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Circulating immune checkpoints predict heart failure
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Abstract

Aims There are limited data examining the role of immune checkpoint (IC) ligands in the pathophysiology of heart failure
(HF). Therefore, we explore this in three HF animal models and in three different human cohorts (healthy, stable, and wors-
ening HF).
Methods and results Transcriptomic analyses of cardiac tissue of three different HF mouse models revealed differentially
expressed IC receptors and their ligands compared with control mice. Based on this observation, serum levels of three
well-known IC ligands (i.e. sPD-L1, sPD-L2 and galectin-9) were measured in stable HF patients from the Vitamin D Chronic
Heart Failure (VitD-CHF) study (n = 101), as well as healthy individuals from the Prevention of Renal and Vascular End-stage
Disease (PREVEND) study (n = 58). sPD-L1, sPD-L2, and galectin-9 were all associated with New York Heart Association classi-
fication. In multivariate linear regression analyses, all three IC ligands were associated with galectin-3 (β = 0.230, β = 0.283,
and β = 0.304, respectively). sPD-L1 and galectin-9 were also associated with hs-troponin-T (β = 0.386 and β = 0.314). Regard-
ing prognosis, higher serum levels of sPD-L1 and galectin-9 were significantly associated with increased risk for HF hospitali-
zation and all-cause mortality [hazard ratio 1.69 (1.09–2.59) and hazard ratio 1.50 (1.06–2.12)]. Furthermore, the importance
of IC ligands was tested in another stage of HF, namely worsening HF patients. In the worsening HF cohort (The BIOlogy Study
to Tailored Treatment in Chronic Heart Failure) (n = 2032), sPD-L2 and galectin-9 were associated with New York Heart Asso-
ciation classification and significantly predicted outcome with an increased relative risk of 15% and 20%, after multivariable
adjustment, respectively.
Conclusions IC ligands are expressed in cardiac disease models, and serum levels of IC ligands are elevated in HF patients,
are associated with disease severity, and significantly predict prognosis. These data indicate a potential role for IC ligands in HF
pathogenesis.
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Introduction

Immune checkpoints (IC) serve as ‘brakes’ on the immune
system and include programmed cell death protein-1 (PD-1)
and T-cell immunoglobulin and mucin-domain containing
molecule-3 (TIM-3), expressed on immune cells.1 ICs are
targeted by immune checkpoint inhibitors (ICI) for effective

cancer therapy but can lead to inflammatory heart disease
underscoring a critical role for IC receptor/IC ligand signalling
in cardiovascular homeostasis.2,3

Over the past decades, it has been recognized that the
pathophysiology of heart failure (HF) is complex with differ-
ent comorbidities4–6 and involves a significant inflammatory
component, irrespective of the cause of disease.7,8 This is
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evident from the fact that modulation of the immune system
decreases the rate of cardiovascular events effectively.9 More
importantly, recent studies suggest that IC ligands might also
contribute actively in immune modulatory processes in HF.10

However, their exact role has not been fully elucidated.
Circulating forms of IC ligands are known to be actively in-

volved in immune regulation and provide a non-invasive tool
in gaining a broader understanding of IC ligands in HF. There-
fore, we determined circulating levels of IC ligands (specifi-
cally soluble PD-L1/2 and galectin-9), as a function of clinical
correlates and prognosis using sera from previously
well-characterized HF cohorts and healthy controls.

Methods

Mouse studies

Transcriptomic analyses of IC receptors and their ligands
were performed on left ventricle (LV) tissue samples from
three different HF mouse models and their respective con-
trols, namely, genetic cardiomyopathy (PLN-R14del), left ven-
tricular pressure overload (transverse aortic constriction,
TAC), and myocardial infarction (MI). In each group, three
mice were evaluated and compared with three respective
control mice.

