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Abstract

Implicit solvent models, such as Poisson–Boltzmann models, play important roles in 

computational studies of biomolecules. A vital step in almost all implicit solvent models is to 

determine the solvent–solute interface, and the solvent excluded surface (SES) is the most widely 

used interface definition in these models. However, classical algorithms used for computing SES 

are geometry-based, so that they are neither suitable for parallel implementations nor convenient 

for obtaining surface derivatives. To address the limitations, we explored a machine learning 

strategy to obtain a level set formulation for the SES. The training process was conducted in 

three steps, eventually leading to a model with over 95% agreement with the classical SES. 

Visualization of tested molecular surfaces shows that the machine-learned SES overlaps with 

the classical SES in almost all situations. Further analyses show that the machine-learned SES 

is incredibly stable in terms of rotational variation of tested molecules. Our timing analysis 
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shows that the machine-learned SES is roughly 2.5 times as efficient as the classical SES 

routine implemented in Amber/PBSA on a tested central processing unit (CPU) platform. We 

expect further performance gain on massively parallel platforms such as graphics processing units 

(GPUs) given the ease in converting the machine-learned SES to a parallel procedure. We also 

implemented the machine-learned SES into the Amber/PBSA program to study its performance on 

reaction field energy calculation. The analysis shows that the two sets of reaction field energies are 

highly consistent with a 1% deviation on average. Given its level set formulation, we expect the 

machine-learned SES to be applied in molecular simulations that require either surface derivatives 

or high efficiency on parallel computing platforms.

Graphical Abstract

1. INTRODUCTION

Electrostatic interactions play crucial roles in biophysical processes such as protein and 

RNA folding, enzyme catalysis, and molecular recognition. Thus, accurate and efficient 

treatment of electrostatics is vital to computational studies of biomolecular structures, 

dynamics, and functions. A closely related issue is the modeling of water molecules and 

their electrostatic interactions with biomolecules that must be considered for any realistic 

representation of biomolecules under physiological conditions. Implicit solvent model has 

been such an attempt, in which the solute molecule is treated as a low dielectric constant 

region with a number of point charges located at atomic centers, and the solvent is treated 

as a high dielectric constant region. Among all of the attempts, Poisson– Boltzmann (PB) 

equation-based implicit solvent models have proven to be among the most successful ones 

and are widely used in computational studies of biomolecules.

A crucial component of all implicit solvent models within the PB framework is the dielectric 

model, i.e., the dielectric constant distribution of a given solution system. Typically, a 

solution system is divided into the low dielectric interior and the high dielectric exterior by a 

molecular surface. That is to say that the molecular surface is used as the dielectric interface 

between the two piecewise dielectric constants. The solvent excluded surface (SES)1–3 is 

the most used surface definition.4,5 Indeed, previous comparative analyses of PB-based 
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solvent models and TIP3P solvent models show that the SES definition is reasonable in 

the calculation of reaction field energies and electrostatic potentials of the mean force of 

hydrogen-bonded and salt-bridged dimers with respect to the TIP3P explicit solvent.6–8 

Given the complexity of the SES, one possible approach in adapting the SES in numerical 

solutions is to build the molecular surface analytically and then map it onto a grid.9–11 Since 

analytical procedures can be time consuming, they are mostly used in the visualization of 

SES.3,12–21 Rocchia et al. subsequently converted an analytical algorithm to a semianalytical 

version with numerical representation of solvent accessible arcs at a very high resolution 

(i.e., much higher than the finite difference resolution) to facilitate the mapping of the SES 

to the grid, so the mapping error is negligible in numerical PB calculations.5 This method 

is much faster and accurate enough for numerical solution of the PB equation, though it is 

without an analytical expression.

The van der Waals (VDW) surface, or the hard-sphere surface, represents the low dielectric 

molecular interior as a union of atomic van der Waals spheres. This is a very efficient 

algorithm, though there exist many nonphysical high (solvent) dielectric pockets inside the 

solute interior when the VDW definition is used. Considering the limitation, the modified 

VDW definition was proposed. The basic idea of the modified VDW definition is to use the 

solvent accessible surface (SAS) definition for fully buried atoms and the VDW definition 

for fully exposed atoms.22 However, the method is difficult to be optimized to reproduce the 

more physical SES definition.

