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Abstract
Increasing farmers’ adoption of sustainable nitrogen management practices is crucial for improving water quality. Yet,
research to date provides ambiguous results about the most important farmer-level drivers of adoption, leaving high levels of
uncertainty as to how to design policy interventions that are effective in motivating adoption. Among others, farmers’
engagement in outreach or educational events is considered a promising leverage point for policy measures. This paper
applies a Bayesian belief network (BBN) approach to explore the importance of drivers thought to influence adoption, run
policy experiments to test the efficacy of different engagement-related interventions on increasing adoption rates, and
evaluate heterogeneity of the effect of the interventions across different practices and different types of farms. The
underlying data comes from a survey carried out in 2018 among farmers in the Central Valley in California. The analyses
identify farm characteristics and income consistently as the most important drivers of adoption across management practices.
The effect of policy measures strongly differs according to the nitrogen management practice. Innovative farmers respond
better to engagement-related policy measures than more traditional farmers. Farmers with small farms show more potential
for increasing engagement through policy measures than farmers with larger farms. Bayesian belief networks, in contrast to
linear analysis methods, always account for the complex structure of the farm system with interdependencies among the
drivers and allow for explicit predictions in new situations and various kinds of heterogeneity analyses. A methodological
development is made by introducing a new validation measure for BBNs used for prediction.

Keywords Bayesian belief networks ● Sustainable management practices ● Farmer adoption ● Agricultural decision-making ●

Policy analysis ● Nitrate pollution

Introduction

Nitrogen (N) pollution is one of the major causes of
environmental degradation worldwide (Zhang et al. 2015).
Agricultural fertilizer management contributes to N pollu-
tion in three major ways: leaching to groundwater, runoff to
surface water, and volatilization in the atmosphere. To

minimize nitrogen loss to the environment, farmers may
implement certain ‘best management practices’ (BMPs) that
aim to reduce nonpoint source pollution (Lubell and Fulton
2007). Despite research demonstrating BMP effectiveness,
adoption rates for some practices remain low across farms
(Ribaudo 2015; Rudnick et al. 2021; Wade et al. 2015). To
increase efficiency of N management at a larger scale, it is
crucial to understand the socio-economic factors and policy
interventions that influence BMP adoption decisions.

However, despite decades of research, there is still much
debate about which factors are the most important drivers of
adoption (Prokopy et al. 2019; Ranjan et al. 2019). Results
vary widely across contexts, specific management practices
and analytical techniques. While there is some agreement
that social network connections and farm size are important
in most contexts, many other variables are not consistently
positive or negative predictors for BMP adoption across
different practices or farming contexts (Prokopy et al.
2008).
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One promising leverage point for influencing adoption are
outreach and extension activities where farmers learn about
BMPs and gain awareness about nitrogen pollution (Emerson
et al. 2012; Hillis et al. 2018). Enhancing outreach and
extension is often more practically and politically feasible than
other policy interventions such as fertilizer taxes or caps on
applied N rates (Kanter et al. 2020). However, it is not clear
how different forms of engagement will impact the adoption
rate of different practices and their effectiveness may depend
on farm characteristics. For example, outreach on BMPs may
be more effective to farmers with large farms and more capital
sources to support innovation adoption, or outreach may be
more effective when tailored to specific farm types (Ma et al.
2012). Our analysis seeks to explore which outreach and
engagement pathways ought to be considered viable options
for policy interventions.

This paper applies a Bayesian belief network (BBN)
modeling approach to analyze the drivers of N management
practice adoption and the effects of policy interventions.
BBNs are probabilistic models describing relationships of
variables in systems. Using a network structure, BBNs
allow for evaluation of which variables affect each other;
these inter-variable dependencies are then modeled via
conditional probability distributions. After entering an
observation of one (or more) variables, the probabilities for
the states of all other variables are updated using Bayes’
rule (Kjærulff and Madsen 2008). BBNs can be used for
non-deterministic prediction in a system as well as inves-
tigation of influences of and interactions between system
variables, while always taking account of uncertainty
(Landuyt et al. 2013; McCann et al. 2006).

Key advantages to the BBN analytical approach in our
study context include the ability for a network structure
model to account for multiple interdependencies between
the hypothesized predictor variables of BMP adoption.
Most empirical studies of farmer adoption apply some type
of linear model to assess the influence of different predictor
variables on a farmers’ decision to adopt a practice. Typi-
cally, these models focus on the direct relation between
predictor variables and the dependent variable. Therefore,
they do not fully capture the interdependencies between the
predictor factors that often drive adoption.

In addition, BBNs enable explicit predictions of adoption
probability in new situations with limited observations or
hypothetical external manipulations of predictor variables.
This gives rise to the possibility of policy experiments
(Celio and Grêt-Regamey 2016; Liehr et al. 2016), where
specific variables within the model are manipulated to see
the effect on otherwise observed data. Various kinds of
heterogeneity analyses are also feasible, such as investi-
gating the effect of policy measures across different types of
farms. Thus, BBNs provide a useful tool for analyzing the
relative importance of different adoption drivers, given the

interdependencies between driver variables, and for pre-
dicting the adoption of N management strategies under
different policy interventions. Further advantages of the
method include the possibility of combining empirical data
and expert knowledge (Landuyt et al. 2013; Uusitalo 2007),
the ability to handle incomplete data cases (Aguilera et al.
2011) and the comprehensive graphical representation of
causal relationships, which facilitates their use in partici-
patory modeling (Haapasaari et al. 2013).