PLN-R14del
Homozygous phospholamban-R14del (PLN-R14del) mice were
generated as described previously.11 In short, PLN-R14del mice
have a heterozygous deletion of arginine 14 of the PLN protein.
This results in dilated cardiomyopathy with severe LV dysfunc-
tion, decreased electrocardiogram (ECG) potentials and PLN
protein aggregation, mimicking human disease. Mice were
sacrificed within 4–8 weeks, depending on onset of disease.

Transverse aortic constriction
Eight-week old C57Bl/6J mice (Charles River, France)
underwent TAC surgery by placement of an 0.56 mm Nitrile
O-ring (Apple Rubber, Lancaster, NY, USA) around the aorta.
Mice were intubated and mechanically ventilated under 2%
isoflurane. An incision was made in the third intercostal
space. Sham-operated mice underwent the same procedure,
without placement of the O-ring. Postoperatively, all mice re-
ceived 5.0 mg/kg carprofen for analgesic purposes. Mice
were sacrificed six weeks post-TAC.

Myocardial infarction
MI was induced in eight-week old C57Bl/6J mice (Charles
River, France) by permanent left anterior descending coro-
nary artery ligation. Mice were intubated and mechanically
ventilated under 2% isoflurane. After incision via the fourth
intercostal space, ligation was performed using a 6-0 prolene
suture. In sham-operated animals, the suture was placed un-

der the artery and removed without ligation. Mice received
adequate painkilling with carprofen (5.0 mg/kg) post-MI. Six
weeks post-MI, mice were sacrificed.

Transcriptomic analyses
Total RNA was isolated from LV using the SPLIT RNA Extrac-
tion Kit (Lexogen). RNA quality was determined using the
DNF-471 RNA Kit (15 nt) (Agilent, CA, USA) on a Fragment
Analyser System and libraries were prepared using high-qual-
ity RNA with the QuantSeq 3’mRNA-Seq FWD Library Prep Kit
(Lexogen). Sequencing was performed using NextSeq 500 in-
strument with SR75 High Output Kit (Illumina). Reads were
aligned to Mus musculus reference genome using the
splice-aware aligner (STAR version 2.6.1a). Gene expression
analysis was performed using DESeq2 (version 1.18.1).

Human studies

Stable heart failure (VitD-CHF)
Circulating levels of sPD-L1 (Abcam, ab214565), sPD-L2
(Invitrogen, BMS2215), and galectin-9 (R&D Systems, DGAL90)
were measured according to the manufacturer’s protocol in
sera of stable outpatient HF patients from The Vitamin D
Chronic Heart Failure (VitD-CHF) study (n = 101). The VitD-
CHF studywas a single-centre, blinded endpoint trial, designed
to study the effects of vitamin D supplementation on plasma
renin activity in stable chronic HF patients with reduced ejec-
tion fraction. In total, 101 patients were enrolled. Details of
this study have been described in detail elsewhere.12

Healthy controls (PREVEND)
To compare serum levels of IC ligands with healthy controls, a
suitable control group was composed from the Prevention of
Renal and Vascular End-Stage Disease (PREVEND) study. This
cross-sectional study was designed to determine the natural
course of microalbuminuria in non-diabetic patients and its
relation to new-onset renal and cardiovascular disease, as de-
scribed in detail before.13 In total, serum samples of 8592
subjects were available and were stored at �80°C until fur-
ther analysis. For the present study, subjects were excluded
if they met one of the following criteria: History of cardiovas-
cular disease (CV) or new-onset CV disease during follow-up,
history of cancer or new-onset cancer during follow-up, and a
history of renal disease requiring dialysis or estimated glo-
merular filtration rate (eGFR) <60 mL/min/1.73 m2 during
follow-up. Out of the remaining 3636 subjects, 58 age- and
sex-matched individuals were randomly selected.