The density approaches have recently been developed and can be used for numerical PB 

solutions. Either a Gaussian-like function or a smoothed step function has been explored 

in previous developments.23,24 It has been shown that if the functional form is allowed 

to change, the density function can be explicitly optimized to reproduce the classical SES 

definition at least for certain “small” solvent probe radii, though this cannot be generalized 

to arbitrary probe radius values.25 In these types of approaches, a distance-dependent 

density/volume exclusion function is used to define each atomic volume or the dielectric 

constant directly.26–28 This is in contrast to the hard-sphere definition of atomic volume as 

in the VDW or the SES definition. Therefore, the surface cusps are removed by the use of 

smooth density functions.23,24

In this study, we intend to address the difficulties of computing SES of complex molecular 

structures. The difficulties arise because SES is formed by different patches, so that 

its analytical formulation must be piecewise and localized.29 There are at least three 

consequences of the difficulties. First, the algorithms are very costly. For example, the 

optimized SES still takes about a third of the total central processing unit (CPU) time of 

the numerical PB solvers in Amber.30,31 Second, they are hard to be ported to modern 

parallel platforms, such as graphics processing units (GPUs). Third, it is difficult to obtain 

surface curvatures or other higher-order surface parameters that are often used for implicit 

solvent simulations. To overcome the difficulties, our solution is to use a smooth level set 

function to approximate SES. As will be shown below, the single-thread CPU cost can be 

reduced noticeably when the level set function is used. Given the level set function, the 

computation of SES can be carried out for all grid points independently and simultaneously 
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and thus achieve parallel computation. Finally, surface curvatures or other higher-order 

surface parameters are readily available from the smooth level set function.32

Given the complexity of the SES algorithms, we explored a machine learning strategy to 

look for a smooth level set function. Indeed, in recent years, deep learning techniques have 

been widely adapted in handling multivariable and highly nonlinear functions similarly 

challenging such as SES. Deep learning/neural network is inspired by and resembles 

the human brain. The input variables are multiplied by the respective weights and then 

undergo a transformation based on an activation function to obtain the outputs.33 It has 

been mathematically proven that a single hidden layer was able to solve any continuous 

problem.34 With all its advantages, deep learning has been applied in various biological 

fields, including gene expression,35–42 protein secondary and tertiary structures,43–55 

protein–protein interactions,56–62 and others.63

In the following, we first overview the necessary physical and mathematical concepts needed 

to set up a machine learning SES model, along with the computational details in collecting 

the training data and conducting the training process. This is followed by accuracy analyses 

of the machine-learned SES, robustness analyses, timing analysis, and finally applications to 

implicit solvent simulations. We end the presentation with a discussion of potential future 

developments.

2. METHODS

2.1. Finite Difference Method for Solving PB Equation.

As widely adopted for numerically solving partial differential equations, the finite difference 

method uses a uniform Cartesian grid to discretize the PB equation. The grid points are 

numbered as (i,j,k), where i = 1, …, xm, j = 1, …, ym, k = 1, …, zm, and xm, ym, and zm are 

the numbers of points along the three axes. The grid spacing between neighboring points can 

be uniformly set to h. To discretize the linearized PB equation

∇ ⋅ ε∇ϕ − λ∑
i

niqi2ϕ/kT = − 4πρ (1)

where the charge density ρ can be expressed as q(i,j,k)/h3, q(i,j,k) is the total charge within 

the cubic volume centered at (i,j,k), and λ is a masking function for the Stern layer. In the 

salt-related term, ni is the number density of the ion of type i in the bulk solution, qi is the 

charge of the ion of type i, k is the Boltzmann constant, and T is the temperature. The final 

discretized PB equation can be expressed as follows, if we ignore the salt-related term as it is 

often modeled to be away from the molecular surface
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ε i − 1
2, j, k [ϕ(i − 1, j, k) − ϕ(i, j, k)]

+ ε i + 1
2, j, k [ϕ(i + 1, j, k) − ϕ(i, j, k)]

+ ε i, j − 1
2, k [ϕ(i, j − 1, k) − ϕ(i, j, k)]

+ ε i, j + 1
2, k [ϕ(i, j + 1, k) − ϕ(i, j, k)]

+ ε i, j, k − 1
2 [ϕ(i, j, k − 1) − ϕ(i, j, k)]

+ ε i, j, k + 1
2 [ϕ(i, j, k + 1) − ϕ(i, j, k)] /ℎ2

= − 4πq(i, j, k)/ℎ3

(2)

where ϕ(i,j,k) is the potential at grid (i,j,k), and ε i − 1
2 , j, k  is the dielectric constant at the 

mid-point of the grids (i,j,k) and (i − 1,j,k). All other ϕ and ε are defined similarly here.