In environmental modeling, BBNs are rarely used and
still show a lot of unexploited potential. As to our knowl-
edge, the latest general review of BBNs in environmental
modeling was presented by Aguilera et al. (2011). Initially,
studies were mainly concerned with analyzing influences of
environmental predictor variables on ecological response
variables (Marcot et al. 2006), for example predicting coral
bleaching (Done and Wooldridge 2004) or regeneration of
an endangered Eucalypt species (Pollino et al. 2007a).
However, more recently the method has found application
in modeling environmental decision-making, such as the
adoption of riparian management strategies (Ticehurst
2010), farm crop choice (Poppenborg and Koellner 2014),
land use change (Aalders 2008; Celio and Grêt-Regamey
2016) or migration due to climate change (Drees and Liehr
2015).

This study disentangles the multiple, interdependent
factors that drive farmers’ adoption of different BMPs and
investigates the impact of policy measures on increasing
adoption rates. The data comes from a survey on farmers’
behavior towards N management in the Central Valley of
California. We consider characteristics of the farm (e.g.
farm size and irrigation system type), and characteristics of
the farmer, including both demographics (e.g. age and
education level), and socio-behavioral variables such as
participation in outreach/educational opportunities and
information networks (henceforth, these activities are
referred to as ‘engagement’). Furthermore, we examine the
effect of three different policy measures related to
strengthening farmers’ engagement, and evaluate their
likely effect on farmer BMP adoption. A typology of farms,
consistent with previous findings in the literature, is
developed to compare the effect of the policy measures
across farm types.

Our guiding research questions are:

R1. What are the most important influence factors for the
prediction of BMP adoption?
R2. How do BMP adoption rates change under
engagement-related policy interventions across different
types of farms?

Our discussion reflects on our experiences with BBNs,
including both the modeling capability potential, as well as
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its limitations in the context of analyzing influence factors
of adoption of sustainable management practices. As the
method is relatively new in this context (exceptions: Tice-
hurst 2010; Ticehurst et al. 2011), the discussion provides
an important additional contribution to the literature.

Study Area and Policy Context

This study is based on farmer survey data collected in the
Central Valley of California. Agricultural use of nitrogen
fertilizers has contributed to significant environmental pol-
lution in California, particularly as a leading contaminant of
groundwater with about 400,000 tons of nitrate leaching
annually. Cropland and livestock are estimated to be
responsible for 88% of the N leached to groundwater each
year (Harter et al. 2012; Tomich 2016). A more sustainable
approach to agricultural N management is crucial to
improve the water quality.

California is a particularly interesting case study as it shows
a great diversity in agricultural, ecological and economic
factors related to farming. Its Mediterranean climate enables
the growing of more than 400 commodity crops, both annual
and perennial, across over 77,000 farming and ranching
operations; however, dry summers mean a reliance on a highly
engineered water system and cropland irrigation, making irri-
gation management practices a critical element of N man-
agement. The cultivated area amounts to 25 million acres of
land, spread along a 500-mile longitudinal gradient (California
Department of Food and Agriculture 2018). The Central
Valley is California’s most productive agricultural region and

one of the most productive in the world. From small family-
owned farms to large international corporations, from more
traditional to more innovative and technology-affine opera-
tions, a variety of different types of farms are represented.
There are numerous potentially suitable N management prac-
tices; this study focuses on eleven of the most broadly
applicable strategies (e.g. applicable to nearly all farm types),
as identified by University of California Cooperative Exten-
sion agricultural advisors (Rudnick et al. 2021). A description
of the eleven practices is given in Table 1.

These practices are also some of the most important prac-
tices targeted by California’s Irrigated Lands Regulatory Pro-
gram (ILRP), which was initiated in 2003 as a nonpoint source
pollution abatement program, targeting agricultural impacts to
water quality (Dowd et al. 2008). The ILRP has evolved and
expanded in scope over time, and currently includes goals
specific to N pollution including increasing farmers’ adoption
of nitrogen management practices and increasing efficiency of
nitrogen applications, with the objective of reducing nitrogen
leaching to groundwater and runoff to surface waters. The
ILRP applies a hybrid of regulatory and collaborative approa-
ches to reduce the nitrogen loss on all irrigated farming
operations. Farmers are obliged to report annually the N
management practices they use and their N budget, a tool that
tracks how much N was applied and removed in crop harvest.
However, at present there is no obligation to implement certain
practices nor a legal limit for nitrogen application. Instead,
farmers are required to participate in local Water Quality
Coalitions that serve as intermediators between individual
farmers and the regulatory agency. These Coalitions assist the
farmers in creating their annual N budget report, give advice on

Table 1 Description of the considered N management practices (Rudnick et al. 2021)

N management practice Description

Soil testing Test soil for residual nitrate at beginning of season and adjust fertilizer application rate as appropriate

Leaf testing Test crop leaf for crop nutrient status to determine if plant is up-taking enough nutrients

Irrigation well N testing Test irrigation water in wells for nitrate content and adjust fertilizer application rates as needed

Moisture probe Test soil water content to determine depth of soil saturation and more precisely control irrigation to give crop
just enough water, which still retaining fertilizer in root zone

Pressure bomb Determine plant-water stress and adjust irrigation scheduling as appropriate, including when fertilizer is applied
so that fertilizer stays in root zone

ET-based irrigation scheduling Use evapotranspiration (ET) data to determine plant water losses, and calculate how much water needs to be
replaced with irrigation. Appropriately place fertilizer in the irrigation set so that fertilizer stays in root zone

Split application Divide fertilizer applications into smaller doses and apply in different applications at needed times in season

Fertigation Apply fertilizer through irrigation sets, generally through drip irrigation system

Foliar application Apply fertilizer directly to crop foliage (leaves); increases crop uptake and reduces fertilizer left in soil to be
leached

Variable rate GPS Vary rate of fertilizer application across a field using GPS technologies; allows targeting of specific regions/
rows within field with appropriate rate given soil type and crop health

Cover crops Plant cover crops to help hold moisture and nutrients in the soil; provides an organic source of nitrogen that
breaks down more slowly over time
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BMPs and organize education and outreach events. Moreover,
they offer ‘Self-Certification’ courses which qualify the farmers
to write their own N budget reports, which otherwise need to
be verified by a certified crop consultant. Private crop con-
sultants also do a lot of on-farm work to determine nutrient
budgets and appropriate management practices.

