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OPEN

ORIGINAL ARTICLE

Transcriptomic variation of pharmacogenes in multiple human
tissues and lymphoblastoid cell lines
A Chhibber1,16, CE French2,16, SW Yee1,16, ER Gamazon3,4,16, E Theusch5, X Qin6, A Webb7, AC Papp8, A Wang5, CQ Simmons3,
A Konkashbaev3, AS Chaudhry9, K Mitchel5, D Stryke10, TE Ferrin10, ST Weiss11, DL Kroetz1, W Sadee8,12, DA Nickerson13, RM Krauss5,
AL George14, EG Schuetz9, MW Medina5, NJ Cox3, SE Scherer6, KM Giacomini1 and SE Brenner2,15

Variation in the expression level and activity of genes involved in drug disposition and action (‘pharmacogenes’) can affect drug
response and toxicity, especially when in tissues of pharmacological importance. Previous studies have relied primarily on
microarrays to understand gene expression differences, or have focused on a single tissue or small number of samples. The goal of
this study was to use RNA-sequencing (RNA-seq) to determine the expression levels and alternative splicing of 389
Pharmacogenomics Research Network pharmacogenes across four tissues (liver, kidney, heart and adipose) and lymphoblastoid cell
lines, which are used widely in pharmacogenomics studies. Analysis of RNA-seq data from 139 different individuals across the
5 tissues (20–45 individuals per tissue type) revealed substantial variation in both expression levels and splicing across samples and
tissue types. Comparison with GTEx data yielded a consistent picture. This in-depth exploration also revealed 183 splicing events in
pharmacogenes that were previously not annotated. Overall, this study serves as a rich resource for the research community to
inform biomarker and drug discovery and use.

The Pharmacogenomics Journal (2017) 17, 137–145; doi:10.1038/tpj.2015.93; published online 9 February 2016

INTRODUCTION
Variation in the expression levels and splicing of drug metaboliz-
ing enzymes, transporters and targets, such as receptors and ion
channels, has been associated with inter-individual differences in
optimal drug dose, drug efficacy and adverse drug events.1,2 Thus,
a comprehensive study of variation in the transcriptome profiles of
pharmacologically relevant tissues promises to yield important
insights into the molecular basis of variation in drug response.
Technological advances in quantifying the transcriptome and
the rapid development of high-throughput screening methodo-
logies have led to the identification and characterization of
many biomarkers of drug response.3,4 These innovations have
transformed the way we design and analyze pharmacogenomics
studies and are increasingly informing development of
approaches to clinical practice.
Transcriptome sequencing, or RNA-sequencing (RNA-seq), is

facilitating analyses at the transcript level with an unprecedented
resolution. As the technology has developed, longer reads and
higher throughput have allowed for detailed evaluation of whole
transcriptomes across many samples.5 Analytical approaches have

emerged, including Cufflinks6 and DESeq7 for gene expression
analysis and DEXSeq,8 MISO9 and JuncBASE10 for splicing analysis.
However, the use of next-generation sequencing technology
for pharmacogenomics research has been limited.4,11 Although
community-wide efforts such as the Genotype Tissue Expression
Project12 are facilitating studies of expression quantitative trait
loci, there has not been an application of RNA-seq to large sample
sets across diverse human tissues with a focus on genes involved
in drug disposition and tissues of greater pharmacological
relevance and action.
In pharmacogenomics, polymorphisms that affect expression

levels or result in alternative splicing of drug metabolizing
enzymes are known to have large effects on drug disposition
and response. For example, UGT1A1*28 (rs8175347), with seven
thymine–adenine13 repeats in the promoter region, leads to
reduced transcription rates of this enzyme and profound toxicity
in patients receiving the topoisomerase inhibitor, irinotecan.14,15