If a grid point and all its six neighbors are in the same region, either in solvent or in 

solute, the point is termed a regular grid point. Clearly, the simple discretization scheme 

above can be applied only to regular grid points because only then the mid-point dielectric 

constant can be determined (equal to either solvent or solute dielectric constant). However, 

for an irregular grid point, which means that it has at least one neighboring grid point 

belonging to the different region, complication arises. Thus, how to define and determine 

the interface parameters, and then to determine the dielectric constant based on the interface 

information, is a key for setting up the linearized PB equation. Without question, SES is the 

most adopted interface definition, as it was found to reasonably reproduce both energetic 

and dynamic properties of solvated molecules in explicit solvent.6–8,25 After choosing an 

interface definition, the discretization can then be handled with many different schemes. 

For example, the harmonic averaging method is a class of such strategies widely used in 

biomolecular simulations.64–66

2.2. Level Set Functions for Interface Definition.

It is often more convenient to use a level set function to represent an interface.32 The 

level set function is often in the form of a second-order continuous distribution function φ, 

satisfying

φ(x, y, z) < 0, when(x, y, z) ∈ Ω−
φ(x, y, z) = 0, when(x, y, z) ∈ Γ
φ(x, y, z) > 0, when(x, y, z) ∈ Ω+

(3)

Here, Γ represents the interface, and Ω− and Ω+ denote the solute and solvent regions, 

respectively. For example, a signed distance function representing a sphere interface, 

centered at (x0,y0,z0) with a radius of R, can be expressed as

φ(x, y, z) = (x − x0)2 + (y − y0)2 + (z − z0)2 − R (4)
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Level set functions can be used to determine the interface by setting φ = 0 conveniently but 

also to compute various interface parameters, such as the normal and tangential directions on 

the interface as32

ξ = (φx, φy, φz)
η = (φy, − φx, 0)
τ = (φxφz, φyφz, − φx2 − φy2)

(5)

Here, ξ, η, and τ are the normal and two tangential directions, respectively. In addition, 

some advanced discretization schemes, like IIM, 67–70 also require higher-order interface 

parameters, such as surface curvatures that can also be computed as follows

ξηη = − φηη
φξ

ξττ = − φττ
φξ

ξητ = − φητ
φξ

(6)

In summary, level set functions are convenient mathematical tools in handling interface-

related problems: they can be used to obtain the interface itself and all its geometry 

parameters in a straightforward manner.32 Thus, it would greatly benefit discretization of 

the PB equation if we can express SES as a level set function. However, construction steps 

of SES are simply too complex to be reproduced algebraically, almost impossible to be done 

by humans. Therefore, it is better to adopt a machine-learning strategy.

2.3. Deep Learning and Neural Network.

Artificial neural networks (ANNs), usually simply called neural networks, are mathematical 

models that have been motivated by the brain function.33,34 A simple example of an ANN 

structure is shown in Figure 1.

The basic idea of a neuron model is that an input, x, together with a bias, b, is weighted by 

w and then summed together,71 as shown schematically in Figure 1. The bias, b, is a scalar 

value, whereas the input x and the weights w are vectors, i.e., x ∈ ℝn and w ∈ ℝn with n ∈ 
ℕ corresponding to the dimension of the input. The sum of these terms, i.e., z = wTx + b, 

forms the argument of an activation function,f(), resulting in the output of the neuron model

y = f(z) = f(wTx + b) (7)

The role of the activation function, f(), is to perform a nonlinear transformation of z. There 

are many activation functions in practice, such as sigmoid, Tanh, ReLU, Leaky ReLU, and 

so on, and the ReLU activation function is usually the most popular activation function for 

deep neural networks.71
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Though its structure may seem highly complicated, a neural network can be viewed as a 

combination of simple elementary functions. Thus, a neural network is differentiable to any 

order, as all its component functions are differentiable to any order, except for a countable 

number of points. This is an important reason why we have chosen a machine learning 

approach to express the SES level set function, because it ensures that the SES level set 

function can be used to compute surface derivatives to any order as needed.

