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Abstract 

The fate of working landscapes: Quantifying changes in social-ecological systems 
 

by 
 

Katherine J. Siegel 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Van Butsic, Chair 
 

Working landscapes face intensifying pressures from global and local environmental, 
socioeconomic, and governance changes. These landscapes represent social-ecological 
systems composed of natural and anthropogenic ecosystems, the human communities that 
use them, and interactions between the components of the system and the wider world. 
Disentangling the drivers of change in these complex systems poses conceptual and 
methodological challenges, but improved understandings of these systems’ interactions 
and feedbacks may enable humans to manage working landscapes to provide biodiversity 
conservation and sustainable livelihoods in the face of rapid environmental change. My 
dissertation integrates theories and methods from conservation science, land system 
science, and econometrics to identify and quantify drivers of change in three distinct social-
ecological systems: fire-prone forests of the western US, California rangelands subject to 
livestock grazing and wildfire, and a protected area in Amazon Basin experiencing 
deforestation.  
 
Across three chapters, my dissertation examines three main questions: 1) What is the effect 
of land ownership on wildfire probability in forests of the western US? 2) How does 
livestock grazing impact wildfire probability in California’s rangelands? 3) How does 
integrating qualitative discourse analysis into land use change modeling affect model 
outcomes and predicted future forest loss? In the first chapter, I demonstrate that 
federally-owned forests are more likely to burn in wildfires than privately-owned forests 
and that these management effects are greater than some changes in climate variables. In 
my second chapter, I assess the impact of livestock grazing on wildfire probability in three 
regions of California and three different dominant land cover classes. I find that the impact 
of grazing on wildfire varies by region and vegetation type, but in some regions and land 
cover classes, grazing reduces wildfire probability. In my third chapter, I present a 
framework for integrating qualitative discourse analysis into quantitative land use change 
modeling and demonstrate the benefits of this methodological integration for 
understanding deforestation drivers and dynamics in Jamanxim National Forest, Brazil.  
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Introduction 

Working landscapes are under increasing pressure from local and global environmental, 
socioeconomic, and governance changes (Foley et al., 2005). These landscapes, composed 
of the cultivated land, rangelands, and forests that humans use to produce food, fuel, fiber, 
and other products, support ecological processes and provide essential ecosystem services 
(Huntsinger and Sayre, 2007; Kremen and Merenlender, 2018). In the absence of 
sustainable management, human use of working lands and the conversion of natural 
habitats to intensive human uses threatens biodiversity, freshwater resources, carbon 
storage, and other ecosystem services that support human well-being (Ellis et al., 2013; 
Foley et al., 2005). Working lands cover about 80% of the world’s terrestrial surface, 
making their sustainable management a globally important issue (Ramankutty et al., 2018). 

The social-ecological systems framework conceptualizes the complex interactions within 
coupled human and natural systems. These systems are characterized by non-linearities, 
feedbacks, time lags, heterogeneity, resilience, and unexpected outcomes (Berkes et al., 
2003; Folke, 2006; Gunderson and Holling, 2002; Liu et al., 2007; Walker et al., 2006), and 
the social-ecological systems framework can aid in understanding the processes and 
interactions leading to sustainable or unsustainable management of natural resources 
within these systems (Ostrom, 2009, 2007). The framework conceptualizes natural 
resources as part of complex social-ecological systems comprised of biophysical, social, 
economic, and political subsystems, all interacting across multiple scales to produce system 
outcomes (McGinnis and Ostrom, 2014). In my dissertation, I position working landscapes 
as social-ecological systems composed of natural and anthropogenic ecosystems, the 
people who use and manage them, and the interactions between the components within 
the system and the wider world.  

The social-ecological systems framework provides a useful tool for understanding the 
components of and interactions within complex systems. However, operationalizing the 
framework to disentangle drivers of change in these systems poses conceptual and 
methodological challenges (Leslie et al., 2015; Partelow, 2018; Virapongse et al., 2016). The 
complex interactions across scales, time lags, and nonlinearities inherent in social-
ecological systems complicate efforts to determine causal relationships and predict 
outcomes. In my dissertation, I develop frameworks using causal inference methods to 
identify and quantify drivers of change in complex social-ecological systems, using three 
different social-ecological systems as case studies that span different geographies, 
ecosystems, and types of land use.  

My first chapter looks at wildfires in the western United States as outcomes of complex 
interactions in a complex social-ecological system comprised of diverse forest ecosystems, 
climates, government and private landowners, and many actors and stakeholders with 
different objectives. In the context of this social-ecological system, I study the relative 
impacts of management and climate factors on wildfire probability, motivated by increases 
in wildfire activity in recent decades. I quantify the role of management in modifying 
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wildfire probability by comparing annual fire frequency in federally-managed and 
privately-owned, unprotected forests, using these two ownership categories as proxies for 
the complex, diverse management approaches used across the eleven states of the western 
contiguous United States. I address the question of management impacts on wildfire 
probability using pre-regression matching and panel regression modeling, and I estimate 
marginal effects to compare the impact of management category to that of changing climate 
variables.  

In my second chapter, I study privately-owned California rangelands as social-ecological 
systems composed of fire-adapted ecosystems interacting with human land uses. I focus on 
livestock grazing as a land use that influences wildfire activity in the system, motivated by 
recent calls in the popular media for increased livestock grazing as a tool to reduce wildfire 
activity following rangeland wildfires that have had significant impacts on human lives and 
well-being, such as the 2017 Tubbs and Thomas Fires. I build on the methods used in 
Chapter 1, adding further precision regarding the spatial distribution of and variation in 
land management through a telephone survey of large property owners that enabled the 
creation of a dataset of grazing levels across three social-ecological regions of California. I 
use pre-regression matching and panel regression modeling to assess the impact of varying 
levels of grazing intensity on wildfire probability in the three social-ecological regions and 
across three different dominant vegetation covers. 

Chapter 3 models forest conversion to agriculture as an outcome in the social-ecological 
system in and around Brazil’s Jamanxim National Forest. This system is composed of 
diverse human actors, including farmers, ranchers, miners, land speculators, and 
conservationists, who interact with environmental regulations, regional and global 
commodity chains, and a landscape of tropical rainforest ecosystems and anthropogenic 
land uses such as farmland, pastures, and settlements. This chapter is motivated by 
continued forest loss within Amazonian protected areas and the limitations of land use 
change models with regards to accounting for explanatory factors that are not easily 
quantified or made spatial. In this chapter, I use qualitative discourse analysis to identify 
themes related to deforestation in Jamanxim and integrate these themes into quantitative 
land use change modeling by converting them to quantitative, spatial proxy variables. I 
then assess the performance of four land use change models that use different 
combinations of variables derived from the discourse analysis and those identified through 
a review of the land use change literature in the region. 
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CHAPTER 1 

Quantifying drivers of change in social-ecological systems: land management 
impacts wildfire probability in forests of the western US 

 

Katherine J. Siegel, Laurel Larsen, Connor Stephens, William Stewart, Van Butsic 

Included as a dissertation chapter with permission from co-authors. 

	

Abstract 

Sustainable management of complex social-ecological systems depends on understanding 
the effects of different drivers of change, but disentangling these effects poses a challenge. 
We provide a framework for quantifying the relative contributions of different components 
of a social-ecological system to the system’s outcomes, using forest fires in the western 
United States as a model. Specifically, we examine the difference in wildfire probability in 
similar forests under different management regimes (federally managed vs. privately 
owned) in eleven western states from 1989-2016 and compare the magnitude of the 
management effect to the effect of climate variables. We find a greater probability of 
wildfires in federally managed forests than in privately owned forests, with a 127% 
increase in the difference between the two management regimes over the 28-year time 
period. Furthermore, we find that the effect of the different management regimes is greater 
than the marginal (one-unit change) effect of most climate variables. Our results indicate 
that projections of future fire risk must account for both climate and management 
variables, while our methodology provides a framework for quantitatively comparing 
different drivers of change in complex social-ecological systems.  
 
Introduction 

Sustainable management of social-ecological systems requires an understanding of the 
impacts of multiple factors across spatial and temporal scales (Carpenter et al., 2009; Liu et 
al., 2007; Ostrom, 2009). It is difficult, however, to tease apart the varied influences that 
shape the trajectories of these systems due to complex interactions and feedbacks between 
the human and environmental components across multiple scales, as well as the presence 
of different initial endowments, non-linearities and thresholds, time lags, and unexpected 
outcomes (Ferraro et al., 2019; Holling et al., 1998; Ostrom, 2007). This complexity leads to 
both conceptual and methodological challenges in determining causal relationships and 
predicting outcomes, particularly in the context of rapid global environmental change 
(Lade et al., 2013; Scheffer et al., 2012; Schlüter et al., 2019). Overcoming these challenges 
will improve our ability to sustainably and adaptively manage social-ecological systems.  
 
Wildfires offer a laboratory to study questions about the relative influences of different 
factors in driving outcomes for social-ecological systems because wildfire regimes are 
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changing along with climate and forest management. Since the 1980s, forests in the 
western US have experienced increases in the frequency and size of large fires, with 
consequences for ecosystem functioning and human lives, health, and property 
(Abatzoglou and Williams, 2016; Dennison et al., 2014; Westerling et al., 2006). This trend 
mirrors current and projected increases in the area burned, fire season length, and fire 
severity in many regions around the world, including North American boreal forests (Doerr 
and Santin, 2016; Kasischke and Turetsky, 2006), the Mediterranean (Pausas and 
Fernández-Muñoz, 2012), southern Africa (Giglio et al., 2013), and Australia (Pitman et al., 
2007). These fires represent the outcomes of complex interactions in a social-ecological 
system comprising forest ecosystems, climate, government and private landowners, and 
diverse actors, each with their own objectives and policy constraints (Fischer, 2018; 
Fischer et al., 2016; Moritz et al., 2014; Spies et al., 2018, 2014).  
 
Climate change and forest management both affect the biophysical context of this social-
ecological system and thus impact wildfires (Abatzoglou and Williams, 2016; Hurteau et al., 
2014; Littell et al., 2009), with climate change acting as an external stressor while forest 
management mediates the relationship between actors and ecosystems within the system 
(Perry et al., 2010). Climate change is expected to exacerbate fire risks in some regions of 
the western US through earlier snowmelt, decreased precipitation, increased fuel aridity 
due to higher temperatures and vapor pressure deficit, longer fire seasons, and changes to 
species composition and productivity (Abatzoglou and Williams, 2016; Krawchuk et al., 
2009; Westerling, 2016). Land management will simultaneously modify the effects of 
climate change on fire regimes, as management decisions influence forest structure, fuel 
quantities and connectivity, and fire suppression; management can enhance or dampen the 
effects of climate change on fire regimes (Bowman et al., 2011; Taylor et al., 2016). 
Understanding the impact of land management on fire risk is thus important in guiding 
responses to climate-induced changes in fire regimes in these complex systems. 
 
Given their interacting influences, it is not surprising that there is ongoing debate about the 
attribution of increases in fire activity to climate variation as opposed to land management 
(Harvey, 2016; Starrs et al., 2018; Whitlock et al., 2003). Much of this debate stems from 
methodological difficulties in determining causal relationships in social-ecological systems. 
However recent advances in methods of causal inference (Butsic et al., 2017; Ferraro et al., 
2019; Ferraro and Hanauer, 2014) and access to high-resolution data across large temporal 
and spatial scales give us the ability to re-examine these questions with greater precision. 
Here, we exploit spatial and temporal variation in climate, management, and wildfire to 
understand changes in social-ecological systems driven by local (management) and global 
(climate change) human influences, at broad spatial scales. Beyond informing our 
understanding of the effect of forest management on wildfire risk in the western US, our 
work represents a novel approach to quantifying the relative roles of governance and 
external climate drivers in shaping the outcomes of social-ecological systems in general.   
 
To isolate the impact of forest management from climatic and biophysical drivers of 
wildfire, we compare federally-owned forests to privately-owned, unprotected forests, 
using these two categories of land ownership as proxies for the complex, diverse forest 
management approaches deployed in the western US. Federal agencies and private entities 
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are the two largest forest owners in the western US, owning 64% and 30% of forested area, 
respectively (Figure 1); federal agencies manage 44-96% of forests in the eleven western 
states of the contiguous US, while private entities own 4-44% of forested land (Bansal et al., 
2017; Christensen et al., 2016; Goeking and Menlove, 2017; Menlove et al., 2016, 2012; 
Palmer et al., 2019; Shaw et al., 2018; Thompson et al., 2017, 2005; Werstak Jr. et al., 2016; 
Witt et al., 2012). Federal and private landowners manage their forests for various 
objectives and are subject to different political and economic constraints and demands. 
Federal agencies must take into account objectives including conservation of protected 
species, access to recreation, and local timber sectors (Spies et al., 2010), while private 
landowners may manage their forests to maximize economic opportunities or for 
noncommercial uses, subject to state- and federal-level regulations such as the Endangered 
Species Act (Ager et al., 2017; Charnley et al., 2017; Christensen et al., 2016). These 
management decisions influence vegetation structure, which in turn influences fire risk; 
publicly owned forests typically have higher biomass levels than private forests, where 
periodic grazing and harvesting are more common (Heath et al., 2011; Hudiburg et al., 
2009; Spies et al., 1994; Turner et al., 1996).  
 
Furthermore, forest ownership affects perceptions of and responses to wildfires. Since the 
1970s, federal agencies have moved slowly away from their historic focus on fire 
suppression due to increased recognition of the ecological role that fire plays in the 
forested ecosystems of the western US. Specific policy revisions highlight this paradigm 
shift, including the use of prescribed fires in national parks and wilderness areas, allowing 
fires with natural ignition sources to burn for management purposes, and an explicit 
requirement for ecosystem-based approaches to fire management (Steelman and 
McCaffrey, 2011; Stephens and Ruth, 2005). Meanwhile, aggressive fire suppression 
remains the norm on private land due to socio-political pressure and overarching goals of 
protecting human lives and property (Canton-Thompson et al., 2008; Liang et al., 2008; 
Office of the Inspector General, 2006). 
 
Using data from forests in these two management categories in the eleven states of the 
contiguous western US, along with spatially-explicit data on fire occurrence, biophysical 
and climatic variables related to fire risk, and human activities, we use pre-regression 
matching and panel data analysis that accounts for time lags to answer the following 
questions: 1) Is there a difference in the probability of wildfire in federally managed forests 
as opposed to privately-owned, unprotected forests in the western US? 2) If so, has this 
difference changed over the past three decades? 3) Do this difference and any potential 
trends over time vary by state? 4) How does the magnitude of this difference compare to 
the effects of climate variables in modifying wildfire risk? 
 
Materials and methods 

Study area 
 
Our study includes forests in the eleven western states of the continental US: Arizona, 
California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and 
Wyoming (hereafter “western US”). We sampled points along a 1-kilometer grid across the 
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eleven states, then selected all points that met our inclusion criteria (forested points 
located either on federally owned land or on private, unprotected land). For these points, 
we compiled data on fire activity and a suite of independent variables. We performed pre-
regression matching and subsequent modeling at the state level, as states are the 
administrative scale at which variation in firefighting capacity, land use laws, and road 
maintenance operate (Starrs et al., 2018). We thus bound our social-ecological systems as 
encompassing the federally-managed and privately-owned forests in each individual state 
of the western US. 
	
Data compilation 
 
Vegetation:	We identified forested points based on vegetation data from the 2001 National 
Land Cover Database (USGS, 2014) and LANDFIRE’s Existing Vegetation Cover map for 
2001 (Rollins, 2009). We included deciduous, evergreen, and mixed forest types from the 
NLCD and LANDFIRE classes with tree cover of greater than or equal to 20% to match the 
canopy cover cut-off used by the NLCD. We included all points classified as forest in either 
of the land cover maps (Berner et al., 2017; Hicke et al., 2015), using R, QGIS, and ArcGIS for 
our data compilation and subsequent modelling (ESRI, 2018; QGIS Development Team, 
2019; R Core Team, 2019). For spatial analyses in R, we used the raster, sf, lwgeom, and 
tidyverse	packages (Hijmans, 2019; Pebesma, 2019, 2018; Wickham, 2017). 
 
Management status: We used the US Geological Survey’s Protected Area Database (USGS, 
2018) to classify the land management categories of forested land. This database includes 
all public, undeveloped land in the US, including land owned by federal, state, and local 
governments, regional agencies, and American Indian tribes. It also includes protected 
areas owned by NGOs or private entities. For our first management category, federally 
managed, we included all forest points that occurred on federal land in the database, 
regardless of GAP status code, which indicates the level of protection against land 
conversion. This includes land owned and managed by the US Forest Service, the Bureau of 
Land Management, the National Park Service, and other federal agencies. It excludes 
protected areas managed by other entities, including private land owners and state 
agencies. We included all protection categories for federal land so we could capture the 
effect of federal management across variation in management intensiveness and objectives. 
Our dataset thus includes strictly protected forests in national parks and wilderness areas, 
but very few of these points remained after we implemented the matching process (n = 
1503, or 0.7% of sample points). For our second management category, private forest, we 
only included points that fell outside of the areas in the database. We recognize that this 
division of federal vs. private management is blunt and does not capture nuances between 
management by different federal agencies or for different objects, but it allowed us to 
analyze relationships at broad spatial scales. 
 
Fires: We acquired fire perimeter data for all fires at least 1000 acres in size from the 
Monitoring Trends in Burn Severity database for the western US (Eidenshink et al., 2007; 
USFS and USGS, 2018). This database includes several categories of fires: prescribed fires 
(fires ignited for management purposes), wildfires, wildland fire use (fires with natural 
ignition sources that are allowed to burn to accomplish management goals), and fires 
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classified as “unknown.” For each sample point in each year from 1984-2016, we 
determined whether or not the point occurred within the perimeter of a wildfire. We did 
not include wildland fire use, prescribed fires, or uncategorized fires in our first set of 
analyses. We also calculated a lag variable for each point in each year, indicating whether 
or not the point had burned in any fire type in the previous year, in the previous two years, 
and in the previous five years, since recent fire history affects fire risk (Parks et al., 2016; 
Price et al., 2015); because we used these lag variables, our models began in 1989, rather 
than 1984. In a subsequent analysis, we included the occurrence of wildland fire use in our 
model (see Model	Robustness section for details) to assess whether our results held for 
managed wildfires. 
 
Lightning strikes: Lightning is an important wildfire ignition, especially in mountainous 
regions of the western US (Balch et al., 2017; Miller et al., 2012; Stephens, 2005). We used 
annual data on the number of lightning strikes per county for 1986-2014 (NCES, 2018) to 
assign a number of strikes per year for each sample point (i.e., every sample point in a 
county was assigned that county’s tally of annual strikes). Because the lightning data were 
available only at a coarse spatial scale and for a limited time period, we used it as a 
covariate in our matching but not in the subsequent regression models. 
 
Climate: We compiled a suite of climate variables for each sample point using TerraClimate, 
a dataset of monthly climate data at a 4-km resolution (Abatzoglou et al., 2018) that has 
been used for large-scale modeling of wildfires in the region (Davis et al., 2019). We used 
TerraClimate in lieu of a finer-scale dataset such as PRISM (Daly et al., 2008) because 
TerraClimate includes additional climate variables that are relevant to wildfire, including 
soil moisture and wind speeds. We selected climate variables related to fuel conditions, 
ignition probability, and subsequent fire behavior: wind speed, precipitation, maximum 
and minimum temperatures, soil moisture, and Palmer Drought Severity Index (Abatzoglou 
et al., 2017; Abatzoglou and Williams, 2016; Barbero et al., 2014; Dennison et al., 2014; 
Dillon et al., 2011; Krawchuk and Moritz, 2011; Littell et al., 2016, 2009; Miller et al., 2012; 
Westerling et al., 2006, 2003; Westerling, 2016; Whitlock et al., 2003). We summarized this 
data into seasonal climate variables in each year: winter (December of the previous year, 
January, and February), spring (March, April, and May), summer (June, July, and August), 
and fall (September, October, and November) average maximum wind speed (m/s), total 
precipitation (cm), average maximum and minimum temperatures (˚C), average soil 
moisture (mm), and average Palmer Drought Severity Index, a measure of long-term 
drought. We included these variables in all seasons since climate factors in seasons 
preceding the fire season are important predictors of fire risk in some regions, while fire 
season climate factors are most important in other regions (Littell et al., 2009; Syphard et 
al., 2017). We also used total precipitation in the previous water year (e.g. for 2015, 
precipitation accumulated from December 1, 2013-November 30, 2014 (Miller et al., 
2012)) as an explanatory variable, as this is an important predictor of wildfire risk in some 
regions of the western US (Littell et al., 2009; Syphard et al., 2017). 
 
Topography: We acquired elevation data at 30-m resolution from the National Elevation 
Dataset (USGS, 2013), then calculated slope and aspect in QGIS (QGIS Development Team, 
2019), as topographic variables can impact fuel conditions, fire probability and behavior, 
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land management, and responses to fires (Dillon et al., 2011; Hurteau et al., 2014; Littell et 
al., 2009).  
 
Human activity: Human population density and remoteness (as measured by distance to 
roads) may impact frequency of anthropogenic fire ignitions and influence fire response 
decisions (Balch et al., 2017; Nagy et al., 2018; Syphard et al., 2017). We extracted census 
block-level population density data for each sample point in 1990, 2000, and 2010 from a 
database of population and housing density (Radeloff et al., 2018). We also calculated the 
Euclidean distance from each sample point to the nearest road (US Census Bureau, 2018). 
	
Matching 
 
Pre-regression matching techniques can improve causal inference by reducing the effects 
of confounding variables (Schleicher et al., 2020; Stuart, 2010). There are likely to be 
systematic differences between federally managed and private forests in some of the 
geographic and climatic factors related to fire risk (Joppa and Pfaff, 2011, 2009); to control 
for covariate differences by management category, we matched federally managed and 
private data points in each state using nearest neighbor propensity score matching with 
the MatchIt	package and a caliper set to 0.1 (Ho et al., 2011; Stuart, 2010). For each 
federally owned site (the treated group) in the dataset, we identified the private and 
unprotected site (the control group) with the closest propensity score, then removed all 
unmatched treated and control sites. As causal inference in social-ecological systems 
requires that treated and control pairs be matched on both environmental and social 
variables (Ferraro et al., 2019), we matched our datasets for each state using the relevant 
continuous socioeconomic, topographic, and climatic data: slope; aspect; latitude; 
longitude; distance to roads; population density at three years in the time period (1990, 
2000, 2010); seasonal averages of maximum wind speed, maximum temperature, 
minimum temperature, soil moisture, and PDSI, averaged over the first five years in the 
dataset (1984-1988); total seasonal precipitation (again averaged from 1984-1988); and 
the average number of lightning strikes annually for the period from 1984-1988. This 
yielded a matched dataset of federal and private points for each state, with a minimum 
matched dataset size of 1455 points per management class in Nevada and maximum of 
24267 points per class in California (Table S1). The matched datasets reduced systematic 
differences in environmental and social variables between federally managed and private 
forests (Tables S2, S3). 
	
Models 
 
We used mixed effects models to account for unobservable factors that may have 
influenced the probability of a site burning, such as historical legacies of land use and forest 
management or fine-scale climatic and geographic factors. Using logistic regression, we 
modeled whether or not a given point burned in a given year. We fit a single model for all 
eleven states together, with a state fixed effect. From the suite of climate, geographic, and 
social variables used for matching, we dropped highly correlated explanatory variables 
(absolute value of Pearson’s correlation coefficient ≥ 0.66, p-value < 0.05), yielding the 
following panel regression: 
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BNit	=	B0	+	B1*Management	+	B2*Year	+	B3*State	+	B4*BPYone	+	B5*BPYtwo	+	B6*BPYfive	+	B7‐
18*Controls	+	B19‐22*Interactions	+	ui	+	eit		
 
where BN was whether or not a point (i) burned in a given year (t); Management	was either 
federally managed or private and unprotected; Year	was year as a continuous variable; 
State	was the state fixed effect; BPYone, BPYtwo, and BPYfive	were the lag variables for 
whether the point had burned in the previous one, two, or five years, respectively; and 
Controls	represented the list of covariates that we expected to influence the probability of a 
point burning: elevation (in 1000s of meters), slope (degrees), aspect, distance to the 
nearest road (km), population density in 1990 (people/km2), average fall PDSI, average 
winter PDSI, average maximum fall temperature (℃), average maximum summer 
temperature (℃), average maximum summer wind speed (m/s), total precipitation in fall 
(cm), and total precipitation in summer (cm). Interactions	includes all possible interactions 
between Management, Year, and State	to allow the effect of management to vary over time 
and between states. ui	is the site-specific random effect and eit	is the error term for each 
point in each year. We used the R package lme4 for our modelling (Bates et al., 2015). 
	
It can be difficult to interpret the estimated coefficients for interacting variables in a 
logistic regression model. To better understand the effect of management and the change in 
this effect over time, we calculated the marginal effects of management (the difference in 
the probability of burning depending on the management type, holding all other variables 
constant) and the predicted probability of burning in a given management/year 
combination for the all-state and state-level models (described under Robustness	checks) 
using the R packages margins	(Leeper, 2018) and ggeffects	(Ludecke, 2018). To understand 
the magnitude of the effect of management relative to the effect of climate variables, we 
also calculated the marginal effects of each climate variable used in the state-level models 
for the year 2016 and compared these values to the marginal effect of the management 
category in 2016. 
	
Model robustness 
 
We fit several additional models to our data to check for the robustness of our results 
against the effects of state-level trends, the type of wildfires included in the response 
variable, changes in forest cover over time, our treatment of our annual time steps as a 
continuous variable, temporal lags, and spatial trends. First, to assess whether our modeled 
patterns were robust for each state, we ran individual, state-level models for each of the 
eleven states. We then compared the patterns derived from each state-level model with the 
all-state model’s predicted probability of burning for each state. The state-level models had 
the same response variable as the all-state model (whether or not a sample point burned in 
a wildfire in a given year). We dropped independent variables that were highly correlated 
(absolute value of Pearson’s correlation coefficient ≥ 0.66, p-value < 0.05) in each state and 
categorical variables that perfectly predicted the outcome (e.g., BPYone), yielding slightly 
different sets of explanatory variables for each state (Table S4). For all of the state models, 
we included the management category (federally managed or private), year, and 
interactions between year and management category.  
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To determine whether our results were influenced by differences in the designation of fires 
as wildland fire use in the different management classes (USFS, 2009), we reproduced the 
all-state model using a response variable of whether a given point burned in either a 
wildfire or wildland fire use in a given year. The model otherwise used the same 
specification as the all-state model described above. See Table S5 and Figure S1 for results 
and predicted probabilities of burning, respectively. In addition, we fit the same model 
using only wildland fire use as the response variable (Table S6). 
 
It is likely that the 2001 land cover data do not capture all sample points from our 1-km 
grid that were forested at some point between 1984-2016, as some points may have 
experienced forest loss between 1984 and 2001 through stand-removing disturbance 
events and chronic stressors, while others may have undergone post-disturbance 
succession post-2001 (Cohen et al., 2016; Coop et al., 2020; Yang and Mountrakis, 2017; 
Yang et al., 2005). To determine whether our results were robust to the inclusion of sample 
points that were forested during our time series but not forested in 2001, we assembled a 
second version of our dataset including all points from our 1-km sample grid that were 
forested in 1992, 2001, or 2016. While our time series begins in 1984, 1992 was the 
earliest year with standardized land cover data for our study region that is comparable to 
our later data, so we believe that it is an acceptable approximation of the distribution of 
forests at the beginning of the time period we studied. We identified these additional 
forested points from the retrofitted 1992 and 2016 National Land Cover Database (Fry et 
al., 2009; Yang et al., 2018) The 1992 land cover data had just one forest category, so we 
included all forested points from this dataset. For the 2016 land cover data, we included 
deciduous, evergreen, and mixed forest types, as we had done in our initial dataset of 2001 
forested points. Using this expanded dataset of forested points, we assembled all other 
variables as previously described under Data	compilation. In total, there were 26,489 
additional forested points on federally managed or privately-owned, unprotected land 
when we included the 1992 and 2016 data. This represents a 3.5% increase in the number 
of sample points relative to when we only considered the 2001 forest data. We then re-ran 
the matching and modeling methods described in Matching and Models and calculated the 
coefficient estimates and predicted probabilities of burning for the all-state model to 
compare with our model that only included points that were forested in 2001 (Table S7). 
 
We used logit models in order to calculate predicted probabilities, which allowed us to 
interpret the complex interaction effects. A drawback of this method is the inability to used 
unit-level fixed effects, which are often favored in causal analysis (Imbens and Wooldridge, 
2009). Therefore, as a robustness check, we ran two linear probability models with fixed 
effects and lagged dependent variables for the state-level models: using the method 
suggested by Wooldridge (2002) (Woolridge, 2002) and using dynamic panel regressions 
with the Arellano-Bond estimator (Arellano and Bond, 1991) (Table S8). We implemented 
these models in Stata (Roodman, 2009; StataCorp, 2019). To ensure that our results were 
robust to our treatment of the time variable (Year) as continuous, we also ran each state-
level logit model treating Year as a factor variable (Table S9) and an additional all-state 
model where we combined individual years into 5-year bins (Table S10).  
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Finally, to control for spatial autocorrelation, we ran a modified all-state model that 
included the X and Y coordinates of each sample point and their interactions as covariates. 
A comparison of the coefficient estimates and p-values of this spatially-explicit model 
(Table S11) with the non-spatial all-state model (Table S12) indicated that the addition of 
the X and Y coordinates and their interaction did not change the direction, magnitude, or 
significance of the other predictor variables, with the exception of elevation, which became 
a significant variable when latitude and longitude were added to the model. This indicated 
that spatial autocorrelation did not have a significant impact on the relationships between 
the outcome and the other response variables or the subsequent marginal effect of 
management (Schleicher et al., 2017). The X and Y coordinates and their interaction were 
significant predictors of wildfire probability, but the coefficient estimates had absolute 
values less than 0.0001.  
	
Results 

Model results 
 
In the model that included all matched points from the 11 states (hereafter “all-state 
model”), slope, aspect, distance to roads, average winter PDSI, and maximum summer 
temperature and wind speeds had significant positive relationships with the probability of 
a point burning in a given year (Table 1): forests on steeper slopes, located further from 
roads, and with less drought in winter, hotter summers, and higher summer wind speeds 
were more likely to burn. There was also a significant positive trend in the probability of 
burning over time (over the time series, the probability of a point burning increased). 
Population density, average summer PDSI, maximum fall temperature, and precipitation in 
fall and summer had negative relationships with burn probability: forests in areas with 
lower human population density, greater levels of summer drought, lower fall maximum 
temperatures, and less rainfall in summer and fall were more likely to burn. Sites that 
burned in the previous year, previous two years, or previous five years were all less likely 
to burn in a given year. Full results of the logistic regression for this model are in Table S12.  
 
The predicted probability of burning began at 0.0008 in federally managed forests and 
0.0003 in privately owned forests and increased over time for both management 
categories. The predicted probability of burning increased more rapidly for federally 
managed forests than for private forests: in 2016, the predicted probability of burning was 
about 1.5 times higher in federally managed forests than private forests (0.0032 and 
0.0021, respectively; Figure 2).  
 
When we calculated the predicted probabilities of burning for forested points in each state 
separately using the all-state model, we found four general patterns of states. In the first 
pattern, observed in Arizona, Utah, and Washington, federally managed and private forests 
begin with the same predicted probability of burning. The predicted probability of burning 
increases over time for both management types but increases more rapidly for federally 
managed forests. Federally managed forests in states that demonstrate the second general 
pattern-- California, Colorado, Idaho, Montana, and Oregon-- begin the time series with a 
greater predicted probability of burning than privately-owned forests. The probability of 
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burning increases over the time series for both forest types, but federally managed forests 
always have a greater probability of burning. Nevada is the sole example of the third 
pattern: the predicted probability of burning increases over time and does not differ 
significantly between the land management categories. New Mexico and Wyoming 
represent the fourth pattern: in these two states, federally managed forests have a greater 
predicted probability in 1989, and while their predicted probability of burning increases 
over time, the predicted probability of burning for private areas increases more rapidly; at 
the end of the time series, unprotected areas have a greater predicted probability of 
burning. The predicted probabilities for each forest type in each individual state, using the 
all-state model, tracked the patterns in predicted probability over time that resulted from 
the state-level models (Figure S2). 
	
Model robustness 
 
Our state-level regression models had different suites of geographic and climatic covariates 
(Controls in the regression specification), depending on which variables were highly 
correlated. Elevation was a significant predictor of wildfire probability in all eleven states, 
with a negative impact in every state except Idaho and Washington. Elevation in turn was 
strongly correlated with minimum and maximum temperatures in most states and most 
seasons. Slope had a positive relationship with wildfire probability in every state except 
Colorado, where there was no significant relationship. Additional variables that had 
significant effects in more than half of the state-level models included aspect, distance to 
roads, summer PDSI, fall wind speeds, precipitation in all seasons, and precipitation in the 
previous year. See Tables S13-23 for full regression results for each state and Table S24 for 
the model fits for each state. The patterns of predicted probabilities and marginal effects 
for each state’s model reflected the patterns for that state in the all-state model (Figure S2). 
The state-level models that used Year as a factor variable yielded similar results to those 
that treated Year as a continuous variable (Table S9). Using 5-year bins did not change the 
patterns in predicted probability of fire over time in the 11 states, even though the last time 
period was only 3 years, not 5, which would potentially depress the burn probability in the 
final time step (Table S10). Similarly, using dynamic panel methods and fixed effects 
regression to account for time lags did not significantly alter our results at the mean (Table 
S8). Adding points that were forested in 1992 and 2016 did not change our findings either 
(Table S7). 
	
Effects of management and climate 
 
The average marginal effect of federal management was positive (i.e., associated with 
higher probability of burning) for five of the states across the entire time series, while for 
three additional states, the marginal effect was positive in all years but was only significant 
beginning in the mid-1990s. As in the all-state model results, Nevada, New Mexico, and 
Wyoming display a different pattern in the effect of federal management than the rest of 
the region (Table 2). 
 
When we compared the marginal effect of the management category to that of the climate 
variables in the state-level models for 2016, we found that the effect on burn probability of 
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federal management (when compared to privately owned forests) was greater than the 
effect of a one-unit change in the value of most climate variables (Figure 3). In California, 
Idaho, and Utah, the effect of federal management was greater than a one-unit change in 
any of the climate variables. Wind speed variables had greater marginal effects than federal 
management in the other eight states, as did summer precipitation in Nevada, summer 
PDSI in New Mexico, summer and fall maximum temperatures and winter PDSI in 
Washington, and spring precipitation in Wyoming, although several of these differences 
were within the standard error ranges. 
 
Discussion 

We find that over the last few decades, federally managed forests in the western US have 
had a higher probability of burning in wildfires than private forests, after controlling for 
systematic differences in geographic, climatic, and human factors that contribute to 
wildfire risk. While wildfire probability increased over time for forests in both 
management categories, federally managed forests experienced a greater increase. This 
pattern held true across the majority of states in the western US: in eight states, the 
marginal effect of being a federally managed forest was positive starting in the late 1990s 
at the latest (for five of these states, the marginal effect was positive and significant 
throughout the entire time series). Our results concur with those of a recent study looking 
at the effects of land management, protection status, and firefighting responsibility in 
California (Starrs et al., 2018). The generality of this pattern, and the increase in the 
divergence between federally managed and private forests, demonstrates the importance 
of forest management in shaping wildfire risk. 
 
We also find that in most states, the effect of federal management on fire probability is 
greater than that of a one-unit change in many of the climate variables related to fire risk. 
For example, the effect of federal management on forest fire risk in Montana is more than 
eighteen times greater than that of a 1 cm increase in spring precipitation (0.0022 ± 0.0004 
vs. 0.0001 ± 0.0001), while the state is projected to experience a 1.5-3 cm increase in 
spring precipitation by 2040-2069 (Whitlock et al., 2017). In Oregon, average summer 
temperatures are predicted to increase by 0.8˚C along the coast and 2.0˚C in the eastern 
part of the state by 2059 relative to 2019 observations (Mote et al., 2019); the effect of 
federal management is 1.4 times greater than that of a 1˚C increase in average maximum 
summer temperatures (0.0024 ± 0.0001 vs. 0.0017 ± 0.0002). These findings indicate that 
in the social-ecological systems of western US forests, management can have as large an 
impact as some aspects of climate change on the probability of wildfire as a system 
outcome.  
 
