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Abstract

We investigated whether our convolutional neural network-based breast cancer risk model is 

modifiable by testing it on women who had undergone risk-reducing treatment with known 

chemoprevention agents. Compared with baseline, significantly more women in the treatment 

group had a decrease in the breast cancer risk score (P < .01), indicating that our convolutional 

neural network risk model is modifiable with potential utility in assessing the efficacy of 

chemoprevention strategies.

Introduction: We investigated whether our convolutional neural network (CNN)-based breast 

cancer risk model is modifiable by testing it on women who had undergone risk-reducing 

chemoprevention treatment.

Materials and Methods: We conducted a retrospective cohort study of patients diagnosed with 

atypical hyperplasia, lobular carcinoma in situ, or ductal carcinoma in situ at our institution 

from 2007 to 2015. The clinical characteristics, chemoprevention use, and mammography 

images were extracted from the electronic health records. We classified two groups according 
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to chemoprevention use. Mammograms were performed at baseline and subsequent follow-up 

evaluations for input to our CNN risk model. The 2 chemoprevention groups were compared 

for the risk score change from baseline to follow-up. The change categories included stayed 

high risk, stayed low risk, increased from low to high risk, and decreased from high to low 

risk. Unordered polytomous regression models were used for statistical analysis, with P < .05 

considered statistically significant.

Results: Of 541 patients, 184 (34%) had undergone chemoprevention treatment (group 1) and 

357 (66%) had not (group 2). Using our CNN breast cancer risk score, significantly more women 

in group 1 had shown a decrease in breast cancer risk compared with group 2 (33.7% vs. 22.9%; P 
< .01). Significantly fewer women in group 1 had an increase in breast cancer risk compared with 

group 2 (11.4% vs. 20.2%; P < .01). On multivariate analysis, an increase in breast cancer risk 

predicted by our model correlated negatively with the use of chemoprevention treatment (P = .02).

Conclusions: Our CNN-based breast cancer risk score is modifiable with potential utility 

in assessing the efficacy of known chemoprevention agents and testing new chemoprevention 

strategies.
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Introduction

Breast cancer is the leading cause of cancer-related mortality worldwide in women, with 

most cases occurring in the United States and Western Europe.1 Increased mammographic 

breast density (BD), which describes the radiologically appearing white tissue on a 

mammogram, is a well-known breast cancer risk factor.1 Using the 4 descriptors for BD 

on mammograms based on the BI-RADS (Breast Imaging-Reporting and Data System), 

women with an extensive degree of BD have a two- to sixfold greater risk of breast cancer 

compared with women with little BD.1 Although BD is a risk factor for breast cancer, it has 

been difficult to establish screening guidelines for this population because > 50% of women 

aged < 50 years will have high BD but not all will be high risk themselves.1 Furthermore, 

it is difficult to assess BD serially on an individual basis because BD can be vary owing to 

positional changes of the breast during mammogram acquisition.

Recently, a subset of machine learning processes termed deep learning (DL) and using 

an artificial neural network such as a convolutional neural network (CNN) has made 

great strides in medical imaging analysis. In contrast to traditional machine learning, 

which primarily relies on human-chosen feature analysis, neural networks depend on the 

input of raw data and allows the computer to automatically construct predictive statistical 

models through increasingly complex layers and self-optimization.2–4 Our laboratory 

previously developed a novel CNN algorithm for breast cancer risk prediction using 1474 

mammographic images.5 Our results showed that both the CNN-based mammographic risk 

model and BD were significant independent predictors of breast cancer risk. The CNN risk 

model showed greater predictive potential compared with BD.5 The conclusion of our study 
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indicated that a CNN algorithm can be used to stratify breast cancer risk, potentially better 

than, and independently of, the BD.5

Subsequently, Yala et al6 conducted a larger retrospective study of 88,994 consecutive 

screening mammograms from 39,571 women. They used 3 models to assess breast cancer 

risk within 5 years: traditional risk assessment using the Tyrer-Cuzick model, version 8; a 

DL model using mammographic data; and a hybrid DL model using the Tyrer-Cuzick model 

and DL. Similar to the results of our study,5 they showed that DL models substantially 

improved breast cancer risk discrimination compared with the Tyrer-Cuzick model, which 

includes BD as 1 of the risk factors.6,7

Most recently, Dembrower et al8 developed a DL model to estimate breast cancer risk using 

mammographic images and tested the model on 2283 women. Their DL risk score output, 

which reflects the likelihood of developing breast cancer using standard mammographic 

views (craniocaudal and mediolateral oblique views) was used to estimate an individual’s 

breast cancer risk. They compared the accuracy of the DL model with that of 2 different 

models based on BD, including BD measurements performed by automated software. 

