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abstract

PURPOSE Although NRG1 fusions are oncogenic drivers across multiple tumor types including lung cancers,
these are difficult to study because of their rarity. The global eNRGy1 registry was thus established to char-
acterize NRG1 fusion–positive lung cancers in the largest and most diverse series to date.

METHODS From June 2018 to February 2020, a consortium of 22 centers from nine countries in Europe, Asia,
and the United States contributed data from patients with pathologically confirmed NRG1 fusion–positive lung
cancers. Profiling included DNA-based and/or RNA-based next-generation sequencing and fluorescence in situ
hybridization. Anonymized clinical, pathologic, molecular, and response (RECIST v1.1) data were centrally
curated and analyzed.

RESULTS Although the typified never smoking (57%), mucinous adenocarcinoma (57%), and nonmetastatic
(71%) phenotype predominated in 110 patients with NRG1 fusion–positive lung cancer, further diversity,
including in smoking history (43%) and histology (43% nonmucinous and 6% nonadenocarcinoma), was
elucidated. RNA-based testing identified most fusions (74%). Molecularly, six (of 18) novel 59 partners, 20
unique epidermal growth factor domain–inclusive chimeric events, and heterogeneous 59/39 breakpoints
were found. Platinum-doublet and taxane-based (post–platinum-doublet) chemotherapy achieved low ob-
jective response rates (ORRs 13% and 14%, respectively) and modest progression-free survival medians
(PFS 5.8 and 4.0 months, respectively). Consistent with a low programmed death ligand-1 expressing
(28%) and low tumor mutational burden (median: 0.9 mutations/megabase) immunophenotype, the activity of
chemoimmunotherapy and single-agent immunotherapy was poor (ORR 0%/PFS 3.3 months and ORR 20%/PFS
3.6 months, respectively). Afatinib achieved an ORR of 25%, not contingent on fusion type, and a 2.8-month
median PFS.

CONCLUSION NRG1 fusion–positive lung cancers were molecularly, pathologically, and clinically more het-
erogeneous than previously recognized. The activity of cytotoxic, immune, and targeted therapies was dis-
appointing. Further research examining NRG1-rearranged tumor biology is needed to develop new therapeutic
strategies.

J Clin Oncol 39:2791-2802. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Gene fusions are enriched in non–small-cell lung
cancers (NSCLCs). Many of these fusions encode
chimeric oncoproteins that drive cancer growth.1-4

Activating fusions involving ALK,5-7 ROS1,8-11 RET,12-15

NTRK1, NTRK2, or NTRK32,16,17 result in constitutive
kinase domain activation that drives downstream
pathway signaling, promoting lung cancer cell pro-
liferation and survival. Most importantly, the identi-
fication of these fusions matches patients to highly

active targeted therapies that are approved by one or
more regulatory agencies around the world.2-4

NRG1 fusions are a relatively recent addition to this list
of fusion oncogenes.18-21 Structurally, these alterations
are distinct from the aforementioned fusions. The
transmembrane chimeric oncoprotein contains the
epidermal growth factor or epidermal growth factor–
like binding domain of NRG1, a known ligand of
ERBB3. Binding of the oncoprotein to ERBB3 results
in the formation of heterodimers between ERBB3 and
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other ERBB family members, thereby activating oncogenic
signaling and cancer growth. Of these heterodimers,
ERBB3-ERBB2 is the most transforming. Therapeutic
targeting of these fusions has thus centered on the inhi-
bition of ERBB3 and/or ERBB2.22-29 For example, indi-
vidual case reports or small series have noted clinical
benefit with the pan-ERBB1/2/4 tyrosine kinase inhibitor
afatinib in selected patients.22,23,25,26,30

Although NRG1 fusions were first discovered in lung
cancers in 2014,19 the clinical, pathologic, and molecular
features of these cancers are yet to be comprehensively
characterized in a large series.23,31 In addition, the activity
of many systemic therapies in this molecularly enriched
cohort of patients has not been well-described. To address
this unmet need, we formed the eNRGy1 global multicenter
consortium of thoracic oncology investigators to contribute
data on patients with NRG1 fusion–positive lung cancers to
a central registry.