Our finding that the probability of burning increased for both management types (federally 
managed and private) indicates that across management and ownership categories, fire 
risk is increasing in the western US. This mirrors previous regional studies that have found 
an increase in fire risk with climate change (Abatzoglou and Williams, 2016; Westerling, 
2016) and suggests that as the western US continues to experience changing climate 
conditions, there may be limits in the ability of forest management to reduce fire risk. The 
upward trend that we found in burn probability over time may derive from an increase in 
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the time since the last fire for each sample point (i.e. the year effect represents time since 
burning), reflect changing practices over time in both management categories, or capture 
the influence of climate variables that increased over the time period of our study but were 
not included as predictor variables. Nevertheless, our findings— that 1) federal forests 
have a greater probability of burning, 2) the difference in fire probability between federal 
and private forests has increased over time, and 3) the effect of federal management is 
greater than that of some changes in climate variables in increasing fire probability— 
demonstrate that forest management has a role to play in influencing fire activity and that 
projections of wildfire risk under climate change need to account for differences in land 
management. 
 
Time lags and legacy effects are common features of social-ecological systems; different 
legacies of fire suppression and changing management goals may in part account for the 
observed increase in the probability of wildfires in federally managed forests relative to 
privately-owned forests. Decades of fire suppression on federal land and exclusion of fuel-
removing activities (such as logging and grazing) have led to a build-up of fuels, setting the 
stage for increased fire activity (Noss et al., 2006). At the same time, in recent years, federal 
land management agencies have begun to recognize the ecological role of wildfires, leading 
to less rigid focus on fire exclusion and some efforts to approximate historic fire regimes 
(Steelman and McCaffrey, 2011; Stephens and Ruth, 2005), although our model accounts 
for this by excluding prescribed fires and wildland fire use. This combination of an 
accumulation of fuel following decades of fire suppression and more recent acceptance of 
the role of fire has primed federal lands for increased fire risk. We also accounted for time 
lags through our inclusion of three lag variables (whether or not a point had burned in the 
previous one, two, or five years) and use of dynamic panel modelling and fixed effects to 
incorporate time lags in the dependent variable. Across the western US, the fire probability 
decreases for at least five years following a fire, although this effect does not hold true in 
every state (Tables S13-23).  
 
We found that Nevada, New Mexico, and Wyoming had different patterns of fire probability 
than the other eight states: in Nevada, the fire probability increased over time but there 
was no difference in risk between the two management categories; in New Mexico and 
Wyoming, federally managed forests had a greater probability of burning than private 
forests in the late 1980s, but this pattern had flipped by 2016. The different patterns in 
New Mexico and Wyoming may be in part attributable to trends in timber harvest on 
federal and private land in the last two decades: in both states, federal timber harvest 
increased from 2000 onward, overtaking harvest from private land, which declined during 
that time period (Hayes et al., 2018; McIver et al., 2017). This indicates greater fuel removal 
on federal than private land during the time period when the probability of burning for 
private forests began to exceed that of federally managed forests. However, Arizona did not 
display the same pattern in its fire probability, despite having a similar change in the 
relative dominance of timber harvests from federal versus private land (Figure S3) (Hayes 
et al., 2018). The patterns Nevada and New Mexico may also stem from ecological 
differences due to the dominant forest types present: over 50% of the forested points 
sampled in Nevada and New Mexico were pinyon-juniper woodland (62% and 53%, 
respectively); however, the only other state where the majority of sampled points were 
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from pinyon-juniper woodlands was Arizona, which did not follow the same pattern as 
Nevada or New Mexico, thus complicating the relationship between dominant woodland 
species and fire probability (USGS, 2001). 
 
Variable ignition rates are an important driver of differences in wildfire probability across 
space and time (Balch et al., 2017; Keeley and Syphard, 2017); we were unable to fully 
account for variation in ignitions due to a lack of data on lightning strikes and 
anthropogenic ignitions at fine spatial scales across the time period of our study. However, 
we expect increased rates of anthropogenic ignitions in areas with higher human 
population densities and closer to roads (Mann et al., 2016; Stephens and Ruth, 2005; 
Syphard et al., 2007). In our matched dataset, privately-owned forests were located in 
census blocks with higher population densities in all states, while private forests in four 
states were located closer to roads than federally managed forests (Table S3), suggesting 
that the privately-owned forests may experience higher rates of anthropogenic ignitions. 
Given this expected trend, the increased wildfire probability in federally managed forests, 
despite lower expected anthropogenic ignition rates, highlights the role of land 
management in influencing wildfire probability, as well as other factors associated with 
proximity to human population centers, such as probability of rapid detection of fires, 
firefighting resources, and preference for fire suppression (Syphard et al., 2007). In fact, in 
the all-state model and five of the state-level models, the probability of burning increased 
with distance from roads and at lower population densities (Tables 1, S14, S16, S17, S20, 
S22), suggesting that the effects of land management, detection, and firefighting response 
may swamp out the impact of more frequent human ignitions. 
 
While our pre-regression matching methodology allowed us to control for potentially 
systematic geographic, climatic, and human differences between federally managed and 
private forests, it also limits the generalizability of our results. We can only apply our 
regression results to forested points that fall within the range of climatic, geographic, and 
human variables that were included in the matched dataset. This means that we cannot 
assume that our results would hold true for the most remote, high altitude forests in 
wilderness areas in the western US, for example, since our matching process discarded 
federally managed points that did not have a private forest point with similar geographic 
characteristics (elevation, distance to roads, and human population density, in this 
example). Notably, high elevation sites may experience above-average warming with 
climate change and be particularly sensitive to these changes (Diaz et al., 2003; Pepin et al., 
2015; Rangwala et al., 2013). 
 
In addition, by building state-specific models and including a state fixed effect in our overall 
model, we assume that there is an impact of state boundaries on fire probability. However, 
we think that this assumption is justified, as state-level policies constrain forest 
management and affect firefighting on private and federal land (Ager et al., 2017; Starrs et 
al., 2018). In addition, our model includes seasonal climate variables but does not account 
for shorter-term weather events that may have a large impact in the spread of individual 
fires (Finney et al., 2011). Finally, our model does not account for changes in forest cover in 
our study area over the time period, assuming instead that areas that were forested in 
2001 had forest cover throughout our time series (Abatzoglou and Williams, 2016). 
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Our study represents an advance for understanding the impact of federal management of 
wildfires in the western US specifically and quantitative assessment of complex forcings in 
social-ecological systems broadly. Previous studies have assessed fire risk due to 
biophysical factors, but here we integrate the social component by disaggregating fire risk 
by management type. Using a high-resolution dataset on fire perimeters, climatic variables, 
and geographic factors over the last three decades, pre-regression matching, and logistic 
regression with mixed effects models, we provide a rigorous assessment of the effect of 
federal land management on wildfire risk and find that 1) federally managed forests have a 
greater probability of burning than private, unprotected forests; 2) this effect has increased 
over the last three decades; 3) this trend applies to eight of the eleven states in the region, 
despite the diversity of forest types and climates within the region; and 4) the effect of 
federal management on fire is greater than that of one-unit changes in many climate 
variables expected to impact fires. We also present a novel approach to quantifying the 
relative importance of different drivers of change in complex social-ecological systems, 
while accounting for the human-environment interactions and time lags that characterize 
these systems. Our method provides a potential framework for further research that seeks 
to untangle the roles of management, socioeconomic, and environmental factors in driving 
outcomes in social-ecological systems. 
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Tables 

Table	1. Regression model results of annual burn data across all eleven western states, 
showing coefficient estimates for climatic, topographic, and social variables and the 
interaction between time and management status. Standard errors are in parentheses 
beneath the corresponding coefficient estimate. See Table S12 for state effects and 
interactions between state effects, year, and federal management. * p < 0.05, ** p < 0.01, *** p 
< 0.001. 
 

Variable Coefficient 
Intercept -164.774*** 

(26.478) 
Federally managed -65.596* 

(33.322) 
Elevation (thousand meters) -0.037 

(0.023) 
Slope (˚) 0.023*** 

(0.001) 
Aspect (˚) 0.000*** 

(0.000) 
Distance to roads (km) 0.168*** 

(0.006) 
Population density (1990) -0.014*** 

(0.002) 

Average PDSI, summer 
-0.223*** 
(0.004) 

Average PDSI, winter 
0.072*** 
(0.004) 

Average maximum temperature, 
fall (˚C) 

-0.044*** 
(0.005) 

Average maximum temperature, 
summer (˚C) 

0.121*** 
(0.004) 

Average maximum wind speed, 
summer (m/s) 

0.181*** 
(0.015) 

Total precipitation, fall (cm) 
-0.022*** 
(0.001) 

Total precipitation, summer (cm) 
-0.103*** 
(0.003) 

Year 
0.078*** 
(0.013) 

Burned in previous year -2.839*** 
(0.243) 

Burned in previous 2 years -1.356*** 
(0.141) 

Burned in previous 5 years -0.738*** 
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(0.103) 
Federally managed*Year 0.033* 

(0.017) 
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Table	2. Marginal effects (percentage point change in fire probability) of federal management for the state-level models.  
* p < 0.05, ** p < 0.01, *** p < 0.001. 
 
Year	 AZ	 CA	 CO	 ID	 MT	 NV	 NM	 OR	 UT	 WA	 WY	

1989 0.02 0.12*** 0.05*** 0.09*** 0.13*** 0.05 0.24*** 0.17*** 0.01 0.01 0.09*** 

1990 0.02 0.13*** 0.05*** 0.10*** 0.13*** 0.05 0.24*** 0.17***	 0.01 0.01 0.09*** 

1991 0.03 0.14*** 0.05*** 0.10*** 0.14*** 0.05 0.24*** 0.17*** 0.01 0.01 0.10*** 

1992 0.03 0.16*** 0.06*** 0.11*** 0.14*** 0.05 0.24*** 0.18*** 0.02 0.01 0.11*** 

1993 0.04 0.17*** 0.06*** 0.11*** 0.15*** 0.06 0.24*** 0.18*** 0.02 0.01 0.12*** 

1994 0.05 0.19*** 0.06*** 0.12*** 0.15*** 0.06 0.24*** 0.18*** 0.02 0.01 0.13*** 

1995 0.05 0.20*** 0.07*** 0.13*** 0.15*** 0.06 0.24*** 0.19*** 0.02 0.01 0.14*** 

1996 0.06 0.22*** 0.07*** 0.13*** 0.16*** 0.06 0.24*** 0.19*** 0.02 0.02 0.15*** 

1997 0.07* 0.24*** 0.08*** 0.14*** 0.16*** 0.06 0.24*** 0.19*** 0.03 0.02 0.16*** 

1998 0.08* 0.26*** 0.08*** 0.15*** 0.16*** 0.07 0.23*** 0.20*** 0.03 0.02 0.17*** 

1999 0.10** 0.28*** 0.08*** 0.15*** 0.17*** 0.07 0.23*** 0.20*** 0.03* 0.02* 0.18*** 

2000 0.11** 0.30*** 0.09*** 0.16*** 0.17*** 0.07 0.23*** 0.21*** 0.04* 0.02* 0.20*** 

2001 0.12*** 0.32*** 0.10*** 0.17*** 0.17*** 0.07 0.22*** 0.21*** 0.04** 0.03* 0.21*** 

2002 0.14*** 0.35*** 0.10*** 0.18*** 0.18*** 0.08 0.22*** 0.21*** 0.04** 0.03* 0.22*** 

2003 0.15*** 0.37*** 0.11*** 0.19*** 0.18*** 0.08 0.21*** 0.22*** 0.05*** 0.03** 0.23*** 

2004 0.17*** 0.40*** 0.11*** 0.19*** 0.19*** 0.08 0.20*** 0.22*** 0.05*** 0.04** 0.23*** 

2005 0.19*** 0.43*** 0.12*** 0.20*** 0.19*** 0.08 0.19*** 0.22*** 0.06*** 0.04** 0.24*** 

2006 0.21*** 0.46*** 0.12*** 0.21*** 0.19*** 0.09 0.18*** 0.22*** 0.06*** 0.04** 0.24*** 

2007 0.24*** 0.49*** 0.13*** 0.22*** 0.20*** 0.09 0.17*** 0.23*** 0.07*** 0.05*** 0.24*** 

2008 0.26*** 0.52*** 0.13*** 0.23*** 0.20*** 0.09 0.15*** 0.23*** 0.07*** 0.05*** 0.23*** 

2009 0.29*** 0.56*** 0.14*** 0.24*** 0.20*** 0.10 0.13*** 0.23*** 0.08*** 0.06*** 0.22*** 

2010 0.32*** 0.60*** 0.15*** 0.25*** 0.20*** 0.10 0.11*** 0.23*** 0.08*** 0.06*** 0.20*** 

2011 0.35*** 0.64*** 0.15*** 0.26*** 0.21*** 0.10 0.08*** 0.24*** 0.09*** 0.07*** 0.16* 

2012 0.38*** 0.68*** 0.16*** 0.27*** 0.21*** 0.11 0.06* 0.24*** 0.10*** 0.08*** 0.11 

2013 0.42*** 0.73*** 0.16*** 0.29*** 0.21*** 0.11 0.02 0.24*** 0.10*** 0.09** 0.05 

21 
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2014 0.46*** 0.77*** 0.16*** 0.30*** 0.21*** 0.11 -0.01 0.24*** 0.11*** 0.09** -0.03 

2015 0.51*** 0.82*** 0.17*** 0.31*** 0.22*** 0.12 -0.05 0.24*** 0.12*** 0.10** -0.14 

2016 0.55*** 0.88*** 0.17*** 0.32*** 0.22*** 0.12 -0.10* 0.24*** 0.12*** 0.11* -0.28 
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Figures 

 
Figure	1. Map of the study area showing a) each state labeled with its postal code 
abbreviation; b) the annual probability of a given federally-managed or privately-owned 
forest burning, averaged from 1989-2016; c) the proportion of land area covered by 
forests; and d) the proportion of forests owned by the federal government. 
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Figure	2. Predicted probability of fire in federally managed forests and private, 
unprotected forests using the all-state model, from 1989-2016, including 95% confidence 
intervals. The first panel shows the predicted probability across all states; the remaining 
panels show the predicted probability for each state within the all-state model.  
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Figure	3. Comparison of the marginal effect of federal management (Fed	manage) with a 
one-unit change in the value of the climate variables in each state’s model in 2016: 
maximum temperature (Max	temp,	˚C), minimum temperature (Min	temp,	˚C), precipitation 
(Precip,	cm), soil moisture (Soil,	mm), wind speed (Wind	sp, m/s), and PDSI in winter (W), 
spring (Sp), summer (Su), fall (F), and for precipitation in the previous year (PrevY,	cm). 
Background colors indicate the type of variable. The y-axis ranges vary between states. 
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Transition between Chapters 1 and 2 

 

In Chapter 1, I used causal inference methods to assess the effect of land ownership on 
wildfire probability in forests of the western US. I found that federally-owned forests 
burned more frequently than privately-owned, unprotected forests from 1989-2016. I also 
found that the marginal effect of the different management types was greater than the 
effect of a one-unit change in most of the climate variables I assessed. These results may be 
due to varying levels of accumulated fuels in federally- vs. privately-owned forests 
stemming from different legacies of biomass removal, as well as variations in fire 
management. My results demonstrate that in this social-ecological system, management 
can have as large an impact as some aspects of climate change, highlighting the need to take 
both management and climate variables into account when projecting future wildfire 
activity. In Chapter 2, I again use pre-regression matching methods to assess the impact of 
different forms of land management on wildfire probability, this time looking at the impact 
of livestock grazing on wildfires in California rangelands. In this chapter, I was able to more 
precisely measure spatial variation in management than in Chapter 1: I use a novel dataset 
on the stocking levels of large-scale ranchers to analyze the impact of grazing and varying 
levels of grazing intensity on wildfire probability in three regions of California and three 
dominant vegetation types: grasslands, shrub/scrublands, and forests in the North Bay, 
Central Valley and Foothills, and Central Coast.  
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Abstract 

Wildfire activity has increased in California in recent decades, impacting ecosystem 
functioning and human well-being. California’s rangelands are complex social-ecological 
systems composed of multiple ecosystems and the people who live and work in them. 
Livestock grazing has been proposed as a tool for reducing wildfire activity. Here, we 
explore how grazing affects wildfire at large spatial scales, assessing the likelihood of 
wildfires on rangelands subject to different levels of grazing. We collected data on grazing 
levels through a survey of 140 large private landowners (properties of at least 500 acres) 
in three social-ecological regions: California’s North Bay, Central Coast, and Central Valley 
and Foothills. Using pre-regression matching methods and mixed effects regression 
models, we calculate the probability of wildfires occurring in a given year from 2001-2017 
in each of the three social-ecological regions and three land cover types (grasslands, 
shrub/scrublands, and forests). We find that in the Central Coast and North Bay, wildfire 
probability decreases as stocking levels increase in all three vegetation types, with 
reductions ranging from 31.0-76.5%. In the Central Valley and Foothills, the relationship is 
less clear, with an increase in wildfire probability over some levels of grazing and large 
variations in the effect of higher stocking densities. Our results indicate that livestock 
grazing can effectively reduce annual burn probability in some regions and ecosystem 
types in California, providing the first large-scale assessment of this relationship and 
suggesting that expanded grazing on private and public land in California may reduce fire 
frequency in these social-ecological systems.  
 

Introduction 

Across the western United States, the severity and spatial extent of wildfires have 
increased over the past four decades (Abatzoglou and Williams, 2016; Dennison et al., 
2014; Westerling et al., 2003), impacting ecosystems and human lives (Syphard et al., 
2019a; Tubbesing et al., 2020). In California, the area burned each year has increased four-
fold since 1972 (Williams et al., 2019), driven by interacting factors that include increased 
anthropogenic ignitions (Balch et al., 2017) and human development in wildland areas 
(Radeloff et al., 2018), climate change (Abatzoglou and Williams, 2016; Goss et al., 2020; 
Westerling, 2016; Williams et al., 2019), and the legacy of decades of aggressive fire 
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suppression (Stephens and Ruth, 2005). While much of this increase in burned area has 
occurred in forested land, large areas of California’s rangeland, especially grasslands and 
shrublands, have also burned in recent years (Syphard et al., 2007). As an example, the 
2017 Tubbs and Thomas fires collectively burned over 150,000 acres of shrubland and 
55,000 acres of grassland (over 64% of the total area burned in the two fires). In recent 
decades, California’s rangelands have also experienced rapid human population growth, 
with a corresponding increase in the amount of wildland-urban interface present in the 
state (Radeloff et al., 2018; Syphard et al., 2019b). This pattern is also reflected globally, as 
45.8% of temperate grasslands, savannas, and shrublands have been converted for human 
use, along with 41.4% of Mediterranean forests, woodland, and scrublands (Hoekstra et al., 
2005). 
 
California’s rangelands represent complex social-ecological systems, with ranches, 
residential developments, and other human land use regimes interacting with diverse and 
fire-adapted ecosystems, including grasslands, oak savannas, chaparral and other 
shrublands, and woodlands (Cameron et al., 2014; Forest	and	Rangeland	Resources	
Assessment	and	Policy	Act, 1977). Historically, these landscapes burned periodically in 
lightning-ignited fires, and Indigenous groups used fire as a tool to manage the distribution 
and abundance of the resources they used (Anderson, 2005; Keeley, 2002; Stephens et al., 
2007). Nineteenth century colonial policies prohibited Indigenous fire use, followed by 
widespread and intensive livestock grazing and other land use changes (Taylor et al., 
2016). In the early twentieth century, California began practicing aggressive fire 
suppression, seeking to reduce loss of human lives and property (Pyne, 1982; Stephens and 
Sugihara, 2006). As a result of interactions between land management policies, land use 
change, and climate change, dry fuels have accumulated across California’s landscapes, 
setting the stage for large and severe wildfires (Steel et al., 2015). These wildfires have the 
potential to disrupt ecological processes and force type conversions in vegetation 
communities such as forests in the Sierra Nevadas and Klamath mountains (Coop et al., 
2020) and chaparral in coastal southern California (Syphard et al., 2019a). 
 
In recent years, there have been calls in both the academic literature and popular media to 
use livestock grazing as a tool to mitigate the risk of large, high-severity fires in fire-prone 
ecosystems, both in the American West and elsewhere (Davies et al., 2016; Nelson, 2019; 
Williams et al., 2006). Grazing reduces the accumulation and connectivity of fuels, 
particularly fine (herbaceous) fuels: livestock directly consume potential fuels and trample 
vegetation, crushing fine fuels and reducing their flammability by mixing them in with the 
mineral soil while rearranging the spatial structure of fuels (Davies et al., 2010; Nader et al., 
2007; Tsiouvaras et al., 1989).  
 
Experimental and observational studies have shown that through these reductions in fuel 
accumulation and connectivity, grazing can reduce flame length, rate of spread, fire 
intensity and severity, and total area burned (Davies et al., 2016; Diamond et al., 2009; 
Launchbaugh et al., 2008; Leonard et al., 2010; Starns et al., 2019). Grazing and fire may 
also interact to create spatial heterogeneity in vegetation structure and composition 
(Fuhlendorf et al., 2009; McGranahan et al., 2012): in tallgrass prairies in the Great Plains, 
cattle and other large ungulates preferentially graze in recently-burned areas due to the 
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higher nutritional value of regrowth forage, creating a heterogeneous landscape where 
recently-burned patches have low fuel accumulation due to grazing, while patches without 
recent fire have greater fuel accumulation, with implications for fire spread (Allred et al., 
2011). This pattern is less clear but still present in arid shortgrass steppe (Augustine and 
Derner, 2014). Meanwhile, a study in southeastern Australia found no difference in fire 
probability between grazed and ungrazed sites in grasslands and shrublands (Williams et 
al., 2006). Overall, findings relating grazing to subsequent fires vary depending on 
vegetation type and the timing of grazing relative to both plant phenology and local fire 
seasons, and studies of this interaction in California’s ecosystems are limited. 
 
Questions remain about the relationship between livestock grazing and wildfire at broad 
spatial scales (Keeley et al., 2011). While information on trends in the extent and location 
of rangeland ecosystems (land cover) is widely available through satellite imagery, data on 
grazing levels (land use) are quite limited. The lack of spatially-explicit data on livestock 
grazing across broad areas is a major barrier to research on landscape-scale relationships 
between grazing and wildfire. Spatial data on rangelands as a land cover type do not 
typically include information on whether or not grazing is occurring, let alone stocking 
rates, which are key to driving grazing-fire interactions. As the impact of wildfire on 
rangeland social-ecological systems is mediated by human decisions regarding land 
management, a more complete understanding of the relationship between grazing and fire 
requires data on both land cover and land use. 
 
Here, we assess the effect of grazing on fire probability in California, using data from three 
regions chosen for their variation in environmental and human land use factors. Combining 
a time series of fires from 2001-2017, grazing data from ranches across seven counties, and 
a suite of environmental and socioeconomic covariates, we use pre-regression matching 
and logistic mixed effects models to analyze whether 1) livestock grazing impacts the 
probability of fires in California, and 2) whether the effect of livestock grazing on fire 
probability varies by region and dominant vegetation type.  
 
Methods 

Study area 
 
Our study area comprises three social-ecological regions in California, defined by both 
environmental and administrative boundaries (Bailey ecoprovinces (Bailey, 1995) and 
county borders, respectively): the Central Coast, Central Valley and Foothills, and the North 
Bay (Figure 1). Across the state, beef cattle make up the vast majority of livestock grazing 
on rangelands, and the cattle industry is composed of both cow-calf and stocker 
enterprises. Cow-calf operators maintain a breeding herd of mature females year-round 
and birth, rear, and sell calves annually. Stocker operations run mostly adolescent cattle 
seasonally, typically from October through May. Cattle production techniques are largely 
similar across the three study regions; however, due to seasonal precipitation patterns, the 
growing season is slightly longer in the North Bay. In the Central Valley and Foothills, the 
presence of artificially irrigated pastures allows for continued grazing in some areas during 
the summer months.  
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The Central Coast region contains the central portions of both the California Coastal 
Chaparral Forest and Shrub Province (hereafter “Coastal Chaparral”; Figure 1) and the 
California Coastal Range Open Woodland-Shrub-Coniferous Forest-Meadow Province 
(hereafter “Coastal Range”), located in Santa Barbara and Ventura counties. This region is 
characterized by a diverse mix of ecosystems, distributed along gradients of soil moisture 
and fire frequency (Keeley and Syphard, 2018). Historically, this region had frequent 
lightning-ignited fires that burned small areas and larger, wind-driven fires every 50-100 
years (Keeley and Fotheringham, 2001). Prior to European contact, Indigenous Californians 
used fire to maintain grasslands and other resource-abundant vegetation communities 
(Keeley, 2002). The region has seen increased frequency of large fires in recent years as the 
human population has grown and ignitions coincide with Santa Ana winds (Keeley and 
Zedler, 2009). The region experienced a decline in cattle numbers from 1964-1997 
(Andersen et al., 2002), with continued declines in cattle and the number of ranching 
operations from 2002-2017 (USDA-NASS, 2017, 2007). 
 
The Central Valley and Foothills region, represented by San Joaquin, Merced, and Mariposa 
counties, is almost entirely part of the California Dry Steppe Province, as well as the lower-
elevation western edge of the Sierran Steppe-Mixed Forest-Coniferous Forest-Alpine 
Meadow Province (hereafter “Sierran Steppe”) and a small portion of the eastern edge of 
the Coastal Range ecoprovince. This region has had very high levels of land conversion for 
intensive human uses (Cameron et al., 2014) and little is known about its pre-colonization 
fire regime (Willis, 2018). In the latter half of the twentieth century, cattle numbers 
increased in the region (Andersen et al., 2002), with a relatively stable number of ranching 
operations and overall cattle since 2002 (USDA-NASS, 2017, 2007). In the Central Valley, 
rangeland livestock production systems are predominantly stocker systems in which beef 
cows are shipped in from other states, Northern California, or forest ecosystems in late 
October through early November and shipped out in late May through early June. Most 
ranchers ensure that when they ship out their livestock in late spring, they leave forage for 
the animals to come back to in early fall, before the new season’s vegetation growth occurs. 
Ranchers in this region tend to have low levels of flexibility in adapting to interannual 
environmental variation, as they commit to the number and grazing period of cattle before 
the season begins.  
 
The North Bay region includes most of Sonoma County and all of Napa County; most of the 
region falls within the southwestern portion of the Sierran Steppe ecoprovince, as well as 
the northernmost portion of the Coastal Chaparral ecoprovince. We omitted western 
Sonoma County from our study because it is located in the California Coastal Steppe-Mixed 
Forest-Redwood Forest Province and has a distinct fire regime and climate from the rest of 
the region (Stephens et al., 2018). The chaparral ecosystems in the North Bay are resilient 
to fire and historically had high-severity, stand-replacing fires every 30-100 years 
(Stephens et al., 2007). North Bay woodlands have experienced decades of fire suppression, 
leading to a greater density of fuels and more vertical fuel connectivity and thus increased 
risk of destructive crown fires (Stephens et al., 2018). Since 2002, the number of cattle in 
the North Bay has remained fairly stable (USDA-NASS, 2017, 2007). 
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Data 
 
We collected data on grazing intensity levels through a telephone survey of large private 
landowners in the seven counties included in our study region (Sonoma, Napa, San Joaquin, 
Mariposa, Merced, Santa Barbara, and Ventura). We randomly sampled private landowners 
with properties of at least 500 acres, of which at least 250 acres were grassland or 
shrub/scrubland, until we obtained 20 responses per county. For each property, we asked 
the landowners whether or not they were actively grazing their land. For the grazed 
properties, we collected data on the number of animals grazed, the months of active 
grazing, and the acres grazed. The data provided represented long-term grazing levels, as 
the property owners reported relatively static trends in land use intensity. We used this 
data to calculate the animal units per year (AUY) per acre grazed, a measure of grazing 
intensity. In total, we collected data from 140 properties, 123 of which provided enough 
data for analysis. These 123 properties covered a total of 308,240 acres of rangeland (1247 
km2). 
 
Within the boundaries of the surveyed properties, we sampled points along a 200-meter 
grid, using land cover data from the 2001 National Land Cover Database to restrict our 
samples to points that were in forests, grasslands, and shrub/scrubland. We excluded 
points located in water, wetlands, developed areas, and other land cover types unlikely to 
experience grazing (USGS, 2014). We used 2001 land cover data to capture the patterns of 
land cover at the beginning of our time series and assumed that the dominant land covers 
did not shift on our sampled properties from 2001-2017. For all sample points, we 
compiled data on fire history, climate, topography, and human variables related to fire 
occurrence. 
 
We included all fires from 1996-2017 from the California Department of Forestry and Fire 
Protection’s Fire and Resource Assessment Program (FRAP) fire perimeter database that 
overlapped with the sampled points (CAL FIRE, 2020). FRAP is the most complete dataset 
available for California fire perimeters and it includes smaller fires that are omitted from 
national fire datasets. We determined whether or not each point burned in a wildfire in 
each year (2001-2017). In addition, to account for the legacy effects of past fires, we 
determined whether or not a point had burned in the previous five years (Parks et al., 
2016; Price et al., 2015).  
 
We calculated average seasonal climate variables for each point, using monthly climate 
data at a 4km resolution from TerraClimate (Abatzoglou et al., 2018). We used the 
TerraClimate dataset because it includes a wider range of fire-relevant climatic variables 
(e.g., Palmer Drought Severity Index, wind speeds, and soil moisture) than finer-scale 
datasets like PRISM (Daly et al., 2008). We included climate variables related to both fire 
probability (fuel conditions and probability of ignition) and fire behavior: seasonal average 
maximum wind speed (m/s), total precipitation (cm), average maximum and minimum 
temperatures (˚C), and average soil moisture (mm) and Palmer Drought Severity Index 
(Abatzoglou et al., 2017; Abatzoglou and Williams, 2016; Barbero et al., 2014; Dennison et 
al., 2014; Dillon et al., 2011; Krawchuk and Moritz, 2011; Littell et al., 2016, 2009; 
Westerling et al., 2003, 2006; Westerling, 2016). We defined winter as December of the 
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previous year, January, and February, spring as March-May, summer as June-August, and 
fall as September-November. In addition to these seasonal variables, we calculated total 
accumulated precipitation from the previous water year (December-November) (Littell et 
al., 2009; Syphard et al., 2017). 
 
To control for the effect of primary productivity on stocking levels and the amount of fuel 
left on the land at the end of the season (residual dry matter), we included the annual net 
primary productivity (NPP) of each sample point in our model. We extracted NPP data (in 
kg*C/m2) from the MODIS/Terra Net Primary Production Gap-Filled Yearly Global 500m 
product (Running and Zhao, 2019), accessed through Google Earth Engine (Gorelick et al., 
2017). This dataset estimates annual NPP at 500m resolution based on gross primary 
productivity and maintenance respiration. We used NPP to account for the effect that 
forage production may have on both grazing intensity and fire probability: an area with 
greater NPP can likely support higher grazing intensity and will also accumulate more 
biomass, and thus fuel, in the absence of grazing.   
 
To account for the impact of human presence on anthropogenic ignitions and responses to 
fires made by relevant agencies (Balch et al., 2017; Nagy et al., 2018; Syphard et al., 2017), 
we included the population density (people/km2) (Radeloff et al., 2018) and distance to the 
nearest road (in meters) for each point (US Census Bureau, 2018). We also included 
topographic variables in our model, since elevation, slope, and aspect may influence 
grazing levels, fuel conditions, fire probability, fire behavior, and management responses to 
fires (Dillon et al., 2011; Hurteau et al., 2014; Littell et al., 2009). We used 30km resolution 
elevation data from the National Elevation Dataset (USGS, 2013) and calculated slope and 
aspect in QGIS (QGIS Development Team, 2019). We converted aspect to the solar radiation 
aspect index, a linear scale that ranges from 0-1, where 0 indicates the lowest levels of solar 
radiation (Roberts and Cooper, 1989). Aside from the use of Google Earth Engine to extract 
NPP and QGIS to calculate slope and aspect, we performed all data compilation and 
calculations in R, using the raster, sf, lwgeom, and tidyverse	packages (Hijmans, 2019; 
Pebesma, 2019, 2018; Wickham, 2017). 
 
Matching 
 
There may be fundamental geographic, climatic, or environmental differences between 
grazed and ungrazed properties. For example, we might expect property owners with steep 
terrain with very low net primary productivity to be less likely to graze livestock than 
property owners whose land has gentle terrain and abundant forage. The differences 
between grazed and ungrazed properties may also impact their fire probability, through 
differences in fuel accumulation, ignition probability, and fire spread. To control for these 
potential differences between grazed and ungrazed sites and improve our ability to make 
causal inferences, we used pre-regression matching techniques (Schleicher et al., 2020; 
Stuart, 2010). Using the MatchIt package in R (Ho et al., 2011), with the caliper set to 0.25 
and the maximum ratio of grazed to ungrazed sample points set to 5, we matched sample 
points from the grazed and ungrazed properties along the suite of continuous covariates: 
population density in 2000 and 2010; distance to the nearest road; elevation; slope; aspect; 
seasonal averages of minimum and maximum temperatures, maximum wind speeds, soil 
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moisture, and PDSI, averaged over the first five years of the dataset (2001-2005); average 
annual NPP from 2001-2005; and latitude and longitude. We assessed the match quality by 
comparing the standardized mean differences in variable values for grazed and ungrazed 
sample points in the matched and unmatched data and removed all unmatched sample 
points from our subsequent dataset (Table S1). We developed two matched datasets, one 
with only sample points on grasslands and shrub/scrublands, as these are the vegetation 
types where grazing occurs, and a second on points located in grasslands, 
shrub/scrublands, or forests (Table S2). The first matching procedure drew only from 
sample points in grassland or shrub/scrubland, while the second matching procedure drew 
from sample points in any of the three land cover types. This second matched dataset 
allowed us to explore whether the impact of grazing in grassland and shrub/scrublands 
might in turn affect the probability of wildfires spreading into forested land within the 
properties studied.  
 
Of the 140 ranching properties surveyed, 123 had complete data on grazing intensity. We 
removed five properties from the dataset because they were located in the California 
Coastal Steppe-Mixed Forest-Redwood Forest province in Sonoma County. The remaining 
118 properties in the dataset account for 301,649 acres (1220.73 km2) of land across the 
three regions (Table 1). The matching process for grassland and shrub/scrublands points 
included sample points from all 118 properties, with a dataset of 78 grazed properties 
(12,184 grazed sample points) and 40 ungrazed properties (5020 ungrazed sample points). 
The standardized mean differences between the covariate values for the grazed and 
ungrazed points in the first matched dataset all had absolute values of less than 0.25 (and 
the majority had values of less than 0.10), which indicates that our matching procedure 
effectively reduced biases in the data (Table S1) (Schleicher et al., 2020). The matching 
process for grassland, shrub/scrublands, and forested points yielded a dataset with the 
same properties as the grassland and shrub/scrubland-only dataset, with 13,252 grazed 
sample points and 3992 ungrazed sample points. All variables in the this second matched 
dataset had standardized mean differences of less than 0.25 except for mean summer 
minimum temperatures (Table S2). On grazed properties, the level of grazing ranged from 
0.012-0.424 AUY per grazed acre (equivalent to a range of 2.4-83.3 acres per animal unit 
per year). 
 