Similar to the findings in our study, their DL model demonstrated a higher age-adjusted 

risk association for breast cancer compared with the best mammographic BD model.8 In 

addition, the area under the curve for the DL model was greater than that for a model based 

on patient age and BD area. They concluded that a DL model could more accurately predict 

for breast cancer risk than could BD-based models.8

These 3 cited studies have provided strong evidence that mammographic features identified 

using DL can provide additional insight into an individual’s risk of breast cancer beyond 

the mere quantification of the BD. The purpose of the present study was to further evaluate 

our CNN-based risk model to determine whether the model can be modified by testing 

it on patients who have undergone known risk-reducing chemoprevention treatment (eg, 

tamoxifen and aromatase inhibitors). If our CNN-based risk model is modifiable, it would 

have potential added utility for assessing the efficacy of treatment for patients receiving 

chemoprevention agents and testing new chemoprevention strategies.

Materials and Methods

Study Design and Study Population

We conducted a retrospective cohort study of patients who had received a diagnosis 

of atypical hyperplasia (AH), lobular carcinoma in situ (LCIS), or ductal carcinoma in 

situ (DCIS) at our institution from 2007 to 2015 to determine the association between 

chemoprevention uptake and change in CNN risk. The inclusion criteria for the present 

study were (1) a history of AH, LCIS, or DCIS without concurrent or previous invasive 

breast cancer; (2) for those with DCIS, estrogen receptor-positive (ER+) and/or progesterone 

receptor-positive (PR+) tumor status; and (3) ≥ 2 serial mammograms available at our 

institution after the diagnosis of AH, LCIS, or DCIS or after receipt of chemoprevention. 

Subjects with a history of bilateral mastectomy were excluded. All patients were considered 

eligible for chemoprevention use because of the diagnosis of AH, LCIS, or ER+ and/or PR+ 

DCIS. The institutional review board at our institution approved the present study.
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Data Collection From Electronic Health Records

The patients’ demographics, breast cancer risk factors, and medical information were 

collected through a medical record review and data extraction from the electronic health 

records (EHRs) at our institution. We captured data from the EHRs using diagnostic codes, 

breast pathology reports, and outpatient clinic notes. EHR data extraction also included 

the tumor registry, which identified incident cases of LCIS and DCIS. All patients with a 

diagnosis of AH or LCIS/DCIS were initially identified by the corresponding International 

Classification of Diseases (ICD)-9th or 10th revision, codes in the databases (codes 610.9/

N60.99 and 233.0/D05.90, respectively), because LCIS and DCIS share the same ICD-9 

and ICD-10 codes. If the patients had had > 1 diagnosis, they were classified by their most 

advanced breast lesion (DCIS more advanced than LCIS more advanced than AH). Any 

medical record documentation of invasive breast cancer was identified by the ICD-9 code 

174.9. The tumor registry and pathology reports were used to identify those patients who 

had had invasive breast cancer before or concurrent with the diagnosis of AH, LCIS, or 

DCIS. These patients were also excluded.

Other covariates collected included age at the baseline mammogram, race and ethnicity 

(non-Hispanic white, non-Hispanic black, Hispanic, Asian, and other), menopausal status, 

body mass index, current or former hormone replacement therapy use (yes vs. no), and 

alcohol use (yes vs. no). Patients with missing information regarding menopausal status 

were considered postmenopausal if they were aged > 55 years. Subjects with missing 

information regarding the body mass index were classified as unknown.

The primary exposure was selective estrogen receptor modulator (SERM) or aromatase 

inhibitor (AI) use as documented in the medication list of the EHRs at any point and 

was dichotomized as yes versus never used. The chemoprevention agents used were also 

identified and categorized as tamoxifen, raloxifene, AIs (ie, anastrozole, exemestane), or 

multiple agents (ie, patients could have switched medications owing to toxicity).

CNN Architecture

For input, the mammogram from the contralateral unaffected side was used to limit the 

potentially confounding results from post-treatment changes of the affected side. We used 

our previously developed CNN-based risk model in the present study.5 In brief, the CNN 

is based on a modified U-net architecture and implemented completely by a series of 

3 × 3 convolutional kernels to limit overfitting. No pooling layers were used. Instead, 

downsampling was implemented simply using 3 × 3 strided convolutions to decrease the 

feature maps by 75%. All nonlinear functions were modeled by the rectified linear unit. 

