformation quantitatively tracks cell shape change at early
times, while intercalations contribute to convergent extension at later stages. Change
in cell shape anisotropy (assessed over all cells in each chamber) is plotted against
the magnitude of tissue convergent extension (averaged over the same tissue positions
in each chamber). On the vertical axis, we report cell shape change as the average
cell shape anisotropy for all segmented cells in each chamber 〈α(t)〉, minus the mean
value for each chamber at the onset of the middle constriction 〈α(t = 0)〉, such that
∆α(t) ≡ α(t) − 〈α(t = 0)〉. Given that cells’ orientations are steady during constric-
tions, we use a scalar measure of oriented cell shape anisotropy, α = (1− a/b) cos 2θ,
where a and b are the semimajor and semiminor axes of the ellipse capturing each
cell’s in-plane moment of inertia tensor and θ is the cell’s angle with respect to the
material frame’s longitudinal axis. To compute a tissue-scale shape change for com-
parison, we advect the cell contours of the initial segmentation along the meso-scale
tissue flow and compute the cell shape anisotropy of the advected segmentation [164].
Chambers are numbered from anterior (1) to posterior (4), separated by constriction
locations. Tick marks denote standard errors on the mean for cell anisotropies within
each chamber.
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folding – in which incompressibility couples out-of-plane deformation to in-plane motion

– resulting in convergent extension via constriction (Fig. 4.3G). What mechanical process

drives strong, localized contractions at the folds?

4.5 Muscle contractions drive cell and tissue shape

change

It is known that embryos with either disrupted muscle or endoderm structure fail to

fold [24, 264, 229, 265], as do embryos lacking integrins linking the two layers [66]. This

suggests that gut morphogenesis requires an interaction between muscle and endodermal

layers. At the same time, hox genes – which are expressed exclusively in the muscle layer

– have been linked to the successful formation of specific folds (Fig. 4.5A-B) [248]. In

particular, Antp mutants lack the anterior fold lying near the center of the Antp domain

(Fig. 4.5C), while Ubx mutants lack the middle fold lying at the posterior edge of the

Ubx domain (Fig. 4.5D). In this system, genetic patterning of the endoderm occurs via

genetic patterning from the muscle layer [21, 158], so it is possible that constrictions result

from a genetic induction process. Alternatively, mechanical interactions between the

layers could induce a program of convergent extension in the endoderm – with patterned

deformation of the muscle layer sculpting a passive, tethered endoderm [203] or triggering

active endodermal cell shape change.

To clarify the relationship between layers during constriction dynamics, we first mea-

sured relative motion of the muscle layer against the endoderm. By tracking both circum-

ferential muscle nuclei and endoderm nuclei in the same embryo, we find that these two

layers move together, with initially close nuclei separating by ∼5µm per hour (Fig. 4.5E-F

and Appendix E). This result is consistent with the notion that the two layers are tightly
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Figure 4.5: Muscle contractions mechanically couple to the endoderm layer,
inducing cell shape change and convergent extension. (A-B) Hox genes Antp
and Ubx are expressed in the circumferential muscle in discrete regions, shown for sur-
faces extracted from light-sheet imaging. (C-D) Hox genes control organ shape: Antp
and Ubx mutants lack anterior and middle constrictions, respectively. (E ) Muscle
and endoderm layers move together. By computationally extracting both muscle and
endoderm layers in an embryo expressing both fluorescent circumferential muscle and
endoderm (w,Hand>GAL4;UAS-Hand:GFP;hist:GFP), we track relative motion of
initially close muscle-endoderm nuclei pairs. (F ) Muscle-endoderm nuclei pairs show
modest relative motion compared to the integrated motion of the tissue (N = 81 pairs,
colored bands denote standard deviations). (G) Optogenetic inhibition of contrac-
tility via CRY2-OCRL, which dephosphorylates PI(4,5)P2 [91], mimics hox mutant
behaviors (N = 11 each), and stimulation of muscle contraction via recruitment of
CRY2-ρGEF2 to the plasma membrane [114] drives ectopic folding (N = 5 each). (H )
Inhibiting muscle contraction via CRY2-OCRL prevents endoderm cell shape change,
shown for snapshots before and after the anterior constriction would normally form.
The black scale bar is 50 µm, and white scale bar in images of segmented cells is
25 µm. (I ) Measurements of endodermal cell anisotropy over time confirm that me-
chanical inhibition in the muscle reduces cell shape change in the endoderm (blue,
p = 1 × 10−22). Antp mutants also exhibit reduced endoderm cell shape change,
consistent with Antp regulating muscle contraction (yellow, p = 4 × 10−9). Each
datapoint is the weighted average of multiple adjacent timepoints from 2-3 embryos
with at least 30 cells per timepoint segmented in each embryo. Colored bands denote
standard error on the mean.
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tethered by the integrins and extracellular matrix binding the heterologous layers [66].

Based on this tight coupling, we hypothesized that muscle mechanically induces shape

change in the tethered endoderm. To test this hypothesis, we inhibited contractility of

the muscle layer by driving UAS-CIBN UAS-CRY2-OCRL, a two-component optogenetic

construct that recruits OCRL to the plasma membrane to dephosphorylate PI(4,5)P2.

This process has been shown to abolish actomyosin contractility in other developmental

contexts by releasing actin from the plasma membrane [91]. Driving CRY2-OCRL with

Antp-GAL4 under continuous activation of blue light reliably prevented anterior fold-

ing (Fig. 4.5G). Likewise, driving CIBN and CRY2-OCRL under continuous blue light

activation in muscle regions posterior to the anterior fold using Ubx-GAL4 M1 locally

inhibited constriction dynamics. We note that Ubx-GAL4 M1 embryos express Ubx in

a larger domain than the endogenous WT Ubx domain due to differences in its regula-

tion [82], but Ubx-GAL4 M1 embryos nonetheless execute all three constrictions in the

absence of UAS-CRY2-OCRL under similar imaging conditions. Inhibiting contraction

in selected regions therefore mimics the genetic mutants known to remove folds.

Given that muscle contractility is required, we asked if optogenetically inducing acto-

myosin contraction in the muscle is sufficient to induce constrictions. Indeed, optogenetic

activation using the CIBN UAS-ρGEF2 system in the Antp region generates an ante-

rior fold on demand on the timescale of a few minutes, even if induced long before the

constriction would normally begin (Fig. 4.5G). Similarly, activation of the Ubx-GAL4

M1 domain results in a nearly uniform constriction that dramatically alters the shape

of the organ, forcing the yolk to flow into the anterior chamber. Additional optoge-

netic experiments inhibiting contractility of all muscles likewise led to folding defects

(N = 13, w;UAS-CIBN::GFP;Mef2-GAL4 / UAS-CRY2-OCRL:mCherry). We conclude

that muscle contractility is necessary for constrictions and inducing contraction and the

associated downstream behaviors is sufficient to generate folds.
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We then asked how these macro-scale perturbations on organ shape are linked to

cell shapes in the endoderm. In contrast with the wild-type, endodermal cell shape

changes are significantly reduced under optogenetic inhibition of muscle contractility. As

shown in Fig. 4.5H-I, cell segmentation of the endoderm during optogenetic inhibition

of muscle contraction in the Antp domain reveals nearly constant aspect ratios: the

endoderm cells near the Antp domain undergo reduced convergent extension when muscle

contraction is locally disrupted (single-sided z-test: p = 1 × 10−6 for difference after 1

hr, p = 1× 10−22 for sustained difference between curves, see Methods). We also observe

analogous reduction of endodermal cell shape change in Antp mutants, which lack anterior

folds (Fig. 4.5I, single-sided z-test: p = 7 × 10−3 for difference after 1 hr, p = 4 × 10−9

for sustained difference between curves). Thus, the endodermal program of convergent

extension is induced by mechanical interaction with the contracting muscle layer.

4.6 Calcium pulses spatiotemporally pattern muscle

contractility

What mechanism triggers muscle contractions, allowing such sharp folds to arise?

Recent studies have shown that calcium signaling triggers muscle contractions in a wide

range of contexts [128]. If hox genes use calcium signaling to pattern muscle contraction

in the midgut, we would predict that calcium pulses appear near localized constrictions.

Furthermore, hox gene mutants lacking folds would not exhibit localized calcium pulses,

and inhibition of the cell biological mechanism translating calcium into mechanical con-

traction should likewise inhibit constrictions.

To test for a link from hox genes to organ shape through this mechanism, we fist

imaged a fluorescent probe of calcium dynamics (GCaMP6s) in the muscle layer. As
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Figure 4.6: High frequency calcium pulses mediate muscle contraction, link-
ing hox genes to organ shape through tissue mechanics. (A) Dynamic calcium
pulses appear near the anterior fold, localized to a region more narrow than the Antp
domain. (B) Transient pulses in GCaMP6s intensity occur on the timescale of seconds
and increase in amplitude when folding begins (t = 0). Red, green, and blue channels
of images represent maximum intensity projections of confocal stacks separated in
time by 9 seconds, here and below. (C ) Integrated transient pulses for the embryo in
(B) show calcium pulses are localized near the fold: GCaMP6s signals 20µm in front
(red) or behind the fold (yellow) are less intense. (D) Snapshots of GCaMP6s fluo-
rescence in muscle cells demonstrate calcium activity near constrictions. Each frame
is a composite of three subsequent snapshots in red, green, and blue, so that transient
pulses appear as colored signal, while background appears gray. Different muscle cells
report calcium activity in adjacent frames. (E ) Average fluorescent activity during
the first 15 minutes of folding show localized signatures at each constriction, with
particularly sharp peaks in the middle and anterior constrictions (N = 5, N = 2, and
N = 7 for anterior, middle, and posterior folds, respectively). (F ) In Antp mutants,
GCaMP6s fluorescence is significantly reduced (p = 2× 10−8) and is not localized in
space. Snapshots of GCaMP6s expression 28 minutes after posterior fold onset (right)
show almost no activity in the anterior region compared to the control (left). (G) Dis-
ruption of calcium regulation in muscle cells inhibits constrictions. The probability
of forming three folds is reduced under heat-shock induced expression of the domi-
nant negative mutant allele SERCA.R751Q with a muscle-specific driver Mef2-GAL4
(N = 130, p = 7 × 10−9), and is likewise reduced under RNA interference of MLCK
driven by tub67-GAL4; tub16-GAL4 (N = 37, p = 2 × 10−4). (H ) Altogether, we
infer that hox genes are upstream of patterned calcium pulses, which generate muscle
contraction that is mechanically coupled to the endoderm, driving tissue strains and
ultimately organ shape.
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shown in Fig. 4.6A-E, dynamic calcium pulses appear in the muscle layer in regions

localized near all three midgut constrictions. Additionally, these calcium pulses are

patterned in time, appearing only at the onset of constriction for each fold (Fig. E.13).

To test whether hox genes pattern shape change through calcium dynamics, we mea-

sured GCaMP6s activity in flies mutant for Antp that lack an anterior constriction. As

shown in Fig. 4.6F, we found that calcium activity was almost entirely absent during

stages 15-16. Calcium activity is strongly reduced at the location of the missing ante-

rior constriction (single-sided z-test: p = 2 × 10−8) and subsequent calcium pulses are

repressed within the vicinity of the region for the hour after the constriction would nor-

mally initiate (single-sided z-test: p = 1 × 10−13 within 50 µm (Fig. E.14). The hox

gene Antp is therefore upstream of dynamic calcium pulses.

Importantly, we also find that in wild-type embryos, knock-downs of calcium signal-

ing remove folds. In smooth muscle cells, calcium is known to trigger muscle contraction

by binding to calmodulin, which in turn binds to myosin light chain kinase (MLCK)

to trigger myosin light chain phosphorylation [103], and cytoplasmic calcium is trans-

ported from the cytosol into the sarcoplasmic reticulum for storage under regulation of

SERCA [128]. Driving a dominant negative form of SERCA previously shown to exhibit

temperature-sensitive expression under Mef2-GAL4 [116], we find that disrupting cal-

cium signaling via heatshock beginning at stages 13-15a suppressed midgut constrictions

(p = 7×10−9, Fig. 4.6G). Separately, interrupting the production of MLCK in the muscle

via RNA interference demonstrates a similar reduction in folding behavior (p = 2×10−4,

Fig. 4.6G). From this we infer that spatially localized calcium dynamics – under the

control of hox gene patterning – triggers MLCK signaling leading to muscle contractions

(Fig. 4.6H).
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4.7 Discussion

Here we studied morphogenesis of an organ in which heterologous tissue layers gen-

erate complex shape transformations. We found that convergent extension and sharp

folds in the endodermal layer are triggered by mechanical interaction of muscle contrac-

tility together with tissue incompressibility, and patterns of calcium signaling regulate

contractility in muscle cells according to hox-specified information (Fig. 4.6H).

Though correspondences between hox genes and cell fates have been established for

decades [15], understanding the physical processes driven by hox genes remains an ac-

tive area of research. Here we demonstrated a link from genes to tissue morphodynamics

through active forces, connecting hox genes to a mechanical induction cascade across lay-

ers that integrates high frequency calcium pulses to advance reproducible morphogenesis

of complex 3D shape. While calcium dynamics have known roles in early developmental

stages of diverse organisms [254, 237, 147, 33] – including influencing the organization

of muscle fibers in the midgut [108] and determining cell fates in heart valves [80] – our

findings suggest a direct influence of calcium on shape, wherein pulses trigger a program

of irreversible tissue deformation. These calcium-patterned muscle contractions control

3D shape through a mechanical cascade across tissue layers, with broad relevance to

tissue engineering and organ morphogenesis in other organisms.

At the cellular level, a remaining question is how the midgut selects precise positions

and times for localized calcium activity despite broad hox gene domains that vary slowly

with time. For example, the anterior fold forms near the center of the Antp domain. Do

cells sense subtle gradients of Antp, or does more refined patterning downstream of hox

gene expression specify this location [25]? One available avenue for the latter possibility

is that hox genes govern the formation of anatomical structures that may transmit signals

from the soma to trigger calcium pulses [14].
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At the tissue level, a remaining question is to what extent endodermal cells actively

respond to muscle contraction, rather than passively deforming. For instance, there could

be a mechanical signaling pathway provoking contractile behavior in endodermal cells, or

even a mechanical induction loop between layers regulating morphological progression.

Our findings open new avenues to study how dynamic interactions between layers encode

complex shapes of visceral organs.
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A morphogenetic action principle for

thin tissues

How does growth encode form in developing organisms? Many different spatiotemporal

growth profiles may sculpt 2D epithelial sheets into the same target 3D shapes, but only

specific growth patterns are observed in animal and plant development. The criteria

that select for these stereotypic growth patterns and the ubiquity of anisotropic growth

remain poorly understood. We propose that nature settles on the ’simplest’ growth pat-

terns. Using the geometric formalism of quasiconformal transformations, we demonstrate

that growth pattern selection can be formulated as an optimization problem and solved

for the trajectories that minimize spatiotemporal variation in areal growth rates and

deformation anisotropy. The result is a complete prediction for the growth of the sur-

face, including not only a set of intermediate shapes, but also a prediction for how cells

flow along those surfaces. Optimization of growth trajectories for both idealized surfaces

and experimentally acquired data show that relative growth rates can be uniformized

at the cost of introducing anisotropy. Minimizing complexity can therefore be viewed

as a generic mechanism for growth pattern selection and may help to understand the

100



Section 5.1 Introduction

prevalence of anisotropy in developmental programs.

5.1 Introduction

Morphogenesis, the process through which genes generate form, transforms simple

initial configurations of cells into complex and specific shapes [246]. In order to ac-

complish this monumental task of self-organization, morphogenetic programs must co-

ordinate spatiotemporal fields of genetic expression, cellular behaviors, and tissue scale

forces, all of which feedback and couple to each other in nontrivial ways [13]. These

interdependent motifs collectively force cells to flow and tissues to buckle and change

shape, tracing out trajectories in the enormous ‘morphospace’ of possible shapes and

configurations that living systems can assume (Fig. 5.1). From a purely geometric per-

spective, an infinite family of different growth patterns may all generate the same final,

coarse-grained shape. Despite this degeneracy, typical individuals of the same species all

employ the same stereotypic growth patterns to generate their organs and appendages.

Generating a quantitiative understanding of how these stereotypic growth patterns are

selected remains a foundational open question at the interface between mechanics and

developmental biology.

We address this problem in the context of epithelial morphogenesis. Epithelia are the

fundamental tissue scale building block of multicellular systems and regularly undergo

dramatic shape changes during development [86, 92]. These tissue scale transformations

are instructed by the collective input of a limited set of cell scale motifs, including cell

shape change, cell rearrangements, and cell division (Fig. 5.2A) [26, 74, 93]. These var-

ious motifs can combine in nontrivial ways to produce markedly different signatures of

motion. If the collective action of these cellular process has no mean preferred direc-

tion, then growth will be isotropic. If, on the other hand, the integrated cell-sclae con-
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Figure 5.1: Dynamic growth patterns are trajectories in ‘morphospace’.
Morphogenetic programs transform simple initial configurations into complex target
shapes. We define a configuration to comprise both a shape and a parameterization,
i.e. a distribution of material patches over the surface. Different growth patterns
may generate the same final shape, but with dissimilar distributions of material re-
gions. Even growth patterns that generate the same final configuration may differ
drastically in terms of the realized intermediate configurations. A complete machin-
ery for understanding growth pattern selection must be able to quantiatively resolve
this degeneracy.
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tribuionts exhibit an average orientation, then growth will be anisotropic. Anisotropy is

a ubiquitous hallmark in the growth and development of plants and animals. Numer-

ous morphogenetic processes, including organogenesis [16], appendage formation [263]

and vertebrate gastrulation [85], have been shown to feature anisotropic components.

Fig. 5.2B illustrates the different final configurations produced by an isotropic and an

anisotropic growth pattern with the same initial configuration and uniform growth rates.

If we allow gowth rates to vary in space and time, we can produce the same final coarse

grained shape through both isotropic and anisotropic growth, although the distribution

of clonal regions within that tissue will be different. A comprehensive characterization

of morphogenetic tracjectories must therefore be able to distinguish growth patterns in

terms of both shape and flow.

In order to make sense of the complex interplay among these cellular processes, we

construct a coarse-grained, effective theory that integrates collective cell behavior into

smooth tissue scale deformations. Updates to the cell scale configuration of the tissue are

integrated into changes to a coarse-grained intrinsic geometry. As the intrisic geometry

is updated, the physical geometry changes in an attempt to match the target config-

uration [3]. Trajectories in morhphospace a can then be quantified at the tissue scale

through the time dependence of the intrinsic geometry. Flows of cells become smooth

time-dependent maps. In particular, flows due to isotropic growth are angle-preserving

conformal maps, whereas flows due to anisotropic growth are described by quasiconformal

maps, i.e. smooth transformations of bounded anistropic distortion.

Quasiconformal transformations provide natural language for describing anisotropic

growth [1]. Using this formalism, we show how changes to the intrinsic geometry of a thin

tissue can be uniquely expressed in terms of areal growth rates and shear anisotropy. We

further demonstrate how complex, nonlinear deformations can be decomposed into simple

infinitesimal updates. We use this machinery to forumlate a simple action principle for
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cell growth

cell shape change

cell intercalation (T1)

cell death (T2)

cell division (T3)

coarse-graining

growth tensor

anisotropic growth

isotropic growth

conformal mapping

quasiconformal mapping
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Figure 5.2: Coarse-grained effective theory integrates cellular behaviors
into tissue scale deformations. (A) A schematic illustration of the cellular behav-
iors mediating epithelial morphogenesis. These behaviors can be delineated between
geometric motifs, e.g. cell growth and cell shape change, and topological motifs, which
rearrange the connectivity of cells within the tissue. (B) Processes at the cell scale are
combined to collectively induce tissue scale shape change. Tissue scale growth will be
isotropic hen the underlying cell scale behaviors have no average preferred direction
(e.g. uniformly random cell division orientations). Conversely, the tissue will deform
anisotropically when the underlying cellular processes align along a partiuclar orienta-
tion. (C ) Coarse-graining the cellular motifs yields the growth tensor, γ(t), a tensorial
representation of the rate and orientation of the time rate of change of the tissue’s in-
trinsic geometry. The intrinsic geometry, represented by the target metric tensor ḡ(t),
can be conceptualized as a time-dependent field of target lengths and angles between
nearby points on the surface. (D) Changes in the intrinsic geometry induce tissue
scale flows. In the schematic, circular patches represent material parcels of tissue
that deform along Lagrangian pathlines. In the continuum, isotropic growth trans-
lates into conformal mappings, which preserve angles and map infinitesimal circles
into re-scaled infinitesimal circles. Anisotropic growth translates into quasiconformal
mappings, which transform infinitesimal circles into infinitesimal ellipses.
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growth pattern selection. We propose that stereotypic growth patterns are the ‘simplest’

growth patterns, in the sense that they minimize spatiotemporal variation in growth

rates and anistropy. In other words, they are the growth patterns which require the least

amount of a priori information to specify. Optimizing this functional for a given input

produces a complete, testable prediction for the full time course of a dynamic growth

pattern.

Focusing on the case of constant growth, in which growth rates can vary in space, but

are held constant throughout the growth process, we apply this formalism to deduce the

optimal growth trajectories for a variety of synthetic shapes. We further demonstrate

how varying the ‘texture’ of the anisotropy in the growth pattern can produce different

morphological features, even if the areal growth rates are held fixed. Finally we apply our

formalism to deduce optimal growth trajectories for limb morphogenesis in the crustacean

Parhyale hawaiensis and compare the results to alternative growth pattern possibilities.

5.2 Quasiconformal parameterizations of anisotropic

growth patterns

We represent a growing, thin tissue with a continuous curved surface St ⊂ R3. We

assign to each material parcel in the tissue a set of curvilinear Lagrangian coordinates ~x =

(x1, x2) ∈ B defined over a planar domain of parameterization B ⊂ R2.The embedding

of the surface is time-dependent map ~R(~x, t) : B → R3. Each point ~R(~x, t) ∈ St is

characterized by its tangent vectors ~e1 = ∂ ~R/∂x1, ~e2 = ∂ ~R/∂x2 and its unit normal

vector n̂ = ~e1 × ~e2/||~e1 × ~e2||. In what follows, Greek indices vary in the set {1, 2}. We

also drop the explicit dependence on time for ~R(t) and related functions in situations

where it is obvious from context. This description is illustrated in Fig. 5.3.
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: parameter domain : surface in 3D

Figure 5.3: Surface geometry. The surface S is defined as an embedding ~R of an
arbitrary region of the plane B ⊂ R2 into R3.

The covariant geometry of the surface is captured by the metric tensor

gαβ(~x, t) =
∂ ~R(t)

∂xα
· ∂
~R(t)

∂xβ
, (5.1)

which quantifies lengths and angles between points on the surface. Notice that this quan-

tity provides information both about the overall shape and the distribution of material

patches on the surface. As the developmental program unfolds, tissue’s physical shape

will change as it tries to match the evolving target geometry. Any mismatch between

these geometries will result in mechanical stresses [3]. If the time scale of mechanical

relaxation is fast compared to the time scale of growth, then the tissue will effectively al-

ways be in mechanical equilibrium. For simplicity, we assume that the physical geometry

is always an isometric embedding of the instantaneous target geometry, i.e. a stress-free

equilibrium configuration. Strictly speaking, it is also necessary to provide a target cur-

vature tensor, bαβ = ∂α∂β ~R · n̂, in order to uniquely specify the surface up to a rigid

motion. For thin tissues, however, the energy associated between any metric mismatch

dominates any bending energy. Moving forward with this in mind, we represent the full
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Section 5.2 Quasiconformal parameterizations of anisotropic growth patterns

dynamic growth of shape and flow using the tie course of the target metric g(t).

Quasiconformal mappings are generalizations of conformal mappings that allow for

shear deformations of bounded distortion. We now briefly demonstrate how the language

of quasiconformal maps can greatly clarify the problem of growth pattern selection. More

detailed coverage of the subject matter can be found in [1, 7, 83]. Let w = w(z) be a

C1 homeomorphism of one subregion of C to another, defined in terms of a pair of

complex variables z = x1 + ix2 and w = u1 + iu2. The map w(z) : C→ C is considered

quasiconformal if it is a solution to the complex Beltrami equation

∂w

∂z̄
= µ(z, z̄)

∂w

∂z
(5.2)

where where z̄ = x−iy and the Beltrami coefficient, µ, is a Lebesgue-measurable function

with ||µ||∞ < 1. This latter constraint is sufficient to ensure that the Jacobian of the

mapping J = |∂zw|2 − |∂z̄w|2 > 0 everywhere. Hence, by the inverse function theorem,

w is a sense-preserving diffeomorphism. The geometric properties of quasiconformal

transformations can be elucidated by comparison with conformal mappings. Locally,

around a point, a conformal transformation maps infinitesimal circles into similar circles.

A conformal map therefore does not introduce any preferred local orientation and is

necessarily isotropic. In contrast, a quasiconformal transformation maps infinitesimal

circles into infinitesimal ellipses. The Beltrami coefficient encodes the magnitude and

directionality of this distortion, and thereby the anisotropy of the transformation. This

geometric intuition is illustrated in Fig. 5.4. Notice that when µ = 0, the Beltrami

equation reduces to the Cauchy-Riemann equation, ∂zw = 0, the necessary and sufficient

conditions for the conformality of a complex map.