Likewise, alternative splicing of CYP2D6 occurs frequently in
human populations and is responsible for reduced activity of the
enzyme.16 Given these large and clinically important effects in
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drug-metabolizing enzymes, a systematic study of the transcrip-
tome with a focus on pharmacogenes is clearly needed. Although
several research groups have performed transcriptome profiling
and alternative splicing event analyses in human cell lines and
tissues,17–19 these studies are limited to single tissue types or
use pooled samples. Thus, information about inter-individual
variation in gene expression and splicing from a given tissue
type or inter-tissue variation is limited, despite the value of such
studies in identifying biomarkers for differential drug response
or toxicity.
Given these limitations, the National Institutes of Health-

supported Pharmacogenomics Research Network (PGRN) initiated
a transcriptome sequencing project to catalog variation in gene
expression and splicing across individuals in tissues and genes of
pharmacologic importance. Tissues studied include liver, a key
organ for drug metabolism,20,21 kidney, the site of excretion for
many drugs,22 as well as heart and adipose tissue, where
pharmacogenes can affect local drug distribution and action.23

Lymphoblastoid cell lines (LCLs) were also included, as they
have been widely used as a cell-based model for a variety of
pharmacogenomics studies.24–26 In this article, we characterized
the variability in the expression and splicing of 389 PGRN
pharmacogenes across individuals and between four human
tissue types and LCLs, and identified novel alternative splicing
events in these samples. Furthermore, we provide this information
for community use, in the form of expression and splicing profiles
for 139 individuals. This resource will be valuable for future
pharmacogenomics studies as both a discovery and validation
platform.

MATERIALS AND METHODS
Selection of pharmacogenes
Protein coding genes were defined as those with a start codon in the
Gencode v12 (ref. 13) annotation. A subset of these was defined as ‘PGRN
pharmacogenes’. Our list of 389 pharmacogenes was compiled from
PharmGKB,27 a curated knowledge base about the impact of genetic
variation on drug response, PharmaADME,28 the US Food and Drug
Administration (FDA) Pharmacogenomics Biomarkers29 and the
literature.24,30–33 Genes that are annotated in at least two of these
resources or publications were selected as PGRN pharmacogenes. These
include 160 enzymes, 84 transporters, 15 ion channels, 27 receptors, 24
nuclear receptors and other transcription factors, as well as 22 other genes,
including G-protein coupled receptors that are drug targets and have an
important role in drug disposition, response or toxicity (Supplementary
Table S1).

Tissue collection, RNA isolation and preparation of RNA-seq library
Tissue from 24 liver, 20 kidney (cortex), 25 heart (left ventricle), 25 adipose
(subcutaneous) samples and 45 LCLs were obtained from PGRN research
groups: the Pharmacogenomics of Anticancer Agents Research in Children
provided liver tissues, Pharmacogenomics of Membrane Transporters
provided kidney samples, Pharmacogenomics and Risk of Cardiovascular
Disease provided adipose tissue and LCLs, and Pharmacogenomics of
Arrhythmia Therapy provided heart tissue. Demographic information on
the samples is described in Supplementary Table S2.
Total RNA was extracted for each sample, selected for mRNA by poly-A

selection, and then fragmented to a mean length of ~ 120 to 180 base
pairs. Strand-specific complementary DNA libraries were prepared and
sequenced on an Illumina HiSeq 2000 (San Diego, CA, USA) at depths of
45–171 million paired-end 100 bp reads per sample.

Alignment and transcriptome analysis
Raw reads were mapped to the human genome sequence (hg19)34 using
Tophat v2.0.635 and PCR duplicates were removed. Some samples had a
low percentage of unique reads likely due to limited starting material.
Transcript structure assembly was performed with Cufflinks (v.2.0.2)6 on
each sample for each tissue type. To control for differing sequencing
depths between tissue types, and the variable number of samples
analyzed for each tissue type, gene expression analysis was performed

on a subset of the data: 20 million reads per sample and 18 samples per
tissue type. Gene expression values (in Fragments per Kilobase of Exon
Mapped, FPKM) were calculated by summing per-isoform FPKM values
generated by Cuffdiff (v2.2.1)6 for each sample or by tissue type.
Throughout, gene estimates are used unless isoforms are specifically
mentioned.
To discover novel splice events and analyze differential splicing, the

subsampled reads were run through the JuncBASE v0.610 pipeline.
JuncBASE uses junction reads from an RNA-seq experiment to calculate
inclusion and exclusion of individual splicing events. These are measured
as percent spliced in (PSI). Such measures are generally more reliable than
isoform reconstruction as they require less inference.

