
Lawrence Berkeley National Laboratory
LBL Publications

Title
A Full-Stack Exploration of Language-Based Parallelism in Fortran 2023

Permalink
https://escholarship.org/uc/item/32q554jm

Authors
Rasmussen, Katherine
Rouson, Damian
Bonachea, Dan
et al.

Publication Date
2024-09-30

DOI
10.25344/S4RP5K

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, available at https://creativecommons.org/licenses/by-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32q554jm
https://escholarship.org/uc/item/32q554jm#author
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Poster at CARLA2024: Latin America High Performance Computing Conference

A Full-Stack Exploration of Language-Based
Parallelism in Fortran 2023

Katherine Rasmussen, Damian Rouson, Dan Bonachea, Brad Richardson
Computer Languages and Systems Software Group and NERSC

Lawrence Berkeley National Laboratory, USA
fortran.lbl.gov

fortran@lbl.gov

ABSTRACT

This poster explores native parallel features in Fortran 2023 through the lens of supporting applications
with libraries, compilers, and parallel runtimes. The language revision informally named Fortran 2008
introduced parallelism in the form of Single Program Multiple Data (SPMD) execution with two broad
feature sets: (1) loop-level parallelism via do concurrent and (2) a Partitioned Global Address Space
(PGAS) comprised of distributed “coarray” data structures. Fortran’s native parallelism has demonstrated
high performance [1] and reduced the burden of inserting what sometimes amounts to more directives
than code. Several compilers support both feature sets, typically by translating do concurrent into
serial do loops annotated by parallel directives and by translating SPMD/PGAS features into direct calls
to a communication library. Our research focuses primarily on two questions: (1) can the compiler’s
parallel runtime library be developed in the language being compiled (Fortran) and (2) can we define an
interface to the runtime that liberates compilers from being hardwired to one runtime and vice versa. We
are answering these questions by developing the Parallel Runtime Interface for Fortran (PRIF) [2] and the
Co-Array Fortran Framework of Efficient Interfaces to Network Environments (Caffeine) [3]. Caffeine is
initially targeting adoption by LLVM Flang, a new open-source Fortran compiler developed by a broad
community in industry, academia, and government labs. We are also exploring the use of these features
in Inference-Engine, a deep learning library designed to facilitate neural network training and inference
for high-performance computing applications written in modern Fortran.

REFERENCES

[1] S. Garain, D. S. Balsara, and J. Reid, “Comparing Coarray Fortran (CAF) with MPI for several
structured mesh PDE applications,” Journal of Computational Physics, vol. 297, pp. 237–253, 2015,
doi:10.1016/j.jcp.2015.05.020.

[2] D. Bonachea, K. Rasmussen, B. Richardson, and D. Rouson, “Parallel Runtime Interface for Fortran
(PRIF) Specification, Revision 0.4,” Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-
2001604, July 2024, doi:10.25344/S4WG64.

[3] D. Rouson and D. Bonachea, “Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network
Environments,” in Proceedings of the Eighth Annual Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC2022), November 2022, doi:10.25344/S4459B.

https://fortran.lbl.gov
mailto:fortran@lbl.gov
https://doi.org/10.1016/j.jcp.2015.05.020
https://doi.org/10.25344/S4WG64
https://doi.org/10.25344/S4459B

GASNet-EX

System Runtime & Memory Technologies

Caffeine

Application

A Full-Stack Exploration of Language-
Based Parallelism in Fortran 2023

Katherine Rasmussen, Dan Bonachea,
Brad Richardson, Damian Rouson

Lawrence Berkeley National Laboratory, USA
fortran.lbl.gov

• Can the compiler’s parallel runtime library
be developed in the language being
compiled (Fortran)?

• Can we define an interface that liberates
parallel Fortran compilers from being
hardwired to one parallel runtime library
and vice versa?

Parallel Fortran
The first widely used programming language, Fortran evolved to embrace modern
programming paradigms with the Fortran 2003 advent of object-oriented programming
and the Fortran 2008 introduction of parallel programming. Expanded further in 2018
and 2023, the native parallel features support the execution of multiple images (program
instances, e.g., SPMD processes); coarrays (distributed data structures supporting one-
sided communication); synchronization mechanisms; collective procedures; atomic
variables; events (counting semaphores); locks and critical blocks; image teams (subsets);
and loop-level parallelism via do concurrent.

LLVM Flang
The open-source LLVM Flang Fortran compiler parses parallel Fortran, but cannot yet
compile programs for multi-image execution. We develop an interface and a supporting
runtime library that will add parallel support to Flang and other compilers.

• Caffeine is a PRIF implementation written primarily in Fortran.

• Caffeine currently supports most commonly used parallel Fortran features including
program launch and termination; coarray allocation and communication; collective
subroutines; synchronization; image enumeration; and more.

• We are continuing work on Caffeine
to support all parallel Fortran features,
with atomics and events feature
support up next.

• Caffeine runs atop GASNet-EX,
LBNL’s exascale networking library.

• We are initially targeting the adoption
of PRIF and Caffeine by the
LLVM Flang compiler.

• For more on Caffeine, see:
Rouson & Bonachea (2022) “Caffeine: CoArray Fortran Framework of Efficient Interfaces to
Network Environments" LLVM-HPC'22 doi:10.25344/S4459B

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research.
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Research Questions Background

Outcomes

Caffeine: A PRIF Implementation

Figure 1: Parallel Fortran Software
Stack including PRIF

• Contributed static semantics tests,
compile-time error checking, and frontend
bug fixes to Flang.

• Published the PRIF specification and
submitted a design document to LLVM.

• Developing the Caffeine parallel runtime
with many widely used features already
supported.

• Investigating the use of parallel Fortran
features in deep learning algorithms in
LBNL’s Inference-Engine library:
go.lbl.gov/inference-engine.

Parallel Runtime Interface for Fortran (PRIF)
• PRIF is the first compiler- & runtime-library-agnostic interface to multi-image parallel

Fortran features: any compiler targeting PRIF can use any library that supports PRIF.

• PRIF specifies a “prif” Fortran module containing derived types, named constants,
and procedure interfaces that support parallel Fortran features.

• PRIF procedures correspond to features defined by the Fortran specification, e.g.,

• prif_num_images supports the Fortran intrinsic function num_images
• prif_allocate_coarray supports coarray declarations

• A compiler targeting PRIF is responsible for transforming parallel features in the user's
Fortran source code into corresponding PRIF library procedure calls.

• For more information, see the PRIF specification:
D. Bonachea, K. Rasmussen, B. Richardson, and D. Rouson, “Parallel Runtime
Interface for Fortran (PRIF) Specification, Revision 0.4,” Lawrence Berkeley National
Laboratory (LBNL), Tech. Rep. LBNL-2001604, July 2024, doi:10.25344/S4WG64.

Figure 2: Fortran intrinsic procedure
calls and their PRIF equivalents

t
g

l

,

me = this_image()

call co_sum(a, result_image=1)

call prif_this_image(image_index=me)

call prif_co_sum(a, result_image=1_c_int)

Fortran source code with parallel features

Corresponding PRIF calls

https://fortran.lbl.gov/
https://fortran.lbl.gov/
https://doi.org/10.25344/S4WG64
https://dx.doi.org/10.25344/S4459B
https://go.lbl.gov/inference-engine
https://gasnet.lbl.gov
https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4WG64

	Abstract
	Poster

