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Voice feature selection to improve performance of machine 
learning models for voice production inversion

Zhaoyan Zhanga

Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 
Rehabilitation Center, 1000 Veteran Ave., Los Angeles, CA 90095-1794

Summary:

Objective.—Estimation of physiological control parameters of the vocal system from the 

produced voice outcome has important applications in clinical management of voice disorders. 

Previously we developed a simulation-based neural network for estimation of vocal fold geometry, 

mechanical properties, and subglottal pressure from voice outcome features that characterize 

the acoustics of the produced voice. The goals of this study are to 1) explore the possibility 

of improving the estimation accuracy of physiological control parameters by including voice 

outcome features characterizing vocal fold vibration; and 2) identify voice feature sets that 

optimize both estimation accuracy and robustness to measurement noise.

Methods.—Feedforward neural networks are trained to solve the inversion problem of estimating 

the physiological control parameters of a three-dimensional body-cover vocal fold model from 

different sets of voice outcome features that characterize the simulated voice acoustics, glottal 

flow, and vocal fold vibration. A sensitivity analysis is then performed to evaluate the contribution 

of individual voice features to the overall performance of the neural networks in estimating the 

physiologic control parameters.

Results and conclusions.—While including voice outcome features characterizing vocal fold 

vibration increases estimation accuracy, it also reduces the network’s robustness to measurement 

noise, due to high sensitivity of network performance to voice outcome features measuring 

the absolute amplitudes of the glottal flow and area waveforms, which are also difficult to 

measure accurately in practical applications. By excluding such glottal flow-based features and 

replacing glottal area-based features by their normalized counterparts, we are able to significantly 

improve both estimation accuracy and robustness to noise. We further show that similar estimation 

accuracy and robustness can be achieved with an even smaller set of voice outcome features by 

excluding features of small sensitivity.
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Introduction

Voice inversion in this study refers to the problem of inferring physiological control 

parameters of the vocal system (e.g., vocal fold geometry and stiffness and subglottal 

pressure) from voice production outcomes (e.g., acoustics, aerodynamics, and/or vocal fold 

vibration). A physics-based voice inversion system has important clinical applications. 

Currently diagnosis of voice disorders in the clinic relies heavily on the physician’s 

experience in perceptual evaluation of the voice as well as other relevant medical 

information. Although acoustic and aerodynamic tests and endoscopic imaging of vocal 

fold vibration are routinely performed, interpretation of these test results in the clinic is 

largely qualitative. Using these test results, a voice inversion system would provide more 

quantitative information on the underlying physiological control parameters of the vocal 

system that clinicians can use, together with other relevant information of the patient, to 

better diagnose voice disorders. Such a voice inversion system may also provide a near-real 

time feedback of the speaker’s voice production strategy, and thus may find applications in 

monitoring the progress of voice therapy and voice training.

Unlike speech inversion research in which both articulatory and acoustic data can be directly 

measured in live humans [1], it is very difficult to directly measure vocal fold properties and 

the subglottal pressure in live humans. As a result, current voice inversion research often 

has to rely on computational models to establish the relation between vocal fold properties 

and voice production output [2–9]. In our recent study [9], we used data generated from a 

three-dimensional continuum model of voice production to train neural networks to predict 

vocal fold properties (output of neural networks) from voice outcome features characterizing 

the voice acoustics and glottal flow (input to neural networks). Compared with lumped 

element models (e.g., [10, 11]), this three-dimensional model [12, 13] is parameterized 

by realistic geometric and mechanical properties that are often manipulated in the clinic, 

thus a step closer toward clinical applications. The trained neural network was shown to 

be able to predict physiological control parameters with reasonable accuracy, particularly 

for the subglottal pressure, vocal fold length, and vocal fold vertical thickness. Preliminary 

results showed that the neural network was able to qualitatively predict changes in the 

subglottal pressure in an excised larynx experiment, indicating the translational potential of 

simulation-based neural networks toward clinical applications.

