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information, apparatus, product, or process disclosed, or represents that its use would not infringe privately held 
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ABSTRACT 
 
“Hidden” geothermal systems are those systems above which hydrothermal surface features 
(e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking.  
Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary 
near-surface signals from these systems.  Detection of anomalous gas emissions related to hidden 
geothermal systems may therefore be an important tool to discover new geothermal resources.  
This study investigates the potential for CO2 detection and monitoring in the subsurface and 
above ground in the near-surface environment to serve as a tool to discover hidden geothermal 
systems.  We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) 
its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 
in the near-surface environment.  However, monitoring in the near-surface environment for CO2 
derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes 
and concentrations arising from natural biological and hydrologic processes.   
 
In the near-surface environment, the flow and transport of CO2 at high concentrations will be 
controlled by its high density, low viscosity, and high solubility in water relative to air.  
Numerical simulations of CO2 migration show that CO2 concentrations can reach very high 
levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes.  However, 
once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective 
at dispersing CO2 seepage.  
 
In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 

fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production 
by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater 
degassing, and exchange with the atmosphere.  Available technologies for monitoring CO2 in the 
near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of 
concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil 
CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux 
over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 

concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 

concentrations over an integrated path.  Technologies currently in developmental stages that 
have the potential to be used for CO2 monitoring include tunable lasers for long distance 
integrated concentration measurements and micro-electronic mechanical systems (MEMS) that 
can make widespread point measurements.  
 
To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions 
within the natural background variability of CO2, we propose an approach that integrates 
available detection and monitoring methodologies with statistical analysis and modeling 
strategies.  Within the area targeted for geothermal exploration, point measurements of soil CO2 

fluxes and concentrations using the AC method and a portable IRGA, respectively, and 
measurements of net surface flux using EC should be made.  Also, the natural spatial and 
temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be 
quantified within a background area with similar geologic, climatic, and ecosystem 
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characteristics to the area targeted for geothermal exploration.  Statistical analyses of data 
collected from both areas should be used to guide sampling strategy, discern spatial patterns that 
may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of 
geothermal CO2 within the natural background variability with a desired confidence level.  Once 
measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal 
origin with high confidence, more expensive vertical subsurface gas sampling and chemical and 
isotopic analyses can be undertaken.  Integrated analysis of all measurements will determine 
definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent 
of the anomaly.  The appropriateness of further geophysical measurements, installation of deep 
wells, and geochemical analyses of deep fluids can then be decided based on the results of the 
near surface CO2 monitoring program.   
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1.  INTRODUCTION 
 

Most commercial geothermal projects have been developed near previously known resources, for 
example, near hot springs or areas of historic use.  Also, the majority of hydrothermal systems 
with obvious surface expressions in the U.S. have already been explored for geothermal 
development potential.  Discovery of new geothermal systems will therefore require exploration 
of areas where the reservoirs are either hidden or lie at greater depths than presently known 
reservoirs.  As a result, research must be geared toward the development of novel exploration 
techniques to locate these new geothermal resources.   
 

Here, we define “hidden” geothermal systems as those systems above which hydrothermal 
surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal 
alteration) are lacking.  Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may 
be one of the primary near-surface signals from these systems.  Detection of anomalous gas 
emissions related to hidden geothermal systems may therefore be an important tool to discover 
new resources  (Klusman et al., 2000). We will focus our discussion specifically on the detection 
and monitoring of CO2 in the subsurface and above ground in the near-surface environment as a 
tool to discover hidden geothermal systems because (1) CO2 is the major non-condensable gas 
present in geothermal reservoirs (e.g., Ellis and Mahon, 1977), (2) due to its moderate solubility 
in water, CO2 from volcanic-hydrothermal sources tends to migrate to the near-surface in the 
gaseous phase in equal or greater proportion than dissolved in the aqueous phase in groundwater 
(e.g., Cruz et al., 1999; Favara et al., 2001; Evans et al., 2002), and (3) a broad range of 
technologies are available to monitor CO2 in the near-surface environment.  Importantly, 
however, CO2 is produced in the near surface by a variety of biological processes, and 
monitoring of CO2 from hidden geothermal reservoirs will involve monitoring a system with 
large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic 
processes.  The detection of anomalous CO2 will therefore require searching for potential 
geothermal CO2 anomalies, likely of small magnitude, over areas of tens of km2 or more within 
the naturally varying background CO2 fluxes and concentrations.   
 

The objective of this report is to discuss geothermal CO2 monitoring in the near surface as a tool 
to discover hidden geothermal reservoirs.  To this end, we present (1) the physical properties of 
CO2 key to its transport in the near-surface environment, (2) model simulations of geothermal 
CO2 migration and seepage that highlight fundamental features of these processes, (3) a 
discussion of the processes that affect natural background CO2 fluxes and concentrations within 
which anomalous geothermal CO2 must be discerned, (4) technologies that are currently 
available or will be potentially available in the future to monitor CO2 migration and seepage in 
the near surface, and (5) potential strategies to detect geothermal CO2 seepage fluxes and 
concentrations within the naturally varying background fluxes and concentrations.   
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2.  FLUXES AND CONCENTRATIONS OF CO2 IN KNOWN VOLCANIC 
AND HYDROTHERMAL SYSTEMS 
 
Over the past several decades, numerous diffuse CO2 degassing studies have been conducted in 
known (i.e., “visible”) volcanic and hydrothermal environments, many of which focused on 
characterizing the magnitude and spatial distribution of CO2 emissions.  While surface CO2 
emission rates from hidden geothermal systems will likely be lower than those measured in 
known volcanic and hydrothermal systems, the preferential pathways for CO2 flow from depth to 
the near surface will likely be similar.  As discussed below, the magnitudes and styles of diffuse 
CO2 emissions vary from site to site.  Here, we briefly review the surface CO2 fluxes and soil 
CO2 concentrations measured in these systems.  In most cases, the AC method (see section 6.2.2 
below) was used to measure surface CO2 fluxes and the CO2 concentrations of soil gases were 
measured using a portable IRGA (see section 6.2) or by laboratory gas chromatography.   
 
At Solfatara crater, Campi Flegrei caldera, Italy, surface CO2 fluxes up to 75,000 g m-2d-1 were 
measured (e.g., Cardellini et al., 2003), with average flux estimated to be 1520 g m-2d-1 (Chiodini 
et al., 2001).  Elevated fluxes here were primarily focused along faults and fractures.  At 
Vulcano Island, Italy, CO2 fluxes up to 12,000 g m-2d-1 were measured (Cardellini et al., 2003).  
CO2 fluxes up to 22,000 g m-2d-1 were measured at Poggio dell’Ulivo, an area of cold CO2 
degassing in the Central Italian magmatic province (Cardellini et al., 2003).  At the Central 
American volcanoes of Masaya (Nicaragua), Cerro Negro (Nicaragua), Poas (Costa Rica), and 
Arenal (Costa Rica), fluxes up to 50,000 (average = 2750, Lewicki et al., 2003), 35,000 (Salazar 
et al., 2001), 140 (Williams-Jones et al., 2000), and 291 g m-2d-1 (Williams-Jones et al., 2000), 
respectively, were measured.  Elevated fluxes at these volcanoes were predominantly measured 
along eruptive fissures and faults.  Koepenick et al. (1996) reported fluxes up to 1350 g m-2d-1 
(average = 166 g m-2d-1) near fumaroles and fractures on Oldoinyo Lengai volcano, Tanzania, 
whereas Hernandez et al. (2001) reported fluxes up to 18,150 g m-2d-1 at Miyakejima, Japan, 
mainly focused along flank fissures and on the main volcanic cone.  At Mammoth Mountain, 
USA, average measured CO2 flux ranged from 1500-2100 g m-2d-1, with maximum values of 
>10,000 g m-2d-1 (Gerlach et al., 2001).  CO2 flow here was hypothesized to be controlled by 
faulting.  At the Dixie Valley Geothermal Field, USA, CO2 fluxes up to 570 g m-2d-1 were 
measured near faults and fumaroles (Bergfeld et al., 2001).  Werner et al. (2000) reported CO2 
fluxes up to 30,000 g m-2d-1 in the Yellowstone volcanic system, with average fluxes of 89 g m-

2d-1 in travertine depositing areas to 1200 g m-2d-1 in acid-sulfate areas.  Elevated fluxes here 
were mainly focussed along faults and fractures.   
 
Soil CO2 concentrations measured in volcanic and hydrothermal environments have also varied 
widely, depending on the study area and proximity to geologic features (e.g., faults, eruptive 
fissures) influencing gas flow.  At Poas volcano, concentrations up to 16 vol.% were measured 
by Williams-Jones et al. (2000).  At Arenal and Galeras (Colombia) volcanoes, Willams-Jones et 
al. (2000) reported concentrations up to 7.3 and 13 vol.%, respectively.  Soil CO2 concentrations 
up to 90 vol.% were measured at Oldoinyo Lengai volcano (average = 14 vol.%, Koepenick et 
al., 1996), Mammoth Mountain (Sorey et al., 1998), and the Yellowstone volcanic system 
(Werner et al., 2000).  Similar to surface CO2 fluxes, elevated soil CO2 concentrations were 
commonly associated with faults, fractures, eruptive fissures, and vents in these study areas. 
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3.  PHYSICAL PROPERTIES OF CO2 IN THE NEAR SURFACE 

Pressures and temperatures in the shallow subsurface (e.g., within the vadose zone and close to 
the water table) are close to those in the atmosphere near the ground surface.  Figure 3.1 shows 
the density of CO2-air mixtures as a function of concentration (mole fraction) at three different 
temperatures (Magee et al., 1994; NIST, 1992) where air is dry and composed of 79% nitrogen 
(N2) and 21% oxygen (O2) by volume.  As shown in Figure 3.1, CO2 has greater density than dry 
air, and the gases mix approximately ideally at atmospheric pressure.  Note that the density 
contrast between CO2 and air will be larger in the vadose zone than indicated in Figure 3.1 due 
to the presence of water vapor with lower density relative to dry air.  Figure 3.2 shows that under 
the same pressure and temperature conditions, CO2 is less viscous than air (Magee et al., 1994; 
NIST, 1992).   

Figure 3.3 shows the solubility of CO2 and N2 (where N2 is a proxy for air) in water as a function 
of gas composition (mole fraction) at three different temperatures (Spycher et al., 2003).  In 
these model calculations, the partial pressure of CO2 is significantly in excess of atmospheric 
partial pressure.  Thus, the pH of the solution is maintained below ~6 and H2CO3 is the dominant 
aqueous carbon species present.  Carbon dioxide has greater solubility (approximately 50x) in 
water than does N2 (air).  The solubility of CO2 decreases as temperature increases and as its 
partial pressure decreases. Carbon dioxide gas bubbles are usually formed when CO2-saturated 
ground water migrates upwards in the subsurface and pressure decreases.   

The transport of CO2 in the shallow subsurface is also controlled by its molecular diffusivity, 
which is comparable to that of other components in air (e.g., N2, O2, H2O) and is approximately 
1.65 x 10-5 m2 s-1 at 25 ˚C, 1 bar (Vargaftik et al., 1996).  Pressure and temperature have 
compensating effects on molecular diffusion, as described for solubility; diffusivity tends to 
decrease as pressure increases with depth and increase with increasing temperature.  

In summary, CO2 is a dense and inviscid gas relative to air.  Carbon dioxide will therefore tend 
to be mobile and sink due to buoyancy effects.  However, because CO2 and other gases in the 
near surface are fully miscible, no significant density segregation is expected to occur in gas 
mixtures unless there is relative flow between the gas and liquid water.  This flow may cause 
CO2 to preferentially dissolve in groundwater and leave behind a gas mixture enriched in the less 
soluble components.  If groundwater pressure decreases and/or temperature increases, exsolution 
may occur, releasing CO2 back to the gas phase.     

 

4.  SIMULATIONS OF CO2 MIGRATION   

4.1 Introduction 

In this section we present numerical simulations of CO2 migration, seepage, and atmospheric 
dispersion.  The purpose of these simulations is to evaluate the magnitudes and form of 
anomalous CO2 concentrations and fluxes that might be expected to emanate from a given model 
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hidden geothermal system.  From this information, we can design and evaluate potential 
monitoring and detection methods.   