Due to their excellent mathematical properties, ANNs have shown great promise in a range 

of applications.63 Most ANN applications fall into two categories: function approximation/

regression analysis and classification problems. In this study, the ANN is applied as a 

classification tool because the goal is to know which region a grid point belongs to (solvent 

or solute region) in a PB system.

3. COMPUTATIONAL DETAILS

The training data were generated from the Amber PBSA benchmark suite of 573 

biomolecular structures.30 A modified PBSA program was used to print out the training 

data. The default atomic cavity radii were read from the topology files. The solvent probe 

radius was set to 1.4 Å, the grid spacing to 0.95 Å, and all other parameters remain as 

default in the PBSA module in the Amber 20 package.72 The training software package is 

Keras in TensorFlow, version 2.2.4.73 Adam was chosen as the optimizer, and the squared 

hinge function was chosen as the loss function. The partition ratio of training and validating 

sets is 9:1, and an early stopping criterion of 100 epochs was used.

The training data contain two parts: labels or the target values, and the variables. The labels 

are integer values of irregular grid points generated by the Amber/PBSA surface builder 

for the geometry-based SES, termed classical SES below.65 This implementation follows 

the basic idea as outlined by You et al.10 and Rocchia et al.5 Specifically, a numerical 

representation of the solvent accessible arcs was used to map the re-entry surface to the 

finite difference grid. Briefly, there are two steps in assigning the integer labels. The first 

is to determine the solvent accessible arcs that are numerically represented centers of 

solvent accessible probes tangential to at least two atoms simultaneously. The density of the 

numerical arcs is set to be high enough, so that the mapping error is negligible in numerical 

PB calculations. The second is to label grid points nearby the molecular surface as inside or 

outside with a multistep labeling scheme, as summarized in Figure S1.65

The irregular points of the outside (solvent) region are labeled as −1 and those of the 

inside (solute) region are labeled as +1. The variables of the training data are the tuples 

of coordinates and the radii of those atoms near the irregular grid points in the unit of 

Ångstrom. An atom is considered “near” a grid point if the distance between the grid point 

and the atom is within R + 2Dp, where R is the atom radius and Dp is the diameter of 

the probe. The coordinates of the atoms are expressed in the relative frame whose origin 

is the grid point of interest. The neighbor atoms were then sorted in an ascending order 

based on the distance between the grid point and their surfaces. In the training data, the 

maximum neighbor atoms are 48, so the maximum number of variables are 192. The 

variable dimensions are uniformly enlarged to 200 by filling in zeros for blanks. Overall, 
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there are about 6 million entries of data generated from the Amber PBSA benchmark suite, 

which was separated into six subsets, each about 1 million entries.

The training was conducted in three steps. First, the model was trained incrementally by 

adding one atom at a time, which means in the first round of training, the model was 

fed with only the first (nearest) atom’s coordinates and radius. After the training reaches 

stabilization, the model was fed with the first two atoms’ data, and so on. After enough 

number of atoms were fed to the atom, the accuracy of the model reaches a certain stable 

level. We then fed it with all of the nearby atoms to complete the training. This step 

is necessary to initialize the ANN model training because, for such a high-dimension 

(200) nonlinear system, its local minimum can be extremely deep, causing the training 

optimization to fail.

In this step, we also investigated how many hidden layers are needed to reach stable 

prediction accuracy, starting with one layer to five layers. As shown in Figure 2, the 

accuracy of the model becomes stable at 16 atoms, no matter how many hidden layers were 

used in the ANN. Therefore, after 16 atoms, all available nearby atoms were fed to the 

model. Figure 2 further shows that two hidden layers are already very good for our problem. 

The second and the third steps are to determine the number of neurons (Figure S3) and to 

finalize the model, respectively. These details can be found in the Supporting Information. 

The training script and final model can be found at http://rayluolab.org/ml-ses/.

4. RESULTS AND DISCUSSION

4.1. Model Accuracy Analysis.

To evaluate the overall performance of the machine-learned SES method, we first conducted 

an accuracy test on different structures. The test data sets were generated in the same fashion 

as the training data sets. Except for the original training protein monomers, we also included 

two extra sets of biomolecules for this analysis, nucleic acid structures31 and protein/protein 

complex structures from previous PBSA developments.74 The testing results are shown in 

Table 1.