For simplicity, we now restrict our consideration to surfaces with disklike topology

(although virtually identical arguments hold true for both topological cylinders and topo-
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Figure 5.4: The Beltrami coefficient encodes deformation anisotropy An
illustration of the shearing induced by a quasiconformal transformation. Locally,
around a point, a planar quasiconformal transformation w : C→ C maps infinitesimal
circles into infinitesimal ellipses. The distortion associated with this map is encoded
by the Beltrami coefficient, a complex valued function µ with ||µ||∞ < 1 that is defined
via the complex Beltrami equation: ∂z̄w = µ∂zw. The angle of maximal stretching is
θ = arg(µ)/2 with an associated magnification factor of 1+ |µ|. The angle of maximal
shrinking is the orthogonal angle, θ + π/2, with a compression factor of 1− |µ|.

logical spheres). An arbitrary diffeomorphic parameterization of a disklike surface St

is a quasiconformal map and can be constructed according to the following prescrip-

tion. First, we calculate a conformal mapping ~R(~u) : D → St from the unit disk,

D = {~u : ||~u|| < 1}, to the surface in 3D . The Riemann mapping theorem assures us

that such a mapping is always possible and that it is unique up to a Möbius automor-

phism of the unit disk [171]. All Möbius automorphisms of the unit disk, ϕ : D → D,

share the following form

ϕ(z) = eiθ
z − z0

1− z̄0z
, (5.3)

for some angle θ ∈ [−π, π) and a complex constant z0 ∈ D. Effectively, a mapping like

ϕ(z) allows us to re-arrange the points z = 0 and z = 1 in such a way that D is preserved

and no anisotropy is introduced. In these intermediate coordinates, the metric tensor
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takes the following diagonal form

gαβ = eΩ(~u) δαβ. (5.4)

Next, we generate a quasiconformal automorphism of the unit disk w(z) : D → D,

fixing the points z = 0 and z = 1. All of the anistropy in the parameterization is

contained within this quasiconformal transformation and is described by the associated

Beltrami coefficient µ(t) = ∂z̄w(t)/∂zw(t). This construction is illustrated in Fig. 5.5A.

The complete metric tensor in these coordinates is given by

gαβ = eΩ(w◦z)|∂zw|2

 |1 + µ|2 −i(µ− µ̄)

−i(µ− µ̄) |1− µ|2

 . (5.5)

This construction benefits from several useful mathematical properties. The measur-

able Riemann mapping theorem assures us that there is a unique solution w(z) to the

complex Beltrami equation, fixing the points z = 0 and z = 1, for each µ with ||µ||∞ < 1

[7]. As demonstrated by Eq (5.3), the intermediate conformal parameterization of the

surface is totally constrained by the motion of the points z = 0 and z = 1. In prac-

tice, the motion of these points in 3D may be determined by tracking individual cells

or distinguishable features. Therefore, given a 3D surface and the motion of a single

point on the boundary and a single point in the bulk, each µ corresponds to a unique

parameterization of that surface.

It is straightfoward now to see that we can decompose growth into a coupled contri-

bution from anistroic and conformal growth. Given the anisotropy µ we can uniquely

solve for the associated quasiconformal mapping w(z). The 3D area of a small material
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Figure 5.5: Quasiconformal parameterization of a 3D surface provides quan-
titative structure for morphogenetic trajectories. (A) An arbitrary parame-
terization of a topological disk in 3D can be expressed as the composition of a quasi-
conformal automorphism of the unit disk ~u : D → D fixing the points ~x = (0, 0) and
~x = (1, 0) followed by a conformal mapping into 3D ~R : D→ R3. The parameteriza-
tion is unique if both a Beltrami coefficient µ and the motion of two material points
are specified. (B) An arbitrary intrinsic geometry can be reconstructed from the time
dependent area and anisotropy of material regions. It is therefore possible to quan-
titatively characterize morphogenetic trajectories in terms of the dynamic profiles of
these Lagrangian fields.

patch at ~x ∈ B is related to the quantity

√
g = eΩ(w◦z)|∂zw|2(1− |µ|2), (5.6)

where g is a shorthand for det[g]. If we know the anisotropy, µ. and the 3D area, A, of a

material patch, we can uniquely construct the associated metric tensor, which serves as a

proxy for both shape and flow. This decomposition enables us to assign a simple, concrete

structure to the abstract morphospace alluded into in the introduction. Morphogenetic

trajectories of thin tissues are simply time-dependent profiles of anisotropy and areal

growth (Fig. 5.5B).

We now turn our attention to the parameterization of entire dynamic growth trajec-

tories. We assume that internal biological processes set the rates at which the intrinsic

geometry changes, rather than determining the cumulative state of the intrinsic geome-

try. For example, biological processes may set rate of cell division, rather than directly
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controlling the cumulative target area of a clonal region. The crucial object under con-

sideration is the time derivative of the target metric, ġ(t) ≡ γ, which we call the growth

tensor (Fig. 5.2C). Intuitively, γ is a coarse-grained tensorial representation of cell-scale

growth procesess, i.e. rates and orientations of cell divisions. The aforementioned pa-

rameterization construction guides us towards a scheme for quantifying dynamic changes

to the intrinsic geometry. Since a growth pattern can be described in terms of anistropy

and area, it must also be possible to describe changes to the intrinsic geometry in terms

of updates to these dynamical fields. The relevant quantities are the time rate of change

of anisotropy, µ̇(t), and the relative rate of area change

Γ =
d

dt
log
[√

det[g]
]

=
1

2
Tr
[
g−1γ

]
. (5.7)

The next task is to explicitly deduce how variation in these quantities induce changes

in the intrinsic geometry.We know that, under suitable normalization, a Beltrami coeffi-

cient µ is uniquely associated to a quasiconformal mapping w(z) : D→ D. Therefore, as

µ(t) changes in time it must induce a corresponding flow in the associated ws(z). The

precise form of this correspondence is given by the Beltrami holomorphic flow.

Theorem 1: (Beltrami Holomorphic Flow on D) There is a one-to-one correspondence

between the set of quasiconformal diffeomorphisms of D that fix the points 0 and 1 and the

set of smooth complex-valued functions µ on D for which ||µ||∞ = k < 1. Furthermore, the

solution wµ depends holomorphically on µ. Let {µ(t)} be a family of Beltrami coefficients

depending on a real or complex parameter t. Suppose also that µ(t) can be written in the

form

µ(t)(z) = µ(z) + tν(z) + tε(t)(z) (5.8)

for z ∈ D, with suitable µ in the unit ball of C∞(D), ν, ε(t) ∈ L∞(D) such that ||ε(t)||∞ →
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0 as t→ 0. Then for all z ∈ D

wµ(t)(z) = wµ(z) + tV [wµ, ν](z) + o(|t|) (5.9)

locally uniformly on D as t→ 0, where

V [wµ, ν](z) = −w
µ(z) (wµ(z)− 1)

π
×∫

D

ν(ζ) (∂ζw
µ(ζ))2 dη1 dη2

wµ(ζ) (wµ(ζ)− 1) (wµ(ζ)− wµ(z))
+

∫
D

ν(ζ) (∂ζwµ(ζ))
2
dη1 dη2

wµ(ζ)
(

1− wµ(ζ)
)(

1− wµ(ζ)wµ(z)
)


(5.10)

A proof of this theorem can be found in [151]. For notational conveniece, we let

V [wµ, ν](z) =

∫
D
K(z, ζ) dη1 dη2 (5.11)

where

K(z, ζ) = −w
µ(z) (wµ(z)− 1)

π
× ν(ζ) (∂ζw

µ(ζ))2

wµ(ζ) (wµ(ζ)− 1) (wµ(ζ)− wµ(z))
+

ν(ζ) (∂ζwµ(ζ))
2

wµ(ζ)
(

1− wµ(ζ)
)(

1− wµ(ζ)wµ(z)
)


(5.12)

We can also write V [wµ, ν](z) as

V [wµ, ν](z) =

∫
D

G1ν1 +G2ν2

G3ν1 +G4ν2

 dη1 dη2 (5.13)

where ζ = ν1 + iν2 and G1, G2, G3, G4 are real valued functions defined on D. Here, we
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identify A + iB as

A
B

. The Beltrami holomorphic flow (BHF) provides an explicit

construction for the calculation of the variation of f under the variation of µ.

Identifying the quantity ν with the physical rate of change of anistropy µ̇, the pre-

scription for quantifying dynamic growth patterns becomes clear. At time t = 0, we can

construct a conformal Lagrangian parameterization of the initial surface. A short time

later, internal growth procesess update the intrisic anistropy of the system according to

µ̇. This change induces a corresponding flow of the quasiconformal mapping captured

by the quantity V [wµ, µ̇]. Simultaneously, these processes also induce a change in the

3D area of material patches, which is captured by the quantity Γ. We can calculate

a corresponding update to g(t) in terms of µ̇ and Γ. This geometry can be embedded

into 3D to find the new configuration of the system. We can string these infinitesimal

transformations together to construct any arbitrary growth trajectory. This construction

is illustrated in Fig. 5.6.

5.3 Growth pattern selection as an optimization prob-

lem

As we have already stated, there is an infinite degeneracy of possible growth trajecto-

ries linking an initial configuration and a final shape. How does nature settle on a specific

developmental program? We propose that the time course of growth can be found as

the solution to the following optimization problem. Given a an initial configuration S0

(interpreted as a fixed initial shape AND a fixed initial parameterization) and a final

shape ST (a fixed final shape BUT NOT a fixed final parameterization), the optimal
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Figure 5.6: Quasiconformal parameterization of dynamic growth patterns.
Complicated growth patterns for 3D surfaces can be built by stringing together simple
infinitesimal updates to the system’s intrinsic geometry. Beginning with a conformal
parameteriztion of the initial configuration, new configurations are generated by cal-
culating the contributions of changes in the system’s intrinsic anistropy and target
areas. A time course of µ̇ and Γ are sufficient to fully reconstruct arbitrary growth
patterns.
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growth trajectory γ∗ is the minimizer of

min
γ(~x,t)

E =

∫ T

0

dtC [γ(~x, t); S0] =

∫ T

0

dt

∫
B
d2~x
√
g C [γ(~x, t); S0] (5.14)

subject to

g(~x, t = T ) ∈ ΣST . (5.15)

where ΣST is the space of shape equivalent metrics for the final surface ST (more on this

shortly). We also include the implicit constraint that the target metric, which is given

by

g(~x, t) = g(~x, t = 0) +

∫ T

0

dtγ(~x, t), (5.16)

remain a valid metric at all times during the growth process. The precise form of the

cost function density C[γ] will be filled in shortly.

We will now explain the constraints in greater detail. The requirement that g(~x, t)

be a valid metric simply means that g(~x, t) is a symmetric, positive-definite type-(0,2)

tensor defined over B. The constraint in Equation (5.15) requires some definitions and

a little more thought. Suppose we endow the final surface ST with a different set of

coordinates ~u ∈ D. In particular, suppose that ~x and ~u are related by a sense-preserving

diffeomorphism of D→ D, i.e. ~u = ~u(~x) where the Jacobian matrix ∂uα/∂xβ is invertible

and has a positive determinant. This relationship is identital to the quasiconformal re-

parameterization of the unit disk illustrated in Fig. 5.5A. The first fundamental form in

these new coordinates a has components given by

aαβ =
∂ ~R

∂uα
· ∂

~R

∂uβ
. (5.17)

We say that a and g are Shape Equivalent Metrics (SEMs). In other words, they are
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both induced metrics of the same surface, but corresponding to different coordinate

parameterizations. Notice that SEMs must agree on lengths and angles on S which can

be demonstrated as follows

〈〈~v1, ~v2〉〉g = gστ (v
′
1)σ(v′2)τ =

(
∂xα

∂uσ
∂xβ

∂uτ
aαβ

)(
∂uσ

∂xα
vα1

)(
∂uτ

∂xβ
vβ2

)
= aαβv

α
1 v

β
2 = 〈〈~v1, ~v2〉〉a

(5.18)

We denote by ΣS the space of all SEMs for the surface S. Physically, we interpret these

parameterizations as corresponding to different material flows on the surface. Recall that

the time-independent material coordinates ~x constitute a Lagrangian parameterization

of the growth trajectory. Each point ~x ∈ B is a fixed label for a material parcel that

flows along with that material parcel through time as it moves, grows, and deforms.

Therefore, modulating the intermediate mappping ~u(~x, t) amounts ro re-arranging cells

on the surface in 3D. In order to generate an unbiased answer to the question of optimial

growth, it is critical that we allow g(~x, T ) to search the entire space of ΣST . Anything

less results in overly restrictive demands on the material flows during growth. We can

formulate this constraint as a Lagrange multiplier by constructing a continuous distance

metric that can determine if a given target metric is an element of the SEM space for a

given surface. We define the shape equivalent metric distance for a test metric a and a

surface S

DSEM [a; S] = min
a∈ΣS

∫
D
dSEM [a,g]

√
a d2~x = min

a∈ΣS

∫
D
||(a− g)/2||

√
a d2~x (5.19)

where dSEM [a,g] is some local measurement of similarity between two metrics, taken

here to be the Frobenius norm of a strain tensor ε = (a− g)/2. The functional DSEM [a]

will vanish if and only if a ∈ ΣS .
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Finding DSEM [a; S] requires optimizing a distinct subproblem over the space of pa-

rameterizations of the final surface. In general, the complicated nature of this funtional

space makes variational problems of this type immensely challenging. However, we can

exploit the BHF to make crucial simplifications that enable us to solve this problem with

relative ease. Recall that Measurable Riemann Mapping Theorem assures us that each

mapping w(z) : D→ D that fixes z = 0, 1 is uniquely specified by a Beltrami coefficient

µ. A corollary then assures us of the following equivalence

Beltrami coefficients

Möbius
∼= diffeomorphisms ∼= ΣS . (5.20)

We can therefore simply explore the space of Beltrami coefficients, rather than directly

searching the space of surface diffeomorphisms. In other words the optimization problem

in Eqn (5.19) can be reformulated as

DSEM [g; S] = min
µ

∫
D
dSEM [a,g(µ)]

√
a d2~x (5.21)

The space of Beltrami coefficients is a much simpler functional space than the space of

surface diffeomorphisms. There are no restrictions that Beltrami coefficients must be on-

to-one, onto, or satisfy any constraints on their Jacobians. The BHF provides an explicit

calculation of the variation of w(z) under the variation of µ. We can therefore search

the space of shape equivalent metrics by moving along a flow that decreases DSEM [g; S].

The constrained problem takes the form

min
γ(~x,t)

L =

∫ T

0

dt

∫
B
d2~x
√
g C [γ(~x, t);S(t = 0)] + λDSEM [g(~x, T ); ST ] (5.22)

Solving this constrained problem ensures that the target metric at the final time g(~x, T )

corresponds to the desired final target shape, without placing any unnecessary constraints
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on the final parameterization.

We must now address the specifc form of the cost functional defining optimal growth

trajectories. We propose that optimal growth patterns minimize spatiotemporal variation

in growth rates and anistropy:

min
{Γ(~x,t),µ̇(~x,t)}

E =

∫ T

0

dt

∫
B
d2~x
√
g
[
c1||∇Γ||2 + c2|∇µ̇|2 + c3Γ̇2 + c4|µ̈|2

]
, (5.23)

subject to appropriate constraints. Given an initial configuration and a final target

shape, we can form the constrained problem by including the DSEM [g(T )] term, as in

Eq. (5.21). For simplicity and expediency, we focus on a the special case of constant

growth. We define a constant growth pattern to be one in which Γ and µ̇ may vary

spatially, but are held constant for all time, i.e. Γ̇ = µ̈ = 0. The first implication of these

demands is that constant growth patterns linearly interpolate between the anisotropy of

the initial configuration and the final configuration. Since we are always free to choose

a conformal parameterization for our initial time point, this means that the Beltrami

coefficient as a function of time is simply µ(~x, t) = t µ̇(~x). Additionally, constant growth

implies that each material patch grows expontially with a time-independent rate constant.

We can clearly see this by calculating the time-dependent area of a material element

dA(~x, t) =
√
g(~x, t) d2~x. From Eq (5.7), we have

√
g(t) = eΓ t

√
g(t = 0) =⇒ dA(t) = eΓ tdA(t = 0), (5.24)

where we have exploited the fact that Γ is constant in time. The cost function for a

constant growth pattern is simply

min
{Γ(~x),µ̇(~x)}

E =

∫ T

0

dt

∫
B
d2~x
√
g
[
c1||∇Γ||2 + c2|∇µ̇|2

]
(5.25)
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The next crucial simplification is that, for a constant growth pattern, we can neglect the

time dependence of the functional and simply minimize over the parameters of the final

configuration. The modified constant growth functional is given by

min
{Γ(~x),µ̇(~x)}

Ẽ =

∫
B
d2~x
√
g
[
c1||∇Γ||2 + c2|∇µ̇|2

]
. (5.26)

This solving this reduced problem is completely analagous to the substep in the full

time-dependent problem where we calculate DSEM . In other words, given an initial

configuration and final target shape, we can optimize over the space of parameterizations

of the final shape to find the fields Γ and µ̇ that minimize the reduced energy function

in Eq (5.26). Since we are directly optimizing over the space of parameterizations of the

final shape, the shape constraint is satisfied by construction. We then can find all of the

intermediate metric tensors using the previously discussed properties of constant growth

patters. With these intermediate metrics in hand, we can embed the time dependent

target geometries. The result is a complete prediction for both the shape and flow of a

growing tissue over time.

5.4 Results

We now apply our formalism to compute the optimal constant growth patterns for

a variety of synthetic and experimental systems. Even for simple systems, solving the

optimization problem is intractable by hand. Instead, we generate numerical solutions

using a geometric finite difference method. Smooth surfaces are approximated by mesh

triangulations. The discrete metric tensor is a set of target lengths for each edge in the

triangulation that satisfy the triangle equality. Smooth quasiconformal mappings become

piecewise constant affine transformations of triangles with associated piecewise constant
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Beltrami coefficients on each face. The relative areal growth rates are determined from

the 3D areas of triangles in the mesh. The final ingredient for our optimization proce-

dure is a non-parametric representation of the final target shape using natural neighbor

interpolation [227, 76]. By storing the final shape as an interpolant, we can query dy-

namical fields in arbitrary parameterizations of the final shape. Furthermore, natural

neighbor interpolation has C1 continuous derivatives, which means that we can analyt-

ically calculate gradients of the optimal growth energy with respect to quasiconformal

parameterizations. Composing this technique with the discrete Beltrami holopmorphic

flow [151] allows us to employ gradient descent methods to efficiently find the paramter-

ization corresponding to the optimal constant growth pattern. Once we have the final

target metric, the properties of constant growth patterns allow us to calculate all inter-

mediate metrics. We can then embed each metric individually using a method based

on relaxing a mechanical energy from geometric elasticity to find a full time course of

growth patterns. Details of these numerical procedures can be found in Appendix F. In

all of the experiments that follow, we set the constants c1 = c2 = 1.

We begin by calculating optimal growth patterns for a set of simple synthetic target

shapes grown from an initially flat disklike configuration (Fig. 5.7). In particular, we

solve the optimal growth problem for a hemisphere and an elliptic paraboloid using a

conformal parameterization as our initial guess. For all systems studied, growth rates in

the optimal configuration are uniformized at the cost of introducing anisotropy. These

results suggest that growth rate uniformization may be a generic mechanism explaining

why anisotropic growth patterns are so commonly observed in living systems.

Our formalism allows us to make quantitative insights into the physical characteris-

tics of various growth patters. Fig. 5.8, A and B shows the cumulative final anistropy of

the constant growth pattern transforming a flat disk into a hemispherical shell. Display-

ing the local direction along which tissue parcels extend dur to anistropic deformation
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A B C

D FE

Figure 5.7: Growth rates can be uniformized by introducing anisotropy.
A set of optimized constant growth patterns for set of synthetic surfaces. Initial
configuration for all surfaces is the flat unit disk. Circular texture on the surfaces
represents the deformation of material patches under the flow. (A) A conformal growth
pattern linking the unit disk and the hemispherical surface. Growth occurs primarily
at the apex of the dome. (B) The optimized constant growth rates for the same
final shape. Growth rates are heavily uniformized relative to the conformal growth
pattern. (C ) The absolute value of the Beltrami coefficient for the optimized constant
growth pattern. (D) A conformal growth pattern linking the unit disk and an an
elliptic paraboloid. Growth occurs primarily at the poles. (E ) The optimized constant
growth rates for the same final shape. Growth rates are uniformized, although not as
completely as the case of the spherical surface. (F ) The absolute value of the Beltrami
coefficient for the optimized constant growth pattern.

121



A morphogenetic action principle for thin tissues Chapter 5

results in a nematic texture with topological defects. Such textures have recently been

studied in the context of epithelial morphogenesis coupled to active nematic biomolecular

components [191, 251, 104]. The optimal growth texture is characterized by a +1 defect

at the pole off the sphere. Modifying the anistropy texture, but keeping the areal growth

rates exactly the same, produces an entirely new final shape (Fig. 5.8, C and D). This

proof-of-principle demonstrates how our methods can be used as a platform for growth

pattern design in terms of nematic textures.

Next, we applied our machinery directly to an experimentally observed growth pat-

tern in the crustacean Parhyale hawaiensis. Parhyale are direct developers that grow

externally visible appendages and deep surface folds during embryogenesis when live

imaging is readily possible [262, 34]. Recent work characterized the growth of the T2

appendage by tracking individual cells in 3D [263]. Analysis of individual cell behaviors

is informative, but produce limited insights about the dynamics of tissue-scale deforma-

tions. Using a combination of computer vision and discrete differential geometry, we

extracted the continuous, quasiconformal growth pattern generating the limb. We were

then able to apply our machinery to calculate the optimal growth pattern linking the

initial configuration and the final shape of the limb. The optimal growth pattern qual-

itatively reproduces the large scale features of biological limb morphogenesis. In both

the measured and calculated growth patterns, areal growth occurs primarily at the dis-

tal tip of the nascent appendage. The anisotropic deformations generating the limb are

also similar. For both the measured and calculated growth patterns, the tissue stretches

along the proximodistal axis away from the animal’s body. The most obvious quantita-

tive discrepancy is that the optimal growth pattern underpredicts the maximum areal

growth rates at the distal tip of the limb. Note that the Parhyale limb is comprised of

relatively few cells (approximately 15 cell lengths long at 109.1h AEL). The observed

discrepancy may indicate that the optimal growth principle should be modified to ac-
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A B

DC

Figure 5.8: 3D surface features are reflected in nematic anistropy textures.
(A) The absolute value of the Beltrami coefficient for the optimized constant growth
pattern transforming a flat disk into a hemispherical surface. (B) The nematic field
denoted the direction along which material patches extend. The texture is reminiscient
of a +1 defect with phase ψ = 0. (C ) A different surface grown using the exact same
growth rates as the surface in (A), but with a different anistropy texture. (D) The
anistropy texture for the surface in (C ). The texture is constructed by placing two
+1 defects with phase ψ = π/2 at opposite poles of the disk boundary.
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count for the discrete cellular structure of such tissues, rather than naively optimizing

for smooth gradients of proliferation.

Finally, we made quantitative comparisons of different types of dynamic growth pat-

terns to the observed developmental trajectory. In particular, we compared the constant

growth pattern to another growth pattern that linearly interpolated between the ini-

tial and final optimal metric tensor, i.e. g̃(t) = (1 − t/T ) g(t = 0) + (t/T ) g(t = T )

for t ∈ [0, T ]. We see that the constant growth pattern produces a significantly more

accurate result at intermediate times than the linearly interpolated geometry.

5.5 Discussion

This study puts forth a theoretical and computational machinery for tackling the

problem of growth pattern selection in epithelial morphogenesis. By exploiting the math-

ematical formalism of quasiconformal transformations, we enable the characterization of

arbitrary growth patterns in terms of simple contributions with straightfoward physi-

cal interpretations.We can therefore make quantitiative comparisons between different

growth patterns, opening the door to a predicitive understanding of growth pattern se-

lection.

We propose a simple action priniciple for growth pattern selection, wherein stereotypi-

cal growth trajectories minimize spatiotemporal variation in growth rates and anisotropy.

The prediction of this model was shown to reproduce important qualitative features of

experimentally measured growth patterns in limb morphogenesis. Crucially, our opti-

mization machinery is both modular and adaptible. Different optimality criteria tailored

to specific situations may be substituted and explored in a controlled fashion. This

portability invites applications beyond morphogenesis to the design of synthetic surface

structures and bioinspired materials.
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Figure 5.9: Optimal growth platform captures features of experimentally
quantified limb morphogenesis. (A-C ) Surface of a growing appendage in a
Parhyale hawaiensis embryo captrured using light-sheet microscopy. Time is mea-
sured in hours after egg lay (AEL). Signal displayed on the surface is a transgenic
fluorescent nuclear marker. (D) Instantaneous integrated metric error between two
different growth patterns. The blue curve is the prediction error for the constant
growth pattern linking the initial configuration and the optimized final configuration
holding µ̇ and Γ constant. The orange curve links the same initial and final configura-
tions, but does so by linearly interpolating the initial and final target geometries, i.e.
g̃(t) = (1− t/T ) g(t = 0) + (t/T ) g(t = T ) for t ∈ [0, T ]. (E ) The measured anistropy
for the appendage growth pattern. (F ) The measured growth rates for the appendage
growth pattern. (G) The anistropy associated with the optimized constant growth
pattren generating the final appendage shape. (H ) The growth rates associated with
the optimized constant growth pattern generating the final appendage shape.
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One compelling generalization of our simple optimality condition would be the inclu-

sion of mechanical and geometric feedback. By relaxing the constraint that the physical

geometry be an isometric embedding of the target geometry, we could directly explore

how dynamical mechanical fields, such as in-plane stress, may modulate the feasibility of

particular growth patterns with respect to optimality. Another possibility would be the

direct inclusion of morphogen fields. Our machinery is well suited to analyze a variety of

geometrically distinct classes of morphegens, including scalar fields (e.g. molecular con-

centration), vector fields (e.g. concentration gradients), and nematic tensor fields (e.g.

contractile actomyosin networkds). Essentially arbitrary interactions between mechan-

ics, geometry, and signalling could be incorporated into novel optimality criteria. The

result is a step towards generating a quantitative understanding of how morphogenetic

programs decompress genetic information into shape and form.
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Conclusions and Outlook

It is ceaselessly astonishing to consider the variety and beauty of physical forms living

systems achieve. The furling of a flower’s petals, the streamlined contours of birds in

flight, our own bodies, and every shape in between are all made possible by developmen-

tal programs that instruct single cells transform into complex multicellular structures.