Toward clinical applications, it is important that the performance of the neural network 

is robust to input noise, which includes measurement noise of the input voice features 

as well as modeling inaccuracy in describing the physics and physiology of human voice 

production. The results in our previous study [9] showed that the estimation accuracy of 

the neural network decreased with increasing noise in the inputs to the neural network, 

more so for some physiological controls than others. The goal of this study is to understand 

why the estimation of some physiological controls is more robust to noise than others in 

order to further improve the overall robustness of the network performance to noise. In 

addition, in [9], we intentionally chose voice features that can be estimated from the voice 

acoustics and glottal flow, toward applications outside the clinic. However, it is possible 

that the estimation accuracy of the neural network can be further improved by including 
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voice features characterizing the vocal fold vibratory pattern, e.g., features extracted from 

endoscopic recordings of vocal fold vibration from clinic examinations.

Specifically, this study aims to find a voice feature set that optimizes both estimation 

accuracy and robustness to measurement noise in input voice features through a sensitivity 

analysis. The sensitivity quantifies changes in the estimation error (differences between 

estimated and true physiological control parameters) with increasing Gaussian noise added 

to the input voice features, simulating measurement noise or modeling inaccuracy. A small 

sensitivity indicates a small contribution to the overall voice inversion accuracy of the 

corresponding voice feature, and we hypothesize that this voice feature can then be dropped 

from the neural network without much decrease in voice inversion performance. A very 

large sensitivity indicates a large contribution to the voice inversion performance by the 

corresponding voice feature. However, a very large sensitivity also means that the voice 

inversion accuracy will decrease rapidly with measurement noise, particularly if accurate 

measurement of the corresponding voice feature is difficult (e.g., features based on the 

glottal flow through inverse filtering). Ideally, the network should consist of voice features 

with comparable, moderate sensitivity to balance estimation accuracy and robustness to 

noise.

In this study, due to the lack of human data, this sensitivity analysis is performed using the 

dataset from numerical simulations as in [9]. However, it is reasonable to assume the general 

findings should be able to translate to human data and thus be useful in developing similar 

machine learning models based on human data when they become available.

Dataset and methods

Dataset and voice features

The same dataset as in [9] is used in this study. The dataset consists of different voice 

outcome data, including voice acoustics, glottal flow waveform, vocal fold vibration, and the 

corresponding vocal fold properties that produced the voice. The data were generated from 

parametric simulations using the three-dimensional body-cover vocal fold model developed 

in [12, 13]. This model has been shown to be able to produce different voice types 

(regular, subharmonics, chaotic) and voice qualities (breathy, modal, pressed, vocal fry, or 

strained voices) observed in human voice [12, 13, 14], and has been qualitatively validated 

against experiment [15–17]. Simulations were performed with parametric variations in nine 

physiological control parameters (Figure 1), including vocal fold length L, vocal fold medial 

surface vertical thickness T, vocal fold depths in the medial-lateral direction of the body 

and cover layers Db and Dc, vocal fold transverse stiffness Et, vocal fold longitudinal shear 

moduli in the body and cover layers Gapb and Gapc, initial glottal angle or degree of vocal 

fold approximation α, and subglottal pressure Ps. A detailed list of the parametric conditions 

can be found in [9]. In total the dataset includes 95,028 phonating voice conditions.

For each voice condition in the dataset, voice features are extracted from the voice acoustics, 

glottal flow waveform, and vocal fold vibration. The voice features are grouped in four sets, 

based on 1) the specific voice outcome they are designed to characterize (e.g., acoustics, 

flow, or vocal fold vibratory pattern) and 2) the requirement for special equipment or 
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calibration procedures in data collection (Table 1). The first set VFa includes features that 

can be extracted from the voice acoustics, either directly or through inverse-filtering, and 

do not require proper amplitude calibration so that they can be measured without special 

equipment other than a microphone. As we have no prior knowledge as to which voice 

features might improve the estimation performance, we include acoustics-related features 

that are known to be perceptually importance. These include the fundamental frequency F0, 

the amplitude differences between the first harmonic and the second harmonic (H1–H2), 

the fourth harmonic (H1–H4), the harmonic nearest 2 kHz (H1–H2 k), and the harmonic 

nearest 5 kHz (H1–H5 k) in the spectrum of the time derivative of the glottal flow waveform 

[18], cepstral peak prominence (CPP), harmonic-to-noise ratio (HNR), and subharmonic to 

harmonic ratio (SHR; [19]).