The survey was carried out in 2018 in three Water
Quality Coalitions: the Colusa Glenn Subwatershed Pro-
gram (part of the Sacramento Valley Water Quality Coali-
tion), the San Joaquin County and Delta Water Quality
Coalition and the East San Joaquin Water Quality Coalition.
A total of approximately 7,500 farming operations culti-
vating more than 900,000 acres of land is covered by these
coalitions, which represent a longitudinal transect of about
half the Central Valley. Much of the diversity of the state’s
agricultural landscape is represented in this area.

In total there were 4994 surveys mailed across the three
regions. With 967 responses, the response rate was on par
with similar surveys. Farmer survey data was combined
with anonymous ILRP reporting data where possible.

Methods

Construction of the Bayesian Belief Network

A BBN is a probabilistic model of a system of interrelated
variables. A main use of BBNs is the non-deterministic

prediction of a set of outcome variables given probability
distributions of multiple predictor variables (Aguilera et al.
2011).

A BBN can be depicted as a network structure, consist-
ing of a set of nodes, representing the system variables, and
links between them, representing relationships between the
nodes. Each node is assigned a finite set of mutually
exclusive states (for example, ‘Farm Size’ is set to large
(>200 acres), medium (50–200 acres) or small (<50 acres)).
We considered three categories of variables; farm char-
acteristics, farmer characteristics and engagement. Table 2
gives an overview of these variables, their meaning and the
states used. All of them were queried in the survey.

Farmers were also asked about their adoption of the
eleven different N management practices of Table 1, mea-
sured as binary variables. We implemented the adoption of
the considered practice (the dependent variable) as a target
node in our network. That means, all the other variables
point at the practice adoption node, either directly or
indirectly through other intermediary nodes.

Beyond the network structure, in a BBN one needs to
specify for each node a conditional probability table (CPT).
Conditional probability describes the probability of an event
given the outcome of another event. For example, the
conditional probability that the income of a famer is “high”
may be 60% under the condition that the farm size is
“large”, or 30% when the farm size is small. The CPT
provides the probability that the node is in a particular state,

Table 2 Influence variables considered in the study, meaning and states

Variable name Description Statesa

Farm characteristics

Farm size Size of the farm Small (<50 acres), medium
(50–200 acres), large (>200 acres)

Irrigation system Does the farmer use a pressurized irrigation system on his
largest field?

Yes/no

Crop type Does the farmer grow perennial crops on his largest field? Yes/no

Farmer characteristics

Income Annual gross farm-related income Low (<50k$), medium (50k$–500k$),
high (>500k$)

Education Does the farmer have a college degree? Yes/no

Years in farming How many years is the farmer already engaged in farming? Above/below median of 36 years

Engagement

Self-certification Is the farmer self-certified to write his own N budget report? Yes/no

Number of information
sources

Number of different information sources regarding N management
used (aggregated from questions about single information sources
including various public organizations, farm advisors, other growers,
family members, field crew)

Above/below median of 4

Consultant Does the farmer hire a consultant to help them complete their N
management and farm evaluation plans?

Yes/no

aContinuous variables were discretized for use in the BBN; for ‘Income’ the states are based on the categories used in the United States Department
of Agriculture Census of Agriculture, for ‘Farm Size’ the states are based on previous survey work at University of California Davis (UC Davis),
for ‘Years in Farming’ and ‘Number of Information Sources’ we used the median as natural threshold
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given that the nodes pointing on the chosen node are in a
particular combination of states.

Once the BBN is set up in this way, from the CPTs it is
possible to compute the probabilities of each node being in
a particular state, without knowing the states of some or all
of the other nodes. This allows for predicting likely beha-
vior given only a limited set of observations. Additional
observed data can be used to update the probability dis-
tributions of all the other nodes in the network. The
underlying computations are based on Bayes’ rule, a
mathematical law connecting different conditional
probabilities.

An example of a CPT and the process of entering an
observation in our BBN can be found in the Online
Resource A and B.

The BBN was programmed into Netica 6.05 and all
subsequent analyses were carried out with this software.
The CPT of each node can either be defined explicitly by
the user, follow fixed equations, or learned from data;
unless otherwise stated we learned it from the California
farmer survey data collected at University of California
Davis. ‘Learning from data’ here means using an algorithm
which gives out values for the conditional probabilities
which fit to the observations in the data.

The choice of the variables as well as fixing the final
network structure was done in an iterative process of con-
structing and evaluating networks (the evaluation measures

used are explained in Section “Goodness of Fit and Model
Validation” below). Empirical knowledge gained from prior
studies of the IRLP was crucial in this procedure (Lubell
and Fulton 2007; Rudnick et al. 2021).

The final network contains the nine predictor variables
from Table 2 and is depicted in Fig. 1. We evaluated the
same network structure for each of the eleven management
practices as target nodes.

The green nodes (‘Farm Characteristics’, ‘Farmer Char-
acteristics’ and ‘Engagement’) are so-called intermediate
nodes. They are artificial nodes forming a layer between the
influence variables and the target node (a layer is a set of
nodes with the same distance to the target node). We
included them in order to reduce the number of links
pointing on the target node; this is necessary as the CPT of a
node grows exponentially with each additional link towards
it (Marcot et al. 2006). If the CPT gets too large, the number
of parameters that have to be learned from the data increases
drastically. This leads to overfitting, which is expressed in
poor goodness of fit scores and unreasonable predictions for
cases that are not in the data.