Determining how morphogensis transduces genetic information into physical shape is one

of the most compelling frontiers in science. By now, it is clear that morphogenesis marries

biology, biochemistry, physics, and geometry in a way that transcends centuries-old de-

lineations of scientific fields and challenges us to evolve new paradigms for understanding

life. Recent revolutionary advances in experimental and computational techniques have

heralded an explosion of quantitative data on developmental programs. We are rapidly

transforming these insights into an increasingly cohesive and predictive understanding

of morphogenesis. In a practical sense, this presents the tantalizing prospect of new

medicines and cures for developmental defects [110]. Less pragmatically, this enterprise

offers glipmses of nature that simultaneously underscore both the deep interconnected-

ness of all life and the uniquess of our own place within that framework. In addition to

the simple joy of solving problems, it is the occasional appreciation of these connections
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that have maintained my curiosity and passion throughout my doctoral work and beyond

as I carry this work with me into the future.

This dissertation has presented a collection of projects utilizing a combination of

theoretical, computational, and experimental methods to investigate the growth and de-

velopment of thin tissues. The result of each project have illuminated the vital role

played by order, geometry, and mechanics in epithelial morphogenesis. The central func-

tion of these physical properties hints that the dizzying complexity of developmental

programs may belie an emergent simplicity. Analogously to the discovery of universality

in many-body physics, it is possible that individual growth patterns may be unified by

a set of common, underlying principles. The elegance of this ideal, however, does not

guarantee its veracity. It is conceivable that morphogenesis and other characteristics of

living systems present a different type of complexity that will not yield the simplifica-

tions that have exemplified study of physical systems. With this in mind, the goal and

outlook of future projects building upon this work will be to build quantative models of

morphogenesis that produce testable predictions and, to whatever extent is possible, use

these models to extract universal aspects of shape change and growth.

In Chapter 2, we presented a set of computational methods for the characterization

and analysis of tissue deformation in tubelike surfaces. These methods, contained within

the TubULAR package, enable users to extract dynamic surfaces, construct 2D parame-

terizations optimized for tracking tissue parcels, measure whole-organ tissue deformation,

and compute signatures of 3D motion. Future directions for this work include expand-

ing its functionality to address a greater variety of system topologies. In addition to

simple tubes, thin tissues are frequently organized into disks (e.g. the early Parhyale

embryo [34]), spheres (e.g. the mature Hydra body plan [155]), and complicated branch-

ing structures (e.g. airways in the vertebrate lung [183]). Moreover, tissue topology can

change over the course of development. This occurs, for instance, during organogenesis in
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Drosophila when disklike tissue fuses into the gut tube [165] and similarly during neural

tube formation in vertebrate neurulation [119]. It is compelling to consider implementing

a computational suite capabale of seamlesly constructing Lagrangian tissue paramateri-

zations of surfaces with time dependent topologies. A tool with this capability would also

have applicability beyond morphogenesis, for instance, in the study of active cytoskeletal

gels [240].

In Chapter 3, we demonstrated how actively choreographed cell divisions generate

the ordered body plan in the Parhyale embryo from an initially fluid state. From a

theoretical perspective, it would be interesting to further investigate the robustness and

efficacy of this order generating mechanism. The capacity of oriented divisions to generate

orientational order could be explored in silico for a variety of initial tissue configurations,

material parameters, and topologies. There are also a variety of potential continuations

and applications in various experimental models. The topological rearrangements of cell-

cell connectivty induced by division enable the tissue to more rapidly explore the phase

space of ordered states than through number-conserving rearrangements alone [8]. It

has recently been shown that the typical shape of the Drosophila wing is preserved in

mutants with randomized division orientations, with oriented T1 transitions supplying

the necessary shear deformations to generate the anistropic final shape [277]. It would

be interesting to compare the hexatic order of cells in these mutant wings to the typical

hexagonal cell packings produced by wild type animals [48].

In our evaluation of Parhyale germband formation, we were able to show that the

orientations and timing of cell divsions were not set by local mechanical or geometric

signals and proposed instead that these properties are determined by biochemical sym-

metric breaking (i.e a morphogen gradient or planar cell polarity mechanism). Further

investigation might seek to determine the precise identities of relvant biochemical agents,

although the lack of genetic techniques in Parhyale make this a daunting task. One
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exciting continuation would be to directly investigate the relationship of order within the

ectodermal lattice and ensuing tissue scale shape change. We contend that the ordered

cell lattice acts like a coordinate grid that enables the developing embryo to properly

arrange and orient its many appendages. The sites of differential cleavage at which the

orientational order breaks down were shown to correspond to the loci of nascent limb

buds during subsequent limb development. This process provides a rich example of the

interplay between geometry, mechanics, and shape change that would be interesting to

explore. Finally, it would be worthwhile to investigate how typical ectodermal ordering

is modifed during ectopic limb formation due to hox gene misexpression in transgenic

Parhyale embryos [189].

In Chapter 4, we investigated how the complex shape of the Drosophila midgut is

generated during embryonic organogenesis. The gut, which is initially a simple tube,

first forms folds delineating distinct compartments and then elongates and coils into a

compliated chiral structure. We found that hox gene expression patterns mediate cal-

cium pulses that regulate muscle contractions at precise locations along the length of

the gut. We showed that these contractions induce sharp folds and convergent extension

of the gut endoderm constrained by tissue incompressibility. Taken together, these re-

sults demonstated a link from genes to tissue morphodynamics through active forces and

continuum mechanics. A number of exciting aspects of this process remain to be under-

stood. The observed hox gene expression domains are spatially broad and vary slowly

in time. The mechanism by which this coarse positional information in translated into

precise positions and timing of localized calcium activity is unclear. At the tissue level,

an outstanding question is the the extent to which endodermal cells actively respond to

muscle contraction, rather than passively deforming. Finally, since our work primarily

investigated the formation of folds during the first stages of organogenesis, there are rich

possibilities for future reserach into the subsequent coiling and chiral symmetry breaking.
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In Chapter 5, we presented a theoretical and computational machinery for tackling

the problem of growth pattern selection in epithelial morphogenesis. We showed that

developmental programs can be quantified in terms of anistropy and areal growth rates.

We proposed an action principle that selects for simple growth patterns minimizing spa-

tiotemporal variation in these quantities. We then applied this formalism to seveal syn-

thetic and experimental systems. The purpose of this work was not to claim discovery of

a universal principle, but rather to demonstrate that cogent, quantitative questions can

be asked about growth pattern selection. A great deal of future work remains. Firstly,

it would be interesting to apply this formalism to a greater variety of experimental sys-

tems. Leaf growth in plants is a particularly exciting setting to study how the interplay

between isotropic areal growth and anisotropic deformations generate shape and flow

[4, 32]. On the theoretical front, our methods coul be augmented to handle a greaty va-

riety of system topologies. The arguments we employed to quantify the growth patterns

of topological disks generalize quite well for topological spheres and cylinders. Finally,

we look forward to exploring new optimality criteria explicitly relating tissue geometry

to mechanical feeback and morphogen expression patterns.
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Appendix A

TubULAR implementation details

A.1 Overview of approach by example

In addition to detailed documentation and example pipelines available on GitHub, we

summarize the steps in our approach in Fig. A.1. This gives a typical sequence of method

calls to extract surfaces, create an initial sequence of parameterizations constrained for

minimal tissue motion in the pullback plane, and compute covariant measures of tissue

dynamics. Subsequent steps further refine the material coordinate definition to remove

residual motion and read out measures of motion and strain in this Lagrangian frame

(along ‘material pathlines’). The last set of steps visualize the material motions, de-

compose them into divergence, curl, rate of area change, and measures of anisotropic

deformation like the Beltrami coefficient. Finally, methods compute principal compo-

nents of the tissue dynamics and decompose into eigenfunctions of the Laplace-Beltrami

operator, akin to spherical harmonics for a sphere or Bessel functions for a cylinder but

defined on an arbitrary surface. Fig. A.2, meanwhile, gives an overview of the class

structures included in the toolkit.
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Figure A.1: Example high-level pipeline for data analysis using TubULAR
passes through constrained parameterization, measurement of surface dy-
namics, refinement, and steps to interpret the results. Descriptions of typical
steps in a TubULAR pipeline are listed on the left, with the corresponding class
method calls for each goal on the right.
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Figure A.2: The TubULAR class and the DiscreteExteriorCalculus class
within DECLab carry properties and methods, listed here for reference.

134



Section A.2 Surface extraction using level sets

A.2 Surface extraction using level sets

To extract whole-organ surfaces, we use a level sets approach, combined with marching

cubes [149] and Laplacian smoothing. While the literature on level sets segmentation is

vast [182], we give a brief overview of the relevant method here. The process of surface

detection is mapped onto an optimization problem by defining a physics-inspired cost

functional [168, 42]:

F [c1, c2,S] = µ

∫
S

ds+ ν

∫
Ω

d3x + λ1

∫
u>0

|I(x)− c1|dx + λ2

∫
u<0

|I(x)− c2|dx, (A.1)

where c1 and c2 are the average values of the data inside and outside, respectively:

c1(S) = 〈I(x)〉inside (A.2)

c2(S) = 〈I(x)〉outside. (A.3)

The first term is a surface tension that tries to smooth out ruggedness in the surface. The

second term is an effective pressure that penalizes blow up in the enclosed volume of the

segmented regions. The final two attachment terms incorporate the actual measured data

into the optimization procedure. The third term attempts to homogenize the intensities

of voxels included in the interior of the segmented volume and the fourth term attempts

to homogenize the intensities of the excluded voxels. A minimizer can be found by

iteratively applying the Euler-Lagrange equation [168],

∂tu = |∇u|
(
µ∇ ·

(
∇u
|∇u|

)
− ν − λ1(I − c1)2 + λ2(I − c2)2

)
, (A.4)

or by using a sparse-field approach [260].

To segment the midgut and heart surfaces, we generate a level set solution for a
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contiguous volume enclosing the interior of the tube, partitioning space into a topological

sphere (the ‘filled’ tube) and its exterior. TubULAR then removes endcaps of the mesh

at the interface to create a topological tube.

A.2.1 Segmentation of the zebrafish heart

The zebrafish heart data set posed particular challenges requiring the application of

some non-standard segmentation procedures, which we summarize here. Rather than

attempt to segment both the heart tissue and the space it enclosed, we used the level set

methods to segment only the heart tissue. This resulted in a binary level set solution of

toroidal topology. We then applied a homotopic thinning procedure slice-by-slice along

the length of the tube to produce a point cloud approximating the mid-surface of the

heart tissue. We then fed a smoothed, up-sampled version of this point cloud into our

Poisson surface reconstruction algorithm to produce a closed, sphere-like mesh of the

heart. The results at this point in the segmentation process were structurally identical

to those produced in a typical pipeline.

A.3 Constrained mapping to the plane follows tissue

motion

To follow tissue surfaces as they deform, we begin with an initial map at a reference

timepoint that defines the material coordinates, then construct maps to minimize sub-

sequent tissue motion in the pullback plane, remove any residual motion, and generate

material pathlines in 3D. We denote the dynamic map from the evolving surface to a

fixed 2D material coordinate system as ϕ(t). This dynamic map is constructed as a com-

position of four steps: ϕ(t) ≡ J ◦Φ◦Z◦f , each of which is detailed in this section. Briefly,
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Figure A.3: A quasiconformal mapping from (u, v) to (s, φ) aids in spatially
uniform surface sampling and velocimetry for refined tissue tracking. (A)
The constrained conformal map to the plane at a time 90 minutes after the onset of
constrictions (t = 90 min) demonstrates large variations in the sampling density along
the longitudinal direction (top). Note the high density of circumferential hoops near
constrictions and near the posterior tip. (B) After creating the conformal mapping
to (u, v), the TubULAR workflow constructs an second map to a parameterization in
which the surface is more evenly sampled along the longitudinal axis and in which
motion in the v direction is subtracted off. Note the more uniform longitudinal density
of circumferential hoops (top) and the difference in the curve φ = 0 at this later
timepoint, which matches the previous position of the material along φ = 0 at earlier
timepoints. At time t = t0 = 0 min, φ = v, while at this later timepoint, φ 6= v.
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f : S(x)→ (u, v) is a conformal map of the surface S to the unit square (via Ricci flow

or Dirichlet energy minimization). Z : u→ s maps each longitudinal coordinate u(t) to

proper length s(u(t)) along the long axis of the tube-like surface. Φ : v → φ stabilizes

motion of the tissue along the circumferential axis. Finally, J : (s, φ)→ (s0, φ0) removes

any residual motion of the material in the pullback plane. Let us turn to each component

in turn.

A.3.1 Initial conformal map f

We homotopically flatten the 3D surface to the plane using one of two methods. The

first (default) option is Ricci flow, which results in a precisely conformal output at the

cost of being slow, while the second option is using a map minimizing a Dirichlet energy,

which in general is faster, but produces less conformal results.

Ricci flow

Originally introduced by Hamilton in the context of geometric topology, Ricci flow is

a tool that enables the design of Riemannian metrics with prescribed curvatures. Ricci

flow deforms a Riemannian metric proportionally to its intrinsic curvature, such that the

curvature evolves according to a nonlinear heat diffusion process and eventually becomes

constant everywhere. In the continuous setting, Ricci flow on 2D surfaces can be defined

as

dgij(t)

dt
= −2(K(t)− K̄) gij(t), (A.5)

where gij(t) is the time dependent metric of the surface, K(t) is the associated Gaussian

curvature, and K̄ is the target Gaussian curvature. It is immediately apparent from

Eq. (A.5) that surface Ricci flow is conformal, i.e. preserves angles defined by gij(t). It

has also been demonstrated that the Gaussian curvature during the flow always remains
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bounded.

Surface Ricci flow has intuitive geometric interpretations, which directly inform the

design of data structures in the discrete setting. For instance, the surface can be rep-

resented as a mesh triangulation and the metric tensor can be simply represented as a

set of positive edge lengths on this triangulation satisfying the triangle inequality. Cru-

cially, it is possible to reformulate discrete surface Ricci flow as a convex optimization

problem over the space of discrete metrics, which has a unique minimum and can be

solved efficiently using Newton’s method. Intuitively, given an initial metric, the method

first constructs a circle-packing metric, i.e. it instantiates a set of circles living at mesh

vertices with consistent conditions on how the circles intersect. Each variational step in

the minimization process flows the discrete metric closer to the target curvature in a way

that always maintains the integrity of the circle packing. The conformality of the discrete

flow is ensured by construction since it always maps (discrete) infinitesimal circles into

(discrete) infinitesimal circles. For a comprehensive review of the method, please consult

[276].

Annular orbifold map

The annular orbifold map follows the formalism of Aigerman & Lipman [2], but

applies these ideas to a topological cylinder mapped to a rectangle that is periodic along

one dimension. Essentially, we produce a parameterization that minimizes the Dirichlet

energy (see next section), enforcing certain boundary conditions so that the resulting

parameterization is both seamless and globally bijective.

For a parameterization ~u = (u, v), the Dirichlet energy is defined as

ED =
1

2

∫
||∇~u||2dA. (A.6)
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This energy penalizes ruggedness in ~u and, as a result, its minimizers are smooth, well-

behaved parameterizations. Extrema of this energy functional can be found according to

a variational principle by solving the associated Euler-Lagrange equation:

∇2~u = 0. (A.7)

This is, of course, simply the vector Laplace equation. The associated solutions are

called harmonic maps. In practice, since ~u is unknown, the operator ∇2 is taken to be the

Laplace-Beltrami operator defined on the input 3D surface. Additionally, we demand that

the anterior and posterior endcaps of the cylindrical mesh are mapped to vertical lines

u = 0 and u = 1. We also enforce the orbifold condition that corresponding vertex pairs

on each cut path map to the same location in the planar parameterization space, modulo

a vertical offset corresponding to the periodic spacing along the azimuthal direction of

the tube. These boundary constraints ensure that the planar parameterization retains

the cylindrical topology of the 3D surface under proper tiling of the plane. This entire

problem, including the constraints, can be cast as a single linear system

A~u = b. (A.8)

Any conformal parameterization of the surface will be a minimizer of the Dirichlet energy.

To see this, let us specialize for a moment to the case of planar transformations f : C→

C. Let z = x + i y denote a complex coordinate defined over the input domain being

parameterized (the analogue of the input 3D surface) and let f = u + i v be a complex

representation of the parameterization. A conformal parameterization must satisfy the

Cauchy-Riemann condition

∂z̄f = 0. (A.9)
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It is therefore clear that any conformal mapping must also be harmonic since ∇2f =

4∂z∂z̄f = 0. Similar generalized arguments prove the harmonicity of 2D conformal pa-

rameterizations of 3D surfaces. In practice, the boundary conditions we enforce preclude

the possibility of a truly conformal mapping. However, the results are generally a good

approximation of a discrete conformal mapping, especially in the bulk away from the

mesh boundaries. The high quality of Dirichlet energy minima as approximations to

discrete conformal mappings has also been observed in a variety of settings [2]. While

such methods are not currently implemented in TubULAR, we note that the conformal-

ity of the parameterizations can be improved by replacing the Dirichlet energy with the

so-called conformal energy, EC = ED−A(~u), where A(~u) denotes the area of the domain

of parameterization [194]. This improvement in conformality comes at the expense of

increased computational cost and usually do not preserve angles as well the conformal

Ricci maps anyway.

Independence of mapping on choice of longitudinal seam

The choice of cut path along the long axis of the organ for unrolling the cylinder

should intuitively be immaterial to the position of the mapped surface coordinates. For

the Ricci flow case, this is true by construction: we map to an annular domain (with

one endcap boundary mapped to the unit circle and one near the origin), then take a

logarithm of these coordinates to acquire a rectilinear representation. For the annular

orbifold map, we must enforce this path independence.

Inspired by the topology-preserving orbifold mappings of spherical surfaces [2], we

enforce a set of boundary conditions to ensure that the parameterization in the plane

respects the cylindrical topology of the 3D surface. Namely, we demand continuity in

the boundary components of the 2D meshes associated with the virtual seam, such that,

if one were to tile these meshes in the plane, moving across this boundary from one tile
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into another would be physically indistinguishable from crossing over the virtual seam

on the 3D cylindrical surface. This mapping ensures that the edges composing the cut

path takes on a unique shape in the domain of parameterization, and the shape of these

edges would be identical whether or not the edges are components of the cut path.

There is one caveat to this independence: the cut path will change the output pullback

map if it winds around the tube relative to the centerline with a different winding number.

Therefore, we take measures to enforce this topological constraint. For the first timepoint

mapped to the plane (t0), we choose a cut path to be the geodesic connecting the two

endcaps. For subsequent (and previous) timepoints, we ensure the winding number does

not change relative to this path’s winding.

While several options are available for enforcing this constraint, the default behavior

uses a crude approximation to the centerline and measures the winding of the cut path

around this curve. The details of this centerline construction are not particularly impor-

tant, since the curve’s purpose is to provide a topological constraint – not a geometric

one – on the cut path chosen, whose own geometry is immaterial so long as it does not

wind around the centerline. Nevertheless, we give a brief description here: Briefly, for

each timepoint, we measure a crude pathline via fast marching (Fig. A.4B). We connect

the endpoints by a curve that spans the interior of the mesh found by minimizing the

‘time of travel’ with a speed of travel through any given voxel determined by the distance

transform of the segmented data volume [53]. If a geodesic path is found to change its

winding from one timepoint to the next, the path is perturbed to more closely match

the previous one in space until the topology is preserved. We found this ‘trial and error’

approach to be far faster than constructing an explicitly-topologically-equivalent curve

(for example, after Ricci flow to an annular domain). The relevant TubULAR meth-

ods provide options for choosing different approaches if needed, including the explicit

construction method.
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Figure A.4: Our method provides a geometric route to centerline extraction
which offers several benefits over traditional approaches. (A-A”) An approx-
imate centerline can be built from homotopic thinning methods [141]. This simple
method has several downsides, including that the curves do not span the whole system,
and pruning of the curve is needed when the surface is not sufficiently smooth. Associ-
ating the mesh surface and the curve poses conceptual challenges as well. (B-B”) An
alternative – which is implemented in an auxiliary step for constraining surface param-
eterization in TubULAR – minimizes the ‘time of travel’ within the segmented volume
from selected endpoints, where the speed of travel through a given voxel is weighted
by its signed distance from the mesh surface [53]. While this offers system-spanning
centerline curves, the curves deviate from the center of the object when the surface is
puckered, as in panel B’. Additionally, no association between the mesh surface the
the curve is given by this method. For contorted tubes such as the fly midgut, nearest
distance matching gives spurious associations. (C-C”) Constructing centerlines based
on the coordinate parameterization to the material frame offers advantages for find-
ing a single curve without branching with explicit associations between surface points
and the centerline. This construction enables examination of the constriction cross
sections in the Chapter 2.

A.3.2 Quasiconformal map Φ ◦ Z to (s, φ) coordinates

We then introduce a further coordinate transformation which we found aids in sur-

face stabilization. Because directly measuring optical flow in (u, v) coordinates is often

too crude and does not uniformly sample tissue motion across the embedding surface,

we followed a more constrained approach to remove motion, which we found to aid in

subsequent refinement of the tissue stabilization. We denote this second planar parame-

terization (s, φ), shown in Fig. A.3B. We find this (s, φ, t) parameterization aids in both

visualization and enables more accurate velocimetry measurements than other choices

we considered, particularly when large variations appear in the effective radius of the

surface along its long axis. This second map, which we denote Φ◦Z is a quasi-conformal

transformation (i.e. a smooth transformation with finite anisotropic distortion [1]) of the

initial (u, v) coordinates.

For the reference timepoint t0 considered first, the coordinate directions (ŝ, φ̂) are the

same as the conformal mapping to the plane (u, v) at a reference time t = 0. Furthermore,
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at this initial timepoint, φ is identical to the intrinsic circumferential axis of the conformal

map. The sole difference is that s parameterizes a longitudinal position along the long

axis of the organ at t = 0. In particular, we compute s as the average geodesic length

along the surface from the anterior endcap to a set of uniformly-sampled points with fixed

horizontal coordinate in the conformal pullback space (Fig. 2.2A-D). Intuitively then, s

this is the average path length required to travel on the surface from the anterior face to

a given location along curves of constant φ.

In more detail, we define the (s, φ) domain of parameterization, which is less confor-

mal but which more equally represents different patches of tissue that initially experience

vastly different dilation in the map f from 3D embedding ~x to 2D pullback ~u = (u, v).

This empirically improves measurements of tissue velocity in plane for our shapes, and

we expect the additional transformation will improve other tissues that are elongated in

quasi-axisymmetric geometries. Circumferential ‘hoops’ of tissue surrounding the center-

line that are equally sampled along the centerline will be equally spaced in the pullback

coordinates. The map Φ ◦ Z from the previous (conformal) frame (u, v) to the (s, φ)

coordinate system is defined by

s(u) =

∫ u

0

〈ds(u′)〉u′=constdu
′, (A.10)

and

φ(u, v) = v − φ0(u). (A.11)

Equation A.10 ensures that circumferential hoops sampled at equally spaced distances

(as measured by their average proper distance) along the longitudinal axis are equally

spaced in pullback space.

Equation A.11 removes tissue motion along φ at each longitudinal position s. The
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form of φ0(u) is such that motion of the tissue along each hoop is cancelled out in the

pullback to acheive a more Lagrangian parameterization. For t = t0, φ0(u) = 0. For

other timepoints, φ0(u) is chosen to minimize the difference in positions of material

points at the current timepoint relative to the previous (next) timepoint for t > t0

(t < t0). To minimize the difference in material positions, we maximize the correlation of

circumferential ‘hoops’ defined by si < s < sj to the mapped positions at a previously-

solved timepoint closer to t0. These hoops can be visualized in pullback space as vertical

strips in the (s, φ) pullback coordinates. If optical flow is well constrained, the user may

toggle the option for stabilization method so that φ0(u) is defined by maximizing the

cross correlation between the intensity data lying within each circumferential hoop and

the intensity data in the previous pullback lying near the same u coordinate. This option

uses phase correlation of the pullback image itself and compares each strip in pullback

space (corresponding to a hoop in 3D data space) to the previous image. If optical

flow is an unreliable measure in this step, we have found that shifting these slices along

φ (which is a periodic dimension) to minimize the difference in 3D space defines φ0(u)

gives satisfactory results, and further processing in the next stages of the pipeline remove

any residual material motion in the (s, φ) plane.

A.3.3 Constrained parameterization defines a system-spanning

centerline of the surface

Centerline construction leverages the surface parameterization in 3D space already

created from the previous step. Hoops for which s = constant define an effective circum-

ference for increments along the length of the organ, and the average 3D position of each

hoop defines its centerline point. Connecting mean points of adjacent hoops along the

length of the organ defines the centerline of the object. This construction offers several
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advantages to previous methods of centerline construction.

A.3.4 Constrained parameterization defines an effective radius

along the surface

We define an effective radius as the average distance from each point in a uniform

sampling of a ring of constant s (computed via the mapping to the pullback plane) to the

centerline, which is composed of the mean positions of all circumferential rings. We then

identified constriction locations as rings of constant s whose effective radii r(s) are local

minima (so that ∂sr(s) = 0). Local minima in effective radius are tracked starting at

the onset of folding forward in time to define constriction locations. Before the onset of

folding, presumptive constriction locations are inferred by back-tracing the onset location

to earlier timepoints.

We note that this measurement of effective radius could be done on the (u, v) coor-

dinate parameterization and would give identical results, since curves of constant u are

also curves of constant s. The effective radii r(s) are therefore equal to those indexed by

u: r(s(u)) = r(u).

A.3.5 Refined Lagrangian parameterization of the surface, ϕ =

J ◦ Φ ◦ Z ◦ f

After the previous constrained parameterization into the plane via Φ ◦ Z ◦ f , which

minimizes much of the tissue motion in the parameterization plane, we accomplish further

refinement via computing pathlines in the domain of parameterization using particle

image velocimetry (PIV). Advecting mesh vertices along these pathlines, then inverting

the dynamic map to the plane gives the 3D positions of material points as they deform.

This provides the surface shown in Fig. 2.1D, for instance.
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A.3.6 Surface velocities and discrete exterior calculus

3D velocity vectors arise naturally from our approach via mapping the endpoints of

2D PIV vectors into their respective 3D surfaces. Geometrically, displacement vectors v

extend from one coordinate x0 in 3D on the surface at time t0 to a different coordinate x1

on the deformed surface at time t1. When t0 and t1 are adjacent timepoints, this defines

the 3D tissue velocity at t0 as v = (x1 − x0)/(t1 − t0). We then decompose the velocity

into a component tangential to the surface v‖ and a normal component vn.