Validation
To validate selected splice events that were not found in the gene
annotations, we created primers specific to the novel event and looked for
amplification by PCR using pooled liver complementary DNA
(Supplementary Figure S1). To validate the PSI estimates derived from
RNA-seq, PSI values for two common and previously annotated splice
variants in HMGCR13(− )13 and LDLR4(− ),13 were quantified by quantitative
PCR in LCLs (n=39) from the same RNA that was used to prepare the RNA-
seq libraries. The PSI values for these two events in LCLs calculated by
quantitative PCR and RNA-seq were positively correlated with R2-values of
0.43 and 0.5, respectively (Supplementary Figure S2).
To validate the patterns of pharmacogene expression and splicing

identified in this study, we analyzed data from the Genotype Tissue
Expression Project (v4).36 Expression (RPKM, mapped reads per kilobase
per million mapped reads) values per individual per gene were down-
loaded from the Genotype Tissue Expression Project portal (http://
gtexportal.org) to study the variability in gene expression and patterns
of expression across tissues. Aligned reads were downloaded from SRA/
dbGaP and run through the JuncBASE pipeline in the same way as was
done for the PGRN data to compare differential splicing patterns between
the two data sets and novel junctions identified in the PGRN data set.
Further details regarding all methodology are included in the

Supplementary methods.

RESULTS
The PGRN RNA-seq project
The PGRN RNA-seq project was designed to provide in-depth
investigation of the transcriptomes of pharmacologically relevant
human tissues with a focus on genes of particular interest to the
pharmacogenomics community (Figure 1). In order to study inter-
individual variability in expression and splicing of PGRN pharma-
cogenes (Supplementary Table S1), we generated transcriptome
sequencing data from 24 liver, 20 kidney, 25 heart and 25 adipose
samples and 45 LCLs (Supplementary Table S2). For each sample,
reads were mapped to the human genome,35 resulting in 10–97
million mapped reads per sample. To control for this substantial
difference in sequencing depth and sample number between
tissues, 18 samples for each tissue were selected and subsampled
down to 20 million reads/sample for further expression and
splicing analyses, resulting in a total of 90 samples. Gene
expression and splicing results are available for download for
all samples (http://pharmacogenetics.ucsf.edu/expression/rnaseq
data.html). The expression profiles of all pharmacogenes across
tissues and individuals is included in Supplementary Figure S3. A
brief overview of alternative splicing and gene expression of all
protein-coding genes can be found in the Supplementary Results.

Analysis of PGRN pharmacogene gene expression
We found that 161 (of 389) of our PGRN pharmacogenes were
expressed at FPKM ⩾1 in at least one sample across all 5 tissue
types in our data set and 87 pharmacogenes were expressed at
FPKM ⩾ 1 in all samples of all 5 tissue types (Supplementary Table
S3A). As a group, PGRN pharmacogenes were significantly
enriched for variable gene expression between individuals, and
were among the top 10 most variably expressed gene sets
(classified by gene ontology biological process37) in the

Transcriptome profiles of 389 pharmacogenes
A Chhibber et al

138

The Pharmacogenomics Journal (2017), 137 – 145

http://gtexportal.org
http://gtexportal.org
http://pharmacogenetics.ucsf.edu/expression/rnaseqdata.html
http://pharmacogenetics.ucsf.edu/expression/rnaseqdata.html


physiological tissues (Supplementary Table S4). We also observed
subsets of pharmacogenes that showed similar patterns of
expression across the different tissues (k-means clustering of
gene expression of 389 pharmacogenes, Figure 2a). For example,
some pharmacogenes were expressed consistently at low levels
across all tissues and samples (for example, ABCC12 and ESR2,
Figure 2b). In contrast, 11 pharmacogenes were very highly
expressed, although to different levels, across all tissues and LCLs
(Figure 2c); these include genes involved in mitochondrial
structure or function (ADH5, ALDH2, CYB5R3 and SOD2) and
glutathione transferase activity (GSTK1, GSTO1 and GSTP1).37