Table 1 shows that the machine-learned SES performs very well for all structural sets, 

including those not included in training. The classification accuracies are basically around 

96% for all data sets, with a variance of about 1%. The method performs the best for 

training data set 6 and the nucleic acid data set. This is because those two contain mostly 

the smallest molecules among all tested molecules. In general, a small molecule has simpler 

surface geometry, so it is easier to predict its geometries. On the contrary, the protein/protein 

complex structures are much larger and thus have more complicated surfaces, so the method 

performs slightly worse on the data set but still obtains an over 95% accuracy.

Another point worth mentioning is that the accuracy test clearly shows excellent 

transferability of the method, from the smaller training protein monomers to the nucleic 

acid structures find the larger protein/protein complex structures. The testing molecules 

overall do not resemble those in the training sets, such is the nucleic acids. Nevertheless, the 

method can successfully predict the SES of those unseen structures, showing that the method 
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has indeed learned the fundamental rules for predicting the SES surface. In summary, the 

consistent accuracy confirms that the machine-learned SES method can be applied to typical 

computational analyses of biomolecules.

4.2. Consistency with Classical SES Molecular Surface.

We chose six representative biomolecules and compared their molecular interfaces generated 

with three different methods: the newly developed machine-learned SES, the classical 

geometry-based SES, and a revised density function surface.25 The superimposed surfaces 

of the machine-learned SES and the classical SES are shown in Figure 3. The superimposed 

surfaces of the classical SES and the revised density function are shown in Figure S4 in 

the Supporting Information. Standalone surfaces from all three methods are also included in 

Figures S5–S7.

It is clear from Figure 3 that the machine-learned SES excellently reproduces the classical 

SES for all tested molecules, including both proteins and nucleic acids, consistent with the 

accuracy analysis shown in Section 4.1. On the contrary, Figure S4 shows that the revised 

density function does not perform well in reproducing the classical SES for the tested 

systems. This is because the revised density function was found to agree well with the 

classical SES only with a smaller solvent probe, i.e., 0.7 Å.25 At the default solvent probe 

of 1.4Å, the density surfaces are uniformly “fatter” than SES surfaces. Another limitation in 

the revised density function surface is that there are often deep re-entry surface patches with 

very large curvature, which would cause numerical instability when it is used in numerical 

PB continuum solvents.70

4.3. Robustness Analysis.

4.3.1. Rotational Symmetry.—Because SES is a molecular surface, it should possess 

both translational and rotational symmetries. The translational symmetry is naturally 

included in the machine-learned SES, as the input coordinates are relative to the grid point 

and are invariant to the translational transformations. However, the rotational symmetry is in 

general not preserved if it is not imposed. Thus, if the machine-learned SES can reproduce 

the classical SES, it should be able to “learn” the rotational symmetry through the training 

process. Thus, whether the method possesses rotational symmetry is a direct test of whether 

it has learned the essentials of the classic SES.

To test the rotational symmetry of the machine-learned SES, 20 000 interface points 

are randomly selected from the training data set and tested with different orientations 

imposed. Without loss of generality, the z-axis was chosen as the rotational axle to generate 

different orientations. Specifically, we performed the following transformation on the input 

coordinates of the nearby atoms for each grid point

x′ = x cos(θ) − y sin(θ)
y′ = y cos(θ) + x sin(θ)

Here, θ is the rotational angle and its values are 30°, 60°, and all the way through 330°. 

Note that the input coordinates are already transformed with the grid point as the origin (see 
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Section 3). Next, the trained machine-learned SES is used to predict the grid labels, and the 

agreement rate with respect to the original predicted grid labels is then computed (Table 2).

As shown above, our machine-learned SES indeed preserves the rotational symmetry 

because the agreement (aka precision) rate is already higher than the accuracy rate (~95%). 

As we have discussed above, this is achieved without any human intervention. The analysis 

shows that the machine-learned SES has learned the essentials of the classic SES very well. 