4.2  Methods 

4.2.1  Introduction 

We use the simulator T2CA (Oldenburg and Unger, 2004), a research module of TOUGH2 
(Pruess et al., 1999).  T2CA retains the fundamental porous media flow and transport capabilities 
of TOUGH2, and models five components (water, brine, CO2, a gas tracer, and air) under 
isothermal or non-isothermal conditions.  The main advance in T2CA is the implementation of a 
simple atmospheric transport and dispersion capability for dilute gases based on variable-K 
theory (Arya, 1999).  In variable-K theory, a constant time-averaged wind velocity profile is 
specified for advection, and atmospheric dispersion is modeled as a diffusion process with 
variable diffusivity as a function of height above the ground surface.  In this way, T2CA models 
coupled subsurface and atmospheric surface layer gas flow and transport.  Because the 
subsurface methods in TOUGH2 are well documented and described elsewhere (e.g., Pruess et 
al., 1999), we focus here on describing briefly the atmospheric dispersion methods, for which 
more detail can be found in Oldenburg and Unger (2004).    

4.2.2  Logarithmic Velocity Profile 

The ambient time-averaged wind profile near the ground surface follows a logarithmic profile 
(e.g., Slade, 1968, p. 73).  The logarithmic wind profile is valid over approximately the lower 
one-tenth of the atmospheric boundary layer, or approximately a few tens of meters above the 
ground surface.  The logarithmic wind profile as shown on Figure 4.1 is given as:  
 

u(z) =
u*
k
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z
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⎛ 
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⎠ 
⎟ ⎟       (4.1) 

 

where u(z) is the ambient wind velocity as a function of height above the ground surface, u* is 
the friction velocity (a parameter that governs the shape of the wind profile near the ground 
surface for various surface types), k is von Karman’s constant (k = 0.4), z is the elevation, and z0 
is a roughness height that is a function of various surface types and for which u(z) = 0 for z ≤ zo 
(Slade, 1968).  The logarithmic wind profile is strictly applicable to neutral stability conditions.    

4.2.3  Advective-Dispersive Transport 

The mean turbulent transport of CO2 as a passive gas in the surface layer can be described by the 
advective-dispersive transport equation with variable eddy diffusivities (Kx, Ky, Kz) (Arya, 1999, 
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For convenience in surface-layer transport modeling, the coordinate system can be arranged so 
that x is aligned in the downwind direction, making v = w = 0 where u is the ambient wind.  We 
assume that the seeping gas concentration is low enough that it does not affect the velocity field, 
i.e., we make a dilute gas assumption.  

4.2.4  Dispersion Model 

For the special case of constant eddy diffusivities and a uniform wind velocity (u) with no shear 
(i.e., no velocity gradient), and assuming that advection dominates diffusion in the x-direction, 
solutions to Eq. 4.2 are given by the well-known Gaussian plume dispersion model, with 
constant eddy diffusivities Dxx, Dyy, and Dzz given by  

 

    
t

D
t

D
t

D z
zz

y
yy

x
xx 2

,
2

,
2

222 σσσ
===     (4.3) 

where σx, σy, σz are the standard deviations of concentration distributions at an observation or 
receptor point, and t is the travel time to the point (e.g., Arya, 1999, p. 132).   

Although attractive for its simplicity and widely used in pollutant transport applications, the 
Gaussian plume model is not valid for situations with wind shear (i.e., a non-zero gradient of u 
with height), as appropriate for winds near the ground surface that affect CO2 seepage (Arya, 
1999, p. 197-199).  Theory and data point to the need for variable eddy diffusivities (Kx, Ky, Kz), 
an approach called variable-K theory.  The variable-K theory is recommended for cases with 
wind shear and non-homogeneous turbulence such as will be found in the surface layer (Arya, 
1999, p. 143).  For our surface-layer applications involving CO2 seepage, we have used variable 
K-theory and the assumption that Kz increases linearly with height as 

 
     Kz = k u* z       (4.4) 

(Arya, 1999, p. 143).  This model assumes neutral stability in the surface layer, allows for a 
variable wind speed with height, and models the larger dispersion that occurs as the plume 
moves upward.  Because there is no analogous formulation of Ky (transverse dispersion) valid for 
short travel distances (< 10 km) in variable-K theory (Arya, 1999, p. 151), we adopt here a 2-D 
configuration for our test problem that models only vertical dispersion and downwind advection.  
Because CO2 dispersion will occur only in the vertical direction, this represents a conservative 
model in that actual CO2 concentrations downwind will be lower for emissions from any realistic 
areal source for which lateral dispersion occurs.  The neglect of lateral dispersion is not an 
inherent limitation of T2CA, which is in fact three-dimensional, and can include lateral 
dispersion assuming a reasonable parameterization is available.  

In summary, T2CA uses a logarithmic velocity profile and variable-K theory to model 
multicomponent gaseous (CO2, gas tracer, and air) transport in a 2-D surface layer that is directly 
coupled with a porous medium subsurface region.  In this approach, we calculate eddy 
diffusivities from the variable-K diffusivity of Eq. 4.4 to produce an effective atmospheric 
dispersivity at every gridblock in the surface layer, a convenient approach in the discretized 
framework of T2CA.  Although it is normally negligible in the surface layer, the molecular 
diffusion coefficient is added to the eddy diffusivity with the largest term controlling the 
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dispersion process.  The single effective dispersivity is then used in the advective-dispersive 
transport equation for each chemical component to model surface-layer transport.   

4.2.5  Limitations 

In general, CO2 dispersion can occur either as a dense or a passive gas, depending on the local 
CO2 concentration.  Our approach is applicable only to passive gas transport in the surface layer 
(Oldenburg and Unger, 2004).  Therefore, this approach is applicable only to cases of small CO2 
seepage flux in which the ambient winds are not affected by CO2 seepage.  This assumption is 
easily met for windy conditions and for the small seepage fluxes expected from hidden 
geothermal systems.   

Time-averaged winds are assumed in the logarithmic velocity profile, and no account is made of 
daily changes in winds, temperature, or weather.  We assume the time scale of interest is on the 
order of 1 mo. to 10 years, time scales over which averaging is defensible.  Length scales for 
mixing are on the order of 10 m to 1 km.   

Numerical dispersion in the implicit and upstream-weighted TOUGH2 framework is on the order 
of one-half the grid spacing multiplied by the velocity.  Because of the alignment of the grid with 
the unidirectional wind, numerical dispersion occurs only in the flow direction (i.e., x-direction) 
in the surface layer.  In the quasi-steady cases we are considering, advection dominates transport 
in the flow direction.  In the vertical direction, the velocity is zero (w = 0).  Thus, vertical eddy 
diffusion is unaffected by numerical dispersion.  If CO2 front tracking in the surface layer ever 
arises as a focus of interest, special weighting schemes can be implemented to diminish 
numerical dispersion in the flow direction (e.g., Oldenburg and Pruess, 2000). 

4.3  Conceptual Model 

The geologic framework of the model hidden geothermal system we consider is based loosely on 
an arid basin and range system like the Dixie Valley geothermal system (e.g., Benoit, 1999; 
McKenna and Blackwell, 2004), only without any surface manifestations.  In particular, we 
consider a model in which a growing alluvial fan covers a geothermal anomaly created by deep 
range-bounding faults so that it is essentially invisible at the surface.  Within this system, we 
model the migration of CO2 upward from a small (15 m2) region that represents the top of a 
conductive fault, located near the water table.  The CO2 spreads in the heterogeneous system as it 
migrates upward until it seeps out at the ground surface.  A conceptual model of the system is 
shown in Figure 4.2, along with the outline (dashed) of the model domain.  We present results 
from the start of CO2 migration up to 200 years, at which point the gas seepage flux and 
concentrations are nearly steady. The grid and boundary conditions for the subsurface region are 
shown in Figure 4.3.  The grid consists of 67 15-m gridblocks in the x-direction, and 31 4-m 
gridblocks in the z-direction, with the grid tilted at six degrees.  We do not consider the effects of 
infiltration of meteoric water to simplify models and focus attention on arid basin and range-type 
environments.  Additional properties of the system are presented in Table 4.1.  

We consider both a homogeneous permeability case, along with five realizations of 
heterogeneous permeability.  The heterogeneous permeability cases are significant because gas 
migration will tend to follow high-permeability pathways.  We present in Figure 4.4 five 
realizations (referred to as realizations A–E) of a heterogeneous permeability field generated 
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using simulated annealing to represent an alluvial fan deposit (note the vertical exaggeration).  
The permeability is characterized by a mean value of 10-12 m2, and varies by four orders of 
magnitude.  There is a 45-m correlation length in the Y-direction (sub-horizontal), and no 
correlation in the vertical direction, thereby creating a layered structure intended to represent an 
alluvial fan.   

 

4.4  Results 

4.4.1  Subsurface Migration 

We simulated the subsurface migration of CO2 from a 15 m2 source area near the water table at 
three different source strength rates (qCO2 = 1x10-6, 1x10-5 and 1x10-4 kg s-1, Table 4.1).  These 
rates are equivalent to source CO2 fluxes of 5.76, 57.6 and 576 g m-2 d-1, respectively, when 
normalized by the source emission area.  These CO2 fluxes were arbitrarily chosen to produce 
small CO2 seepage fluxes, and are significantly lower (i.e., up to four orders of magnitude) than 
surface CO2 fluxes measured in known/visible volcanic and hydrothermal systems.  While we do 
not know the range of source CO2 fluxes that will be expected from a hidden geothermal system, 
we chose to model this low range of values to test the capability limits of available technologies 
for near-surface CO2 detection.  For reference, the largest source CO2 flux we consider is similar 
to the highest surface CO2 fluxes measured at the Dixie Valley Geothermal Field, Nevada 
(Bergfeld et al., 2001).  First, to illustrate the two-dimensional flow behavior of CO2 in the 
subsurface, we present the results for high source CO2 flux (576 g m-2d-1) and heterogeneous 
subsurface permeability (realizations A-E).  To illustrate the expected near-surface CO2 signals 
for the purpose of detection analysis (see Sections 6 and 7), we then present one-dimensional 
horizontal profiles of shallow subsurface CO2 concentrations and surface CO2 fluxes associated 
with the three source strengths for (1) homogeneous subsurface permeability and (2) 
heterogeneous permeability (realizations A-E).  To facilitate comparison of CO2 concentration 
results, 1 vol% = 10-2 mole fraction = 104 ppmv.  The initial condition for the simulations is a 
static unsaturated-saturated system as shown in Figure 4.5 by the liquid saturation fields.  

The CO2 plume after 0.5, 1, and 10 years of migration for the homogeneous permeability case is 
presented in Figure 4.6.  As shown, CO2 migrates upward and outward from the source and 
reaches the ground surface in approximately one year.  Results for heterogeneous systems 
(heterogeneity realization A) are presented in Figure 4.7.  As shown, there is a slight preferential 
migration in the sub-horizontal direction reflecting the permeability structure of the alluvial fan.  
However, the plume seeps out of the ground after only slightly more than one year.  As observed 
in prior work (Oldenburg and Unger, 2003), at late times (after 10 years) the CO2 concentration 
in the shallow subsurface can become very high even though the CO2 flux is quite small.  CO2 
plumes after 200 years of migration for permeability realizations A-E are shown in Figure 4.8.  
At 200 years, the CO2 plumes for the different permeability fields are similar in general shape 
and CO2 concentration distribution.  

Figure 4.9 shows the horizontal profiles of CO2 concentration at 3 m depth and surface CO2 flux 
associated with a subsurface with homogeneous isotropic permeability and low, medium, and 
high source CO2 source fluxes (t = 200 years).  These profiles all show a similar smooth increase 
and then decrease in concentration and flux crossing the CO2 plume.  Maximum CO2 
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concentrations for the low, medium, and high source strengths are about 2 x 104, 1 x 105 and 6 x 
105 ppmv, respectively, whereas maximum surface CO2 fluxes are about 2 x 10-4, 0.2, and 40 g 
m-2

 d-1, respectively.  These profiles also show that the width of the CO2 plume increases with 
increasing source strength.  If the source area of CO2 emission were increased (i.e., to simulate 
more diffuse, rather than focused CO2 flow), the magnitude of the near-surface CO2 
concentration and flux signals would decrease, while the width of the anomaly would increase. 