METHODS

eNRGy1 Global Multicenter Registry

Investigators taking part in the consortium were initially
identified on the basis of their contributions to existing
registries for other molecularly defined lung cancer
subtypes, including those with RET rearrangements,14

BRAF mutations,32 HER2 mutations,33,34 and ROS1
rearrangements.35 All investigators were certified in good
clinical practice and obtained ethics review board ap-
proval through their individual institutions.

Eligible Patients

Patients were considered eligible for registry inclusion if
they had a pathologically confirmed diagnosis of lung
cancer with an NRG1 fusion as determined by testing in an
accredited laboratory. Acceptable testing methods for

NRG1 fusion detection included fluorescence in situ hy-
bridization using the Agilent, Clinisciences, or ZytoVision
assays (fusion-positive tumors were defined as those with
split signals or isolated red [39] signals in $ 15% of enu-
merated tumor cells)36; DNA-based and/or RNA-based
next-generation sequencing (NGS) using MSK-IMPACT,
FoundationOne, Caris NGS, ION Ampliseq, Oncomine,
StrataNGS, or Archer; reverse transcription-polymerase
chain reaction (PCR); or through detection of imbal-
anced gene expression via nCounter gene fusion panels
(NanoString Technologies, Seattle, WA).

Clinicopathologic Data

Investigators were asked to record data on patient demo-
graphics (including sex, age at diagnosis, smoking habits,
and ethnicity) and tumor pathologic features (including
stage, histology as determined by a local pathologist, and
NRG1 fusion partner). Treatment history, including the
date of diagnosis, treatments received, dates of progres-
sion, and survival status were documented. For survival
analysis, patients were followed through February 2020.
Best overall response to treatment was determined
according to RECIST version 1.1, which was assessed
locally at each institution.

Immunophenotype

Programmed death ligand-1 (PD-L1) expression in tumor
cells was determined by immunohistochemistry.37 Be-
cause of the variability in measures of tumor mutational
burden (TMB) using different sequencing assays,38-40 TMB
was only collected for those patients whose tissue under-
went sequencing using a single NGS assay, MSK-IMPACT.
MSK-IMPACT is a targeted, hybrid capture-based NGS
DNA assay that covers up to 468 cancer-related genes.41

This assay has been extensively validated for the assess-
ment of TMB.40,42,43 The TMB of NRG1 fusion–positive

CONTEXT

Key Objective
The goals of the eNRGy1 global multicenter registry are to characterize the features of NRG1 fusion–positive lung cancers

and elucidate the clinical activity of systemic therapy in a centrally curated real-world database of patients with these rare
cancers.

Knowledge Generated
NRG1 fusion–positive lung cancers are pathologically, clinically, and molecularly more diverse than previously recognized.

Many fusions are first detected by RNA-based sequencing. A variety of unique chimeric events are identified. Most
tumors are characterized by no or low programmed death ligand-1 expression and low tumor mutational burden. The
activity of a variety of cytotoxic, immunotherapy, and targeted therapy regimens is modest at best.

Relevance
Comprehensive sequencing to identify NRG1 fusions should capture molecularly heterogeneous events and not be biased

toward particular clinical or pathologic features. To develop novel therapeutic strategies, stakeholders should prioritize
research into the underexplored biology of NRG1 fusion–positive tumors and the development of rationally designed
drugs.
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tumors was compared with that recorded for all other lung
cancers that underwent sequencing using MSK-IMPACT.