Worsening heart failure (BIOSTAT-CHF)
To study the prognostic value of IC ligands in different stages
of HF, data of worsening HF patients from The BIOlogy Study
to Tailored Treatment in Chronic Heart Failure (BIOSTAT-CHF)
were used. Design and primary results of BIOSTAT-CHF
have been described in detail elsewhere.14,15 In brief,
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BIOSTAT-CHF was a multicentre, prospective, observational
study in which 2516 patients with new-onset or worsening
HF were included from 11 European countries, considered
to be on suboptimal HF medication. In this cohort, plasma
levels of sPD-L2 and galectin-9 were available and measured
using an immuno-assay based on proximity extension assay
technology (Olink Bioscience analysis service, Cardiovascular
panel II, Uppsala, Sweden). Data generated are expressed as
relative quantification on the log2 scale of normalized protein
expression (NPX) values. For the present study, patients were
excluded from further analyses if plasma concentrations of IC
ligands were not measured. Final analyses included 2032
patients.

Ethics

Mouse studies were approved by the animal ethical commit-
tee of the University of Groningen. The VitD-CHF, PREVEND,
and BIOSTAT-CHF studies all conform to the principles
drafted in the declaration of Helsinki. All study participants
provided written informed consent.

Statistical analyses

Associations of IC ligands with baseline characteristics were
assessed with linear regression analyses using data from the
stable outpatient HF cohort (VitD-CHF). IC ligands and bio-
marker levels were log-transformed prior to analysis to ob-
tain approximately normal distributions. For multivariable re-
gression analysis, all variables with P < 0.05 in univariable
analysis were included and subjected to the backward elimi-
nation method. Biomarker performance was assessed using
cox regression analyses, with the composite of HF rehospital-
ization and all-cause mortality as primary outcome. Analyses
in the worsening HF cohort were adjusted for the
database-specific risk model,15 consisting of age, HF hospital-
ization in last year, presence of peripheral oedema, systolic
blood pressure, NT-proBNP, haemoglobin, HDL, sodium and
beta-blocker use at baseline (referred to as ‘Model 1’), and
a second model that consisted of the database-specific risk
model, including device therapy and estimated glomerular fil-
tration rate (eGFR) (referred to as ‘Model 2’). All analyses
were conducted using Stata 14.2 and GraphPad Prism 9.1.0,
with 2-tailed significance set at P < 0.05.

Results

Transcriptomic analyses

To determine if IC receptors and their ligands are expressed
specifically in cardiac tissue, transcriptomic analyses of left

ventricular tissue samples from three different HF mouse
models (i.e. PLN-R14del, TAC, and MI) was performed. Data
revealed differentially expressed IC receptors and their li-
gands compared with control mice (Supporting information,
Figure S1).

Patient characteristics

Baseline characteristics of the 101 stable and 2032 worsen-
ing HF patients are presented in Table 1. In the stable HF co-
hort, mean age was 64 ± 10 years and 7 (7%) patients were
female. Sixty-seven patients (66%) showed reduced ejection
fraction [left ventricular ejection fraction (LVEF) <40] and 1
(1%) preserved ejection fraction (LVEF ≥50). Eighty-nine
patients (88%) were New York Heart Association (NYHA)
Class II and 12 (12%) NYHA Class III. Median NT-proBNP
level was 376 (203–782) ng/L. Mean follow-up time was
4.3 (SD 1.4) years. At 4 year follow-up, 11 (11%) patients
were rehospitalized for HF and 17 (17%) patients died of
any cause.

In the worsening HF cohort, mean age was 69 ± 12 years,
and 538 (27%) patients were female. There were 1464 pa-
tients (81%) that showed reduced EF and 121 (7%) preserved
EF. The majority of patients could be classified as NYHA Class
II and III and median NT-proBNP level was 2677 (1200–5620)
ng/L. Mean follow-up was 1.7 (SD 0.8) years. At 2 year follow-
up, 493 (24%) patients were rehospitalized for HF and 480
(24%) patients died of any cause.