Profiles of CO2 concentration at 3 m depth and surface CO2 flux associated with a subsurface 
with heterogeneous permeability (realizations A-E) and low CO2 source flux (t = 200 years) are 
shown on Figure 4.10.  Figures 4.11 and 4.12 present results for medium and high CO2 source 
strengths, respectively.  At low source flux, CO2 concentration profiles associated with the 
heterogeneous permeability realizations are broadly similar to those associated with 
homogeneous permeability.  In other words, both heterogeneous and homogeneous permeability 
profiles display a similar relatively smooth increase then decrease in concentration across the 
plume maximum concentrations (although these concentrations vary somewhat between 
realizations A-E) and similar width of the CO2 anomaly.  For profiles corresponding to the low 
source flux and both homogeneous and heterogeneous permeabilities, the CO2 concentrations at 
3 m depth fall within the range of natural background CO2 concentrations arising from biological 
processes (see Section 7.2.1).  At medium and high source fluxes, the concentration profiles for 
heterogeneous permeability realizations A-E diverge from profiles associated with homogeneous 
permeability, showing greater spatial variability of concentrations.  These changes are likely due 
to an increasing contribution of advective transport of CO2 through relatively high permeability 
pathways at elevated source fluxes.  For all source CO2 fluxes, profiles of surface CO2 fluxes 
associated with heterogeneous permeability differ from those associated with homogeneous 
permeability at the same source strengths.  Relative to the homogeneous permeability cases, 
fluxes along the heterogeneous profiles are more spatially variable and maximum observed 
fluxes may be greater or less, depending on the presence of high or low permeability pathways, 
respectively.   

4.4.2  Surface-Layer Dispersion  

In this section, we present results of the coupled subsurface-surface layer system to investigate 
above-ground CO2 concentrations for the model system.  The methods in T2CA assume a 
horizontal ground surface, above which a constant logarithmic wind profile exists.  To 
accommodate this assumption, we simulated a horizontal system rather than the tilted system 
used for the subsurface simulations discussed in the Section 4.4.1.  Otherwise, we used the same 
permeability structure (realization A), water table depth at source location, and source strength 
(qCO2 = 1. x 10-4 kg s-1).  Figure 4.13 shows the initial liquid saturation field in the subsurface 
and the surface-layer winds for the 3 m s-1 case.   

Shown in Figures 4.14 and 4.15 are results after 1, 10, and 200 years for the high CO2 source 
strength of 1 x 10-4 kg s-1 and ambient winds of 3 m s-1 and 1 m s-1. As shown, dilution in the 
atmospheric surface layer is very strong.  Surface layer CO2 concentrations due to seepage are of 
order 10-8 or smaller by mole fraction.  This strong dilution occurs because the CO2 mixes with 
ambient air very effectively by turbulence as modeled by variable-K theory.   

As an aside, we note that relative to Figure 4.8a (permeability realization A, high source CO2 
flux, and 200-year simulation, tilted system), Figure 4.14c shows a greater extent of lateral 
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subsurface CO2 flow.  This difference can be attributed to the effects of the down-dip decreases 
in (1) vertical path length for CO2 flow, and (2) size of the unsaturated zone (Figure 4.8a).  In 
addition, the horizontal system of Figure 4.14c allows upward CO2 flow only along vertical 
connections in the numerical grid, whereas the dipping system allows a vertical component of 
flow along both coordinate-axis directions. 

4.5  Summary of Modeling Results 

CO2 migrates upward with little lateral diversion, even in a tilted heterogeneous permeability 
system.  The travel time from approximately 100 m depth to the ground surface is approximately 
one year.  The gas in the CO2 plume is essentially pure CO2 in the subsurface, even though the 
CO2 flux is quite small.  Surface-layer winds are capable of diluting CO2 concentrations to very 
small values above the ground surface.  These results have neglected lateral dispersion 
(transverse to wind velocity direction) and therefore somewhat overpredict actual surface-layer 
CO2 concentrations.  The high CO2 concentrations observed in simulations at the ground surface 
and in the subsurface, relative to the atmospheric surface layer suggest that monitoring of CO2 in 
the subsurface or at the ground surface may have greater potential to detect anomalous CO2 of 
geothermal origin than above-ground techniques. 
 

 
5.  BACKGROUND CO2 FLUXES AND CONCENTRATIONS 

5.1  Introduction 

We define “background” CO2 as CO2 derived mainly from the atmosphere and biologically 
mediated oxidation of organic carbon (respiration).  We will not discuss CO2 derived from 
leaking natural fossil hydrocarbon reservoirs here.  Background soil CO2 fluxes and 
concentrations are primarily dependent on three factors: (1) CO2 production in the soil by 
biological processes, (2) flow of CO2 from sub-soil sources into the soil column, and (3) 
exchange of CO2 with the atmosphere by concentration and pressure-driven transport processes.  
Background soil CO2 sources and exchanges are shown schematically in Figure 5.1 and are 
discussed in detail below.    

5.2  CO2 Production in Soil 

Production of CO2 in soils occurs primarily by root respiration and decay of organic matter 
(aerobic microbial respiration).  The rate of root respiration is strongly dependent on the vitality 
of the plant (e.g., Mogensen, 1977).  While litter and root exudates provide the source of carbon 
for decay processes, the decay rate and associated CO2 production are largely dependent on soil 
temperature and moisture, substrate quality and availability, soil aeration, and pH (e.g., Wiant, 
1967a; Wiant 1967b; Edwards, 1975; Singh and Gupta, 1977; Amundson et al., 1989; Wood et 
al., 1993).  Both diurnal and seasonal temperature changes have been shown to strongly 
influence the rate of CO2 production by root and microbial respiration processes, and related 
concentrations and fluxes; production in the soil generally increases with temperature (e.g., 
Parada et al., 1983; Amundson and Smith, 1988; Osozawa and Hasegawa, 1995).  Soil water 
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content also strongly controls soil CO2 production rate and it has been observed that between the 
permanent wilting point and 60–80% saturation, increasing water content increases the rates of 
soil CO2 production (Alexander, 1977), whereas at higher or lower moisture contents, production 
rates can decrease (Kucera and Kirkham, 1971).  Figure 5.2 shows repeated measurements of 
soil CO2 concentration as a function of depth (hereafter referred to as CO2 concentration 
profiles) at one site in central California. This time series of profiles demonstrates how soil CO2 
production and related concentrations can vary over time due to changes in soil temperature and 
water content (Lewicki et al., 2003a).   

5.3  CO2 from Sub-Soil Sources 

Carbon dioxide may also enter soils from sources below at depth.  Increasing CO2 concentrations 
with depth down to the water table have been observed in a number of studies, indicating CO2 
production in the sub-soil (e.g., Wood and Petraitis, 1984; Keller, 1991; Keller and Bacon, 
1998).  This sub-soil production of CO2 can occur by groundwater degassing of CO2 that was 
originally derived from soil respiration or atmospheric sources and then dissolved in infiltration 
moving through the vadose zone.  In addition, particulate organic carbon can be transported to 
depth by recharging groundwater and can be oxidized to CO2 by microbes under aerobic 
conditions (e.g., Wood and Petraitis, 1984).  Furthermore, if soil parent material contains ancient 
organic carbon and is exposed to aerobic conditions in the vadose zone, oxidation of this carbon 
will produce CO2  (e.g., Keller and Bacon, 1998).  CO2 concentration profiles resulting from any 
of these processes will show increasing concentration with depth below the soil (e.g., Figure 5.3) 
and the CO2  may then be transported upwards into the soil column.     

5.4  Soil-Atmosphere Exchange of CO2 

Two main gas transport processes control exchange of soil CO2 with the atmosphere, namely 
concentration-gradient-driven flow (diffusion) and total pressure-gradient-driven flow 
(advection).  Diffusive flow is driven by the rate of gas production and the temperature, water 
content, porosity, and tortuosity of the soil.  Advective transport can be driven by (1) 
atmospheric pressure effects whereby changes in atmospheric pressure can cause “pumping” of 
gas into and out of the soil (e.g., Massmann and Farrier, 1992), (2) temperature effects whereby 
changes in temperature may cause expansion or contraction of soil gas (e.g., Hinkle, 1994), (3) 
wind effects whereby changes in wind speed may promote gas flow through the soil (e.g., 
Reimer, 1980; Schery et al., 1984; Lewicki et al., 2003a), and (4) rainfall.  Flow of rainwater 
through the soil can displace gas and “flush” CO2 from the soil, leading to a temporary increase 
in soil CO2 flux.  Alternatively, precipitation may have a “capping” effect, slowing transport of 
CO2 to the atmosphere and leading to rise of soil CO2 concentrations (e.g., Hinkle, 1994).  

 
6.  METHODS FOR MONITORING CO2  

6.1  Introduction 

A broad range of technologies is available to measure near-surface CO2 concentrations and 
fluxes and determine the source of this CO2 with the goal of detecting anomalous CO2 of 



Strategies for Detection of Hidden Geothermal Systems 
 
 

 19 Rev. 1.2  

geothermal origin.  However, these techniques differ from one another in terms of the spatial and 
temporal scales of the measurement, measurement sensitivity and error, and cost.  Overviews of 
CO2 detection technologies can also be found in Shuler and Tang (2002) and Oldenburg et al. 
(2003). 

6.2  Infrared Gas Analyzer 

The infrared gas analyzer (IRGA) is an instrument commonly used to measure CO2 
concentration in subsurface or atmospheric air.  The measurement is based on CO2 absorption of 
infrared radiation within a gas sample cell.  Portable IRGAs are available for use in the field and 
require only one person to operate.  These IRGAs can be used to make single measurements or 
continuous measurements over time.  Also, small IRGAs are available for installation in the 
subsurface or above ground and can be used for continuous monitoring of CO2 concentration at 
fixed locations over time.  Portable instrument set up and calibration usually require less than 
one hour and a single measurement can be made in seconds.  The IRGA measurement range is 
variable; depending on the model and calibration, IRGAs are available to measure CO2 
concentration over a low range (e.g., 0-1000 ppmv CO2) or over a high range (e.g., 0-100 vol% 
CO2).  The precision and accuracy of IRGAs can be as good as ± 0.2 ppmv at 350 ppmv (near 
atmospheric concentration) and ± 1%, respectively.  The cost of equipment can be as low as 
about $500, but typically ranges from $5,000 to $30,000.   

IRGAs are reliable instruments, reasonably priced, straightforward to use, and portable.  As a 
result, IRGAs have been applied to a wide range of studies including occupational health and 
safety, ecosystem, volcanic/geothermal, micrometeorological, agricultural, and human 
physiology research.  Although IRGAs make measurements of CO2 concentrations at point 
locations, they can be coupled with additional instrumentation to measure surface CO2 fluxes 
from small to large areas (see Accumulation Chamber and Eddy Covariance sections below).   
Additional information regarding commercially available IRGAs and their applications in 
research can be found in: Li-COR (2003); Oskarsson et al. (1999); Shuler and Tang (2002); 
Sorey et al. (1996); and USGS (2000a, 2000b). 

 

6.2.2  Accumulation Chamber  

The accumulation chamber (AC) method is used to measure soil CO2 flux using an AC and an 
IRGA (Figure 6.1).  Using this technique, an AC with an open bottom (cm2 scale) is placed 
either directly on the soil surface or on a collar installed on the ground surface, the contained air 
is circulated through the AC and an IRGA, and the rate of change of CO2 concentration in the 
chamber (d[CO2]/dt) is measured by the IRGA and recorded.  The flux of CO2 (F) is then 
calculated according to 
 

    F =
ρV
A
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where ρ is the molar density of air, V is the volume of the measurement system, and A is the area 
of the AC footprint.  The accuracy and precision of the AC method have been estimated to be -
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12.5 % (Evans et al., 2002) and ±10% (Chiodini et al., 1998), respectively.  Each AC 
measurement typically is made within several minutes and one person is required to operate the 
instrumentation.  The AC method has been applied in volcanic and geothermal studies where 
relatively high magnitude fluxes (up to 5 x 104 g m-2 d-1) are present (e.g., Farrar et al., 1995; 
Chiodini et al., 2001; Salazar et al., 2001; Lewicki et al., 2003b), as well as in ecological studies 
(e.g., Rolston, 1986; Mosier, 1989; Norman et al., 1992, Gouldin et al., 1996) where relatively 
small magnitude CO2 fluxes on the order of 40 g m-2 d-1 are typical.   

Because the AC CO2 flux measurement is regarded as a point measurement, many measurements 
are required to characterize the spatial variability of fluxes and to delineate spatial trends within 
a study area.  To estimate the total CO2 emissions from an area of interest, flux measurements 
are made at evenly spaced intervals along grids and the mean flux is multiplied by the surveyed 
area, or fluxes are measured at uneven spacing within the area, geostatistical methods are used to 
interpolate a flux grid, and volume and area integration algorithms are applied to this grid.  It can 
be difficult with the AC method to evaluate the temporal variability of soil CO2 fluxes that is 
typical for an area of interest and the influence of atmospheric parameters (temperature, 
pressure, wind, precipitation) on this variability.  To characterize this temporal variability, 
researchers commonly install automated CO2 flux measurement stations where single or multiple 
chambers measure flux repeatedly over time at point locations (e.g., Gouldin and Crill, 1997; 
Rogie et al., 2001; Lewicki et al., 2003a; Edwards and Riggs, 2003).  The cost of the portable 
AC instrumentation typically ranges from $15,000 to $25,000.   