In the Online Resource C, we explain how we gave the
artificial nodes reasonable states.

All CPTs except for the target node’s CPT were learned
from the data. To this end we used the Expectation-
Maximization-Algorithm (Korb and Nicholson 2010) which
can handle cases with missing data. The existence of this

Engagement
Pro Adop�on
Contra Adop�on

26.5
73.5

0.265 ± 0.44

Farm_Characteris�cs
Pro Adop�on
Contra Adop�on

61.0
39.0

0.61 ± 0.49

Self_Cer�fica�on
Yes
No

63.7
36.3

0.637 ± 0.48

Consultant
Yes
No

44.8
55.2
0.448 ± 0.5

Cover_crops
Adopted
Not Adopted

32.8
67.2

0.328 ± 0.47

Farm_Size
Small
Medium
Large

45.9
25.4
28.8

1.83 ± 0.85

Farmer_Characteris�cs
Pro Adop�on
Contra Adop�on

37.4
62.6

0.374 ± 0.48

Income
Low
Medium
High

19.5
54.8
25.7

3.2 ± 1.8

Educa�on
College Degree
No College Degree

63.5
36.5

0.635 ± 0.48

Years_in_Farming
Below Median
Above Median

41.5
58.5

0.585 ± 0.49

Number_of_InfoSources
Below Median
Above Median

58.2
41.8

5.65 ± 4.8
Irriga�on_System

Pressurized
Non Pressurized

80.5
19.5

0.805 ± 0.4

Crop_Type
Perennial
Annual

75.7
24.3

0.757 ± 0.43

Fig. 1 The Bayesian belief network structure with exemplarily ‘Cover crops’ as one of the eleven N management practices as target node
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algorithm was crucial for our structure as it enabled us to
use the artificial intermediate nodes with no data at all.
Detailed explanations on setting the target node’s CPT can
be found in the Online Resource C.

Goodness of Fit and Model Validation

A Train and Test procedure was used to analyze the pre-
dictive power of the BBN and to evaluate its goodness of fit
to the data set (Aguilera et al. 2011; Chen and Pollino 2012;
Pollino et al. 2007b), thereby ensuring the model’s valida-
tion. In contrast to several scoring functions used in
structure-learning algorithms (most prominent: the Bayesian
information criterion) which assess the goodness of fit of a
network structure to a data set (Abdulkareem et al. 2019;
Beretta et al. 2018), using this procedure accounts for the
numerical part of the BBN (the CPTs) and the measures are
adapted to the BBN’s task of prediction. For each practice,
the data was randomly split in two, a training data set
containing 70% and a test data set containing 30% of the
data. The former data set was used to learn the CPTs from,
the latter to test the network’s capability to predict the target
node. The most common measure for prediction accuracy is
the Error Rate: For each case in the test data set, all data
values except for the target node value (here practice
adoption) were entered in the network and the most likely
state of the target node under these assumptions was cal-
culated (using the usual inference in a BBN). If this pre-
dicted state was not the true state from the data, it was
counted as an error. The share of errors in all the cases in the
test data set is the Error Rate.

To avoid statistical outliers the Error Rate was averaged
over five random partitions for each target node. This is
often referred to as Cross-Validation (Aguilera et al. 2011).

However, the Error Rate alone has only limited meaning
when it comes to the question of how adequately the
influence dynamics are modeled in the BBN, especially if
networks with different target nodes are compared. The
reason is that the Error Rate highly depends on the actual
adoption rate of the respective target variable. We illustrate
this with an example: Let A and B be two N management
strategies with adoption rates P(A)= 40% and P(B)= 5%.
If we just use two ‘trivial’ networks containing only the
target node (i.e. base the prediction only on the adoption
rate), both predict ‘no adoption’ in every test case as this is
the most likely state. Though the network structure is equal,
the first network then has an Error Rate of 40%, while the
second predicts wrong in only 5% of the cases. This shows
that the Error Rate is highly correlative with the adoption
rate of the target node. Now, if a more complex network has
an Error Rate of 10%, this can be considered very good if
the target node is A, but if the target node is B, it is worse
than predicting always the same, based only on adoption

rate and independent of all other influence variables. In the
latter case, we cannot assume the influence dynamics of the
system are modeled in the right way.

To overcome these issues and provide a better validation
of the model, we introduce the following new measure
which quantifies the improvement of the prediction of the
network compared with prediction based only on the
adoption rate. We term it ‘Prediction Improvement Value
(PIV)’:

PIV: The difference between the Error Rate from pre-
diction based only on adoption rate and the Error Rate of the
network (=min(AdoptionRate, 1 – AdoptionRate) – Error-
Rate), with high PIV indicating a highly accurate network

The PIV is still biased by the adoption rate of the target
node: Networks with target node adoption rate near 50%
generally have a higher PIV than networks with very low or
very high target node adoption rates: For the latter, prediction
is likely to be always “no” or always “yes”, regardless of the
predictor variables. Hence, they can hardly distinguish adop-
ters from non-adopters and considering them doesn’t improve
prediction much. In any case the sign of the PIV can serve as
an important indicator for goodness of fit of a BBN designed
for prediction: A negative PIV means that the predictions of
the model are worse than predicting independently of all
influence variables, based only on adoption rate, hence the
influence patterns aren’t modeled adequately. This can happen
for example due to too little data.

In our study we used three levels of reliance according to
the PIV: (i) not meaningful (negative PIV), (ii) reliable (PIV
between 0% and 10%) and (iii) especially reliable (PIV >
10%).