Data Collection and Analysis

Investigators from the global consortium submitted ano-
nymized data to a database maintained at one institution
between June 2018 and February 2020. Categorical var-
iables were compared using Fisher’s exact tests. Contin-
uous variables were compared using Mann-Whitney
testing. Progression-free survival (PFS) was assessed from
therapy initiation until radiologic progression (by RECIST
v1.1) or death. Overall survival (OS) was assessed from the
date of initial diagnosis through death. Survival analyses
were carried out according to the Kaplan-Meier method,
with surviving patients censored at the date of last follow-up.

Statistical analyses were performed using GraphPad Prism
version 8.4.2 (San Diego) or R version 3.4.0 (R Project for
Statistical Computing, Vienna, Austria). STATA (version 16,
College Station, TX) was used to calculate confidence in-
tervals for Kaplan-Meier curves. The results were consid-
ered statistically significant if they fell below the P 5 .05
threshold.

RESULTS

Clinicopathologic Features

Data from 110 patients with NRG1 fusion–positive lung
cancers were contributed by a total of 22 different centers
from nine countries in Europe, Asia, and the United States.
Demographics are summarized in Table 1. Themedian age
was 64 years. The majority of patients were either Asian
(52%) or White (46%). Most patients (57%) were never
smokers. In patients with a prior or current history of
smoking (n 5 36), the median pack-year history was 37.

At the time of diagnosis, most (71%, n 5 58/82) patients
had nonmetastatic (stages I-III) disease. In patients with
metastatic disease diagnosed at any time during their
disease course (n 5 44), the most common sites of me-
tastasis were the lung (71%, n 5 31/44), bone (34%,
n 5 15/44), and lymph nodes (23%, n 5 10/44). Intra-
thoracic metastases (involving the mediastinum [2%,
n 5 1/44], the pleura [16%, n 5 7/44], the contralateral
lung [71%, n 5 31/44], and lymph nodes [23%, n 5 10/
44]) were frequent (77%, n 5 34/44). Extrathoracic me-
tastases were found in 43% (n 5 19/44) of patients. The
frequency of metastases and their sites are shown in
Figure 1A and the Data Supplement (online only). Ade-
nocarcinoma was the most common histology, found in
94% (n 5 103/110) of patients. In adenocarcinomas, in-
vasive mucinous adenocarcinoma (IMA) was the most
frequent (57%) subtype as shown in Figure 1B.

Kaplan-Meier plots of OS are shown in Figure 1C and the
Data Supplement by stage at diagnosis. The median OS by
stage was not reached (95% CI, 51.5 to undefined) for
stage I (n 5 26) and was 52.9 months (95% CI, 38.8 to

TABLE 1. Clinicopathologic Characteristics
Characteristic No. (%), (N 5 110)

Sex

Male 42 (41)

Female 62 (59)

Median age (range), years 64 (29-88)

Ethnicity

Asian 43 (52)

White 38 (46)

Black 2 (2)

Smoking status

Never 48 (57)

Former 25 (30)

Current 11 (13)

Median pack-years (range) 37 (1-135)

Stage at diagnosis

I 26 (32)

II 19 (23)

III 13 (16)

IV 24 (29)

Histology

Adenocarcinoma 103 (94)

Invasive mucinous 59 (57)

Invasive nonmucinous 29 (28)

Others or unspecified 15 (15)

Adenosquamous 1 (, 1)

Squamous 4 (4)

Large cell neuroendocrine 1 (, 1)

NSCLC (NOS) 1 (, 1)

Geographic distribution

United States 47 (43)

South Korea 21 (19)

France 14 (13)

Italy 12 (11)

Japan 7 (6)

China 6 (5)

Germany 1 (, 1)

Sweden 1 (, 1)

Taiwan 1 (, 1)

NOTE. The percent frequency of individual features is based on the
denominator of patients for whom information is known: sex (n5 104),
median age (n 5 104), ethnicity (n 5 83), smoking status (n 5 84),
median pack-year (n5 84), stage at diagnosis (n5 82), and histology
(n 5 110). The frequency of missing data on individual features is as
follows: sex, n 5 6 (5%); median age, n 5 6 (5%); ethnicity, n 5 27
(25%); smoking status, n 5 26 (24%); median pack-year, n 5 26
(24%); stage at diagnosis, n 5 28 (25%); and histology, n 5 0 (0%).
Abbreviations: NOS, not otherwise specified; NSCLC, non–small-cell

lung cancer.
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undefined) for stage II (n5 19), 78.2months (95%CI, 11.0
to undefined) for stage III (n5 13), and 15.5 months (95%
CI, 10.3 to 64.5) for stage IV (n 5 24).