 

6.2.3  Eddy Covariance  

Eddy covariance (EC), or eddy correlation, is a technique whereby high frequency measurements 
of atmospheric CO2 concentrations at a height (z) above the ground are made by an IRGA 
(Figure 6.2), along with measurements of micrometeorological variables such as wind velocity, 
relative humidity, and temperature.  Integration of these measurements provides a gross 
conservation of energy and mass over an area of land (the EC footprint) from which the net CO2 
flux is derived.  The equations and algorithms used to estimate the EC CO2 flux are under 
constant development; however, the method essentially involves time-averaging the product of 
the time series of fluctuating CO2 concentration (c(x,y,z,t)), and the time series of fluctuating 
vertical wind velocity (w(x,y,z,t)).  Under steady-state conditions and for sufficiently long 
averaging time (typically 30 minutes to several hours), this converges to the ensemble mean flux, 
the average of the product of w and c.  The measured vertical CO2 flux is an integral of the 
surface flux over the upwind footprint.  The size of this footprint (typically m2 to km2) scales 
with the measurement height and is also dependent on meteorological conditions during the time 
of measurement.   

One advantage of EC is that it provides a spatially and temporally averaged measurement and 
therefore inherently filters out small-scale spatial and temporal variability in the surface flux, 
potentially providing a more representative measurement of the surface flux.  Spatial and 
temporal averaging over large land areas also allows for more efficient measurement strategies.  
One limitation of the EC measurement is that it assumes a horizontal and homogeneous surface.  
Violations of this assumption include varying density of plant cover, land use, and topography 
and can introduce significant error into the measurement.  In general, measurements should be 
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made over terrain with less than 8 to 15% slope (Baldocchi et al., 1988).  Also, if surface 
heterogeneity occurs on a small scale and is randomly distributed or can be organized into 
regions of uniform surface conditions within which the EC measurement is made, measurement 
error can be reduced (e.g., Lenschow, 1995).  Furthermore, the EC measurement should be made 
under statistically steady meteorologic conditions; morning and evening periods, as well as times 
of changing weather conditions should be avoided.  Due to the significant error that can be 
introduced into the EC measurement from meteorological and terrain conditions at the study site, 
EC typically cannot provide temporally and spatially continuous measurements.  Rather, gaps in 
time and space must be tolerated.  Also, it is generally not possible to delineate spatial trends in 
surface CO2 flux within the EC measurement footprint.  A method such as AC must be used to 
accomplish this. 

Typical ecological CO2 fluxes in nature are 38 g m-2 d-1 efflux and 112 g m-2 d-1 uptake.  The 
absolute range and minimum resolvable flux for EC have not been documented in the literature.  
Under favorable meteorologic and terrain conditions, the resolution of the EC method can be as 
good as 0.4 g m-2 d-1.  Estimates of the precision of EC vary from ± 5 to 30%.  Short-term error 
has been estimated to be ± 7% during the daytime and ± 12% during the nighttime; long-term 
error is on the order of ± 5%.  The capital cost for EC equipment typically ranges from $15,000 
to $40,000, depending on tower size and meteorological instrumentation.  The operating costs 
are primarily the power supply, labor, and time for a survey.  EC has mainly been applied in 
meteorological, ecological, and terrestrial carbon cycle investigations, but has also been tested in 
volcanic environments.  For detailed information on the theory of EC and its applications, 
readers are referred to Anderson and Farrar (2001), Baldocchi et al. (2001), Baldocchi and 
Wilson (2001), Foken and Wichura (1996), Gouldin et al. (1996), Li-Cor (2003), Massman and 
Lee (2002), and the USGS (2000a, b). 

 

6.3  Hyperspectral Imaging  

Hyperspectral imaging refers to the imaging of a region of interest over a large number of 
discrete, contiguous spectral bands, typically in the visible and near-IR. A complete reflectance 
spectrum is then derived for each pixel in the hyperspectral image.  The reflectance spectra of 
most materials on the Earth's surface contain characteristic or diagnostic absorption features; 
these absorption features can therefore provide a means to identify surface materials.  
Hyperspectral data have been used in a wide range of studies, including mineral and geothermal 
exploration, vegetation mapping, hazardous material remediation, ecosystem monitoring, and 
agricultural problems.  One important application of hyperspectral imaging to monitoring for 
CO2 migration from hidden geothermal systems is the ability to detect changes in plant health 
and communities related to elevated soil CO2 concentration (e.g., Martini et al., 2000).   

The spectroradiometers used in hyperspectral imaging can be hand-held, truck-mounted, plane-
mounted, or satellite-based and related survey areas vary from sub m2 to greater than km2.  The 
material detection range depends on the signal to noise ratio of the acquired data and the strength 
of the material’s spectral signature.  Hyperspectral imaging can reconstruct net energy exchange, 
net primary production, or gross primary production with 20% error or less.  Although individual 
measurements are rapid, the time required for data processing and analysis may range from days 
to weeks.  However, high spatial resolution, high signal-to-noise, geo-rectified hyperspectral 
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data are currently available from commercial vendors.  The cost of imaging an area of interest 
varies by orders of magnitude depending upon the platform for deployment.  The main 
advantage of hyperspectral imaging to detection of hidden geothermal systems is the potential 
for remote sensing of CO2 migration by proxy over large land areas.  The main disadvantages are 
the potentially high cost of obtaining imagery and that the methodologies are still evolving.  
Further information on hyperspectral imaging, can be found the following websites: 
http://aviris.jpl.nasa.gov/ (JPL AVIRIS), www.earthsearch.com (Earth Search Sciences, Inc.).  

6.4  Light Detection and Ranging  

Light detection and ranging (LIDAR) can be used measure the concentrations of trace gases in 
the atmosphere (e.g., N2O, SO2, O3, H2O, CH4, CO2) with laser light.  While there are a range of 
LIDAR techniques in use, atmospheric CO2 concentration can be measured by differential 
absorption LIDAR (DIAL) or Raman LIDAR.   

In the DIAL technique, a tunable laser is used at two wavelengths to estimate the concentration 
of a target-absorbing species.  In the case of CO2, one laser wavelength is selected to coincide 
with the center of a CO2 absorption line and the second wavelength is selected to fall in a nearby 
non-absorbing region.  Laser power at both wavelengths is transmitted over the same path in the 
atmosphere and is elastically scattered into the field of view of the LIDAR receiver.  The 
average CO2 concentration over the path length is then determined from the ratio of the 
backscatter signals for the two laser wavelengths. 

In the Raman LIDAR method, laser light is transmitted into the atmosphere, the laser radiation is 
shifted in wavelength due to interaction with the target scattering molecules along the resolved 
path length, and this wavelength-shifted signal is detected by the LIDAR receiver.  Raman 
scattering provides wavelength shifts that are unique to the target molecules, according to the 
vibrational energy states of the molecules.  In the case of CO2, the backscattered power of the 
wavelength-shifted signal is proportional to the average CO2 concentration over the laser path 
length.  By comparing the Raman signal of the CO2 to the Raman signal of N2 or O2, CO2 
concentration can be quantified.   

DIAL and Raman LIDAR can be deployed from a truck- or plane-based platform.  Truck-based 
surveys can cover up to 10s of km2 per day, whereas a given plane-mounted survey can 
potentially cover 10s to 100s of km2.  The detection range of DIAL and Raman LIDAR depends 
upon the wavelength and strength of absorption and typically ranges from <1 ppmv to several 
percent for CO2.  The precision for truck mounted or airborne measurements is generally from 
1% to 5% of maximum range; from 3.4 to 27 ppmv at 1 km path length and from 14 to 86 ppmv 
at 2 km path length at 330 ppmv in clean air .  The cost of DIAL and Raman LIDAR ranges from 
hundreds of dollars for a truck-mounted survey to thousands of dollars for an airborne survey.  
The advantages of Raman LIDAR and DIAL are that these are rapidly developing technologies 
with the potential to measure atmospheric CO2 concentrations over multiple spatial scales, thus 
increasing the efficiency of the CO2 survey.  The main disadvantages are that they have the 
potential to be expensive and measure average concentration over a path length.  Additional 
measurements are therefore required to locate the source(s) of CO2 emissions along the path 
length.  For a more detailed description of these methods, the reader is referred to Schlessinger 
(1995), Radziemski et al. (1987), Shuler and Tang (2002); Jet Propulsion Laboratory, National 
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Aeronautics and Space Administration, http://lidar.jpl.nasa.gov/, http://asd-
www.larc.nasa.gov/lidar/lidar.html.  

6.5  Long Open Path IR and Tunable Lasers  

Measurement of atmospheric surface layer CO2 concentration by long open path IR and tunable 
lasers occurs as a fixed laser sends pulses to one or more reflectors within a study area and the 
signal is returned to a detector at the beginning of the laser path.  The infrared absorption is 
measured at CO2-specific wavelengths and the cumulative CO2 concentration over the laser path 
length is then determined.  While still under development, a single instrument set-up has the 
potential to provide continuous monitoring of atmospheric surface layer CO2 over several km2.  
The detection range currently ranges from less than 1 ppmv to several percent CO2 and 
measurement precision is expected to be ± 3% or better.  Although these instruments are not yet 
developed to the point of commercial viability, the costs are projected to be thousands of dollars 
per unit.  The primary advantage of long open path IR and tunable laser technology is the 
potential to monitor CO2 concentration over a large area with automated, continuous 
measurement, and the main disadvantage is that it is still under development.  Also, because it 
provides a measurement of cumulative CO2 along the path length, additional point measurements 
are required to locate the source(s) of CO2 along the path.  For further description of long open 
path IR and tunable laser technology , see Shuler and Tang (2002) and Duarte (1995). 

6.6  Micro-Electronic Mechanical Systems, Smart Dust, Motes  

Micro-electronic mechanical systems (MEMS), Smart Dust, and Motes are miniaturized (mm3 
scale) sensing and communications platforms and are currently developing technologies.  
Applicable to CO2 detection, is the incorporation of miniaturized infrared gas sensors into these 
platforms to measure absorption of IR radiation at CO2-specific wavelengths.  These 
technologies may therefore have the capability to measure CO2 concentrations in the 
atmospheric surface layer and the subsurface.  The promising aspect of these miniature devices is 
that numerous measurement systems could be distributed over a large study area to form a 
network that measures CO2 concentrations and broadcasts the data to a single data recording 
location. Smart Dust is particularly attractive because it is small, inexpensively fabricated in 
mass quantities, could be easily scattered around a given area, and self-assembles into a network 
so that data collection and coverage are simplified.  Since MEMS, Smart Dust, and Motes are 
currently under development; the sensitivity, precision, and time and length scales of the CO2 
concentration measurements are uncertain.  The main disadvantage of these technologies is that 
they are currently under development.  For more information on MEMS, Smart Dust, and Motes 
technologies, refer to http://www.ion-optics.com/. 

 

7.  STRATEGIES FOR DETECTION OF GEOTHERMAL CO2  

7.1  Introduction 

As the previous section shows, a variety of technologies is available to measure CO2 
concentrations and fluxes in the subsurface and atmospheric surface layer, several of which are 
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rapidly developing and will extend our current capabilities and potentially lower the cost of CO2 
monitoring.  However, successful application of these technologies to detect the signal of CO2 
from hidden geothermal systems within natural background variability is challenging when the 
geothermal CO2 fluxes are very small.   To meet the challenge of geothermal CO2 detection, 
novel procedures and/or technologies may have to be developed.  In this section, we present 
potential strategies based on currently available conventional technologies that could be applied 
toward the detection and quantification of geothermal CO2.    

7.2  Sub-Surface Gas Geochemistry  

Relative to atmospheric gases, sub-surface gases are less prone to dilution of the geothermal CO2 
signal by background ecological and meteorological processes.  As a result, monitoring for CO2 
migration from geothermal reservoirs should be focused on the subsurface.  Both the carbon 
isotopic composition of CO2 and bulk gas chemistry can be used to determine the origin of CO2 
and thereby potentially detect migration of CO2 from a geothermal reservoir.  For reference, 
Table 7.1 shows typical chemical and isotopic signatures related to CO2 derived from different 
sources.   