The second set VFf consists of voice features derived mostly from the glottal flow waveform 

as well as acoustics-related voice features that require proper microphone calibration, 

including the closed quotient (CQ), sound pressure level (SPL), perturbations of the peak 

amplitude (AmpPert) and period (PeriodPert) of the glottal flow waveform, maximum flow 

declination rate (MFDR), maximum flow acceleration rate (MFAR), mean glottal flow rate 

(Qmean), and peak-to-peak amplitude of the glottal flow waveform (Qamp).

The third feature set VFv consists of features derived from vocal fold vibration, including 

the mean glottal area (Ag0), peak-to-peak amplitude of the glottal area waveform (Agtamp), 

minimum glottal area (Agmin), vertical phase difference in vocal fold vibration between 

the upper and lower margins of the vocal fold medial surface (VPD), longitudinal phase 

difference in vocal fold vibration between the anterior quarter and mid-membranous 

locations (LPD). Finally, the last feature set VFvn is similar to VFv, except that the three 

glottal area measures are normalized by the vocal fold length squared. For details of the 

voice feature extraction process, the reader is referred to our previous studies [9, 12, 13].

The first two voice feature sets (VFa and VFf) are the voice features used in our previous 

study [9], whereas VFv and VFvn are newly added in this study. The two vibration phase 

measures, VPD and LPD, are added in order to improve estimation accuracy of vocal fold 

stiffness, which was relatively low in [9].

Neural network training

The voice features and the corresponding nine physiological control parameters are first 

z-score normalized and then used in the training of feedforward neural networks. During 

training, the dataset is randomly divided into three sets, each for training (70%, 66,520 

conditions), validation (15%, 14,254 conditions), and testing (15%, 14,254 conditions). 

The neural network consists of an input layer (voice features), an output layer (estimated 

physiological control parameters), and a number of hidden layers of interconnected neurons 

in between (Figure 2). Each neuron receives inputs from the preceding layer, transforms 

them using an activation function, and passes them as inputs to the next layer. The goal 

of the training process is to find parameters of the activation functions that minimize the 

difference between the network prediction and target output (truth) in the training data. In 

this study, the neural network is trained using the scaled conjugate gradient method using the 

Matlab Deep Learning Toolbox. We have explored networks of different number of hidden 
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layers, and it is found that networks with four hidden layers with 200 neurons in each layer 

provide reasonable performance accuracy. It is possible that the estimation performance can 

be further improved with more hidden layers or neurons in each hidden layer, which will 

be explored in future studies. The results reported below are obtained using this network 

configuration.

Similar to [9], the performance of trained neural networks is evaluated on the testing dataset 

by calculating the mean absolute error (MAE) between the truth and the estimates from 

the network. The trends are qualitatively similar when evaluated using root mean squared 

errors. To evaluate the robustness of the estimation performance to measurement noise, 

Gaussian noise with a standard deviation equivalent to 2% and 5% of the standard deviation 

of the corresponding voice feature in the entire dataset is added to the testing data, and the 

resulting MAEs are calculated.

Sensitivity analysis

A sensitivity analysis is performed to better understand the contribution of individual voice 

features to the overall network performance [20]. Using the same noise-adding procedure as 

described above in the last section but instead of adding noise to all voice features, we add 

noise to one voice feature at a time while keeping other voice features the same, and evaluate 

its effect on the MAEs for the nine physiological control parameters. Specifically, for each 

voice feature-physiological control pair, the increase in MAE will be calculated as,

ΔMAE =  MAE   (5% noise ) − MAE( no noise) (1).

A larger ΔMAE value indicates that estimation accuracy of the corresponding physiological 

control is more sensitive to noise/errors in the corresponding voice feature.

Results and Discussion

Figure 3 compares the MAEs of neural networks trained using different voice feature sets. 

The top panels show the MAEs for individual physiological controls when noise is added 

to all voice features, whereas the bottom panels show the MAEs when noise is added to 

individual voice features one at a time in the sensitivity analysis. Note that the MAEs are 

z-score normalized. In general, the MAE decreases as more voice features are included 

in the network. However, the network also becomes less robust to noise with increasing 

number of voice features. The combined voice feature set VFa+VFf (middle column), which 

was the voice feature set used in [9], provides a reasonable balance between estimation 

accuracy and robustness to noise. In contrast, while the combined use of all three voice 

feature sets (VFa+VFf+VFv) gives the lowest MAEs in the absence of noise, the MAEs 

increase significantly with additive noise (right column, figure 3; note the different vertical 

scales across different columns). The sensitivity data in the bottom panels of figure 3 show 

that this increase in MAEs is largely due to high sensitivity in MAEs to the voice features 

quantifying the absolute amplitudes of the glottal flow waveform (Qmean and Qamp) and 

glottal area waveform (Ag0 and Agtamp).
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Note that the MAE results in the middle column of figure 3 are similar to those in [9], 

despite the differences in the neural network configuration and training algorithm. This 

indicates that the general trends of MAEs in figure 3 are related to the dataset rather than the 

specific neural network configuration or training method.