At the beginning of our analysis we excluded the prac-
tices for which the model was not meaningful (PIV < 0%)
from the following investigations. For the other practices
we consider the model as validated, conceptually by expert
knowledge during the construction process and numerically
by the satisfactorily high PIVs.

Analysis Tools and Policy Experiments

First, we analyzed the importance of different influence
factors for practice adoption (research question R1) by
means of a sensitivity analysis. For each target node we let
the CPTs be learned from the whole data set and recorded
the sensitivities of the target node to the predictor variables,
using the measure Mutual Information. Mutual Information
is a commonly used measure of sensitivity of a variable to
findings in another variable in BBNs (Chen and Pollino
2012; Kleemann et al. 2017a; Ticehurst 2010), further
explanations can be found in the Online Resource D.
Average sensitivities over all target nodes were calculated.

Second, we conducted experiments for potential policy
measures regarding the engagement variables while also
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examining the effect of the interventions on adoption rates
across different types of farms (research question R2). We
restricted ourselves to the practices whose adoption was
predicted especially reliably by the model (PIV > 10%).
Here we will first explain how we implemented the inter-
ventions and then how we implemented the groupings
of farms.

We looked at three different policy measures regarding
the three engagement variables ‘Consultant’, ‘Self-Certifi-
cation’ and ‘Number of Information Sources’ and imple-
mented these measures, each in two different versions:

● Full intervention: We set the state on ‘yes’ (for
‘Consultant’ or ‘Self-Certification’) or on ‘above
median’ (for ‘Number of Information Sources’). There-
fore, after the intervention all farmers make use of the
respective engagement channel.

● Normalized intervention: We added only 10% (in
absolute percentage points) to the ‘yes’/‘above median’
state for the respective engagement variable. That
represents 10% of the farmers changing from the
‘unengaged’ to the ‘engaged’ state.

The analysis of both types of interventions leads to dif-
ferent, but complementary insights: The full interventions
indicate the whole potential that lies in manipulating the
respective variable to the fullest degree. However, they lack
a certain comparability as they don’t take into account
which share of farmers already is in the ‘engaged’ state. If
for example, only 20% of the farmers hire a consultant, the
‘Consultant’ full intervention makes 80% of the farmers
change their behavior. This is likely to have much stronger
effect (and also would take much more effort) than it would
be the case if already 90% of the farmers hired a consultant.
The normalized interventions are used to eliminate this
effect.

The absolute change in percentage points of the predicted
adoption probability caused by the respective intervention
was measured to evaluate its effect.

Finally, we assessed the effect of these interventions
across different types of farms. The BBN allowed for a
simple implementation of this kind of heterogeneity ana-
lysis. Farms were grouped by the combinations of their
three defining farm characteristics: size, crop type and irri-
gation system. Putting together small and medium farms
this leads to eight groups we abbreviate with 3 letters, the
first for ‘Farm Size’ (S= small/medium, L= large),
the second for ‘Crop Type’ (P= perennial, A= annual), the
third for ‘Irrigation System’ (P= pressurized, N= non-
pressurized). An LPP farm for example is a Large farm with
Perennial crops and a Pressurized irrigation system. Table 3
shows the number of farms in each group. LPP, SPP and
SAN are the biggest groups, so we decided to focus on them

and added LAN to be able to better compare -PP with -AN
and L– with S– farms. This typology is consistent with
previous literature which identifies farms growing perennial
crops with a pressurized irrigation system as innovative in
contrast to farms with annual crops and a non-pressurized
irrigation system (Rudnick et al. 2021). For each of these
four groups the above six different policy measures (full
and normalized interventions for ‘Consultant’, ‘Self-Certi-
fication’ and ‘Number of Information Sources) were
investigated by additionally entering the respective farm
characteristics as observations in the network. This way we
could quantify how much the practice adoption probability
increases due to a political intervention, given that the farm
is of some particular type.

Results and Discussion

Methodological Pre-analysis on Goodness of Fit
(Prediction Improvement Value analysis)

Figure 2 shows the adoption rates, Error Rates and PIVs of
the BBNs for each of our eleven practices of interest. As
discussed in the methods section, the Error Rate highly
depends on the adoption rate of the practice, where it is
highest for practices with adoption rate close to 50%.
Correspondingly, the PIV is also highest for those practices
as the improvement potential is larger. Regarding the
direction of the PIV, we observe that most target nodes have
positive PIV, meaning that prediction with the BBN is
better than predicting independently of the influence vari-
ables, based only on adoption rate. Nevertheless, there are
three practices with negative PIV, which can happen, for
example, due to too little data, especially when adoption
rate is so low that the predictor variables cannot distinguish
adopters from non-adopters. We excluded ‘Cover crops’,

Table 3 Number of farms for each farm type

Farm class Farm size Crop type Irrigation system Number
of farms

LPP Large Perennial Pressurized 161

LPN Large Perennial Non-pressurized 5

LAP Large Annual Pressurized 32

LAN Large Annual Non-pressurized 46

SPP Small/
Medium

Perennial Pressurized 406

SPN Small/
Medium

Perennial Non-pressurized 89

SAP Small/
Medium

Annual Pressurized 76

SAN Small/
Medium

Annual Non-pressurized 99
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‘Pressure bomb’ and ‘Variable rate GPS’ from the follow-
ing analyses as they have PIV < 0%; but we assume our
model to have explanatory power for the remaining prac-
tices. Values indicating special reliability (PIV > 10%) were
found for ‘Leaf testing’, ‘Soil testing’, ‘Fertigation’, ‘Foliar
application’ and ‘Moisture probe’, so these were selected
for the policy experiments in Section “Effect of
engagement-related policy experiments across different
farm types”.