7.2.1  Bulk Chemical Composition of Soil Gas  

The bulk chemical composition of gases collected at soil and sub-soil depths provides 
information on CO2 production and the source of this CO2 (i.e., whether it is derived from 
respiration or non-respiration sources).  CO2 concentration profiles measured with depth in the 
vadose zone can yield valuable information about CO2 production.  For example, an increase in 
CO2 concentration with depth below the soil indicates CO2 production at sub-soil depths.  
Production of CO2 by oxidative decay of organic matter tends to consume O2 at a similar rate.  
Also, atmospheric O2 will diffuse down into the soil and sub-soil as sub-surface CO2 diffuses to 
the atmosphere.  A flux of geothermal CO2 would produce elevated CO2 concentration at depth, 
relative to the atmosphere, but would not be accompanied by O2 consumption, although 
atmospheric O2 would diffuse down into the soil.  Based on these general processes, the CO2 
concentration and O2 concentration profiles generated should be different, depending on whether 
a geothermal flux is present.  Assuming that diffusion is the dominant gas transport process in 
the absence of a geothermal CO2 flux, diffusion models could be used to predict the CO2 
concentration and O2 concentration-depth profiles that result from expected background CO2 
respiration and O2 consumption rates.  One might expect groundwater degassing of respiration 
and atmospheric-derived CO2 to show similar chemical trends within the vadose zone to 
degassing of geothermal CO2.  However, vadose zone CO2 concentrations produced by 
groundwater degassing and biological respiration processes have generally been reported to be 
less than 13 vol.% CO2 (e.g., Wood and Petraitis, 1984; Amundson and Davidson, 1990; Wood 
et al., 1993), whereas near-surface CO2 concentrations associated with geothermal emissions 
could be much higher.  For example, simulated geothermal source CO2 fluxes of 57.6 to 576 g m-

2 d-1  produce maximum near-surface CO2 concentrations of ~10–80 vol.% (1x105 to 8x105 
ppmv, Figures 4.9, 4.11, and 4.12).  Importantly, however, the maximum near-surface CO2 
concentration produced by a source CO2 flux of 5.76 g m-2d-1 is only predicted to be ~2 vol.% 
(2x104 ppmv, Figures 4.9 and 4.10), which could be problematic to distinguish from background 
CO2 concentrations.  The spatial and temporal variability of background CO2 concentrations 
typical of the ecosystem and geology of the study area should therefore be well characterized in 
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order to identify anomalously high CO2 concentrations that may be related to migration of CO2 
from geothermal reservoirs.     

 

7.2.2  Carbon Isotopes 

Carbon isotopic compositions of CO2 reflect the compositions and relative proportions of the 
contributing sources and therefore can serve as tracers of the origin of CO2.  Hereafter, carbon-
13 values will be reported as δ13C, the deviation in parts per thousand (‰) of the 13C/12C ratio in 
the sample from that of the Pee Dee Belemnite (PDB) reference standard.  Carbon-14 values will 
be reported as ∆14C, the deviation, in parts per thousand of the 14C/12C ratio in the sample from 
that of the reference standard (oxalic acid decay corrected to 1950).  The stable carbon isotopic 
composition of CO2 is measured by a lab-based mass spectrometer, whereas 14C in CO2 is 
measured by an accelerator mass spectrometer (AMS).  Carbon isotopic analyses can occur 
following laboratory preparation of gases collected in the field using standard geochemical 
methods.  The cost of δ13C analysis typically ranges from $10 to $30 per sample, and ∆14C 
analysis typically ranges from $200 to $600 per sample. 

The background isotopic composition of CO2 in the soil is typically affected by contributions of 
CO2 from respiration (root and microbial) and the atmosphere.  CO2 in the present atmosphere 
has δ13C and ∆14C values close to -7 and 70‰, respectively.  The δ13C composition of CO2 
respired from plant roots is isotopically depleted relative to the atmosphere due to isotopic 
fractionation associated with photosynthesis and will have an isotopic composition similar to that 
of the plant.  Likewise, the δ13C composition of CO2 derived from decay of soil organic material 
will be similar to the plant material.  This composition will largely depend on the photosynthetic 
pathway (e.g., C3 or C4) of the plant.  The bulk δ13C compositions of C3 plants (e.g., woody 
shrubs) range from –24 to –38 ‰, but are typically about –28‰ (O’Leary, 1988).  C4 plants 
(e.g., grasses that have evolved to conserve water) have δ13C values from –6 to –19‰, but are 
typically near –14‰ (O’Leary, 1988).   

The ∆14C composition of soil-respired CO2 is primarily affected by root-respired CO2, CO2 
produced by decay of organic matter on time scales of less than one year, and CO2 produced by 
decay of organic matter on several year to decadal time scales (e.g., Trumbore, 2000).  CO2 
derived from the first two sources will have ∆14C values similar to that of the present 
atmosphere, CO2 derived from decay of organic matter on decadal time scales may be 14C-
enriched relative to the atmosphere due to the increase in 14C in soil organic matter since nuclear 
weapons testing in the 1960’s.  With the exception of oxidation or warming of wetland or frozen 
soils, respectively, decay of ancient organic matter with depleted ∆14C values contributes 
relatively little to the decomposition CO2 flux in most soils (e.g., Trumbore, 2000).  Seasonal 
variations in the ∆14C values of soil-respired CO2 have also been observed, with the highest 
values measured during the growing season (e.g., Keller and Bacon, 1998; Trumbore, 2000).       

In most cases, respiration occurs predominantly in the soil zone (i.e., typically the upper one to 
two meters of the subsurface).  For example, Keller and Bacon (1998) showed that in a Canadian 
pastureland, 98% of all subsurface respiration occurred in the soil.  Therefore, the isotopic 
compositions of sub-soil CO2 should be influenced by respiration to a significantly lesser degree 
than isotopic compositions of soil CO2.  However, CO2 can be produced at lower rates at sub-soil 
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depths by various processes such as oxidation of organic matter.  The δ13C value of this CO2 will 
be similar to the source material and may not vary significantly from those for soil-respired CO2.  
Also, groundwater degassing of CO2 derived from atmospheric and soil-respired sources can 
occur and the δ13C value of this CO2 will be controlled by the relative proportions of the CO2 
from these sources.  The 14C values of CO2 produced by these sub-soil processes will depend on 
factors such as the age of the organic matter and the residence time of dissolved CO2 in the 
groundwater.  For example, oxidation of ancient organic matter (e.g., peat, kerogen) will produce 
CO2 that is highly depleted or free of 14C.   

The δ13C signature of CO2 derived from geothermal sources (e.g., magmatic/metamorphic) 
typically ranges from -2 to -6‰ (Faure, 1986) and therefore will distinguish it from CO2 derived 
from C3, and many C4 plants.  However, it is similar to that of atmospheric CO2 and therefore, 
when considered alone, will be problematic in distinguishing these sources.  In addition, if 
groundwaters containing dissolved CO2 of biologic origin circulate through areas of high heat 
flow and subsequently degas this CO2, the δ13C signature will be similar to the biologic 
source(s).  Geothermal CO2 derived from deep magmatic/metamorphic sources is 14C-free.  
Leaking geothermal CO2 will therefore have a 14C signal that is distinct from atmospheric and 
most biogenic respiration sources.  This signal should be easily distinguishable from dominant 
background CO2 sources.  For example, geothermal source CO2 fluxes of 5.76, 57.6, and 576 g 
m-2 d-1 were described in Section 3.  Given a background soil CO2 respiration rate and ∆14C 
composition typical of a temperate forest (i.e., 7.2 g m-2d-1 and 128 ‰, respectively (Trumbore, 
2000)), by mass balance, the ∆14C values of soil CO2 samples will be -371, -874, and –986 ‰ for 
geothermal source fluxes of 5.76, 57.6, and 576 g m-2 d-1, respectively.  The differences between 
these values and the isotopic composition of background soil CO2 are much greater than the 
precision of the 14C analysis (e.g., ± 4–8 ‰ depending on the laboratory method used (Southon 
et al., 1993)); geothermal fluxes over this range of magnitudes would therefore be easily 
detectable by 14C analyses of soil CO2.   

Production rates of CO2 from background sub-soil sources should be significantly lower than 
those in the soil column (e.g., Wood and Patraitis, 1984; Keller and Bacon, 1998).  Therefore, 
the range of geothermal fluxes of CO2 discussed above should be readily detectable using 
carbon-13, and in the absence of a large source of CO2 derived from respiration of ancient 
sedimentary organic carbon, carbon-14, isotopic analyses of CO2 collected from sub-soil depths.  
Furthermore, if soil and sub-soil gas samples contain a contribution of CO2 from a deep 
geothermal source, plots of δ13C or ∆14C of CO2 versus CO2 concentration can be examined for 
mixing trends between deep geothermal and shallow respiration derived CO2.  In other words, 
the chemical compositions of the soil and sub-soil gases should lie on a trend between gases with 
relatively low CO2 concentration and high ∆14C or low δ13C (young biogenic-carbon dominated) 
and those with relatively high CO2 concentration and low ∆14C or high δ13C (geothermal-carbon 
dominated).  Figure 7.1 shows an idealized mixing trend between soil gases derived from these 
two end-member sources. 

7.2.3  Measurement Strategies 

Soil gas CO2 concentrations can be measured at many locations within a large area using a soil 
probe and a portable IRGA.  Using this method, a soil probe is driven down to the depth of 
interest (usually within the soil zone), gas is pumped from the soil to the IRGA by an internal 
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pump, and CO2 concentration is measured, typically to ± 100 ppmv or 0.01%.  Alternatively, a 
gas sample can be collected from the probe using a syringe and vial for chemical analysis by 
standard gas chromatographic methods.  Each IRGA measurement or collection of a gas sample 
can be conducted within minutes, and as a result, many measurements can be made over 
relatively short periods of time within the measurement area.  Importantly, CO2 concentrations in 
the soil zone will be strongly influenced by background respiration processes, which could 
render detection of CO2 concentration anomalies related to very small geothermal fluxes 
difficult.  The spatial and temporal variability of background CO2 concentrations should 
therefore be characterized in areas with similar climate, vegetation, and soil type to that being 
explored for geothermal CO2 flow.  Sampling of gases at sub-soil depths would be valuable to 
avoid large respiration signals.  However, this sampling would require installation of numerous 
sampling wells to install permanent CO2 concentration sensors or provide locations at which to 
collect gas samples for chemical analyses.  Unless multiple sampling wells were previously in 
place throughout the study area, sub-soil gas sampling could be impractical. 

Due to the time and cost involved in making numerous (e.g., hundreds to thousands) closely 
spaced measurements within a large measurement area, the researcher commonly makes fewer 
measurements at widely and unevenly spaced intervals.  A range of geostatistical methods, for 
example, kriging (e.g., Isaaks and Srivatava, 1989) or sequential Gaussian simulation (Deutsch 
and Journel, 1998) can then be used to estimate CO2 concentrations at unsampled locations 
within a grid.  This grid can then be contoured to search for spatial trends in the data.  
Autocorrelation analysis of a spatial data set involves the calculation of correlation coefficients 
for the data as a function of separation distance between the measurements.  Thus, contouring 
and autocorrelation analysis together can be used to look for spatial trends in the data that may 
be related to CO2 migration from a hidden geothermal reservoir.  For example, elevated CO2 
concentrations and a high degree of spatial autocorrelation of these concentrations along a linear 
trend may indicate CO2 flow along a geologic structure and would require further (e.g., isotopic) 
evaluation of the origin of the CO2.    

7.3  Surface and Atmospheric CO2 Concentrations and Fluxes  

 Seepage of CO2 from a hidden geothermal reservoir may result in surface CO2 fluxes and 
atmospheric surface layer CO2 concentrations of high enough magnitude to detect within 
background variability of CO2.  The magnitude of these seepage CO2 fluxes and atmospheric 
CO2 concentrations will be determined by a range of factors such as the mode of CO2 emission 
(e.g., focused versus diffuse flow) and atmospheric effects (e.g., wind and density-driven 
atmospheric dispersion).   

Several methods are available to detect anomalous CO2 concentrations related to geothermal 
seepage in the atmospheric surface layer.  For example, fixed or portable IRGAs or fixed solid-
state sensors could be used to measure CO2 concentrations.  Because these measurements would 
be made at point locations, numerous measurements over a potentially large study area would be 
required.  In addition, due to the significant atmospheric dispersion and dilution of seeping CO2 
that is expected under normal wind speed conditions, anomalous CO2 concentrations may only 
be a few 10’s of ppmv above average ambient air (~370 ppmv) downwind from the source 
(Figure 3.13).  The precision of fixed detectors (typically ± 1 ppmv or better) would allow the 
detection of these anomalous CO2 concentrations; however, the cost of each detector would 
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likely preclude use of the many detectors required within a study area.  The use of one or a few 
portable IRGAs would be much lower in cost.  However, due to the precision of portable IRGAs 
(typically ±100 ppmv at best), it would not be possible to detect low anomalous CO2 
concentrations within background variability.  Point measurements of CO2 concentrations in the 
soil and sub-soil avoid several of the primary limitations of atmospheric CO2 detection methods, 
and as a result, would likely be a preferred method to detect CO2 migrating from geothermal 
sources.    