The tangential velocity fields v‖ can then be further analyzed using our implemen-

tation of the discrete exterior calculus (DEC). DEC discretizes the methods of exterior

calculus in the continuous setting for application on simplicial complexes such as mesh

triangulations. DEC is built using a straightforward set of discrete differential forms,

defined on mesh vertices, edges, and faces. On a 2D surface, the only such forms are

0-forms (scalars), 1-forms (analogues of vector fields), and 2-forms (oriented areas). The

DEC also defines representations of the exterior derivative d and the Hodge star ? in

terms of simple linear operations. These elemental operations are maps between the dif-

ferent spaces of k-forms on the mesh (k ∈ {0, 1, 2}). This technology can be exploited for

a wide variety of applications in discrete geometry processing. In particular, it allows us

to easily compute gradients of the velocity field (or other vector/tensor fields) on curved

surfaces.

For a given mesh, instantiating DECLab’s DiscreteExteriorCalculus class generates

the elemental operators, d and ?, for each possible pairing of k-form types, i.e. for

a one form ω the operation dω = α generates a 2-form α. When strung together,

these operators generate familiar mathematical operations such as the divergence, curl,

and Laplacian – except now these operators take care to incorporate the curvature and

geometry of the triangulated surface. For completeness, we enumerate some familiar
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differential operations in the language of exterior calculus. Let ϕ denote a scalar field

(0-form), let ~v denote a vector field, and let [/] denote the musical isomorphisms that

transform vector fields into 1-form fields and 1-form fields into vector fields, respectively.

∇ϕ→ (dϕ)] (A.12a)

∇2ϕ→ ?d ? dϕ (A.12b)

∇ · ~v → ?d ? (~v [) (A.12c)

∇× ~v → (?d(~v [))] (A.12d)

∇2~v = ((?d ? d+ d ? d?)~v [)] (A.12e)

Fig. A.2 shows the properties and methods of this class, and the online GitHub docu-

mentation provides example usage and benchmarks for accuracy.

A.3.7 Helmholtz-Hodge decomposition of vector fields on dy-

namic surfaces

Our DECLab implementation includes a simple interface to generate a Helmholtz-

Hodge decomposition of tangential vector fields [55], i.e. a decomposition into dilatational

(curl-free), rotational (divergence-free), and harmonic parts. Let v denote the 1-form field

associated with the tangential surface velocity. In general, any surface velocity field can

be decomposed in the following way

v = dϕ+ δα + h, (A.13)
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where d is the exterior derivative, ? is the Hodge star, and δ = ?d? is the co-differential

acting on 2-forms. The dilatational part of the velocity field, dϕ, is given by the exterior

derivative of the scalar potential ϕ. The rotational part of the velocity field, δα, is given

by co-differential of the vector potential α (confusingly α is actually a 2-form despite

the common naming convention). Finally, h is a harmonic 1-form (i.e. (dδ + δd)h = 0)

encompassing the remaining aspects of v that are neither dilatational nor rotational. Each

term and potential function is given by the method helmholtzHodgeDecomposition().

A.4 Example of inferring intercalation rates (‘tissue

tectonics’) using TubULAR

Our approach aids in measurement of the contributions to tissue-scale convergent

extension by cell shape change and oriented cell intercalation for dynamic curved surfaces.

As illustrated in Fig. A.5, in the absence of oriented cell divisions, cell shape change and

oriented cell intercalations (or ‘T1 transitions’) both contribute to tissue-scale shear, in

which different axes of the tissue converge and extend. An example of tracked cells

demonstrating these two contributions is shown in Fig. A.5. Note that each cell changes

neighbors (through cell intercalations) and also changes its shape in a way to extend

along the longitudinal (horizontal) axis and converge along the circumferential (vertical)

axis.

As in [165], by imprinting the cell segmentation at time t0 = 0 hr onto the surface

and advecting the polygonal segmentation along material pathlines in 3D, we find a

cell-by-cell measure of the tissue shear. This measures tissue shear by virtue of using

a meso-scale measure of tissue flow from PIV in the pullback plane – providing a local

measure of tissue-scale shear at each tissue patch on the surface. We can then directly
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compare the tissue-scale shear to the cell’s actual shape change of cells segmented over

time without explicitly tracking cells. The difference between the tissue-scale shear and

the cell shape change is attributed to net oriented cell intercalations. Note that this

method measures net intercalations, where one T1 event forming a new cell-cell junction

aligned with the longitudinal direction can be canceled by a T1 event forming a new

cell-cell junction aligned with the circumferential direction. Indeed, in the midgut many

more cell intercalations occur than are measured by the net difference [165].

Figure A.5: TubULAR aids in measurement of cell intercalations’ contribu-
tion to tissue-scale convergent extension. (A) In the absence of cell divisions,
in-plane tissue-scale convergent extension occurs due to the changing shape of cells
as well as the occurrence of oriented cell intercalations (‘T1 events’). (B) During
constrictions in the fly midgut, no cell divisions take place, but cells change shape
and also intercalate in the endodermal layer. Scale bars are 10 µm. (C) We can
then compare the cumulative effect of each contribution (blue and yellow) to the total
tissue-scale convergent extension (orange, constricting along φ and extending along
s). In the midgut endoderm, we directly measure tissue shear from the deviatoric
component of the integrated strain computed from Lagrangian pathlines in 3D. This
shear strain is almost entirely oriented along the longitudinal axis s. In order to com-
pare directly this quantity to the cell shape change, we imprint the shapes of cells at
t = 0 on the tissue surface, follow the outlines of these cells along tissue pathlines from
coarse-grained particle image velocimetry measurements, and compute the cell shape
anisotropy α ≡ (1− a/b) cos 2θ, where a and b are the semimajor and semiminor axes
of the ellipse capturing each cell’s moment of inertia tensor and θ is the cell’s angle
with respect to the material frame’s longitudinal axis.
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A.5 Analysis of beating zebrafish heart dynamics

In the absence of cell proliferation, the relationship between local tissue area rate of

change, in-plane divergence, and out-of-plane motion is [6]:

∇ · v‖ − 2Hvn =
1

2
Tr
[
g−1ġ

]
, (A.14)

where ∇ · v‖ is the in-plane covariant divergence of the in-plane tissue velocities v‖,

H is the mean curvature of the surface, vn is the normal (out-of-plane) velocity, and

Tr [g−1ġ] /2 is the rate of local area change. We find the two terms on the left hand side

are not equal, and in fact are anti-correlated. We measure their cross correlation between

their circumferentially-averaged values, each of which is a function of the longitudinal

coordinate, s, and of time, t: 〈∇ ·v‖〉φ(s, t) and 〈2Hvn〉φ(s, t′). Fixing the spatial coordi-

nate but varying the time delay between measured values ∆ = t− t′ returns a sinusoidal

correlation function parameterized by the time delay ∆. This curve fits well to

C(∆) ≈ A cos
(

2π(∆− ∆̃)/T
)
. (A.15)

The time shift corresponding to the maximum correlation – such that the in-plane and

out-of-plane deformations would be in phase – is ∆̃, which we report in the main text.

This analysis gives insight into the kinematic properties of the tissue: tissue compressibil-

ity dominates the kinetics, prompting further modeling of the heart’s mechanical cycle.

A.6 A cytoskeletal gel actively deforms liquid droplets

Figure 1L shows a snapshot of a DNA droplet in an active microtubule gel. Briefly,

DNA droplets are assembled from multi-armed DNA nanostructures with self-interacting
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complementary overhangs [23]. Active flows are generated by microtubule filaments de-

pleted through non-adsorbing polymers such as polyethylene glycol (PEG) and powered

by clusters of kinesin motors. Kinesin motors convert chemical energy from the en-

vironment and generate inter-filament sliding [213]. The DNA droplets are covalently

bound to kinesin motors resulting in mechanical coupling between the microtubule bun-

dles and the surface of the droplets. Active stresses are exerted through the microtubule

flows, generating droplet deformation and eventually eventually leading to pinch-off of

the elongating neck and preventing coarsening of the DNA droplets. Further details of

the experimental design and imaging are given in [240].
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Appendix B

Materials and methods for analysis

of germband extension in Parhyale

B.1 Light sheet microscopy

For live imaging of transgenic parhyale embryos, we utilized a custom built MuVi

SPIM [127]. This microscope has two excitation and two detection branches. Both used

water dipping objectives (App LWD 5x, NA 1.1, Nikon Instruments Inc. for detection,

and CFI Plan Fluor 10x, NA 0.3 for excitation). Furthermore, each detection branch

consisted of a filter wheel (HS-1032, Finger Lakes Instrumentation LLC), with emission

filters (BLP02-561R25, Semrock Inc.), tube lens (200 mm, Nikon Instruments Inc.) and

a camera (sCMOS - Hamamtsu Flash 4.0 V2), with effective pixel size of 0.262 mm.

The illumination branches featured a tube lens (200 mm, Nikon Instruments Inc.), scan

lens (S4LFT0061/065, Sill optics GmbH and Co. KG), galvanometric mirror (6215 hr,

Cambridge Technology Inc.), and discrete laser line (561LS OBIS 561nm). Optical section

employed a translation stage from Physik Instrumente GmbH and Co. KG (P-629.1CD

with E-753 controller), a rotation stage (U-628.03 with C-867 controller), and a linear
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actuator (M-231.17 with C-863 controller).

B.2 Data post processing and microscope automa-

tion

To operate the microscope, we used Micro Manager [70], installed on a Super Micro

7047GR-TF Server, with 12 Core Intel Xeon 2.5 GHz, 64 GB PC3 RAM, and hardware

Raid 0 with 7 2.0 TB SATA hard drives. For each sample we recorded 4 views, separated

by 90 rotated views, with optical sectioning of 2 µm, and temporal resolution of 5 min.

We embedded the embryos in agarose containing beads as a diagnostic specimen. This

was used to register individual views into a common frame by utilizing the Fiji multi

view deconvolution plugin [195], resulting in a final image with isotropic resolution of

.2619 µm.

B.3 Extraction of dynamical surfaces of interest

The output of the lightsheet microscope is a time series of 3D grids whose voxel values

correspond to intensity of the nuclear label or lipid dye. Extraction of the dynamical

surface of interest from these data sets was performed in two stages: (1) 3D surface

extraction and (2) 2D pullback map construction. In the surface extraction stage, the

volumetric data of a representative time point was classified over the nuclear label/dye

using the machine learning software Ilastik [18]. The resultant probability map was then

fed into MATLAB and a static surface of interest was extracted using the morphological

active contours method [168] (Fig. B.1), a type of level-set based segmentation algorithm

well suited to segmented complicated, closed surfaces. The output of this segmenta-

tion is a 3D binary level-set, with identical dimensions to the data, where ‘1’ values
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corresponded to the interior of the closed surface (all embryonic tissue and yolk) and

‘0’ values corresponded to regions external to the Parhyale egg. The boundary of this

binary level-set is point cloud, a subset of which included voxels corresponding to the

embryonic tissue. This point cloud was subsequently triangulated using Poisson surface

reconstruction [121]. The result was a topologically spherical mesh triangulation.

Figure B.1: Surface extraction via level sets. An illustration of the morphological
snakes method used to extract the surface of interest in the growing embryo. (A) The
spherical initial condition (zero completed iterations). (B) The segmented surface.

In the next processing step, this static surface was used as a seed to extract the dy-
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namically changing surface at each time point. Recall that at this developmental stage

the embryonic tissue is a topological disk sitting on top of a spherical yolk. The em-

bryonic tissue was therefore contained in a disk-like subregion of the sphere-like surface

triangulation. In order to extract this region of interest, the entire sphere-like mesh was

mapped into the plane using the orbifold Tutte embedding method [2]. This method

generates a topologically consistent parameterization of the sphere in the plane allowing

us to view the entire surface at once with minimal geometric distortion. Next, a static

submesh of the region of interest on the static surface was selected by hand using the

orbifold pullbacks. Although static, this region of interest was large enough that it con-

tained all relevant sections of the embryo as it grew and deformed over time. A set of

‘onion layers’ was then created by displacing the submesh along its positive and nega-

tive normal directions. A stack of pullback images was then created for each time point

with one image in the stacks for each displaced onion layer. The number of layers and

the inter-layer spacing was chosen so that all of the geometric features of the dynamic

surfaces were captured for the various time points somewhere within the image stack.

These stacks were then fed back into Ilastik and batch processed again over the nuclear

label/dye. The result was a time dependent field of normal displacements over the static

seed surface that transformed the static surface into the corresponding dynamic surface

for each time point. These dynamic triangulations of the evolving region of interest were

then separately mapped into the unit disk conformally via Ricci flow [276]. Such a con-

formal mapping is only unique up to a Möbius automorphism of the unit disk. In other

words, unless care is taken to register the pullbacks, the resultant images may be wildly

misaligned in pullback space from time point to time point. With this in mind, the time

series of conformal pullbacks was iteratively registered to fix the conformal degrees of

freedom within the pullbacks. Essentially, corresponding mesh vertices at subsequent

times were approximately matched in 2D by finding an optimal Möbius automorphism
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of the unit disk that registered as many points as possible without sacrificing the con-

formality of the parameterization [137]. The final result was a sequence of maximally

aligned conformal pullbacks of the growing embryo to the plane. The conformality of

these discrete parameterizations is illustrated in Fig. B.2.
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Figure B.2: Discrete conformal parameterization of 3D surfaces. The re-
sults of our discrete Ricci flow method in producing conformal parameterizations
of the midsurface of the growing ectoderm. (A to D) Normalized angle deviation,
(|θ3D

1 − θ2D
1 |+ |θ3D

2 − θ2D
2 |+ |θ3D

3 − θ2D
3 |)/π, defined on each mesh face reporting the

conformality of the mapping. The quantities θ2D
i , θ3D

i are the ith internal angle of
each face in 2D and 3D, respectively. Mapping remains almost perfectly conformal in
the bulk of the mesh, even at late times when the curvature of the tail fold is pro-
nounced. (A) Normalized angle deviation on the 3D surface at T = 79.4 hours AEL.
(B) Normalized angle deviation on the 3D surface at 91.9 hours AEL. (C ) Normalized
angle deviation displayed in the 2D pullback space at T = 79.4 hours AEL. (D) Nor-
malized angle deviation displayed in the 2D pullback space at 91.8 hours AEL. (E )
Histograms of the normalized angle deviation at the two representative time points.
(F ) Median normalized angle deviation over the full time course of the data set.

It is worthwhile here to briefly discuss the constraints of visualizing curved surfaces
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in the plane via their parameterizations. Gauss’ celebrated Theorema Egregium forbids

the construction of a globally isometric planar parameterization for a 2D surface with

non-zero Gaussian curvature [78]. In other words, if you want to map curved surface

into the plan, you can do so in a way that preserves angles (a conformal map) or you

can do so in a way that preserves areas (an authalic or isoareal map) or you can do so

in a way that balances both non-zero angle distortion and non-zero area distortion, but

you can never do so in a way that perfectly preserves angles and areas everywhere. The

central focus of this work is the orientational order of cells within a curved tissue. As

such, we generally choose to visualize surfaces using conformal maps which preserve the

angles between neighboring cells from which the orientational order can be constructed.

This means that some area distortion within the figures is inevitable. For instance,

in Fig. 3.3C it appears that lateral cells are larger than cells near the ventral midline.

However, calculating cell areas using tissue cartography reveals that cell size is essentially

uniform in the tissue at a given time point (Fig. 3.6, E and F). Cell size varies instead

primarily as a function of location in the cell cycle (recently divided cells are smaller -

see Fig. B.10B).

B.4 In-plane cell segmentation and pathline recon-

struction

One primary benefit of tissue cartography is that processing data in low dimensions

greatly reduces the computational complexity of various analysis procedures. We ex-

ploited this benefit by segmenting nuclei directly in the 2D pullback images. Images

were first classified in Ilastik. The resultant probability maps were then fed in MATLAB

where the nuclei were segmented using a custom built version of the watershed algorithm
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[161]. Custom additions to MATLAB’s built-in watershed functionality were necessary

to account for spatially proximal nuclei which were initially undersegmented, i.e. many

nuclei were counted only as a single object. Special care was taken during this step in ad-

justing watershed parameters to ensure that adjacent nuclei were properly distinguished

from each other. Connectivity among segmented cells could be inferred using a Voronoi

tessellation (Fig. B.3).

A B

T = 80.8 h

Figure B.3: Visualizing cell membranes in the growing embryo. (A) The
trunk segmental ectoderm pulled to the plane and visualized with a lipid dye. Outer
cyan marking delineates embryo from extra embryonic tissue. Inner magenta mark-
ing delineates the boundary of the region visualized in Fig. B.3B. (B) A close up
visualization of a region of the trunk segmental ectoderm and a comparison to the
Voronoi tessellation produced using the cell centers extracted from our cell segmenta-
tion pipelines.

Once segmented, nuclei were tracked semi-automatically using an enhanced point-

matching procedure. For a given time point, the input to this procedure included a

pullback image and segmentation at time t and another subsequent pullback image and

segmentation at time t + 1. First, the subsequent pullback image was registered onto

the previous image using the Demon’s deformable image registration algorithm [255].

The resultant displacement fields were then applied to the nuclei locations at time t+ 1.

Point matching was then used to associate the nuclei locations at time t with the displaced
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nuclei at t + 1. Displacing the nuclei locations at t + 1 to align more closely with the

locations at t reduced discrepancies in the point matching associated with large nuclear

motions. This process was applied iteratively until pathlines were generated for all cell

lineages at all time points. Despite the enhancements, some manual correction was

still necessary. Manual corrections were applied using a custom built MATLAB GUI.

The pathlines were outputted as a digraph where nodes represented particular cells at

particular time points and edges stored the information about the temporal relationships

between nodes. Cell divisions could then be extracted from this tracking structure by

locating events where single tracks split into two lineages.

Another benefit of tissue cartography is that the geometric information reflecting the

fact that in-plane dynamics are occurring on a 2D surface embedded in 3D space are

properly preserved. In particular, knowing the 2D locations of nuclei in pullback space

provides an explicit correspondence to their locations on the surface in 3D. Therefore,

once the tracks were constructed in 2D, it was trivial to extract full 3D nuclear pathlines.

Velocities were constructed as simple backward differences between 3D nuclei locations.

A backward difference was used since forward differences can generate ambiguities at cell

division events where the forward difference velocities of the children sum to zero. 3D ve-

locities were decomposed into tangential and normal components relative to the dynamic

surface. Tangential velocities were then consistently transformed back into pullback space

for display purposes using a discretization of the Jacobian on mesh triangulation faces.
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B.5 Region of interest selection for dynamical quan-

tities

For any quantity depending on measured cell tracking, with specific emphasis on the

theoretical predictions of tissue velocities induced by cell divisions displayed in Fig. 3.9,

the region of interest was always defined to be the maximal set of PSPRs that we could

accurately track and follow through at least one round of mitotic wave divisions. All other

segments were either already significantly progressed into their second mitotic wave or had

not completed their first mitotic wave by the end of our recordings. As time progresses,

the region of interest expands to include all clonal progeny of these chosen segments. The

lateral extent of each PSPR was also carefully considered. It is understood that many

cells at the dorsal boundary of the ventral ectoderm are in fact extra-embryonic and do

not remain in the tissue as morphogenesis proceeds [262, 263]. On these grounds, any

cell near the dorsal boundary of the tissue that appeared to detach from the ectoderm

or that could not be confidently associated with a particular PSPR was excluded from

any subsequent analysis.

B.6 Calculation of discrete curvatures

The discrete curvature was calculated for each dynamic mesh triangulation as a func-

tion of time using standard discrete constructions Fig. B.4 [27]. The Gaussian curvature

K(vi) of a mesh vertex vi was taken to be

K(vi) =
1

Ai

2π −
∑

Fj∈NF (vi)

θFj

 , (B.1)
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Section B.6 Calculation of discrete curvatures

where Ai is the area associated to each vertex via barycentric subdivision of the triangles

attached to that vertex, NF (vi) is the set of incident faces Fj attached to vi, and θFj
is

the internal angle of face Fj corresponding to vi. The mean curvature H(vi) of a vertex

vi was calculated according to

∆~xi = 2H(vi) n̂i, (B.2)

where ~xi is the 3D location of vertex vi, n̂i is the unit normal vector corresponding to

vertex vi, and ∆ denotes the Laplace-Beltrami operator. The discrete Laplace-Beltrami

operator was implemented using the familiar cotangent discretization [27]

∆~xi =
1

2Ai

∑
vj∈Nv(vi)

(cotαij + cot βij) (~xj − ~xi), (B.3)

where Nv(vi) is the neighborhood of vertices attached to vertex vi and αij and βij are

the two internal angles of the triangles opposite the edge shared by vertex vi and vj. In

order to extract H(vi) from Eq. (B.2), it was first necessary to calculate n̂i, which was

taken to be the angle-weighted average of the face unit normal vectors of the triangles

incident to vertex vi assuming a counter-clockwise orientation of vertices in the faces.

This choice breaks the degeneracy in the orientation of the unit normal and allowed for

simple extraction of a signed mean curvature. The panels in Fig. B.4, were constructed

by averaging together the Gaussian and mean curvatures, respectively, of all vertices

found to lie within a particular Voronoi polygon corresponding to a specific cell after

mapping the dynamic meshes conformally into the plane.

163



Materials and methods for analysis of germband extension in Parhyale Chapter B

A B

C D

E F

50 μm

tail
fold

T = 76.2 h T = 76.2 h

T = 82.4 h T = 82.4 h

T = 91.6 h T = 91.6 h

Figure B.4: Surface curvatures in the growing Parhyale embryo. (A) Per-cell
Gaussian curvature at early times. (B) Per-cell mean curvature at early times. (C )
Per-cell Gaussian curvature at intermediate times. (D) Per-cell mean curvature at
intermediate times. (E ) Per-cell Gaussian curvature at late times. (F ) Per-cell mean
curvature at late times.
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Section B.7 Construction of correlation functions

B.7 Construction of correlation functions

In order to construct the two-point orientational order correlation functions, we first

calculated the fourfold and sixfold orientational order parameters for each cell at a par-

ticular time point. Next, for each pair of cells, denoted here by their locations x1 and

x2, we calculated the intercellular distance. This distance was taken to be the geodesic

distance along the dynamic surface between the locations of the cell centroids on the 3D

mesh triangulation [270]. We also calculated the product ψn(x1)ψ∗n(x2) for each pair of

cells, where n ∈ {4, 6}. We then partitioned the intercellular distances into a set of bins.

All pairs whose spacing lay between r and r+ dr, where dr was the width of a bin, were

then averaged together to calculate the two-point orientational order correlation function

< ψn(x1)ψ∗n(x2) >. It was assumed for this calculation that this quantity depended only

on the scalar distance r between pairs of cells, i.e. < ψn(x1)ψ∗n(x2) >=< ψn(r12)ψ∗n(0) >.

Note that under averaging, only the real part of the product ψn(x1)ψ∗n(x2) contributed,

since ψn(x1)ψ∗n(x2) + ψn(x2)ψ∗n(x1) = 2Re[ψn(x1)ψ∗n(x2)]. Finally, the intercellular dis-

tances distances were normalized by an average cell length scale, calculated as the square

root of the average area contained by each cells Voronoi polygon mapped back into 3D.

Following previous work [19, 188], information about translational order was extracted

using variations of the pair correlation function g(r) (also known as the radial distribu-

tion function). In addition to the radially symmetric pair correlation function g(r), we

also considered constructed anisotropic distributions that only aggregated information

about oriented pairwise separations along the A-P and D-V axes (gAP (r) and gDV (r),

respectively). The construction of all of these distributions proceeded similarly to the

construction of the orientational order correlation function and also relied on the calcu-

lation of the pairwise geodesic distance between cells. All pairs of cells whose separation

lay between r and r + dr, and whose relative orientation lay along the appropriate axes
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in the case of gAP (r) and gDV (r), were consolidated into histograms within a set of bins

(of width dr) segmenting the intercellular spacing. The histograms were then normalized

using an ‘effective volume method’ that directly accounts for and ameliorates finite size

effects [134]. In the following explanation we focus on the radially symmetric pair cor-

relation function g(r) for simplicity. Naively, the pair correlation function is normalized

by the expected number of cell pairs predicted by a Poisson distribution, i.e.

g(r) =
N∑
i=1

ni(r)

N ρdV
, (B.4)

where ni(r) is a count of the number of cells having their centers a distance between

r−dr/2 and r+dr/2 from the center of the ith cell in the measurement volume, N is the

total number of cells in the measurement volume, ρ = N/V is the raw number density

of cells in the measurement volume, V is the total measurement volume, and dV is the

volume of the generalized shell between r − dr/2 and r + dr/2 (dV = 2πrdr for a 2D

shell). Instead, we report the quantity

g(r) =
N∑
i=1

ni(r)

N ρdVi
, (B.5)

where now, dVi is defined as the intersection of the shell dV (r) centered on cell i with the

finite measurement volume V . This intersection volume therefore had to be calculated

individually for each cell and for each distance bin. The final reported quantities were

g(r) − 1 since this quantity decays to zero in a disordered system. An analysis of the

finite size effects present in both the orientational and translational correlation functions

can be found in Fig. B.5.
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Figure B.5: Finite size effects on orientational and translational order.
Finite size effects were investigated using synthetic data sets describing both fourfold
ordered (A-D) and totally disordered systems (E -H ). Systems were generated with
square aspect ratios and system sizes L = 10, 20, 40, 80 cell lengths. N = 25 synthetic
data sets for each system size. (A) Distributions of the mean global fourfold order
parameter | 〈ψ4〉 | for an orientationally ordered system. Distributions are much more
closely packed around the mean for larger systems, but the mean of the distributions
are constant for all system sizes. (B) Fourfold orientational correlation function for an
ordered system. Vertical dotted lines indicate system size. Correlations approach and
maintain a constant value over the entirety of the system. (C ) Radially symmetric
pair correlation function g(r)− 1. Pair correlation function decays algebraically over
most of the system size. (D) Horizontal cut of the pair correlation function g(r, x)−1.
Correlations also decay algebraically, albeit extremely slowly. (E ) Distributions of the
mean global fourfold order parameter | 〈ψ4〉 | for a disordered system. The mean value
for each distribution is more variable across system size than in the ordered case,
but all values are still consistent with a disordered system. Mean values appear to
monotonically approach zero as system size in increased. (F ) Fourfold orientational
correlation functions decay exponentially for all system sizes. Some erroneous spikes
are observed at distances larger than the system size. (G) Radially symmetric pair
correlation function g(r)− 1 decays exponentially for all system sizes. (H ) Horizontal
cut of the pair correlation function g(r, x)−1 decays exponentially for all system sizes.
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B.8 Circular statistics for division events

In order to properly analyze the distributions of division events, it was necessary

to construct measures of statistical properties that properly accounted for the nematic

nature of division events, i.e. a division event with orientation θ is physically identical to a

division event with orientation θ±π. Extending familiar measures of circular distributions

[275], the modified circular mean of the orientations of a set of division events, {θn} where

n = 1, . . . N , was defined to be

θ =
1

2
arg

[
N∑
n=1

e2iθn

]
∈ [−π

2
,
π

2
], (B.6)

which is invariant under the transformation θn → θn ± π for any θn. If the division

orientations are tightly distributed around a single value, then this quantity will also be

close to that particular value. We also define a modified measure of angular dispersion

s =

√√√√2

(
1− 1

N

N∑
n=1

e2iθn

)
. (B.7)

Note that this is a dimensionless quantity. Our measure of angular dispersion varies

between s = 0 for perfectly oriented divisions (θn = θ for all n and s =
√

2 for totally

isotropic divisions).