Models 
 
We estimated the effect of grazing on fire probability using logistic mixed effects models 
with cluster-robust standard errors. The mixed effects models allowed us to capture the 
effects of unobserved factors that may influence fire probability, such as land use legacies 
or fine-scale environmental factors that affect grazing levels or the production of forage 
(and thus fuel). We used cluster-robust standard errors to control for pseudoreplication 
and unobserved variables on individual ranch properties, since our dataset included 
multiple sample sites per property (Abadie et al., 2017; Cameron and Miller, 2015). We 
controlled for potential spatial autocorrelation by including the latitude and longitude 
coordinates of each sample point in the suite of covariates (Schleicher et al., 2017a).  
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We fit a logistic regression model to our first matched dataset (grassland and 
shrub/scrublands points), dropping the explanatory climate, geographic, and social 
variables from the matching process that were highly correlated (absolute value of 
Pearson’s correlation coefficient ≥ 0.66, p-value < 0.05): 
 
BNit	=	B0	+	B1*Grazed	+	B2*YearFactor	+	B3*AUYperGrazedAcre	+	B4Region	+	B5*Landcover	+	
B6*BPYone	+	B7*BPYfive	+	B8‐26*Controls	+	B27‐31*Interactions	+	ui	+	eit		
	
where BN represented whether or not point i burned in year t; Grazed was a binary 
variable indicating whether the point was in a grazed or ungrazed property; Year was a 
fixed effect for each year in the dataset; AUYperGrazedAcre was a continuous variable 
representing the animal units per year per grazed acre for each property; Region was a 
fixed effect for the region (Central Coast, Central Valley & Foothills, or North Bay); 
Landcover was a fixed effect for the dominant vegetation type present (grassland or 
shrub/scrub); BPYone	and	BPYfive were lag variables for whether the point had burned in 
the previous one or five years, respectively; and Controls was the list of covariates that may 
influence fire probability at each sample point: population density in 2000 (people/km2), 
distance to roads (m), elevation (m), slope (˚), aspect, average fall PDSI, total precipitation 
in winter, spring, summer, fall, and the previous year (cm), average summer soil moisture 
(mm), average minimum and maximum fall temperatures (˚C), average maximum wind 
speeds in summer and fall (m/s), annual NPP (kg*C/m2), latitude, and longitude. For 
Interactions, we included all possible interactions between AUYperGrazedAcre, Region, and 
Landcover	to test for different responses to grazing levels across the different regions of 
California and dominant vegetation types. We also included the interaction of latitude and 
longitude as a control for spatial autocorrelation (Schleicher et al., 2017a). ui	is the site-
specific random effect and eit	is the error term for each point in each year. The binary 
variable Grazed allowed us to capture unobserved differences between grazed and 
ungrazed properties for which the matching process did not control. To interpret the 
coefficients of the interacting variables, we calculated the predicted probability of burning 
across the range of grazing intensity (AUY per grazed acre) in the different combinations of 
regions and dominant land cover types. We performed our logistic regression models and 
estimated the predicted probabilities in Stata (StataCorp, 2019).  
 
To assess whether grazing in grasslands and shrub/scrublands has an impact on fire 
probability in forests, we used our second matched dataset (which included sample points 
from all three vegetation types) to perform a logistic regression model using the same 
equation. For this model, the AUY per grazed acre was still a function of the animal units 
per year and the number of grassland and shrub/scrub acres on the property, as we 
assumed that no grazing was actually occurring in the forested points. 
	
While our matching methods should provide comparable treatment and control datasets, 
as an additional robustness check, we ran the model using only the grazing properties and 
exploiting the variation in AUY per grazed acre to estimate the impact of grazing on fire in 
grasslands and shrub/scrublands. We again excluded highly correlated explanatory 
covariates and used cluster-robust standard errors: 
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BNit	=	B0	+	B1*Year	+	B3*AUYperGrazedAcre	+	B4Region	+	B5*Landcover	+	B6*BPYone	+	
B7*BPYfive	+	B8‐27*Controls	+	B28‐32*Interactions	+	ui	+	eit		
 
where Year	was again a fixed effect for each year in the dataset (with 2002 dropped 
because it perfectly predicted the model outcome); BPYone and BPYfive were the lag 
variables for fires in previous years; and Controls included the covariates population 
density in 2000 (people/km2), distance to roads (m), elevation (m), slope (˚), aspect, 
average fall PDSI, total precipitation in winter, spring, summer, fall, and the previous year 
(cm), average summer soil moisture (mm), average minimum and maximum fall 
temperatures (˚C), average maximum wind speeds in winter, summer, and fall (m/s), 
annual NPP (kg*C/m2), latitude, and longitude. As before, the Interactions were all possible 
combinations of AUYperGrazedAcre, Region, and Landcover and the interaction of latitude 
and longitude. All other variables were the same as in the first model, and we again 
calculated the predicted probability of fires across the range of grazing intensity levels. 
 
Results 

In the Central Coast region, the predicted probability of burning in any given year 
decreased significantly as grazing levels increased in the grassland and shrub/scrublands 
matched dataset, even though the range of grazing levels in the region was low overall 
(Figure 2). In shrub/scrublands, this effect held across the observed levels of grazing, with 
a 31.0% decrease in fire probability as grazing increases to one AUY per 11 acres. At this 
level of grazing, the predicted probability of wildfires in shrub/scrublands was 0.020. In 
grasslands, the probability of fire decreased 43.8% as grazing levels increased to one AUY 
per 20 acres, without a significant continued decrease at higher levels of grazing intensity. 
At one AUY per 20 acres, the predicted probability of fires in grasslands was 0.025. In the 
absence of grazing, Central Coast grasslands had the highest overall fire probabilities (an 
annual burn probability of 0.045) of grasslands across the three regions.   
 
Similarly, in the North Bay, fire probability declined as grazing intensity increased: in 
grasslands, we observed this trend when AUY per grazed acre ranged from 0-0.1, while in 
shrub/scrublands, this pattern held at AUY per grazed acre levels from 0-0.25 (Figure 2). 
Grassland fire probability decreased by over 50% (from 0.035 to 0.013) as grazing levels 
increased from no grazing to one AUY per 10 acres. In North Bay shrub/scrublands, fire 
probability decreased by 76.5% as grazing levels increased to one AUY per 4 acres, from an 
annual burn probability of 0.045 to 0.010. In the absence of grazing, North Bay 
shrub/scrublands had the highest likelihood of burning (0.045) out of shrub/scrublands in 
the three regions, but at one AUY per 4 acres, North Bay shrub/scrublands had lower fire 
probabilities than shrub/scrublands in the Central Coast at their maximum grazing 
intensity. At maximum levels of grazing, North Bay grasslands had slightly higher 
probabilities of burning than Central Coast grasslands at their highest observed level of 
grazing (0.015 vs. 0.017), even though grazing reached greater intensity levels in the North 
Bay than the Central Coast.  
 
In contrast to the North Bay and Central Coast regions, grasslands and shrub/scrublands in 
the Central Valley and Foothills region showed an increase in fire probability when AUY 
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per grazed acre increased from 0 to 0.3 and 0.2, respectively (Figure 2). From grazing levels 
of 0.2-0.3 AUY per grazed acre, grasslands showed an increase in fire probability from 
0.015 to 0.029, but there was a lot of uncertainty around the predictions, as evidenced by 
the large confidence intervals. At higher levels of grazing, there was no significant trend for 
either land cover type. In the absence of grazing, the predicted probability of wildfires in 
these two landcover types was lower than in the other regions analyzed (0.003 for 
ungrazed grasslands and 0.005 for ungrazed shrub/scrublands). When grazing levels on 
grasslands increased to one AUY per 3.33 acres, the predicted probability of wildfires 
increased more than sevenfold. Shrub/scrubland fire probability more than doubled as 
grazing levels increased to one AUY per 5 acres, reaching a similar value as Central Coast 
shrub/scrublands under their maximum grazing levels. 
 
In the grassland and shrub/scrubland matched dataset, points on steeper slopes, with more 
winter, summer, and fall precipitation, less spring precipitation and less total rainfall in the 
previous year, higher summer wind speeds, and lower annual NPP were more likely to 
burn in a given year (Table 2). Sample points that had burned in the previous year were 
much less likely to burn in a given year. Several years in the time series had significant 
effects on the probability of fires as well (2003, 2006, 2007, 2009, and 2016; Table S3). 
Across all three models, the coefficient estimates for latitude, longitude and the interaction 
between latitude and longitude had absolute values of less than 0.001, indicating that 
spatial autocorrelation had minimal impact on our estimates of wildfire probability 
(Schleicher et al., 2017b). 
 
When we calculated the predicted probability of wildfire in the matched dataset that 
included grasslands, shrub/scrublands, and forests, we found that, similar to the grasslands 
and shrub/scrublands, forests in the Central Coast and North Bay regions showed 
decreases in the probability of burning as grazing levels increased (Figure 3). In the Central 
Coast, wildfire probability in forests declined by 48.4% as AUY per grazed acre increased 
from 0-0.05 (a decrease in the predicted probability of burning from 0.075 without grazing 
to 0.039 with 20 acres per AUY). In the North Bay, wildfire probability in forests decreased 
by 70.7% as grazing intensity increased from no livestock to 0.4 AUY per grazed acre (from 
a predicted probability of 0.042 to 0.012). Forests in the Central Valley and Foothills region, 
on the other hand, had a 18.7% increase in wildfire probability when AUY per grazed acre 
increased from 0.05-0.1, but there was no significant difference in wildfire probability at 
higher levels of grazing. Without grazing, Central Coast forests had the highest probability 
of burning in a given year. In the matched dataset that included grasslands, 
shrub/scrublands, and forests, points that were further from roads, on steeper slopes, and 
with more winter and fall precipitation were more likely to burn (Table 2). Sample points 
with higher annual NPP and that burned in the previous year were less likely to burn. 
Several years had positive effects on the probability of burning relative to the reference 
year of 2001: 2003, 2006, 2007, 2009, and 2016 (Table S3). 
 
When we only included the grazed sample sites in our model, the patterns of predicted 
probability were broadly similar, with one exception (Figure 4). Again, the probability of 
burning decreased with increased grazing intensity for Central Coast shrub/scrublands and 
North Bay grasslands and shrub/scrublands while increasing for both vegetation types in 
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the Central Valley and Foothills. In Central Coast grasslands, the predicted fire probability 
increased, from 0.018 at a negligible level of grazing (1000 acres per AUY) to 0.075 at the 
maximum grazing level observed in the region (11 acres per AUY), a result that runs 
contrary to the pattern observed in the matched dataset. Across the three regions and 
vegetation types, the marginal effect on fire probability of adding an additional acre per 
AUY was not significant (marginal effect  = -2.89*10-5, standard error = 8.49*10-5, p > 0.05). 
 
When we considered only the grazed sample points, we found that the patterns in the 
relationship between burn probability and slope, fall, summer, and winter precipitation, 
annual NPP, and whether or not a point had burned in the previous year remained the 
same as in the matched dataset. Additional variables also had significant relationships with 
fire probability: sites with increased maximum fall temperatures and maximum winter 
wind speeds had an increased probability of burning, while increased maximum wind 
speeds in fall were associated with a decreased likelihood of burning. More years in the 
time series had significant positive effects on the probability of grazed points burning 
relative to the baseline of 2001 as well (2003-2007 and 2009-2016; Table S3). 
 

Discussion 

In fire-prone California landscapes, the impact of livestock grazing on fire probability 
varies across regions and dominant vegetation types. We find that an increase in grazing 
levels is related to reduced wildfire probability in the forests, grasslands, and 
shrub/scrublands in the North Bay and Central Coast regions (with Central Coast 
shrub/scrublands showing the smallest relative decline of the land cover types in these two 
regions). The sharp decreases in fire probability in these Central Coast ecosystems occur 
even with a small change in AUY per grazed acre (from no grazing to 1 AUY per 20 acres). 
In contrast, the three land cover types in the Central Valley and Foothills region showed 
increased fire probability over some of the range of grazing intensity values observed, but 
as grazing intensity increased, the trends were not significant.  
 
The similar responses to increased grazing intensity in forests and grasslands in the North 
Bay and the Central Coast suggest that the relationship between grazing levels and fire 
probability may be generalizable across some ecological communities in California; in these 
communities, grazing is an effective form of fuel management that reduces the fuel 
availability and/or connectivity. Notably, this effect carries over into forested areas (where 
we assume that minimal grazing is occurring). In woodland areas of the Central Coast, 
nonnative grasses and forbs create flammable understories that can carry fires (Keeley and 
Syphard, 2018), while in the North Bay, decades of fire suppression have led to increased 
density of understory vegetation (Stephens et al., 2018). In both of these ecosystems, 
livestock grazing may reduce fire probability by removing fuel connectivity with adjacent 
grasslands and shrub/scrublands or by directly reducing understory biomass 
accumulation. Policies that reduce barriers to grazing on private and public lands adjacent 
to forests in both these regions may reduce the probability of high-severity wildfires (Sulak 
and Huntsinger, 2007; Wolf et al., 2017). 
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The different strengths of the shrubland response to grazing across the North Bay and 
Central Coast regions may reflect different climatic conditions. In the Central Coast, 
seasonal foëhn winds (known locally as Santa Ana winds or sundowners) spread fires over 
large areas in the fall. These strong winds may outweigh any effect of fuel quantity and 
connectivity in determining fires’ extents (Keeley and Fotheringham, 2001). While our 
model accounts for seasonal wind speeds through the inclusion of mean maximum fall 
wind speeds, there may be effects at finer spatial scales than our data could capture. The 
Central Coast points we sampled were also drier on average than the North Bay sample 
points, which may correspond to greater fuel aridity and a dampened response to grazing.  
 
The response to increased grazing intensity in grasslands was similar across the Central 
Coast and North Bay regions (a 44% decline in wildfire probability in the Central Coast and 
a 50% reduction in the North Bay). Non-native annual species dominate grasslands in both 
regions (Keeley and Syphard, 2018; Stephens et al., 2018), which may account for the 
similar observed responses to grazing. When we examined only the grazed sample points, 
our model indicated an increase in wildfire probability in Central Coast grasslands as 
grazing levels increased. This finding runs contrary to our results when we included both 
grazed and ungrazed points (the latter results support the claim that grazing reduces 
wildfire probability in California’s rangelands). Because Central Coast grasslands show a 
decrease in wildfire probability with increasing grazing when the model included a binary 
grazed/not grazed dummy variable, we hypothesize that there are differences between 
lightly- and heavily-grazed grasslands in this region for which our model of grazed points 
does not control. The factors that underpin ranchers’ decisions about stocking levels may 
also affect wildfire probability in these systems, complicating our results. 
 
It is more difficult to draw conclusions about the link between grazing and fire in the 
Central Valley and Foothills. As previously noted, at lower stocking rates, the fire 
probability increases as grazing intensity increases. When stocking rates are moderate or 
high however, this effect is not significant and there is greater variation in wildfire 
responses. In this region, our dataset contained few sample points from shrub/scrublands 
or forests. In addition, this region had an overall lower fire frequency and proportion of 
area burned than the other two regions (Table 1), complicating comparisons. Large 
portions of this region have been converted to intensive human land uses, including 
agriculture and urban and residential developments, particularly in San Joaquin and 
Merced counties. Because many of the properties we surveyed are in close proximity to 
intensive agriculture and urban developments, these landscapes are likely to experience 
highly altered fire regimes, which may result in a changed relationship between grazing 
intensity and fire probability. In this highly-altered landscape, the geographic location of 
rangelands and their proximity to either wildlands or intensive agriculture—factors that 
our model did not control for—may be more important predictors of wildfire probability 
than grazing levels. 
 
The relative abundance of native and non-native grasslands species in coastal regions of 
California as compared to inland regions may also play a role in the different effect of 
grazing on wildfire in the Central Valley and Foothills. While almost all of California’s 
grasslands are dominated by non-native species (Seabloom et al., 2003), the abundance of 
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non-natives annuals is higher in inland regions than on the coast (Hatch et al., 1999; 
Rayburn et al., 2016). It is possible then that in the coastal regions we studied, where 
grazing reduced fire probability, livestock grazing reduces the abundance of flammable 
shrubs and enhances native perennial species that are less flammable than the non-native 
annual plants without the same effect occurring in the more heavily-invaded Central Valley 
and Foothills region (Keeley, 2001). 
 
While our data on grazing levels, collected through telephone surveys that directly reached 
ranchers, provided us with an unusually detailed breakdown of grazing intensity on private 
lands, our models still made several key assumptions about the grazing data. First, the 
theoretical link between grazing levels and fire probability is based on variation in fuel 
levels. We did not have data on the quantities of residual dry matter at the end of the 
season for each property; we used AUY per grazed acre as a proxy, assuming that as the 
grazing intensity (AUY per grazed acre) increased, the unconsumed forage (residual dry 
matter) would decrease. Second, we were not able to account for the seasonality of the 
grazing relative to the phenology of the dominant plant species, which is relevant for the 
amount of residual dry matter (Davies et al., 2016; Diamond et al., 2009; Launchbaugh et 
al., 2008; Nader et al., 2007). Finally, we assumed a uniform level of grazing across all 
grassland and shrub/scrubland areas within each property. In reality, cattle preferentially 
graze close to water sources, along fences, and in recently burned areas (Allred et al., 2011; 
Augustine and Derner, 2014), and some of the shrubland on grazed properties may be too 
dense for cattle to use. However, we did not have data on grazing intensity at spatial scales 
finer than the property level. In general, the impact of grazing on wildfire probability is also 
related to the livestock species used and the previous grazing experiences of the specific 
animals present (Nader et al., 2007). Our landscape-scale study does not seek to account 
for this level of interaction, although the majority of the properties we surveyed graze 
cattle exclusively.  
 
Notably, we only assessed the impact of grazing levels on the probability of fires in a given 
location, not the severity of the fires that burned. Fire severity measures the ecosystem-
level impact of a fire, accounting for vegetation mortality and biomass lost (Steel et al., 
2015), with implications for recovery trajectories and subsequent community composition, 
as well as soil erosion and hydrological processes. However, the use of the concept of fire 
severity differs over ecosystems because of variation in how different vegetation types 
respond to fire (Moritz, 1997). In forest ecosystems, fire severity is commonly measured 
using satellite-derived indices that compare pre- and post-fire aboveground biomass on an 
annual basis (Eidenshink et al., 2007; Roy et al., 2006). However, chaparral shrublands tend 
to burn in high-intensity crown fires that result in nearly 100% mortality of aboveground 
biomass, so measuring fire severity using changes in aboveground biomass may not yield 
useful predictors of ecological responses to fires, especially since different functional types 
of chaparral vegetation respond differently to intense fires (Keeley et al., 2008; Meng et al., 
2014). Further research to assess the impact of grazing levels on fire severity would need 
to account for these ecosystem-level differences in the measurement and significance of 
fire severity.  
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Along with its potential benefits for reducing fire probability, livestock grazing can have 
less desirable ecological effects, particularly at the stocking levels required to meaningfully 
reduce residual dry matter. These impacts include reductions in water quality, soil 
compaction, impacts on riparian vegetation, weed transmission, and disease interactions 
with wildlife (Nader et al., 2007). Land owners and land managers must balance these 
tradeoffs, along with the varying effects of grazing on fire probability based on vegetation 
type and region, when deciding if and where to use grazing as a tool to reduce fire 
probability. Targeted grazing, which focuses on patches that have not burned in recent 
years, may be especially effective in reducing fuel availability across rangeland landscapes 
(Diamond et al., 2009), potentially shifting the anticipated tradeoffs in the ecological effects 
of livestock grazing while sustaining a residual feed supply for fall grazing. 
 
A key challenge for ranchers seeking to maximize the fuels reduction potential of their 
grazing will be interannual variation in the environmental factors that control forage 
production, as the ideal stocking level to leave the minimal amount of fuel at the end of the 
season is likely to vary from year to year (Bartolome et al., 2006). Variation in precipitation 
and other climatic factors may lead ranchers to use conservative stocking levels that are 
insufficient for reducing fuel levels. This may hold especially true in the Central Valley and 
Foothills region, where variability in weather drives vegetation dynamics due to the 
nonequilibrium dynamics of the rangeland system (Spiegal et al., 2016). Decisions about 
stocking levels can be further complicated under stocker operation agreements that limit 
flexibility in both livestock number and the dates of the grazing season. This highlights the 
uncertainties of land management in complex social-ecological systems like California’s 
rangelands, where local ecology, varying climatic factors, and socioeconomic forces interact 
to shape the patterns of both livestock grazing and wildfires. While wildfire policies in 
California have typically focused on fire suppression and home hardening, our results show 
that working landscapes can also reduce fire probability. As California confronts the 
legacies of a century of fire suppression and the increasing impacts of climate change on 
fuel conditions and fire weather, grazing should be considered as one component of a 
multi-pronged approach to reducing wildfire probability. 
 
Our findings indicate that livestock grazing can be an effective land management strategy 
to reduce wildfire probability in some regions and vegetation communities in California’s 
rangelands. With grazing data from more than 100 ranchers, we demonstrate that the 
negative effect of grazing on wildfire probability, previously demonstrated only through 
small-scale experimental and observational studies, holds true across broad spatial scales 
(hundreds of square kilometers) and moderate temporal scales (17 years) in California’s 
fire-prone landscapes. This result has implications for land managers seeking to reduce fire 
probability on both private and public lands, providing insights into which locations are 
most likely to benefit from fuel reduction via grazing and the stocking levels required to 
achieve these benefits.  
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Tables 

Table	1.	Summary of the sizes, fire histories, land cover types, and select covariates of the 
properties in the grassland and shrub/scrublands matched dataset across the three 
regions. 
 

 Central Coast Central Valley & 
Foothills 

North Bay 

Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed 
Number of 
properties 

22 26 9 39 9 13 

Mean property 
size (acres) 

1634 3166 6267 2456 1132 1619 

Mean area burned 
per year, 2001-
2017 (acres) 

879 2294 138 657 238 519 

Forest area 
(acres) 

4411 6016 2369 4698 4666 5624 

Grassland area 
(acres) 

2153 17555 20557 75647 947 4724 

Shrub/scrubland 
area (acres) 

24256 51727 2553 7930 4413 10212 

Mean population 
density in 2000 
(people/km2) 

7.1 1.1 1.0 0.7 2.8 2.4 

Mean annual 
precipitation, 
2001-2017 (cm) 

38.5 40.1 39.9 45.2 95.0 81.8 

Mean NPP, 2001-
2017 (kg*C/m2) 

0.66 0.64 0.45 0.44 0.99 0.79 
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Table	2.	Coefficient estimates for the logistic regression models of burn probability in the 
matched dataset of grasslands and shrub/scrublands (with grazed and ungrazed sample 
points), the grazed-only dataset (all grassland shrub/scrubland points with grazing), and 
the matched dataset of grasslands, shrub/scrublands, and forests. Cluster-robust standard 
errors are in parentheses below each coefficient estimate. The Central Coast serves as the 
reference region. For the datasets with grasslands and shrub/scrublands, grasslands are 
the reference land cover type. For datasets with grasslands, shrub/scrublands, and forests, 
forests are the reference. See Table S3 for complete table of coefficients, including the 
interactions between AUY per grazed acre, region, and landcover type and the effects of 
each year’s fixed effect, latitude, longitude, and the covariates that were not significant in 
any of the models (population density, aspect, mean fall PDSI, mean summer soil moisture, 
mean minimum fall temperature, and whether or not the point had burned in the previous 
five years).  
* p<0.05, ** p<0.01, *** p<0.001. 
 

Variable	

Coefficient	estimates	

Matched dataset, 
grassland and 
shrub/scrubland  

Grazed-only 
dataset, grassland 
and 
shrub/scrubland  

Matched dataset, 
grassland, 
shrub/scrubland, and 
forest 

Intercept 

149.826 

(70.041) 

277.625** 

(92.748) 

142.643* 

(69.307) 

Grazed 

0.978* 

(0.378) 

 0.802* 

(0.381) 

AUY per grazed acre 

-14.470 

(10.431) 

22.749 

(12.846) 

-18.406 

(11.361) 

Central Valley & 
Foothills Region 

7.907* 

(3.653) 

12.223** 

(3.418) 

8.198* 

(3.507) 

North Bay Region 

11.186* 

(5.177) 

9.968* 

(3.993) 

11.936* 

(4.868) 

Grassland 
 

 

 

-0.958* 

(0.407) 

Shrub/scrub 

-0.577* 

(0.245) 

0.926* 

(0.363) 

-1.434*** 

(0.315) 
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Distance to roads (m) 

1.506 * 10-4 

(0.000) 

-1.430*10-4 

(0.000)  

2.770*10-4* 

(0.000) 

Elevation (m) 

1.529 * 10-4 

(0.001) 

0.001* 

(0.001) 

-1.218*10-4 

(0.001) 

Slope (˚) 

0.033*** 

(0.007) 

0.033** 

(0.011) 

0.035*** 

(0.008) 

Total precipitation, fall 
(cm) 

0.263*** 

(0.059) 

0.303** 

(0.114) 

0.210*** 

(0.059) 

Total precipitation, 
spring (cm) 

-0.133* 

(0.052) 

-0.244 

(0.136) 

-0.095 

(0.057) 

Total precipitation, 
summer (cm) 

0.824* 

(0.415) 

1.791*** 

(0.514) 

0.615 

(0.435) 

Total precipitation, 
winter (cm) 

0.181** 

(0.058) 

0.118* 

(0.055) 

0.117** 

(0.041) 

Maximum temp, fall 
(˚C) 

0.052 

(0.225) 

1.268** 

(0.421) 

-0.129 

(0.204) 

Max wind speed, 
summer (m/s) 

0.568* 

(1.248) 

-0.244 

(2.608) 

0.959 

(1.168) 

Max wind speed, fall 
(m/s) 

0.251 

(1.127) 

-5.609* 

(2.489) 

-0.958 

(1.030) 

Max wind speed, 
winter (m/s)  

9.384*** 

(2.381) 

 

Previous year 
precipitation (cm) 

-0.097* 

(0.047) 

-0.065 

(0.034) 

-0.049 

(0.037) 

NPP (kg*C/m2) 

-3.776*** 

(0.663) 

-4.714*** 

(0.922) 

-4.239*** 

(0.647) 
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Burned in previous 
year 

-4.225*** 

(1.184) 

-5.214*** 

(1.200) 

-4.772*** 

(0.945) 
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Figures 

	
Figure	1. Map of the three social-ecological regions of California studied, with their 
component ecoprovinces denoted by color. The regions were defined by Bailey 
ecoprovinces and county boundaries.  
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Figure	2.	The predicted probabilities of burning in the three regions (Central Coast, Central 
Valley and Foothills, and North Bay), across the two dominant vegetation types using for 
grazing (grassland and shrub/scrubland) as AUY per grazed acre increases from 0 
(ungrazed) in the matched dataset. The graphs extend across the range of AUY per grazed 
acre values observed in each region. The shaded regions represent the 95% confidence 
intervals.  
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Figure	3. The predicted probabilities of burning in the three regions (Central Coast, Central 
Valley and Foothills, and North Bay), with matched data from across the three dominant 
vegetation types (forest, grassland, and shrub/scrubland) as AUY per grazed acre increases 
from 0. The graphs extend across the range of AUY per grazed acre values observed in each 
region. The shaded regions represent the 95% confidence intervals. 
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Figure	4.	The predicted probabilities of burning in the three regions (Central Coast, Central 
Valley and Foothills, and North Bay), across the two dominant vegetation types used for 
grazing (grassland and shrub/scrubland) as AUY per grazed acre increases across all 
grazed points. Unlike the matched datasets, this dataset includes all sample points from 
grazed properties that were located in grasslands or shrub/scrublands. The graphs range 
from 0.001 AUY per grazed acre to the maximum grazing intensity value observed for each 
region. The shaded regions represent the 95% confidence intervals.  
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Transition between Chapters 2 and 3 

 

Chapter 2 used pre-regression matching and logistic regression to determine the influence 
of livestock grazing on wildfire probability in California’s rangelands, focusing on 
grasslands, shrub/scrublands, and forests in the North Bay, Central Valley and Foothills, 
and Central Coast regions. My results showed that as grazing intensity increases, wildfire 
probability declines in all three vegetation types in the North Bay and Central Coast. The 
results for the Central Valley and Foothills are less straightforward, with an increase in 
wildfire probability as grazing levels increase from no grazing to low levels of grazing, 
followed by non-significant effects of grazing on wildfire at higher levels of grazing 
intensity. The different response in the Central Valley and Foothills as opposed to the North 
Bay and Central Coast may be due to the presence of highly modified, human-dominated 
landscapes in the Central Valley and Foothills region; neighboring land cover types may be 
more important than grazing levels in determining wildfire probability in this region than 
in the two other regions. In both Chapter 1 and Chapter 2, my models may not have 
accounted for important variables that are difficult to quantify spatially, a challenge in 
quantitative modeling that I address in my third chapter. In Chapter 3, I use logistic 
regression models to explore forest loss dynamics in Jamanxim National Forest, a protected 
area in the Brazilian Amazon. This chapter presents a framework for integrating qualitative 
and quantitative methods in land use change modeling, assessing how integration of 
qualitative discourse analysis into land use change modeling impacts our understanding of 
the drivers of deforestation and predictions of future forest conversion to agriculture.  
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CHAPTER 3 

Integration of qualitative and quantitative methods improves land use change 
modeling in a protected area in an Amazonian deforestation frontier 
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Elizabeth Shoffner 
 
Included as a dissertation chapter with permission from co-authors. 
 

Abstract 

Deforestation threatens biodiversity, ecosystem functioning, and human communities 
across the Amazon Basin, including within protected areas. Development and 
implementation of effective management interventions depend in part on identifying the 
factors contributing to forest loss and areas at risk of future conversion, but traditional 
land use change modeling approaches may not fully capture contextual factors that are not 
easily quantified. To better understand forest loss and agricultural expansion in Amazonian 
protected areas, we combine quantitative land use change modelling with qualitative 
discourse analysis, using Brazil’s Jamanxim National Forest as a case study. We model land 
use change from 2008-2018 and project deforestation through 2028 using variables 
identified from a review of studies modeling land use change in the Amazon and a critical 
discourse analysis examining documents produced by different actors at various spatial 
scales. We find that including variables identified as important in the qualitative discourse 
analysis alongside more traditional variables improves the predictive ability of these 
models. Our novel approach of integrating qualitative and quantitative methods in land use 
change modelling can provide a framework for future interdisciplinary work in land use 
change.  
 
Introduction 

Globally, forest loss threatens biodiversity, traditional land tenure and livelihoods, and 
ecosystem services (Baragwanath and Bayi, 2020; Haddad et al., 2015; Harris et al., 2012). 
Tropical forests in particular face rapid and widespread conversion to anthropogenic land 
uses, with consequences for species diversity, hydrology, and carbon emissions (Fearnside, 
2005; Hansen et al., 2008; Lambin et al., 2003; Malhi et al., 2008). In response to persistent 
land use change and deforestation, governments throughout the tropics have pledged to set 
aside large amounts of their remaining forests in protected areas, and a global movement 
toward protecting 30% of Earth’s area by 2030 (“30 by 30”) has emerged (Baillie and 
Zhang, 2018; Buchanan et al., 2020; Dinerstein et al., 2019). The area of land designated as 
protected has increased over recent decades; by 2020, protected areas covered 15% of the 
world’s land area, more than 29% of forests located in the tropics, and 10% of remnant 
forest in the tropical and subtropical moist broadleaf forest biome (Hansen et al., 2020; 
Morales-Hidalgo et al., 2015; UNEP-WCMC and IUCN, 2020). While protected areas have 
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generally reduced the rate of deforestation within their boundaries (Andam et al., 2010; 
Joppa et al., 2008; Joppa and Pfaff, 2011; Laurance et al., 2012), forest loss nevertheless 
continues, with variation related to management objectives, location, existing land cover 
type, levels of enforcement, and other factors (Arima et al., 2014; Geldmann et al., 2019; 
Leberger et al., 2020; Nolte et al., 2013).	
 
In the Amazon Basin, the Amazon rain forest represents a globally significant biodiversity 
hotspot that plays a role in global carbon and regional hydrological cycles (Arima et al., 
2014; Fearnside, 2012; Hansen et al., 2020; Myers et al., 2000). The Amazon Basin includes 
land in nine countries across 6 million km2, including more than 350 areas designated for 
conservation or sustainable resource management (CAMP, 2018). Across the region, rapid 
land use change has converted large swaths of forest to anthropogenic land uses over the 
last fifty years: forest cover has declined by about 15% (a loss of 900,000 km2) since the 
1970s (Amigo, 2020; Fearnside, 2005). Despite the establishment of protected areas 
throughout the region, protected forests are not immune to the pressures of timber 
harvesting, small- and industrial-scale livestock and agricultural expansion, infrastructure 
development, increases in human settlements, and mineral and fossil fuel extraction (Asner 
and Tupayachi, 2017; Curtis et al., 2018; Finer et al., 2008; Leisher et al., 2013; Soares-Filho 
et al., 2006; Viteri-Salazar and Toledo, 2020). As an example, protected areas in the 
Brazilian Amazon lost 0.05-0.1% of their forest cover annually from 2002-2016 (Cabral et 
al., 2018), and Brazilian protected areas in close proximity to roads or navigable rivers lost 
10.9% of their forest cover from 2000-2006 (Barber et al., 2014). While overall 
deforestation rates in the Brazilian Amazon decreased after 2004, they have increased 
again in recent years (INPE, 2020).  
 
Forest loss in Amazonian protected areas is part of a complex dynamic of environmental, 
political, and socioeconomic change, with both region-wide generalities and specific details 
relevant to each local context (Geist and Lambin, 2002; Rosa et al., 2014b). Developing 
policies and management responses that enhance the conservation of protected forests 
requires identifying the factors related to forest loss in specific locations (Ravikumar et al., 
2017). Land use change modeling can improve our understanding of forest loss dynamics 
(Verburg et al., 2004). These models identify significant drivers of forest loss in the past 
and present, predict areas at risk of future land use conversion, simulate the impacts of 
different policy interventions, and explore future scenarios (Heilmayr et al., 2020; Piquer-
Rodríguez et al., 2018; Rosa et al., 2014b, 2013; Soares-Filho et al., 2006; Turner et al., 
2007; Veldkamp and Lambin, 2001; Verburg et al., 2004). They can contribute to debates 
about the drivers of and solutions to protected area deforestation and are thus tools for 
land use planning, conservation prioritization, and other management and policy 
interventions.  
 
Despite the power of land use change models to explain and predict deforestation (Etter et 
al., 2006; Soares-Filho et al., 2004, 2006), they do not fully capture the discourses around 
forest loss. These discourses reflect how actors understand forest loss and thus influence 
proposed policy interventions, shaping future land use change (Ravikumar et al., 2017). 
Integrating qualitative discourse analysis with land use change modeling poses a 
methodological challenge, requiring synthesis of qualitative and quantitative 
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methodologies and data (Kinnebrew et al., 2020). Many existing land use change models 
use a set of quantitative explanatory variables that have been previously related to the 
probability of forest loss, including distances to roads and urban areas, cropland suitability, 
and topography (Barber et al., 2014; Rosa et al., 2014a). While these variables are 
undeniably important for understanding the dynamics of land use change, they do not fully 
reflect discourses around the drivers of deforestation, such as land speculation and tenure 
issues, enforcement capacity, governance, and migration (Killeen et al., 2008; Martins et al., 
2017; Pauquet et al., 2005; Valqui et al., 2014).  
 
Here, we use a mixed methods approach to integrate qualitative discourse analysis with 
quantitative land use change modeling to analyze the factors related to deforestation in 
Amazonian protected areas and to project future deforestation, using Jamanxim National 
Forest in Brazil as a model system. We use a set of explanatory environmental, geographic, 
social, and management variables used in previous land use change models for the region, 
in addition to variables identified through a qualitative discourse analysis that identifies 
the narratives created and circulated by national, state-level, and local actors to explain and 
address forest loss in the protected area. This methodological integration facilitates a 
broader and deeper understanding of the role of different factors in contributing to or 
reducing the probability of deforestation (Kinnebrew et al., 2020; Ravikumar et al., 2017). 
We use this integrated approach to better understand deforestation in Jamanxim. We 
demonstrate the value of our approach by quantifying how the inclusion of the discourse 
analysis variables changes a) which variables are important, b) model performance, and c) 
the quantity and spatial patterns of predicted future deforestation. 
 