Fusion Diagnosis

RNA-based testing was the most common method that
identified NRG1 fusions: 74% were detected by RNA-
based assays and 26% were detected by DNA-based as-
says (Fig 2A). Of the RNA-based assays, NRG1 fusions
were most commonly identified by amplicon-based RNA
sequencing using anchored multiplex PCR (62%, n 5 50/
81) followed by reverse transcription-PCR (27%, n5 22/81)
and expression analysis using nCounter (11%, n 5 9/81).

Using DNA-based assays, NRG1 fusions were almost
equally detected by NGS (52%, n 5 15/29) and fluores-
cence in situ hybridization (48%, n 5 14/29). When

detected by NGS, the majority of NRG1 fusions were de-
tected using hybrid capture-based testing (93%, n 5 14/
15) compared with amplicon-based testing (7%, n5 1/15).

Molecular Features

A plot of the various NRG1 fusions identified is shown in
Figure 2B and summarized in the Data Supplement. Up-
stream gene partners were identified in 92 fusions (84%),
and breakpoints in 67 fusions (61%). Eighteen unique
upstream gene partners were identified, and 13 with known
exonic breakpoints are depicted in Figure 2C. The most
common upstream partners were CD74 (41%) and
SLC3A2 (20%). Less common partners were SDC4,
FGFR1, ATP1B1, CADM1, DIP2B, F11R, FLYWCH1,
ITGB1, KRAS, MDK, MRPL13, PLCG2, RBPMS, TNC,
VAMP2, and VAPB.

Brain 21%

Retina 2%

Sinus 2%

Lung 71%
Mediastinum 2%

Lymph nodes 23%
Pleura 16%

Soft tissue 2%

Bone 34%
Muscle 2%

Liver 9%
Adrenal gland 9%
Kidney 5%
Peritoneum 2%
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FIG 1. Clinicopathologic features. (A) The frequency of metastasis to selected anatomic sites is shown for patients with NRG1 fusion–positive lung
cancers. (B) The histologic subtypes of 103 NRG1 fusion–positive adenocarcinomas are shown. These are divided into invasive mucinous ade-
nocarcinomas, noninvasive mucinous adenocarcinomas, and other subtypes. (C) Kaplan-Meier curves of OS are shown for stage I (blue), stage II
(red), stage III (green), and stage IV (orange) disease at diagnosis. The median duration of follow-up was 32 months (range, 1-179 months). NR, not
reached; OS, overall survival; U, undefined.
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The various breakpoints as reported by local molecular
testing assays are shown in Figure 2D for 20 unique chi-
meric events. For CD74, the breakpoint occurred most
commonly after exon 6, followed by exon 8 and exon 7. For
SLC3A2, the breakpoint occurred most commonly after
exon 5. ForNRG1, the breakpoint most commonly involved
exon 6, followed by exons 4 and 5, followed by exon 2. All
NRG1 fusions included the EGF domain that binds ERBB3.