Such high sensitivity to the absolute amplitudes of the glottal flow and area waveforms is 

undesirable for practical applications in which accurate measurement of either glottal flow 

or area waveform is difficult. Measurement of the glottal flow is often achieved through 

inverse filtering (e.g., [21]), which is likely to introduce errors in the absolute amplitude of 

the glottal flow waveform. While the glottal area waveform can be extracted from recordings 

of vocal fold vibration, conversion of the glottal area from pixels to real units is difficult 

due to lack of proper calibration as well as errors associated with varying imaging angle and 

limited spatiotemporal resolutions [3, 22–23].

To improve robustness to noise, we explore the possibility of excluding Qmean and Qamp 

and/or using normalized glottal area measures (VFvn instead of VFv) in the neural network. 

The results are shown in Figure 4, for different combinations of voice features. Both the 

MAEs and robustness to noise are improved in all three designs shown. Although the 

ΔMAEs associated with the normalized glottal-area voice features still dominate those of 

other voice features, they are much smaller (less than 0.02) than those of the absolute glottal 

area measures or the two flow measures Qmean and Qamp (about 0.2–0.3) in Figure 3. The 

inclusion of normalized glottal area-based voice features (VFvn) also reduces the sensitivity 

of MAEs to Qmean and Qamp (middle column, Figure 4).

Figure 4 also shows that in addition to the normalized glottal area-based voice features, the 

MAE is also sensitive to changes in F0, SPL, MFDR, and LPD. In particular, the estimated 

vocal fold stiffness shows large sensitivity to LPD, which is partially responsible for the 

improved estimation accuracy of vocal fold stiffness compared with that in our previous 

study [9]. On the other hand, ΔMAE is much smaller for most voice features in VFa (except 

F0), which includes the four spectral shape measures, CPP, and HNR. This small sensitivity 

indicates that these voice features can be excluded without much degradation in estimation 

accuracy of the neural network. This is confirmed in Figure 5, which shows comparable 

performance of the neural network with these voice features excluded.

Table 2 shows the MAEs in real units with and without additive noise, obtained using 

VFa+VSf+VFvn and excluding Qmean and Qamp (Fig. 4, right column). Compared with 

the results in [9], the estimation accuracy improves by more than 25%, except for the 

body-layer longitudinal stiffness and vocal fold depth, which are improved by about 7–10%. 

The improvement at conditions with 5% additive noise is even higher.

Conclusions

In this study we show that although inclusion of voice features characterizing vocal 

fold vibration improves the neural network’s accuracy in estimating physiological control 

parameters, it also makes it susceptible to measurement noise, with MAEs increasing 

significantly with additive noise. Sensitivity analysis shows that this large increase in MAEs 
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is mostly due to sensitivity of the neural network to voice features quantifying the absolute 

amplitudes of the glottal flow and glottal area waveforms (Qmean, Qamp, Ag0, Agtamp, 

Agmin), particularly when all five features are included in the neural network. By excluding 

Qmean and Qamp and replacing the glottal area features with their normalized counterparts 

(Ag0N, AgtampN, AgminN), the neural network is able to improve both estimation accuracy 

and robustness to noise.

We further show that similar estimation accuracy and robustness can be achieved with an 

even smaller set of voice features, by excluding voice features with negligible sensitivity 

which include the spectral shape measures, CPP, and HNR. It is unclear why these voice 

features have a small contribution to the estimation accuracy of the neural network, despite 

their perceptual importance reported in the literature. It is possible that voice features with 

large sensitivity and thus large contribution to network estimation accuracy (e.g., glottal 

area, MFDR) have a strong and global relationship with the physiological controls to be 

estimated [12, 13] so that this relationship is easily captured in the training process, whereas 

the relationship between voice features of small sensitivity (e.g., spectral shape) and vocal 

fold properties is more complex, localized, and nonlinear and presumably difficult to be 

learned during training.