B.9 Determination of the average division velocity

Division events were extracted from the tracking structure and the resulting sample

set was pruned for quality (sufficiently far from the boundary of the tissue, sufficiently

far from another division event, etc). In order to compare different events, divisions

were translated and rotated so that the center of mass of the daughter cells lay at the
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Section B.9 Determination of the average division velocity

origin and the division axis lay along the y-axis. The measured velocities of the daughter

cells and of cells in the third-order natural neighborhood of the daughter cells were then

interpolated onto a fine mesh triangulation using generalized Hessian-energy scheme that

minimizes distortion in the interpolated field at the boundary of the triangulation [234].

The interpolated velocity fields were then averaged across division events to find the

mean velocity induced by divisions (Fig. 3.7). Gradients of the resultant velocity fields

were calculated on the mesh triangulation using DECLab (see Chapter 2) (Fig. 3.8 and

Fig. B.6).

T = 76.2 h

T = 82.4 h

T = 76.2 h T = 76.2 h

T = 82.4 hT = 82.4 h

T = 91.1 h T = 91.1 h T = 91.1 h

A

B

C

D

E

F

G

H

I

50 μm

Figure B.6: Gradients of the measured tissue velocity fields. (A to C ) The
divergence of the measured tissue velocity fields for three representative time points.
Explicit construction in term of exterior derivatives and Hodge stars is shown in (A).
(D to F ) The ‘curl’ of the measured tissue velocity fields for three representative
time point. Explicit construction in terms of exterior derivatives and Hodge stars is
shown in (D). (G to I ) The Laplacian of the measured tissue velocity fields for three
representative time points.
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B.10 Generation of synthetic data sets and compar-

ison with measured data

The synthetic data sets were generated to understand the extent to which the mea-

sured order was statistically significant and how the finite size of the germband effected

the order. First, the length and width of the germband at each time was extracted. These

were determined by tagging representative rows and columns of cells, following these rows

and columns over time, and calculating the geodesic length along each row and columns.

The average geodesic length of the rows (columns) was taken to be the width (length) of

the germband at a particular time. We also extracted a mean cell density at each time

point by averaging the inverse 3D areas of cells. One thousand synthetic data sets were

generated for each time point within rectangles with the same length and width as the

germband. Points representing cell centroids were generated to exhibit the same cell den-

sity as the germband using a fast Poisson-disk sampling method [31]. The connectivity

of these randomly generated points was approximated using Voronoi tesselation. This

connectivity allowed for the calculation of the order parameters and orientational corre-

lation functions over the finite size samples. We also calculated the radial distribution

functions along the A-P axis (length of the rectangle) and the D-V axis (width of the

rectangle) for each synthetic data set Fig. B.7 using the same method of construction as

for the measured data.

Additionally, we compared the corresponding measured and synthetic distributions

of orientational order parameters according to the two-sample Kolmogorov-Smirnov (K-

S) test [157] using MATLAB’s kstest2. This implementation of the K-S test returns

two measurements that assess the confidence with which one can assert that two sets of

observed random variables are drawn from the same distribution. The first is the K-S

statistic, which is simply the maximum difference between the empirical CDFs of the two
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Figure B.7: Observed order in the embryo is significant compared to dis-
ordered synthetic data sets. (A to D) Correlation functions for synthetic datas
sets with the same system sizes and cell densities as the representative time points in
Fig. 3.3. (A) The two-point fourfold orientational correlation function. (B) The two–
point sixfold orientational correlation function. (C ) The pairwise radial distribution
function measured along the A-P axis of the synthetic data set. (D) The pairwise
radial distribution function measured along the D-V axis of the synthetic data set. (E
to H ) Comparison of the fourfold and sixfold order parameters of the measured and
synthetic data sets at early times. (E ) The magnitude of the fourfold order parame-
ter. (F ) The magnitude of the sixfold order parameter. (G) The phase of the fourfold
order parameter. (H ) The phase of the sixfold order parameter. (I to L) Compari-
son of the fourfold and sixfold order parameters of the measured and synthetic data
sets at intermediate times. (I ) The magnitude of the fourfold order parameter. (J )
The magnitude of the sixfold order parameter. (K ) The phase of the fourfold order
parameter. (L) The phase of the sixfold order parameter. (M to P) Comparison of
the fourfold and sixfold order parameters of the measured and synthetic data sets at
late times. (M ) The magnitude of the fourfold order parameter. (N ) The magnitude
of the sixfold order parameter. (O) The phase of the fourfold order parameter. (P)
The phase of the sixfold order parameter.

sample sets. The larger the K-S statistic, the greater the discrepancy between the two

sample sets. The second measurement is the asymptotic p-value, which is the probability

of observing a test statistic as extreme as, or more extreme than, the observed value under

the null hypothesis that both samples are drawn from the same distribution. All K-S

statistics and p-values are reported in Table B.1. At the confidence level α = 0.05, the

null hypothesis is rejected for all distributions, indicating it is unlikely that the observed

order at any time point is due to chance. We note that the p-values for fourfold order at

intermediate and late times are vastly smaller than the corresponding p-values at early

times, while the p-values for sixfold order do not change as drastically. This implies

that while it is still improbable that the observed fourfold order at early times is due to

chance, it is hugely more likely when compared to intermediate and late times after the

order generating choreography has unfolded.

Similar methods were used to generate the synthetic illustration of a translationally

ordered system Fig. B.8. We patterned perfect square lattices on rectangles with the same
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p-Value K-S Statistic
T = 73.7 h : |ψ4| 9.23e-05 0.0475
T = 73.7 h : arg[ψ4] 5.64e-08 0.0627
T = 73.7 h : |ψ6| 1.11e-06 0.0571
T = 73.7 h : arg[ψ6] 2.50e-06 0.0555
T = 85.8 h : |ψ4| 1.05e-106 0.2016
T = 85.8 h : arg[ψ4] 7.55e-100 0.1949
T = 85.8 h : |ψ6| 6.61e-20 0.0863
T = 85.8 h : arg[ψ6] 2.21e-06 0.0477
T = 91.9 h : |ψ4| 2.62e-95 0.1804
T = 91.9 h : arg[ψ4] 4.86e-89 0.1744
T = 91.9 h : |ψ6| 3.45e-41 0.1183
T = 91.9 h : arg[ψ6] 1.12e-07 0.0499

Table B.1: Statistical comparison of orientational order in measured and
synthetic data sets. The Kolmogorov-Smirnov (K-S) statistic and asymptotic
p-values for the distributions shown in Fig. B.7.

length and width as the germband for the same representative time points. The lattice

spacing was set to match the measured cell density at the corresponding time point. We

then generated one hundred synthetic data sets for each time point by adding Gaussian

white noise to the lattice site positions with a signal-to-noise ratio of 5. Calculation of

the orientational order parameters, the orientational correlation functions, and the radial

distribution functions were performed in the same manner as the other synthetic data

sets.

B.11 Timing and orientation of cell divisions is not

predicted by local mechanical or geometric sig-

nals
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Figure B.8: The germband does not exhibit translational order. (A) An
example translationally ordered synthetic data set with the same spatial dimensions
and cell density as the germband at T = 91.9 hours after egg lay. Color of cells
indicates the magnitude of the fourfold orientational order parameters. (B to F )
Correlation functions for synthetic data sets with the same system sizes and cell
densities as the representative time points in Fig. 3.3. (B) The two-point fourfold
orientational correlation function. (C ) The two-point sixfold orientational correlation
function. (D) The pairwise radial distribution function measured along the D-V axis
of the synthetic data set. The horizontal dashed line is a guide for the eye. (E ) The
pairwise radial distribution function measured along the A-P axis of the synthetic
data set. (F ) Radially symmetric pair correlation function
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Figure B.9: Orientations of cell divisions are not predicted by local mechan-
ical or geometric signals. (A) Histogram of orientations of cell divisions relative
to the principal axis of the strain-rate of the corresponding parent cell integrated over
the hour preceding cell division. (B) Histogram of the orientations of cell divisions
relative to the axis of elongation of the corresponding parent cell averaged over the
hour preceding cell division. (C ) Histogram of the orientations of cell divisions rel-
ative of the orientation of the fourfold order parameter of the corresponding parent
cell averaged over the hour preceding cell division. (D) Histogram of the orienta-
tions of cell divisions relative to the orientation of the sixfold order parameter of the
corresponding parent cell averaged over the hour preceding cell division.
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Figure B.10: Timing of cell divisions are not predicted by local mechanical
or geometric signals. (A to F ) Various geometric and mechanical fields averaged
over a normalized cell cycle. Average includes cell cycles from both mitotic waves and
differential cleavage. (A) The trace of the mean strain-rate tensor (left) and the trace
of the mean cumulative strain tensor (right). The black bar in the upper right hand
corner indicates the growth phase preceding cell division, i.e. cell division has already
been initiated in this phase. (B) Mean cell density (left) and mean eccentricity of
an ellipse fit to each cell (right). (C ) The magnitude of the average fourfold and
sixfold order parameters. (D) The orientation of the average fourfold and sixfold
order parameters relative to the A-P axis. (E ) The Frobenius norm of the average
full cumulative strain tensor, the anistropic part of the the average strain tensor, and
the isotropic part of the average strain tensor. (F ) The Frobenius norm of the full
average strain-rate tensor, the anisotropic part of the average strain-rate tensor, and
the isotropic part of the average strain-rate tensor.

176



Section B.11 Timing and orientation of cell divisions is not predicted by local mechanical or
geometric signals

Figure B.11: Timing of cell divisions are not predicted by local geometric
signals (cont.). (A to F ) Various geometric fields averaged over a normalized cell
cycle. Separate averages are included for each mitotic wave and differential cleavage.
(A) The magnitude of the mean fourfold orientational order parmeter. (B) The orien-
tation of the mean fourfold orientational order parmeter. (C ) The magnitude of the
mean sixfold orientational order parameter. (D) The orietnation of the mean sixfold
orientational order parameter. (E ) The mean eccentricity of an ellipse fit to each cell.
(F ) The mean cell density.
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Figure B.12: Timing of cell divisions are not predicted by local mechanical
signals (cont.). (A to H ) Various mechanical fields averaged over a normalized cell
cycle. Separate averages are included for each mitotic wave and differential cleavage.
(A) The Frobenius norm of the mean strain-rate tensor. (B) The Frobenius norm of
the isotropic part of the mean strain-rate tensor. (C ) The Frobenius of the anisotropic
part of the mean strain-rate tensor. (D) The trace of the mean strain-rate tensor.
(E ) The Frobenius norm of the mean cumulative strain tensor. (F ) The Frobenius
norm of the isotropic part of the mean cumulative strain tensor. (G) The Frobenius
norm of the anisotropic part of the mean cumulative strain tensor. (H ) The trace of
the mean cumulative strain tensor.
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B.12 Additional figures for Chapter 3
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Figure B.13: Trunk ectodermal germband exhibits neither sixfold nor
translational/smectic order (cont.). Orientational order correlation functions
and isotropic pair correlation function for a separate embryo at the same represen-
tative times. (A) The two-point fourfold orientational correlation functions at two
representative time points. Tissue exhibits quasi-long range order at the at T = 85.8
h. (B) The two-point sixfold orientational correlation functions at three representa-
tive time points. All time points exhibit exponential decay. (C ) The isotropic pair
correlation function. All time points exhibit exponential decay, implying no isotropic
translational order.
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Figure B.14: Division wave pattern is preserved across embryos. (A to C )
The location of mitotic wave division events over time in a different embryo than the
one shown in (Fig. 3.4, E to G). Shapes indicate the parasegment within which a
division occurs. Indicated lines are linear fits to all division events associated to a
particular mitotic wave. (A) shows the location of each division along the A-P axis.
The speed of mitotic wave 1 is 8.7 ± 0.8 µm/hr. The speed of mitotic wave 2 (AB)
is 7.7 ± 1.6 µm/hr. The speed of mitotic wave 2 (CD) is 8.0 ± 1.2 µm/hr. (B) and
(C ) show the location of each division along the D-V axis. Division times in (C )
have been normalized to the occurrence of the first division event associated with a
particular wave in a specific parasegment. The speed of mitotic wave 1 is 12.6 ± 1.1
µm/hr. The speed of mitotic wave 2 (AB) is 10.7± 0.5 µm/hr. The speed of mitotic
wave 2 (CD) is 10.3± 0.6 µm/hr.
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Figure B.15: Temporal profile of orientational order is similar across dif-
ferent parasegments. (A to G) Per-parasegment profile of of the magnitude of the
average fourfold and sixfold orientational order parameters over time. Ordering of
panels (A to G) mirrors anterior to posterior ordering of the physical segments (i.e.
the parasegment shown in (A) is anterior to the parasegment shown in (B), etc.). (H )
The magnitude of the average fourfold orientational order parameter for each paraseg-
ment shifted in time so that T = 0 corresponds to the first cell division of mitotic
wave 2. (I ) The magnitude of the average sixfold orientational order parameter for
each parasegment shifted in time so that T = 0 corresponds to the first cell division
of mitotic wave 2.
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Appendix C

Derivation of hydrodynamic model

for active stress due to cell divisions

The tissue scale mechanics of epithelia is best understood as emerging from the collective

mechanics of the tissue’s constituent cells [139]. The cell scale mechanics are dominated

by the influence of intracellular cytoskeletal cortices [256, 152]. These structures are ca-

pable of supporting stresses throughout the cell’s bulk interior and can deform the cell

either actively or in response to external stresses. The individual cortices of neighboring

cells are coupled together by cadherin mediated adherens junctions [98] into a global

trans-cellular mechanical network. Crucially, these networks are both ‘active’ and ‘adap-

tive’. Active contributions, such as cell divisions [68] or the contraction of trans-cellular

actomyosin networks [236], act both locally and over large scales to deform the tissue.

These active deformations generate passive stress distally from the activity via the cou-

pling between cells. Stresses created in this fashion can then be relaxed either locally,

via internal rearrangement of the cytoskeletal cortex [120, 269], or at the tissue scale, via

cell rearrangements [74]. The result is an exotic type of viscoelasticity, wherein the tissue

responds elastically to active stresses over short timescales and then reverts to a fluidlike
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flow at longer timescales as the tissue adaptively relaxes stress. When the timescale of

growth (i.e. rate of cell division, etc.) is long compared to the timescale of mechan-

ical relaxation, the tissue essentially behaves like a slowly creeping fluid in quasistatic

mechanical equilibrium with both the active and external forces. For our purposes, a

detailed description of the complex cellular processes mediating the active stresses and

adaptive relaxation is unimportant. Instead, we adopt an approximate continuum scale

description of the tissue that captures the relevant behaviors of the system.

At short time scales, the tissue behaves elastically [75, 220]. Incremental increases in

strain generate corresponding increases in stress. These stresses are then subsequently

relaxed over a time scale τR. The total stress σ = σe + σa can be decomposed into a

sum of the elastic stresses σe and the active stresses σa. For simplicity, we assume that

the tissue is a flat two-dimensional surface. Supposing the tissue behaves like a Maxwell

viscoelastic fluid, the time-evolution of the elastic stress is given by

σ̇e = µ (∇v + (∇v)T ) + λ (∇ · v) I− τ−1
R σe, (C.1)

where σ̇e = ∂tσ
e + v · ∇σe denotes a convective time derivative, v is the local velocity

or rate of displacement, and µ and λ are the Lamé parameters characterizing a linear

isotropic stress-strain relationship. The Lamé parameters are assumed to be spatially

homogeneous, but may depend on time. A more complete description would include the

corotational time derivatives of σe on the left hand side, but we omit them for simplicity.

The first two terms on the right hand side describe the generation of stress in proportion

to the rate of strain. The final term parameterizes the relaxation of the elastic stress.

We have made the assumption that σ̇e only depends on σa implicitly through the final

term τ−1
R σ

e (see the force balance condition below). This is not meant to imply that

adaptive cell behaviors do not actually depend explicitly on the active stresses. It is
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merely a mathematical simplification. In reality, there may exist a complex interplay

between mechanics, gene expression/cell fate, and adaptive cellular behaviors, but this

lies beyond the scope of this work.

In general, the tissue flow velocity can be described by the Cauchy momentum equa-

tion [133]

ρ v̇ = ∇ · σ + FEXT

= ∇ · σe +∇ · σa + FEXT ,

(C.2)

where ρ denotes the material density and FEXT denotes any external body forces acting

on the system. If the rate of mechanical relaxation is sufficiently fast to reach quasi-

equilibrium, σ̇e vanishes, leaving us with

τ−1
R σ

e ≈ µ (∇v + (∇v)T ) + λ (∇ · v) I. (C.3)

Substituting this into Eq. (C.2), we find that

ρ v̇ = τR µ∇2v + τR (µ+ λ)∇(∇ · v) +∇ · σa + FEXT . (C.4)

In other words, the transient elasticity of the system gives rise to fluidlike behavior in

the quasi-stationary regime parameterized by a set of effective viscosities. The effective

shear viscosity ν1 ≡ τR µ tends to resist shearing motion, while the effective bulk viscosity

ν2 ≡ τR (µ+λ) resists the isotropic compressible part of the flow. If the effective viscosities

are sufficiently large and the corresponding motion is sufficiently slow we can neglect

the inertial term relative to the viscous terms (ρv̇ << ν∇2v). If, for simplicity, we

furthermore assume that there are no external forces acting on the system, we are left

with the following force balance condition defining the tissue flow velocities in terms of
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the active stresses

ν1∇2v + ν2∇(∇ · v) = −∇ · σa ≡ −Fa, (C.5)

which can be solved given suitable boundary conditions.

C.1 Cell divisions and active stresses

In general, there may be numerous different types of active stresses acting within the

tissue during growth [68, 177, 236]. These various sources of active stress will likely not

contribute with equal importance to the shaping of the nascent tissue. Our observations

of the cell division choreography indicate that cell proliferation is the primary factor

mediating tissue velocities. In order to simplify our model, we assume that the only

relevant active stresses are due to these cell divisions.

Our first consideration in modeling active stresses due to cell divisions is to understand

how division events might be incorporated into a spatiotempoally coarse grained scheme.

With respect to timing, daughter cell separation in real cell division events occurs over a

short, but finite time [35]. We ignore the complexity of the rapid subcellular properties

mediating mitosis and model cell divisions as instantaneous events (for our purposes

any process that occurs faster than 5 min, the time resolution of our microscope data,

is considered instantaneous). Real cell divisions push on the surrounding tissue, which

responds elastically over the short time scale of the actual division, before remodeling to

relax the resulting stress. In our model, both the plastic strain due to a division and the

subsequent relaxation are assumed to occur instantaneously so that the fluid is always

in quasistatic mechanical equilibrium. With respect to spatial coarse graining, we note

that the length scale of a single cell division is small compared to the scale of the entire

germband. Numerical experimentation showed that approximating division events as
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point force dipoles produced inaccurate flow fields. We therefore model divisions as small,

but finite size events to regularize this inconsistency. We also make the approximation

that the inclusion lives in an infinite, otherwise quiescent medium in order to make

analytic progress.

The mathematical structure of the fluid mechanical equations of motion in Eq. (C.5)

is identical to the structure of the Navier equations of linear elasticity. Exploiting this

similarity, we can model the instantaneous displacement (read velocity) due to a cell

division as that of an Eshelby inclusion. In the context of classical elasticity, an Eshelby

inclusion is a finite subregion of an elastic body which undergoes a permanent plastic de-

formation [73]. Eshelby inclusions, and the associated theories of elastic multipoles [214],

have proved useful in numerous applications including understanding shear localization

in amporphous solids [59] and the properties of mechanical metamaterials [10]. In the

current context of viscoelastic tissue growth, this displacement corresponds to both the

plastic deformation and the subsequent viscous relaxation, which are assumed to both

occur instantaneously on time scales relevant to growth. Relying on the well-trodden

mathematical history of Eshelby inclusions, we may, in the following derivation, use ter-

minology similar to Eshelby’s original exposition for elastic materials (e.g. eigenstrain).

For clarity, we emphasize again that we are modeling the tissue as a viscoelastic fluid,

not an elastic solid, and that the parameters of our model are effective viscosities, not

elastic moduli which would vanish in an orientationally ordered phase.

In particular, we choose to model the division as a circular Eshelby inclusion of

radius a and eigenstrain ε∗αβ = (M/2) δαβ + q (2 n̂αn̂β − δαβ), where δαβ is the Kronecker

delta and n̂ is a unit vector along the division axis. Here, M is a parameter controlling

the isotropic contribution of the divisions, mediating area growth, and q controlling

the deviatoric contribution, mediating constant area shear. Note that we have adopted

an index notation to better account for the high-rank tensorial nature of the following
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calculations. Greek indices vary in the set {x, y}. We also adopt the Einstein summation

notation so that all repeated indices are summed. It was shown by Eshelby that the

constraining medium generates a constant strain within the inclusion εcαβ = Sαβγδ ε
∗
γδ,

where Sαβγδ is a constant tensor for any elliptical inclusion. For a circular inclusion

Sαβγδ =
λ− µ

4(λ+ 2µ)
δαβδγδ +

λ+ 3µ

4(λ+ 2µ)
(δαγδβδ + δαδδβγ), (C.6)

which yields the following constrained strain within the inclusion

εcαβ =
λ− µ

4(λ+ 2µ)
δαβ ε

∗
γγ +

λ+ 3µ

2(λ+ 2µ)
ε∗αβ

=
M (λ+ µ)

2 (λ+ 2µ)
δαβ +

q (λ+ 3µ)

2 (λ+ 2µ)
(2 n̂αn̂β − δαβ).

(C.7)

Thanks to the linearity of the system, the corresponding velocity, i.e. instantaneous

displacement, within the inclusion can now be computed as

vinα (x) = εcαβxβ =
λ− µ

4(λ+ 2µ)
ε∗ββ xα +

λ+ 3µ

2(λ+ 2µ)
ε∗αβ xβ

=
M (λ+ µ)

2 (λ+ 2µ)
xα +

q (λ+ 3µ)

2 (λ+ 2µ)
(2 n̂α (n̂βxβ)− xα).

(C.8)

The velocity outside of the inclusion will satisfy the biharmonic equation ∇2∇2voutα (x) =

0, subject to continuity at the surface of the inclusion and must also tend to zero as

r → ∞ where r ≡ ||x||. Recalling the radial solutions of the biharmonic equation in

2D (i.e., 1, ln r, r2, and r2 ln r), we construct the general solution by considering all

combinations of derivatives of the radial solutions that are linear in the eigenstrain, tend

to zero at infinity, and transform like a vector field:

voutα (x) = Aε∗αβ
∂ ln r

∂xβ
+B ε∗ββ

∂ ln r

∂xα
+ C ε∗βγ

∂3 ln r

∂xα∂xβ∂xγ
+D ε∗βγ

∂3(r2 ln r)

∂xα∂xβ∂xγ
(C.9)
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where A, B, C, and D are constants to be determined. Recall that the velocity outside

of the inclusion is a solution to the equation

µ ∂2
β v

out
α (x) + (µ+ λ) ∂α(∂β v

out
β (x)) = 0. (C.10)

The fact that ∇2∇2voutα (x) = 0 is a necessary, but insufficient condition on any solution

of Eq. (C.10). With this fact in mind, we begin to calculate the constants by first

computing

∂2voutα

∂xβ∂xβ
= D ε∗ηλ

∂3

∂xα∂xη∂xλ

[
∂2(r2 ln r)

∂xβ∂xβ

]
= 4D ε∗ηλ

∂3 ln r

∂xα∂xη∂xλ
. (C.11)

In the first equality, we used the identity

∂2 ln r

∂xβ∂xβ
= 0 (C.12)

to cancel the terms proportional to A, B, and C. In the second equality, we made use of

the fact that

∂2(r2 ln r)

∂xβ∂xβ
= 4 (ln r + 1). (C.13)

Next we compute

∂2voutβ

∂xα∂xβ
=

∂

∂xα

[
Aε∗βη

∂2 ln r

∂xβ∂xη
+B ε∗ηη

∂2 ln r

∂xβ∂xβ
+

C ε∗ηλ
∂4 ln r

∂xβ∂xβ∂xη∂xλ
+D ε∗ηλ

∂4(r2 ln r)

∂xβ∂xβ∂xη∂xλ

]
=

∂

∂xα

[
Aε∗βη

∂2 ln r

∂xβ∂xη
+ 4D ε∗ηλ

∂2(ln r + 1)

∂xη∂xλ

]
= (A+ 4D) ε∗ηλ

∂3 ln r

∂xα∂xη∂xλ
,

(C.14)

where we have once again made use of both Eq. (C.12) and Eq. (C.13). Substituting
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these results into Eq. (C.10) yields

4µD ε∗ηλ
∂3 ln r

∂xα∂xη∂xλ
+ (λ+ µ) (A+ 4D) ε∗ηλ

∂3 ln r

∂xα∂xη∂xλ
= 0, (C.15)

which, when simplified, reveals that

D = − A (λ+ µ)

4 (λ+ 2µ)
. (C.16)

The velocity outside the inclusion can therefore be written as

voutα (x) = Aε∗αβ
∂ ln r

∂xβ
+B ε∗ββ

∂ ln r

∂xα
+ C ε∗βγ

∂3 ln r

∂xα∂xβ∂xγ
− A (λ+ µ)

4 (λ+ 2µ)
ε∗βγ

∂3(r2 ln r)

∂xα∂xβ∂xγ
.