Methods 

1. Study site 
 
We selected Brazil’s Jamanxim National Forest (hereafter “Jamanxim”) as a case study site 
because it has experienced high levels of deforestation relative to other Amazonian 
protected areas (Cabral et al., 2018; Pinheiro et al., 2016). Located in the state of Pará and 
with an area of 13,015 km2, Jamanxim was established in 2006 as part of an initiative to 
limit deforestation associated with the construction of the BR-163 highway through the 
Amazon. As a national forest, Jamanxim is managed for sustainable use objectives, 
including watershed protection and sustainable logging and silviculture, although no 
logging concessions have been designated (Rylands and Brandon, 2005). The protected 
area has experienced significant deforestation through logging and land-clearing for 
ranching and agriculture. In the absence of a clear, well-enforced land tenure system, large- 
and small-scale farmers clear the forest to secure land claims and establish farming and 
ranching operations (Arima, 2016; Campbell, 2015; Fearnside, 2001). Large-scale 
landowners use deforestation as a form of land speculation: by clearing and “improving” 
the land, they increase its value (Fearnside, 2005; Torres, 2012, 2005). The national forest 
has also faced legal threats throughout its existence: a 2008 bill proposed to degazette the 
park to resolve competing land claims in favor of farmers and ranchers (de Marques and 
Peres, 2014), while in 2012, the president of Brazil temporarily reduced its size to allow for 
the construction of a hydropower dam (Fearnside, 2016). We modeled land use change 
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within the boundaries of the national forest and in a 20km buffer around the protected 
area to capture land use dynamics directly outside the area of management (Figure 1).    
 
2. Remote sensing 
 
We generated land cover maps for 2008 and 2018 using supervised classifications of cloud-
free composites of Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 8 (OLI) 30m Surface 
Reflectance (SR) datasets. We used dry season (May 15-October 15) data and masked 
clouds with the CFMask algorithm (Foga et al., 2017). To better distinguish between land 
cover types with seasonal variation, we integrated elevation data (SRTM Digital Elevation 
Data at 30m), Enhanced Vegetation Index (EVI), and the difference in seasonal EVI between 
wet and dry seasons (Liu and Huete, 1995), using methods described in Kinnebrew et al. in 
prep. 
 
We developed our training data set using manual classifications of land cover in Geosurvey, 
which integrates 1m-resolution imagery from Bing Aerial, Google Hybrid, and Matchbox 
(QED, 2019). To classify the land cover types, we drew polygons for agriculture and 
pastures, forest, bare soil, built-up areas, wetlands, and water in 1000 randomly selected 
250m x 250m windows. Each window could contain multiple polygons with different land 
cover types. In Google Earth Engine, we performed a supervised classification with random 
forest algorithms using our spectral imagery, training polygons, and additional elevation 
and EVI seasonal difference data (Belgiu and Drăguţ, 2016; Breiman, 2001). We used a 10 
k-fold cross validation to validate the classification accuracy using the dismo package in R 
(Hijmans et al., 2017). Due to inaccurate classifications for the non-forest land cover types, 
we classified up to 100 more 250m x 250m polygons in the agriculture, bare soil, built-up, 
water, and wetland land covers. Including these additional polygons improved the accuracy 
of our classification. 
 
3. Qualitative discourse analysis 
 
We analyzed the discourse around the drivers and mediators of deforestation in Jamanxim 
National Forest using qualitative discourse analysis methods, sampling documents in 
English and Portuguese that discussed deforestation in the protected area (refer to 
Shoffner et al., in prep, for full details of sampling and coding methods). We sampled 
documents focused at the national, state, and park scale and included four document types: 
management (e.g., park management plans), policy (e.g., laws and decrees related to the 
protected areas and forest management), gray literature (e.g., reports from government 
agencies and NGOs), and advocacy (e.g., articles and other documents written by NGOs to 
promote their campaigns and initiatives or support certain arguments). We used a 
snowball sampling method to compile policy and management documents related to 
Jamanxim from the Brazilian government’s legislative database (Federal Government of 
Brazil, 2019), using the name of the protected area (Jamanxim National Forest or Floresta	
Nacional do Jamanxim)	or	the	state	where	it	is	located	(Pará),	plus	the	word	“deforestation”	
(desmatamento)	or	a	closely	related	term	as	the	inclusion	criteria.	We sampled gray 
literature and advocacy documents by identifying all non-governmental and civil society 
organizations working in the area and locating their online publications. We	sampled	to	the	
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point	of	saturation,	including	documents	based	on	relevance	and	repetition	(Shoffner	et	al.,	in	
prep.) Our final sample consisted of 61 documents (five management, 12 policy, 23 gray 
literature, and 21 advocacy; Table S1).  
 
We coded these documents in NVivo 12 (QSR International Pty Ltd., 2019) using 
predetermined themes as well as emergent themes derived through the process of open 
coding (Table S2). We developed the list of predetermined themes based on a literature 
review of variables used in Amazonian land use change modeling (Barber et al., 2014; Costa 
Roriz et al., 2017; Lambin et al., 2003; Molin et al., 2017; Müller et al., 2012; Pacheco, 2009; 
Pérez-Vega et al., 2012; Rosa et al., 2014b, 2013; Schielein and Börner, 2018; Soares-Filho 
et al., 2013, 2006; Viteri-Salazar and Toledo, 2020), while emergent themes arose during 
the process of coding the documents.  
 
4. Land use change models 
 
To better understand the role of the different types of variables in explaining trends in 
forest loss, we constructed four logistic regression models to explain and predict the 
conversion of forests to agriculture (Moulds et al., 2015; Rosa et al., 2014a). First, we built a 
model using variables derived from the land use change literature (LUC model). Our second 
model consisted of the variables identified through qualitative discourse analysis (DA 
Model; section 4.1). The third model included all the variables from the LUC model and DA 
Model (LUC & DA model), while the fourth model (Refined LUC & DA model) included the 
variables that were statistically significant in the LUC model and variables that were 
determined to be highly important through the qualitative discourse analysis. In 
constructing each model, we checked for correlations between the continuous variables 
and removed variables that were highly correlated (Pearson’s correlation coefficient > 
0.66, p < 0.05) prior to model runs. In all models, we sampled forested points in the case 
study areas along a 300 meter grid to control for spatial autocorrelation (Mets et al., 2017). 
 
4.1 Variable selection 
 
For the LUC model, we used a suite of variables that are frequently used in land use change 
models in the Amazon or that have been linked to deforestation risk in the region: distance 
to the nearest road, river, and city (proxies for accessibility and distance to markets); 
population density; elevation, slope, aspect, soil moisture, and precipitation (proxies for 
agricultural suitability); crop suitability; management status; poverty rate; distance to 
mining concessions; and the percentage of surrounding pixels that are a non-forest land 
cover type, to account for neighborhood effects (Barber et al., 2014; Costa Roriz et al., 2017; 
Lambin et al., 2003; Molin et al., 2017; Müller et al., 2012; Pacheco, 2009; Pérez-Vega et al., 
2012; Rosa et al., 2014b, 2013; Schielein and Börner, 2018; Soares-Filho et al., 2013, 2006; 
Sonter et al., 2017; Viteri-Salazar and Toledo, 2020). 
 
For the DA model, we used variables related to the dominant narratives around the drivers 
of and solutions to deforestation in Jamanxim National Forest, as identified through our 
qualitative discourse analysis. We identified themes and then determined quantitative 
spatial proxies for each theme for use in the land use change models. For example, an 
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important theme was land grabbing (grilagem), which often occurs on publicly-owned land 
that has not yet been granted an official use type (e.g., logging concessions, protected area 
designation, etc.) (Campbell, 2015; Torres, 2012, 2005). Since there is no database of the 
locations where illegal clearing of public land has occurred, we used the percentage of non-
allocated public land in the municipality as a spatial, quantitative proxy for the conditions 
that facilitate the process of land-grabbing. The availability of quantitative data that could 
be translated into a spatial layer limited our ability to include variables from the discourse 
analysis in our models. There were some factors identified as important through the 
discourse analysis, such as governance quality, that we could not represent spatially and 
quantitatively and thus had to omit from our models. This underscores a limitation of the 
quantitative, spatial modeling approach to understanding the causes of land use change. 
The number of themes identified was not pre-determined, but rather emerged through the 
coding process. After removing factors that we could not translate into spatial quantitative 
proxies, we had 10 variables: distances to existing agriculture, fires, proposed 
infrastructure developments (railroads and dams), and unauthorized mines; density of past 
fires; percent of non-allocated public land in the municipality; areas proposed for protected 
area downgrading, downsizing, and degazettement (PADDD); presence of agricultural 
reform settlements; and head of cattle per km2 (Table 1). We then removed distance to 
proposed dams because it was highly correlated with distance to unauthorized mining 
sites. 
 
The LUC & DA model included all variables from the LUC model and the DA model except 
for variables that were highly correlated: we dropped head of cattle per km2 because it was 
highly correlated with population density (Pearson’s correlation coefficient = -0.99, p < 
0.05). The Refined LUC & DA model included nine variables from the LUC model (slope; 
elevation; distance to roads, cities, and mining concessions; crop suitability; soil moisture; 
protection status; and the percent of surrounding pixels of a different land cover type) and 
six variables from the DA model (distance to existing agriculture, fires, and proposed 
railroads, PADDD status, fire density, and agricultural reform settlements) (Table S3).  
 
In all models, we included whether the forested point was located within the boundaries of 
the national forest, within a 10 km buffer around the national forest, or within a 20 km 
buffer. We included the buffer around the national forest because the presence of protected 
areas frequently impacts land use pressure in the surrounding area through processes like 
leakage (Ewers and Rodrigues, 2008) and we wanted to capture these dynamics as well as 
processes of agricultural encroachment from the buffer areas into the protected area itself. 
We used buffer sizes of 10 and 20 kilometers because these have been used in previous 
studies of land use change in and around protected areas (Bailey et al., 2016; De la Rosa-
Velázquez et al., 2017; Tesfaw et al., 2018). 
 
4.2 Data compilation 
 
We compiled quantitative data on the relevant variables from local-, national-, regional- 
and global-scale sources (Table 2). Where possible, we matched the temporal scale of the 
data to the timeframe of our study (2008-2018). We converted all data sources to rasters 
with resolutions matching our land cover change maps (30m x 30m). We standardized the 
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spatial data sets in QGIS and R, using the raster, sf, and lwgeom packages (Hijmans, 2019; 
Pebesma, 2019, 2018; QGIS Development Team, 2019).  
 
4.3 Model performance 
 
To compare how the models with different types of variables performed, we used ANOVA 
comparisons of model fit and McFadden’s adjusted pseudo-R2, which takes the number of 
explanatory variables into account (Hebbali, 2020). 
 
4.3.1 Predicted 2018 deforestation  
 
To assess the ability of the different models to accurately predict forest conversion to 
agriculture, we used each of the four logistic regression models to generate a raster layer 
with the predicted probability of conversion to agriculture for each forested pixel in 2008. 
We then used Monte Carlo simulations to generate 1000 projected landscapes for 2018 for 
each model, based on the predicted probability maps of forest conversion to agriculture. 
For all pixels with non-forest land cover types in 2008, we assumed no change in land 
cover type from 2008-2018. We calculated the mean area of forest loss across these 
simulations to assess the predicted deforestation rate for each model.  
 
We also used these simulations to calculate the range of accuracy with which each model 
projected agricultural conversion. For each simulation in each model, we calculated the 
percent of correctly predicted agricultural conversions as the number of cells correctly 
predicted to have an agricultural conversion in 2018 divided by the total number of cells 
that converted from forest to agriculture from 2008-2018. We determined the number of 
cells that were correctly predicted to have converted from forest to agriculture by 
comparing each simulated landscape to the observed 2018 landscape. Similarly, we 
calculated the range of values for the percent of incorrectly predicted agricultural 
conversions for each model, where the percent of incorrectly predicted agricultural 
conversions is the number of cells that each simulation predicted as converting to 
agriculture that in reality remained forest, divided by the total number of cells that 
converted from forest to agriculture. Finally, we calculated the percentage of correctly 
predicted stable forest pixels, with stable forest pixels defined as those that were classified 
as forested in both 2008 and 2018. 
 
4.4 Predicted future deforestation 
 
To assess the predicted rates and spatial trends of deforestation of the different models, we 
used each model to generate a predicted probability of forest loss in 2028 by applying the 
models to the 2018 landscape. We used the same Monte Carlo simulation method as 
previously described to simulate 1000 landscapes for 2028 for each model, assuming static 
relationships between the explanatory variables and deforestation risk over time. For each 
model, we calculated the predicted rate of deforestation as the mean area converted across 
the simulations. We used the observed 2008-2018 deforestation rate to generate predicted 
land cover maps for 2028: with a set area of conversion, we spatially allocated forest loss to 
the pixels that converted in the highest number of simulations for each model until we 
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reached the pre-determined area of forest loss. This yielded four predicted landscapes, one 
for each of the models.  
 
4.5 Landscape connectivity 
To quantify the different spatial distributions of the models’ predicted deforestation, we 
calculated metrics of landscape connectivity and fragmentation for all observed and 
projected landscapes using the R package landscapemetrics (Hesselbarth et al., 2019). Our 
landscape metrics analyses focused on the class level, combining all forested patches, and 
we used eight-cell neighbor methods (Rosa et al., 2017). We selected metrics of 
connectivity and fragmentation related to overall forest area (class area), the 
fragmentation of contiguous forest area (patch area, number of patches, landscape division 
index), the amount of core forest area (core area index, core area as percentage of 
landscape, total core area), and patch complexity and edge effects (fractal dimension index, 
perimeter-area fractal dimension, perimeter:area ratio, total edge). 
 
Results 

Observed land use and land cover change 
 
Our remote sensing yielded high accuracy rates, with an average producer’s accuracy value 
of 94% and a user’s accuracy rate of 91% (Table S4). We observed a 4.6% decline in forest 
cover from 2008 to 2018 in Jamanxim National Forest, for a total of 1164.81 km2 of forest 
lost (Figure 2). Forested pixels in Jamanxim had a 5.0% probability of converting to 
agriculture during this time period (Table S5). Other land cover conversions with a 
relatively high probability of occurrence were agriculture to forest (18.1%, corresponding 
to 293.26 km2), agriculture to bare soil (10.7%, or 172.87 km2), bare soil to agriculture 
(68.0%, or 196.43 km2), bare soil to forest (13.9%, or 40.14 km2), built-up to agriculture 
(29.5%, or 5.16 km2), built-up to bare soil (16.3%, or 2.86 km2), and water to forest 
(10.8%, or 10.33 km2). Jamanxim experienced a decrease in the mean area of forest patches 
from 2008-2018 and a corresponding increase in the number of forested patches. The 
mean of the core area index, or the percentage of each patch that is core area, also 
increased, while measures of patch complexity (mean fractal dimension index, perimeter-
area fractal dimension, and perimeter:area ratio) did not change meaningfully. The total 
area of core forest decreased and the length of the total edges increased over time (Table 
3). 
 
Relationships between explanatory variables and deforestation probability 
 
In the LUC model, elevation, slope, soil moisture, population density, and distances to roads 
and mining concessions all had negative relationships with the probability of forest 
conversion to agriculture (Table S3). Distance to cities, crop suitability, and the percent of 
non-forest neighboring pixels, as well as location within the buffer zone rather than the 
national forest, were all associated with a higher probability of forest conversion. This 
means that in this model, forested points at higher elevations and on steeper slopes with 
higher soil moisture and located further from roads and mining concessions were less 
likely to convert to agriculture, while forested points located outside the protected area 
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boundary, further from cities, with greater agricultural suitability and more adjacent non-
forest areas were more likely to convert. Aspect and distance to rivers did not have a 
significant relationship with the probability of forest loss for agriculture in this model. 
 
The DA model indicated that the distance to unauthorized mining sites, existing agriculture, 
fires, and proposed railroads all had a negative relationship with the probability of forest 
conversion to agriculture, as did location within an area proposed for PADDD and the 
presence of agricultural reform settlements, the proxy variable for land tenure (Table S3). 
Fire density had a positive relationship with forest conversion probability, while the 
proportion of non-allocated public land (the proxy for land grabbing) had no significant 
relationship to deforestation. This means that forested points located further from areas of 
extractive and agricultural activity and proposed infrastructure had a reduced conversion 
probability, as did points located within agricultural reform settlements or areas proposed 
for PADDD, while areas with a greater density of fires were more likely to convert to 
agriculture. 
 
In the LUC & DA and Refined LUC & DA models, elevation, slope, soil moisture, and distance 
to roads, cities, existing agriculture, and fires all had negative relationships with the 
probability of forest conversion to agriculture (Table S3). In the LUC & DA model, crop 
suitability also had a significant, negative relationship with forest loss, while the same was 
true for the proportion of non-allocated public land in the Refined LUC & DA model. In both 
models, the proportion of non-forest neighboring pixels, fire density, and location in the 
buffer, areas proposed for PADDD, and agricultural reform settlements had positive 
relationships with deforestation probability. This means that forest points with a higher 
percentage of non-forested neighbors were more likely to convert to agriculture, as were 
sites located outside of the national forest’s boundaries, sites that have been proposed for 
PADDD, and forests located within agricultural reform settlements. In the LUC & DA model, 
distance to rivers also had a significant, positive relationship with deforestation, but this 
variable was not included in the Refined LUC & DA model because it was not a significant 
explanatory variable in the LUC model. The distances to the nearest mining concession and 
proposed railroad were insignificant in both models, as were aspect, population density, 
and the proportion of non-allocated public land in the LUC & DA model and crop suitability 
in the Refined LUC & DA model. 
 
Differences in model performance 
 
All four models predicted higher deforestation rates from 2008-2018 than we observed. 
The LUC model predicted the lowest rate of deforestation (1206.5 ± 0.9 km2), while the DA 
model predicted the highest level of forest loss (1286.9 ± 0.9 km2). The LUC & DA and 
Refined LUC & DA models had the highest level of accuracy in predicting the locations of 
pixels that converted from forest to agriculture from 2008-2018, correctly predicting the 
locations of an average of 34.6% and 34.4% of converted pixels, respectively (Figure 3). 
The LUC model had the highest percentage of incorrectly predicted agricultural 
conversions (for an average of 78.1% of the pixels where the simulations predicted a 
conversion of forest to agriculture, no conversion actually occurred), followed by the DA 
model (69.9% on average). The LUC & DA and Refined LUC & DA models also had the 
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highest accuracy in predicting locations with stable forest cover from 2008-2018. Within 
each model, there was relatively little variation in the accuracy rate for predicting 
agricultural conversions and stable forest cover. 
 
Based on ANOVA analysis, the Refined LUC & DA model had the best model fit (p < 0.001). 
The LUC & DA model also outperformed the LUC model and the DA model (p < 0.001). The 
LUC & DA and Refined LUC & DA models explained the greatest amount of variation in the 
observed forest conversion to agriculture from 2008-2018 (McFadden’s adjusted pseudo 
R2 values of 43.7% and 43.6%, respectively), while the DA model explained more of the 
variation than the LUC model (39.5% vs. 24.4%). 
 
Projected deforestation 
 
The four models predicted similar quantities of forest conversion to agriculture in the 
study area from 2018-2028, ranging from 1206.51 km2 ± 0.91 for the LUC model to 
1286.89 km2 ± 0.93 for the DA model. The LUC & DA model and Refined LUC & DA model 
predicted 1279.31 km2 ± 0.82 and 1274.77 km2 ± 0.84 of forest loss, respectively. This 
represents a slight increase in the area deforested over the 2008-2018 time period 
(1164.81 km2). Within the boundaries of the national forest itself, the models predicted 
394.80-450.21 km2 of forest conversion to agriculture, compared to an observed loss of 
319.53 km2 from 2008-2018. As in the case of overall forest conversion in the study area, 
the LUC model predicted the lowest level of deforestation, followed by the LUC & DA model, 
then the Refined LUC & DA model, while the DA model predicted the highest levels of forest 
loss. 
 
While the observed number of forest patches increased from 2008-2018, all four models 
showed a decrease in the number of forest patches in 2028 relative to 2008 and an 
increase in the mean patch area. However, only the DA model predicted an increase in 
mean patch area and decrease in patch number relative to 2018. The LUC, LUC & DA, and 
Refined LUC & DA models displayed an increase in the mean of the core area index and the 
mean of core areas of all patches from 2018-2028, while the DA model showed the 
opposite trend (Table 3). 
 
The spatial distribution of predicted deforestation varied between the models, but the four 
models’ predictions had some overlap: 352.7 km2 in the case study area, of which 75.6km2 
were within the national forest’s boundaries (Figure 4). The areas where all four models 
predicted agricultural conversion by 2028 were mostly adjacent to areas with stable 
agriculture from 2008-2018, often forming thin perimeters around existing agriculture. 
There were also large contiguous blocks of projected conversion around the BR-163 
highway and rivers in the eastern part of the buffer area. Three of the four models 
predicted a large area of contiguous forest conversion in the southern part of the national 
forest. 
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Discussion 

Our findings demonstrate the value of integrating qualitative and quantitative research 
methods for studying land use change. The two models that included variables from both 
traditional land use change modeling approaches and discourse analysis had the best 
performance and predictive ability. Beyond providing a template for future efforts to 
combine qualitative and quantitative methods to understand land use change, our results 
indicate that the narratives about forest loss in protected areas, which emerge across scales 
and actors, are important sources of information for understanding and predicting 
deforestation processes. When attempts to understand and predict forest loss omit 
information from these narratives, they may overlook significant factors related to forest 
loss and have reduced ability to predict locations at risk of deforestation. 
 
In terms of the effects of individual variables on deforestation probability, many of our 
results strengthen previous findings. For example, previous analyses of deforestation in the 
Brazilian Amazon have found that forested areas that are closer to roads and previously 
deforested areas are more likely to experience forest loss, while protected areas have lower 
rates of deforestation (Barber et al., 2014; Rosa et al., 2014b, 2013). Similarly, our finding 
that areas at higher elevation and with steeper slopes are less likely to experience 
deforestation is in accordance with results from elsewhere in the Amazon Basin (Muller et 
al., 2011), and our results linking fire activity to agricultural conversion align with 
observations that fire is a tool for land clearing in the region (Escobar, 2019).    
 
The relationship between the proportion of non-allocated public land and deforestation 
probability did not match our expectations. There was notable discourse around land 
grabbing and illegal occupation of public land in the documents we analyzed (Abdala, 2015; 
Araújo et al., 2017; PPCDAm and PPCerrado, 2016), and we expected there to be less of this 
opportunistic land grabbing in areas where the tenure status of a greater percentage of 
public land had been resolved. However, we observed the opposite trend: areas with 
greater proportions of non-allocated public land experienced lower probabilities of 
deforestation. This may be the result of varying dynamics in the different municipalities 
included in the study area, since our data on non-allocated public land was at the 
municipality-level. Our study area included parts of three municipalities: Novo Progresso, 
Itaituba, and Altamira. Altamira has at least a five times greater proportion of non-allocated 
public land than the other two municipalities, but it is possible that other land use trends or 
underlying agricultural suitability in Altamira or the other municipalities are at play and 
affecting the role of land tenure in our models.  
 
The DA model predicted the highest levels of forest conversion to agriculture, while the 
LUC model predicted the lowest rate of deforestation. The mean projected deforestation 
rate for all models was greater than the observed rate of forest loss from 2008-2018, 
highlighting the limitations of land use change models. However, the LUC model came 
closest to correctly estimating the area of forest converted to agriculture in that time 
period; the inclusion of variables from the discourse analysis led to higher estimates of 
forest loss. This implies that an understanding of deforestation trends rooted solely in the 
discourses surrounding forest loss might lead to disproportionate or poorly targeted 
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management responses. While discourse analysis improves land use change modeling, 
management responses guided by discourses alone may not be effective.  
 
The spatial distribution of predicted forest loss 
 

In three other regions of Brazil’s Amazon, agricultural expansion increased forest 
fragmentation and led to higher densities of forest edges (Rosa et al., 2017). While we 
observed a similar increase in fragmentation and forest edge density from 2008-2018, our 
models predicted a decrease in edge density from 2018-2028. We also did not observe or 
predict notable changes in patch complexity over time, in contrast to expectations that 
forest fragmentation will be accompanied by an increase in patch complexity (Wang et al., 
2017). All the models that included LUC variables predicted an increase in mean forest 
patch area and decrease in number of forest patches from 2018-2028, indicating that these 
models project that small forest patches in 2018 will convert to agriculture. Notably, the DA 
model predicts an increase in mean patch area relative to 2018 (although still a decrease 
from 2008) and a concurrent decrease in the number of forested patches, contrary to the 
other three models. This implies that the inclusion of the LUC model variables is driving the 
previously-described pattern. 
 
The different variables used for each model drove differences in the spatial distribution of 
projected future deforestation. In particular, the models that included fire density (the DA 
model, LUC & DA model, and Refined LUC & DA model) all predicted large clusters of 
deforestation in the southeast portion of the national forest and in the southeastern part of 
the buffer area. These clusters correspond to areas with high densities of fires from 2007-
2018. Additional variables that are co-located with the areas of predicted deforestation in 
those three models are the presence of agricultural reform settlements in the southeastern 
region of the buffer and PADDD proposals along the eastern border of the national forest.  
 
Further integration of discourse analysis and land use change modeling 
 
Incorporating the discourse analysis into our methodology improved our models, but 
ideally, we would have even greater integration of variables identified in the discourse 
analysis into the models. The discourse analysis identified important themes that we were 
unable to include in the land use change models due to a lack of available data for spatial, 
quantitative proxies. This included themes such as state capacity, commodity traceability, 
inclusion and participation in the management process, enforcement capacity, and 
government accountability. We were also unable to include factors that did not vary 
spatially, such as state-level policies, as the values for these factors would be constant 
across the modeled landscape (although their implementation might not actually be 
uniform). These two categories of factors appeared frequently in the discourses around the 
drivers of and solutions to deforestation in Jamanxim National Forest, Pará, and Brazil at 
large and likely play an important role in shaping deforestation dynamics. Our inability to 
translate these themes into quantitative, spatial proxies for inclusion in land use change 
modeling highlights a limitation of our methodology in particular and quantitative 
modeling studies in general; these approaches cannot accommodate important variables 
that are not easily measured and incorporated into a GIS framework. This highlights the 
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need for qualitative analyses in addition to quantitative analyses when considering 
complex socio-environmental change (Bennett et al., 2017; Kinnebrew et al., 2020; Palmer, 
2012).  
 
Our methodology, though more time-intensive than typical approaches to land use change 
modeling, can be an important tool for situations in which a higher degree of accuracy and 
localized nuance are needed for understanding and predicting land use trends. This may be 
the case in contexts where protected area managers seek to identify specific interventions 
to address the fundamental drivers of forest loss. Combining quantitative modeling with 
discourse analysis also has the potential to test the explanatory power of narratives around 
deforestation. Since the stories that actors use to explain deforestation shape the proposed 
solutions, assessing how they relate quantitatively to observed land use trends can 
potentially help to disrupt or shift narratives to better reflect observed changes. 
 
The integration of qualitative discourse analysis methods into land use change modeling 
adds precision and nuance to our understanding of forest conversion in Jamanxim National 
Forest, a protected area located in a deforestation frontier in the Amazon. By converting 
themes identified through discourse analysis into spatial, quantitative variables for 
inclusion in land use change modeling, we are better able to explain observed deforestation 
dynamics and may be better able to predict future hotspots of forest loss. Despite the 
challenges and limitations of integrating qualitative and quantitative methodologies and 
data types, our results demonstrate the benefits that this approach provides for 
interdisciplinary conservation science.  
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Tables 
Table	1.	Themes arising from the qualitative discourse analysis and their corresponding 
quantitative spatial proxies. 

Theme Proxy 
Agriculture Distance to existing agricultural land (m)	
Fires Distance to fires (2007-2018) (m); 

Fire density (2007-2018) (per km2)	
Unauthorized mining Distance to unauthorized mining sites (m)	
Legal threats to protected areas	 Presence of PADDD proposals 
Land grabbing Proportion of non-allocated public land 
Ranching Head of cattle per km2 
Infrastructure development Distance to proposed railroads (m); 

Distance to proposed dams (m) 
Land tenure; settlements Presence of agricultural reform settlements 
	  



 
 

83 
 

Table	2. Table of variables and spatial proxies used in the models. “x” indicates that the variable was included in the model, 
while * indicates that it was excluded from the model due to correlation with another variable. 
	

Variable Justification Original data 
resolution or 
format 
(processing 
method, 
where 
applicable) 

Source LUC Model DA Model LUC & DA 
Model 

Refined LUC 
& DA Model 

Elevation (m) Used in LUC 
models; 
measure of 
suitability for 
alternative land 
uses 

1 arc-second Farr et al., 2007 x  x x 
Slope (˚) x  x x 
Aspect (˚) x  x  

Distance to 
nearest road 
(m) 

Used in LUC 
models; 
measure of 
accessibility 

Vector 
(Euclidean 
distance) 

“Open Street 
Map,” 2019 

x  x x 

Distance to 
nearest river 
(m) 

Used in LUC 
models; 
measure of 
accessibility 

Vector 
(Euclidean 
distance) 

DIVA-GIS, 2019 x  x  

Distance to 
nearest city 
(m) 

Used in LUC 
models; 
measure of 
accessibility 

Vector 
(Euclidean 
distance) 

IBGE, 2010 x 
 

 x x 

Population 
density (per 
km2) 

Used in LUC 
models; 
measure of 

Vector at 
municipality 
scale 

IBGE, 2010 x  x  
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pressure for 
land conversion 

Precipitation 
(mm) 

Used in LUC 
models; proxy 
for agricultural 
suitability 

0.05 arc 
degrees 

Funk et al., 
2015 

*  *  

Surface soil 
moisture 
(mm) 

Used in LUC 
models; proxy 
for agricultural 
suitability 

0.25 arc 
degrees, 
2016-2018 
average 

O’Neill et al., 
2016 

x  x x 

Crop 
suitability 
(metric 
integrating 
climate, 
topography, 
and soil 
properties) 

Used in LUC 
models; index 
of agricultural 
suitability 

30 arc-
second 

Zabel et al., 
2014 

x  x x 

Poverty rate Used in LUC 
models; 
wealthier land 
owners may 
deforest more 
(Pacheco, 2009) 

Vector at 
municipality 
scale 

IBGE, 2003 *  *  

Distance to 
mining 
concessions 
(m) 

Used in LUC 
models; 
measure of 
accessibility 
and localized 
human land use 

Vector 
(Euclidean 
distance) 

ANM, 2019 x  x x 

Protection 
status 

Used in LUC 
models; 

Vector “Protected 
Planet: The 

x  x x 
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presence of 
protected areas 
affects land use 
trends  

World Database 
on Protected 
Areas (WDPA),” 
2019 

Proportion of 
neighboring 
cells with a 
different land 
cover type 

Used in LUC 
models; 
accounts for 
neighborhood 
effects and 
expansion of 
alternative land 
cover types 

30m Derived from 
land cover 
maps 

x  x x 

Distance to 
existing 
agricultural 
land (m) 

Discourse 
analysis: 
proximity to 
agriculture 
increases 
probability of 
deforestation    

30m Kinnebrew et al. 
unpublished 
data 

 x x x 

Distance to 
fires (2007-
2018) (m) 

Discourse 
analysis: fire as 
part of land 
conversion 
process 

Vector 
(Euclidean 
distance) 

INPE, 2019  x x x 

Fire density 
(2007-2018) 
(per km2) 

Discourse 
analysis: fire as 
part of land 
conversion 
process 

Vector  INPE, 2019  x x x 

Distance to 
unauthorized 
mining sites 
(m) 

Discourse 
analysis: 
unauthorized 
mining as 

Vector 
(Euclidean 
distance) 

RAISG, n.d.   x x  
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contributor to 
forest 
conversion and 
part of the land 
conversion 
process 

Presence of 
PADDD 
proposals 

Discourse 
analysis: areas 
with proposed 
or implemented 
PADDD are at 
risk of 
deforestation  

Vector 
(Euclidean 
distance) 

Conservation 
International 
and World 
Wildlife Fund, 
2019 

 x x x 

Proportion of 
non-allocated 
public land 

Discourse 
analysis: lack of 
an officially 
designated 
owner or land 
use type 
incentivizes 
forest 
conversion 

Vector at 
municipality 
scale 

Imaflora and 
GeoLab, 2018 

 x x x 

Head of cattle 
per km2 

Discourse 
analysis: 
ranching as 
cause of 
deforestation 

Vector at 
municipality 
scale 

IBGE, 2017  * *  

Distance to 
proposed 
railroads (m) 

Discourse 
analysis: 
infrastructure 
development 
causes 
deforestation 

Vector 
(Euclidean 
distance) 

Ministério da 
Infraestrutura, 
2019 

 x x x 
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Distance to 
proposed 
dams (m) 

Discourse 
analysis: 
infrastructure 
development 
causes 
deforestation 

Vector 
(Euclidean 
distance) 

ANEE, n.d.   * *  

Presence of 
agricultural 
reform 
settlements 

Discourse 
analysis: secure 
land tenure as 
factor that 
reduces 
deforestation 

Vector INCRA, n.d.   x x x 
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Table	3. Landscape metrics for observed landscapes in 2008 and 2018, and projected landscapes in 2028 under the four 
different models. Standard deviations are in parentheses beneath mean values. 

Metric 

2008 2018 2028 

Observed Observed LUC model DA model 
LUC & DA 
model 

Refined LUC & 
DA model 

Mean patch area (ha) 
187.54 

(15310.33) 
134.32 

(12770.25) 
286.67 

(18402.11) 
166.44 

(14028.57) 
377.12 

(21129.24) 
375.57 

(21077.05) 
Number of patches 6696 9111 4151 7151 3156 3169 
Class area (ha) 1255766.43 1223813.04 1189969.76 1190247.12 1190188.47 1190180.10 

Mean of core area index 
1.17 

(5.24) 
1.77 

(6.79) 
4.26 

(11.22) 
1.65 

(6.78) 
5.04 

(12.12) 
4.95 

(12.15) 
Mean of core areas of all 
patches (ha) 

183.76 
(15031.31) 

131.19 
(12512.43) 

278.46 
(17918.71) 

162.45 
(13724.26) 

368.98 
(20710.56) 

367.47 
(20659.93) 

Core area as percentage of 
landscape 94.53 91.83 88.91 89.36 89.57 89.57 
Landscape division index 0.07 0.12 0.17 0.17 0.17 0.17 
Mean fractal dimension 
index  

1.03 
(0.05) 

1.04 
(0.05) 

1.04 
(0.05) 

1.03 
(0.05) 

1.04 
(0.05) 

1.04 
(0.05) 

Perimeter-area fractal 
dimension 1.49 1.45 1.38 1.46 1.35 1.35 

Mean perimeter:area ratio 
0.11 

(0.03) 
0.11 

(0.03) 
0.10 

(0.03) 
0.11 

(0.03) 
0.09  

(0.03) 
0.09  

(0.03) 
Percentage of landscape 
forested 96.47 94.02 91.53 91.55 91.55 91.55 
Total core area (ha) 1230444 1195300 1155876 1161696 1164510 1164509 
Total edge (m) 12419796 14149824 12746011 11148707 8751671 8735984 
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Figures	

	

Figure	1. Map of the study site. The Amazon Basin is outlined in black and Brazil 
highlighted in gray. Jamanxim National Forest is in dark gray, with the 20-kilometer buffer 
around it in lighter gray. 
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Figure	2. Map of land covers in a) 2008 and b) 2018 in Jamanxim National Forest and the 
20-kilometer buffer area.

a.  b. 
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Figure	3. a) Histogram of the percentage of correctly predicted pixels with agricultural 
conversions from 1000 simulations for each model. We calculated this value as the number 
of pixels where the simulation correctly predicted a transition from forest to agriculture 
over the total number of pixels that experienced a forest to agriculture conversion in the 
observed 2008 and 2018 land cover maps. b) Histogram of the percentage of incorrectly 
predicted pixels with agricultural conversions from the 1000 simulations for each model. 
We defined incorrectly predicted pixels as those where the simulation predicted a 
transition from forest to agriculture that did not actually occur. We again divided this value 
by the total number of pixels that experienced a conversion from forest to agriculture. c) 

a. 

b. 

c. 
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Histogram of the percentage of correctly predicted stable forest pixels from the 1000 
simulations for each model, where stable forest pixels are those that were classified as 
forest in both 2008 and 2018.  
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Figure	4. Maps comparing projected forest conversion to agriculture in 2028 using a) the 
LUC model, b) the DA model, c) the LUC & DA model, and d) the Refined LUC & DA model. 
Red represents agriculture observed in the 2008 land classifications, orange is 2018 
agriculture, and yellow represents projected agriculture in 2028 under the different 
models. 
 

a. b. 

c. d. 
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Conclusion 

In my dissertation, I explored methods for identifying and quantifying the drivers of change 
in complex social-ecological systems and determining the impacts of different factors on 
system outcomes. I integrated methods from econometrics, land system science, and 
qualitative conservation science to understand the impacts of different land management 
practices on wildfire probability in the forests of the western United States and California 
rangelands and the factors related to deforestation in an Amazonian protected area. The 
results of my research can help to inform management responses in each of the three 
social-ecological systems in which I worked, while the methodologies I developed or 
refined can be broadly applied in the study of complex social-ecological systems.  