The results of this study indicate that machine learning models of voice inversion and the 

dataset used should be carefully designed to allow efficient learning of both the global, 

simple relationships and the more subtle, localized, yet perceptually important relationships 

in the dataset. The selected voice features should have comparable, moderate sensitivity over 

the dataset to balance estimation accuracy and robustness to noise. Our study shows that this 

can be achieved by excluding amplitude-related voice outcome features that have a global 

and simple relationship with the physiological controls [12, 13] or using their normalized 

counterparts. It is possible that increasing the complexity of the neural network (more layers 

and neurons, different activation functions, etc.) may allow the neural network to better learn 

the localized and nonlinear relationships in voice production, which may further improve the 

estimation performance of the neural network.

Overall our study presents a range of network options with varying accuracy and robustness 

to noise that can be selected depending on specific applications. When only acoustic data are 

available, the use of VFa and VFf provides an acceptable option, but suffers from moderate 

robustness. In the clinic, when endoscopic recordings of vocal fold vibration are available, 

the use of VFa+VFf+VFvn and excluding (Qmean, Qamp) provides better accuracy and 

improved robustness to noise.

An important step toward clinical applications is to validate the findings of this study in 

humans. Our preliminary study showed a reasonable estimation accuracy of the subglottal 

pressure when compared to excised larynx experiments. While measurement of vocal fold 

stiffness is difficult in humans, the subglottal pressure and vocal fold geometry (length, 

thickness, and glottal width) may be measured with reasonable accuracy in humans. Future 

work will focus on systematic validation of the neural network against human data across a 

large range of voice conditions, and its usefulness as a clinical tool in monitoring the trends 

of changes of voice production overtime or during clinical intervention.
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Figure 1: 
The body-cover vocal fold model used to generate the dataset of this study.
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Figure 2: 
Schematic of the feedforward neural network. The neural network consists of an input 

layer of voice features, an output layer of vocal fold properties (geometry and mechanical 

properties) and subglottal pressure that produce the voice features, and four hidden layers 

that are trained to capture the input-output relationship.
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Figure 3: 
Performance with different voice features sets. Top: MAEs without noise (circles) and with 

2% (diamonds) and 5% (squares) additive noise to all voice features. Bottom: changes in 

MAEs due to addition of 5% noise to individual voice features.
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Figure 4: 
Excluding amplitude-related voice features improves robustness to noise. Top: MAEs 

without noise (circles) and with 2% (diamonds) and 5% (squares) additive noise to all voice 

features. Bottom: changes in MAEs due to addition of 5% noise to individual voice features.
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Figure 5: 
Performance with voice features of small sensitivity excluded. Top: MAEs without noise 

(circles) and with 2% (diamonds) and 5% (squares) additive noise to all voice features. 

Bottom: changes in MAEs due to addition of 5% noise to individual voice features.
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Table 1:

Voice features used in network training.

Feature sets Voice features

VFa (acoustics) F0, H1-H2, H1-H4, H1-H2K, H1-H5K, CPP, HNR, SHR

VFf (flow) CQ, SPL, AmpPert, PeriodPert, MFDR, MFAR, Qmean, Qamp

VFv (vibration) Ag0, Agtamp, Agmin, VPD, LPD

VFvn (vibration normalized) Ag0N, AgtampN, AgminN, VPD, LPD
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Table 2:

MAEs in real unit for neural network trained using VFa+VFf+VFvn-(Qmean, Qamp).

Vocal fold properties MAEs (0%/5% noise) Improvement over ref. [9]

Ps 98.6/122.8 Pa 28.2%/23.9%

T 0.23/0.28 mm 27.4%/26.6%

α 0.21/0.25° 58.7%/72.9%

Et 0.36/0.45 kPa 26.3%/26.5%

Gapc 3.52/4.31 kPa 33.9%/40.1%

Gapb 6.24/7.21 kPa 13.1%/15.5%

Dc 0.11/0.11 mm 7.1%/9.6%

Db 0.70/0.80 mm 10.9%/13.8%

L 0.35/0.41 mm 60.0%/63.4%
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