Not surprisingly, PGRN pharmacogenes are generally more
highly expressed in liver compared with the other tissues
(Supplementary Figure S4). Many genes coding for xenobiotic
metabolizing enzymes and transporters were highly and specifi-
cally expressed in the liver, an organ important for drug
metabolism (Figure 2d, Supplementary Table S5A). Pharmaco-
genes expressed at highest abundance in the kidney, the major
organ for secretion and reabsorption, include a number of solute
carrier transporters (SLC genes; Figure 2e), which have important
roles in drug secretion or reabsorption,38 as well as enzymes such
as ABP1 and FMO1. In addition, pharmacogene expression levels in
the liver and kidney varied greatly among individuals. For
example, the expression levels of a number of CYPs in the liver
and SLC transporters in the kidney varied by over 100- and
1000-fold, respectively (Figure 3).
The list of PGRN pharmacogenes included 119 (out of 389)

genes that are currently drug targets or are under clinical
development as potential targets for various diseases.39 These drug
target genes may be expressed abundantly in tissues not primarily
involved in drug disposition. For example, a small number of
pharmacogenes were highly expressed solely in the heart
(Figure 2f). These genes are all involved with cardiac contractility
and include, for example, ion channels involved in cardiac
conductance (SCN5A, CACNA1C and KCNH2) that are targeted by
many drugs.40–42 Most pharmacogenes expressed (FPKM ⩾ 1) in
adipose tissue were expressed in other tissues as well (Figure 2a).

The strongest correlation of pharmacogene expression profiles
among tissues were detected between adipose and heart (r=0.83),
as is true for all protein-coding genes expression between adipose
and heart (r=0.90; Supplementary Table S6).
Compared with the four physiological tissues, LCLs showed

lower overall expression levels of pharmacogenes: proportionally
fewer pharmacogenes were expressed in at least one LCL sample
or expressed in all LCL samples compared with all protein-coding
genes (χ2-test: 48 vs 64%, Po0.0001 and 30 vs 48%, Po0.0001 in
at least one sample or all samples, respectively, Supplementary
Table 3). Pharmacogenes expressed at lower levels in LCLs than in
the tissues assayed include genes important for drug disposition
—for example, genes coding for enzymes (cytochrome P450s,
UGTs and SULTs), SLC transporters, ion channels and receptors
(Supplementary Table S5B).

Analysis of PGRN pharmacogene splicing
We found that 278 of the 389 pharmacogenes (72%) showed clear
evidence of being alternatively spliced (⩾2 isoforms) in our data
set. Receptor and channel genes are the least alternatively spliced
(o50%, Supplementary Table S7), although, likely due to the
small numbers of genes, only receptors are significantly depleted
(Bonferroni-corrected Po0.05, hypergeometric test). Another 66
pharmacogenes had inconclusive evidence of being alternatively
spliced either because the alternative splice event is very rare, or
because of low gene expression. The other 45 pharmacogenes are
substantially expressed (FPKM410) in at least one sample but
have no evidence of alternative splice events in this data set.
Differential alternative splicing between pairs of tissues was

evident for dozens of PGRN pharmacogenes (Wilcoxon test, False
Discovery Rateo0.05; difference in median PSI 45 Supplementary
Table S8), with LCLs showing the greatest differences in splicing
events compared with the other tissues. We also found dozens of
inferred splice events that were only observed in one of our five
tissue types, often because the gene was not expressed in other
tissues but also possibly because only alternative splice events
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Figure 1. Overview of the Pharmacogenomics Research Network (PGRN) RNA-seq project. (1) 389 ‘PGRN pharmacogenes’ were selected
representing genes that have a key role in drug disposition. (2) RNA from multiple samples for human liver, heart, kidney, adipose tissue and
lymphoblastoid cell lines was collected. (3) Complementary DNA libraries were prepared from these samples and sequenced using an Illumina
HiSeq 2000. (4) Rigorous pre- and post- alignment quality control procedures were applied to the data. (5) Gene expression was quantified
and splicing events identified for the PGRN pharmacogenes across samples and tissue types. This information is provided as a resource to the
pharmacogenomics community.
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were used in those tissue types (Figure 4a). When we control for
gene expression differences between tissues by requiring the
potentially alternatively spliced region to have high total read
coverage in a number of samples for the four other tissues, we see
only a very small fraction of genes (0–5%) have tissue-specific
splice events (Supplementary Table S9).