In addition, if we look at the actual level set function values that the machine-learned SES 

gives, for about 95% of the tested grid points, the deviations between the rotated inputs 

and original inputs are less than 0.001 and for 97% of the tested grid points, the deviations 

between the two are less than 0.01. Thus, our model not only gives the correct classification 

but also gives almost the same level set value for different orientations.

4.3.2. Molecular Binding and Unbinding.—We further evaluated how the machine-

learned SES behaves in binding/unbinding scenarios, with a DNA base pair (GC, a pair of 

guanine and cytosine bases) as a test case. Starting from the hydrogen-bonded GC dimer, the 

two bases are manually pulled apart by 0.5 Å each step to see how the two SES methods 

agree with each other for each of the tested conformations.

It is clear from Figure 4 that the machine-learned SES and the classical SES agree 

excellently for all base separation distances tested, consistent with the performance for 

single molecules in Section 4.2. For example, both surfaces first generate a small cavity 

on the right and then another one on the left. The two cavities gradually increase and 

finally break all three hydrogen bonds between the two bases, causing the two molecules 

to separate completely. On the other hand, the two surfaces still differ somewhat during 

the unbinding process. This can be seen more clearly in Figures S8 and S9 that the machine-

learned SES splits the complex one step earlier than the classical SES. However, whether 

these details are of any physical significance is subject to debate. For example, in Figure 

S8e, the classical SES contains spikes in the middle of the surface, which is obviously not 

close to physical reality. In contrast, the machine-learned SES does not contain the spikes 

and as it is produced by a smooth function. The binding/unbinding test shows that the 

machine-learned SES may be numerically more stable than the classical SES in the more 

challenging dynamical process.

4.3.3. Extrapolation Analysis.—To further test the robustness of our model, we want 

to know how the model performs away from the interface (solvent region or deeply buried 

molecular interior) since the ANN model was initially trained with irregular points near the 

solute–solvent interface only (see Section 3).

We have tested the performance of the model in the entire solvation box, not just nearby the 

interface, but included those grid points that are either far away outside the solute or deeply 

buried inside the solute. The performance of the model is shown in Figure 5.

Figure 5 shows that the model clearly does not work at grid points far away from the 

interface. Specifically, Figure 5a illustrates the presence of an “island” or a small cluster 

of predicted interface grid points, outside the interface. Even more serious failures are 
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within the molecule interior, as illustrated in Figure 5c, where hundreds of small clusters of 

interface grid points are wrongly predicted. This is surprising because the model can predict 

with an accuracy level of over 95% in the most difficult interface region yet made hundreds 

of mistakes in the much easier regions.

These failures are due to the lack of similar data in the training of our initial model as only 

irregular grid points were fed to the training of the model. Thus, the remedy is to assembly 

a supplementary training set with grid points not just near the interface, i.e., the irregular 

grid points in the initial training. In the inside region, the supplementary set includes all grid 

points that are inside SES but outside VDW. In the outside region, the set includes all grid 

points that are in the re-entry cones formed by solvent accessible arcs and their associated 

atom pairs, as illustrated in Figure S1. Training of the initial model on the supplementary 

set leads to the second version of the model. Without surprise, the second version of the 

model can successfully classify those grid points incorrectly predicted by the initial model, 

as shown in Figure 5b,d.

In summary, the extrapolation analysis also demonstrates the robust nature of the machine-

learned SES, as it not only works well near the interface but can also be applied to the entire 

solvation box.

4.4. Timing Analysis.

To illustrate the applications of the machine-learned SES for biomolecular studies, we 

implemented it into the AMBER/PBSA program. It follows the same algorithm structure as 

the revised density function.25 In both approaches, the goal is to assign level set function 

values for all grid points nearby a molecular solute.25 The algorithm contains two parts: 

preprocessing and model predicting. The preprocessing part includes all of the preparation 

needed for generating inputs for the machine-learned level set function. First, it collects all 

grid points that fall inside the SAS but outside the VDW of each solute atom. This step 

involves a loop over all solute atoms. Second, it generates a list of neighboring atoms of 

each grid point, which were collected in the first step, and then sorts them in the order of 

distances. The preprocessing part is relatively quick and takes only about 5% of the total 

time. The predicting part is the main bottleneck of the model, involving a loop over all 

collected grid points.