(C.17)

The following identities are now required to make further progress:

∂ ln r

∂xβ
=
xβ
r2
, (C.18)

∂3 ln r

∂xα∂xβ∂xγ
=
−2r2(xαδβγ + xβδαγ + xγδαβ) + 8xαxβxγ

r6
, (C.19)

∂3(r2 ln r)

∂xα∂xβ∂xγ
=

2r2(xαδβγ + xβδαγ + xγδαβ)− 4xαxβxγ
r4

. (C.20)

Substituting these identities directly into Eq. (C.17) and simplifying allows us to re-write

the velocity in the following form

voutα (x) =

[
A

r2
− 4C

r4
− A(λ+ µ)

(λ+ 2µ)r2

]
ε∗αβxβ+[

B

r2
− 2C

r4
− A(λ+ µ)

2(λ+ 2µ)r2

]
ε∗ββxα +

[
8C

r6
+

A(λ+ µ)

(λ+ 2µ)r4

]
ε∗βγxαxβxγ.

(C.21)
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The remaining constants can be computed by enforcing continuity of the velocity field

at the boundary of the inclusion where r = a. First, we know that the third term that is

cubic in x must vanish when r = a since the velocity within the inclusion is linear in x.

8C

r6
+

A(λ+ µ)

(λ+ 2µ)r4
= 0 =⇒ C = −a

2A(λ+ µ)

8(λ+ 2µ)
. (C.22)

The dependence of vout(x) on C can now be removed yielding

voutα (x) =
A

2(λ+ 2µ)r2

[
2µ+

a2(λ+ µ)

r2

]
ε∗αβxβ

+
1

4r2(λ+ 2µ)

[
−2(A(λ+ µ)− 2B(λ+ 2µ)) +

a2A(λ+ µ)

r2

]
ε∗ββxα

+
A(r2 − a2)(λ+ µ)

(λ+ 2µ)r6
ε∗βγxαxβxγ.

(C.23)

Referencing Eq. (C.8), we continue to enforce continuity at the boundary of the inclusion

and match the coefficients of the velocities inside and outside the inclusion term by term.

The term proportional to ε∗xβ tells us

A

2(λ+ 2µ)a2
(2µ+ (λ+ µ)) =

λ+ 3µ

2(λ+ 2µ)
=⇒ A = a2, (C.24)

and the term proportional to ε∗ββxα tells us

1

4a2(λ+ 2µ)
[−2(A(λ+ µ)− 2B(λ+ 2µ)) + A(λ+ µ)] =

1

4a2(λ+ 2µ)

[
−2(a2(λ+ µ)− 2B(λ+ 2µ)) + a2(λ+ µ)

]
=

λ− µ
4(λ+ 2µ)

=⇒ B =
a2λ

2(λ+ 2µ)
.

(C.25)
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Finally we arrive at the following form for the velocity outside of the inclusion

voutα (x) =
q(λ+ µ)

2(λ+ 2µ)

(
a2

r2

)(
2µ

λ+ µ
+
a2

r2

)
(2n̂α(n̂βxβ)− xα)

+
M(λ+ µ)

2(λ+ 2µ)

(
a2

r2

)2

xα

+
λ+ µ

λ+ 2µ

(
a2

r2

)(
1− a2

r2

)(
M

2
+ q

(
2(n̂βxβ)2

r2
− 1

))
xα.

(C.26)

In summary, the instantaneous velocity induced by a cell division is has the following

vectorial form

v(x) =



M (λ+µ)
2 (λ+2µ)

x + q (λ+3µ)
2 (λ+2µ)

(2 n̂ (n̂ · x)− x) for r ≤ a

q(λ+µ)
2(λ+2µ)

(
a2

r2

)(
2µ
λ+µ

+ a2

r2

)
(2 n̂ (n̂ · x)− x)

for r > a
+M(λ+µ)

2(λ+2µ)

(
a2

r2

)2

x

+ λ+µ
λ+2µ

(
a2

r2

)(
1− a2

r2

)(
M
2

+ q
(

2 (n̂·x)2

r2
− 1
))

x,

(C.27)

or, in terms of the effective viscosities ν1 = τR µ and ν2 = τR (λ+ µ)

v(x) =



M ν2
2 (ν1+ν2)

x + q (2 ν1+ν2)
2 (ν1+ν2)

(2 n̂ (n̂ · x)− x) for r ≤ a

q ν2
2 (ν1+ν2)

(
a2

r2

)(
2 ν1
ν2

+ a2

r2

)
(2 n̂ (n̂ · x)− x)

for r > a
+ M ν2

2 (ν1+ν2)

(
a2

r2

)2

x

+ ν2
ν1+ν2

(
a2

r2

)(
1− a2

r2

)(
M
2

+ q
(

2 (n̂·x)2

r2
− 1
))

x.

(C.28)
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This equation can be non-dimensionalized by introducing the dimensionless parameter

ν̃ ≡ λ

2 (λ+ µ)
=
ν2 − ν1

2 ν2

, (C.29)

in terms of which the division velocity is

v(x) =



M
4 (1−ν̃)

x + q (3−4 ν̃)
4 (1−ν̃)

(2 n̂ (n̂ · x)− x) for r ≤ a

q
4 (1−ν̃)

(
a2

r2

)(
2 (1− 2 ν̃) + a2

r2

)
(2 n̂ (n̂ · x)− x)

for r > a
+ M

4 (1−ν̃)

(
a2

r2

)2

x

+ 1
2 (1−ν̃)

(
a2

r2

)(
1− a2

r2

)(
M
2

+ q
(

2 (n̂·x)2

r2
− 1
))

x.

(C.30)

C.2 Numerical prediction of tissue velocities from

cell divisions

In order to simplify numerical analysis, this model in Eq.(C.5) was reformulated as

∇2v +
1

1− 2 ν
∇ (∇ · v) = −F̃a, (C.31)

where now F̃a is a renormalized set of active forces and ν is the analogous to the Poisson

ratio obtained by treating the tissue as an idealized thin 3D material, i.e. as opposed

to a true 2D material. Note that ν is not the same as the dimensionless parameter ν̃

introduced in Eq. (C.29). Per the discussion in the previous section, the (renormalized)

active forces induced by each division event were modeled as resulting from a circular
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Eshelby inclusion of radius a and eigenstrain

ε∗ = (M/2) I + q (2 n̂⊗ n̂− I), (C.32)

where I is the 2× 2 identity matrix and n̂ is a unit vector along the division axis. Here,

M is a parameter controlling the isotropic contribution of the divisions, mediating area

growth, and q controlling the deviatoric contribution, mediating constant area shear.

The model was solved numerically for actual data using custom FEM machinery.

First, a fine mesh triangulation was constructed over a subset of tracked cells at a par-

ticular time Fig. C.1A. Circular holes containing cells about to divide were then removed

from the triangulation. These holes represented the finite-size circular Eshelby inclusions

used to model the velocities induced by cell divisions (supplementary text). The size of

the holes was chosen so that the area of the circular holes equaled the area of the Voronoi

polygons of the corresponding cells. Removing the inclusions from the mesh renders the

task of predicting velocities a simple boundary value problem with Dirichlet boundary

conditions. The velocities on the interior boundary vertices were set to match the ana-

lytical predictions of the model (i.e. the displacement field induced by the inclusion) plus

a constant term equal to the average measured velocity of the entire tissue in order to

account for the advection of the dividing cell with the tissue scale flow. The velocities on

the exterior boundary were set to the measured velocities. Using the measured velocities

on the exterior boundary captured how cells not included in the subregion contributed

to the relevant motion within the region over which the velocities were predicted. The

results of the numerical solution was a velocity vector for each triangulation vertex. For

cells that did not divide, all vertices contained within each corresponding Voronoi poly-

gon were then averaged to produce a single cell velocity vector. Note that many vertices

were averaged for each polygon, so that prescribing Dirichlet boundary conditions on
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the triangulation did not correspond to prescribing cell-scale velocities. Note that under

deformation the circular inclusions were deformed into ellipses. The locations of the foci

of these ellipses were given directly by the fluid mechanical model. The velocity of cells

that divided were set to be the displacement of these foci from the center of the unde-

formed circular inclusion. For our purposes, we set ν = 1/3 for all time points and the

parameters M and q were fit separately for each time point containing divisions using

MATLAB’s lsqnonlin in order to minimize the resulting velocity residuals. In order to

produce the ‘division only’ predictions presented in Fig. C.2, we simply summed the con-

tribution of the analytical prediction for each division event at each time point without

solving the boundary value problem using the measured data on the domain boundary.

194



Section C.2 Numerical prediction of tissue velocities from cell divisions

T = 82h 20min

T = 82h 25min

50 μm

A B

C D

Figure C.1: Numerical solution of the fluid mechanical equations of motion.
Examples of the triangular mesh used to implement a finite element method (FEM)
solution to the equations of motion predicting tissue velocities from cell divisions. (A)
The undeformed mesh triangulation. Circular holes have been removed surrounding
cells about to divide. (B) A zoomed-in visualization of the undeformed mesh near the
cells about to divide. (C ) The deformed mesh at the subsequent time. Mesh vertex
velocities have been scaled by a constant pre-factor (x5) to improve visibility. (D)
A zoomed-in visualization of the mesh near the recently divided cells. Note that the
initially circular holes are deformed into ellipses.
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Divisions + BC
Only divisions 

A B

Figure C.2: Hydrodynamic model of cell divisions predicts cell positions
during mitotic wave. (A) Mean residual between the measured cell velocities and
the cell velocities predicted by the active hydrodynamic model using the measured
boundary conditions (purple) and without any imposed boundary conditions (orange),
i.e. simply the sum of the velocities predicted using our inclusion model. The pre-
diction with no boundary conditions performs reasonably well during the first stage
of growth, but breaks down during convergent extension. (B) The error in the pre-
dictions for the locations of cell centers generated by integrating measured velocities
and calculated velocities, i.e. ||~xmeas(t)− ~xcalc(t)|| in units of mean cell lengths. The
prediction with no boundary conditions stays within a single cell length of the true
position for the first stage of growth, but grows large during convergent extension.
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Appendix D

Vertex model simulations of

orientational order generation

We simulate a simple vertex model with energy

E =
∑
c

[
kA,c

2
(Ac − A0,c)

2 +
kP,c
2

(Pc − P0,c)
2

]
, (D.1)

where c labels the cells, kA,c is the area stiffness parameter for cell c, Ac is the cell

area, A0,c is the target cell area, kP,c is the perimeter stiffness parameter, Pc is the cell

perimeter, and P0,c is the target cell perimeter. The first term in the sum is an elastic

energy that tries to force each cells area to match its target area and the second term is

a similar contribution that tries to force each cell to obtain a specified target perimeter.

The code used to simulate the vertex model was based on the publicly available code

used in [185]. For simplicity, in all of our simulations, we set kA,c = kP,c = 1 and fix the

target areas, A0,c = A0, and perimeters, P0,c = P0, to be uniform for all cells yielding the

simplified energy

E =
1

2

∑
c

[
(Ac − A0)2 + (Pc − P0)2

]
. (D.2)
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The simulation algorithm is detailed in Algorithm 1.

Algorithm 1 Vertex Model Simulation Algorithm

Require: Initial cell lattice, initial division order for first wave

Relax initial cell lattice

for Each division wave do

Update division order for current wave

for Each cell in the division order do

for Number of growth steps do
Update A0, P0 for the next cell in the division order
Update mesh connectivity due to T1 transitions
Relax cell lattice
Enforce confinement

end for

Re-set A0, P0 for the cell about to divide
Update mesh connectivity due to T1 transitions
Randomly choose division axis orientation
Divide cell along division axis
Relax cell lattice
Enforce confinement

end for

end for

D.1 Initial lattice construction

For the division wave/random division simulations, the initial lattices were generated

by first constructing a perfect hexagonal lattice with a specified length and height. Row

identities were extracted from this initial stage and a subset of the rows in the middle of

the lattice were selected to be a part of the division order generated using the row iden-

tities. For the random division simulations, this initial division order was then randomly

permuted. All simulations were run with an initial set of five dividing rows. Gaussian

white noise with a signal-to-noise ratio of 18 was then added to cell positions to produce
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Section D.2 Growth, division, relaxation, and confinement

a nonuniform hexatically ordered initial state (i.e. quasi-long range sixfold orientational

order and no translational order). The decision to use a hexatically ordered initial state

was due to the necessity of having an initial configuration with well defined rows and

with no fourfold orientational order. Properties of the initial lattices are displayed in

Fig. D.1. After the initial lattice was constructed, the parameter A0 was set to be the

mean area of all the cells in the lattice and P0 = 4A0. Lattices were constructed so that

all cells had an approximate initial length scale = 1.
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Figure D.1: Additional division wave simulation properties. (A) The absolute
value of the mean sixfold order parameter during division wave simulations. Different
curves correspond to different concentrations k of distributions from which division
orientations were randomly drawn (see Fig. 3.10F). Sixfold order degrades completely
for all values of k. (B) The two-point correlation function of the sixfold orientational
order parameter generated by division wave simulations with k = ∞. Vertical lines
indicate the length and width of the tissue, respectively. Initial configurations display
quasi-long range sixfold order. (C ) The isotropic pair correlation function generated
by division wave simulations with k = ∞. No configuration displays algebraically
decaying order over the entire tissue indicating that the initial and final configurations
are sixfold and fourfold orientationally ordered, respectively, but not translationally
ordered.

D.2 Growth, division, relaxation, and confinement

After the initial lattice was constructed, simulations begin with the first division wave.

The cell that is next to divide in the division order undergoes a series of growth steps. In

each growth step, the parameters P0,c and A0,c were increased, fixing P0,c = 4A0,c. Lattice
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Vertex model simulations of orientational order generation Chapter D

connectivity was then updated by implementing T1 transitions for all edges below a user

specified length threshold. Boundary edges whose shared external angle dropped below

a user specified threshold were then fused together to prevent self-interpenetration of the

tissue and other physically erroneous configurations. For all of our simulations, we set

the T1 edge length threshold `min = 0.05, the edge merger threshold θmin = 20, and

the number of growth steps Ngrowth = 50. The geometric parameters P0,c and A0,c were

increased so that A0,c = 1.5A0 after Ngrowth growth steps. Additionally, for all of our

numerical experiments T1 transitions were prohibited in the bulk.

After all parameter updates and topological corrections, the lattice was then relaxed

to an equilibrium configuration. The energy was minimized with the GNU Scientific

Library Multidimensional Minimizer, using the Polak-Ribiere conjugate gradient algo-

rithm. The wrapper to this minimization procedure was extended from the code used

in [185]. Following relaxation, confinement was enforced by clipping the x-coordinates

of lattice vertices to remain within a user specified domain, equal to the width of the

original lattice domain plus one cell length. Using a large number of growth steps ensured

that no more complicated constraint enforcement procedure was necessary.

After all of the growth steps were concluded, the cell was then forced to divide.

Division orientations were drawn from a circular von Mises distribution given by

f(x|µ, k) =
1

πI0(k)
ek cos (2(x−µ)), (D.3)

where µ is the center of the distribution, k is its concentration, and I0(k) is a modified

Bessel function of the first kind. We set mu = π/2 for all of our simulations, i.e. a

vertically oriented division along the A-P axis. See Fig. 4F for a visual depiction of the

distributions for all values of k used in the simulations. Following division, the tissue

was relaxed and confined again and the whole procedure continued for the next cell in
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Section D.2 Growth, division, relaxation, and confinement

the division order.

Once all of the cells in the division order had divided, the division order was updated

for the subsequent wave so that the new order would also proceed as a division wave. We

only simulated a single division wave in our numerical experiments. Visualization and

order parameter calculations were performed on the Voronoi tessellation of the centroids

of each cell polygon in order to be consistent with the methodology used to analyze the

data.
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Appendix E

Materials and methods for analysis

of Drosophila midgut morphogenesis

E.1 Microscopy

For light sheet imaging of live and fixed embryos, we used a custom multi-view se-

lective plane illumination microscope drawn schematically in Fig. 1.4A. This setup has

been previously described in [236].

Subsequent registration, deconvolution, and fusion using the methods presented in [196]

results in a single, deconvolved data volume per timepoint with isotropic resolution (0.018

µm3 per voxel). For most experiments in this work, we acquire one volume per minute.

The optimal number of deconvolution iterations varied between 8 and 20 for different

fluorescent reporters. We used 6 or 8 views for most datasets.

To peer deep inside the developing embryo, we leverage the UAS-GAL4 system [193]

to express fluorescent proteins in gut-specific tissues and use embryos with the klarsicht

mutation [259], which reduces scatter without altering gut morphogenesis. We used

confocal microscopy (Leica SP8) for more detailed characterization of calcium dynamics,
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Section E.2 Parameterization of organ shape

live imaging of Ubx and Antp mutants, and supplementary optogenetic experiments

E.2 Parameterization of organ shape

Figure E.1: Organ segmentation via morphological snakes level sets. Auto-
matic segmentation of the apical (inner) surface of the endoderm minimizes a non-local
Chan-Vese energy functional [42, 168] to encapsulate yolk without enclosing midgut
tissue, shown for four snapshots of mid-sagittal sections using TubULAR [164]. Blue
contours mark the surface intersection with the mid-sagittal plane.

The geometry of organ shape and deformation was quantified using the TubULAR

package (see Chapter 2 and [164]). We begin by using TubULAR’s surface detection

methods to extract the organ shape with a morphological snakes level set analysis [168, 42]

on the output of an iLastik training [18] against midgut tissue (membrane, nuclei, actin,

or myosin). Example results from this segmentation performed on a w;48Y GAL4 / UAS-

CAAX::mCh embryo are shown in midsagittal sections in Fig. E.1. We then use TubU-

LAR’s cartographic mapping functions to map the surface to the plane and stabilize noise

in the mappings’ dynamics (Chapter 2). For visualization, we use a pullback parameter-

ization (s, φ) such that the coordinate directions (ŝ, φ̂) are determined by the conformal

mapping to the plane at the onset of the first constriction (t = 0). In this way, φ pa-

rameterizes the intrinsic circumferential axis and s parameterizes a longitudinal position

along the long axis of the organ at t = 0. In subsequent timepoints, the difference in

parameterization coordinates in 3D space are minimized to match the previous time-
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point, such that the coordinates follow the shape change of the organ (Chapter 2). We

find this (s, φ, t) parameterization aids in both visualization and enables more accurate

velocimetry measurements than other choices.

We define the ‘material frame’ of a given midgut as the tissue configuration at the

onset of the middle constriction, which is the first constriction that appears.

We compute the centerline using the TubULAR package (Chapter 2), wherein the or-

gan is divided into circumferential ‘hoops’ based on its planar parameterization (Fig. 2.2E

and Fig. E.2). Hoops for which s = constant define an effective circumference for incre-

ments along the lengths of the organ, and the average 3D position of each hoop defines its

centerline point. Connecting mean points of adjacent hoops along the length of the organ

defines the centerline of the object (brown curve) whose length is reported in Fig. 4.1E.

0 hr 1 hr-0.5 hr 2 hr

Figure E.2: A centerline measures an effective length of the organ. We com-
pute the centerline (brown curve) using the TubULAR package for extracted shapes
(green with purple boundary for clarity). The cumulative length of these curves de-
fines the effective length of the organ reported in Fig. 4.2.

E.3 Endodermal cell segmentation and shape change

Using a single slice of the gut surface projected into stabilized (s, φ) pullback coor-

dinates, we segmented 600-1300 cells per timepoint (Fig. E.3) using a semi-automated

procedure:

1. We first perform adaptive histogram equalization over patches of the pullback con-

taining several cells in width.
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Section E.3 Endodermal cell segmentation and shape change

2. We then perform two passes of morphological image reconstruction (see MATLAB’s

imreconstruct function) punctuated by morphological dilation and erosion steps.

3. The result is binarized and skeletonized via a watershed algorithm.

4. We overlay this skeleton on the original image to enhance the membrane contrast,

convolve with a narrow Gaussian (with a standard deviation of ∼ 0.2% of organ

length), and pass the result through the previous three steps.

This gives us an estimate for the image segmentation. We then manually correct any

spurious segmentation artifacts in GIMP [241] by overlaying the segmentation with the

original pullback images. To resolve some ambiguous cell junctions, we examine not

only a single slice of the endodermal cell layer near the apical side (about 2.5µm beyond

the apical side), but also the maximum intensity projection of several microns along the

surface normal direction.

We compute cell anisotropy by finding segmented cell shapes in 2D, embedding those

polygons in 3D, projecting each cell onto a local tangent plane, and measuring the mo-

ment of inertia tensor of this polygon in the material coordinate system. This procedure

is shown schematically in Fig. E.3. We then embed the Lagrangian coordinate directions

(ŝ, φ̂) from a conformal mapping of the whole organ at the onset of the initial (middle)

constriction t = t0 onto the cell’s centroid in 3D (in the deformed configuration at time

t 6= t0). The moment of inertia tensor for the cell polygon is expressed in the local

coordinate system from the embedded (ŝ, φ̂) directions in the local tangent plane of the

tissue. The eigenvalues I1 and I2 of the moment of inertia tensor and their associated

eigenvectors then provide an effective ellipse for the cell with orientation θ with respect

to the local ŝ direction and an aspect ratio a/b ≡
√
I1/I2. Fig. E.3 shows the raw data

of these measurements without computing statistics.

We then average the cellular anisotropy over the organ surface to report a mean,
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Figure E.3: Surface projection aids in quantifying cell shape change in the
3D tissue surface. (A) To measure cell shapes, we trace cell membrane contours
in a conformal mapping to a 2D pullback plane and re-embed cells into local tangent
planes in 3D for shape quantification. After surface extraction, we project the data
on a midgut surface ∼2.5 µm beyond the apical side of the endoderm to the plane
for segmentation. The pullback plane also defines material coordinate directions in
which we can measure orientation of cells, θ. By projecting cell contours back into
3D, we compute moment of inertia tensors for each cell in a local tangent plane. The
eigenvalues and eigenvectors of the moment of inertia tensors define the cell anisotropy
a/b and the orientation of their long axis, θ, with respect to material coordinate
directions ŝ and φ̂. (B) Example segmentation in the pullback plane at a time near
the onset of the first constriction. Each cell polygon is given a random, distinguishable
color to demonstrate the segmentation quality. (C ) Here shown in raw histograms,
cell aspect ratios decrease and condense close to 1 (isotropic shapes) by ∼80 minutes
after the onset of the first (middle) constriction. During this time, the cells do not
rotate, as evidenced by the sustained peak in cell orientation near zero. At late times,
when the cells are nearly isotropic, the orientation becomes less clearly defined and
the distribution broadens.
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Section E.4 Single-cell tracking

standard deviation, and standard error for both the cellular aspect ratio and cell orien-

tation. In this averaging, we weight each cell’s contribution to the observable (aspect

ratio a/b or orientation θ) by its area, so that all material points on the organ are given

equal weight. The results reported in Fig. 4.2, C and D in the main text are the weighted

mean and weighted standard deviation for each distribution. The weighted means of the

aspect ratio a/b and orientation θ are

〈a/b〉 =

∑N
i=1Aiai/bi∑N

i=1Ai
(E.1)

〈θ〉 = tan−1

[∑N
i=1Ai sin θi∑N
i=1Ai cos θi

]
, (E.2)

where Ai is the area of the ith cell, and N is the total number of cells. We note that we

obtain similar results by weighting each cell equally, which would correspond to setting

Ai = 1 for all i above.

We obtain standard errors by bootstrapping. In detail, we subsample our collection

of measurements, compute the weighted mean for the subsample, and repeat with re-

placement 1000 times. The variance of these 1000 means decreases in proportion to the

number of samples n included in our subsampling, so that σ2
x(n) = σ̃2

x/n + σ2
0. Fitting

for σ2
x across 50 values of n (N/4 < n < N) and evaluating this fit for n = N gives an

estimate for the standard error on the mean σx =
√
σ2
x. In practice, the result is nearly

identical to measuring the means of many weighted subsamplings of n = N cells with

replacement and computing the standard deviation of this collection of means.

E.4 Single-cell tracking

We tracked 175 cells from −27 min < t < 83 minutes of development relative to the

onset of the middle constriction in a w; 48Y GAL4 ;klar × w; UAS-CAAX::mCh embryo
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Figure E.4: Endodermal cells are initially most elongated near anterior
and middle constrictions, and cell shape change is greatest near constric-
tions. (A) The oriented cell anisotropy varies along the anterior-posterior axis. We
define the cell shape anisotropy to be a signed quantity varying from positive for cells
elongated along the circumferential axis and negative for cells elongated along the
longitudinal axis. This signed measure of oriented anisotropy shows that some cells
become elongated along the longitudinal (AP) axis, particularly near the posterior
end of the midgut by t = 80 min. In particular, the signed shape anisotropy of a
cell is α ≡ (1 − a/b) cos 2θ, where a and b are the semimajor and semiminor axes
of the ellipse capturing each cell’s moment of inertia tensor and θ is the cell’s angle
with respect to the material frame’s longitudinal axis. Locations of the constrictions
or constriction precursors are marked in dashed gray vertical lines. Cells near the
anterior and middle constrictions are initially elongated along the circumferential axis
more than cells in the interstitial regions. Cell anisotropy changes dramatically first
at the middle constriction, then at the anterior and posterior constrictions. Shaded
error bars denote standard deviations (semi-transparent bands) and standard error on
the mean (opaque colored bands), while black curves denote the mean. (B) The total
change in signed cell shape anisotropy over the 80 minute timecourse shows strong,
negative values near each constriction. We here parameterize cells’ anterior-poste-
rior positions at t = 80 by mapping to their locations at t = 0 in order to compare
measurements made in the same tissue patches.
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Section E.5 Topological cell rearrangements in the endoderm

imaged using confocal MuVi-SPIM. First, we segmented the same 175 cells in the first

chamber of the gut every two minutes using the same procedure as in the previous section.