Batch normalization was used between the convolutional rectified linear unit layers to 

limit the drift of layer activations during training. In successively deep layers, the number 

of feature channels will gradually increase from 16, 32, 64, 128, to 256, reflecting the 

increasing representational complexity. Each mammogram was background nulled and 

normalized using contrast-adaptive histogram normalization and resized to an input image 

of 256 × 256. The data augmentation used in the present study involved a number of 

real-time modifications, including affine warps to the source images at the time of training. 

Training was implemented using the Adam optimizer, an algorithm for the first-order 
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gradient-based optimization of stochastic objective functions, based on adaptive estimates 

of lower order moments. Parameters were initialized using the heuristic described by He et 

al.9 L2 regularization was implemented to limit overfitting of data by limiting the squared 

magnitude of the kernel weights. To account for training dynamics, the learning rate was 

annealed. A final SoftMax score threshold of 0.5 from the average of raw logits from each 

pixel was used for 2-class classification (high risk vs. low risk). The software code for the 

present study was written in Python, version 3.6, using the TensorFlow module, version 

1.13.1. Experiments and CNN training were performed using a Linux workstation with the 

Nvidia GTX 1070 pascal GPU with 8 GB of chip memory, i7 CPU, and 32 GB of RAM.

Statistical Analysis

All statistical analyses included unordered polytomous regression models and used SAS, 

version 9.4 (SAS Institute, Cary, NC), and a P value of < .05 was considered statistically 

significant.

Results

From January 2007 to December 2015, ~2933 patients with an ICD-9/10 code for AH, 

LCIS, or DCIS were initially identified through the EHRs. Of these patients, 541 (18.4%) 

had met all the inclusion criteria and were included in our final analysis. Of the 2452 

patients excluded from the original dataset, 1238 (50.4%) had had evidence of invasive 

breast cancer either before or concurrently with the diagnosis of AH, LCIS, or DCIS 

and were excluded. An additional 69 patients (2.8%) were excluded owing to a history 

of bilateral mastectomy or ER−/PR− DCIS. Also, 108 (4.4%) were excluded because 

whether they had had LCIS or DCIS could not be clarified from their medical records. In 

addition, 250 patients (10.2%) had not undergone a baseline mammogram before beginning 

chemoprevention therapy and 787 (32.0%) did not have follow-up screening mammograms 

available and were excluded.

The baseline characteristics of the study population are listed in Table 1. The mean age 

of the included patients was 60 years (range, 27–90 years), and more than two thirds 

were postmenopausal. The average age at menopause was 49 years, and the average age at 

menarche was ~13 years. The included patients were racially and ethnically diverse, with 

36.7% non-Hispanic white, 11.6% non-Hispanic black, 36.4% Hispanic or Latina, 5.7% 

Asian, and 9.4% other. Of the 541 patients, 206 (38%) had DCIS, 215 (39.7%) had AH, and 

120 (22.3%) had LCIS.

Among the 541 included subjects, 184 (34.0%) had a history of using SERMs or AIs. 

Approximately 72% of the women undergoing chemoprevention treatment used a SERM, 

19% used an AI, and 9% used multiple agents. Of the women receiving chemoprevention 

treatment, most (n = 89; 48.4%) had DCIS, 42 (22.8%) had LCIS, and 53 (28.8%) had AH.

We assessed the long-term changes in the CNN-based risk score compared with the baseline 

risk score (Table 2). The average duration between the baseline and follow-up mammograms 

was 48 ± 12 months. The average duration between the start of treatment and the follow

up mammogram was 37.5 ± 8 months. More patients in the chemoprevention treatment 
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group had a decrease in their CNN-based risk score (33.7%) compared with the patients 

in the no treatment group (22.9%; P < .01). Case examples of the dynamic changes in 

the CNN-based risk score are presented in Figures 1 and 2 between 1 patient who had 

received chemoprevention treatment (Figure 1) and 1 patient who had not received treatment 

(Figure 2). In addition, fewer patients in the chemoprevention treatment group had had an 

increase in their CNN-based risk score (11.4%) compared with patients in the no treatment 

group (20.2%; P < .01). On multivariate analysis, an increase in the CNN-based risk score 

was negatively associated with chemoprevention treatment (P = .02). Thus, those in the 

chemoprevention treatment group were 1.29 times more likely to have a decrease in their 

CNN-based risk score compared with those in the no treatment group.