NRG1 fusions were mutually exclusive with other known
oncogenic drivers in themajority of patients (94%, n5 103/
110). In the remaining seven patients (Data Supplement), a
concurrent driver was identified. Four had hotspot KRAS

mutations (KRAS G12C, n 5 1; KRAS G12V, n 5 1; KRAS
G12D, n 5 2), all of which are drivers known to occur in
IMAs. Three had either an EGFR mutation (EGFR L858R,
n 5 2) or an ALK fusion (EML4-ALK variant 3, n 5 1). In
three patients (Data Supplement), the concurrent driver
was clearly present de novo. Two patients with surgically
resected stage IB/IIB NRG1 fusion–positive IMAs had a
concurrent KRAS G12D substitution found at the time of
surgery (with no preceding neoadjuvant therapy). One
patient had NRG1 and ALK fusions that were both found
in the same sample acquired at the diagnosis of meta-
static disease before any systemic therapy. This patient
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FIG 2. Molecular features. (A) The primary assay that identified the NRG1 fusion in cancers from 110 patients in this registry is divided into RNA-based
(blue) and DNA-based (red) assays. Below each corresponding bar, a list and number of the individual assays are shown. (B) A Circos plot of the various
NRG1 fusions detected and their corresponding upstream partners is shown. The intensity of the red bars in the inner circle represents the frequency of
each fusion event, with darker bars representing more common fusions and lighter bars representing less common fusions. (C) The frequency of
upstream partners is shown. The most common 59 partners—CD74, SLC3A2, SDC4, and FGFR1—are shown individually, whereas less common
partners are aggregated into other partners (green). (D) When known, the exon that precedes the 59 breakpoint is shown in green along with the
frequency of each event. Exons and exon numbers are abbreviated as eX (e for exon and X for exon number), and events that occur in more than 10
fusions in aggregate are in boldface. The structure of the corresponding 39 NRG1 gene is shown, with the first exon shown after the breakpoint noted
above each blue bar. EGF domains are depicted as orange boxes. EGF, epidermal growth factor; FISH, fluorescence in situ hybridization; NGS, next-
generation sequencing; PCR, polymerase chain reaction.
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responded to crizotinib for 13 months, followed by ceritinib
for 18 months.

Immunophenotype

Tumor PD-L1 status was known for 46 of the 110 patients
(42%) and is shown in Figure 3A. The antibodies used for
PD-L1 testing were 22C3 (n 5 26), E1L3N (n 5 14), and
QR1 (n5 4), with testing on two tumors carried out using an
unspecified assay. High PD-L1 expression (50% or greater)
was rare (4%, n 5 2/46). The majority of tumors had either
no expression of PD-L1 in 72% (n 5 33/46) of tumors or
PD-L1 expression of 1%-49% in 24% (n 5 11/46) of tumors.

NRG1 fusions were also characterized by low TMB as
shown in Figure 3B. As measured by MSK-IMPACT, the
median TMB ofNRG1 fusion–positive lung cancers was 0.9
mutations/megabase (range, 0-2.6; n5 11). This was lower
than that in patients with ALK (1.8 mutations/megabase,
P 5 .03; n 5 157), ROS1 (2.6 mutations/megabase,
P 5 .0008; n 5 85), RET (2.6 mutations/megabase,
P 5 .0006; n 5 95), and NTRK1/2/3 (4.9 mutations/
megabase, P 5 .003; n 5 13) fusion–positive lung can-
cers. Similarly, the median TMB of NRG1 fusion–positive
was lower (P, .0001) than that of 5,380 lung cancers (5.9
mutations/megabase) that did not harbor fusions involving
ALK, ROS1, RET, or NTRK.

Chemotherapy and Immunotherapy Activity

The activity of systemic therapy was assessed in patients
either diagnosed with or who developed metastatic disease
during the course of their disease (Data Supplement).
Outcomes are summarized in Table 2. In evaluable patients
who received platinum-doublet–based chemotherapy,
many of whom received pemetrexed, only 13% (n 5 2/15)
had a response; the disease control rate was 60% (n 5 9/
15). The median PFS was 5.8 months (95% CI, 2.2 to 9.8;
range, 0.7-12.1 months; Fig 4A and Data Supplement). In
patients who received taxane-based chemotherapy in the
post–platinum-doublet setting, one response (14%, n5 1/7)
was observed and the most common outcome was pro-
gressive disease (71%, n 5 5/7). The median PFS was 4.0
months (95% CI, 0.8 to 5.3; range, 0.8-5.5 months; Fig 4B).