In my first chapter, I demonstrated that federally-owned forests in the western United 
States had greater annual burn probabilities from 1989-2016 than privately-owned forests. 
I also demonstrated that the effect of federal forest ownership is greater than that of a one 
unit (1˚C, 1 mm, 1 cm, or 1 m/s, depending on the variable) increase in the majority of the 
climate variables assessed in most of the eleven western states. These findings have 
important management implications, and understanding the underlying mechanism 
driving the different fire probabilities on federal and private land will be important for 
crafting management responses. Notably, an increase in fire frequency on federal forest 
land relative to private forest land is not necessarily ecologically harmful, as decades of fire 
suppression reduced fire frequencies to well below their historic levels and restoring fire 
regimes to their pre-suppression characteristics may be a management goal in some 
contexts. However, the finding that federal management has a greater impact than a one 
unit increase in some of the climate variables projected to change with climate change 
emphasizes the importance of accounting for both climate change and forest management 
when projecting wildfire probability and creating management plans informed by these 
projections. 

My second chapter showed that livestock grazing reduced wildfire probability in some 
regions and vegetation types in California rangelands from 2001-2017. In two of the 
regions studied, wildfire probability decreased as grazing intensity increased in grasslands, 
shrub/scrublands, and forests. In the third region, livestock grazing increased wildfire 
probability at low levels of stocking intensity, while there was no significant effect at higher 
levels of stocking intensity. These region- and vegetation type- specific results can guide 
land managers seeking to reduce the probability of wildfire on private and public land in a 
given year. Importantly, our finding that livestock grazing reduced wildfire frequency in 
North Bay and Central Coast forests indicates that the effects of livestock grazing on 
wildfire may extend beyond the boundaries of the locations with direct grazing impacts. 
Future research to understand why the impact of grazing on wildfire is different in the 
Central Valley and Foothills region than in the other regions could further guide land 
management by illuminating the conditions under which grazing does not reduce wildfire 
probability. 
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In my final chapter, I found that land use change models that include variables that are 
commonly used in land use change models and variables identified through qualitative 
discourse analysis methods performed better than models based on just one of the 
previously mentioned types of variables. These integrated models better explained 
agricultural expansion in Jamanxim National Forest from 2008-2018 than the model using 
only traditional land use change model variables or the model derived entirely from 
discourse analysis. This chapter’s results quantify the relationships between deforestation 
probability and the explanatory variables and predict future deforestation hotspots in and 
around Jamanxim. The results can thus help to guide management responses to reduce 
forest conversion to agriculture within the protected area. The findings also suggest that 
discourses are important sources of information for understanding deforestation drivers 
but that management responses should not reflect discourses alone; combining knowledge 
derived from discourses around deforestation with land system science yields an improved 
understanding of the dynamics at play. Further research to assess whether this finding 
holds true for other protected areas or deforestation hotspots would help establish 
whether this pattern is specific to Jamanxim National Forest or generalizable to other 
contexts. 

The methods developed in this dissertation represent advances for the study of complex 
social-ecological systems. The combination of pre-regression matching, panel regression 
that accounts for time lags, and estimation of marginal effects can be used to compare the 
relative impacts of different drivers of change in other social-ecological systems. This type 
of inquiry can inform management by improving our understanding of the role of different 
causal factors in generating desired or undesired outcomes. The integration of qualitative 
discourse analysis with quantitative land use change modeling, including the translation of 
qualitative themes into quantitative and spatial proxy variables, provides a methodology 
for developing land use change models that account for multi-scalar discourses, thus 
recognizing the impact of discourses in shaping land use change policies and decisions, as 
well as their role as sources of information about land use dynamics. Both methodologies 
can be used in a variety of contexts and will hopefully assist further efforts to quantitatively 
operationalize the social-ecological systems framework. 

Further research can not only apply the methodological frameworks used and presented in 
this dissertation to other social-ecological systems, but can also advance the methods to 
improve our ability to disentangle causal relationships in complex systems. Methodological 
refinements could include integration of causal inference methods into the 
interdisciplinary land use change modeling framework presented in Chapter 3 to isolate 
the impacts of specific variables on forest loss, or methods to account for time lags in the 
discourse analysis, since there may be a delay between when a deforestation dynamic 
begins to occur and when it enters discourses at different spatial and administrative scales. 
Future work could also involve collaborations with government agencies, non-
governmental organizations, and other stakeholder groups to translate the results of my 
three dissertation chapters into management responses, where appropriate, since an 



 
 

104 
 

underlying goal of my research program is to inform sustainable management of social-
ecological systems.  
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Chapter 1 Appendix 

Table	S1. Full and matched datasets for the eleven states. 

State Full dataset (# points) Matched dataset (# points) 

 Private, 
unprotected 

Federally 
managed 

Private, 
unprotected 

Federally 
managed 

Arizona 2768 42194 1995 1995 

California 47365 69183 24267 24267 

Colorado 20733 58735 10691 10691 

Idaho 11629 61088 8662 8662 

Montana 19477 67227 13266 13266 

Nevada 1455 31907 1455 1455 

New Mexico 13563 38499 8465 8465 

Oregon 38106 68024 21564 21564 

Utah 10294 42848 7628 7628 

Washington 31408 45922 10426 10426 

Wyoming 5175 29288 2936 2936 
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Table	S2. Reduction in bias in the matched dataset, as measured by the percentage 
improvement in the standardized mean difference between the matched and full dataset. 
The data were matched across the two management categories: 1) federally managed and 
2) private and unprotected. For the matching, we used mean values for the first five years 
of the dataset for the climate variables, to reduce the effect of annual variation in climate. 
Negative values indicate that the matched dataset has reduced balance relative to the full 
dataset. All standardized mean differences in the matched dataset were < 0.25 for 
California, Idaho, New Mexico, Oregon, and Washington, indicating effective bias reduction 
(Schleicher et al. 2019). For Colorado and Montana, the maximum standardized mean 
differences were < 0.29, while the maximum values in Arizona, Utah, and Wyoming were all 
< 0.36. Nevada’s matches were less effective at reducing bias, particularly for the 
population density variables. Part 1 has Arizona, California, Colorado, Idaho, Montana, and 
Nevada; Part 2 has New Mexico, Oregon, Utah, Washington, and Wyoming. 

 

Table S2, Part 1 
Variable 

Arizona California Colorado Idaho Montana Nevada 

Longitude 84.4 99.2 87.2 94.2 91.8 67.4 

Latitude -1780.0 68.7 51.5 98.3 81.3 39.5 

Lightning strikes 31.3 96.2 97.2 92.3 58.2 31.5 

Elevation (1000 
m) 

79.1 99.3 94.8 99.0 96.5 36.9 

Distance to 
roads (km) 

95.4 97.2 95.7 93.0 95.2 32.6 

Slope (degrees) 88.7 89.4 97.3 99.6 84.4 21.2 

Aspect (degrees) 36.2 89.9 77.0 98.2 94.6 -108.1 

Population 
density, 1990 

86.6 92.9 93.8 71.2 75.8 2.3 

Population 
density, 2000 

88.4 94.2 94.0 79.2 74.3 2.4 

Population 
density, 2010 

89.5 93.9 92.7 77.9 74.7 0.8 

Maximum wind 
speed, winter 

22.0 97.6 -91.6 62.9 81.7 43.5 

Maximum wind 
speed, spring 

20.7 92.0 60.5 81.6 88.4 46.5 
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Maximum wind 
speed, summer 

97.4 80.6 63.2 95.8 84.2 42.0 

Maximum wind 
speed, fall 

-174.4     89.4 -11.1 46.0 

Total 
precipitation, 
winter 

88.1 98.0 94.8 99.8 95.9 35.2 

Total 
precipitation, 
spring 

86.4 89.5 90.4 96.7 97.6 -47.7 

Total 
precipitation, 
summer 

70.0 95.9 58.2 88.6 98.2 41.0 

Total 
precipitation, 
fall 

90.5 81.9 98.9 95.7 97.8 -99.2 

Average 
maximum 
temperature, 
winter 

80.8 98.2 95.7 92.3 97.4 17.4 

Average 
maximum 
temperature, 
spring 

87.4 98.8 96.0 98.9 95.6 7.8 

Average 
maximum 
temperature, 
summer 

84.2 98.5 93.8 98.2 95.2 75.1 

Average 
maximum 
temperature, fall 

81.3     95.4 95.2 65.0 

Average 
minimum 
temperature, 
winter 

76.2 98.3 93.6 97.4 96.8 -19.8 

Average 
minimum 
temperature, 
spring 

81.9 98.5 96.1 98.8 96.5 96.1 

Average 
minimum 

72.2 97.3 94.8 98.5 95.2 21.2 
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temperature, 
summer 

Average 
minimum 
temperature, fall 

57.4 97.0 94.2 98.0 97.0 -36.6 

Average PDSI, 
winter 

83.7 74.4 80.6 -2097.6 96.1 26.8 

Average PDSI, 
summer 

77.8 66.7 99.6 96.5 99.1 33.3 

Average PDSI, 
fall 

74.8 99.3 -81.6 85.5 95.8 30.3 

Average soil 
moisture, winter 

94.8 99.9 94.4 99.9 94.4 25.6 

Average soil 
moisture, spring 

95.9 99.8 94.7 98.4 92.4 2.0 

Average soil 
moisture, 
summer 

98.6 98.4 99.7 96.0 93.7 -3790.4 

Average soil 
moisture, fall 

94.4 99.3 99.7 97.0 95.5 22.1 
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Table S2, Part 2 
Variable New 

Mexico Oregon Utah Washington Wyoming 

Longitude 98.9 94.7 76.5 99.8 97.8 

Latitude 96.9 98.9 83.7 89.5 82.3 

Lightning 
strikes 

68.4 94.6 90.0 96.7 98.1 

Elevation (1000 
m) 

93.4 96.3 91.8 99.3 99.3 

Distance to 
roads (km) 

96.2 98.8 97.3 95.1 94.3 

Slope (degrees) 93.8 89.5 -1.0 98.8 93.8 

Aspect 
(degrees) 

81.4 92.8 86.8 71.7 82.4 

Population 
density, 1990 

77.0 96.2 93.0 86.0 73.1 

Population 
density, 2000 

78.6 97.0 93.4 84.6 76.5 

Population 
density, 2010 

78.2 96.9 93.8 85.8 73.7 

Maximum wind 
speed, winter 

96.0 98.4 84.3 87.9 96.8 

Maximum wind 
speed, spring 

96.0 98.7 74.5 89.8 98.1 

Maximum wind 
speed, summer 

99.3 94.2 59.8 91.2 98.4 

Maximum wind 
speed, fall 

99.3 95.6 83.8 61.2 96.1 

Total 
precipitation, 
winter 

95.0 97.9 88.0 -76.8 98.6 

Total 
precipitation, 
spring 

95.7 97.5 89.5 76.0 97.9 

Total 
precipitation, 
summer 

100.0 95.0 86.8 55.6 87.0 
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Total 
precipitation, 
fall 

94.4 97.3 85.8 60.3 97.1 

Average 
maximum 
temperature, 
winter 

-546.0 96.9 87.1 99.1 96.3 

Average 
maximum 
temperature, 
spring 

73.3 95.1 76.4 99.1 98.1 

Average 
maximum 
temperature, 
summer 

88.4 92.7 65.5 95.4 98.7 

Average 
maximum 
temperature, 
fall 

61.0 96.2 83.0 98.8 98.3 

Average 
minimum 
temperature, 
winter 

-107.0 97.3 92.4 98.9 96.8 

Average 
minimum 
temperature, 
spring 

78.6 96.5 94.3 99.8 98.1 

Average 
minimum 
temperature, 
summer 

83.0 96.3 99.5 98.5 98.1 

Average 
minimum 
temperature, 
fall 

35.8 96.8 98.2 99.8 97.3 

Average PDSI, 
winter 

95.6 90.9 87.4 95.8 97.8 

Average PDSI, 
summer 

86.8 97.2 79.0 6.2 92.6 

Average PDSI, 
fall 

54.7 73.2 87.1 86.7 96.5 
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Average soil 
moisture, 
winter 

97.5 98.8 89.7 96.6 99.5 

Average soil 
moisture, 
spring 

90.6 98.2 85.7 90.7 96.4 

Average soil 
moisture, 
summer 

93.6 97.9 78.3 87.5 98.1 

Average soil 
moisture, fall 

91.9 98.0 85.6 88.9 98.6 
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Table	S3. Comparison of mean values of the variables in the full, unmatched dataset and the matched data. F indicates federally managed 
points, while P indicates points in privately-owned, unprotected forests. The table is divided into several parts: Part 1 includes values for 
Arizona, California, and Colorado; Part 2 has Idaho, Montana, and Nevada; Part 3 has New Mexico, Oregon, and Utah; and Part 4 has 
Washington, and Wyoming. 

	

 Table S3, Part 1 

Variable Match 
status 

Arizona California Colorado 

F P F P F P 

Longitude Unmatched 510066.8 416622.6 -348596.0 -424869.3 842223.3 898058.8 

Matched 419148.1 433699.0 -399706.5 -400307.0 848758.2 841586.0 

Latitude Unmatched 3835280.0 3835605.4 4352337.0 4377648.6 4314256.2 4299124.1 

Matched 3830031.6 3823915.3 4413941.5 4421868.2 4318061.0 4325395.6 

Lightning 
strikes 

Unmatched 14772.3 15310.1 852.5 377.8 1656.2 1853.2 

Matched 15176.3 15545.7 539.7 521.8 1698.4 1703.9 

Elevation 
(1000 m) 

Unmatched 2.0 1.8 1.5 0.8 2.7 2.4 

Matched 1.8 1.8 1.1 1.1 2.5 2.5 

Distance to 
roads (km) 

Unmatched 0.9 0.6 1.4 0.4 1.2 0.5 

Matched 0.7 0.7 0.5 0.5 0.6 0.6 

Slope 
(degrees) 

Unmatched 11.8 9.2 18.9 15.7 15.9 12.8 

Matched 10.2 9.9 16.7 16.4 13.9 13.8 

Aspect 
(degrees) 

Unmatched 183.6 175.7 184.1 180.8 180.4 177.4 

Matched 175.0 180.0 180.2 180.5 179.8 180.5 

112 



 
 

113 
 

Population 
density, 
1990 

Unmatched 0.3 12.0 0.3 14.0 0.1 6.5 

Matched 1.6 3.2 0.6 1.5 0.3 0.7 

Population 
density, 
2000 

Unmatched 0.3 17.6 0.3 15.7 0.1 10.0 

Matched 2.1 4.1 0.7 1.6 0.5 1.1 

Population 
density, 
2010 

Unmatched 0.3 23.0 0.3 16.8 0.1 11.2 

Matched 2.7 5.1 0.6 1.6 0.6 1.4 

Maximum 
wind speed, 
winter 

Unmatched 343.1 345.5 345.5 326.7 365.0 361.8 

Matched 344.8 346.6 322.4 321.9 341.5 335.4 

Maximum 
wind speed, 
spring 

Unmatched 436.9 433.8 380.0 362.9 418.8 433.8 

Matched 432.6 435.1 353.6 352.2 410.3 404.4 

Maximum 
wind speed, 
summer 

Unmatched 378.2 385.3 349.1 341.9 357.1 367.4 

Matched 383.7 383.9 330.0 328.6 351.4 347.6 

Maximum 
wind speed, 
fall 

Unmatched 363.0 362.3 323.8 292.9 373.8 374.1 

Matched 360.6 362.4 293.2 292.7 359.4 353.9 

Total 
precipitation, 
winter 

Unmatched 119.7 99.4 309.3 341.8 101.6 75.2 

Matched 99.7 102.2 331.6 332.2 84.1 82.7 

Total 
precipitation, 
spring 

Unmatched 78.4 65.3 168.8 179.8 127.0 116.2 

Matched 64.0 65.7 179.0 180.2 118.3 117.2 

Unmatched 186.8 173.8 32.5 20.7 164.2 159.2 
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Total 
precipitation, 
summer 

Matched 173.1 177.0 27.5 28.0 156.0 153.9 

Total 
precipitation, 
fall 

Unmatched 149.5 127.8 233.5 242.8 148.0 123.4 

Matched 127.8 129.9 246.1 247.8 133.6 133.4 

Average 
maximum 
temperature, 
winter 

Unmatched 88.4 103.1 85.4 118.4 7.8 24.2 

Matched 106.2 103.4 101.8 101.2 15.1 15.8 

Average 
maximum 
temperature, 
spring 

Unmatched 173.6 191.9 145.2 181.3 96.3 121.3 

Matched 194.0 191.7 166.5 166.1 111.3 112.2 

Average 
maximum 
temperature, 
summer 

Unmatched 279.8 294.7 259.4 282.9 226.3 248.1 

Matched 296.5 294.1 277.7 277.3 240.9 242.2 

Average 
maximum 
temperature, 
fall 

Unmatched 189.8 204.0 177.4 207.3 120.6 139.8 

Matched 206.5 203.9 194.6 193.8 132.4 133.0 

Average 
minimum 
temperature, 
winter 

Unmatched -58.6 -47.1 -33.6 0.4 -143.6 -129.9 

Matched -43.7 -46.4 -18.7 -19.2 -138.1 -137.2 

Average 
minimum 

Unmatched 3.4 13.3 0.2 34.4 -58.3 -39.1 

Matched 16.5 14.7 16.0 15.5 -47.4 -46.6 
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temperature, 
spring 

Average 
minimum 
temperature, 
summer 

Unmatched 109.3 117.5 83.0 104.6 53.2 69.2 

Matched 121.2 119.0 92.3 91.7 61.5 62.4 

Average 
minimum 
temperature, 
fall 

Unmatched 31.2 36.1 31.3 57.9 -31.1 -20.4 

Matched 39.9 37.8 41.3 40.5 -25.5 -24.9 

Average 
PDSI, winter 

Unmatched 217.1 197.9 27.7 19.2 313.9 301.4 

Matched 205.8 208.9 12.0 9.8 323.4 325.8 

Average 
PDSI, spring 

Unmatched 119.6 87.7 -53.3 -53.3 264.7 266.5 

Matched 93.7 100.0 -62.1 -63.7 280.9 281.4 

Average 
PDSI, 
summer 

Unmatched 137.3 115.4 -100.2 -98.2 226.1 232.4 

Matched 120.9 125.7 -104.9 -105.6 241.7 241.7 

Average 
PDSI, fall 

Unmatched 171.7 150.0 -98.4 -106.0 218.7 219.5 

Matched 154.8 160.2 -105.3 -105.2 228.9 230.4 

Average soil 
moisture, 
winter 

Unmatched 279.7 203.2 1704.0 2246.6 290.1 222.9 

Matched 205.8 209.8 1995.6 1995.3 256.4 260.2 

Unmatched 156.4 98.2 1576.6 1995.0 478.9 404.2 
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Table S3, Part  2 

Average soil 
moisture, 
spring 

Matched 100.7 103.1 1784.0 1784.9 469.0 473.0 

Average soil 
moisture, 
summer 

Unmatched 71.8 52.1 612.0 816.9 237.1 160.9 

Matched 54.7 54.4 696.7 693.5 192.3 192.1 

Average soil 
moisture, fall 

Unmatched 81.4 58.9 656.0 836.8 209.5 144.2 

Matched 61.5 60.3 749.9 751.1 171.0 171.2 

Variable Match 
status 

Idaho Montana Nevada 

F P F P F P 

Longitude Unmatched 194164.2 137993.7 364775.7 499337.0 72412.1 22462.1 

Matched 147070.1 150353.4 473985.8 462920.1 38753.5 22462.1 

Latitude Unmatched 5032138.9 5139938.2 5201978.6 5189368.3 4323902.1 4449491.2 

Matched 5116066.8 5114223.6 5192093.6 5194446.9 4373491.2 4449491.2 

Lightning 
strikes 

Unmatched 938.9 493.1 764.5 815.7 9837.1 4445.4 

Matched 520.5 554.6 831.6 810.2 8139.5 4445.4 

Elevation 
(1000 m) 

Unmatched 1.8 1.2 1.8 1.3 2.2 2.0 

Matched 1.3 1.3 1.4 1.4 2.2 2.0 

Distance to 
roads (km) 

Unmatched 2.0 0.4 2.1 0.6 1.3 0.8 

Matched 0.6 0.4 0.7 0.6 1.1 0.8 

Unmatched 8.0 3.3 2.8 1.4 16.6 14.9 
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Slope 
(degrees) 

Matched 4.1 4.1 2.0 1.8 16.2 14.9 

Aspect 
(degrees) 

Unmatched 149.3 77.6 89.2 114.1 181.5 180.2 

Matched 90.2 91.5 105.5 106.8 183.0 180.2 

Population 
density, 
1990 

Unmatched 0.2 4.2 0.1 2.6 0.0 6.1 

Matched 1.0 2.2 0.5 1.1 0.2 6.1 

Population 
density, 
2000 

Unmatched 0.2 5.4 0.1 3.2 0.0 7.0 

Matched 1.2 2.3 0.6 1.3 0.2 7.0 

Population 
density, 
2010 

Unmatched 0.2 6.3 0.2 3.6 0.0 13.6 

Matched 1.3 2.6 0.6 1.5 0.1 13.6 

Maximum 
wind speed, 
winter 

Unmatched 261.2 258.5 384.6 394.7 414.2 382.0 

Matched 263.2 262.2 388.2 386.3 400.2 382.0 

Maximum 
wind speed, 
spring 

Unmatched 317.1 321.1 417.2 437.1 459.5 425.8 

Matched 323.8 323.1 431.4 429.1 443.9 425.8 

Maximum 
wind speed, 
summer 

Unmatched 290.5 280.7 357.5 367.9 425.1 391.4 

Matched 284.4 283.9 364.8 363.2 411.0 391.4 

Maximum 
wind speed, 
fall 

Unmatched 291.7 283.1 395.9 394.8 412.9 383.3 

Matched 287.4 286.5 391.4 390.2 399.3 383.3 

Total 
precipitation, 
winter 

Unmatched 125.0 162.5 88.1 59.9 63.5 73.4 

Matched 157.3 157.2 64.9 66.0 67.0 73.4 
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Total 
precipitation, 
spring 

Unmatched 146.1 173.5 135.4 115.8 87.5 88.4 

Matched 169.5 170.4 118.3 118.8 89.7 88.4 

Total 
precipitation, 
summer 

Unmatched 101.6 97.2 128.4 119.9 77.9 58.9 

Matched 97.2 97.7 121.0 121.2 70.1 58.9 

Total 
precipitation, 
fall 

Unmatched 144.5 179.3 134.2 101.8 87.4 87.9 

Matched 175.1 176.6 106.9 107.6 89.0 87.9 

Average 
maximum 
temperature, 
winter 

Unmatched 0.8 7.1 0.3 15.4 45.5 38.9 

Matched 6.0 5.5 12.5 12.1 44.3 38.9 

Average 
maximum 
temperature, 
spring 

Unmatched 103.3 127.1 100.4 133.2 135.4 134.0 

Matched 123.6 123.4 128.0 126.5 135.2 134.0 

Average 
maximum 
temperature, 
summer 

Unmatched 236.2 256.0 230.6 263.3 270.4 273.0 

Matched 253.8 253.4 257.9 256.4 272.4 273.0 

Average 
maximum 
temperature, 
fall 

Unmatched 118.4 130.1 101.8 124.6 160.3 163.0 

Matched 129.2 128.6 120.7 119.6 162.1 163.0 

Average 
minimum 
temperature, 
winter 

Unmatched -126.1 -88.8 -115.5 -103.7 -94.9 -97.9 

Matched -93.5 -94.5 -105.9 -105.5 -94.3 -97.9 
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Average 
minimum 
temperature, 
spring 

Unmatched -45.5 -10.4 -39.8 -14.7 -23.6 -23.0 

Matched -14.9 -15.3 -19.0 -19.9 -23.0 -23.0 

Average 
minimum 
temperature, 
summer 

Unmatched 35.8 66.5 46.6 79.2 81.1 77.7 

Matched 63.5 63.1 73.1 71.6 80.4 77.7 

Average 
minimum 
temperature, 
fall 

Unmatched -36.6 -8.9 -35.3 -18.1 -4.4 -5.4 

Matched -11.7 -12.2 -21.3 -21.8 -4.1 -5.4 

Average 
PDSI, winter 

Unmatched 24.1 24.2 -0.9 -30.8 158.4 131.4 

Matched 27.9 26.8 -25.7 -24.5 151.2 131.4 

Average 
PDSI, spring 

Unmatched -37.7 -24.8 -74.4 -115.6 66.7 40.9 

Matched -24.0 -26.2 -111.1 -109.9 60.6 40.9 

Average 
PDSI, 
summer 

Unmatched -98.6 -77.6 -171.7 -195.3 13.2 -42.6 

Matched -80.0 -80.8 -192.9 -192.7 -5.4 -42.6 

Average 
PDSI, fall 

Unmatched -32.0 -20.0 -44.2 -70.7 25.9 -36.5 

Matched -20.5 -22.2 -63.6 -62.5 7.0 -36.5 

Average soil 
moisture, 
winter 

Unmatched 675.6 1239.6 406.9 252.2 178.5 207.7 

Matched 1143.6 1143.1 269.5 278.1 186.0 207.7 
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Table S3, Part 3 
Variable Match 

status 
New Mexico Oregon Utah 

F P F P F P 

Longitude Unmatched 845446.
1 

946463.6 -
331733.1 

-
406624.5 

461397.9 450184.6 

Matched 888468.4 887347.6 -
370523.6 

-
366534.4 

451037.4 448397.4 

Latitude Unmatched 3849814.
8 

3933635.
2 

4912184.
3 

4944304.
1 

4325452.
8 

4417602.
2 

Matched 3895422.
6 

3898050.
7 

4916699.
3 

4916337.
7 

4400452.
3 

4385446.
8 

Lightning 
strikes 

Unmatched 10651.0 9940.1 447.4 262.2 3888.2 2388.8 

Matched 10063.6 10288.6 396.6 386.6 2663.4 2814.0 

Elevation 
(1000 m) 

Unmatched 2.4 2.3 1.2 0.7 2.3 2.2 

Matched 2.3 2.3 0.9 0.9 2.3 2.3 

Average soil 
moisture, 
spring 

Unmatched 1214.1 1887.0 706.0 467.9 185.4 198.3 

Matched 1767.8 1778.8 508.5 526.7 185.6 198.3 

Average soil 
moisture, 
summer 

Unmatched 620.9 897.8 313.8 189.7 66.2 66.2 

Matched 844.1 855.2 205.9 213.8 64.7 66.2 

Average soil 
moisture, fall 

Unmatched 497.9 760.0 338.0 187.1 70.9 79.9 

Matched 715.1 722.9 204.8 211.5 72.9 79.9 
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Distance to 
roads (km) 

Unmatched 1.2 0.6 0.6 0.3 0.9 0.5 

Matched 0.6 0.6 0.3 0.3 0.5 0.5 

Slope 
(degrees) 

Unmatched 13.6 10.7 7.1 5.1 16.2 15.8 

Matched 11.0 10.8 6.0 6.2 16.3 15.8 

Aspect 
(degrees) 

Unmatched 179.5 176.6 175.2 157.6 181.3 177.3 

Matched 179.6 179.1 172.1 173.4 178.2 177.7 

Population 
density, 1990 

Unmatched 0.3 2.9 0.1 7.5 0.0 2.3 

Matched 0.8 1.4 0.2 0.5 0.1 0.2 

Population 
density, 2000 

Unmatched 0.4 4.0 0.1 8.6 0.0 3.8 

Matched 1.0 1.8 0.3 0.5 0.1 0.3 

Population 
density, 2010 

Unmatched 0.4 4.3 0.1 9.3 0.0 4.6 

Matched 1.0 1.8 0.3 0.6 0.2 0.4 

Maximum 
wind speed, 
winter 

Unmatched 436.4 448.6 350.9 359.4 338.4 332.9 

Matched 436.8 436.3 354.4 354.3 336.8 337.7 

Maximum 
wind speed, 
spring 

Unmatched 521.4 527.4 357.0 353.9 415.7 408.9 

Matched 518.1 517.8 356.0 356.1 411.2 413.0 

Maximum 
wind speed, 
summer 

Unmatched 395.4 414.7 341.2 346.4 363.3 360.8 

Matched 398.2 398.3 343.9 343.6 361.6 362.6 

Maximum 
wind speed, 
fall 

Unmatched 430.1 444.8 339.9 339.0 367.5 362.3 

Matched 432.1 432.0 337.8 337.7 365.5 366.3 
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Total 
precipitation, 
winter 

Unmatched 95.9 77.6 368.0 440.0 69.5 75.6 

Matched 88.6 89.5 396.3 394.8 75.5 74.8 

Total 
precipitation, 
spring 

Unmatched 79.6 92.2 242.3 296.2 98.3 109.9 

Matched 86.1 86.6 264.6 263.3 106.2 104.9 

Total 
precipitation, 
summer 

Unmatched 223.7 216.3 77.1 81.9 121.0 108.8 

Matched 213.1 213.1 77.1 76.8 113.9 115.5 

Total 
precipitation, 
fall 

Unmatched 139.6 127.0 316.4 378.3 102.6 113.1 

Matched 131.9 132.6 340.6 338.9 110.8 109.3 

Average 
maximum 
temperature, 
winter 

Unmatched 67.5 67.4 49.6 75.1 20.2 9.1 

Matched 64.5 63.8 65.6 64.8 10.2 11.6 

Average 
maximum 
temperature, 
spring 

Unmatched 157.8 160.8 123.0 144.8 123.2 120.2 

Matched 157.9 157.1 138.7 137.7 118.1 118.8 

Average 
maximum 
temperature, 
summer 

Unmatched 259.6 265.1 237.4 244.7 256.4 256.2 

Matched 262.6 262.0 245.3 244.8 253.8 253.9 

Average 
maximum 
temperature, 
fall 

Unmatched 171.5 173.0 147.9 164.1 143.7 139.8 

Matched 170.8 170.3 159.8 159.2 138.7 139.3 
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Average 
minimum 
temperature, 
winter 

Unmatched -94.2 -94.8 -48.5 -16.9 -110.6 -120.4 

Matched -96.2 -97.6 -30.3 -31.1 -119.3 -118.6 

Average 
minimum 
temperature, 
spring 

Unmatched -21.1 -14.9 -9.6 17.9 -26.4 -27.6 

Matched -18.6 -19.9 6.8 5.9 -28.8 -28.8 

Average 
minimum 
temperature, 
summer 

Unmatched 83.0 90.7 55.6 76.4 84.2 80.3 

Matched 86.5 85.2 68.1 67.4 80.4 80.3 

Average 
minimum 
temperature, 
fall 

Unmatched 2.9 4.8 8.6 33.5 -3.7 -9.3 

Matched 3.1 1.9 22.8 22.0 -8.5 -8.4 

Average 
PDSI, winter 

Unmatched 267.3 254.3 34.9 21.7 231.3 256.4 

Matched 261.9 261.3 37.6 38.8 254.9 251.7 

Average 
PDSI, spring 

Unmatched 214.2 220.8 -8.8 -16.8 168.3 176.0 

Matched 214.0 213.4 -3.7 -3.1 180.5 179.8 

Average 
PDSI, 
summer 

Unmatched 278.6 286.7 -55.8 -39.6 161.3 142.4 

Matched 282.4 281.4 -40.3 -40.7 150.9 154.9 

Average 
PDSI, fall 

Unmatched 283.6 285.8 -45.4 -47.4 148.3 128.4 

Matched 284.7 283.7 -40.8 -41.3 137.3 139.8 
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Average soil 
moisture, 
winter 

Unmatched 230.0 156.3 1625.9 2031.3 217.0 286.0 

Matched 187.5 189.4 1798.9 1793.9 271.4 264.3 

Average soil 
moisture, 
spring 

Unmatched 226.1 182.9 1673.9 1989.0 363.2 517.8 

Matched 212.9 217.0 1796.8 1791.2 491.4 469.3 

Average soil 
moisture, 
summer 

Unmatched 103.4 80.5 801.9 1024.7 152.0 200.8 

Matched 93.7 95.1 903.5 898.7 193.0 182.4 

Average soil 
moisture, fall 

Unmatched 104.0 77.2 904.4 1159.3 117.6 162.0 

Matched 92.8 95.0 1011.7 1006.6 153.2 146.9 

 

Table S3, Part 4 

Variable Match 
status 

Washington Wyoming 

F P F P 

Longitude Unmatched -241319.2 -303287.0 652082.6 886372.7 

Matched -240891.3 -241037.3 835909.9 830683.4 

Latitude Unmatched 5331897.4 5298518.2 4820865.9 4809238.3 

Matched 5319507.9 5316011.3 4781297.0 4779241.2 

Lightning 
strikes 

Unmatched 54.6 40.4 1703.4 1396.5 

Matched 57.3 56.9 1544.9 1539.2 

Elevation 
(1000 m) 

Unmatched 1.1 0.4 2.5 1.8 

Matched 0.7 0.7 2.1 2.1 
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Distance to 
roads (km) 

Unmatched 1.6 0.3 3.4 0.5 

Matched 0.4 0.4 0.8 0.6 

Slope (degrees) Unmatched 20.9 11.8 14.6 11.5 

Matched 15.2 15.3 12.9 12.7 

Aspect 
(degrees) 

Unmatched 4.1 2.4 183.4 176.5 

Matched 4.4 4.9 179.8 181.1 

Population 
density, 1990 

Unmatched 0.6 16.5 0.0 1.2 

Matched 2.3 4.5 0.2 0.5 

Population 
density, 2000 

Unmatched 0.7 21.7 0.1 1.6 

Matched 3.0 6.2 0.3 0.6 

Population 
density, 2010 

Unmatched 0.8 28.1 0.1 1.8 

Matched 3.4 7.3 0.4 0.8 

Maximum wind 
speed, winter 

Unmatched 279.7 297.5 421.7 482.5 

Matched 288.2 286.1 476.4 474.5 

Maximum wind 
speed, spring 

Unmatched 337.4 329.3 442.1 509.9 

Matched 340.3 339.5 497.2 495.9 

Maximum wind 
speed, summer 

Unmatched 326.6 316.6 391.1 419.2 

Matched 323.4 324.3 414.7 414.2 

Maximum wind 
speed, fall 

Unmatched 301.5 305.2 425.7 451.3 

Matched 306.7 305.2 451.4 450.4 

Unmatched 443.2 448.2 94.4 44.6 
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Total 
precipitation, 
winter 

Matched 421.9 413.1 51.2 51.9 

Total 
precipitation, 
spring 

Unmatched 338.1 365.9 122.5 108.3 

Matched 340.4 333.7 107.8 108.1 

Total 
precipitation, 
summer 

Unmatched 106.2 103.8 121.4 117.3 

Matched 100.9 99.9 114.0 113.4 

Total 
precipitation, 
fall 

Unmatched 404.1 422.9 110.7 82.7 

Matched 391.9 384.4 84.4 85.2 

Average 
maximum 
temperature, 
winter 

Unmatched 11.8 53.0 -20.5 7.4 

Matched 30.8 30.4 -0.7 -1.8 

Average 
maximum 
temperature, 
spring 

Unmatched 97.1 135.9 75.4 122.3 

Matched 124.0 124.4 107.9 107.0 

Average 
maximum 
temperature, 
summer 

Unmatched 207.7 231.2 208.9 261.1 

Matched 228.8 229.9 245.6 244.9 

Average 
maximum 
temperature, 
fall 

Unmatched 110.9 142.6 92.4 128.5 

Matched 130.0 130.4 118.4 117.8 
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Average 
minimum 
temperature, 
winter 

Unmatched -59.4 -20.4 -152.7 -119.2 

Matched -40.9 -41.3 -125.2 -126.3 

Average 
minimum 
temperature, 
spring 

Unmatched -6.9 25.9 -69.8 -25.6 

Matched 12.6 12.6 -37.1 -38.0 

Average 
minimum 
temperature, 
summer 

Unmatched 65.8 88.1 32.3 85.4 

Matched 80.4 80.8 71.9 70.9 

Average 
minimum 
temperature, 
fall 

Unmatched 9.6 36.8 -52.4 -20.7 

Matched 22.8 22.7 -27.1 -28.0 

Average PDSI, 
winter 

Unmatched -57.5 -80.6 87.7 122.6 

Matched -55.7 -54.8 131.7 130.9 

Average PDSI, 
spring 

Unmatched -50.5 -63.1 30.2 48.5 

Matched -44.1 -43.7 46.5 45.6 

Average PDSI, 
summer 

Unmatched -54.7 -53.7 -83.8 -63.8 

Matched -50.7 -49.7 -70.8 -72.2 

Average PDSI, 
fall 

Unmatched -65.0 -80.4 -76.5 -46.7 

Matched -68.9 -66.8 -53.4 -54.4 
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Average soil 
moisture, 
winter 

Unmatched 1370.9 1692.1 194.6 113.5 

Matched 1405.7 1394.8 114.3 114.7 

Average soil 
moisture, 
spring 

Unmatched 1572.7 1827.3 532.0 248.1 

Matched 1641.1 1617.3 271.8 282.1 

Average soil 
moisture, 
summer 

Unmatched 817.3 955.3 293.6 108.8 

Matched 823.0 805.7 122.4 126.0 

Average soil 
moisture, fall 

Unmatched 978.2 1138.7 169.8 85.3 

Matched 959.5 941.7 92.0 93.2 
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Table	S4. Panel regression model for each state. Management, Year, BPYone, BPYtwo, BPYfive, ui, 
and eit are explained in the Methods section. Interaction is the interaction between Year and 
Management. Controls represents a list of covariates that influence the probability of burning. Units 
for the control variables are as follows: elevation (km), slope and aspect (°), distance to roads (km), 
soil moisture (mm) and precipitation (cm), minimum and maximum temperatures (℃), wind speed 
(m/s).  