We tracked their positions over time using iLastik manual tracking workflow using 2D

(s, φ) pullback projections. From these segmented polygons, we project back into 3D

onto the gut surface and measure the cell areas in a local tangent plane for Fig. 4.2E in

the main text.

E.5 Topological cell rearrangements in the endoderm

Cell rearrangements are also present in the endodermal tissue, and these ‘T1’ events

could also contribute to the large-scale shear [74]. To estimate their contribution, we

performed manual tracking of 175 segmented cells in the first chamber and identified T1

transitions from −27 < t < 83 minutes relative to the onset of the middle constriction.

Importantly, the orientation of T1 transitions is not significantly aligned with the elon-

gation axis at early times, suggesting that the endoderm is fluidized and that T1s are

not a tightly controlled process directing morphogenesis.

To identify T1 transitions, we leveraged our single-cell tracking previously used in Fig. 4.2E

– a contiguous region of cells in the anterior chamber of the midgut, extending from the

anteriormost portion of the midgut up to the anterior fold. We query all cell pairs which

share an edge in the endoderm at any time during the morphogenetic process. We then

filter out any pairs that remain neighbors for all timepoints, since their shared edges do

not participate in topological rearrangements. The remaining pairs reflect a cell-cell in-

terface which either appears or vanishes during morphogenesis. We perform additionally

screening of these candidate events to confirm that the change in cell topological is not

an artifact from possible segmentation error by coloring the two cells participating and

visually inspecting their motion. Fig. E.5 shows an example sequence of T1 transitions
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tracked using this scheme.

0

10

20

30

40

nu
m

be
r o

f T
1 

ev
en

ts

n.s.

-27<t<43 min 43<t<83 min

AP DV AP DV

AP

(contributing)

DV

(counteracting)

CB

10 μm

-00:15 00:45 00:83A

Figure E.5: Topological rearrangements occur in the endoderm but are not
aligned during the earliest stages of gut constrictions, consistent with cell
shape change being the dominant contributor to tissue deformation at the
onset of constrictions. (A) An example rosette of four tracked cells. The tissue
patch is flattened to a plane such that the longitudinal and circumferential axes of the
organ in the material frame aligns with the horizontal and vertical axis, respectively.
The mapping to the plane is an as-rigid-as-possible map constrained so that the ratio of
lengths in the longitudinal and circumferential directions is preserved near the center
of the image (so the diagonal metric tensor components are equal g11 ≈ g22). (B) Here
we define T1 events to be AP oriented if the cells that lose contact are within 45◦ of the
longitudinal axis of the organ in the material frame. Conversely, in DV oriented T1
events, the cells that lose contact are within 45◦ of the circumferential axis of the organ
in the material frame. (C ) In a collection of 175 tracked cells in the anterior midgut,
we find no significant difference between the rate of cell intercalations oriented along
the longitudinal direction versus the circumferential direction during stages 15-16a of
constrictions (−27 < t < 43 min), while we find a bias in T1 orientations during later
stages of 16a and 16b (43 < t < 83 minutes) among the tracked cells. Uncertainties
are taken as the square root of the count, and ∗ = p < 0.05

For each junction lost or gained, we measure the axis of the associated T1 transition

by computing the centroid of each cell in the pair that is gaining or losing a junction.

Fig. E.5B shows a histogram of these axes’ angles with respect to the anterior-posterior

axis of the organ defined in a locally conformal coordinate patch, with the AP axis ori-

entation inferred from the material (Lagrangian) frame. We find that T1 transitions

oriented along the AP axis (converging along DV) occur about as frequently as T1 tran-
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Section E.6 Quantification of tissue deformation

sitions oriented along the DV axis (converging along AP) for our collection of tracked

cells in the first lobe, suggesting that topological cell rearrangements are not a principal

driver of convergent extension in the tissue. These rearrangements are therefore unlikely

to drive shape change, as predicted by the quantitative similarity between tissue shear

and cell shape change (Fig. 4.4).

E.6 Quantification of tissue deformation

To compute a coarse-grained tissue velocity over the gut surface, we again used the

TubULAR package (Chapter 2 and [164]). This resource enables velocimetry and discrete

exterior calculus measurements [55] on the evolving surface. The result is a fully covariant

measurement of the compressibility and shear of the tissue spanning the whole organ.

Briefly, given our (s, φ, t) coordinate system defined in the TubULAR pipeline, we

then run particle image velocimetry (PIV) using PIVLab [242, 243] and map tissue

velocities in the domain of parameterization to the embedding space. Geometrically,

displacement vectors v extend from one x(s0, φ0, t0) coordinate in 3D on the surface at

time t0 to a different x(s1, φ1, t1) coordinate on the deformed surface at time t1. When

t0 and t1 are adjacent timepoints, this defines the 3D tissue velocity at x(s0, φ0, t0) as

v(s0, φ0, t0) = (x(s1, φ1, t1) − x(s0, φ0, t0))/(t1 − t0). We decompose the velocity into a

component tangential to the surface v‖ and a normal component vn = vnn̂ for measur-

ing divergence via discrete exterior calculus and for measuring out-of-plane deformation

2Hvn, where H is the mean curvature obtained via computing the Laplacian of the mesh

vertices in (embedding) space: ∆X = 2Hn̂ (see [55]). As shown in Fig. E.6, the in-

plane dilatational flow almost perfectly matches the out-of-plane deformation during the

morphogenetic process.
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Figure E.6: Dilatational flow patterns are tightly coupled to bending
throughout midgut constrictions, indicating a nearly incompressible tissue
behavior. Resulting divergence of in-plane tissue motion (∇ · v‖) and out-of-plane
deformation measurements (2Hvn) on an representative embryo, plotted both on the
midgut surface in 3D and in pullback coordinates, show strong correlation. The dif-
ference of the two patterns gives the local area change (right columns). Each image is
the average of patterns over a 30 minute timespan. The pullback representation uses
the surface Lagrangian parameterization (s, φ), such that the ventral tissue is in the
midline of the image, anterior is to the left, posterior is to the right, and deformation
of the organ shape in 3D is subtracted out from the pullback coordinates of subsequent
timepoints [164]. The s position in the pullback representation is proportional to the
proper distance along the organ’s longitudinal axis.
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Section E.7 Minimal ingredients demonstrate geometric interplay between compressibility and
shear

E.7 Minimal ingredients demonstrate geometric in-

terplay between compressibility and shear

A flat, nearly incompressible sheet demonstrates a kinematic coupling between di-

latational in-plane flow (∇ · v‖) and out-of-plane deformation (2Hvn). Contracting such

a sheet as in Fig. E.8A leads to out-of-plane bending to preserve surface area of the

sheet. This out-of-plane motion leaves cells unchanged in their aspect ratio: no in-plane

deformation is necessary.
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Figure E.7: Convergent extension via constriction links in-plane tissue
shape change with out-of-plane deformation. (A) An initially flat, incom-
pressible sheet may bend in a localized region without deforming the tissue in-plane.
Distances between cells in plane are preserved, illustrated by the constant length be-
tween the ends of the sheet along the orange geodesic. (B) A uniformly constricting,
incompressible tube exhibits convergent extension but has no localized folds. In the
absence of cell intercalations, cells converge along the circumferential direction and
elongate along the longitudinal direction, so an orange curve spanning several cells
along the longitudinal axis lengthens over time. (C ) In convergent extension via con-
striction, localized normal motion of the tube couples to in-plane tissue shape change.
In a constricting, incompressible tube, the tissue converges along the circumference
and extends along the bending longitudinal profile.

If the sheet is curved into a tube (so that mean curvature is nonzero, |H| > 0), then
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constricting an sheet (with inward velocity vn > 0) can generate deformation in the local

tangent plane of the sheet. Such incompressibility couples to initial curvature to generate

shear deformation. For example, an incompressible sheet of paper glued into a cylinder

along one of its edges cannot be pinched in this fashion without crumpling, folding, or

tearing. An elastic sheet, however, can be deformed in this manner even if local areas of

material patches are required not to change. In particular, the sheet may stretch along

the long axis while constricted circumferentially, such that a circular material patch is

transformed into an elliptical patch with the same area, as in Fig. E.8B.

Finally, these two effects are coupled in the case of the pinched cylinder. In a given

snapshot with an existing localized constriction, we can schematically understand the

three ingredients by considering the pinched cylinder with a step-wise indentation shown

in Fig. E.8C. First, active stresses constrict the neck, decreasing the surface area of the

neck (blue) and dilating the interior faces (red). In order to restore the surface area of

the cells in the neck, its length may increase, resulting in extension along the long axis

of the tube. In tandem, to combat the dilation in the interior faces, cells flow into the

constriction from the chambers. Note that if all three steps are instantaneously coupled,

the order of events is immaterial to the outcome: contractile surface flows could increase

the density of cells in the interior faces, which leads to neck constriction to restore cell

density in the faces and results in convergent extension of the neck.

We note also that when the constriction is broad along the longitude or when the

indentation is shallow, the mean curvature will be positive everywhere (cylinder-like,

H > 0). In this case, inward motion of the incompressible tube causes an extensile

surface flow (∇ · v‖ > 0), rather than a contractile one. This is a qualitative difference

between broad or uniform constrictions of a tube and localized constrictions such as

those seen in the midgut. In principle, we predict a crossover between the two modes of

behavior during the very onset of constriction in our system – from positive to negative
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shear

Figure E.8: Three-component decomposition of kinematics elucidates cou-
pling between compressibility and convergent extension. (A) An initially flat
incompressible sheet demonstrates kinematic coupling between in-plane dilatational
flow and out-of-plane bending to preserve cells’ 2D areas. (B) Constriction couples
to convergent extension via curvature of the surface. As a tube constricts, the tube
elongates in order to preserve surface area. Correspondingly, cells change their aspect
ratio and undergo convergent extension. (C ) The two effects shown in (A) and (B)
couple in a pinching tube with a localized constriction. A tube with a step-like con-
striction is composed of deformable cells whose areas shall not change. Constriction
of the narrow tube via inward normal velocities would decrease the neck area (blue),
so the neck extends to keep its area fixed. This is convergent extension. The faces are
now dilated, triggering flow into the interior faces to correct for the change in tissue
density. In this way, convergent extension is linked to incompressibility, which couples
in-plane dilatational flow to out-of-plane deformation.
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divergence as the curvature changes sign. This is a subtle and transient feature, given

the large radius of the midgut compared to the small axial length of the constrictions

and the non-uniform initial curvature of the midgut before constrictions begin.

E.8 Quantification of tissue shear

We employ a geometric method of tissue-scale shear quantification that accounts for

both the shear due to the changing shape of the gut and the shear due to the material

flow of cells along the dynamic surface. The first step is to establish consistent material

coordinates for all times, i.e. labels for parcels of tissue that follow those parcels as

they move and deform. We prescribe these labels at the onset of midgut constrictions

by endowing a cylindrical ‘cut mesh’ of the organ’s surface at the that time with a

planar parameterization. The cut mesh is first conformally mapped into a planar annular

domain, {||x|| : r ≤ ||x|| ≤ 1}, using a custom Ricci flow code included in our TubULAR

package (Chapter 2 and [164]). Fixing the outer radius of the annulus to 1, the inner

radius r is a conformal invariant that is automatically determined from the geometry

of the organ. Taking the logarithm of these intermediate coordinates then defines a

rectangular domain, with a branch cut identifying the top and bottom horizontal edges

of the domain in such a way the the cylindrical topology of the cut mesh in 3D is fully

respected. The coordinates in this domain are taken to be the material (‘Lagrangian’)

coordinate system, (ζ̃ , φ̃). This conformal parameterization is, by construction, isotropic;

the metric tensor is diagonal. This parameterization is therefore a suitable reference

against which to measure all subsequent accumulation of anisotropy in the tissue. We

note that at the reference time t0 (at the onset of the first constriction), the material

coordinates are similar to the (s, φ, t0) coordinate system defined before, except that the

coordinate s measures a proper length on the surface along curves of constant φ, while
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ζ̃ is a coordinate of the conformally mapped planar domain. We chose to use s instead

of ζ̃ for visualizations simply because deep constrictions exhibit extreme dilation in a

conformal (ζ̃ , φ̃) pullback plane, but these are attenuated in an (s, φ) pullback plane

(see Chapter 2). We stress that all measurements account for the physical embedding

of the surface: the coordinate system parameterizing the surface is a tool to define

circumferential and longitudinal directions based on the organ’s intrinsic geometry, and

the choice of parameterization does not influence the magnitude of tissue deformation.

Figure E.9: Tissue shear generates 3D convergent extension during con-
strictions, as captured in the Beltrami coefficient – a local measure of
anisotropic, area-preserving deformation. (A) Tissue-scale shear accumulates
near each constriction, shown as a kymograph in the material coordinate frame av-
eraged along the circumferential axis. As time increases (downward), orange streaks
reflect area-preserving convergence of tissue patches along the organ circumference
and extension along the folding AP axis near constrictions (red arrows). Here, the or-
gan is parameterized by the position, s, at the onset of constriction (t = 0), measured
in proper length along the surface, and deformation is averaged along the circumferen-
tial position in the kymograph. Color denotes the orientation of the anisotropic shear
deformation in this material frame, such that shear which converges along the circum-
ferential axis and extends along the AP axis is denoted by orange color (colorwheel).
Larger magnitudes of tissue shear are brighter, reflecting the Beltrami coefficient av-
eraged over the circumferential axis. (B) The Beltrami coefficient µ is defined as the
amount of area-preserving shear transforming a circle into an ellipse with aspect ratio
1 + |µ|/(1− |µ|) at an angle arg µ/2.

In order to recapitulate the material flow of the tissue, these coordinates are advected

in the plane along the flow fields extracted using PIV [243, 242] and then mapped into

3D at each time point. This mapping defines a deformed mesh whose induced metric

tensor, g′ ≡ g(t), can be computed relative to the material coordinates. All anisotropy

in the mapping is encoded by the complex Beltrami coefficient, µ(t), defined in terms of
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the components of the time-dependent metric tensor

µ(t) =
g′11 − g′22 + 2i g′12

g′11 + g′22 + 2
√
g′11 g

′
22 − g′12

2
. (E.3)

As illustrated in Fig. E.9B, µ describes how an initially circular infinitesimal patch of

tissue is deformed into an elliptical patch under the action of the material mapping. The

argument of µ describes the orientation of this ellipse. The magnitude |µ| is related to

the ratio, K of the lengths of the major axis of this ellipse to its minor axis by

K =
1 + |µ|
1− |µ|

. (E.4)

When |µ| = 0, the material mapping is isotropic, i.e. a circular patch of tissue remains

circular under the mapping. Note that |µ| < 1 and therefore provides a bounded de-

scription of both the magnitude and orientation of material anisotropy in the deforming

surface.

The results of this measurement are shown as a kymograph in Fig. E.9 for a repre-

sentative dataset. Constrictions begin to appear at times and locations marked by red

arrows and continue to deepen. The Beltrami coefficient is averaged along the circum-

ferential direction and plotted at the anterior-posterior position in tissue coordinates at

the onset of the middle constriction (the first constriction to appear), so that the defor-

mation of advected tissue patches are compared to their original shape. A single color

dominates the kymograph, indicating that the deformation is globally aligned to extend

along the local longitudinal axis (and contract along the material frame’s circumferential

axis), despite the contorting and complex shape. This is consistent with circumferential

muscle orientations defining the axes for convergent extension in the midgut.
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E.9 Relative motion between layers

To characterize relative motion between layers, we tracked 375 endodermal and 81

muscle nuclei in the same w,Hand>GAL4;UAS-Hand:GFP;hist:GFP embryo. Fig. E.10

shows measurements of relative displacement of initially-close nuclei pairs (< 5 µm apart

at the onset of the first constriction). Two example tracks are highlighted in yellow and

green. Fig. E.11 shows additional statistics of the relative motion over time.
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Figure E.10: Relative motion of endodermal and mesodermal nuclei is
small compared to motion of the tissue. (A) Tracking muscle nuclei and
counterpart nuclei in the endoderm reveals only a gradual increase in geodesic distance
(distance along the gut surface) between initially close nuclei pairs over time. The
mean displacement grows by ∼5 µm per hour during folding on average, regardless of
whether nuclei are located in deep folds (as in the example pair marked by a yellow
curve) or on the surface of the gut chambers (green curve). (B) In contrast, the tissue
deformation leads to large displacements of cells. We measure distances in embedding
space along pathline trajectories suitably smoothed to remove contributions from noise
and transient motions. Distance traveled for example tracks invaginating into deep
folds (yellow curve) or translating on gut chambers (green curve) are highlighted to
match panel (A).
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Figure E.11: Motion of the muscle nuclei with respect to the endoderm is
not coherent. (A) Schematic of muscle nuclei configuration at early and late times.
Muscle cells are positioned in bands along the AP axis and are initially clustered, such
that each band is several cells wide along the circumferential axis. As constrictions
form, circumferential muscle nuclei arrange in a nearly single-file configuration. (B)
Motion of nuclei cells relative to the endodermal layer does not show strongly coherent
(directional) motion, as demonstrated by individual tracks of relative displacement
colored by timestamp. As before, the positions of 81 nuclei cells are measured relative
to the center of mass of the endodermal nucleus that was nearest at the onset of
constrictions. Distances are measured as geodesic lengths along the surface. Distances
along the normal direction (through the thickness of the tissue) are ignored. That
is, nuclear positions are projected along the thickness of the tissue onto the surface
in which the endodermal nuclei reside. Histograms of accumulated displacements
in either direction show the average over the first 30 minutes (blue), 30-60 minutes
(red), and 60-90 minutes (yellow). (C ) The same data shown in (B) is plotted as a
distribution, with each component separated. The standard deviation of displacement
coordinates (colored bands), either in the ŝ direction (along the folding longitudinal
axis in the material frame, blue) or the φ̂ direction (along the circumferential axis in
the material frame, orange) show an increase of ∼5 µm per hour, with nearly zero
mean displacement in either axis.
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Section E.10 Optogenetic experiments

E.10 Optogenetic experiments

The UAS-CRY2-OCRL and UAS-ρGEF2 constructs have been previously charac-

terized [91, 114]. For optogenetic confocal microscopy experiments, we activated the

optogenetic construct with continuous oblique illumination of a 470 nm LED at 6.2±0.1

mW/cm2 power, in addition to periodic illumination with the 488 nm laser used to image

the sample. Wild-type embryos developed normally under this illumination (N = 18/19).

Variations by a factor of two in either the LED power or in the 488 nm laser power used

to image the GFP channel did not result in differences in phenotype. For light sheet

imaging, we illuminated with a 488 nm laser line at 1 mW for 30 seconds once per

minute.

We quantified the endoderm cell shapes using a similar procedure as before. After

deconvolution (Huygens Essential software), we perform 3D segmentation via a mor-

phological snakes level set method on an iLastik pixel classification to carve out an

approximate midsurface of the endoderm. We measured the endoderm shape dynam-

ics for two-color y,w,Antp-GAL4 ;;Gap43 mCherry × w;UAS-CIBN::GFP;UAS-CRY2-

OCRL embryos held under continuous optogenetic activation from oblique illumination

of a 470 nm LED at 6.2±0.1 mW/cm2 power as before. For comparison, we additionally

measured endoderm shapes in Antp mutant embryos with a membrane marker driven in

the midgut endoderm (w;48Y GAL4 /UAS-CAAX::mCh;AntpNS+RC3).

Fig. E.12A shows representative snapshots of this segmentation procedure for a two-

color y,w,Antp-GAL4 ;;Gap43 mCherry × w;UAS-CIBN::GFP;UAS-CRY2-OCRL em-

bryo at the onset of the first constriction and 40 minutes after the middle constriction

began. Circumferential muscle localized near the anterior constriction expresses the

optogenetic construct (cyan band), while the endoderm is imaged using a ubiquitous

membrane marker (grayscale). Image regions masked in semi-transparent gray are the
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deepest confocal plane acquired, while the rest of the image is a lateral view of the pro-

jected data on the segmented organ surface. Segmented endodermal cell polygons are

colored by their aspect ratios. Cells are segmented in 2D and then projected into 3D

for measurement of their aspect ratios. As shown in Fig. E.12C, there is no significant

difference between cell orientations in wild-type (blue), optogenetic mutants (red), and

Antp mutants (yellow).

Figure E.12: Optogenetic knockdown of muscle contractility inhibits en-
dodermal shape changes, mimicking mutant behavior. (A) Snapshots of sin-
gle-cell shape measurements of embryos under optogenetic perturbations demonstrate
that muscle contraction induces endoderm cell shape change. During optogenetic
inhibition of muscle contractility in the Antp domain using w,Antp-GAL4× w; UAS–
CIBN::pmGFP;UAS-CRY2-OCRL, cell shapes in the interior two chambers (which
remain as a single chamber in the optogenetic mutant) remain steady. (B) Endo-
dermal cells undergo less shape change in both CRY2-OCRL and Antp mutants, as
reported in the main text. As before, ∗∗∗∗ denotes p < 0.0001, and N.S. denotes
p > 0.05. (C ) The endodermal cell orientation does not change significantly between
conditions.

E.11 Wild-type calcium dynamics

We quantified calcium dynamics using the confocal microscopy (Leica SP8) of the

live reporter UAS GCaMP6s driven by either the driver Mef2-GAL4 , which is expressed

across all muscles in the embryo, or 48Y GAL4 , which is expressed in the embryonic

midgut both in endoderm and visceral muscles. Here, we used Mef2-GAL4 as a driver for
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characterizing anterior and middle constrictions. We used 48Y GAL4 for the posterior

constriction since many fluorescent somatic muscles occlude the line of sight for the

posterior constriction under Mef2-GAL4 . We found that the two drivers yielded similar

quantitative results for the anterior constriction.

To measure transient calcium activity without bias from variations in ambient fluores-

cent intensity due to spatially-dependent scattering, we imaged three confocal stacks with

2.5-3 µm step size in rapid succession (9 or 10 seconds apart) and subtracted subsequent

image stacks from each other according to

δI ≡ |I1 − I2|+ |I2 − I3|+ |I1 − I3|, (E.5)

where Ii = Ii(x, y) is the maximum intensity projection (projected across dz ≈ 30µm) of

the ith stack. Over such short timescales, motion of the midgut is small, but transient

flashes of GCaMP6s are unlikely to span more than one acquisition. We then extract

coherent features from δI using a Gaussian blur followed by a tophat filter, and sum the

resulting signal along the circumferential direction.

While we interrogated GCaMP6s activity using many views of the gut, the quantifica-

tion used three standardized views. For the anterior constriction, we used a dorsal view,

since out-of-plane effects are smallest on the dorsal side and since the midgut is nearest

to the surface on the dorsal side. For the middle constriction, we used ventrolateral views

since there is a line of sight with fewer other muscles driven by Mef2-GAL4 from this

view. For the posterior constriction, we used a left lateral view for quantification.

To time-align the GCaMP6s experiments of the anterior and middle constrictions, we

defined t = 0 as the first timestamp in which the constriction under observation showed

localized bending along the longitudinal (AP) axis. For characterization of calcium dy-

namics at the posterior constriction, we defined the onset of constriction by the ventral
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side of the gut visceral muscle having moved dorsally by ∼10 µm.

Figure E.13: Kymographs of GCaMP6s dynamics show that calcium ac-
tivity is initially localized in space to constrictions and begins near the
time at which constrictions begin. For each constriction, the transient signal is
computed (colored signals in snapshots A-C ) and averaged across the DV direction
(in the lab frame) into a space-time heatmap (D-F ). A time of t = 0 min for each
panel corresponds to the time when localized constriction is visible in the bright-field
channel at that constriction location and carries an uncertainty of ±5 minutes (dashed
orange lines). The middle constriction (the sharpest fold, B and E ) has the sharpest
activity profile, and the posterior constriction (the widest fold, C and F ) has the
broadest activity profile.

Fig. E.13 shows kymographs of GCaMP6s dynamics averaged across biological re-

peats. In these kymographs, activity begins near the time when constrictions begin. In

contrast, Fig. E.14 shows delayed and suppressed GCaMP6s activity in Antp mutants

compared to the wild-type behavior of sibling embryos that are not homozygous mutants

for Antp.

E.12 Calcium activity in Antp mutants

To compare calcium activity in Antp mutants against wild-type dynamics, we com-

puted p values using a z-score measuring the difference between Antp heterozygotes
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(controls) and Antp homozygotes (mutants) as

Z =
δImutant − δIcontrol√

s2
control/ncontrol + s2

mutant/nmutant

, (E.6)

where δI is the sample mean, scontrol and smutant are the sample standard deviations, and

ncontrol and nmutant are the sample sizes. This score gives a single-sided p value via

p =
1

2
erfc

(
−Z/
√

2
)
, (E.7)

where erfc is the complementary error function.

To quantify the difference in overall activity between mutants and heterozygotes,

we first estimate the expected fluorescent intensity for a given embryo under the null

hypothesis that all embryos, whether mutant or not, will have similar GCaMP6s activity.