Consistent with the immunophenotype of these cancers,
the activity of single-agent immune checkpoint inhibition
was modest (Data Supplement, Figs 4C and 4D). In pa-
tients evaluable for response, the most common outcome
was progressive disease (60%, n 5 3/5). Only one patient
had a partial response that lasted more than 11 months.
The median PFS was 3.6 months (95% CI, 0.9 to unde-
fined; range, 0.9-11.2 months; Data Supplement). No
responses (0%, n5 0/9) were observed in patients treated
with chemoimmunotherapy (most of whom received car-
boplatin, pemetrexed, and pembrolizumab), for whom
progressive disease occurred in more than half of patients
(56%, n5 5/9). The median PFS was 3.3 months (95% CI,
1.4 to 6.3; range, 1.4-15.2 months; Fig 4D).

Afatinib Activity

As NRG1 fusions are dependent on ERBB signaling, sev-
eral investigators have explored the use of afatinib, a pan-
ERBB inhibitor, in patients with these cancers.22,25,26,30,44

A response was achieved in 25% (n 5 5/20, all partial re-
sponses) of evaluable patients treated with afatinib (Table 2
and Data Supplement). The fusion partners were known in
four of five patients, including CD74 (n 5 2), SLC3A2
(n 5 1), and SDC4 (n 5 1). Stable disease occurred in
another 15% (n 5 3/20) of patients. The most common
response to afatinib was progressive disease, which oc-
curred in 60% (n5 12/20) of patients. The response rate in
cancers with CD74-NRG1 and non-CD74-NRG1 fusions
was 22% (n 5 2/9) and 27% (n 5 3/11), respectively.

In addition, the duration of clinical benefit with afatinib was
limited. The swimmer’s plot of afatinib monotherapy is
shown in Figure 4E. The median PFS with afatinib was
2.8 months (95% CI, 1.9 to 4.3; range, 0.3-25.3 months;
Data Supplement). PFS did not differ for patients with
tumors harboring CD74 fusion partners versus other fusion
types (Data Supplement). There was no significant differ-
ence (P . .05) in OS when patients who received afatinib
were compared with patients who did not receive afatinib.

DISCUSSION

This global registry represents the largest series of patients
with NRG1 fusion–positive lung cancers reported to date.
As a testament to the utility of multinational consortia such
as this one, the number of patients featured here is several
fold higher than the number identified through analysis of
data from single institutions, large-scale sequencing lab-
oratories, or even The Cancer Genome Atlas.23,31 Despite
the retrospective nature of the study and its inherent lim-
itations such as reporting bias and the lack of prospective
sequencing data, complete clinical annotation for every
patient, and central radiologic assessment, this under-
scores the utility of such cooperative endeavors to generate
meaningful real-world data, particularly in rare genotype-
driven cancers.

Although the data generated here confirm preliminary
observations reported in prior smaller series or case reports,
including publications from members of this registry,23,30,36

several new clinicopathologic observations emerged. More
than half of patients were initially diagnosed with stage I or II
disease, although many subsequently developed meta-
static disease. Whereas intrathoracic metastases pre-
dominated, consistent with the natural history of many
IMAs,45,46 extrathoracic metastases were observed in more
than 40% of patients. Additionally, although NRG1 fusions
were strongly associated with IMAs in prior series,24,46,47

nonmucinous adenocarcinomas represented more than a
quarter of cases. These fusions were also found in non-
adenocarcinoma histologies, including squamous cell
and large cell neuroendocrine cancers, suggesting that
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screening for this driver should not be biased solely toward
IMAs.