Importance of Influence Factors for BMP Adoption

First, we examined the general influence of the predictor
variables on practice adoption (research question R1). We
investigated the mean sensitivities of the target node to the
predictor variables, which are depicted in Fig. 3, together
with the direction of influence, i.e. whether a variable
increases or decreases adoption probability. A table with the
sensitivity data for each individual practice can be found in
the Online Resource E.

The three categories of variables defined in the methods
section will guide the closer analysis.

Farm characteristics are consistently the most important
of the three categories.’Irrigation System’ and’Farm Size’
demonstrate similarly high sensitivity values and rank sec-
ond and third, respectively, as influence factors; ‘Crop
Type‘ ranks fourth in influence.

This confirms results found in Rudnick et al. (2021) that
highlight the importance of structural farm variables in
determining the feasibility of BMP adoption. It also corro-
borates past farmer adoption literature that explains the
relationship between structural farm variables and adoption:
Farm size correlates with access to capital and technical
expertise and provides an economies of scale advantage in
adoption (Caswell et al. 2001; Daberkow and McBride
2003). Pressurized irrigation systems show more innovation
and access to technical capital, additionally some of the
considered BMPs were co-evolved with pressurized irriga-
tion systems (Hanson et al. 2009; Taylor and Zilberman
2017). Perennial cropping systems indicate long-term
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thinking as well as greater access to financial resources
(Blank 2001; Ghadim et al. 2005; Marra et al. 2003).

The farmer characteristics show varying importance:
‘Income’ is the most reliable indicator for adoption of all
considered variables. ‘Education’ and ‘Years in Farming’
are less consistent predictors of adoption, and rank behind
the structural farm characteristics variables.

Income not only indicates access to financial capital to
overcome the upfront cost of adoption, but also strongly
correlates with farm size (Prokopy et al. 2019). The finding
about ‘Education’ and ‘Years in Farming’ is consistent with
the broad literature reviews of farmer adoption literature in
the USA, where these variables don’t always have con-
sistent impact on predicting adoption (Baumgart-Getz et al.
2012; Prokopy et al. 2008; Prokopy et al. 2019).

The engagement variables rank in the lower half of all
predictor variables, regarding their sensitivities. ‘Number of
Information Sources’ still shows a similar sensitivity value
as ‘Crop Type’, followed by ‘Self-Certification’. ‘Con-
sultant’ is one of the least important influence factors of all
variables considered.

Access to (and quality of) information has been found a
particularly important variable across many studies
(Baumgart-Getz et al. 2012; Prokopy et al. 2019). The
rather low influence of ‘Self-Certification’ and ‘Consultant’
can partially be explained together with the finding that
these variables show great heterogeneity across manage-
ment practices. We hypothesize that not all the considered
practices receive attention in the ‘Self-Certification’ courses
or in the consulting of the N management advisors,
respectively. Thus, these variables show high sensitivity
values only for some of the practices.

In a second step, we compared the sensitivities of
adoption to the predictor variables for different management
practices. The sensitivities for each practice are presented in
the Online Resource E. Most of the findings above are
consistent over all the practices; for example, ‘Farm Size’
and ‘Income’ are almost always among the top three most
decisive variables, whereas ‘Years in Farming’ and

‘Education’ never play a notable role. Nevertheless, for
some practices significant deviations from the general
influence pattern could be observed, especially when it
comes to the role of the engagement variables. For example,
for ‘Foliar application’, the sensitivities are quite low in
general, but ‘Number of Information Sources’ has a sur-
prisingly high sensitivity value. For the ‘Soil testing’
practice, ‘Crop Type’ and ‘Irrigation System’ are not as
important, but ‘Self-Certification’ has a comparatively high
influence on adoption. This heterogeneity is due to technical
idiosyncrasies of the individual practices and the (practical)
knowledge spread in the different forms of engagement
possibilities. For instance, the finding for ‘Soil testing’ may
be explained by the fact that testing the soil for residual
nitrate is independent of the crop type and irrigation system
while it requires expertise to interpret the data accordingly.
This specialized knowledge may be gained mainly from the
progressive Self-Certification courses.

We can conclude that in our case the basic influence
dynamics towards BMP adoption can be described as fol-
lows: ‘Income’ and the structural farm characteristics are
the most important variables and mainly suffice for pre-
diction. Engagement plays a complementary role. However,
we focus the policy experiments on the engagement vari-
ables as they are easiest to influence and do still have a
notable influence on adoption.

Effect of Engagement-related Policy Experiments
Across Different Farm Types

Next, we present the results of the policy experiments
described in Section “Analysis tools and policy experi-
ments”. First, we investigated the general effect of
increasing farmers’ engagement on adoption of different
practices using the previously mentioned six different pol-
icy interventions; second, we compared the effect across the
different types of farms. The five considered practices are
the ones with particularly convincing modeling perfor-
mance of the BBN (see Section “Methodological pre-
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analysis on goodness of fit (Prediction Improvement Value
analysis)”).

Figure 4 shows the absolute change of the adoption rate
for each practice for the full intervention (where all farmers
are set to the ‘engaged’ state of the resp. variable).