One method available to detect anomalous soil CO2 flux is the AC technique.  Successful 
detection, however, will strongly depend on the magnitude of the geothermal source flux at 
depth.  For example, for a simulated source flux of 576 g CO2 m-2 d-1, the maximum predicted 
surface CO2 flux is about 30 to 100 g m-2 d-1 (Figures 4.9 and 4.12).  This flux should be 
detectable within natural background variability of surface CO2 fluxes using the AC method.  
However, in the case of moderate to low geothermal source fluxes of 57.6 and 5.76 g CO2 m-2 d-

1, maximum predicted surface CO2 fluxes are only about 10-4 to 10-1 (Figures 4.9-4.11), which 
would not be detectable using the AC method, given the measurement error.   

Because the AC method essentially provides a “point” flux measurement (i.e., a measurement on 
the cm2 scale), numerous measurements are required to characterize the spatial trends and 
variability of fluxes within a study area.  However, the AC method offers the benefit over the EC 
method in that spatial trends in surface fluxes can be mapped, allowing for the location and 
geometry of potential areas of anomalously high CO2 flux to be delineated, as described above 
for soil CO2 concentrations.  Also, the AC technique is generally more flexible than the EC 
method because it requires few terrain or atmospheric conditions to be met.  Because the AC 
technique provides a point measurement in time and space (as opposed to the spatially and 
temporally averaged EC measurement), it can be difficult to evaluate the temporal variability of 
soil CO2 fluxes that is typical for the study area and the influence of atmospheric parameters 
(temperature, pressure, wind, precipitation) on this variability.  Therefore, automated CO2 flux 
measurement stations must be deployed where single or multiple chambers measure flux 
repeatedly over time, along with meteorological parameters.  The relationship between surface 
CO2 flux and these meteorological parameters can then be evaluated using correlation analysis.   

The EC method provides a spatially and temporally averaged surface CO2 flux measurement that 
could be used to detect anomalous CO2 emissions related to seepage of geothermal CO2.  To 
successfully detect anomalous CO2 flux, however, EC instrumentation must be deployed under 
the meteorological and terrain conditions required to minimize the error of the measurement.  
Also, the magnitude of the CO2 flux anomaly must be large enough such that it can be detected 
above background variability (which should be characterized for an ecosystem similar to that at 
the study site), given the error of the measurement.  Additional point measurement (e.g., with the 
AC method) would also be required to delineate the location and geometry of the CO2 flux 
anomaly within the EC footprint.   

 

7.4  Water Chemistry  

Geothermal CO2 may also seep and dissolve into ground and surface waters. This CO2 could be 
detected by ground and surface water sampling and chemical analysis.  As CO2 dissolves in 
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ground and surface waters, the acidity of the waters will tend to increase (i.e., the pH will 
decrease).  A relatively large magnitude CO2 seepage flux into ground or surface water could 
produce CO2 gas bubbles and this CO2 could be sampled for isotopic analyses (δ13C, ∆14C) to 
constrain its source, as described above for vadose zone CO2.  However, if seepage fluxes are 
small to moderate, CO2 should be mainly present in the aqueous phase as dissolved inorganic 
carbon, DIC (i.e., CO2(aq), H2CO3, HCO3

-, CO3
2-).  With increasing seepage of CO2 into waters, 

DIC should increase.  Alkalinity is the ability of water to accept protons (H+) and is 
predominantly due to the presence of HCO3

- and CO3
2- in most potable natural waters.  The DIC 

concentration can be directly determined or can be calculated if both alkalinity and pH are 
determined for a given water sample.  Plots of DIC concentration versus ∆14C or δ13C of the DIC 
can then be used to trace the addition of deep magmatic/hydrothermal carbon to groundwaters 
that contain respiration-derived carbon from infiltration (e.g., Chiodini et al., 2000; Evans et al., 
2002).  The chemical trends in these waters indicate mixing between waters with relatively low 
DIC and high ∆14C or low δ13C (young biogenic-carbon dominated) and those with relatively 
high DIC and low ∆14C or high δ13C (magmatic/hydrothermal-carbon dominated).  If the 
concentration of DIC derived from the deep source and water flow rate are known for sample 
locations within the study area, the discharge of deeply derived DIC can be estimated. 

In order to successfully detect geothermal CO2, a variety of factors must be considered in the 
interpretation of ground and surface water geochemistry.  To evaluate the influence of residence 
time on the 14C compositions of DIC, groundwater age should be assessed (e.g., by tritium 
analyses).  Also, interactions between water and host rocks along flow paths can affect the 
concentration and isotopic composition of DIC, concentrations of major and minor cations in 
solution, and pH.  For example, dissolution of calcium carbonate (CaCO3) by the reaction CO2 + 
H2O + CaCO3 = Ca2+ + 2HCO3

- results in the doubling of DIC (i.e., one mole of CO2 reacts to 
produce two moles of HCO3

-) and a release of Ca2+ to solution.  Also, the DIC produced will 
have δ13C and ∆14C compositions reflecting contributions from both the CO2 and the carbonate 
mineral.  Therefore, the contribution of DIC derived from dissolution of 14C-free and 13C-
enriched carbonate rocks along flow paths will decrease ∆14C values and increase δ13C values 
similarly to geothermal CO2 and could complicate interpretation of DIC concentration-carbon 
isotopic composition plots.   

Single or continuous aqueous geochemical measurements are usually made at fixed locations.  
These measurements can be made using portable field equipment (e.g., pH electrode, field 
alkalinity titration kit) or by analysis of water samples in a standard geochemical laboratory. 
Carbon isotopic compositions of water samples are determined as described above for soil gas 
samples.  The detection range and precision are variable, depending on the measurement.  
Aqueous geochemical sampling and analytical techniques are well established, and relatively 
inexpensive (i.e., dollars to hundreds of dollars per sample).  However, the spatial coverage of 
groundwater sampling is limited by the presence of wells or springs.  Also, source water 
chemical composition, rock-water interactions along flow paths, and residence time can 
complicate interpretation of the groundwater geochemistry. In the case of surface waters, 
interpretations can be complicated by source water chemical composition, surface hydrology, 
and weather.  
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7.5  Statistical Analysis 

 

7.5.1  Background 

Statistical analysis can be used to refine sampling strategy and reduce the number of high-cost 
measurements made in the search for hidden geothermal systems.  Assuming that the sampling 
method (e.g., IRGA for CO2 concentration, AC method for soil CO2 flux) has 100% capability to 
detect a gas anomaly, the probability (P) of sampling at least once a gas anomaly of area x at 
least once within a study area A with n number of randomly distributed point measurements is 
given by 
 

     P = 1− 1 −
x
A

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
n

     (7.2) 

 

Therefore, if x/A = 0.1, ~30 measurements are required to sample a gas anomaly at least once 
with 95% confidence.  If x/A = 0.01 and 0.001, ~300 and 3000 samples, respectively, are 
required to sample the anomaly at least once.  Importantly, application of Eq. 7.2 assumes that a 
gas anomaly exists within area A.  However, in the case we are particularly interested in, the 
researcher will search for a hidden geothermal system within an area where there is no evidence 
of surface hydrothermal features and there is likely a relatively low probability of the existence 
of a gas anomaly within this area.  With Bayesian statistics, we are then able to answer the 
question: “Given that we have failed to detect (~d) a gas anomaly of area x within the sampling 
area A with one randomly located point measurement, what is the confidence level (P) that it is 
actually there (H)?” For this case, 
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(Bayes, 1763).  To solve this equation, P(H) is set equal to an initial confidence (e.g., 0.1 if the 
researcher is realistically pessimistic or 0.9 if realistically optimistic, that the anomaly is present 
within the study area), given some prior information about the study area.  To estimate the 
number of randomly distributed point measurements (n) necessary for there to be, e.g., only a 5% 
chance that an anomaly exists, given that we have not detected it, the calculated P(H | ~d) is 
substituted for P(H), the equation is solved iteratively until P(H | ~d) = 0.05, and n = the number 
of iterations.  If the researcher strongly suspects that there is an anomaly within the study area, 
and P(H) = 0.9, n ≈ 50, 500, 5000, and 50,000 for x/A = 0.1, 0.01, 0.001, and 0.0001, 
respectively.  If P(H) = 0.1, n ≈ 7, 70, 700, and 7000 for x/A = 0.1, 0.01, 0.001, and 0.0001, 
respectively.   
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Although any number of x/A scenarios may be possible, these examples demonstrate that in the 
case of preliminary gas sampling and analysis, rapid and economical methods should be used in 
order to accommodate a potentially large number of measurements.  It is also necessary to 
collect site-specific geologic information prior to sampling to delineate the most probable 
locations of gas migration (e.g., near geologic structures) to minimize A and maximize x/A.   

It is important to recognize that Eq. 7.3 assumes that the sampling methodology is 100% capable 
of detecting the gas anomaly.  In other words, the detection method does not give false positives 
(i.e., it detects an anomaly that is not there) or negatives (i.e., it fails to detect an anomaly that is 
there).  In reality, the methods used to detect a CO2 anomaly within background CO2 will likely 
give both false positives and negatives.  In this case, 
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where α(m) and β(m) are the false positive and negative rates, respectively, as a function of the 
magnitude (m) of the anomaly.  The confidence that once an anomaly has been detected it is a 
true anomaly (P(H | ~d), given α(m) and β(m) of the detection method, is then given by    
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In order to apply Eqs. 7.4 and 7.5, α(m) and β(m)  must be estimated.  For a given measurement 
method, for example, soil CO2 flux measurement by AC, α(m) and β(m) are related to the 
probability density functions (PDFs) of the background and anomalous CO2 fluxes, respectively, 
and the chosen threshold above which CO2 flux is considered anomalous.  In other words, α(m) 
is the fraction of the background PDF that lies above the threshold value and β(m) is the fraction 
of the anomaly PDF that lies below the threshold value.  The PDFs of the background and 
anomalous CO2 flux can be estimated from background field characterization and numerical 
modeling of geothermal CO2 flow ± laboratory experiments, respectively.  The threshold value is 
then found where the influence of α(m) and β(m) on n is minimized.  Monte Carlo simulation 
taking P(H), x/A, α(m), and β(m) into account can be used to estimate the number of 
measurements that will be required to determine with a desired confidence level that a gas 
anomaly exists in the sampling area (see Examples section below).  In the field, the researcher 
would apply Eqs. 7.4 and 7.5 by beginning with an initial confidence that a geothermal anomaly 
exists within study area A.  Measurements would be made within this area and Eqs. 7.4 or 7.5 
would be solved repeatedly, depending on whether an anomaly is not detected or detected, 
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respectively.  If the number of measurements that do not detect an anomaly increases, then the 
confidence that an anomaly exists decreases (Eq. 7.4).  Conversely, if the number of 
measurements that detect an anomaly increases, then so does the confidence that the anomaly 
exists (Eq. 7.5).  Measurements could be made until the desired confidence level is met that an 
anomaly exists in the sampling area.   

Eqs. 7.4 and 7.5 have the potential to guide sampling strategy and reduce the number of high-
cost (e.g., isotopic) measurements made.  For example, when measured CO2 fluxes and/or 
concentrations have been determined with high confidence to be anomalous, these sites can then 
be further sampled for isotopic analyses to determine if the CO2 source is geothermal.  Or, if a 
sufficiently low confidence level that an anomaly exists is reached, then further geochemical 
analyses can be avoided.  While we describe the application of Eqs. 7.2–5 in the context of 
randomly distributed measurements, these equations can also be applied if measurements are 
made at evenly spaced intervals along a grid.  However, if measurements are spatially clustered, 
Eqs. 7.2–5 cannot be used.   

 

7.5.2  Examples  

Introduction.  In this section, we describe several cases where we use the PDFs of a background 
soil CO2 flux data set measured by the AC method in central California (Lewicki et al., 2003a) 
and of anomalous geothermal CO2 flux estimated based on numerical modeling (see Section 4, 
above) to estimate the n required to determine with a confidence level of 99% that a gas anomaly 
exists within a hypothetical sampling area.  This hypothetical sampling area is assumed to have 
vegetation type and sub-surface physical properties similar to that at the background central 
California site, so that the measured soil CO2 fluxes can be considered typical of background 
fluxes at the hypothetical site.   