Serum immune checkpoint ligand levels in
patients with heart failure

In patients with stable HF, serum levels of sPD-L1, sPD-L2 and
galectin-9 were higher compared to age- and sex-matched
healthy individuals (Figure 1A). All three IC ligands were asso-
ciated with disease severity, as reflected by New York Heart
Association (NYHA) classification (P-value for trend 0.003,
0.043, and 0.003 for sPD-L1, sPD-L2, and galectin-9, respec-
tively) (Figure 1A). In multivariate linear regression analyses,
all three IC ligands were significantly associated with
galectin-3, a marker of cardiac remodelling (β = 0.230,
β = 0.283, and β = 0.304; P = 0.012, P = 0.004 and
P = 0.001, respectively) (Table 2). sPD-L1 and galectin-9 were
furthermore associated with high-sensitivity cardiac tropo-
nin-T (hs-troponin-T), a marker of cardiomyocyte damage
(β = 0.386, P < 0.0001 and β = 0.314, P = 0.001). Also in pa-
tients with worsening HF, serum sPD-L2 and galectin-9 levels
were associated with NYHA classification (P value for trend
<0.001 for both, data not shown).
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Prognostic value of immune checkpoint ligands in
patients with heart failure

In the stable HF cohort, serum sPD-L1 and galectin-9 levels
significantly predicted HF hospitalization and all-cause mor-
tality [unadjusted HR 1.68; CI (1.09, 2.59) and HR 1.50; CI
(1.06, 2.12), Figure 1B, upper panel]. This also applied to pa-
tients with worsening HF: Both sPD-L2 and galectin-9 showed
to be independent predictors for adverse outcome with an
increased relative risk of 15% and 20% for HF hospitalization
and all-cause mortality combined, respectively, after
adjustment for the database-specific risk model (Model 1)
(Figure 1B, lower panel).

Discussion

In this study, we report for the first time that serum levels
of circulating IC ligands are elevated in HF and are associ-
ated with disease severity. sPD-L1, sPD-L2, and galectin-9
all strongly correlate with galectin-3 in multivariate analy-
ses, indicating a clear association with myocardial fibrosis
and inflammation,16,17 underpinning hallmark processes of
myocardial remodelling in HF. sPD-L1, and galectin-9 were
also associated with hs-troponin-T, a reflection of ongoing
myocardial injury. Additionally, higher levels of IC ligands
are independently associated with a higher risk of death
and HF hospitalization in patients in different stages of
HF, namely, stable and worsening HF. Finally, transcriptomic
analyses revealed differentially expressed IC ligands in car-

diac tissue specifically, supporting our hypothesis that IC li-
gands potentially play a role in cardiac biology and HF
pathology.

The IC receptor/IC ligand interactions play a critical role in
immune regulation. In cardiac biology, previous clinical and
pre-clinical studies have shown that IC ligands, such as PD-
L1/2 and galectin-9, are significantly up-regulated in inflam-
matory heart disease3 and in hearts of patients after heart
transplant rejection.18 Intriguingly, our study results indicate
a potential role for IC ligands across the overall spectrum of
HF—irrespective of evident auto-immunity or infection—fur-
ther implicating the importance of IC ligands in the patho-
physiology of heart disease in general.

While normally IC ligands are expressed on ‘host’ cells in-
cluding cardiomyocytes or endothelial cells,19 the circulating
forms (such as sPD-L1, sPD-L2, and galectin-9) are acknowl-
edged as functional parts of membrane-bound IC ligands that
regulate immune activity in a similar fashion. In oncology,
changes in plasma levels of circulating IC ligands have been
shown to affect development, prognosis, and treatment of
several types of cancer.20 Our study extends these observa-
tions to HF.

Despite these results, it remains unclear whether increased
levels of circulating IC ligands represent a pathological or com-
pensatory process. Nor does this study define the cell types or
organs responsible for this up-regulation—although our re-
sults indicate that the heart might be a possible source. Nev-
ertheless, our data implicate a potential role for IC ligands as
biomarkers in HF. Further research is needed to elucidate
the exact mechanism of IC ligands in the pathophysiology of
HF and their potential as target for therapy.

Table 1 Baseline characteristics preceding incident clinical outcomes in the stable and worsening heart failure cohort.