The influence of the interventions is heterogeneous
across different types of practices. Increasing the number of
information sources strongly increases the adoption of
‘Foliar Application’ and ‘Soil testing’ but has almost no
effect on the adoption of ‘Moisture probe’. The ‘Self-Cer-
tification’ full intervention seems to be fruitful for ‘Soil
testing’ and ‘Fertigation’; on the other hand, it doesn’t
increase the adoption of ‘Foliar Application’. Hiring an N
management consultant leads to much higher adoption of
‘Leaf testing’ and ‘Soil testing’ but has almost no effect on
the adoption of ‘Fertigation’. The picture for the normalized
interventions (where only 10% of farmers change to the
‘engaged’ state) looks similar, but with smaller absolute
impacts (see Online Resource F). This mirrors our earlier
finding that the single engagement variables can vary
strongly in their influence on adoption across practices. The
reasons lie in the idiosyncrasies of the different forms of
engagement. For instance, the last finding about the ‘Con-
sultant’ intervention may be explained by the fact that
consultants are often the ones to take samples for ‘Leaf
testing’ and ‘Soil testing’ and make their product recom-
mendations based on the tests. ‘Fertigation’ instead doesn’t
require a consultant, and rather is implemented directly by
the farm or irrigation manager; thus, adding a consultant
may do little to influence adoption of this practice.

This suggests that policy interventions should be tailored
to the specific challenges and features of different practices.

Finally, we look at the effect of policy interventions across
the different types of farms, averaged over all considered
practices and engagement channels, but for both the full and
the normalized interventions (Fig. 5; the full individual data
for each practice and each intervention can be found in the
Online Resource F). For this we use the typology of farms
developed in the methods section classifying farms along two

dimensions: large farms versus small farms (L- vs. S- farms)
and farms with perennial crops and a pressurized irrigation
system versus farms with annual crops and non-pressurized
irrigation (-PP vs. -AN farms), resulting in the four different
farm types LPP, LAN, SPP, and SAN.

Comparing -PP with -AN farms, the effect on adoption
rates of all interventions is always greater in the -PP farms
than the -AN farms. According to the authors’ experience,
farms that have a pressurized irrigation system and grow
perennial crops are more technologically and economically
sophisticated than -AN farms, potentially indicating higher
all-around levels of innovation. Our overall finding on the
effect of interventions suggests that innovative and well-
resourced farmers may be more responsive to increased
engagement activities than less-resourced farmers in terms
of BMP adoption rates. This may be due to the fact that
there is more outreach tailored to -PP farms, with practices
adapted to best suit -PP farms and field days often featuring
trials on -PP farms, so these better respond to an increase of
farmers’ engagement. Another explanation may be that by
virtue of their overall attitude towards and capacity for
innovation, innovative farmers are more capable of learning
and incorporating new knowledge. In this way, increased
engagement for innovative farms leads to heightened
learning on the BMPs under consideration, thereby
increasing adoption.

If one compares large and small farms under the policy
interventions, the picture is less clear. The effect of the
normalized interventions on BMP adoption is not con-
sistently higher for either. However, farmers with large
farms already show a greater engagement (79% of the
farmers with large farms are self-certified vs. 47% of the
farmers with small farms, ‘Number of Information Sour-
ces’: 54% vs. 36%, ‘Consultant’: 38% vs. 42%). Thus,
putting all farmers in the ‘engaged’ state of the respective
engagement variable is less of a change from the observed
data for large farms than for small farms. Therefore,
regarding the full interventions, the farmers with small
farms respond better to the measures.
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Altogether our results suggest that it is essential to fit the
policy intervention to the targeted nitrogen management
strategy and to the farm type that is targeted for adoption.
Strengthening the engagement possibilities in their current
form has more effect on farmers with -PP farms than on
farmers with -AN farms, indicating that an adaptation of
these possibilities may be needed to better suit the -AN
farms. Such a general statement cannot be made about
different sizes of farms, but farmers with small farms show
more unexploited potential in increasing their engagement
and thus adoption.

Discussion of the Method

BBNs were a helpful tool for investigating the influence
factors on BMP adoption. However, they require a cautious
approach for various reasons. We discuss the advantages
and limitations of using BBNs in the given research context.

Advantages

BBNs always take the whole causal structure of the system
into account. In contrast to more conventional statistical
methods such as regression models, interdependencies
between predictor variables are modeled explicitly. Thus,
BBNs align with farm systems thinking, i.e. thinking of the
multitude of agronomic, economic, ecological, and socio-
behavioral factors influencing decisions on a farming
operation.

BBNs enabled us to quantify the effect of external policy
interventions on practice adoption in a natural, reasonable
way. They are particularly useful for prediction of explicit
probability distributions of the target variable in various
scenarios (Celio and Grêt-Regamey 2016; Drees and Liehr
2015). This focus on explicit prediction of adoption prob-
ability has several other advantages: For example, it allows
for applying a fully calibrated BBN to predict adoption in
new contexts where fewer data are available. Moreover,
BBNs could be used to model the farmers’ decision-making
part in related agent-based models (ABMs) (Pope and
Gimblett 2015; Sun and Müller 2013). Such an incorpora-
tion in an ABM would allow an investigation of the
dynamics over time and, by coupling with biophysical
models, to explicitly consider the social-ecological feed-
backs in the system, such as the evolvement of N content in
soil or groundwater over time, depending on specific policy
interventions.

At the same time as entering the policy interventions in
the model, we could also specify characteristics of the farm
under consideration. Hence, the method allowed us to
compare the effect of policy measures across different farm
types and therefore to carry out predictive analyses that are
limited under traditional linear statistical analysis.

Moreover, we could assess the importance of influence
factors across different practices by just changing the target
node. Therefore, we found BBNs a flexible tool for different
kinds of heterogeneity analyses.

While conducting our study, we discovered another
analysis method BBNs offer which is the comparison of the
predictive power of different network structures (Done and
Wooldridge 2004). Though in the end we didn’t include
them in our study, we initially investigated multiple net-
work structures and consider this a promising approach for
further research. By analyzing which network structures
better explain the observed data, new knowledge about the
role of and interactions between predictor variables may be
derived.