Notably, a total of 183 alternative splicing events (in 102 out of
389 genes) included splice junctions not previously annotated, but
which were present with a robust coverage of at least 5 reads/
100 bp in at least one sample (Figure 4b). The greatest number of
previously non-annotated pharmacogene splicing events was
observed in the liver samples, likely because many of those genes

Figure 2. (a) Heatmap of the 389 Pharmacogenomics Research Network pharmacogenes’ expression (Fragments per Kilobase of Exon
Mapped, FPKM) across 90 samples. Samples are arranged horizontally, grouped by tissue. Pharmacogenes are arranged vertically, grouped by
clusters identified by k-means clustering; clusters are indicated by colors along the left side of the heatmap. Selected clusters show (b) genes
expressed at low levels across all samples (ABCB5, ABCC12, ABCC8, ADH7, ADRB3, ALDH3A1, BDNF, CACNA1S, CFTR, CHRM3, CHST13, CHST4, CHST5,
CHST6, CHST8, CRHR1, CYP11B1, CYP11B2, CYP26A1, CYP26C1, CYP2A13, CYP2F1, CYP2S1, CYP4F8, CYP4Z1, CYP7A1, DRD1, DRD2, DRD3, DRD4, DRD5,
ESR2, FMO6P, GNB3, GRM3, GSTA3, GSTA5, GSTT2, HTR1A, HTR2A, IL28B, KCNE2, MMP3, OPRM1, P2RY1, PNMT, PRSS53, RYR1, SCN3B, SLC10A2,
SLC22A13, SLC22A14, SLC22A16, SLC22A4, SLC28A2, SLC28A3, SLC6A3, SLC6A4, SLCO1A2, SLCO6A1, SULT1A3, SULT4A1, TPH1, TPH2, TPSG1, UGT1A10,
UGT1A5, UGT1A8, UGT2B11 and UGT2B28) (c) genes highly expressed across all samples (ADD1, ADH5, ALDH2, CYB5A, CYB5R3, GSTK1, GSTO1,
GSTP1, HLA-B, RPL13 and SOD2) or genes expressed at higher levels in (d) liver (ABCB4, ABCC2, ADH1A, ADH4, APOA4, APOB, CYP2A6, CYP2B6,
CYP2C18, CYP2C8, CYP2C9, CYP2D6, CYP2J2, CYP3A4, CYP3A5, CYP4F11, CYP8B1, F2, F5, MAT1A, NAT2, PON1, PON3, SERPINA7, SLC22A1, SLCO1B1,
SLCO1B3, SULT2A1, UGT1A1, UGT1A4, UGT2B10, UGT2B15 and UGT2B4), (e) kidney (ABP1, FMO1, GSTA2, GSTO2, HSD11B2, SLC13A1, SLC13A3,
SLC22A11, SLC22A12, SLC22A2, SLC22A6, SLC22A8, SULT1C2 and UGT8), or (f) heart (ADRB1, CACNA1C, KCNH2, NPPB, RYR2 and SCN5A). Gene names
are listed in order from top to bottom in each cluster in the figure. Plot drawn using R package gplots. LCL, lymphoblastoid cell line.74
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Figure 3. Gene expression (Fragments per Kilobase of Exon Mapped, FPKM) by sample across each tissue type and lymphoblastoid cell lines
(LCLs) for selected cytochrome P450 (CYP) enzymes, solute carrier family (SLC) transporters, and other pharmacogenes discussed in this article
from subsampled data (18 samples per tissue type, 20 million reads per sample). The black dot indicates median FPKM per gene and tissue
type. See Supplementary Figure 3 for plots for all pharmacogenes. Plots drawn using R package ggplot2.75
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are very highly expressed in that tissue, making it easier to
observe these often low expressed events. One of the novel
splicing events observed in liver was an alternative last exon of
SLC22A7, a gene that encodes a transporter of endogenous
compounds and prescription drugs (Figure 4c). This newly found
alternative event was validated by PCR (Supplementary Figure S1),
is predicted to produce a protein with a truncated C terminus, and
was substantially and variably expressed in the liver samples. A
novel splicing event observed in heart was in SCN5A, a gene
encoding a sodium channel important in maintaining normal
cardiac rhythm (Figure 4d). Observed in three heart samples, this

novel alternative 3ʹ splice site in exon 23 excludes 83 bases and
generates a downstream premature termination codon that is
expected to cause the transcript to be degraded by the nonsense-
mediated mRNA decay pathway.