Given the current CPU implementation based on the Keras modules, we conducted a timing 

analysis of the method with the Amber/PBSA benchmark suite used in the training.30 The 

classical SES was computed with the default SES builder in the Amber/PBSA program, 

which is already highly optimized.65 Figure 6 compares both the timing data of methods. 

The regression shows that the machine-learned SES method is about 2.5 times as efficient as 

the classical SES algorithm on the tested compute node on our local cluster.

As discussed in Section 1, an advantage of the machine-learned SES is that it is naturally 

suitable for parallel computing because the level set function calls for the grid points are 

independent of each other and thus can be distributed to different computing cores. In other 

words, the computation cost of the machine-learned model in principle scales almost linearly 

with the number of cores, so that its cost can be dramatically reduced on highly parallel 
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platforms such as GPUs. Of course, further development to optimize the code and to port it 

to the GPU platform is necessary to realize its full potential, as observed for the PB solvers 

in our previous developments.66,75,76

4.5. Application to Poisson–Boltzmann Modeling.

The PB reaction field energies were computed with the classical SES, the machine-learned 

SES, and the revised density function with otherwise identical conditions for all protein 

structures in the AMBER/PBSA benchmark suite.30 Figure 7 shows the agreement between 

the computed PB energies with both machine-learned SES and the revised density function 

surfaces and those with the classical SES surface.

It is clear from Figure 7 that the machine-learned SES performs uniformly well when 

used for PB energy calculations. The deviations between the PB energies with the machine-

learned SES and those with the classical SES are around 1%. In contrast, the average 

deviation is roughly 2% but the maximum deviation is over 10% between the PB energies 

with the density function surface and those with the classical SES. Figure 7c,d further shows 

that the PB energies from the machine-learned SES are more random around the mean of 

zero but the PB energies from the density function are systematically more negative. This 

is because a small solvent probe (0.7 Å) has to be used in the density function to achieve 

reasonable agreement with the PB energies with the classical SES.25 If the default probe of 

1.4 Å is used, the PB energies would be 30% more positive than those with the classical 

SES.

5. CONCLUSIONS

In this study, we developed a new level set formulation to generate the solvent excluded 

surface through a machine learning process. SES is a widely used molecular surface 

definition, and there are at least two advantages of expressing SES in a level set formalism: 

to facilitate parallel computing and to make it differentiable for future applications in 

implicit solvent simulations.

The level set function was trained on the data generated from a set of heterogeneous 

biomolecular structures, containing about 6 million entries. The training was conducted in 

three steps to determine the number of nearby atoms needed to define the level set, the 

number of hidden layers, and the number of neurons of each layer. After the final training, 

the machine-learned SES can predict the classical SES with an accuracy of over 95% on 

tested proteins, nucleic acids, and complex structures.

Analysis of visualized molecular surfaces of tested biomolecules shows that the machine-

learned SES agrees excellently with the classical SES. It is also clear that a previous 

approach based on atomic density functions is clearly insufficient, generating a molecular 

surface often larger than the classical SES and causing deeper crevices in the re-entry 

regions. Besides, our machine-learned model is incredibly stable in terms of rotational and 

translational variations of the molecules.
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We also performed a timing analysis between the machine-learned SES and the classical 

SES algorithm. The analysis shows that the machine-learned SES is roughly 2.5 times as 

efficient as the classical SES routine in AMBER/PBSA on the tested CPU platform. We 

expect further performance gain on massively parallel platforms such as GPUs given the 

ease in converting the machine-learned SES to a parallel procedure.

To further test the machine-learned SES, we implemented it into a PB solver to see if it 

can be used to reproduce the PB reaction field energies computed with the classical SES. 

Our analysis shows that the two sets of energies differ on average only about 1%, better 

than the 2% average deviation when the energies between the density function surface 

and the classical SES are compared. Furthermore, the deviations in PB energies by the 

machine-learned SES are uniformly distributed, yet the deviations in PB energies by the 

density function surface often exhibit large deviations as high as 10%. This shows that the 

machine-learned SES is much more stable in reproducing the classical SES in real-world 

applications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of an artificial neural network with one hidden layer. Here, each circular node 

represents an artificial neuron, and an arrow represents a connection from the output of one 

artificial neuron to the input of another.
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Figure 2. 
Incremental training of the model. The ANN model was set up with different numbers of 

hidden layers; each hidden layer is of 200 neurons. The model was trained with the first 

training data set. The analysis was also repeated with two additional training sets, and the 

figures are shown in Figure S2, Supporting Information.
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Figure 3. 
Superimposed rendering of the machine-learned SES (blue) and the classical SES (red) of 

representative molecules. (a) PDB ID: 1enh, all-α protein; (b) PDB ID: 1pgb, all-β protein; 