Discussion

In the present study, we have demonstrated that our CNN-based breast cancer risk score 

is modifiable with known chemoprevention agents. The group of patients who underwent 

chemoprevention treatment had a significant decrease in breast cancer risk compared with 

the group who had not undergone treatment. The modifiability of our risk model means that 

it has the potential to be used as an assessment tool to measure the effectiveness of known 

chemoprevention agents and testing novel chemoprevention strategies.

To test the modifiability of our CNN-based algorithm, we used patients with a diagnosis of 

LCIS, DCIS, or AH, including atypical lobular hyperplasia and atypical ductal hyperplasia 

because randomized controlled trials have demonstrated that SERMs, such as tamoxifen 

and raloxifene, and AIs, such as anastrozole and exemestane, taken for 5 years will reduce 

the breast cancer incidence among high-risk women by ≤ 50% to 65%, especially among 

women with AH and LCIS.10 The National Surgical Adjuvant Breast and Bowel Project P1 

trial found that tamoxifen reduced the risk of invasive breast cancer by 49% and the risk of 

noninvasive breast cancer (DCIS and LCIS) by 50%. In women with a history of AH, the 

risk was reduced by 86%.11

According to our hypothesis, the follow-up CNN-based risk assessment compared with 

the baseline assessment showed that significantly more patients in the treatment group 

had decrease in breast cancer risk compared with that in the control group. In addition, 

significantly fewer women in the treatment group had increase in breast cancer risk 

compared with the treatment group. This is consistent with our understanding of the 

therapeutic role of a chemoprevention agent to both decrease and maintain the risk of breast 

cancer. Despite the known efficacy of chemoprevention therapies to reduce such risk, the 

compliance with these treatments among women with a diagnosis of AH, LCIS, or DCIS has 

been limited.12 For these women, the compliance has been estimated to be < 15%.13 The 

reasons for such low compliance include the lack of a routine breast cancer risk assessment, 

the lack of knowledge among patients and providers about chemoprevention treatment, and 

concerns about side effects. Similarly, in our cohort, only approximately one third of the 

patients had undergone treatment and most of the patients had not. The potential utility of 

our CNN-based risk model could be to better assess the risk at an individual level and better 

define the need for treatment and to measure the efficacy in patients undergoing treatment.

Manley et al. Page 6

Clin Breast Cancer. Author manuscript; available in PMC 2021 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A recent editorial by Bahl,14 titled “Harnessing the Power of Deep Learning to Assess 

Breast Cancer Risk,” has highlighted the DL algorithm developed by Yala et al,6 Dembrower 

et al,8 and Ha et al.5 She stated that these studies show that mammographic images contain 

indicators of risk not captured by the use of BD alone, highlighting the power of DL. Image

based DL models are based on the rich information contained within a mammographic 

image, and not on the subjectivity and variability inherent in human assessments of imaging 

features such as BD. She concluded that such models could potentially replace existing risk 

prediction models and that continued work is needed to strengthen and evaluate the risk 

models to support personalized screening and prevention strategies and, ultimately, reduce 

the burden of breast cancer.14

The present study was limited by the relatively small number of cases from a single 

institution and the retrospective performance. A larger number of cases from multiple 

institutions are needed to further validate and fine tune our algorithm for potential use 

in a clinical setting. The main objective of the present study was to show that our 

DL model can be modifiable. However, future work is planned to fully evaluate the 

effectiveness of tamoxifen and AIs and the potential differences between these 2 types of 

chemoprevention agents. Finally, a direct comparison of our DL model with BD could be of 

value in understanding the relationships among these variables and is planned for a future 

investigation.

Conclusion

Our CNN-based breast cancer risk score is modifiable with potential use in a clinical setting, 

not only to assess an individual’s risk of breast cancer, but also to evaluate the efficacy of 

known chemoprevention agents and novel chemoprevention strategies.
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Clinical Practice Points

• Recent studies have provided strong evidence that mammographic features 

identified by DL can provide additional insight into individual’s risk of breast 

cancer.

• We evaluated our CNN-based risk model to determine whether it is 

modifiable by testing it on patients who had received treatment with known 

risk-reducing chemoprevention agents (tamoxifen and AIs).