State Model Controls 

Arizona BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	
B5*BPYfive	*	+	B6	‐21*Controls	+	
B22*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads  
 Population density (1990) 
 Average PDSI: summer 
 Average soil moisture: spring, 

fall 
 Maximum wind speed: 

spring, summer, fall 
 Total precipitation: winter, 

spring, summer, fall 
 Previous year precipitation 

California BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	
B5*BPYfive	+	B6‐20*Controls	+	
B21*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, fall 
 Average maximum 

temperature: summer 
 Maximum wind speed: 

winter, fall  
 Total precipitation: winter, 

spring, summer, fall 
 Previous year precipitation 

Colorado BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYfive	+	B4‐19*Controls	+	
B20*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: spring  
 Average soil moisture: 

winter, summer, fall 
 Average minimum 

temperature: winter 
 Maximum wind speed: fall 
 Total precipitation: winter, 

spring, summer, fall 
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 Previous year precipitation 

Idaho BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	
B5*BPYfive	+	B6‐20*Controls	+	
B21*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, fall 
 Average maximum 

temperature: winter, 
summer, fall 

 Maximum wind speed: fall 
 Total precipitation: winter, 

spring, summer 
 Previous year precipitation 

Montana BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	
B5*BPYfive	+	B6‐19*Controls	+	
B20*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, 

summer 
 Average maximum 

temperature: winter, fall 
 Maximum wind speed: fall 
 Total precipitation: spring, 

summer, fall 
 Previous year precipitation 

Nevada BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYtwo	+	B4*BPYfive	+	B5‐
24*Controls	+	B25*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, 

summer 
 Average soil moisture: 

winter, summer, fall 
 Average maximum 

temperature: winter, 
summer, fall 

 Maximum wind speed: 
summer, fall 

 Total precipitation: winter, 
spring, summer, fall 

 Previous year precipitation 

New Mexico BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	

 Elevation, slope, aspect 
 Distance to roads 
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B5*BPYfive	+	B6‐21*Controls	+	
B22*Interaction	+	ui	+	eit 

 Population density (1990) 
 Average PDSI: summer 
 Average soil moisture: 

winter, summer 
 Maximum wind speed: 

spring, summer, fall 
 Total precipitation: winter, 

spring, summer, fall 
 Previous year precipitation 

Oregon BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	
B5*BPYfive	+	B6‐21*Controls	+	
B22*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, 

summer 
 Average maximum 

temperature: spring, 
summer, fall 

 Maximum wind speed: 
winter, spring, summer, fall 

 Total precipitation: summer, 
fall 

Utah BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYone	+	B4*BPYtwo	+	
B5*BPYfive	+	B6‐20*Controls	+	
B21*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: summer 
 Average soil moisture: 

winter, fall 
 Average minimum 

temperature: fall 
 Average maximum 

temperature: winter 
 Maximum wind speed: 

summer, fall 
 Total precipitation: winter, 

spring, summer, fall 

Washington BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3*BPYfive	+	B4‐16*Controls	+	
B17*Interaction	+	ui	+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, 

summer 
 Average maximum 
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temperature: summer, fall 
 Maximum wind speed: 

summer, fall 
 Total precipitation: summer, 

fall 

Wyoming BNit	=	B0	+	B1*Management	+	B2*Year	
+	B3‐19*Controls	+	B20*Interaction	+	ui	
+	eit 

 Elevation, slope, aspect 
 Distance to roads 
 Population density (1990) 
 Average PDSI: winter, 

summer 
 Average soil moisture: 

winter, fall 
 Average minimum 

temperature: fall 
 Average maximum 

temperature: winter 
 Maximum wind speed: fall 
 Total precipitation: winter, 

spring, summer, fall 
 Previous year precipitation 
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Table	S5. Logistic regression results for model including points for all 11 states, where the 
response variable is whether or not a given point burned in either a wildfire or a wildland fire use 
in a given year.  

 Variable Estimate Standard 
error 

z value p-value 

Intercept -164.558 26.465 -6.218 < 0.001 

Federally managed -61.943 33.146 -1.869 0.062 

Elevation (km) -0.030 0.023 -1.261 0.207 

Slope 0.022 0.001 29.810 < 0.001 

Aspect 4.40*10-4 0.000 7.081 < 0.001 

Distance to roads (km) 0.175 0.006 28.123 < 0.001 

Population density (1990) -0.014 0.002 -6.178 < 0.001 

Average PDSI, summer -0.002 0.000 -59.207 < 0.001 

Average PDSI, winter  0.001 0.000 19.144 < 0.001 

Average maximum temperature, 
fall 

-0.004 0.000 -9.039 < 0.001 

Average maximum temperature, 
summer 

0.012 0.000 32.935 < 0.001 

Average maximum wind speed, 
summer 

0.002 0.000 11.917 < 0.001 

Total precipitation, fall -0.002 0.000 -26.807 < 0.001 

Total precipitation, summer -0.010 0.000 -38.433 < 0.001 

Year 0.078 0.013 5.893 < 0.001 
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Burned in previous year -2.845 0.243 -11.712 < 0.001 

Burned in previous 2 years -1.364 0.141 -9.692 < 0.001 

Burned in previous 5 years -0.746 0.103 -7.208 < 0.001 

California 100.622 26.873 3.744 < 0.001 

Colorado -21.278 34.262 -0.621 0.535 

Idaho 35.693 29.651 1.204 0.229 

Montana 80.476 27.583 2.918 0.004 

Nevada 102.705 33.320 3.082 0.002 

New Mexico -84.858 32.187 -2.6367 0.008 

Oregon 34.701 28.261 1.228 0.219 

Utah 71.194 29.399 2.422 0.015 

Washington -81.929 29.598 -2.768 0.006 

Wyoming -102.794 37.406 -2.748 0.006 

Federally managed:Year 0.031 0.017 1.888 0.059 

Federally managed:California 26.029 33.639 0.774 0.439 

Federally managed:Colorado 145.694 41.509 3.510 < 0.001 

Federally managed:Idaho 97.760 36.750 2.660 0.008 

Federally managed:Montana 78.993 34.565 2.285 0.022 

Federally managed:Nevada 73.810 43.309 1.704 0.088 
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Federally managed:New Mexico 265.135 38.992 6.800 < 0.001 

Federally managed:Oregon 116.408 35.050 3.321 < 0.001 

Federally managed:Utah 35.541 37.274 0.954 0.340 

Federally managed:Washington 60.213 37.704 1.597 0.110 

Federally managed:Wyoming 223.098 45.117 4.945 < 0.001 

Year:California -0.050 0.013 -3.737 < 0.001 

Year:Colorado 0.010 0.017 0.592 0.554 

Year:Idaho -0.018 0.015 -1.206 0.228 

Year:Montana -0.040 0.014 -2.895 0.004 

Year:Nevada -0.051 0.017 -3.093 0.002 

Year:New Mexico 0.042 0.016 2.638 0.008 

Year:Oregon -0.017 0.014 -1.237 0.216 

Year:Utah -0.0358 0.015 -2.443 0.015 

Year:Washington 0.041 0.015 2.784 0.005 

Year:Wyoming 0.051 0.019 2.740 0.006 

Federally 
managed:Year:California 

-0.013 0.017 -0.772 0.440 

Federally 
managed:Year:Colorado 

-0.072 0.021 -3.504 < 0.001 

Federally managed:Year:Idaho -0.049 0.018 -2.657 0.008 
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Federally 
managed:Year:Montana 

-0.039 0.017 -2.290 0.022 

Federally managed:Year:Nevada -0.037 0.022 -1.719 0.086 

Federally managed:Year:New 
Mexico 

-0.132 0.019 -6.799 < 0.001 

Federally managed:Year:Oregon -0.058 0.017 -3.311 0.001 

Federally managed:Year:Utah -0.018 0.019 -0.962 0.336 

Federally 
managed:Year:Washington 

-0.030 0.019 -1.610 0.107 

Federally 
managed:Year:Wyoming 

-0.111 0.022 -4.948 < 0.001 
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Figure	S1. Predicted probabilities of burning in a wildfire or wildland fire use, calculated using the 
all-state model with state as a fixed effect. The red lines indicate the predicted probability of 
burning for federally managed forests, while the blue lines represent private, unprotected forests. 
95% confidence intervals are displayed. 
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Table	S6. Logistic regression model for all states, where the response variable is whether or not a 
given point burned in a wildland fire use in a given year. The high p-values and standard errors for 
many of the variables reflect the rarity of wildland fire use events in the dataset (there were 114 
points that burned in Wildland Fire Use events across all years in the matched dataset, contrasted 
with 22,441 points that burned in Wildfires). 

 Variable Estimat
e 

Standard 
error 

z value p-value 

Intercept -
106.793 

652201 0.000 1.000 

Federally	managed	 40.041 652201 0.000 1.000 

Elevation (km) 1.755 0.418 4.194 < 0.001 

Slope -0.036 0.012 -2.898 0.004 

Aspect -0.003 0.001 -3.104 0.002 

Distance to roads (km) 0.336 0.027 12.407 < 0.001 

Population density (1990) -0.276 0.265 -1.043 0.297 

Average PDSI, summer -0.001 0.001 -1.274 0.203 

Average PDSI, winter  0.002 0.001 2.972 0.003 

Average maximum temperature, 
fall 

0.024 0.007 3.282 0.001 

Average maximum temperature, 
summer 

-0.023 0.007 -3.184 0.001 

Average maximum wind speed, 
summer 

-0.004 0.002 -1.884 0.060 
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Total precipitation, fall 0.003 0.002 1.880 0.060 

Total precipitation, summer -0.018 0.003 -6.764 < 0.001 

Year 0.041 326 0.000 1.000 

Burned in previous year -16.979 3017 -0.006 0.996 

Burned in previous 2 years -17.193 2996 -0.006 0.995 

Burned in previous 5 years -17.172 3423 -0.005 0.996 

California 96.221 674957 0.000 1.000 

Colorado 120.785 694253 0.000 1.000 

Idaho -3.382 652201 0.000 1.000 

Montana 129.242 684517 0.000 1.000 

Nevada 95.415 941398 0.000 1.000 

New Mexico -3.567 652201 0.000 1.000 

Oregon 101.108 678871 0.000 1.000 

Utah 98.2461 718488 0.000 1.000 

Washington 143.890 704385 0.000 1.000 

Wyoming 139.259 783384 0.000 1.000 

Federally managed:Year -0.011 326 0.000 1.000 

Federally managed:California -37.079 674957 0.000 1.000 
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Federally managed:Colorado -69.469 694253 0.000 1.000 

Federally managed:Idaho -26.191 652201 0.000 1.000 

Federally managed:Montana -4.282 684517 0.000 1.000 

Federally managed:Nevada -
147.383 

941398 0.000 1.000 

Federally managed:New Mexico -14.214 652201 0.000 1.000 

Federally managed:Oregon -40.380 704379 0.000 1.000 

Federally managed:Utah -
144.014 

718488 0.000 1.000 

Federally managed:Washington -16.014 752273 0.000 1.000 

Federally managed:Wyoming -16.795 871996 0.000 1.000 

Year:California -0.0487 337 0.000 1.000 

Year:Colorado -0.061 347 0.000 1.000 

Year:Idaho 0.009 326 0.000 1.000 

Year:Montana -0.064 342 0.000 1.000 

Year:Nevada -0.048 470 0.000 1.000 

Year:New Mexico 0.010 326 0.000 1.000 

Year:Oregon -0.051 339 0.000 1.000 

Year:Utah -0.050 359 0.000 1.000 
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Year:Washington -0.072 352 0.000 1.000 

Year:Wyoming -0.070 391 0.000 1.000 

Federally 
managed:Year:California 

0.018 337 0.000 1.000 

Federally 
managed:Year:Colorado 

0.034 34 0.000 1.000 

Federally managed:Year:Idaho 0.006 326 0.000 1.000 

Federally 
managed:Year:Montana 

0.001 342 0.000 1.000 

Federally managed:Year:Nevada 0.073 470 0.000 1.000 

Federally managed:Year:New 
Mexico 

-0.001 326 0.000 1.000 

Federally managed:Year:Oregon 0.011 352 0.000 1.000 

Federally managed:Year:Utah 0.072 359 0.000 1.000 

Federally 
managed:Year:Washington 

-0.001 376 0.000 1.000 

Federally 
managed:Year:Wyoming 

-0.001 435 0.000 1.000 
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Table	S7. Logistic regression model for all states, using the matched dataset derived from 
the set of points that were forested in 1992, 2001, or 2016.  

Variable Estimate 
Standard 
error z value p-value 

Intercept -189.754 25.155 -7.54 < 0.001 
Federally	managed -65.275 29.892 -2.18 0.029 
Elevation (km) 0.035 0.023 1.53 0.126 
Slope 0.025 0.001 33.84 < 0.001 

Aspect 3.946*10-

4 0.000 6.46 < 0.001 

Distance to roads (km) 0.154 0.006 24.38 < 0.001 
Population density (1990) -0.014 0.002 -6.42 < 0.001 
Average PDSI, fall -0.247 0.004 -61.81 < 0.001 
Average PDSI, winter  0.031 0.003 9.14 < 0.001 
Average maximum temperature, fall -0.073 0.005 -15.85 < 0.001 
Average maximum temperature, 
summer 0.164 0.004 44.38 < 0.001 

Average maximum wind speed, 
summer 0.294 0.015 20.04 < 0.001 

Total precipitation, fall -0.014 0.001 -17.55 < 0.001 
Total precipitation, summer -0.084 0.003 -32.22 < 0.001 
Year 0.089 0.013 7.12 < 0.001 
Burned in previous year -2.718 0.220 -12.36 < 0.001 
Burned in previous 2 years -1.412 0.139 -10.19 < 0.001 
Burned in previous 5 years -0.800 0.105 -7.63 < 0.001 
California 122.815 25.584 4.8 < 0.001 
Colorado 60.333 31.768 1.9 0.058 
Idaho 45.494 28.554 1.59 0.111 
Montana 89.969 26.350 3.41 0.001 
Nevada 140.406 31.832 4.41 < 0.001 
New Mexico -28.937 30.797 -0.94 0.347 
Oregon 69.135 26.836 2.58 0.010 
Utah 106.847 27.898 3.83 < 0.001 
Washington -88.910 28.436 -3.13 0.002 
Wyoming -94.780 36.331 -2.61 0.009 
Federally managed:Year 0.033 0.015 2.22 0.027 
Federally managed:California 28.857 30.437 0.95 0.343 
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Federally managed:Colorado 129.980 37.326 3.48 < 0.001 
Federally managed:Idaho 104.645 33.949 3.08 0.002 
Federally managed:Montana 82.913 31.461 2.64 0.008 
Federally managed:Nevada 82.977 39.674 2.09 0.036 
Federally managed:New Mexico 262.320 35.835 7.32 < 0.001 
Federally managed:Oregon 107.982 31.783 3.4 0.001 
Federally managed:Utah 45.914 33.807 1.36 0.174 
Federally managed:Washington 97.207 34.710 2.8 0.005 
Federally managed:Wyoming 241.705 42.345 5.71 < 0.001 
Year:California -0.061 0.013 -4.78 < 0.001 
Year:Colorado -0.030 0.016 -1.92 0.054 
Year:Idaho -0.023 0.014 -1.59 0.113 
Year:Montana -0.044 0.013 -3.38 0.001 
Year:Nevada -0.070 0.016 -4.41 < 0.001 
Year:New Mexico 0.014 0.015 0.94 0.346 
Year:Oregon -0.034 0.013 -2.57 0.010 
Year:Utah -0.053 0.014 -3.84 < 0.001 
Year:Washington 0.045 0.014 3.15 0.002 
Year:Wyoming 0.047 0.018 2.6 0.009 
Federally managed:Year:California -0.015 0.015 -0.96 0.337 
Federally managed:Year:Colorado -0.065 0.019 -3.49 < 0.001 
Federally managed:Year:Idaho -0.052 0.017 -3.09 0.002 
Federally managed:Year:Montana -0.042 0.016 -2.65 0.008 
Federally managed:Year:Nevada -0.042 0.020 -2.11 0.035 
Federally managed:Year:New 
Mexico -0.131 0.018 -7.33 < 0.001 

Federally managed:Year:Oregon -0.054 0.016 -3.4 0.001 
Federally managed:Year:Utah -0.023 0.017 -1.38 0.168 
Federally 
managed:Year:Washington -0.049 0.017 -2.83 0.005 

Federally managed:Year:Wyoming -0.121 0.021 -5.72 < 0.001 
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Table	S8. Coefficient estimates for year and the interaction between year and federal management, 
using dynamic panel (Arellano-Bond estimator) and fixed effect regression to account for time lags. 
Estimates presented are for the state-level models. * p < 0.1, ** p < 0.05, *** p < 0.01. 

State Model Variable 
Year Federal management * 

Year 
Arizona Fixed effects 0.0002*** 

(0.0000) 
0.0003*** 
(0.0000) 

Dynamic 
panels 

-0.0003*** 
(0.0001) 

0.0002** 
(0.0001) 

California Fixed effects 0.0001*** 
(0.0000) 

0.0004*** 
(0.0000) 

Dynamic 
panels 

1.88*10-5 
(0.0000) 

0.0006*** 
(0.0000) 

Colorado Fixed effects 0.0001*** 
(0.0000) 

6.30*10-5*** 
(0.0000) 

Dynamic 
panels 

2.03*10-5 
(0.0000) 

0.0001** 
(0.0000) 

Idaho Fixed effects 0.0001*** 
(1.40*10-5) 

0.0001*** 
(1.85*10-5) 

Dynamic 
panels 

0.0001*** 
(3.77*10-5) 

-1.76*10-5 

(4.79*10-5) 
Montana Fixed effects 0.0002*** 

(1.41*10-5) 
9.86*10-5*** 
(1.88*10-5) 

Dynamic 
panels 

0.0004*** 
(3.95*10-5) 

2.79*10-5 
(5.02e-05) 

Nevada Fixed effects 0.0002*** 
(4.58*10-5) 

-1.44*10-5 
(5.61*10-5) 

Dynamic 
panels 

-6.32*10-5 
(0.000123) 

0.0003** 
(0.000148) 

New Mexico Fixed effects 0.0002*** 
(1.34*10-5) 
 

-4.46*10-5** 
(1.78*10-5) 
 

Dynamic 
panels 

1.31*10-5 
(3.50*10-5) 

1.78*10-5 
(4.69*10-5) 

Oregon Fixed effects 6.73*10-5*** 
(8.89*10-6) 

0.0001*** 
(1.10*10-5) 

Dynamic 
panels 

0.0001*** 
(2.14*10-5) 

1.04*10-5 
(2.92*10-5) 

Utah  Fixed effects 0.0001*** 
(1.37*10-5) 

6.76*10-5*** 
(1.78*10-5) 

Dynamic 
panels 

0.0001*** 
(3.84*10-5) 

8.61*10-5* 
(4.75*10-5) 

Washington Fixed effects 0.0002*** 5.43*10-5*** 
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(1.18*10-5) (1.60*10-5) 
Dynamic 
panels 

0.0002*** 
(3.22*10-5) 

0.0001*** 
(4.30*10-5) 

Wyoming Fixed effects 0.0003*** 
(2.59*10-5) 

1.63*10-5 
(3.48*10-5) 

Dynamic 
panels 

0.0008*** 
(7.37*10-5) 

-0.0002* 
(9.28*10-5) 
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Table	S9. Regression results for state-level models, using year as a categorical variable. The estimated coefficient for each variable is each 
state is listed, with the standard error below the estimate in parenthesis and the level of significance (p-value) indicated with an asterisk: * 
= p < 0.05, ** = p < 0.01, *** = p < 0.001. Part 1 includes Arizona, California, Colorado, Idaho, Montana, and Nevada; Part 2 includes New 
Mexico, Oregon, Utah, Washington, and Wyoming. 

 

Table S9, Part 1 
Variable Arizona California Colorado Idaho Montana Nevada 

Intercept 
-12.576*** 

(1.016) 
-4.702*** 

(0.297) 
-7.742*** 

(1.051) 
-2.147* 
(0.984) 

-23.484 
(622.691) 

-16.389*** 
(2.578) 

Federally managed 
-0.044 

(0.818) 
0.906*** 

(0.223) 
1.721 
(1.081) 

0.024 
(0.342) 

14.805 
(622.691) 

0.227 
(1.417) 

Elevation (km) 
-0.891** 

(0.339) 
-0.120*** 

(0.027) 
-1.350*** 

(0.171) 
0.917*** 
(0.134) 

-0.234** 
(0.085) 

-0.524 
(0.357) 

Slope 
0.028*** 

(0.006) 
0.026*** 

(0.001) 
0.006 
(0.004) 

0.009* 
(0.004) 

0.027*** 
(0.003) 

0.016* 
(0.006) 

Aspect 
0.000 
(0.000) 

0.000** 

(0.000) 
-0.001 
(0.000) 

0.002*** 
(0.000) 

0.001*** 
(0.000) 

0.000 
(0.000) 

Distance to roads 
(km) 

-0.003 
(0.066) 

0.138*** 

(0.012) 
-0.052 
(0.051) 

0.149*** 
(0.016) 

0.096*** 
(0.015) 

0.136* 
(0.056) 

Population density 
(1990) 

-0.005 
(0.006) 

-0.005* 

(0.002) 
-0.008 
(0.007) 

-0.041* 
(0.016) 

-0.107*** 
(0.018) 

-0.048 
(0.029) 

Average PDSI, winter   
0.020 
(0.012)   

-0.168*** 
(0.027) 

0.189*** 
(0.026) 

-0.056 
(0.069) 

Average PDSI, spring     
-0.191*** 

(0.036)       
Average PDSI, 
summer 

-0.606*** 

(0.101)       
-0.326*** 
(0.026) 

0.173 
(0.095) 

Average PDSI, fall   
-0.095*** 

(0.013)   
-0.152*** 
(0.040)     

Maximum 
temperature, winter       

0.465*** 
(0.043) 

-0.141*** 
(0.019) 

-0.392*** 
(0.082) 

Maximum 
temperature, spring             
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Maximum 
temperature, summer   

-0.010* 

(0.005)   
0.271*** 
(0.051)   

0.014 
(0.089) 

Maximum 
temperature, fall       

-0.387*** 
(0.069) 

0.209*** 
(0.023) 

0.602*** 
(0.136) 

Minimum 
temperature, winter     

0.043 
(0.023)       

Minimum 
temperature, spring             
Minimum 
temperature, summer             
Minimum 
temperature, fall             
Average soil moisture, 
winter     

-0.009 
(0.006)     

0.011 
(0.009) 

Average soil moisture, 
spring 

-0.031 
(0.017)           

Average soil moisture, 
summer     

-0.044*** 
(0.011)     

-0.203*** 
(0.042) 

Average soil moisture, 
fall 

-0.013 
(0.018)   

0.000 
(0.008)     

-0.020 
(0.027) 

Maximum wind speed, 
winter   

-0.806*** 
(0.040)         

Maximum wind speed, 
spring (m/s) 

2.429*** 

(0.270)           
Maximum wind speed, 
summer (m/s) 

-1.985*** 
(0.333)         

-0.676 
(0.346) 

Maximum wind speed, 
fall (m/s) 

0.112 
(0.318) 

0.440*** 
(0.043) 

0.396*** 
(0.094) 

-1.562*** 
(0.110) 

0.241*** 
(0.042) 

0.637 
(0.351) 

Total precipitation, 
winter (cm) 

0.076** 
(0.023) 

0.008*** 
(0.001) 

-0.230*** 
(0.025) 

-0.066*** 
(0.011)   

0.058** 
(0.020) 

Total precipitation, 
spring (cm) 

0.023 
(0.053) 

-0.041*** 
(0.002) 

0.056** 
(0.019) 

-0.010 
(0.015) 

-0.043*** 
(0.011) 

-0.118*** 
(0.032) 

Total precipitation, 
summer (cm) 

0.001 
(0.021) 

-0.098*** 
(0.009) 

0.016 
(0.020) 

-0.141*** 
(0.021) 

-0.205*** 
(0.013) 

-0.184*** 
(0.039) 
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Total precipitation, 
fall (cm) 

0.012 
(0.026) 

0.009*** 
(0.002) 

0.023 
(0.018)   

0.017 
(0.010) 

0.177*** 
(0.041) 

Total precipitation, 
previous year (cm) 

0.053*** 

(0.010) -0.001 0.069*** 
0.000 
(0.005) 

-0.003 
(0.003) 

0.052*** 
(0.011) 

Year 1990 
0.571 
(1.013) 

1.389*** 

(0.208) 
-17.156 
(2007.487) 

-18.735 
(703.471) 

14.614 
(622.690) 

-15.825 
(3109.443) 

Year 1991 
-0.684 
(0.952) 

-0.588 
(0.339) 

-17.852 
(1848.166) 

-19.337 
(705.937) 

16.810 
(622.690) 

-15.935 
(3075.089) 

Year 1992 
-13.334 
(2708.172) 

1.934*** 

(0.204) 
-17.295 
(1935.897) 

-3.275*** 
(0.462) 

14.870 
(622.691) 

-15.314 
(3107.336) 

Year 1993 
-17.004 
(2475.488) 

0.479 
(0.255) 

-15.662 
(1800.829) 

-15.833 
(800.062) 

2.642 
(871.468) 

-16.959 
(3018.144) 

Year 1994 
0.188 
(0.788) 

-0.377 
(0.233) 

-1.396 
(1.430) 

-4.434*** 
(0.563) 

14.267 
(622.690) 

1.867 
(1.411) 

Year 1995 -17.611 
(2583.673) 

0.339 
(0.408) 

-17.129 
(1787.295) 

-16.556 
(751.226) 

1.648 
(879.052) 

1.609 
(1.511) 

Year 1996 
-19.571 
(2758.674) 

0.789*** 

(0.224) 
-1.542 
(1.422) 

-3.228*** 
(0.817) 

15.377 
(622.690) 

1.458 
(1.267) 

Year 1997 
-17.402 
(2619.699) 

-0.956** 

(0.305) 
-16.221 
(1833.184) 

-14.605 
(732.041) 

0.863 
(875.177) 

-16.950 
(3031.365) 

Year 1998 
-15.487 
(2702.774) 

-1.175* 

(0.539) 
-17.253 
(1936.023) 

-17.343 
(747.532) 

17.422 
(622.690) 

1.326 
(1.378) 

Year 1999 
-18.132 
(2634.975) 

1.199*** 

(0.220) 
-17.585 
(1888.627) 

-16.984 
(746.278) 

15.063 
(622.690) 

2.627* 
(1.127) 

Year 2000 
-1.119 
(0.967) 

-0.253 
(0.274) 

0.702 
(1.061) 

-3.032*** 
(0.533) 

17.432 
(622.690) 

5.886*** 
(1.211) 

Year 2001 
-17.102 
(2815.329) 

0.184 
(0.230) 

-16.761 
(1975.060) 

-2.370*** 
(0.576) 

15.842 
(622.690) 

2.919** 
(1.055) 

Year 2002 
1.511* 

(0.678) 
-0.875** 

(0.259) 
2.753** 

(1.025) 
-19.987 
(761.266) 

15.601 
(622.690) 

-16.062 
(3208.687) 

Year 2003 
-0.148 
(0.800) 

2.313*** 

(0.207) 
1.363 
(1.107) 

-3.292*** 
(0.470) 

18.022 
(622.690) 

-14.391 
(3085.848) 

Year 2004 
-18.106 
(2777.324) 

-0.224 
(0.229) 

0.174 
(1.236) 

-18.450 
(765.276) 

14.777 
(622.690) 

1.586 
(1.205) 

Year 2005 0.922 -1.070** 0.965 -3.417*** 16.828 0.541 
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(0.939) (0.387) (1.109) (0.429) (622.690) (1.463) 

Year 2006 
-1.886 
(1.195) 

1.381*** 

(0.232) 
-0.499 
(1.135) 

-1.399** 
(0.519) 

17.710 
(622.690) 

2.728* 
(1.218) 

Year 2007 
0.166 
(0.952) 

1.103*** 

(0.209) 
-16.425 
(1945.101) 

-1.648*** 
(0.394) 

16.704 
(622.690) 

3.101** 
(1.140) 

Year 2008 
-0.965 
(1.216) 

1.370*** 

(0.204) 
1.888 
(1.159) 

-2.780*** 
(0.514) 

15.739 
(622.690) 

-16.934 
(3193.309) 

Year 2009 
-2.697* 

(1.210) 
0.380 
(0.230) 

0.110 
(1.232) 

-2.618** 
(0.770) 

15.649 
(622.690) 

-15.179 
(3101.530) 

Year 2010 
-17.344 
(2747.685) 

-1.187** 

(0.370) 
0.403 
(1.234) 

-2.592** 
(0.773) 

16.435 
(622.690) 

-17.514 
(3145.919) 

Year 2011 
1.343* 

(0.682) 
0.663* 

(0.258) 
0.932 
(1.101) 

0.910 
(0.476) 

17.281 
(622.690) 

3.682** 
(1.106) 

Year 2012 
1.745* 

(0.709) 
2.077*** 

(0.203) 
3.168** 

(1.023) 
-0.793* 
(0.357) 

17.056 
(622.690) 

3.467** 
(1.101) 

Year 2013 
-0.209 
(0.875) 

0.642** 

(0.211) 
3.015** 

(1.057) 
-1.096** 
(0.395) 

16.780 
(622.690) 

2.442* 
(1.134) 

Year 2014 
-18.204 
(2742.056) 

1.769*** 

(0.200) 
-16.364 
(1859.093) 

-0.693 
(0.355) 

0.235 
(896.281) 

0.805 
(1.447) 

Year 2015 
2.040* 

(0.973) 
1.031*** 

(0.206) 
-16.348 
(1882.772) 

-1.615*** 
(0.442) 

14.148 
(622.690) 

-15.721 
(3136.094) 

Year 2016 
-1.534 
(0.951) 

1.706*** 

(0.205) 
1.948 
(1.048) 

-3.889*** 
(0.598) 

15.591 
(622.690) 

0.809 
(1.175) 

Burned in previous 
year 

0.248 
(0.627) 

-2.832*** 

(0.379) 
-19.573 
(7155.970) 

-3.104** 
(1.005) 

-3.208** 
(1.002) 

-20.447 
(6498.204) 

Burned in previous 2 
years 

-1.502 
(1.029) 

-1.605*** 

(0.237) 
-19.576 
(6975.360) 

-1.630** 
(0.586) 

-0.855 
(0.452) 

-1.296 
(1.017) 

Burned in previous 5 
years 

0.228 
(0.485) 

-0.999*** 

(0.157) 
-0.462 
(1.016) 

-1.259* 
(0.513) 

-0.228 
(0.341) 

0.089 
(0.522) 

Federally managed * 
1990 

-17.347 
(2612.305) 

-0.983*** 

(0.251) 
15.181 
(2007.487) 

-0.107 
(998.240) 

-15.086 
(622.691) 

-0.119 
(4367.860) 

Federally managed * 
1991 

-17.808 
(2547.950) 

-1.904** 

(0.572) 
-1.815 
(2598.631) 

15.682 
(705.937) 

-15.517 
(622.691) 

0.012 
(4336.177) 

Federally managed * 
1992 

-0.054 
(3790.496) 

-1.962*** 

(0.255) 
-1.737 
(2726.555) 

1.133** 
(0.421) 

-14.835 
(622.691) 

17.451 
(3107.336) 
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Federally managed * 
1993 

16.495 
(2475.489) 

-0.891** 

(0.310) 
-1.850 
(2524.824) 

-0.044 
(1126.584) 

-14.983 
(1063.631) 

-0.362 
(4164.149) 

Federally managed * 
1994 

0.058 
(0.941) 

-0.047 
(0.269) 

0.029 
(1.529) 

2.065*** 
(0.550) 

-13.318 
(622.691) 

-0.864 
(1.874) 

Federally managed * 
1995 

17.360 
(2583.673) 

0.464 
(0.453) 

-1.843 
(2526.048) 

-0.079 
(1061.496) 

-14.774 
(1079.554) 

0.433 
(1.878) 

Federally managed * 
1996 

18.531 
(2758.674) 

0.471 
(0.254) 

0.164 
(1.515) 

1.156 
(0.872) 

-15.220 
(622.691) 

0.146 
(1.612) 

Federally managed * 
1997 

0.057 
(3664.000) 

-0.022 
(0.344) 

-1.814 
(2573.346) 

-0.087 
(1039.039) 

-14.867 
(1067.716) 

-0.003 
(4259.923) 

Federally managed * 
1998 

-0.032 
(3798.311) 

0.100 
(0.625) 

-1.773 
(2724.182) 

14.164 
(747.533) 

-14.157 
(622.691) 

-0.853 
(1.875) 

Federally managed * 
1999 

16.766 
(2634.975) 

0.210 
(0.245) 

-1.802 
(2651.731) 

15.325 
(746.279) 

-17.117 
(622.692) 

0.395 
(1.451) 

Federally managed * 
2000 

0.816 
(1.192) 

0.057 
(0.321) 

-1.050 
(1.141) 

0.462 
(0.399) 

-14.045 
(622.691) 

-0.380 
(1.447) 

Federally managed * 
2001 

17.552 
(2815.329) 

-0.029 
(0.268) 

16.198 
(1975.060) 

0.661 
(0.702) 

-14.949 
(622.691) 

0.076 
(1.452) 

Federally managed * 
2002 

0.342 
(0.878) 

0.453 
(0.295) 

-0.512 
(1.091) 

-0.009 
(1081.408) 

-12.932 
(622.691) 

18.646 
(3208.687) 

Federally managed * 
2003 

0.750 
(0.986) 

-1.117*** 

(0.246) 
-1.917 
(1.273) 

0.997* 
(0.450) 

-14.416 
(622.691) 

-0.110 
(4333.221) 