(c) PDB ID: 1shg, α/β protein; (d) PDB ID: 1w0u, protein/protein complex; (e) PDB ID: 

3czw, RNA duplex; and (f) PDB ID: 3fdt, protein/DNA complex.
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Figure 4. 
Superimposed rendering of machine-learned SES (blue) and the classical SES (red) of the 

GC complex. Starting from the hydrogen-bonded structure, the two molecules are manually 

pulled apart for 0.5 Å each step. The standalone figures of the two surfaces are included as 

Figures S8 and S9 in the Supporting Information.
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Figure 5. 
Detailed views of SES as predicted by the first and second versions of the machine-learned 

SES model. The PDB id of the tested molecule is 1shg. Panels (a) and (c) are from the first 

version of the model, outside vision and the inside vision, respectively. Panels (b) and (d) are 

from a second version of the model, outside vision and the inside vision, respectively.
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Figure 6. 
Timing comparison of the machine-learned SES and the classical SES. Both sets of data 

were collected on a single core of an INTEL Xeon E5-4620 CPU. The grid spacing was set 

to 0.95 Å as used in the collection of training data. The regression line between the two sets 

of timing data is y = 0.4114x.
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Figure 7. 
PB reaction field energies with different molecular surfaces. (a) Correlation between 

energies from machine-learned SES and classical SES. (b) Correlation between energies 

from density function and classical SES. (c) Energy differences in panel (a). (d) Energy 

differences in panel (b). The lines in panels (a) and (b) are the diagonal line “y = x” as 

reference.

Wei et al. Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 24

Ta
b

le
 1

.

M
od

el
 A

cc
ur

ac
y 

w
ith

 D
if

fe
re

nt
 S

tr
uc

tu
ra

l D
at

a 
Se

ts
a

da
ta

 s
et

s
tr

ai
ni

ng
 d

at
a 

1
tr

ai
ni

ng
 d

at
a 

2
tr

ai
ni

ng
 d

at
a 

3
tr

ai
ni

ng
 d

at
a 

4
tr

ai
ni

ng
 d

at
a 

5
tr

ai
ni

ng
 d

at
a 

6
nu

cl
ei

c 
ac

id
pr

ot
ei

n 
co

m
pl

ex

ac
cu

ra
cy

 (
%

)
95

.9
6

96
.0

1
96

.0
2

96
.0

3
96

.2
6

97
.7

8
97

.0
7

95
.1

6

a T
he

 f
ir

st
 s

ix
 d

at
a 

se
ts

 a
re

 th
os

e 
fr

om
 th

e 
tr

ai
ni

ng
 p

ha
se

, a
nd

 th
e 

la
st

 tw
o 

se
ts

 a
re

 n
ot

 in
cl

ud
ed

 in
 th

e 
tr

ai
ni

ng
 p

ha
se

.

J Chem Theory Comput. Author manuscript; available in PMC 2022 October 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 25

Table 2.

Rotational Symmetry Test
a

angle 30 60 90 120 150 180

rate (%) 98.6 98.5 98.1 98.3 98.8 98.4

  angle 210 240 270 300 330

  rate (%) 98.2 98.8 98.7 98.6 99.1

a
The agreement rate is the percentage of transformed inputs that give the same prediction (+1 or −1) as the original inputs.

J Chem Theory Comput. Author manuscript; available in PMC 2022 October 12.


	Abstract
	Graphical Abstract
	INTRODUCTION
	METHODS
	Finite Difference Method for Solving PB Equation.
	Level Set Functions for Interface Definition.
	Deep Learning and Neural Network.

	COMPUTATIONAL DETAILS
	RESULTS AND DISCUSSION
	Model Accuracy Analysis.
	Consistency with Classical SES Molecular Surface.
	Robustness Analysis.
	Rotational Symmetry.
	Molecular Binding and Unbinding.
	Extrapolation Analysis.

	Timing Analysis.
	Application to Poisson–Boltzmann Modeling.

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.