Since embryos vary in opacity, we normalized each heterozygous embryo according to

a value dependent on its background fluorescent intensity measured in regions within

the embryo but far (45-50 µm) from the site of the putative constriction. The observed

maximum fluorescent activity δI correlated with this background signal with a correlation

coefficient of 78% and a mean signal-to-background ratio of 5.1±0.5. We then normalized

each embryo’s time-averaged δI = δI(x) as

δI → δI − δIbg

δImax − δIbg

. (E.8)

This enabled us to reduce the confounding influence of variation in optical density be-

tween embryos in the mutant analysis and compare absolute curves δI rather than only

their variation along the anterior-posterior axis.
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Figure E.14: Antp mutants show reduced calcium activity in the anterior
two chambers for over an hour. (A) Kymographs of wild-type calcium dynamics
near the anterior fold for N = 13 control embryos show fluctuating calcium activity
beginning at the onset of folding at the site of the fold. The domain of calcium
activity broadens anteriorly and posteriorly in time. A red solid line marks the onset
of the anterior constriction, and dashed lines denote the precision with which this time
is known. (B) In mutants, almost no calcium pulses are observed during the same
timespan. A kymograph of average fluctuating GCaMP6s intensity for N = 5 Antp
mutants remains quiescent (dark blue). Given that the anterior fold does not form,
t = 0 was prescribed based on the depth of the posterior fold. The expected position
of the anterior fold (which defines the horizontal axis of the kymograph) is inferred
from the position of the anterior fold relative to the anterior face of the midgut in
control embryos.
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Figure E.15: Calcium pulses appear at the unaffected anterior constriction
in Ubx mutants. A dorsal view snapshot of pulsing calcium activity (top panel)
and the associated brightfield image (bottom panel) of a Ubx mutant shows calcium
pulses in the anterior constriction (white arrowhead). Each image is an overlay of
maximum intensity projections for three shallow confocal stacks taken 10 seconds
apart and false-colored red, green, and blue for each respective stack. The colorful
streak near the anterior constriction reflects the transient pulses at that location. As
in Fig. 4.6F and Fig. E.14, the posterior constriction lies outside the confocal stack
and is therefore not visible in the GCaMP6s channel. This data suggest the calcium
dynamics at each constriction are regulated locally along the length of the midgut
(N = 5).
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E.13 MLCK RNAi and SERCA mutant analysis

To drive expression of MLCK RNAi or a dominant negative allele of SERCA, we

administered heat shock by abruptly raising the temperature to 37◦C using a stage-top

incuabator (Okolab) and observing embryos staged such that they had not yet completed

gut closure. The standard errors in the probabilities of successful constrictions are given

by

SE =

√
p̂ (1− p̂)

N
, (E.9)

where p̂ is the observed frequency of forming all three constrictions and N is the number

of samples of a given genotype (for ex, Mef2-GAL4×UAS-SERCA.R751Q::mtomato)

measured in the experimental heat shock conditions. We note that the result is not sen-

sitive to the choice of analysis. For example, we also computed the mean number of folds

formed – that is, the number of deep constrictions – for each condition and compare the

two distributions, as shown in Fig. E.16A and B. The mean number of folds formed was

reduced in both Mef2-GAL4×UAS-SERCA.R751Q embryos and tub67-GAL4; tub16-

GAL4×UAS-MLCK RNAi embryos (p = 3× 10−8 and p = 0.002, respectively).
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Figure E.16: Disrupting calcium activity hinders constrictions. (A) Embryos
expressing a dominant negative form of SERCA have fewer successful constrictions on
average (single tailed Z-test, N = 130, p = 3 × 10−8) using a muscle-specific driver,
Mef2-GAL4, at elevated temperatures (continuous heatshock at 37◦C). In adult flies,
this dominant negative SERCA was previously shown to exhibit temperature-sensi-
tive expression and inhibits muscle contractions at 37◦C [116]. (B) Embryos express-
ing RNAi against MLCK have fewer successful folds on average (single tailed Z-test,
N = 37, p = 0.002). Here we use a ubiquitous driver, tub15-GAL4; tub67-GAL4 under
continuous heatshock starting during or just after midgut closure, before constrictions
appear. (C ) Brightfield imaging of embryos expressing a mutant form of SERCA in
muscles show reduced folding activity. Here, driving a mutant SERCA expression via
heatshock starting at stage 15a shows no folds. (D) Control embryos without the
mutant form of SERCA, in contrast, typically form three folds. Timestamps denote
minutes since the onset of heatshock and scalebar is 100 µm.
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Appendix F

Numerical methods for optimal

growth pattern selection

F.1 Embedding intrinsic geometries in 3D

Consider a surface St ⊂ R3 parameterized in the usual way by a set of coordinates

~x ∈ R2. At each point ~R ∈ St, The geometry of the surface is captured by the first

fundamental form, gαβ = ∂α~R · ∂β ~R, and the second fundamental form, bαβ = ∂α∂β ~R · n̂,

where n̂ is the unit normal to the surface at ~R. We characterize the time-dependent

intrinsic geometry of the surface in terms the target metric, g(t), and the target curvature

tensor, b(t). We define the inverse target metric tensor by ḡαβ by ḡασḡσβ = δαβ , so that

indices of tensorial quantities are raised and lowered with respect to the target metric.

We utilize a method motivated by continuum mechanics to embed the target geometry
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in R3. We assume that the tissue is an incompatible elastic shell with energy

E = ES + EB

=
Y

2(1− ν2)

∫
d~x2√ḡ

{
h

4

[
ν Tr[ḡ−1(g − ḡ)]2 + (1− ν) Tr[(ḡ−1(g − ḡ))2]

]
+
h3

12

[
ν Tr[ḡ−1(b− b)]2 + (1− ν) Tr[(ḡ−1(b− b))2]

]}
,

(F.1)

where h is the thickness of the tissue, Y is Young’s modulus, and ν is the Poisson ratio.

This mechanical energy has been studied both in the context of morphogenesis and the

design and manipulation of synthetic surface structures [223, 71]. The stretching energy

ES ∝ h describes the mismatch between the target rest lengths and angles of the surface

and the physical rest lengths and angles. Analogously, the bending energy EB ∝ h3

describes the mismatch between the target and physical curvatures. Essentially, the

system will adopt an equilibrium configuration that balances the comptition between

stretching and the bending. Importantly, it is not assumed that ḡ and b̄ satisfy the

Gauss-Codazzi-Mainardi-Peterson compatibility conditions [78]. If this is the case, then

there is no attainable 3D configuration for which the energy vanishes identically. In this

situation, the equilibrium configuration will harbor residual stresses.

Equilibrium configurations of this energy are computed using a geometric finite dif-

ference method. The 3D surface is approximated by a mesh triangulation. In order to

maintain a fixed mesh topology, we choose to order the vertices describing each face in a

counter-clockwise fashion, i.e. F = [~xi, ~xj, ~xk] where a vertex ~xi ∈ R3. The edges of the

face are labelled by the vertex index opposite to that edge. The normal vector of the face,

is simply given by ~n = ~ei × ~ej = ~ej × ~ek = ~ek × ~ei. The unit normal vector is therefore

n̂ = ~n/2A where A is the area of the face. For simplicity, we define the three in-plane

mid-edge normals, ~ti, ~tj, and ~tk, which are simply the corresponding edge vectors rotated

by π/2 radians, i.e. ~ti = ~ei × n̂. This construction is illustrated in Fig. F.1.
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Figure F.1: Notation for triangle vectors.
Figure F.2: The ‘face-with-flaps’ stencil
over which the energy is evaluated.

Since the total elastic energy of the surface is calculated by evaluating an integral, we

must choose a stencil of finite area to serve as the discrete analog of the integral measure.

For, this purpose we choose a ‘face-with-flaps’ stencil. The structure and nomenclature

associated with this stencil is shown in Fig. F.2. The extra flaps are included in order to

evaluate the bending energy. Here, the bending energy is evaluated at the shared edges

of the triangulation, i.e. along the triangulation hinges. The structure of a single hinge is

shown in Fig. F.3 and Fig. F.4. Notice that θ denotes the bending or hinge angle between

the unit normal vectors of adjacent faces. The dihedral angle of the edge is therefore

π − θ. In general, θ is a signed quantity which depends on edge orientation. The sign of

θ for a given edge orientation is chosen arbitrarily, but consistently, to be the same as

the sign of (n̂1 × n̂2) · ~e0, where n̂1 is the unit normal of the current face, n̂2 is the unit

normal of the adjacent face flap, and ~e0 is the associated edge with orientation defined

counter-clockwise relative to n̂1. In this way, θ is positive when the normals point away

from each other and negative when they point towards each other.

Our goal is to build a discrete formulation of the energy in Eq (F.1). The target

geometry of the system can be represented by a set of target edge lengths and bending

angles. The target edge lengths must satisfy the triangle inequality on each face in
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Figure F.3: A single hinge viewed from
above.

Figure F.4: The notation describing the
bending angle of a single hinge.

order to constitue a valid geometry. In the discrete setting, the tensors g and b are

approximated by piecewise constant symmetric 2×2 matrices defined on mesh faces. The

components of any such matrix defined over a subset of R2 can be uniquely determined

by the its action on three linearly independent vectors in the plane. Analogously to its

function in the continuous setting, the discrete metric tensor on a face is the unique

matrix that returns ~eTi g~ei = `2
i for each edge ~ei in the face with length `i. Similarly,

the discrete curvature tensor should encode the bending angles on each edge. In terms

of these representations, we define the discrete strain tensor

ε = ā−1 (a− ā)

= − 1

8Ā2

∑
(ijk)

[
`2
i − `2

j − `2
k −

(
L2
i − L2

j − L2
k

)]
~ti ⊗~ti

= − 1

8Ā2

∑
(ijk)

[ε(`i, Li)− ε(`j, Lj)− ε(`k, Lk)]~ti ⊗~ti

= − 1

8Ā2

∑
(ijk)

Ei~ti ⊗~ti

(F.2)

Here, `i is the length of edge i in the physical triangulation, Li is the target length of that

edge, Ā is the target area of the face and ~t is the in-plane mid-edge normal of the target

geometry. The Ā may be calculated directly from the Li without reference to an explicit
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embedding of the target geometry. It may seem counter-intuitive to define this quantity

in terms of the ~ti, since we do not have access to these target quantities directly. We will

see that the final energy is formulated in way that can be calculated without an explicit

embedding, just like the Ā. The tensor product of two vectors ~u and ~v is computed in a

matrix representation as ~ui ⊗ ~vi = ~ui ~v
T
i . The notation (ijk) implies a cyclic sum over

the edges. We also define the function ε(`m, Lm) ≡ `2
m − L2

m. Here, Ei is a temporary

shorthand we use to denote the cyclic sum εi− εj − εk. The discrete bending moment is

B = ā−1 (b− b)

=
∑
(ijk)

1

2ĀLi

[
2 tan(

θi
2

)︸ ︷︷ ︸
ϕ(θi)

− 2 tan(
Θi

2
)︸ ︷︷ ︸

ϕ(Θi)

]
~ti ⊗~ti

=
∑
(ijk)

Φ(θi,Θi)

2ĀLi
~ti ⊗~ti

(F.3)

where Θi is the target bending angle for that edge and Φ(θi) ≡ ϕ(θi)− ϕ(Θi).

Direct calculation shows that for any symmetric quadratic form Q defined on on a

face (i.e. a section of R2) with the following form

Q =
∑
(ijk)

Qi
~ti ⊗~ti

=⇒ Tr[Q] =
∑
i

QiL
2

=⇒ Tr[Q2] =
∑
i

∑
j

QiQj(~ei · ~ej)2

(F.4)

Putting all of this together, the (re-scaled) discrete elastic energy of a Non-Euclidean
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shell is given by

Ẽ = E/h =
1

2

∑
T

ĀT

{
1

4

ν(∑
i

−Ei
8Ā2

T

L2
i

)2

+ (1− ν)

(∑
i

∑
j

EiEj
64Ā4

T

(~ei · ~ej)2

)
+
h2

12

ν(∑
i

Φ(θi,Θi)Li
2ĀT

)2

+ (1− ν)

(∑
i

∑
j

Φ(θi,Θi) Φ(θj,Θj)

4Ā2
TLiLj

(~ei · ~ej)2

)}
(F.5)

where the sum is over the faces T of the triangulation and we have set Y = 1− ν2 (Y is

irrelevant to the computation of the equilibrium configuration since it simply rescales the

energy). We minimuze this energy using a a custom build quasi-Newton method using

an L-BFGS Hessian approximation [176].

Strictly speaking, the Bonnet theorem tells us necessary to specify both ḡ(t) and

b(t) to uniquely specify the surface up to a rigid motion [78]. For small h, howver, the

bending energy is small relative to the stretching energy, i.e. EB << ES. In this regime,

the system’s tendency to match g(t) and ḡ(t) will overwhelm it’s tendency to minimize

the bending energy. The optimization of Eq. F.1 essentially becomes a machinery for

producing isometric embeddings of the target metric ḡ(t) with EB playing the role of a

regularizer.

This machinery for computing the embeddings of an instantaneous target geometry

can also be used to generate embeddings of entire time courses of growth patterns. When

the timescale of growth in the system (i.e. rate of cell division, etc.) is long compared

to the timescale of mechanical relaxation, the tissue will always effectively remain in

mechanical equilibrium. In this quasistatic regime, the physical configuration will always

be a minimizer of the energy Eq. (F.1) given an instantaneous target geometry. Over a

short time ∆t, the target geometry will change, i.e ḡ(t)→ ḡ(t+∆t) and b(t)→ b(t+∆t).

At each new time step, we minimize the new elastic energy using the previous time point’s
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configuration as an initial guess. The result is a full time course of growth embedding

the various target geometries.

F.2 Non-Parametric Representations of Discrete Sur-

faces as Smooth Interpolants

Computing the optimal growth pattern for a given input requires searching the space

of parameterizations of the final target shape. We must therefore be able to evaluate

surface configurations corresponding to arbitrary parameterizations. In order to do so,

we store the final surface as a smooth interpolant over the unit disk D rather than as

a fixed triangulation. In particular, utilize natural neighbor interpolation for scattered

data points [227, 76]. We will now explain this formalism in its general form and then

show how it is applied for the specific case of evaluating surface configurations.

Let P = {p1, . . . ,pn} be a set of n points in R2 and let ~Φ be a vector-valued function

defined on the convex hull of P . We assume that the function values are known at the

points of P . In the context of surface evaluation, these are simply the 3D locations od

the data points, i.e. ~Ri = ~Φ(pi). The point set P defines a Voronoi tesselation of R2,

Equivalently, there is a unique Delaunay triangulation associated to this point set. We

also require knowledge of the gradient at each point Gi = ∇~Φ(pi). If the user has analytic

knowledge of the function ~Φ these gradients can be supplied as inputs. Otherwise,

they are estimated by fitting high order Taylor polynomials to local neighboords of data

poitns and extracting the first-order coefficients. Experiments show that fitting a 3rd

order Taylor polynomial produces high quality results without being too computationally

expensive.

The interpolation is carried out for an arbitrary query point q on the convex hull
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Section F.2 Non-Parametric Representations of Discrete Surfaces as Smooth Interpolants

of P . When simulating the insertion of the query point q into the Voronoi diagram of

P the virtual Voronoi cell of q “steals” some area from the existing existing cells. This

construction is illustrated in Figure F.5. Let A(q) denote the area of the virtual Voronoi

Figure F.5: Natural neighbor coordinate construction.

cell of q and let Ai(q) denote the area of the sub-cell that would be stolen from the cell

of pi by the cell of q. The natural neighbor coordinates of q with respect to the data

point pi ∈ P are defined to be

λi(q) =
Ai(q)

A(q)
. (F.6)

These coordinates have the following properties

• q =
∑n

i=1 λi(q) pi (barycentric coordinate property)

• For any i, j ≤ n, λi(pj) = δij

•
∑n

i=1 λi(q) = 1 (partition of unity property)
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Furthermore, the natural neighbor coordinates depend continuously on the planar coor-

dinates of q = (qx, qy). In fact, one can calculate the gradient of the “stolen” sub-cell area

Ai(q) with respect to the components of q. Let the m natural neighbors of q be denoted

{p1, . . . ,pm} and be arranged in counter-clockwise order around q (this numbering is

for convenience in the calculation of local quantities with respect to q and does not have

to match the global numbering scheme used in P). Additionally let the set {a1, . . . , am}

refer to the counter-clockwise ordered vertices of the virtual Voronoi cell of q. It can be

shown that

∇Ak(q) =
fk
dk

(
ak + ak+1

2
− q

)
=
fk
dk

(
~vk + ~vk+1

2

)
(F.7)

where fk = ||ak+1 − ak||, dk = ||pk − q||, and ~vk = ak − q. The gradient of λi(q) follows

trivially from application of the chain rule and the fact that A(q) =
∑

k Ak(q).

Having calculated the natural neighbor coordinates of q, we can infer the function

value ~Φ(q) via interpolation with respect to these coordinates. In particular, we choose

to use Sibson’s C1 interpolant [227]. Let

~Z0(q) =
∑
i

λi(q) ~Φ(pi) (F.8)

denote the linear combination of the neighbors function values weighted by the natural

neighbor coordinates. Furthermore, we define the functions

~ξi(q) = ~Φ(pi) + GT
i (q− pi), ~ξ(q) =

∑
i

λi(q)
||q−pi||

~ξi(q)

λi(q)
||q−pi||

, (F.9)

α(q) =

∑
i λi(q) ||q− pi||

λi(q)
||q−pi||

, (F.10)
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and

β(q) =
∑
i

λi(q) ||q− pi||2. (F.11)

In terms of these quantities, the interpolant is defined to be

~Z1(q) =
α(q) ~Z0(q) + β(q)~ξ(q)

α(q) + β(q)
(F.12)

Sibson noticed that this interpolant is C1 continuous with respect to the coordinates

of the query point q. This means that we can calculate analytic gradients of ~Z1(q)

with respect to q (making use of the gradient in Equation (F.7) in a series of chain rule

calculations). This property makes ~Z1 a suitable for use in gradient based optimization

procedures.

The application of natural neighbor interpolation to storing surfaces is straight for-

ward. We provide as input a set of points with defining a surface {V, U}. Here V are

the 3D coordinates of the points and U ∈ D are the 2D coordinates. Note that we do

not need to supply a face connectivity list F - any association between the points will

be through the Delaunay triangulation of U in R2.We can now evaluate updated surface

triangulations for any updated parameterization U ′. This is shown in Figure F.6.

F.3 Discretization of the Beltrami holopmorphic flow

In this section, we explain our numerical computation of the variation in a quasicon-

formal map w : D→ D under the variation of its associated Beltrami coefficient µ. This

implementation is based on the one formulated in [151]. Consider a triangulation of the

unit disk defined by a face connectivity list F and a set of vertex coordinates V , where

~xi ∈ D denotes the coordinates of the ith vertex. Let ~wi = (u1, u2) ∈ D denote the

updated coordinates of the ith vertex as the result of a quasiconformal mapping.
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Figure F.6: Evaluation of surfaces via natural neighbor interpolation for different 2D
parameterizations

Computation of the Beltrami coefficient

In the continuous setting, the map w : D→ D has an associated Beltrami coefficient

µ =
∂z̄w

∂zw
, (F.13)

where z = x1 + ix2 and w = u1 + iu2. In the discrete setting, the map w : D → D,

i.e. updated vertex coordinates, defines a set of piecewise constant affine transforations

for each triangle in the mesh. We can define a Beltrami coefficient on each face f by

discretizing Eq (F.13) in terms of the finite element method (FEM) gradient [27]. For a
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face f = [~xi, ~xj, ~xk], the gradient of a quantity h defined on each vertex is given by:

∇h =

∂xh
∂yh

 =
1

2Af

(
(hj − hi)(~xi − ~xk)⊥ + (hk − hi)(~xj − ~xi)⊥

)
, (F.14)

where Af is the area of face f and the symbol ⊥ denotes a counter-clockwise rotation

by 90 in the plane of the face. Geometrically, this operation converts a scalar quantity

defined on mesh vertices to a tangent vector defined on each mesh face. The Beltrami

cofficient on each face is therefore given by

µf =
(∂x1u

1 − ∂x2u2) + i(∂x1u
2 + ∂x2u

1)

(∂x1u1 + ∂x2u2) + i(∂x1u2 − ∂x2u1)
. (F.15)

For applications where we need to define the Beltrami coefficient on vertices, we can

simply average the face-based quantity in Eq (F.15)

µv =
∑
f∈Nv

αf µf , (F.16)

for a set of normalized weights {αf}. Experiments show that weighting this average by

the normalized internal angle adjacent to the vertex within each face produces better

results than simple averaging or area-weights. For notational convenience, we defined a

modified partial derivative operator D that includes this angle weighted averaging step,

i.e. Dxh maps scalar vertex quantites to vectors in the tangent space of each vertex.

We can define the vertex-based Beltrami coefficient directly in terms of these modified

operators

µv =
(Dx1u

1 −Dx2u
2) + i(Dx1u

2 +Dx2u
1)

(Dx1u1 +Dx2u2) + i(Dx1u2 −Dx2u1)
. (F.17)
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Computation of the BHF reconstruction

For both quasiconformal map reconstruction and surface function optimization, the

key step is the computation of the variation V [wµ, ν] of the map wµ under the variation

of µ. From Eq (5.11) and Eq (5.12), we have

V [wµ, ν](z) =

∫
D
K(z, ζ) dη1 dη2 (F.18)

where

K(z, ζ) = −w
µ(z) (wµ(z)− 1)

π
× ν(ζ) (∂ζw

µ(ζ))2

wµ(ζ) (wµ(ζ)− 1) (wµ(ζ)− wµ(z))
+

ν(ζ) (∂ζwµ(ζ))
2

wµ(ζ)
(

1− wµ(ζ)
)(

1− wµ(ζ)wµ(z)
)
 .

(F.19)

The quantities wµ and ν are defined on each vertex v. The derivative ∂zw
µ can be

approximated as

(∂zw
µ)v ≈

(Dx1u
1 +Dx2u

2) + i(Dx1u
2 −Dx2u

1)

2
. (F.20)

For each pair of vertices (vj, vk), the kernel K(vj, vk) can be assembled in terms of these

quantities. When K(vj, vk) is singular, we set K(vj, vk) = 0. Let Av denote the barycen-

tric area of each vertex, i.e.

Av =
1

3

∑
f∈Nv

Af . (F.21)

Then, V [wµ, ν] is can be approximated by

V [wµ, ν](vk) =
∑
vj

K(vj, vk)Avj . (F.22)

242



Section F.4 Evaluation and minimization of the optimal growth energy

It is frequently more convenient for computational implementations to re-express V [wµ, ν](z)

in the following way

V [wµ, ν](z) =

∫
D

G1ν1 +G2ν2

G3ν1 +G4ν2

 dη1 dη2, (F.23)

where G1, G2, G3, and G4 are real valued functions that can be derived from the form

of K(z, ζ) and can be discretized in the obvious way in terms of wµ and ν.

F.4 Evaluation and minimization of the optimal growth

energy

From Eq (5.26), the optimal growth energy for constant growth patterns with Γ̇ =

µ̈ = 0 is defined to be

Ẽ =

∫
D
d2~x
√
g0

[
c1||∇Γ||2 + c2|∇µ̇|2

]
, (F.24)

where we have modified the energy so that the area element
√
g0 is defined in terms of

the area at the initial time t = 0. This modification greatly simplifies the calculation of

the energy gradients and has the physical interpretation that contributions to the energy

should be weighted by the initial clonal area rather than the clonal area at the final time.

We use ∇ to denote the gradient of a quantity with respect to the fixed Lagrangian

coordinates ~x.

The input to our numerical optimization method requires a mesh triangulation with

an initial set of 3D vertex coordinates ~X0, an initial set of 2D vertex coordinates defining

the Lagrangian parameterization ~x0, and a set of 3D vertex coordinates ~X
(0)
T which will
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be converted to a non-parametric representation of the final shape using natural neighbor

interpolation. Let A
(0)
f denote the 3D area of face f in the initial configuration and let

Af denote the 3D area of face f in the final configuration at time t = T . The growth

rate Γ can be approximated on each face through

Af = A
(0)
f eΓf T =⇒ Γf =

1

T
log

[
Af

A
(0)
f

]
, (F.25)

and then mapped to values on vertices via the same angle-weighted averaging procedure

described in the previous section for face-based Beltrami coefficients. The optimal growth

energy can therefore be approximated as

Ẽ =
∑
f∈F

A
(0)
f

(
c1

∣∣∣∣∣∣∣∣A(0)
f

Af

(
∇ A

A(0)

)
f

∣∣∣∣∣∣∣∣2 + c2|(∇µ)f |2
)
, (F.26)

where we have exploited the fact that µ(T ) = T µ̇ for constant growth patterns with

conformal initial conditions to replace write the energy in terms of µ and we have ab-

sorbed factors of 1/T into the constants c1 and c2. This energy can now be minimized

using gradient descent methods over the space of vertex based Beltrami coefficients µv.

The gradients of the 3D configuration vertices with respect to the 2D mapping wµ are

calculated according to our natural neighbor interpolation scheme and the gradient of

the 2D mapping with respect to the Beltrami coefficients are computed according to the

BHF prescription. The full gradients of the energy with respect to the µv are computed

via the chain rule in terms of these quantities.
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[197] J. Prost, F. Jülicher, and J-F. Joanny. Active gel physics. Nature Physics,
11(2):111–117, feb 2015.

[198] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D. K. Fygenson, and
B. I. Shraiman. Collective and single cell behavior in epithelial contact inhibition.
Proceedings of the National Academy of Sciences, 109(3):739–744, jan 2012.

[199] Joshua R Puzey, Sharon J Gerbode, Scott A Hodges, Elena M Kramer, and L Ma-
hadevan. Evolution of spur-length diversity in Aquilegia petals is achieved solely
through cell-shape anisotropy. Proceedings of the Royal Society B: Biological Sci-
ences, 279(1733):1640–1645, apr 2012.

261
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[244] Jean Paul Thiery, Hervé Acloque, Ruby Y.J. Huang, and M. Angela Nieto.
Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139(5):871–
890, nov 2009.

[245] D H Thompson, E Tarleton, S G Roberts, and S P Fitzgerald. Interstitial-mediated
dislocation climb and the weakening of particle-reinforced alloys under irradiation.
Physical Review Materials, 2(8):080601, aug 2018.

[246] D’Arcy Wentworth Thompson. On Growth and Form. Cambridge University Press,
Cambridge, UK, first edition, 1917.

265
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