Federally managed * 
2004 

18.440 
(2777.324) 

-0.601* 

(0.269) 
-0.120 
(1.330) 

-0.024 
(1085.687) 

-14.345 
(622.691) 

0.115 
(1.537) 

Federally managed * 
2005 

0.676 
(1.086) 

1.036* 

(0.420) 
-0.086 
(1.187) 

0.814 
(0.451) 

-14.044 
(622.691) 

2.544 
(1.757) 

Federally managed * 
2006 

1.897 
(1.356) 

-0.075 
(0.261) 

-19.247 
(1930.032) 

1.169* 
(0.513) 

-14.759 
(622.691) 

0.160 
(1.505) 

Federally managed * 
2007 

0.810 
(1.192) 

-0.616* 

(0.242) 
15.759 
(1945.102) 

1.087** 
(0.373) 

-13.814 
(622.691) 

-0.471 
(1.486) 

Federally managed * 
2008 

2.014 
(1.347) 

0.254 
(0.231) 

0.225 
(1.245) 

-0.312 
(0.731) 

-15.587 
(622.691) 

17.941 
(3193.309) 

Federally managed * 
2009 

2.469 
(1.328) 

0.475 
(0.264) 

-0.001 
(1.324) 

-14.955 
(774.900) 

-15.296 
(622.691) 

16.536 
(3101.531) 
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Federally managed * 
2010 

16.934 
(2747.685) 

-0.113 
(0.442) 

0.299 
(1.316) 

0.324 
(0.975) 

-13.241 
(622.691) 

0.064 
(4411.855) 

Federally managed * 
2011 

0.772 
(0.839) 

-1.304*** 

(0.347) 
-1.314 
(1.223) 

-0.579 
(0.655) 

-13.342 
(622.691) 

-2.075 
(1.516) 

Federally managed * 
2012 

-1.433 
(1.140) 

-0.443 
(0.238) 

-1.273 
(1.094) 

0.678 
(0.390) 

-14.703 
(622.691) 

-0.203 
(1.465) 

Federally managed * 
2013 

1.443 
(1.047) 

0.164 
(0.243) 

-1.288 
(1.130) 

-0.133 
(0.390) 

-16.315 
(622.691) 

-0.539 
(1.508) 

Federally managed * 
2014 

18.636 
(2742.056) 

-0.801** 

(0.235) 
-1.863 
(2609.718) 

0.819 
(0.435) 

-0.254 
(896.282) 

1.138 
(1.829) 

Federally managed * 
2015 

0.702 
(0.961) 

0.141 
(0.237) 

-1.770 
(2636.079) 

0.854 
(0.370) 

-13.514 
(622.691) 

-0.156 
(4390.391) 

Federally managed * 
2016 

1.852 
(1.120) 

-0.183 
(0.240) 

-1.209 
(1.114) 

1.782 
(0.640) 

-14.650 
(622.691) 

1.422 
(1.491) 

  

	 	

151 



 
 

152 
 

Table S9, Part 2 

Variable New Mexico Oregon Utah Washington Wyoming 

Intercept 
-26.226 
(784.770) 

-11.802*** 
(0.838) 

-8.657*** 
(0.645) 

-39.042 
(991.169) 

-22.887 
(1380.616) 

Federally managed 
16.731 
(784.770) 

-0.287 
(0.466) 

0.340 
(0.528) 

0.378 
(1389.035) 

-0.015 
(1950.785) 

Elevation (km) 
-0.876*** 
(0.166) 

-0.667*** 
(0.114) 

-0.437** 
(0.160) 

0.994*** 
(0.189) 

0.164 
(0.229) 

Slope 
0.007* 
(0.004) 

0.017*** 
(0.003) 

0.012** 
(0.004) 

0.020*** 
(0.003) 

0.033*** 
(0.005) 

Aspect 
-0.001* 
(0.000) 

0.000* 
(0.000) 

0.000 
(0.000) 

0.004*** 
(0.001) 

-0.001 
(0.000) 

Distance to roads 
(km) 

0.197*** 
(0.018) 

0.517*** 
(0.031) 

0.010 
(0.058) 

0.244*** 
(0.043) 

0.164*** 
(0.032) 

Population density 
(1990) 

-0.012 
(0.008) 

-0.065** 
(0.022) 

-0.031 
(0.036) 

-0.024* 
(0.011) 

-0.014 
(0.033) 

Average PDSI, winter   
0.599*** 
(0.023)   

-0.773*** 
(0.041) 

-0.220*** 
(0.056) 

Average PDSI, spring   
  
       

Average PDSI, 
summer 

-0.473*** 
(0.042) 

-0.449*** 
(0.023) 

-0.391*** 
(0.046) 

-0.143*** 
(0.040) 

0.040 
(0.057) 

Average PDSI, fall   
  
       

Maximum 
temperature, winter     

-0.013 
(0.037)   

0.244*** 
(0.048) 

Maximum 
temperature, spring   

-0.527*** 
(0.046)       

Maximum 
temperature, summer   

0.586*** 
(0.031)   

0.881*** 
(0.059)   

Maximum 
temperature, fall   

-0.021 
(0.037)   

-1.138*** 
(0.073)   

Minimum 
temperature, winter           
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Minimum 
temperature, spring           
Minimum 
temperature, summer           
Minimum 
temperature, fall     

0.339*** 
(0.035)   

0.016 
(0.062) 

Average soil moisture, 
winter 

0.028*** 
(0.003)   

0.001 
(0.004)   

0.030* 
(0.012) 

Average soil moisture, 
spring           
Average soil moisture, 
summer 

0.008 
(0.007)         

Average soil moisture, 
fall     

-0.027** 
(0.009)   

0.008 
(0.019) 

Maximum wind speed, 
winter   

0.022 
(0.119)       

Maximum wind speed, 
spring (m/s) 

0.949*** 
(0.161) 

-0.655*** 
(0.129)       

Maximum wind speed, 
summer (m/s) 

-1.023*** 
(0.163) 

1.477*** 
(0.121) 

-0.197 
(0.234) 

1.362*** 
(0.123)   

Maximum wind speed, 
fall (m/s) 

-0.379* 
(0.170) 

-0.724*** 
(0.150) 

0.408* 
(0.187) 

1.744*** 
(0.179) 

0.099 
(0.132) 

Total precipitation, 
winter (cm) 

0.031* 
(0.013)   

0.030 
(0.019)   

-0.111** 
(0.040) 

Total precipitation, 
spring (cm) 

-0.090*** 
(0.019)   

0.059** 
(0.020)   

-0.273*** 
(0.027) 

Total precipitation, 
summer (cm) 

0.146*** 
(0.014) 

-0.220*** 
(0.016) 

-0.008 
(0.017) 

-0.308*** 
(0.028) 

0.106*** 
(0.024) 

Total precipitation, 
fall (cm) 

-0.022 
(0.015) 

-0.003 
(0.003) 

-0.036 
(0.020) 

-0.028*** 

(0.009) 
-0.133*** 
(0.033) 

Total precipitation, 
previous year (cm) 

0.034*** 
(0.005)   

0.011 
(0.007)   

0.037* 
(0.014) 

Year 1990 
2.013 
(1138.571) 

-2.509* 
(1.053) 

-1.765* 
(0.832) 

14.702 
(991.168) 

-0.292 
(1947.819) 

Year 1991 -0.106 -14.687 -14.799 1.445 0.372 
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(1070.241) (298.242) (513.712) (1359.905) (1923.403) 

Year 1992 
2.995 
(1112.117) 

-0.502 
(0.455) 

0.016 
(0.624) 

-2.011 
(1414.970) 

-2.660 
(1914.322) 

Year 1993 
15.859 
(784.770) 

-11.411 
(277.929) 

0.454 
(1.131) 

4.224 
(1427.686) 

0.287 
(1914.280) 

Year 1994 
17.223 
(784.770) 

-2.805*** 
(0.440) 

0.976 
(0.537) 

15.433 
(991.168) 

-0.406 
(1960.838) 

Year 1995 
1.282 
(1127.264) 

0.479 
(0.663) 

1.623* 
(0.653) 

3.190 
(1413.304) 

0.793 
(1967.470) 

Year 1996 
13.066 
(784.770) 

-3.737*** 
(0.493) 

1.486** 
(0.523) 

0.900 
(1435.885) 

17.131 
(1380.616) 

Year 1997 
16.554 
(784.770) 

-16.199 
(291.898) 

1.752** 
(0.584) 

21.091 
(991.168) 

-0.129 
(1947.328) 

Year 1998 
17.262 
(784.770) 

-16.711 
(309.879) 

0.311 
(1.121) 

20.861 
(991.168) 

-0.832 
(1965.247) 

Year 1999 
15.069 
(784.770) 

-4.609*** 
(0.691) 

0.912 
(0.707) 

3.883 
(1393.897) 

15.461 
(1380.616) 

Year 2000 
17.999 
(784.770) 

-2.072*** 
(0.431) 

1.574** 
(0.520) 

11.533 
(991.168) 

15.938 
(1380.616) 

Year 2001 
16.009 
(784.770) 

-1.290** 
(0.421) 

0.672 
(0.506) 

15.758 
(991.168) 

16.824 
(1380.615) 

Year 2002 
18.403 
(784.770) 

0.054 
(0.349) 

1.723** 
(0.501) 

13.947 
(991.168) 

16.193 
(1380.615) 

Year 2003 
16.503 
(784.770) 

-3.049*** 
(0.567) 

0.191 
(0.580) 

12.007 
(991.168) 

-0.513 
(1968.861) 

Year 2004 
18.980 
(784.770) 

-2.661*** 
(0.670) 

0.621 
(0.599) 

14.378 
(991.168) 

15.152 
(1380.616) 

Year 2005 
2.834 
(1126.788) 

-0.987* 
(0.460) 

1.715** 
(0.623) 

13.564 
(991.168) 

15.417 
(1380.616) 

Year 2006 
14.601 
(784.770) 

-1.326** 
(0.419) 

2.401*** 
(0.512) 

19.210 
(991.168) 

17.646 
(1380.615) 

Year 2007 
17.413 
(784.770) 

-1.270** 
(0.386) 

2.047*** 
(0.440) 

15.967 
(991.168) 

16.542 
(1380.615) 

Year 2008 
17.230 
(784.770) 

-2.864*** 
(0.425) 

-14.891 
(522.610) 

17.063 
(991.168) 

1.070 
(1952.345) 
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Year 2009 
0.828 
(1137.631) 

-1.782** 
(0.661) 

0.859 
(0.547) 

13.054 
(991.168) 

14.143 
(1380.616) 

Year 2010 
1.503 
(1125.163) 

1.199** 
(0.394) 

-0.199 
(0.721) 

-0.002 
(1424.234) 

17.535 
(1380.616) 

Year 2011 
19.234 
(784.770) 

-2.940*** 
(0.790) 

0.024 
(1.116) 

20.544 
(991.168) 

18.005 
(1380.616) 

Year 2012 
18.563 
(784.770) 

0.372 
(0.375) 

2.447*** 
(0.467) 

19.155 
(991.168) 

19.156 
(1380.615) 

Year 2013 
18.831 
(784.770) 

-1.225** 
(0.361) 

0.548 
(0.550) 

16.583 
(991.168) 

1.218 
(1968.005) 

Year 2014 
15.051 
(784.770) 

1.392*** 
(0.336) 

-0.533 
(0.714) 

17.614 
(991.168) 

-0.149 
(1972.621) 

Year 2015 
1.879 
(1130.562) 

-1.488*** 
(0.363) 

-15.699 
(499.340) 

16.466 
(991.168) 

16.223 
(1380.616) 

Year 2016 
17.908 
(784.770) 

-1.597** 
(0.476) 

-0.334 
(0.551) 

16.367 
(991.168) 

18.395 
(1380.615) 

Burned in previous 
year 

-18.495 
(1884.342) 

-3.056*** 
(0.711) 

-0.704 
(0.589) 

-20.529 
(2836.608) 

-18.859 
(2609.595) 

Burned in previous 2 
years 

0.116 
(0.291) 

-2.443*** 
(0.582) 

-0.385 
(0.587) 

-1.003 
(0.511) 

-17.269 
(2758.820) 

Burned in previous 5 
years 

-0.717 
(0.513) 

-0.123 
(0.225) 

-1.287 
(0.714) 

-18.700 
(4363.025) 

-18.622 
(3597.360) 

Federally managed * 
1990 

-1.680 
(1138.571) 

2.816* 
(1.135) 

-0.027 
(1.054) 

-15.066 
(1688.436) 

-0.142 
(2747.514) 

Federally managed * 
1991 

-2.445 
(1070.241) 

14.409 
(298.242) 

-0.316 
(726.088) 

16.307 
(1672.229) 

0.060 
(2725.115) 

Federally managed * 
1992 

-1.255 
(1112.117) 

1.741** 
(0.560) 

-1.975 
(1.216) 

15.595 
(1717.307) 

15.298 
(2358.832) 

Federally managed * 
1993 

-14.612 
(784.770) 

0.299 
(394.583) 

-13.852 
(516.184) 

-0.224 
(2006.295) 

-0.069 
(2698.201) 

Federally managed * 
1994 

-14.885 
(784.770) 

0.650 
(0.562) 

-0.691 
(0.641) 

-0.080 
(1389.035) 

16.771 
(2396.737) 

Federally managed * 
1995 

-0.682 
(1127.264) 

-13.051 
(285.131) 

-0.690 
(0.788) 

-0.796 
(1981.313) 

-0.048 
(2773.367) 
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Federally managed * 
1996 

-13.351 
(784.770) 

3.180*** 
(0.579) 

-0.346 
(0.595) 

16.558 
(1734.581) 

1.038 
(1950.785) 

Federally managed * 
1997 

-16.749 
(784.771) 

12.665 
(291.900) 

-2.488* 
(1.184) 

-14.402 
(1629.667) 

16.814 
(2385.697) 

Federally managed * 
1998 

-15.563 
(784.770) 

12.697 
(309.880) 

-13.857 
(510.351) 

-2.056 
(1389.035) 

-0.048 
(2773.244) 

Federally managed * 
1999 

-15.663 
(784.770) 

1.948* 
(0.783) 

-1.139 
(1.014) 

15.244 
(1699.987) 

-0.724 
(1950.785) 

Federally managed * 
2000 

-15.246 
(784.770) 

2.016*** 
(0.548) 

-0.092 
(0.601) 

1.900 
(1389.036) 

2.495 
(1950.785) 

Federally managed * 
2001 

-14.516 
(784.770) 

0.777 
(0.568) 

-0.231 
(0.650) 

0.539 
(1389.035) 

0.491 
(1950.785) 

Federally managed * 
2002 

-15.687 
(784.770) 

1.138* 
(0.474) 

0.415 
(0.575) 

-0.619 
(1389.035) 

1.074 
(1950.785) 

Federally managed * 
2003 

-13.778 
(784.770) 

2.818*** 
(0.658) 

0.912 
(0.661) 

0.728 
(1389.035) 

18.625 
(2403.305) 

Federally managed * 
2004 

-14.971 
(784.770) 

3.041*** 
(0.756) 

0.662 
(0.689) 

0.024 
(1389.035) 

-16.140 
(2386.338) 

Federally managed * 
2005 

-1.664 
(1126.788) 

2.025** 
(0.589) 

0.519 
(0.693) 

1.044 
(1389.035) 

0.914 
(1950.785) 

Federally managed * 
2006 

-17.075 
(784.770) 

0.755 
(0.526) 

-0.736 
(0.597) 

-1.164 
(1389.035) 

0.698 
(1950.785) 

Federally managed * 
2007 

-16.075 
(784.770) 

1.954*** 
(0.503) 

-0.597 
(0.558) 

0.711 
(1389.035) 

0.447 
(1950.785) 

Federally managed * 
2008 

-16.393 
(784.770) 

-0.034 
(0.591) 

14.237 
(522.611) 

0.417 
(1389.035) 

17.912 
(2389.793) 

Federally managed * 
2009 

0.444 
(1137.631) 

2.426** 
(0.766) 

1.276* 
(0.623) 

-1.307 
(1389.036) 

-15.499 
(2395.051) 

Federally managed * 
2010 

-0.371 
(1125.163) 

0.516 
(0.551) 

0.872 
(0.839) 

15.883 
(1724.949) 

0.033 
(1950.785) 

Federally managed * 
2011 

-16.625 
(784.770) 

3.901*** 
(0.855) 

0.382 
(1.334) 

-17.047 
(1730.858) 

2.212 
(1950.785) 

Federally managed * 
2012 

-16.475 
(784.770) 

2.024*** 
(0.513) 

-0.251 
(0.544) 

-0.203 
(1389.035) 

0.103 
(1950.785) 
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Federally managed * 
2013 

-17.837 
(784.770) 

0.394 
(0.484) 

0.283 
(0.667) 

0.159 
(1389.035) 

15.449 
(2402.604) 

Federally managed * 
2014 

-15.208 
(784.770) 

0.761 
(0.482) 

-0.385 
(0.972) 

-0.484 
(1389.035) 

-0.041 
(2775.419) 

Federally managed * 
2015 

-0.085 
(1130.562) 

1.048* 
(0.478) 14.042 

-0.106 
(1389.035) 

-15.476 
(2369.186) 

Federally managed * 
2016 

-16.833 
(784.770) 

0.252 
(0.674) 0.371 

1.441 
(1389.035) 

-1.145 
(1950.785) 

 

	  

157 



 
 

158 
 

Table	S10. Regression results for all-state model, using 5-year bins rather than annual data. 

 Variable Estimat
e 

Standard 
error 

z value p-value 

Intercept -6.007 0.349 -17.233 < 0.001 

Federally managed -0.047 0.398 -0.117 0.907 

Elevation (km) -0.102 0.025 -4.058 < 0.001 

Slope 0.024 0.001 31.539 < 0.001 

Aspect 0.001 0.000 8.990 < 0.001 

Distance to roads (km) 0.164 0.006 25.528 < 0.001 

Population density (1990) -0.015 0.002 -6.658 < 0.001 

Average PDSI, summer -0.001 0.000 -22.120 < 0.001 

Average maximum temperature, 
fall 

0.005 0.000 11.166 < 0.001 

Average maximum wind speed, 
summer 

-0.001 0.000 -2.955 0.003 

 

Total precipitation, fall -0.004 0.000 -38.142 0 

Total precipitation, summer -0.005 0.000 -15.883 < 0.001 

Year (bin) 0.237 0.059 4.028 < 0.001 

Burned in previous 5-year bin -0.463 0.043 -10.887 < 0.001 
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California 1.143 0.320 3.570 < 0.001 

Colorado -1.052 0.405 -2.600 0.009 

Idaho 0.309 0.359 0.860 0.390 

Montana 1.588 0.330 4.810 < 0.001 

Nevada 0.809 0.398 2.032 0.042 

New Mexico -0.744 0.379 -1.962 0.050 

Oregon -0.162 0.340 -0.476 0.634 

Utah 0.542 0.350 1.549 0.121 

Washington -1.015 0.369 -2.747 0.006 

Wyoming -0.965 0.446 -2.162 0.031 

Federally managed:Year 0.135 0.073 1.848 0.065 

Federally managed:California 0.332 0.404 0.823 0.410 

Federally managed:Colorado 1.717 0.494 3.476 0.001 

Federally managed:Idaho 1.156 0.447 2.588 0.010 

Federally managed:Montana 0.642 0.415 1.548 0.122 

Federally managed:Nevada 0.117 0.520 0.226 0.821 

Federally managed:New Mexico 2.519 0.466 5.409 < 0.001 

Federally managed:Oregon 1.658 0.423 3.918 < 0.001 
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Federally managed:Utah -0.017 0.447 -0.037 0.970 

Federally managed:Washington 0.218 0.471 0.463 0.644 

Federally managed:Wyoming 2.185 0.541 4.040 < 0.001 

Year:California -0.149 0.060 -2.501 0.012 

Year:Colorado 0.076 0.075 1.015 0.310 

Year:Idaho -0.018 0.066 -0.275 0.783 

Year:Montana -0.113 0.062 -1.840 0.066 

Year:Nevada -0.139 0.075 -1.848 0.065 

Year:New Mexico 0.177 0.069 2.553 0.011 

Year:Oregon 0.016 0.063 0.256 0.798 

Year:Utah -0.140 0.066 -2.129 0.033 

Year:Washington 0.327 0.066 4.934 < 0.001 

Year:Wyoming 0.263 0.080 3.293 0.001 

Federally 
managed:Year:California 

-0.053 0.074 -0.717 0.473 

Federally 
managed:Year:Colorado 

-0.287 0.091 -3.144 0.002 

Federally managed:Year:Idaho -0.201 0.082 -2.453 0.014 

Federally 
managed:Year:Montana 

-0.157 0.077 -2.048 0.041 
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Federally managed:Year:Nevada -0.150 0.098 -1.534 0.125 

Federally managed:Year:New 
Mexico 

-0.485 0.085 -5.704 < 0.001 

Federally managed:Year:Oregon -0.248 0.078 -3.185 0.001 

Federally managed:Year:Utah -0.064 0.083 -0.768 0.442 

Federally 
managed:Year:Washington 

-0.136 0.084 -1.610 0.107 

Federally 
managed:Year:Wyoming 

-0.438 0.098 -4.485 < 0.001 
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Table	S11. Regression model results of annual burn data across all eleven western states, with the 
x and y coordinates each sample point included as potential predictor variables. Longitude was not 
included as a predictor variable because it was highly correlated with elevation (Pearson’s 
correlation coefficient = 0.74).  

Variable 
Coefficient Standard 

error 
z value 

p value 

Intercept -163.754 26.491 -6.181 < 0.001 

Federally managed -65.845 33.320 -1.976 0.048 

Elevation (km) -0.130 0.025 -5.229 < 0.001 

Slope 0.022 0.001 28.566 < 0.001 

Aspect 0.000 0.00 6.921 < 0.001 

Distance to roads (km) 0.168 0.006 26.510 < 0.001 

Population density (1990) -0.015 0.002 -6.460 < 0.001 

Average PDSI, summer -0.224 0.004 -59.507 < 0.001 

Average PDSI, winter 0.075 0.004 19.594 < 0.001 

Average maximum temperature, 
fall (˚C) -0.082 0.006 -14.191 < 0.001 

Average maximum temperature, 
summer (˚C) 0.137 0.004 35.369 < 0.001 

Average maximum wind speed, 
summer (m/s) 0.124 0.016 7.863 < 0.001 

Total precipitation, fall (cm) -0.020 0.001 -24.596 < 0.001 

Total precipitation, summer (cm) -0.096 0.003 -35.382 < 0.001 

Latitude 
-5.713*10-

7 0.00 -11.557 < 0.001 

Year 0.079 0.013 5.965 < 0.001 

Burned in previous year -2.839 0.243 -11.688 < 0.001 

Burned in previous 2 years -1.366 0.141 -9.706 < 0.001 

Burned in previous 5 years -0.755 0.103 -7.294 < 0.001 

California 101.370 26.903 3.768 < 0.001 

Colorado -30.216 34.431 -0.878 0.380 
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Idaho 33.612 29.708 1.131 0.258 

Montana 78.974 27.625 2.859 0.004 

Nevada 102.463 33.390 3.069 0.002 

New Mexico -91.152 32.267 -2.825 0.005 

Oregon 36.046 28.290 1.274 0.203 

Utah 67.969 29.477 2.306 0.021 

Washington -79.436 29.627 -2.681 0.007 

Wyoming -113.404 37.623 -3.014 0.003 

Federally managed:Year 0.033 0.017 1.995 0.046 

Federally managed:California 29.241 33.816 0.865 0.387 

Federally managed:Colorado 150.655 41.849 3.600 < 0.001 

Federally managed:Idaho 102.240 36.966 2.766 0.006 

Federally managed:Montana 83.083 34.756 2.390 0.017 

Federally managed:Nevada 77.791 43.540 1.787 0.074 

Federally managed:New Mexico 271.575 39.267 6.916 < 0.001 

Federally managed:Oregon 120.514 35.220 3.422 0.001 

Federally managed:Utah 39.020 37.534 1.040 0.299 

Federally managed:Washington 64.188 37.863 1.695 0.090 

Federally managed:Wyoming 230.874 45.470 5.078 < 0.001 

Year:California -0.050 0.013 -3.752 < 0.001 

Year:Colorado 0.015 0.017 0.853 0.394 

Year:Idaho -0.017 0.015 -1.122 0.262 

Year:Montana -0.039 0.014 -2.821 0.005 

Year:Nevada -0.051 0.017 -3.071 0.002 

Year:New Mexico 0.045 0.016 2.826 0.005 

Year:Oregon -0.018 0.014 -1.270 0.204 

Year:Utah -0.034 0.015 -2.321 0.020 

Year:Washington 0.040 0.015 2.713 0.007 



 
 

164 
 

Year:Wyoming 0.056 0.019 3.016 0.003 

Federally 
managed:Year:California -0.015 0.017 -0.863 0.388 

Federally 
managed:Year:Colorado -0.075 0.021 -3.594 < 0.001 

Federally managed:Year:Idaho -0.051 0.018 -2.762 0.006 

Federally managed:Year:Montana -0.041 0.017 -2.395 0.017 

Federally managed:Year:Nevada -0.039 0.022 -1.802 0.072 

Federally managed:Year:New 
Mexico -0.135 0.020 -6.916 < 0.001 

Federally managed:Year:Oregon -0.060 0.018 -3.411 < 0.001 

Federally managed:Year:Utah -0.020 0.019 -1.049 0.294 

Federally 
managed:Year:Washington -0.032 0.019 -1.708 0.088 

Federally 
managed:Year:Wyoming -0.115 0.023 -5.080 < 0.001 
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Table	S12. Regression model results of annual burn data across all eleven western states.  

Variable Coefficient Standard 
error 

z value p-value 

Intercept -164.774 26.478 -6.223 < 0.001 

Federally managed -65.596 33.322 -1.969 0.049 

Elevation (km) -0.037 0.023 -1.569 0.117 

Slope 0.023 0.001 30.088 < 0.001 

Aspect 0.000 0.000 7.311 < 0.001 

Distance to roads (km) 0.168 0.006 26.494 < 0.001 

Population density (1990) -0.014 0.002 -6.173 < 0.001 

Average PDSI, summer -0.223 0.004 -59.224 < 0.001 

Average PDSI, winter 0.072 0.004 18.830 < 0.001 

Average maximum temperature, 
fall (˚C) -0.044 0.005 -9.282 < 0.001 

Average maximum temperature, 
summer (˚C) 0.121 0.004 33.302 < 0.001 

Average maximum wind speed, 
summer (m/s) 0.181 0.015 12.041 < 0.001 

Total precipitation, fall (cm) -0.022 0.001 -26.825 < 0.001 

Total precipitation, summer 
(cm) -0.103 0.003 -38.185 < 0.001 

Year 0.078 0.013 5.898 < 0.001 

Burned in previous year -2.839 0.243 -11.687 < 0.001 

Burned in previous 2 years -1.356 0.141 -9.630 < 0.001 

Burned in previous 5 years -0.738 0.103 -7.131 < 0.001 

California 101.153 26.885 3.762 < 0.001 

Colorado -21.508 34.285 -0.627 0.530 

Idaho 35.675 29.671 1.202 0.229 

Montana 80.546 27.597 2.919 0.004 

Nevada 102.953 33.332 3.089 0.002 
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New Mexico -87.233 32.318 -2.699 0.007 

Oregon 35.107 28.272 1.242 0.214 

Utah 71.152 29.411 2.419 0.016 

Washington -81.452 29.608 -2.751 0.006 

Wyoming -103.212 37.440 -2.757 0.006 

Federally managed:Year 0.033 0.017 1.987 0.047 

Federally managed:California 29.416 33.812 0.870 0.384 

Federally managed:Colorado 148.514 41.697 3.562 < 0.001 

Federally managed:Idaho 101.534 36.938 2.749 0.006 

Federally managed:Montana 82.458 34.738 2.374 0.018 

Federally managed:Nevada 77.704 43.469 1.788 0.074 

Federally managed:New Mexico 271.312 39.310 6.902 < 0.001 

Federally managed:Oregon 120.021 35.216 3.408 0.001 

Federally managed:Utah 39.414 37.462 1.052 0.293 

Federally managed:Washington 63.901 37.857 1.688 0.091 

Federally managed:Wyoming 227.126 45.273 5.017 < 0.001 

Year:California -0.050 0.013 -3.755 < 0.001 

Year:Colorado 0.010 0.017 0.598 0.550 

Year:Idaho -0.018 0.015 -1.205 0.228 

Year:Montana -0.040 0.014 -2.897 0.004 

Year:Nevada -0.052 0.017 -3.100 0.002 

Year:New Mexico 0.043 0.016 2.700 0.007 

Year:Oregon -0.018 0.014 -1.251 0.211 

Year:Utah -0.036 0.015 -2.440 0.015 

Year:Washington 0.041 0.015 2.767 0.006 

Year:Wyoming 0.051 0.019 2.749 0.006 

Federally 
managed:Year:California -0.015 0.017 -0.868 0.385 
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Federally 
managed:Year:Colorado -0.074 0.021 -3.555 < 0.001 

Federally managed:Year:Idaho -0.051 0.018 -2.745 0.006 

Federally 
managed:Year:Montana -0.041 0.017 -2.378 0.017 

Federally managed:Year:Nevada -0.039 0.022 -1.802 0.072 

Federally managed:Year:New 
Mexico -0.135 0.020 -6.901 < 0.001 

Federally managed:Year:Oregon -0.060 0.018 -3.397 0.001 

Federally managed:Year:Utah -0.020 0.019 -1.061 0.289 

Federally 
managed:Year:Washington -0.032 0.019 -1.700 0.089 

Federally 
managed:Year:Wyoming -0.113 0.023 -5.019 < 0.001 
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Figure	S2. Predicted probability of burning for federally managed and private, unprotected forests 
in each state, using state-level regression models. Note that the y-axis ranges differ across the plots. 
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Table	S13. Logistic regression model results for the Arizona model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

Variable Estimate Standard 
error 

z value p-value 

Intercept 
-

102.587 26.696 -3.843 < 0.001 

Federally managed -63.149 32.875 -1.921 0.055 

Elevation (km) -0.684 0.309 -2.210 0.027 

Slope 0.034 0.006 5.985 < 0.001 

Aspect 0.000 0.000 0.700 0.484 

Distance to roads (km) -0.022 0.066 -0.338 0.735 

Population density (1990) -0.006 0.006 -1.059 0.289 

Average PDSI, summer -0.536 0.073 -7.307 < 0.001 

Average soil moisture, fall 
(mm) -0.042 0.014 -2.918 0.004 

Average soil moisture, 
spring (mm) -0.037 0.015 -2.364 0.018 

Maximum wind speed, fall 
(m/s) -0.372 0.210 -1.775 0.076 

Maximum wind speed, 
spring (m/s) 2.062 0.189 10.935 < 0.001 

Maximum wind speed, 
summer (m/s) -1.084 0.206 -5.249 < 0.001 

Total precipitation, fall 
(cm) 0.102 0.014 7.452 < 0.001 

Total precipitation, spring 
(cm) -0.074 0.034 -2.164 0.030 

Total precipitation, 
summer (cm) 0.006 0.015 0.425 0.671 

Total precipitation, winter  
(cm) 0.099 0.013 7.581 < 0.001 

Total precipitation, 
previous year (cm) 0.036 0.005 7.772 < 0.001 
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Year 0.045 0.013 3.353 0.001 

Burned in previous year 0.423 0.605 0.699 0.485 

Burned in previous 2 years -1.761 1.011 -1.743 0.081 

Burned in previous 5 years -0.148 0.434 -0.341 0.733 

Federally managed:Year 0.032 0.016 1.943 0.052 
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Table	S14. Logistic regression model results for the California model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -64.782 4.902 -13.216 < 0.001 

Federally managed -38.419 5.881 -6.532 < 0.001 

Elevation (km) -0.090 0.026 -3.517 < 0.001 

Slope 0.026 0.001 22.881 < 0.001 

Aspect 0.000 0.000 2.487 0.013 

Distance to roads (km) 0.143 0.012 12.339 < 0.001 

Population density (1990) -0.005 0.002 -2.548 0.011 

Average PDSI, fall -0.201 0.008 -23.995 < 0.001 

Average PDSI, winter 0.045 0.008 5.915 < 0.001 

Maximum temperature, 
summer (˚C) 0.014 0.004 3.164 0.002 

Maximum wind speed, fall 
(m/s) 0.079 0.038 2.090 0.037 

Maximum wind speed, 
winter (m/s) -0.348 0.035 -10.011 < 0.001 

Total precipitation, fall 
(cm) -0.001 0.001 -0.859 0.390 

Total precipitation, spring 
(cm) -0.016 0.001 -12.577 < 0.001 

Total precipitation, 
summer (cm) -0.117 0.007 -15.875 < 0.001 

Total precipitation, winter 
(cm) 0.006 0.001 9.504 < 0.001 

Total precipitation, 
previous year (cm) -0.003 0.000 -6.174 < 0.001 

Burned in previous year -2.911 0.378 -7.692 < 0.001 

Burned in previous 2 
years -1.649 0.237 -6.968 < 0.001 



 
 

172 
 

Burned in previous 5 
years -1.059 0.156 -6.793 < 0.001 

Year 0.030 0.002 12.199 < 0.001 

Federally managed:Year 0.019 0.003 6.647 < 0.001 
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Table	S15. Logistic regression model results for the Colorado model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -248.201 25.360 -9.787 < 0.001 

Federally managed 89.754 26.548 3.381 0.001 

Elevation (km) -1.460 0.161 -9.046 < 0.001 

Slope 0.007 0.004 1.715 0.086 

Aspect -0.001 0.000 -1.859 0.063 

Distance to roads (km) -0.108 0.051 -2.131 0.033 

Population density (1990) -0.005 0.007 -0.734 0.463 

Average PDSI, spring -0.282 0.026 -10.995 < 0.001 

Average soil moisture, fall 
(mm) 0.001 0.008 0.179 0.858 

Average soil moisture, 
summer (mm) -0.044 0.011 -3.943 < 0.001 

Average soil moisture, 
winter (mm) -0.006 0.006 -1.124 0.261 

Minimum temperature, 
winter (˚C) -0.018 0.019 -0.922 0.356 

Maximum wind speed, fall 
(m/s) 1.059 0.078 13.656 < 0.001 

Total precipitation, fall 
(cm) 0.080 0.012 6.551 < 0.001 

Total precipitation, spring 
(cm) -0.057 0.017 -3.410 0.001 

Total precipitation, 
summer (cm) -0.156 0.011 -13.889 < 0.001 

Total precipitation, winter 
(cm) -0.274 0.020 -13.483 < 0.001 

Total precipitation, 
previous year (cm) 0.072 0.005 15.869 < 0.001 
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Year 0.120 0.013 9.536 < 0.001 

Burned in previous 5 
years -0.180 1.024 -0.176 0.860 

Federally managed:Year -0.044 0.013 -3.347 0.001 
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Table	S16. Logistic regression model results for the Idaho model. The response variable is whether 
or not a point burned in a wildfire in a given year; years are treated as a continuous variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -168.654 14.169 -11.903 < 0.001 

Federally managed 35.460 16.115 2.200 0.028 

Elevation (km) 1.064 0.121 8.761 < 0.001 

Slope 0.007 0.003 1.973 0.048 

Aspect 0.002 0.000 7.960 < 0.001 

Distance to roads (km) 0.166 0.016 10.627 < 0.001 

Population density (1990) -0.042 0.016 -2.606 0.009 

Average PDSI, fall -0.191 0.027 -7.085 < 0.001 

Average PDSI, winter -0.019 0.020 -0.950 0.342 

Maximum temperature, 
fall (˚C) -0.281 0.025 -11.396 < 0.001 

Maximum temperature, 
summer (˚C) 0.328 0.027 12.173 < 0.001 

Maximum temperature, 
winter (˚C) 0.337 0.021 15.703 < 0.001 

Maximum wind speed, fall 
(m/s) -1.339 0.097 -13.806 < 0.001 

Total precipitation, spring 
(cm) -0.042 0.009 -4.848 < 0.001 

Total precipitation, 
summer (cm) -0.115 0.013 -8.579 < 0.001 

Total precipitation, winter 
(cm) -0.076 0.005 -13.895 < 0.001 

Total precipitation, 
previous year (cm) 0.015 0.003 5.281 < 0.001 

Year 0.080 0.007 11.321 < 0.001 

Burned in previous year -3.094 1.003 -3.083 0.002 
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Burned in previous 2 
years -1.768 0.582 -3.038 0.002 