Characteristics Stable HF cohort Worsening HF cohort
n = 101 n = 2032

Age (years), mean (SD) 64 (10) 69 (12)
Female sex, n (%) 7 (7) 538 (27)
BMI (kg/m2), mean (SD) 28 (4) 28 (6)
SBP 118 (18) 125 (22)
DBP 72 (13) 75 (13)
LVEF (%), mean (SD) 35 (8) 31 (11)
HF subtype, n (%)

HFpEF 1 (1) 121 (7)
HFmrEF 33 (33) 229 (13)
HFrEF 67 (66) 1464 (81)

NYHA class, n (%)
I 174 (9)
II 89 (88) 937 (46)
III 12 (12) 572 (28)
IV 67 (3)

Biomarker levels
NT-proBNP (ng/L), median [IQR] 376 [203–782] 2677 [1200–5620]
Galectin-3 (μg/L), median [IQR] 17 [15–19] 21 [15–29]
Creatinine (μmol/L), mean (SD) 90 (18) 115 (55)

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; HF, heart failure; HFpEF, heart failure with preserved ejection fraction;
HFmrEF, heart failure with mildly-reduced ejection fraction; HFrEF, heart failure with reduced ejection fraction; IQR, inter-quartile range;
LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; SBP,
systolic blood pressure.
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Figure 1 Association of circulating immune checkpoint (IC) ligands with disease severity and prognosis. (A) Levels of circulating ICR ligands in healthy
subjects (n = 58) and patients with stable heart failure (HF) (n = 101), categorized by NYHA II and III. NT-proBNP levels are depicted as a positive con-
trol. Levels are displayed as Tukey boxplot [median (inter-quartile range)]. (B) Forest plot showing the unadjusted hazard ratio (95% CI) associated with
circulating IC ligands per 1 log-SD increase to the primary combined endpoint (HF hospitalization and all-cause mortality) in stable HF (upper panel)
and worsening HF (lower panel) cohort. Data from the latter cohort are adjusted for Model 1 and Model 2. Model 1: The database-specific risk model,
consisting of age, HF hospitalization in last year, presence of peripheral oedema, systolic blood pressure, NT-proBNP, haemoglobin, HDL, sodium, and
beta-blocker use at baseline. Model 2: The database-specific risk model + device therapy + estimated glomerular filtration rate. Abbreviations:
BIOSTAT-CHF, The BIOlogy Study to Tailored Treatment in Chronic Heart Failure; CI, confidence interval; HF, heart failure; HR, hazard ratio; NYHA,
New York Heart Association; NT-proBNP, N-terminal pro-B-type natriuretic peptide; sPD-L1, soluble programmed death-ligand 1; sPD-L2, soluble pro-
grammed death-ligand 2; Vit-D-CHF, Vitamin D Chronic Heart Failure study.
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Study limitations

Follow-up time of the worsening HF cohort was considerably
shorter compared with the stable HF cohort. Considering that
IC ligands concentrations—which might fluctuate over time—
were only determined at one time point during the study, a
follow-up duration of more than 1 year was considered suffi-
cient to determine their prognostic value.
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Figure S1. Heatmaps showing transcriptomic analyses of IC
receptors and IC ligands in left ventricular tissue of three dif-
ferent HF mouse models, namely genetic cardiomyopathy
(PLN-R14del), left ventricular pressure overload (TAC) and
MI. Each coloured square represents one individual mouse.
Abbreviations: Cd40, cluster of differentiation 40; Cd80, B7–
1; Cd86, B7–2; Gitr, glucocorticoid-induced TNFR-related
gene; Gitrl, glucocorticoid-induced TNF-related protein li-
gand; HF, heart failure; Lgals3, galectin-3; Lgals9, galectin-9;
MI, myocardial infarction; Nppa, natriuretic peptide A; Nppb,
natriuretic peptide B; Pdcd1lg1, programmed cell death 1 li-
gand 1; Pdcd1lg2, programmed cell death 1 ligand 2; TAC,
transverse aortic constriction; Tim3, T-cell immunoglobulin
and mucin-domain containing-3; WT, wild-type.
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