From a diagnostic perspective,NRG1 fusions can be difficult
to detect using DNA sequencing alone.23,31 In our series,
only 27% of patients withNRG1 fusion–positive tumors were
identified through DNA-based testing, whereas 73% of
patients primarily required RNA-based testing to identify
these alterations. The design of this registry did not allow a
diagnostic performance evaluation of DNA-based and/or
RNA-based testing for NRG1 detection. Specifically, a de-
nominator of prospectively sequenced samples was not
available to determine the true frequency of NRG1 fusion
detection by DNA versus RNA sequencing, and a proportion
of samples were sequenced after DNA-based NGS returned
negative for MAPK pathway drivers. Nevertheless, RNA-
based assays appear to be the best molecular testing
method to identify NRG1 fusions. NRG1 fusion breakpoints,
while highly heterogenous as demonstrated here, con-
vergently occur in large intronic regions that are challenging
to tile and capture by DNA-based assays.23 This observation
is consistent with previous reports showing that even
comprehensive contemporary DNA-based hybrid capture
NGS can fail to identify selected fusions.48 In contrast, RNA-
based assays overcome common difficulties associated with
DNA-based assays. In particular, assays such as anchored
multiplex PCR are preferred over those that assess ex-
pression imbalance as some fusions may have high ex-
pression of both 39 and 59 ends. Furthermore, recognizing
that NRG1 fusions were found de novo with other drivers at
low frequencies,36 screening algorithms should consider
NRG1 fusion interrogation in KRAS-mutant disease and in
other driver-positive cancers, particularly after progression
on a prior matched TKI.

In our study, all 20 unique chimeric events retained the
EGF domain of NRG1, which is known to bind ERBB3 and

activate oncogenesis. Notably, 18 unique upstream part-
ners were identified. The most common fusion was CD74-
NRG1,23 which was identified in 41% of tumors, with
SLC3A2-NRG1 being the second most common, found in
20% of tumors. Importantly, we identified previously un-
reported upstream partners, including FGFR1, CADM1,
F11R, FLYWCH1, KRAS, and PLCG2; this highlights the
molecular diversity ofNRG1 fusions and the need to screen
for these oncogenes with a comprehensive assay poised to
detect all possible rearrangements. Furthermore, NRG2a
fusions have been identified in cancers, including
NSCLCs.49,50 These clinical observations are informative for
preclinical experiments that explore fusion diversity and
their ability to localize subcellularly and operate differen-
tially in tumor cells.19,31,48,51-53

The most striking observation in this series is the limited
lack of activity of systemic therapy in advanced NRG1
fusion–positive lung cancers, acknowledging the small
number of patients treated with selected regimens. Re-
sponse to platinum-based or taxane-based post–platinum-
doublet chemotherapy was poor relative to the historic
activity of these agents in previously published registra-
tional data sets that treated unselected NSCLCs. It is thus
unsurprising that the median OS for patients with stage IV
disease was 15.5 months. The lack of response to plati-
num-based chemotherapy is of interest, given that other
fusion-positive tumors, such as those involving ALK, ROS1,
and RET, are known to be sensitive to first-line chemo-
therapy, particularly regimens that include pemetrexed.14,54-57

As with other fusion-positive NSCLCs, NRG1 fusion–
positive lung cancers derived limited benefit from
immunotherapy.58-62 Response was rare and only observed
in one patient of those who received either single-agent
immune checkpoint inhibition or immunotherapy com-
bined with chemotherapy. This was most surprising in the

TABLE 2. Activity of Systemic Therapy

Response
Platinum-Doublet–Based

Chemotherapy
Taxane-Based
Chemotherapy

Combined Chemotherapy and
Immune Therapy

Single-Agent
Immunotherapy

Targeted Therapy
With Afatinib

Response rate, % 13 14 0 20 25

CR, % (n/N) 0 (0/15) 0 (0/7) 0 (0/9) 0 (0/5) 0 (0/20)

PR, % (n/N) 13 (2/15) 14 (1/7) 0 (0/9) 20 (1/5) 25 (5/20)