Burned in previous 5 
years -1.059 0.508 -2.084 0.037 

Federally managed:Year -0.017 0.008 -2.153 0.031 
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Table	S17. Logistic regression model results for the Montana model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -105.978 9.348 -11.337 < 0.001 

Federally managed 23.876 10.719 2.227 0.026 

Elevation (km) -0.978 0.071 -13.844 < 0.001 

Slope 0.041 0.003 14.891 < 0.001 

Aspect 0.001 0.000 5.676 < 0.001 

Distance to roads (km) 0.107 0.015 7.012 < 0.001 

Population density (1990) -0.112 0.018 -6.106 < 0.001 

Average PDSI, winter -0.051 0.015 -3.476 0.001 

Average PDSI, summer -0.182 0.017 -10.591 < 0.001 

Maximum temperature, 
fall (˚C) -0.076 0.014 -5.313 < 0.001 

Maximum temperature, 
winter (˚C) 0.034 0.014 2.430 0.015 

Maximum wind speed, fall 
(m/s) 0.363 0.033 10.954 < 0.001 

Total precipitation, fall 
(cm) -0.110 0.008 -14.294 < 0.001 

Total precipitation, spring 
(cm) 0.017 0.009 2.002 0.045 

Total precipitation, 
summer (cm) -0.316 0.009 -37.016 < 0.001 

Total precipitation, 
previous year (cm) 0.006 0.003 1.953 0.051 

Year 0.052 0.005 11.103 < 0.001 

Burned in previous year -3.268 1.001 -3.263 0.001 

Burned in previous 2 
years -1.230 0.450 -2.736 0.006 
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Burned in previous 5 
years -0.150 0.339 -0.444 0.657 

Federally managed:Year -0.012 0.005 -2.186 0.029 
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Table	S18. Logistic regression model results for the Nevada model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -71.676 23.515 -3.048 0.002 

Federally managed -0.647 29.466 -0.022 0.982 

Elevation (km) -0.936 0.338 -2.769 0.006 

Slope 0.017 0.006 2.728 0.006 

Aspect 0.000 0.000 1.022 0.307 

Distance to roads (km) 0.154 0.054 2.827 0.005 

Population density (1990) -0.058 0.032 -1.848 0.065 

Average PDSI, winter 0.058 0.048 1.201 0.230 

Average PDSI, summer 0.097 0.051 1.900 0.057 

Average soil moisture, fall 
(mm) -0.047 0.028 -1.697 0.090 

Average soil moisture, 
summer (mm) -0.162 0.038 -4.298 < 0.001 

Average soil moisture, 
winter (mm) 0.004 0.007 0.593 0.553 

Maximum temperature, 
fall (˚C) 0.071 0.055 1.298 0.194 

Maximum temperature, 
winter (˚C) -0.141 0.041 -3.433 0.001 

Maximum temperature, 
summer (˚C) 0.109 0.048 2.276 0.023 

Maximum wind speed, fall 
(m/s) -0.624 0.220 -2.833 0.005 

Maximum wind speed, 
summer (m/s) 0.091 0.186 0.490 0.624 

Total precipitation, fall 
(cm) 0.016 0.025 0.639 0.523 
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Total precipitation, spring 
(cm) -0.044 0.021 -2.128 0.033 

Total precipitation, 
summer (cm) -0.203 0.028 -7.332 < 0.001 

Total precipitation, winter 
(cm) 0.020 0.013 1.535 0.125 

Total precipitation, 
previous year (cm) 0.067 0.006 10.524 < 0.001 

Year 0.033 0.012 2.770 0.006 

Burned in previous 2 
years -0.655 1.007 -0.650 0.516 

Burned in previous 5 
years 0.004 0.516 0.008 0.993 

Federally managed:Year 0.000 0.015 0.029 0.977 
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Table	S19. Logistic regression model results for the New Mexico model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -246.735 18.194 -13.561 < 0.001 

Federally managed 207.636 20.515 10.121 < 0.001 

Elevation (km) -0.896 0.146 -6.152 < 0.001 

Slope 0.012 0.004 3.148 0.002 

Aspect -0.001 0.000 -2.205 0.027 

Distance to roads (km) 0.195 0.018 10.834 < 0.001 

Population density (1990) -0.008 0.007 -1.154 0.248 

Average PDSI, summer -0.386 0.028 -13.820 < 0.001 

Average soil moisture, 
summer (mm) 0.007 0.007 1.044 0.297 

Average soil moisture, 
winter (mm) 0.028 0.003 8.969 < 0.001 

Maximum wind speed, fall 
(m/s) 0.054 0.086 0.629 0.530 

Maximum wind speed, 
summer (m/s) -0.525 0.094 -5.605 < 0.001 

Maximum wind speed, 
spring (m/s) 0.751 0.092 8.181 < 0.001 

Total precipitation, fall 
(cm) 0.088 0.009 10.133 < 0.001 

Total precipitation, spring 
(cm) -0.090 0.015 -5.865 < 0.001 

Total precipitation, 
summer (cm) -0.017 0.008 -2.204 0.028 

Total precipitation, winter 
(cm) 0.030 0.009 3.287 0.001 

Total precipitation, 
previous year (cm) 0.027 0.003 9.544 < 0.001 
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Year 0.118 0.009 13.073 < 0.001 

Burned in previous year -14.187 264.427 -0.054 0.957 

Burned in previous 2 
years 0.073 0.298 0.245 0.807 

Burned in previous 5 
years -0.636 0.514 -1.238 0.216 

Federally managed:Year -0.103 0.010 -10.096 < 0.001 
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Table	S20. Logistic regression model results for the Oregon model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -133.519 10.828 -12.331 < 0.001 

Federally managed 62.988 12.018 5.241 < 0.001 

Elevation (km) -0.672 0.082 -8.201 < 0.001 

Slope 0.022 0.002 9.003 < 0.001 

Aspect 0.000 0.000 -2.129 0.033 

Distance to roads (km) 0.506 0.030 16.711 < 0.001 

Population density (1990) -0.049 0.020 -2.442 0.015 

Average PDSI, winter 0.319 0.013 24.423 < 0.001 

Average PDSI, summer -0.346 0.015 -23.772 < 0.001 

Maximum temperature, 
fall (˚C) -0.034 0.018 -1.925 0.054 

Maximum temperature, 
spring (˚C) -0.472 0.022 -21.581 < 0.001 

Maximum temperature, 
summer (˚C) 0.478 0.021 22.456 < 0.001 

Maximum wind speed, fall 
(m/s) -1.586 0.094 -16.796 < 0.001 

Maximum wind speed, 
spring (m/s) 0.503 0.073 6.905 < 0.001 

Maximum wind speed, 
summer (m/s) 1.379 0.089 15.510 < 0.001 

Maximum wind speed, 
winter (m/s) -0.722 0.066 -10.872 < 0.001 

Total precipitation, fall 
(cm) -0.005 0.003 -2.120 0.034 

Total precipitation, 
summer (cm) -0.121 0.011 -10.897 < 0.001 

Year 0.062 0.005 11.370 < 0.001 
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Burned in previous year -3.424 0.710 -4.823 < 0.001 

Burned in previous 2 
years -2.547 0.580 -4.391 < 0.001 

Burned in previous 5 
years 0.174 0.216 0.803 0.422 

Federally managed:Year -0.031 0.006 -5.160 < 0.001 
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Table	S21. Logistic regression model results for the Utah model. The response variable is whether 
or not a point burned in a wildfire in a given year; years are treated as a continuous variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -68.151 13.230 -5.151 < 0.001 

Federally managed -22.023 16.628 -1.324 0.185 

Elevation (km) -0.661 0.149 -4.440 < 0.001 

Slope 0.014 0.004 3.952 < 0.001 

Aspect 0.000 0.000 1.509 0.131 

Distance to roads (km) 0.055 0.057 0.959 0.337 

Population density (1990) -0.032 0.038 -0.844 0.399 

Average PDSI, summer -0.242 0.029 -8.374 < 0.001 

Average soil moisture, fall 
(mm) -0.022 0.008 -2.725 0.006 

Average soil moisture, 
winter (mm) 0.007 0.003 2.244 0.025 

Minimum temperature, 
fall (˚C) 0.134 0.025 5.392 < 0.001 

Maximum temperature, 
winter (˚C) 0.077 0.019 4.082 < 0.001 

Maximum wind speed, fall 
(m/s) 0.171 0.097 1.755 0.079 

Maximum wind speed, 
summer (m/s) 0.028 0.106 0.262 0.794 

Total precipitation, fall 
(cm) -0.052 0.011 -4.769 < 0.001 

Total precipitation, spring 
(cm) -0.059 0.014 -4.082 < 0.001 

Total precipitation, winter 
(cm) -0.028 0.014 -2.038 0.042 

Total precipitation, 
summer (cm) -0.120 0.013 -9.008 < 0.001 
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Total precipitation, 
previous year (cm) 0.045 0.004 11.540 < 0.001 

Year 0.031 0.007 4.685 < 0.001 

Burned in previous year -0.258 0.584 -0.441 0.659 

Burned in previous 2 
years -0.281 0.584 -0.482 0.630 

Burned in previous 5 
years -1.006 0.712 -1.414 0.158 

Federally managed:Year 0.011 0.008 1.340 0.180 
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Table	S22. Logistic regression model results for the Washington model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -272.874 14.655 -18.620 < 0.001 

Federally managed 6.040 18.223 0.331 0.740 

Elevation (km) 1.449 0.166 8.728 < 0.001 

Slope 0.020 0.003 7.456 < 0.001 

Aspect 0.003 0.000 7.011 < 0.001 

Distance to roads (km) 0.195 0.041 4.799 < 0.001 

Population density (1990) -0.021 0.010 -2.097 0.036 

Average PDSI, summer -0.142 0.020 -7.028 < 0.001 

Average PDSI, winter -0.407 0.027 -15.245 < 0.001 

Maximum temperature, 
fall (˚C) -0.543 0.038 -14.230 < 0.001 

Maximum temperature, 
summer (˚C) 0.654 0.032 20.397 < 0.001 

Maximum wind speed, fall 
(m/s) 2.632 0.121 21.755 < 0.001 

Maximum wind speed, 
summer (m/s) 0.770 0.088 8.752 < 0.001 

Total precipitation, fall 
(cm) -0.029 0.005 -6.093 < 0.001 

Total precipitation, 
summer (cm) -0.076 0.014 -5.635 < 0.001 

Year 0.122 0.007 16.677 < 0.001 

Burned in previous 5 
years -13.759 362.285 -0.038 0.970 

Federally managed:Year -0.003 0.009 -0.320 0.749 
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Table	S23. Logistic regression model results for the Wyoming model. The response variable is 
whether or not a point burned in a wildfire in a given year; years are treated as a continuous 
variable. 

 Variable Estimate Standard 
error 

z value p-value 

Intercept -392.554 35.566 -11.037 < 0.001 

Federally managed 198.496 35.265 5.629 < 0.001 

Elevation (km) -0.436 0.183 -2.384 0.017 

Slope 0.030 0.005 6.094 < 0.001 

Aspect 0.000 0.000 -1.236 0.217 

Distance to roads (km) 0.147 0.030 4.845 < 0.001 

Population density (1990) -0.014 0.033 -0.408 0.683 

Average PDSI, summer -0.059 0.037 -1.609 0.108 

Average PDSI, winter -0.215 0.041 -5.207 < 0.001 

Average soil moisture, fall 
(mm) -0.027 0.016 -1.651 0.099 

Average soil moisture, 
winter (mm) 0.017 0.010 1.769 0.077 

Minimum temperature, 
fall (˚C) -0.164 0.038 -4.301 < 0.001 

Maximum temperature, 
winter (˚C) 0.233 0.031 7.385 < 0.001 

Maximum wind speed, fall 
(m/s) 0.426 0.101 4.238 < 0.001 

Total precipitation, fall 
(cm) -0.226 0.023 -9.639 < 0.001 

Total precipitation, spring 
(cm) -0.246 0.022 -11.387 < 0.001 

Total precipitation, 
summer (cm) -0.058 0.032 -1.817 0.069 

Total precipitation, winter 
(cm) -0.040 0.018 -2.209 0.027 
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Total precipitation, 
previous year (cm) 0.064 0.010 6.264 < 0.001 

Year 0.193 0.018 10.893 < 0.001 

Federally managed:Year -0.099 0.018 -5.616 < 0.001 
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Table	S24. Summaries of model fits for binomial regression models. Pseudo-R2 values calculated 
for each model using the delta method with the piecewiseSEM package in R (Lefcheck 2016). The 
marginal pseudo-R2 includes the variance of the fixed effects, while the conditional pseudo-R2 
includes the variance of both the fixed and random effects. 

Model Marginal pseudo-R2 Conditional pseudo-R2 

Arizona 0.02 0.02 

California 0.01 0.01 

Colorado 0.01 0.01 

Idaho 0.61 0.63 

Montana 0.02 0.02 

Nevada 0.04 0.04 

New Mexico 0.40 0.41 

Oregon 0.33 0.38 

Utah 0.17 0.19 

Washington 0.78 0.78 

Wyoming 0.03 0.04 

All-state 0.01 0.02 
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Figure	S3. Timber harvest on federal, non-federal public, and private or tribal land in the states of 
the western US, in thousands of MBF (thousand metric board feet). All data from the Bureau of 
Business & Economic Research (BBER 2016a; BBER 2016b; Hayes & Morgan 2016; McIver et al. 
2017; Simons & Morgan 2017; Hayes et al. 2018; Marcile 2019).  

 

To understand the patterns in burn probability in the context of temporal trends in 
land management, we assembled data on timber harvests on federal and private land in the 
western US. We looked at timber harvest because it is a common form of vegetation 
management that influences fuel availability and forest structure and composition. We 
compiled timber harvest data from the University of Montana’s Bureau of Business and 
Economic Research (BBER) for each state except for Nevada, which did not have data 
available through BBER (BBER 2016a; BBER 2016b; Hayes & Morgan 2016; McIver et al. 
2017; Simons & Morgan 2017; Hayes et al. 2018; Marcile 2019). In Nevada, there is very 
little industrial timber harvest (Menlove et al. 2016), so we did not include Nevada in our 
analysis of timber harvest. The limitations of the BBER timber harvest data include 
variations in the years of data available and the groupings of ownership types. The time 
series of timber harvest data available varied from state to state, beginning in 1979 for 
Idaho and not until 2002 for Oregon and Washington. For many of the states, timber 
harvests on private and tribal land are grouped together, while our data includes private 
forests but not forests on tribal land. 

We looked at timber harvest in ten of the eleven states to see if there were patterns 
in the harvest trends on federal and private land that might explain the different trends in 
wildfire probability across the states. In Wyoming, New Mexico, and Arizona, timber 
harvest on federal land increased from 2000-2014, while timber harvest on private and 
tribal land decreased. At the beginning of the time series, private and tribal timber harvest 
was greater than federal harvest, but federal harvest exceeded private by the end of the 
time series (Figure 3). In Montana and California, despite declines in harvests from private 
and tribal land, private and tribal harvests are still much greater than federal harvest. 
Oregon and Washington have similar patterns of decline and then recovery of private and 
tribal harvest in the last fifteen years, with much less harvest from federal lands, while in 
Colorado, federal harvest declined from the 1980s to the mid-2000s, but has since 
recovered. Idaho’s timber harvest on private and tribal land has remained relatively stable 
since 1979, while federal harvest dropped off sharply after 1990. In Utah, both federal and 
private/tribal harvests have declined, but there is more harvest on federal land. 
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Chapter 2 Appendix 

Table	S1. Reduction in bias in the matched dataset, as indicated by the standardized mean 
difference before and after matching. We matched grassland and shrub/scrubland sample 
points from grazed and ungrazed properties using the mean values from 2001-2005. The 
absolute values of the standardized mean differences for the matched dataset were all < 
0.25, indicating effective bias reduction (Schleicher et al., 2020). 
 

Variable 
Mean values, 
ungrazed  

Mean  
values, 
grazed  

Standardized 
mean 
differences, 
unmatched 

Standardized 
mean 
differences, 
matched 

Population density, 
2010 (people/km2) 5.790 1.427 0.106 0.102 
Population density, 
2000 (people/km2) 4.026 1.293 0.109 0.097 
Elevation (m) 314.043 344.228 -0.170 -0.160 
Slope (˚) 13.733 12.084 0.268 0.187 
Aspect 0.549 0.567 0.025 -0.051 
Distance to roads 
(m) 426.212 458.904 -0.357 -0.078 
Mean maximum fall 
wind speed (m/s) 2.838 2.843 0.148 -0.017 
Mean maximum 
winter wind speed 
(m/s) 2.830 2.879 0.114 -0.097 
Mean maximum 
spring wind speed 
(m/s) 3.579 3.627 0.045 -0.145 
Mean maximum 
summer wind speed 
(m/s) 3.548 3.542 -0.064 0.036 
Total fall 
precipitation (cm) 9.286 9.830 -0.153 -0.161 
Total winter 
precipitation (cm) 28.965 28.496 0.006 0.040 
Total spring 
precipitation (cm) 9.949 10.679 -0.264 -0.203 
Total summer 
precipitation (cm) 0.261 0.262 -0.265 -0.004 
Mean maximum fall 
temperature (˚C) 24.107 24.017 -0.203 0.073 
Mean maximum 
winter temperature 
(˚C) 15.486 15.178 0.381 0.144 
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Mean maximum 
spring temperature 
(˚C) 20.765 20.571 -0.151 0.118 
Mean maximum 
summer 
temperature (˚C) 29.227 29.537 -0.410 -0.079 
Mean minimum fall 
temperature (˚C) 10.503 10.483 0.090 0.021 
Mean minimum 
winter temperature 
(˚C) 4.528 4.413 0.311 0.083 
Mean minimum 
spring temperature 
(˚C) 7.847 7.791 0.047 0.048 
Mean minimum 
summer 
temperature (˚C) 14.105 14.438 -0.474 -0.207 
Mean fall PDSI 0.317 0.373 0.235 -0.114 
Mean winter PDSI 0.732 0.662 0.197 0.233 
Mean spring PDSI 0.485 0.464 0.365 0.049 
Mean summer PDSI 0.558 0.510 0.412 0.125 
Mean fall soil 
moisture (mm) 28.953 30.247 -0.154 -0.061 
Mean winter soil 
moisture (mm) 110.714 112.965 -0.128 -0.034 
Mean spring soil 
moisture (mm) 87.029 90.522 -0.119 -0.052 
Mean summer soil 
moisture (mm) 34.281 35.615 -0.135 -0.052 
Mean annual NPP 
(kg*C/m2) 0.633 0.621 0.242 0.049 
Latitude -2146328 -2139514 -0.085 -0.114 
Longitude  1717422 1705850 -0.218 0.060 

 
	 	



 
 

196 
 

Table	S2. Reduction in bias in the matched dataset, as indicated by the standardized mean 
difference before and after matching. We matched grassland, shrub/scrubland, and forest 
sample points from grazed and ungrazed properties using the mean values from 2001-
2005. The absolute values of the standardized mean differences for the matched dataset 
were all < 0.25, with the exception of average minimum summer temperature, indicating 
effective bias reduction (Schleicher et al., 2020). 
 

Variable 
Mean values, 
ungrazed  

Mean  
values, 
grazed  

Standardized 
mean 
differences, 
unmatched 

Standardized 
mean 
differences, 
matched 

Population density, 
2010 (people/km2) 3.670 1.927 0.109 0.045 
Population density, 
2000 (people/km2) 2.909 1.755 0.115 0.045 
Elevation (m) 352.482 359.807 -0.133 -0.038 
Slope (˚) 14.227 11.968 0.335 0.247 
Aspect 0.530 0.518 -0.025 0.031 
Distance to roads 
(m) 452.593 487.723 -0.210 -0.074 
Mean maximum fall 
wind speed (m/s) 2.839 2.807 0.171 0.098 
Mean maximum 
winter wind speed 
(m/s) 2.872 2.802 0.176 0.137 
Mean maximum 
spring wind speed 
(m/s) 3.590 3.576 0.053 0.040 
Mean maximum 
summer wind speed 
(m/s) 3.570 3.604 -0.005 -0.174 
Total fall 
precipitation (cm) 10.495 10.663 -0.024 -0.042 
Total winter 
precipitation (cm) 32.191 32.369 0.106 -0.013 
Total spring 
precipitation (cm) 11.278 11.681 -0.129 -0.100 
Total summer 
precipitation (cm) 0.315 0.364 -0.136 -0.195 
Mean maximum fall 
temperature (˚C) 23.951 24.084 -0.252 -0.109 
Mean maximum 
winter temperature 
(˚C) 15.156 14.713 0.358 0.210 
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Mean maximum 
spring temperature 
(˚C) 20.469 20.746 -0.216 -0.168 
Mean maximum 
summer 
temperature (˚C) 29.363 30.212 -0.428 -0.223 
Mean minimum fall 
temperature (˚C) 10.225 10.222 -0.014 0.003 
Mean minimum 
winter temperature 
(˚C) 4.283 4.116 0.268 0.120 
Mean minimum 
spring temperature 
(˚C) 7.500 7.590 -0.058 -0.073 
Mean minimum 
summer 
temperature (˚C) 13.964 14.411 -0.536 -0.274 
Mean fall PDSI 0.296 0.191 0.217 0.208 
Mean winter PDSI 0.726 0.723 0.211 0.012 
Mean spring PDSI 0.409 0.303 0.307 0.244 
Mean summer PDSI 0.533 0.442 0.427 0.246 
Mean fall soil 
moisture (mm) 35.357 36.086 -0.035 -0.029 
Mean winter soil 
moisture (mm) 129.480 129.732 -0.016 -0.003 
Mean spring soil 
moisture (mm) 106.201 105.058 -0.005 0.015 
Mean summer soil 
moisture (mm) 40.837 40.231 -0.027 0.021 
Mean annual NPP 
(kg*C/m2) 0.681 0.644 0.323 0.133 
Latitude -2153551 -2156053 -0.155 0.038 
Longitude  1743934 1780135 -0.149 -0.177 
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Table	S3.	Full table of coefficient estimates for the logistic regression models from Table 1. 
The models estimate burn probability in the matched dataset of grasslands and 
shrub/scrublands (with grazed and ungrazed sample points), the grazed-only dataset (all 
grassland shrub/scrubland points with grazing), and the matched dataset of grasslands, 
shrub/scrublands, and forests. Cluster-robust standard errors are in parentheses below 
each coefficient estimate. The Central Coast serves as the reference region. For the datasets 
with grasslands and shrub/scrublands, grasslands are the reference land cover type. For 
datasets with grasslands, shrub/scrublands, and forests, forests are the reference.  
* p<0.05, ** p<0.01, *** p<0.001. 

Variable	

Coefficient	estimates	

Matched dataset, 
grassland and 
shrub/scrubland  

Grazed-only 
dataset, grassland 
and 
shrub/scrubland  

Matched dataset, 
grassland, 
shrub/scrubland, and 
forest 

Intercept 
149.826 
(70.041) 

277.625** 
(92.748) 

142.643* 
(69.307) 

Grazed 
0.978* 

(0.378) 
 0.802* 

(0.381) 

AUY per grazed acre 
-14.470 

(10.431) 
22.749 

(12.846) 
-18.406 

(11.361) 
Central Valley & 
Foothills Region 

7.907* 
(3.653) 

12.223** 
(3.418) 

8.198* 
(3.507) 

North Bay Region 
11.186* 
(5.177) 

9.968* 
(3.993) 

11.936* 
(4.868) 

AUY per grazed acre:  
Central Valley & 
Foothills 

22.686* 

(10.156) 
-19.130 

(13.302) 

22.188 
(11.956) 

AUY per grazed acre:  
North Bay 

5.739 
(11.243) 

-27.783* 
(12.057) 

14.577 
(11.086) 

Grassland  
 
 

-0.958* 
(0.407) 

Shrub/scrub 
-0.577* 

(0.245) 
0.926* 

(0.363) 
-1.434*** 
(0.315) 

AUY per grazed acre:  
Grassland   

7.555 
(11.549) 

AUY per grazed acre: 
Shrub/scrub 

9.583 
(10.024) 

-29.266** 
(10.688) 

16.096* 
(7.294) 

Central Valley & 
Foothills: Grassland   

0.511 
(0.720) 

Central Valley & 
Foothills: Shrub/scrub 

1.051* 
(0.488) 

-0.326 
(0.577) 

1.781** 
(0.581) 

North Bay: 
Grassland   

0.971 
(0.567) 

North Bay: 
Shrub/scrub 

0.882* 

(0.385) 
-0.108 

(0.683) 
1.714*** 
(0.351) 
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AUY per grazed acre:  
Central Valley & 
Foothills: 
Grassland  

 
 

-2.818 
(12.112) 

AUY per grazed acre: 
Central Valley & 
Foothills: 
Shrub/scrub 

-10.603 

(9.791) 
30.524** 
(11.617) 

-13.278 
(7.757) 

AUY per grazed acre: 
North Bay: 
Grassland   

-12.599 
(12.224) 

AUY per grazed acre: 
North Bay: 
Shrub/scrub 

-7.830 

(10.660) 
-0.108 

(0.683) 

-20.130* 
(7.851) 

Population density in 
2000 (people/km2) 

-0.003 
(0.004) 

0.002 
(0.001) 

-0.001 
(0.003) 

Distance to roads (m) 
1.506 * 10-4 

(0.000) 
-1.430*10-4 

(0.000)  
2.770*10-4* 

(0.000) 

Elevation (m) 
1.529 * 10-4 

(0.001) 
0.001* 

(0.001) 
-1.218*10-4 

(0.001) 

Slope (˚) 
0.033*** 

(0.007) 
0.033** 

(0.011) 
0.035*** 
(0.008) 

Aspect (SRAI) 
-0.019 

(0.202) 
-0.260 

(0.174)  
0.001 

(0.177) 

PDSI, fall  
0.018 

(0.315) 
-0.254 

(0.289) 
-0.242 

(0.277) 
Total precipitation, fall 
(cm) 

0.263*** 

(0.059) 
0.303** 

(0.114) 
0.210*** 
(0.059) 

Total precipitation, 
spring (cm) 

-0.133* 
(0.052) 

-0.244 

(0.136) 
-0.095 

(0.057) 
Total precipitation, 
summer (cm) 

0.824* 
(0.415) 

1.791*** 
(0.514) 

0.615 
(0.435) 

Total precipitation, 
winter (cm) 

0.181** 

(0.058) 
0.118* 

(0.055) 
0.117** 
(0.041) 

Soil moisture, summer 
(mm) 

-0.005 
(0.014) 

3.596*10-4 
(0.021) 

0.009 
(0.012) 

Minimum temp, fall 
(˚C) 

-0.098 
(0.247) 

-1.005 
(0.572) 

0.073 
(0.251) 

Maximum temp, fall 
(˚C) 

0.052 
(0.225) 

1.268** 

(0.421) 
-0.129 

(0.204) 
Max wind speed, 
summer (m/s) 

0.568* 

(1.248) 
-0.244 

(2.608) 
0.959 

(1.168) 
Max wind speed, fall 
(m/s) 

0.251 
(1.127) 

-5.609* 

(2.489) 
-0.958 

(1.030) 
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Max wind speed, 
winter (m/s)  

9.384*** 

(2.381) 
 

Previous year 
precipitation (cm) 

-0.097* 
(0.047) 

-0.065 

(0.034) 
-0.049 

(0.037) 

NPP (kg*C/m2) 
-3.776*** 

(0.663) 
-4.714*** 

(0.922) 
-4.239*** 
(0.647) 

Latitude 
4.780*10-5 

(0.000) 
1.257*10-4** 

(0.000)  
3.970*10-5 

(0.000) 

Longitude 
-1.285*10-4** 

(0.000) 
-2.300*10-4*** 

(0.000) 
-1.223*10-4** 

(0.000) 

Latitude: Longitude 
-4.250*10-11* 

(0.000) 
-9.040*10-11** 

(0.000)  
-3.830 *10-11* 

(0.000) 
Burned in previous 
year 

-4.225*** 
(1.184) 

-5.214*** 

(1.200) 
-4.772*** 
(0.945) 

Burned in previous 5 
years 

-0.912 
(0.962) 

-2.462 

(1.400) 
-1.431 

(1.041) 

2002 
2.535 

(2.400)  
0.167 

(1.729) 

2003 
5.673** 

(1.658) 
13.678*** 

(3.334) 
5.554** 
(1.701) 

2004 
3.161 

(1.925) 
13.145** 

(3.790) 
2.916 

(1.906) 

2005 
-3.837 

(2.961) 
10.797* 

(5.444) 
-0.350 

(2.735) 

2006 
4.483* 

(2.067) 
15.239*** 

(4.110) 
4.739* 

(2.076) 

2007 
6.671** 
(2.235) 

15.436*** 

(2.753) 
4.904** 
(1.662) 

2008 
-2.301 

(2.281) 
2.273 

(4.343) 
-0.861 

(2.405) 

2009 
5.737* 

(2.490) 
13.122*** 

(3.696) 
5.024* 

(2.068) 

2010 
-1.556 

(1.872) 
12.203** 

(3.831) 
0.181 

(2.017) 

2011 
1.637 

(1.509) 
12.043*** 

(3.411) 
1.886 

(1.630) 

2012 
4.494 

(3.273) 
10.343** 

(3.170) 
1.448 

(2.438) 

2013 
3.391 

(2.491) 
12.230*** 

(3.256) 
2.394 

(2.236) 

2014 
0.438 

(2.850) 
8.393* 

(3.446) 
-0.192 

(2.270) 

2015 
1.355 

(2.620) 
8.788* 

(4.220) 
1.064 

(2.459) 
2016 4.911** 8.812** 4.583** 
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(1.597) (2.821) (1.415) 

2017 
0.035 

(1.917) 
7.981 

(4.772) 
2.444 

(2.068) 
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Chapter 3 Appendix 

Table	S1. Documents assessed in the discourse analysis. 

Scale Management Policy Gray Literature Advocacy 
Local 
(Jamanxim 
National 
Forest) 

2 4 1 9 

State (Pará) 0 1 3 7 
National 
(Brazil) 

3 7 19 5 
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Table	S2. Themes and variables from the discourse analysis.  

Theme Variables 

Accessibility - Distance to roads 
- Elevation, slope, aspect 
- Distance to navigable rivers 
- Distance to cities (markets) 

 

Agricultural/livestock expansion - Mechanized agriculture 
- Small-scale agriculture 
- Cattle grazing 

Infrastructure development - Proposed dams 
- Proposed railroads 
- Transmission lines 

Population pressure - Migration 
- Population growth 
- Settlements 

Physical suitability for 
agriculture/livestock 

- Climate 
- Soil quality 

 

Economic development - Poverty rate 

Forest degradation - Fires 

Globalization - Lack of commodity traceability 

Land tenure - Agrobusiness expropriation 
- Indigenous land titling 
- Land titling 
- Land grabbing 
- Pre-existing land claims in the 

protected area 
- Smallholder occupation 

Non-state governance - Level of local participation 
- NGO project interventions 
- Environmental education and public 

outreach 

Protected area downgrading, 
downsizing, and degazettement 

- Proposed PADDD events 
- Implemented PADDD events 
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Resource extraction - Illegal logging 
- Logging 
- Mining 

Urbanization - Urbanization rate 

State governance - Enforcement 
- Monitoring 
- Lack of state capacity 
- Regulatory jurisdiction 
- Territorial planning 
- Governance quality 

Economic incentives for forest 
conservation 

- Boycotts 
- Carbon markets 
- Payments for ecosystem services 
- REDD+ 

Government policies - Agricultural policies 
- Climate change policy 
- Forestry policies 
- Land use policies 
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Table	S3. Coefficient estimates for all models, with standard deviations in parenthesis. * p < 
0.05, ** p < 0.01, *** p < 0.001. 

Variable LUC model DA model  LUC & DA 
model 

Refined LUC & 
DA model 

Intercept 11.358*** 
(0.559) 

-0.795*** 

(0.044) 
8.504*** 
(0.924) 

6.723*** 
(0.825) 

Aspect (˚) 1.390*10-4 
(0.000) 

 2.063*10-4 
(0.000) 

 

Slope (˚) -0.048*** 
(0.003) 

 -0.055*** 
(0.003) 

-0.055*** 
(0.003) 

Elevation (m) -0.003*** 
(0.000) 

 -0.002*** 
(0.000) 

-0.002*** 
(0.000) 

Distance to 
roads (m) 

-0.009*** 
(0.000) 

 -0.001** 
(0.000) 

-0.001** 
(0.000) 

Distance to 
rivers (m) 

-2.703*10-7 
(0.000) 

 1.601*10-5*** 
(0.000) 

 

Distance to 
mining 
concessions 
(m) 

-0.003*** 
(0.000) 

 -2.901*10-4 
(0.000) 

-8.972*10-5 
(0.000) 

Distance to 
cities (m) 

1.259*10-6*** 
(0.000) 

 -5.114*10-6*** 
(0.000) 

-3.436*10-6*** 
(0.000) 

Crop suitability 0.020*** 
(0.004) 

 -0.009* 
(0.004) 

-0.007 
(0.004) 

Population 
density (per 
km2) 

-0.872*** 
(0.046) 

 0.452 
(0.639) 

 

Soil moisture 
(mm) 

-0.706*** 
(0.028) 

 -0.423*** 
(0.042) 

-0.334*** 
(0.041) 

Proportion of 
non-forest 
neighboring 
pixels  

0.059*** 
(0.001) 

 0.041*** 
(0.001) 

0.041*** 
(0.001) 

10 km buffer 0.796*** 
(0.026) 

 0.477*** 
(0.051) 

0.427*** 
(0.050) 

20 km buffer 0.799*** 
(0.029) 

 0.344*** 
(0.057) 

0.307*** 
(0.057) 

PADDD 
proposal 

 -0.079** 
(0.026) 

0.274*** 
(0.046) 

0.250*** 
(0.045) 

Proportion of 
non-allocated 
public land 

 -0.118 
(0.162) 

-3.718 
(2.265) 

-1.524*** 
(0.217) 

Distance to 
unauthorized 

 -2.386*10-6*** 
(0.000) 

5.729*10-6*** 
(0.000) 
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mining sites 
(m) 
Distance to 
existing 
agriculture (m) 

 -0.002*** 
(0.000) 

-0.001*** 
(0.000) 

-0.001*** 
(0.000) 

Distance to 
fires (m) 

 -0.002*** 
(0.000) 

-0.002*** 
(0.000) 

-0.002*** 
(0.000) 

Fire density 
(per km2) 

 0.047*** 
(0.001) 

0.049*** 
(0.001) 

0.049*** 
(0.001) 

Distance to 
proposed 
railroads (m) 

 -1.183*10-5*** 
(0.000) 

2.006*10-6 
(0.000) 

-1.871*10-6 
(0.000) 

Presence of 
agricultural 
reform 
settlements 

 -0.121** 
(0.042) 

0.125** 
(0.046) 

0.105* 
(0.045) 
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Table	S4.	Remote sensing accuracy assessment. 

Type of 
accuracy 

Ag Forest Bare soil Built-up Wetland Water Mean 

Producer’s 0.87 0.98 0.92 0.95 0.94 0.97 0.94 

User’s 0.94 0.97 0.78 0.84 0.95 0.95 0.91 
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Table	S5. Transition probability matrix. 

 2018 Land cover class 

Ag Forest Bare soil Built-up Wetland Water 

2008 
Land 
cover 
class 

Ag 0.698 0.181 0.107 0.005 0.009 0.000 

Forest 0.050 0.940 0.007 0.000 0.003 0.000 

Bare 
soil 

0.680 0.139 0.165 0.014 0.002 0.000 

Built-up 0.296 0.044 0.163 0.496 0.000 0.000 

Wetland 0.057 0.065 0.000 0.000 0.877 0.000 

Water 0.004 0.108 0.000 0.000 0.000 0.888 
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