In each of the cases explored, we use Monte Carlo simulations to determine the threshold CO2 
flux where the influence of α(m) and β(m) on n is minimized, and therefore, the minimum n 
required to detect a CO2 anomaly with a confidence level of 99%.  First, α(m) and β(m) are 
calculated based on the background and anomaly PDFs, respectively, for threshold values from 1 
to 50 g m-2 d-1.  Then, for each of the α(m)-β(m) value sets associated with each of the 50 
threshold values and assuming given x/A and P(H) values, 500 Monte Carlo simulations are 
conducted. Each of these Monte Carlo simulations estimates n by random sampling of an initial 
CO2 flux value and iteratively solving Eqs. 7.4 and 7.5 until a confidence level of 99% is met 
that the CO2 anomaly exists.   Because cases where extreme numbers of samples are needed to 
detect an anomaly are unrealistic based on the time and cost required for the sampling, a cutoff 
of n = 20,001 is assigned.  Based on the 500 simulations, a PDF of n is constructed for each 
threshold value.  The PDFs for all threshold values are compiled in an image plot (i.e., 
probability density as a function of threshold value and n) and used to determine the minimum n 
required to detect the CO2 anomaly, and its associated threshold value.  To explore the 
influences of (1) near-surface permeability structure, (2) P(H), and (3) x/A on n, we vary each of 
these parameters individually, while holding the remaining parameters constant in the Monte 
Carlo simulations for Cases 1-12 (Table 7.2).  Also, we only consider the high modeled 
geothermal source CO2 flux because the surface fluxes associated with the low and medium 
source fluxes are below the detection limits of the AC method, as discussed above. 
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Homogeneous and isotropic permeability.  Figure 7.2a shows the PDFs of measured 
background soil CO2 flux (Lewicki et al., 2003a) and modeled anomalous surface CO2 flux 
associated with homogeneous and isotropic permeability structure and high source CO2 flux (see 
Figure 4.9 for the anomalous CO2 flux profile).  Based on these PDFs, α(m) and β(m) were 
calculated for threshold values from 1 to 50 g m-2d-1.  Holding P(H) = 0.1 (indicating realistic 
pessimism that an anomaly exists), x/A was varied from 0.1 to 0.001 (Cases 1-3, Table 7.2) for 
Monte Carlo simulations.  Then, x/A was varied from 0.1 to 0.001, holding P(H) = 0.9 (Cases 4-
6, Table 7.2), indicating realistic optimism that an anomaly exists.  Figure 7.3 shows PDF image 
plots for Cases 1 and 2.  For a given threshold value on these plots, high probability indicates 
that the n is appropriate to detect a CO2 anomaly with 99% confidence.  Also, the goal here is to 
determine the minimum n required to detect an anomaly.  Therefore, we are specifically 
interested to find the location on the plot where probability is maximized and n is minimized.   

On the Case 1 plot corresponding to P(H) = 0.1 and x/A = 0.1 (Figure 7.3), high probabilities 
corresponding to minimum n values are evident at threshold values < 8 g m-2 d-1 and ~28 g m-2 
d¯1.  These threshold values approximately correspond to the “cross-over” points between the 
background and anomaly PDFs (Figure 7.2a).  In other words, relative to measured background 
CO2 flux, there is a high probability of occurrence of anomalous CO2 flux at < 8 and ~30 g m-2d-

1, while there is a relatively high probability of occurrence of background CO2 flux at 
intermediate values.  However, because (1) the low anomalous CO2 fluxes would not likely be 
detectable using the AC method, and (2) the measured background soil CO2 flux data set may 
not accurately represent the occurrence of low CO2 flux values at the study site, the portion of 
the probability image plots at threshold values < 8 g m-2d-1 will hereafter be ignored.  The 
threshold value of 26 g m-2 d-1 therefore likely represents the value where the influence of α(m) 
and β(m) on n is minimized for Case 1.  The mean (µ) and standard deviation (σ) of n at a 
threshold value = 28 g m-2 d-1 are shown on Table 7.3.  The mean (µ) and σ are taken to be the 
minimum number of measurements required to detect a CO2 anomaly within the sampling area 
and its uncertainty, respectively.  For Case 1, n = 5415 ± 3029 (Table 7.3). 

Also shown on Figure 7.2 is the Case 2 (x/A = 0.01) probability image plot.  This plot indicates 
that >20,000 samples are required to detect an anomaly associated with x/A = 0.01.  For x/A = 
0.001 (Case 3), >20,000 samples are also required to detect an anomaly.  Figure 7.4 shows 
probability image plots for Cases 4 and 5, where P(H) = 0.9 and x/A = 0.1 and 0.01, respectively.  
For Case 4, n = 1869 ± 1784 (threshold = 29 g m-2 d-1) and for Case 5 n = 19,984 ± 256 
(threshold = 28 g m-2 d-1) (Table 7.3).  For Case 6 (x/A = 0.001), n > 20,000.  Increasing the 
initial confidence level that an anomaly exists in the study area therefore leads to a decrease in n.   

Heterogeneous and isotropic permeability.  Figure 7.2b shows the PDFs of background central 
California soil CO2 flux (Lewicki et al., 2003a) and anomalous CO2 flux associated with the 
heterogeneous and isotropic permeability realizations A-E and high source CO2 flux (see Figure 
4.12 for the anomalous CO2 flux profiles that were combined to produce the anomalous PDF).  
Based on these PDFs, α(m) and β(m) were calculated for threshold values from 1 to 50 g m-2 d-1.  
Holding P(H) = 0.1, x/A was varied from 0.1 to 0.001 (Cases 7-9, Table 7.2) for Monte Carlo 
simulations.  Then, x/A was varied from 0.1 to 0.001, holding P(H) = 0.9 (Cases 10-12, Table 
7.2).  Figure 7.5 shows probability image plots for Cases 7 and 10.  For Case 7 (x/A = 0.1), n = 
3407 ± 1919 for a threshold value of 38 g m-2 d-1.  Relative to the Case 1 simulations for 
homogeneous permeability, fewer samples are required for detection of a CO2 anomaly 
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associated with heterogeneous permeability.  This can be attributed to the greater occurrence 
probability of high (i.e., >38 g m-2 d-1) anomalous CO2 fluxes associated with the heterogeneous 
subsurface permeability (Figure 7.2b), relative to homogeneous permeability (Figure 7.2a).  For 
Cases 8 and 9 (x/A = 0.01 and 0.001, respectively), >20,000 samples are required to detect a CO2 
anomaly.  When P(H) = 0.9, n decreases; n = 1267 ± 1253 for a threshold value of 38 g m-2 d-1 
and x/A = 0.1 (Case 10, Figure 7.4).  Decreasing x/A to 0.01 and 0.001, results in n = 19,984 ± 
256 (Case 11, Figure 7.6) and >20,000, respectively.   

It is likely that “real-world” study areas will be characterized by heterogeneous permeability 
structure. As a result, fewer samples will likely be required, relative to the simulated cases with 
homogeneous permeability, with all else being equal (i.e., x/A, geothermal source CO2 flux, 
P(H)).  Overall, however, all Monte Carlo simulations demonstrate that, even for anomalous 
surface CO2 fluxes associated with the high source CO2 flux and heterogeneous permeability, a 
large number of measurements are required to detect anomalous flux with high confidence.  It 
therefore will become critical to limit A in order to maximize x/A and reduce the number of 
required samples by detailed site characterization (e.g., by identification of structural features 
likely to provide high permeability pathways for gas transport and limitation of study area A to 
these features).  

 

7.6  Integrated Sampling Strategy 

The selection of a study area targeted for geothermal exploration will depend on a variety of 
geologic, geographic, and ecological factors.  For example, the site may be located adjacent to a 
known geothermal resource.  Or, the site may be selected because it possesses similar geologic 
and tectonic features to a known geothermal resource.  Furthermore, recent vegetation kill 
potentially related to elevated soil-CO2 concentrations may provide the impetus to conduct a 
survey to search for geothermal CO2.   

Importantly, the natural spatial and temporal variability of near-surface CO2 should also be 
characterized in a background area with similar geologic, climatic, and ecosystem characteristics 
to the area targeted for geothermal exploration.  To evaluate the overall spatial distribution of 
soil CO2 fluxes and concentrations within the background area, these parameters should be 
measured using the AC method and a portable IRGA within the area along a large grid at widely 
spaced sampling intervals.  Also, to understand the small-scale spatial heterogeneity of soil CO2 
fluxes and concentrations, measurements should be made along a smaller grid at closely spaced 
sampling intervals.  To capture diurnal and seasonal variations in CO2, measurements of soil 
CO2 concentration, flux, and isotopic composition should be made repeatedly over time at 
several fixed “representative” sites.  If feasible, atmospheric temperature, pressure, and wind 
speed and direction should be measured at a weather station contemporaneously with AC CO2 
fluxes.  Soil temperature and moisture should also be monitored concurrently with soil CO2 
fluxes.  Correlation analysis of soil CO2 flux and environmental parameters should be performed.  
Using regression analysis, empirical relationships between correlated parameters could be 
established and used to predict the background CO2 fluxes expected under a given set of 
environmental conditions.  If the background study area meets the terrain conditions required by 
the EC method, then an EC station should be deployed during times of optimal meteorological 
conditions to measure spatially averaged net CO2 fluxes.   
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A broad range of measurements should be made within the area targeted for geothermal 
exploration.  However, as demonstrated by our modeling results, elevated sub-soil and soil CO2 
concentrations are expected to be the strongest and most easily detected signals related to CO2 
migration away from a hidden geothermal reservoir.  As a result, initial sampling priority should 
be given to the measurement of these concentrations.  In particular, the collection of sub-soil gas 
and water samples from wells for geochemical analyses promises a relatively high potential to 
detect leaking geothermal CO2.  Therefore, if previously installed wells exist within the study 
area, these wells should be sampled for analysis.  However, because there is likely to be a 
relatively low density of pre-existing wells within the study area, a strong emphasis should also 
be put on rapid, economical, low-error measurements of soil CO2 concentration and surface CO2 
fluxes along grids at evenly spaced intervals.  These measurements should be focused during 
seasonal times of low ecological productivity to minimize biological respiration and maximize 
potential deep geothermal contribution of CO2. 

The two primary goals of soil CO2 concentration and flux sampling are to minimize the number 
of these measurements (n), and to locate “high-probability” anomalies (Eqs. 7.4 and 7.5) where 
more costly deep sampling and isotopic measurements will then be conducted.  To accomplish 
these goals, x/A (Eqs. 7.4 and 7.5, in the case where measurement methods are not 100% capable 
of detecting anomalous CO2) should be maximized by focusing soil CO2 concentration and AC 
CO2 flux sampling in areas where geothermal CO2 migration is most likely (e.g., near geologic 
structures).  Secondly, the probability distributions of the background and anomalous soil CO2 
concentration (or flux) should be estimated from background field characterization and 
numerical modeling of geothermal CO2 migration, respectively, and threshold values should be 
defined above which these parameters are considered anomalous.  These CO2 concentration and 
flux threshold values are chosen based on minimization of α(m) and β(m) and therefore n (Eqs. 
7.4 and 7.5).  Equations 7.4 and 7.5 should then be used to determine the presence (or absence) 
of CO2 anomalies with high confidence.  The information provided on the locations of high-
probability gas anomalies should be integrated with maps contoured for soil CO2 concentration 
and flux magnitude and autocorrelation and cross-correlation coefficients of these parameters.  
Based on these combined analyses, the locations of more costly and time-intensive sampling can 
be determined. 

Where anomalously high soil CO2 concentration and flux are located, new wells should be 
installed and gases should be sampled at regular intervals from the surface to the water table for 
chemical and isotopic compositions.  A source of CO2 at depth would be accompanied by an 
increase in CO2 concentration with depth. To check for a biological respiration source of CO2 at 
(sub-soil) depth, measured CO2 and O2 concentration-depth profiles should be compared to 
profiles generated by diffusion models of background CO2 respiration and O2 consumption.  
Profiles of δ13C and ∆14C should be measured.  Relatively low ∆14C and high δ13C values would 
be expected at depth with a leaking geothermal CO2 source and mass balance calculations could 
be used to estimate the fraction contribution of this component to sampled CO2.  In sum, the 
observations of CO2 and O2 concentration gradients, CO2 production distribution, surface CO2 
fluxes, and carbon isotopic compositions must be consistent with the CO2 source.   

If the terrain conditions in the study area are such that the errors of EC measurements are low 
enough to detect potentially small geothermal seepage fluxes, EC could be used as an additional 
tool to search for CO2 seepage.  Then, if the measured EC flux is sufficiently higher than the flux 
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variability measured at the background site to be considered anomalous, AC and soil CO2 
concentration measurements should be used detect the location and geometry of the anomaly 
within the EC footprint.  To minimize x/A and the number of necessary AC and CO2 
concentration measurements, the EC instrumentation (e.g., tower height) should be configured to 
yield small footprint areas.   