DISCUSSION
Over the last several years, there have been many studies using
RNA-seq to quantify gene expression and to identify novel
alternative splicing events in many tissue and cell types.43–48 Here,
we applied this approach to characterize the expression of 389
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Figure 4. (a) Splice events in Pharmacogenomics Research Network pharmacogenes with PSI (percent spliced in) ⩾ 5 and coverage ⩾ 1 reads/
100 bp in at least one sample of one tissue and no coverage in any of the four other tissues. (b) Splice events in pharmacogenes not present in
current gene annotations with coverage ⩾ 5 reads/100 bp in at least one sample. These splice events were identified in 68, 31, 18, 16, and 10
pharmacogenes in liver, kidney, heart, adipose tissue and lymphoblastoid cell lines (LCLs), respectively. (c) An alternative last exon in SLC22A7,
not previously annotated, was observed in liver samples and would alter the C-terminal end of the protein. Chart: fraction of transcripts from
SLC22A7 that contain the novel (white) or known (black) splice event in each liver sample. Inset: reads crossing the alternative junctions in a
liver sample. (d) A novel alternative 3’ splice site in SCN5A was identified that results in an 83-base deletion of the coding sequence of SCN5A,
creating a premature stop codon expected to trigger nonsense-mediated mRNA decay. Chart: fraction of transcripts from SCN5A that contain
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genes of pharmacologic importance (genes involved in drug
disposition, response or toxicity) in multiple human tissue types
and LCLs. Unlike many other transcriptome profiling studies using
RNA-seq, this report presents findings for multiple samples across
tissues, allowing the capture of inter-individual variation in
expression levels in addition to comparison of expression and
splicing across different tissues. Further, results in multiple
subjects act as biological replicates for a given tissue type,
allowing for a more accurate representation of tissue-specific
splicing and expression. By incorporating inter-individual variation
in our study of several human tissues, our data represent an
important addition to our understanding of human transcrip-
tomics. This data set is available at http://pharmacogenetics.ucsf.
edu/expression/rnaseqdata.html (and at doi:10.6078/D1RG66).
In comparing global analyses of protein-coding and pharmaco-

gene expression, we observed several interesting patterns.
Prominently, the majority of PGRN pharmacogenes were
expressed at lower levels in LCLs compared with the four
physiological tissues studied, in contrast to expression levels
across all protein-coding genes. As an actively and aggressively
proliferating cell type, gene expression in LCLs is tuned to growth,
and thus relative expression of genes involved in other cellular
processes may be suppressed. Furthermore, it is possible that
peripheral B-lymphocytes, the primary cells from which LCLs are
derived, also show significantly different patterns of expression
from the other four physiological tissues included in this study.
These results suggest that consideration of the phenotype and
gene of interest is important when using LCLs as a proxy for other
tissues in pharmacogenetic studies, as well as when using tissues
as proxies for each other. Overall, more pharmacogenes were
expressed at higher levels in the liver compared with other tissues.
Although this result is not unexpected given the importance of
the liver in drug metabolism and transport and the bias toward
liver-specific genes in the field of pharmacogenomics, it also
demonstrates the importance of conducting studies in samples of
the relevant tissue type where possible. We also observed high
correlation in gene expression values between adipose and heart
tissues among both protein-coding genes and the subset of PGRN
pharmacogenes. This result is consistent with the finding that
adipose derived stem cells have been shown to spontaneously
differentiate into cardiomyocytes and that both adipose and
cardiac tissues derive from the mesoderm.49,50

We also observed interesting patterns of alternative splicing
in this study, including the discovery of splicing events not
previously annotated and significant differential splicing between
LCLs and other tissue types. Since splicing detection is dependent
on sequencing coverage and the number of samples analyzed, we
investigated the effects of subsampling down the number of
reads and samples to make them equivalent between tissues
(Supplementary Results, Supplementary Figure S6). Using only 18
samples per tissue, we were still able to detect 95% of splice
events we would be able to observe with all samples in our data
set. Subsampling the reads limits the detection of rare splicing
events and that particularly affects novel splice events, as they
generally have low PSI values and, thus, low read coverage
(Supplementary Figure S7), or occur in only a small number of
samples. As rare splice events may represent physiologically
relevant alternative splicing, the splicing results from using all of
our data (all reads, all samples) are also available to download.
Among the splicing events identified, we observe both