Finally, as often, when survey data is used, we had to
cope with a lot of incomplete data cases. For the artificial
intermediate nodes there was no data at all. It turned out an
important advantage of BBNs that there are reliable algo-
rithms for learning the CPTs which are able to handle cases
with missing data (Uusitalo 2007). Nevertheless, it should
be kept in mind that extrapolating data can have a large
impact on the simulated outcomes of the model and replaces
a complete data set only at the prize of higher uncertainty.

Limitations

The most difficult step in the construction of our BBN was
fixing the network structure. The structure influences the
results in a non-negligible way; however, often multiple
structures are found equally reasonable. Compared with a
conventional statistical analysis, this adds a dimension of
uncertainty to the results. In our case, we relied heavily
upon the use of theory and expert knowledge for fixing the
structure. This agrees with the experience made in other
studies dealing with BBNs in an environmental context
(Kleemann et al. 2017a; Uusitalo 2007). Though we tested
an algorithm to learn the structure of the BBN from the data,
the resulting structures were not reasonable in any way (e.g.
‘Farm Size’ pointing on ‘Education’) and did not show
better goodness of fit values either. Other sources recom-
mend to use structure learning only in combination with
expert knowledge and when a high amount of data is
available (Alameddine et al. 2011; Kleemann et al. 2017b;
Sun and Müller 2013). Another technical issue we
encountered while constructing the network structure is the
need for avoiding too many links pointing onto the same
node due to the risk of overfitting (see 3.1). Artificial
intermediary nodes partially solved this problem in our
study (Drees and Liehr 2015).

Care has to be taken not only while building the network
structure but also when comparing different networks in the
analysis. We already pointed out that the Error Rate is a
good indicator for the predictive power, but not that
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appropriate for evaluating the goodness of fit, if networks
with different target nodes are compared. Instead we
introduced a new measure, the PIV, which we consider
more meaningful when it comes to the question which
networks represent the influence dynamics well. The idea of
comparing the Error Rate of the model with the prediction
accuracy of a comparative method was already established
in Drees and Liehr 2015; yet, without explicitly explaining
the methodological issue behind it. The PIV gives a natural
way to overcome the bias of the Error Rate and is ready to
be used in further research due to the detailed description
provided in this paper. However, the PIV is still biased by
the adoption rate of the target node (see Section “Goodness
of fit and model validation”).

Additionally, the sensitivities of the target node to the
variables in different network structures should not be
compared without further ado. They strongly depend on the
number of layers as well as the total number of variables in
the network (Ticehurst 2010).

Further disadvantages of using BBNs in the given con-
text include the need to discretize continuous variables such
as farm size and income which reduces information gran-
ularity (Uusitalo 2007). It is also quite difficult to model
feedback loops and add temporal and spatial dimension
(Landuyt et al. 2013). This becomes important if one wants
to closer investigate the long-term biophysical impacts of
political interventions on the environment and could be
better dealt with in an ABM (Pope and Gimblett 2015; Sun
and Müller 2013).

Conclusion

Our analyses showed that income and farm characteristics
consistently are the most important drivers for BMP adop-
tion in our case study. Access to financial and technical
capital appear to be limiting factors driving adoption deci-
sion-making, and thus show to be more important drivers of
adoption than access to outreach and engagement or other
socio-behavioral traits of the farmer. This is consistent with
Rudnick et al. 2021 results based on the same data, but
using linear regression methods.

Our findings suggest that BBNs might be useful to
understand and predict BMP adoption behavior in other
contexts where less data exists. For example, our results
suggest that by knowing farm characteristics and income
alone, data that is frequently collected in agricultural cen-
suses, we may be able to fairly reliably estimate the like-
lihood of adoption of many BMPs. The BBNs’ strength of
prediction under uncertainty underlies this benefit. Never-
theless, the ambiguity of results in previous research on the
topic indicates that local idiosyncrasies have to be con-
sidered when a detailed picture of the situation is needed.

Our findings indicate that there are important differences
in the factors that influence adoption on different practices,
especially when it comes to the importance of different
forms of farmers’ engagement. These are likely related to
technical properties of the practices itself and the design of
N management programs or education. Accordingly, our
results from the policy experiments show that the effect of
engagement-related policy measures strongly depends on
the considered practice. This indicates that policy measures
should especially be targeted to the specific practices. To
gain understanding on specific targeting of practice adop-
tion via policy instruments, the development of a sophisti-
cated grouping of nitrogen management practices according
to the crucial factors of influence may be an interesting
pathway for further research.

Beyond offering strong analytical tools for modeling
observed data, BBNs also let us explore and model the
effect of possible policy interventions, including how they
may differentially impact different farm types. This is a new
contribution to previous research. Engagement-related pol-
icy interventions consistently have a higher effect on BMP
adoption on farms which may already be classified as
“innovative” – more technologically advanced with higher
value crop types. This finding suggests policy measures
should consider adapting the outreach and extension
opportunities to better target less-innovative farmers, who
traditionally have been underserved by extension. This
could result in better addressing the barriers these farmers
face during adoption and ensuring that all practices are
suitable for all types of farms.

Regarding the farm size, there is no consistently different
effect of the considered interventions on adoption on small
or large farms, but as farmers with small farms currently
show lower engagement, there is more potential of
increasing their engagement and thus adoption than for
farmers with large farms where the engagement level is
already very high and likely more difficult to increase.
However, one should keep in mind that we are only looking
on change of adoption rates and not at the area where the
BMP is implemented.

A more holistic evaluation of the environmental effects
of policy measures targeting N management practices is
needed. This could be achieved by a coupled spatial socio-
environmental model; for instance, by linking an ABM,
dynamically simulating policy measures and behavior
change, with a biophysical model, estimating the effect on
environmental pollution. We consider this an important and
promising task for future research.
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