8.  CONCLUSIONS 

The properties of CO2 and the methods for detection and monitoring of CO2 are generally well 
known.  We are also able to obtain a better understanding of near-surface CO2 concentrations 
and fluxes resulting from CO2 migration and seepage from hidden geothermal reservoirs using 
numerical simulation of CO2 flow and transport.  Yet despite this understanding, detecting small 
anomalous geothermal CO2 fluxes and concentrations within natural background variations of 
CO2 poses a challenge.  The strategy that we propose involves integrated monitoring, modeling, 
and statistical analysis to understand the natural system.  Once this understanding is achieved, 
integrated measurement, monitoring, and sampling technologies can be applied toward the 
characterization of CO2 within the area potentially hosting a hidden geothermal reservoir.  If 
measurements of CO2 concentrations and fluxes within this area are suggestive of the presence 
of CO2 derived from a geothermal source, the area should be investigated further by more cost- 
and time-intensive vertical profile sampling and isotopic analyses. Integrated analysis of all 
measurements will determine definitively if CO2 derived from a deep geothermal source is 
present, and if so, the spatial extent of the anomaly.  The appropriateness of further geophysical 
measurements, installation of deep wells, and geochemical analyses of deep fluids can then be 
decided based on the results of the near surface CO2 monitoring program. 
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TABLES 

 

Table 4.1.  Properties of the coupled subsurface–surface-layer model system.  
Property Value 
Subsurface   
Subsurface region extent (x x y x z) 1 km x 1 m x 124 m 
Discretization (Nx x Ny x Nz) 67 x 1 x 31 
Standard deviation of log k 0.70  
Minimum, maximum k 1 x 10-14,1 x 10-10 m2 
Correlation length of k in Y-, Z-direction 45, 1 m 
Porosity (φ) 0.2 
Infiltration rate (i) 0.0 cm yr-1  
Temperature (isothermal)  15oC 
CO2 source location (x, y) 293.5 m, -86 m 
Source CO2 migration rate 1. x 10-4, 1. x 10-5, 1. x 10-6 kg s-1 
Residual water sat. (Slr) 0.1 
Residual gas sat. (Sgr) 0.01 
van Genuchten (1980) α 1 x 10-4 Pa-1 
van Genuchten (1980) m 0.2 
  
Surface Layer  
Surface-layer region extent (x x y x z) 1 km x 1 m x 62 m 
Discretization (Nx x Ny x Nz) 67 x 1 x 31 
Pressure in surface layer 1 bar 
Temperature 15 oC 
Velocity profile Logarithmic 
Reference velocity at z = 10 m 1 or 3 m s-1 
Friction velocity for v = 1 m s-1 0.0861 m s-1 
Friction velocity for v = 3 m s-1 0.261 m s-1 
Roughness length (z0)  0.1 m 
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Table 7.1. Chemical and isotopic signatures related to CO2 derived from different sources. 
 
CO2 source 

 
δ13CCO2 

 
∆14CCO2 

Near-
surface 
CO2 conc. 

CO2 conc. 
profile with 
depth 

O2 conc. 
profile with 
depth 

 ‰ ‰    
 
Atmosphere 
 

 
-7 

 
70 

 
Low  

       
– 

 

       
– 

Plant root 
respiration and 
oxidative decay 
of young soil 
organic matter 

C3: -24 to -38 
C4: -6 to -19 
 
 

≥70 Low to 
moderate 

Increasing 
through soil 
zone 

Decreasing 
through soil 
zone 

 
Oxidative 
decay of 
ancient organic 
matter 

 
C3: -24 to -38 
Aquatic/C4:  
-6 to -19 
 
Also age 
dependent 

 
Highly 
depleted 
to absent, 
depending 
on age 
 

 
Low 

 
Increasing 
potentially 
through 
vadose zone 

 
Decreasing 
potentially 
through 
vadose zone 

 
Marine 
carbonate rocks  

 
0 ± 4 

 
absent 

 
Low 

 
Increasing 
through 
vadose zone 
 

 
No effect 

Geothermal -2 to -6 absent Moderate 
to high 

Increasing 
through 
vadose zone 
 

No effect 

Conc., C3, and C4, refer to concentration, C3 plants, and C4 plants.  All near-surface concentrations given are general 
estimates; these concentrations will be strongly dependent on the magnitude of the CO2 flux. 



Strategies for Detection of Hidden Geothermal Systems 
 

 46 Rev. 1.2 

 

Table 7.2.  Properties of different case scenarios used in Monte Carlo simulations. 

Case Permeability x/A P(H) 

1 Homogeneous/isotropic 0.1 0.1 

2 Homogeneous/isotropic 0.01 0.1 

3 Homogeneous/isotropic 0.001 0.1 

4 Homogeneous/isotropic 0.1 0.9 

5 Homogeneous/isotropic 0.01 0.9 

6 Homogeneous/isotropic 0.001 0.9 

7 Heterogeneous/isotropic 0.1 0.1 

8 Heterogeneous/isotropic 0.01 0.1 

9 Heterogeneous/isotropic 0.001 0.1 

10 Heterogeneous/isotropic 0.1 0.9 

11 Heterogeneous/isotropic 0.01 0.9 

12 Heterogeneous/isotropic 0.001 0.9 

 



Strategies for Detection of Hidden Geothermal Systems 
 
 

 47 Rev. 1.2  

 

Table 7.3.  Mean (µ) and standard deviation (σ) of number of measurements (n) required to 
detect a soil CO2 flux anomaly within a sampling area and the associated CO2 flux threshold for 
different case scenarios.   

Case 

 
µ 

g m-2d-1 

σ 

g m-2d-1 

Threshold 

g m-2d-1 

1 5415 3029 28 

2 >20,000 na na 

3 >20,000 na na 

4 1869 1784 29 

5 19,984 256 28 

6 >20,000 na na 

7 3407 1919 38 

8 >20,000 na na 

9 >20,000 na na 

10 1267 1253 38 

11 19,984 256 45 

12 >20,000 na na 
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FIGURES 

 

 

 
 
Figure 3.1.  Density as a function of concentration (mole fraction) in the system CO2-air. 
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Figure 3.2.  Viscosity as a function of concentration (mole fraction) in the system CO2-air. 
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Figure 3.3.  Solubility of CO2 and N2 in water (mole fraction) in gas and aqueous phases. 
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Figure 4.1  Logarithmic velocity profile for atmospheric surface layer.  
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Figure 4.2.  Conceptual model for gas migration from a deep hidden geothermal system. 



Strategies for Detection of Hidden Geothermal Systems 
 
 

 53 Rev. 1.2  

 

 

Distance (m)

H
ei

gh
t(

m
)

0 200 400 600 800 1000

-100

-50

0
P = 1 bar

CO2 Source

Saturated Zone

Unsaturated Zone

 
Figure 4.3.  Grid and boundary conditions for the subsurface model system.  Note vertical 

exaggeration, tilt is actually only six degrees relative to horizontal.  
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Figure 4.4.  Five realizations (A–E) of permeability heterogeneity for the alluvial fan system.  
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Figure 4.5.  Initial liquid saturation for the five realizations (A–E).  
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Figure 4.6.  Subsurface CO2 concentrations (mole fraction) at  t = (a) 0.5, (b) one, and (c) ten 

years for the homogeneous permeability field and high CO2 source flux (576 g m-2d-1). 
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Figure 4.7.  Subsurface CO2 concentrations (mole fraction) at  t = (a) 0.5, (b) one, and (c) ten 

years for permeability realization A and high CO2 source flux (576 g m-2d-1). 
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Figure 4.8.  Subsurface CO2 concentrations (mole fraction) at t = 200 years for five permeability 

realizations (A–E) and high CO2 source flux (576 g m-2 d-1). 
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Figure 4.9. Horizontal profiles of shallow subsurface CO2 concentration ([CO2], 3 m depth) and 

surface CO2 flux for low (5.76 g m-2 d-1), medium (57.6 g m-2 d-1), and high (576 g m-2 
d-1) CO2 source fluxes, homogeneous isotropic permeability, and t = 200 years. 
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Figure 4.10.  Horizontal profiles of shallow subsurface CO2 concentration ([CO2], 3 m depth) 

and surface CO2 flux for low (5.76 g m-2d-1) CO2 source flux, heterogeneous isotropic 
permeability realizations A-E, and t = 200 years. 
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Figure 4.11.  Horizontal profiles of shallow subsurface CO2 concentration ([CO2], 3 m depth) 

and surface CO2 flux for medium (57.6 g m-2d-1) CO2 source flux, heterogeneous 
isotropic permeability realizations A-E, and t = 200 years. 
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Figure 4.12.  Horizontal profiles of shallow subsurface CO2 concentration ([CO2], 3 m depth) 

and surface CO2 flux for high (576 g m-2d-1) CO2 source flux, heterogeneous isotropic 
permeability realizations A-E, and t = 200 years. 
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Figure 4.13.  Initial liquid saturation and wind velocity for the coupled subsurface-surface layer 

system with heterogeneous permeability for subsurface.  
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Figure 4.14.  Coupled CO2 subsurface migration and surface-layer mixing at 1, 10, and 200 

years after CO2 migration begins for wind velocity of 3 m s-1 and permeability 
realization A in a horizontal system.   
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Figure 4.15.  Coupled CO2 subsurface migration and surface-layer mixing at 1, 10, and 200 

years after CO2 migration begins for wind velocity of 1 m s-1 and permeability 
realization A in a horizontal system. 
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Figure 5.1.  Soil CO2 sources and sinks, showing from left-right, top-bottom, exchange with the 

atmosphere, production by decay of soil organic matter, photosynthetic uptake by 
plants, and production by root respiration, groundwater degassing, oxidation of sub-
soil organic matter, and deep degassing.  
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Figure 5.2.  Repeated measurements of a soil CO2 concentration profile in central California 

over a month-long period (modified from Lewicki et al., 2003).  Measurement dates 
and times and the timing of a heavy rain event are shown.  Temporal variability of soil 
CO2 concentration is due to change in soil CO2 production rates due to changes in soil 
temperature and water content.  For example, increase in soil CO2 concentrations is 
observed each day from morning to afternoon measurement times due to increasing 
soil respiration rates with soil temperature.  Also, soil CO2 concentrations increased 
following a heavy rain event (04-16-00 to 04-17-00) due to increasing soil respiration 
rates and/or decreasing loss of CO2 to the atmosphere with increasing soil water 
content. 
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Figure 5.3.  Profiles (A and B) of CO2 concentration with depth in the unsaturated zone above 
the Ogallala aquifer system of Texas (modified from Wood and Petraitis, 1984).  
Increase in CO2 concentration with depth was interpreted to result from production of 
CO2 by oxidative decay of particulate organic carbon.  The water table at sites A and B 
was ~51 and 77 m below the surface.   
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Figure 6.1.  Schematic diagram of an accumulation chamber (AC) measurement system of soil 

CO2 flux.  The air contained in the AC is circulated through the AC and the IRGA and 
the rate of change of CO2 concentration in the AC is measured by the IRGA and 
recorded by the PC.    
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Figure 6.2.  Schematic diagram of an eddy correlation (EC) instrumentation tower to measure 

surface CO2 flux.  An (A) open path IRGA, (B) high frequency response sonic 
anemometer, and (C) box containing power source and datalogger/PC are shown. 
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Figure 7.1.  Bubble plot of ∆14C versus δ13C compositions of soil CO2 showing idealized mixing 

trend between soil gas with relatively low CO2 concentration ([CO2]) and δ13C and 
high ∆14C(young biogenic carbon dominated) and soil gas with relatively high CO2 
concentration, δ13C and low ∆14C (geothermal carbon dominated).  Bubble size scales 
with soil gas CO2 concentration.   
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Figure 7.2.  Probability density functions of background central California soil CO2 flux and 

anomalous CO2 flux associated with (a) homogeneous isotropic (see Figure 4.9 for 
surface CO2 flux profile associated with high source geothermal CO2 flux) and (b) 
heterogeneous isotropic (see Figure 4.12 for surface CO2 flux profile associated with 
high source geothermal CO2 flux) permeability structures.   
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Figure 7.3.  Probability image plots for Cases 1 and 2 Monte Carlo simulations (see Table 7.2).   
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Figure 7.4.  Probability image plots for Cases 4 and 5 Monte Carlo simulations (see Table 7.2).   
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Figure 7.5.  Probability image plots for Cases 7 and 10 Monte Carlo simulations (see Table 7.2).   
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Figure 7.6.  Probability image plots for Case 11 Monte Carlo simulation (see Table 7.2).   