• The results from the present study have indicated that our CNN-based risk 

model is modifiable, with potential added utility for assessing the efficacy 

of chemoprevention treatment in patients and testing new chemoprevention 

strategies.
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Figure 1. 
Imaging Studies of a 62-Year-old Woman With a History of Right Breast Ductal Carcinoma 

in Situ Who had Undergone Tamoxifen Adjuvant Therapy. Contralateral Left Breast 

Mammogram (A) before Treatment and (B) 36 months after Treatment. Convolutional 

Neural Network Model Analysis Yielded Changes in Risk Category From High Risk 

before Treatment (C) to Low Risk at 36 months after Treatment (D). Pixel-wise Heat 

Maps Showing Significant Areas of High-Risk Pattern (Color Coded green, yellow, and 

red) before (C) and after (D) Treatment, Showing a Low-Risk Pixel-wise Pattern Color 

Predominantly Coded in blue
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Figure 2. 
Imaging Studies of a 52-Year-old Woman With a History of Left Breast Ductal Carcinoma in 

Situ after Mastectomy Who had Not Undergone Adjuvant Hormonal Therapy. Contralateral 

Right Breast Mammograms (A) at Baseline and (B) 54 months Later. Convolutional Neural 

Network Model Analysis Yielded No Change in Risk Category, which Remained in the 

High-Risk Category at Both Time Points. Pixel-wise Heat Maps Showing Significant Areas 

of High Risk (Color Coded green, yellow, and red) at Baseline (C), With No Significant 

Change 54 months Later (D)
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Table 1

Demographic Characteristics Stratified by Chemoprevention Treatment (n = 541)

Variable

Chemoprevention Treatment

Total (n = 541)Yes (n = 184) No (n = 357)

Age at diagnosis

 <45 y 9 (4.4) 24 (6.70) 33 (5.9)

 45–54 y 49 (26.8) 110 (30.8) 159 (29.4)

 55–64 y 59 (32.2) 111 (31.1) 170 (31.5)

 65–74 y 49 (26.8) 77 (21.6) 126 (23.3)

 ≥75 y 18 (9.8) 35 (9.8) 53 (9.9)

Race/ethnicity

 Non-Hispanic white 71 (38.3) 129 (36.2) 200 (36.9)

 Non-Hispanic black 22 (12.0) 41 (11.5) 63 (11.7)

 Hispanic or Latina 67 (36.6) 130 (36.4) 197 (36.5)

 Asian 18 (9.8) 13 (3.6) 31 (5.7)

 Other 6 (3.3) 44 (12.3) 50 (9.2)

Body mass index

 Underweight (< 18.5 kg/m2) 3 (1.1) 8 (2.2) 10 (1.9)

 Normal weight (18.5–24.9 kg/m2) 55 (30.1) 101 (28.3) 156 (28.9)

 Overweight (25–29.9 kg/m2) 63 (34.4) 116 (32.5) 179 (33.2)

 Obese (≥ 30 kg/m2) 63 (34.4) 102 (28.6) 165 (30.6)

 Unknown 0 (0.0) 30 (8.4) 30 (5.4)

Alcohol use

 Yes 84 (45.7) 145 (40.6) 229 (42.3)

 No 95 (51.6) 185 (51.8) 280 (51.8)

 Unknown 5 (2.7) 27 (7.6) 32 (5.9)

Smoking

 Never 134 (72.8) 250 (70.0) 384 (71.0)

 Previously 36 (19.6) 62 (17.4) 98 (18.1)

 Current 12 (6.5) 19 (5.3) 31 (5.7)

 Unknown 2 (1.1) 26 (7.3) 28 (5.2)

Menopausal status

 Yes 137 (74.5) 236 (66.1) 373 (69.0)

 No 47 (25.5) 121 (33.9) 168 (31.0)

HRT use

 Yes 17 (9.1) 4 (1.1) 21 (3.7)

 No 167 (90.9) 353 (98.9) 520 (96.3)

Breast lesion type

 AH 53 (28.8) 162 (45.4) 215 (39.7)

 DCIS 89 (48.4) 117 (32.8) 206 (38.1)

 LCIS 42 (22.8) 78 (21.8) 120 (22.2)

Data presented as n (%).
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Abbreviations: AH = atypical hyperplasia; DCIS = ductal carcinoma in situ; HRT = hormone replacement therapy; LCIS = lobular carcinoma in 
situ.
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Table 2

CNN-based Risk Score Change Compared With Baseline Risk Score Stratified by Chemoprevention Use
a

CNN Risk Score Change Category
Chemoprevention

Yes (n = 184) No (n = 357)

Decreased 62 (33.7) 82 (22.9)

Increased 21 (11.4) 72 (20.2)

Stayed high 58 (31.5) 104 (29.1)

Stayed low 43 (23.4) 99 (27.7)

Abbreviation: CNN = convolutional neural network.

a
P < .01.
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