previously characterized as well as novel alternative splicing
events. For example, an alternative 3ʹ splice site in the drug target
SCN5A generates a premature termination codon predicted to
trigger the nonsense-mediated mRNA decay pathway (NMD).
SCN5A encodes the main cardiac voltage-gated sodium channel
important in maintaining normal cardiac conduction. A number of
drugs target sodium channels, including antiarrhythmics and non-
antiarrhythmic sodium channel blockers. Changes in structure,

activity and expression of drug targets, such as that encoded by
SCN5A, can alter the efficacy of drugs designed to target these
proteins.51,52 This event may be indicative of a novel role for
alternative splicing coupled with NMD in the regulation of this
gene.53 In addition, a novel truncated isoform of the transporter
SLC22A7 was identified. The gene SLC22A7 is expressed in both
kidney and liver and is important for transport of endogenous
compounds54 and a number of prescription drugs.55–57

We also observed substantial variability in gene expression,
particularly among drug transporters and drug metabolizing
enzymes. In the liver, several cytochrome P450 (CYP) enzymes
showed significant variability in expression levels between
individuals; such variability can drive differences in drug
metabolism across individuals, leading to variation in drug efficacy
and susceptibility to toxicity.58 One example includes CYP3A4,
which is responsible for activation and deactivation of a number
of drugs by oxidation in the liver. Induction of CYP3A4 by
concomitant medications or dietary supplements is well-estab-
lished, and is considered a major source of variation in drug
response.59 The enormous inter-individual variation in the
expression levels of CYP3A4 we observe in the liver samples
may be due to differences in diet, including dietary supplements,
or medications among the individuals, in addition to genetic
variation. Like drug metabolism, renal elimination of drugs is also
variable across individuals in part due to the variation in renal
secretion and reabsorption; this variation can be driven by
differences in expression levels of renal transporters across
individuals. We observed profound differences in the expression
levels of renal secretory and reabsorptive transporters, particularly
the SLCs. For example, expression of the uric acid transporter
SLC22A12 varied almost 1000-fold between individuals in the
kidney (Figure 3). As a target for drugs that treat hyperuricemia,60

the expression level of SLC22A12 could be an important
determinant of drug response.
As is true of any study using human organs, while only healthy

tissues were used for mRNA extraction, the patients themselves
may have had a disease affecting other organs or may have been
taking medications. In particular for the study of pharmacogenes,
the variability in xenobiotic exposure is a concern, as such
exposure is known to alter pharmacogene expression61,62 and
splicing63–67 profiles. The fact that the variability in splicing and
expression both within and between tissues was similar to that
identified in an analogous analysis of an independently derived
RNA-seq data set (from the GTEX project, see Supplementary
Results) suggests that the patterns of splicing and expression
detected are not driven by a single overrepresented disease,
phenotype or environmental exposure in our data set. However, in
both data sets the variability detected may be driven in part by
differences in health status or exposures between individuals.
Other potential sources of variability in our dataset include subtle
differences in cellular composition of the tissue samples or sample
collection protocols, as well as patient age and sex;68,69 for
example, a few pharmacogenes appeared to show higher
expression levels in samples from pediatric patients. Given the
small sample sizes and skewed sex and age distributions in some
of the tissue types, this study was not optimal for investigating
variation due to these two factors. Finally, despite substantial
variability in expression in some pharmacogenes between
individuals, other pharmacogenes showed very consistent expres-
sion between tissues and/or across individuals (e.g., ADH5 and
GSTK1), suggesting that the extensive variability observed was not
driven by noise in the experimental process.
Pharmacogenomic studies have largely focused on the effects

of genetic polymorphisms in pharmacogenes on drug response
and drug toxicity.70,71 Our data suggest that genes involved in
drug disposition and toxicity can be variably spliced and
expressed among individuals and across tissues. Furthermore,
given that splicing can affect expression, localization and function
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of genes,72,73 our results suggest that splicing may be a relatively
unexplored source of variability in drug response, toxicity and
efficacy. Transcriptome profiling (including both expression and
splicing) of pharmacogenes may be a valuable tool for identifica-
tion of mechanisms and possible prediction of drug response
variability. As the first in-depth analysis of transcript structure and
expression of genes that have a key role in drug disposition, this
PGRN RNA-seq resource will be valuable for biomarker and drug
target discovery and validation.
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