SD, % (n/N) 47 (7/15) 14 (1/7) 44 (4/9) 20 (1/5) 15 (3/20)

PD, % (n/N) 40 (6/15) 71 (5/7) 56 (5/9) 60 (3/5) 60 (12/20)

Median PFS
(95% CI),
range

5.8 months
(2.2 to 9.8),
0.7-12.1

4.0 months
(0.8 to 5.3),

0.8-5.5

3.3 months
(1.4 to 6.3),
1.4-15.2

3.6 months
(0.9 to undefined),

0.9-11.2

2.8 months
(1.9 to 4.3),
0.3-25.3

Abbreviations: CR, complete response; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.

FIG 3. (Continued). graphs relative to each other is not scaled to the total size of the corresponding populations.
(B) Violin plots of TMB in mutations per megabase are shown for patients with NRG1 fusion–positive lung
cancers compared with those that harbor ALK, ROS1, RET, or NTRK1/2/3 fusions and those whose lung
cancers do not harbor these alterations (gray). The circles and black bars indicate the median and 95% CIs,
respectively. PD-L1, programmed death ligand-1; TMB, tumor mutational burden.
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FIG 4. Systemic therapy activity. Swimmer plots of the duration of therapy are shown. Best response to therapy is indicated by the blue (PR), red (SD),
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inhibitor, afatinib (n 5 20). NE, could not be evaluated; PD, progressive disease; PR, partial response; SD, stable disease.

Journal of Clinical Oncology 2799

Features and Therapy Benefit of NRG1 Fusion–Driven Lung Cancers



latter group of patients for whom progressive disease was
observed in more than half of patients. The lack of efficacy
was consistent, however, with the immunophenotypic
profile of NRG1 fusion–positive tumors in our registry. TMB
was not only lower than that in unselected NSCLCs but also
interestingly lower in comparison with ALK, ROS1, RET,
and NTRK1/2/3 fusion–positive lung cancers. The biologic
reasons that underlie such an observation remain unknown
and will need to be explored. On top of this, most tumors did
not express PD-L1, and only a minority (4%) of cancers had
PD-L1 expression of 50% or greater, similar to NRG2a
fusions.50

Disappointingly, the activity of targeted therapy with afatinib
was alsomodest. The response rate of 25% and themedian
PFS of 2.8 months were substantially less than those ob-
served with highly active contemporary targeted thera-
peutics for ALK,ROS1, RET, andNTRK1/2/3 fusion–positive
cancers.4 Although the multicenter Targeted Agent and
Profiling Utilization Registry trial (ClinicalTrials.gov identi-
fiers: NCT02925234, NCT02693535)63 will help confirm
the prospective activity of afatinib in this setting, novel

therapeutics should continue to be explored for these
tumors.22,23,25-29,64 For example, promising preclinical and/
or clinical activity has been seen with ERBB3 (ser-
ibantumab, NCT04383210) or ERBB3/ERBB2 (zen-
ocutuzumab, NCT02912949) monoclonal antibody–based
therapy and pan-ERBB covalent TKI therapy (tarloxotinib,
NCT03805841) in NRG1 fusion–positive tumors.4,22,23,25,26,44,53

TargetingNRG2a fusion–positive cancers may, in contrast,
require strategies that take into account that these fusions
may preferentially bind ERBB4.50

In conclusion, NRG1 fusions have a diversity of fusion
partners and an EGF binding domain that binds ERBB3.
Detection should focus on the inclusion of RNA-based
sequencing, which maximizes the likelihood of fusion
identification. NRG1 fusion–positive cancers typically do
not express high levels of PD-L1 and have a low TMB,
consistent with their poor response to immunotherapy.
Furthermore, responses to chemotherapy or targeted
therapy with afatinib are underwhelming. The development
of novel therapeutics for these cancers is thus an unmet
need.
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4Université Claude Bernard Lyon UMR INSERM 1052 CNRS 5286,
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