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A wrap-around movement path
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social and spatial drivers of
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 KG, 0000-0002-4612-4426; MA, 0000-0002-9947-1181; NA, 0000-0002-6848-6348;
OS, 0000-0001-8941-3175; NP-W, 0000-0002-0448-8037

Studying the spatial–social interface requires tools that distinguish between
social and spatial drivers of interactions. Testing hypotheses about the
factors determining animal interactions often involves comparing observed
interactions with reference or ‘null’ models. One approach to accounting
for spatial drivers of social interactions in reference models is randomizing
animal movement paths to decouple spatial and social phenotypes while
maintaining environmental effects on movements. Here, we update a
reference model that detects social attraction above the effect of spatial
constraints. We explore the use of our ‘wrap-around’ method and compare
its performance to the previous approach using agent-based simulations.
The wrap-around method provides reference models that are more similar
to the original tracking data, while still distinguishing between social
and spatial drivers. Furthermore, the wrap-around approach results in
fewer false-positives than its predecessor, especially when animals do not
return to one place each night but change movement foci, either locally or
directionally. Finally, we show that interactions among GPS-tracked griffon
vultures (Gyps fulvus) emerge from social attraction rather than from spatial
constraints on their movements. We conclude by highlighting the biological
situations in which the updated method might be most suitable for testing
hypotheses about the underlying causes of social interactions.

This article is part of the theme issue ‘The spatial–social interface: a
theoretical and empirical integration’.

1. Introduction
Animal movement patterns are influenced by both the physical and the
social environment. Animals may seek the presence of others because of
the benefits they gain from sociality (e.g. removal of parasites, avoidance
of predators) [1], or they may avoid each other (e.g. owing to competition).
These social interactions are affected by the physical environment because
most animals need to be in proximity to one another to interact [2]. The
physical environment might facilitate or constrain social interactions—for
example, by attracting individuals to a shared resource [3–5] or preventing
them from moving across barriers [6,7]. Uncovering whether social interac-
tions are a result of social attraction (social phenotype and social environ-
ment) or whether they emerge from spatial constraints on animal movements
(spatial phenotype and spatial environment) is important for understanding
the function of social interactions and the evolution of sociality, and for
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predicting how changes in external conditions (e.g. habitat fragmentation) will affect animal societies [8]. Here, we introduce
a method that facilitates dissecting the contribution of these two forces in shaping animal interactions measured from tracking
data.

The increased availability of high-resolution GPS data on animal movements has opened up new opportunities to examine
the relationship between social behaviour and the environment [9–11]. Social interactions are often inferred from the proximity
of individuals fitted with GPS tags [12,13]. At the same time, GPS tags provide high-resolution information about animal
movements and can be used to examine how these movements are shaped by resources and obstacles in the environment [11].
Such rich movement data allow us to investigate whether social interactions emerge from conspecific social attraction or if they
are simply a by-product of the movements of animals within a given spatial environment [8,14].

Testing hypotheses about the drivers of sociality, or the relative contributions of multiple factors, is often based on comparing
observed interactions with social interactions generated by reference (or ‘null’) models that carefully account for underlying
factors of interest. Because social networks violate many of the assumptions of traditional statistical methods [15], their analysis
often relies on the construction of biologically meaningful reference models using various randomization approaches, such as
the one we investigate here [16,17]. Many questions in animal social network analysis do not require accounting for spatial
information when constructing reference models. For example, asking whether the social role of an individual can be predicted
by its attributes, such as age [18,19], sex [20,21] or personality [22,23], can be answered using permutations of node identities
that maintain the observed network structure [17]. However, many questions about animal sociality focus on the underlying
proximate causes of social interactions (e.g. do animals interact more frequently than by ‘chance’?). To answer such questions,
researchers have compared observed interactions to interactions formed by a wide range of reference models. The broadest
reference model would compare observed interactions to random networks, in which interactions are drawn from some
distribution that may, or may not, be biologically grounded [24]. The less restricted the reference model, the easier it is to
reach the conclusion that animals interact non-randomly. Such reference models, like the ideal gas model [25], often neglect the
biologically meaningful processes that underlie the formation of social interactions; for example, the influence of environmental
features on movements. To determine whether social attraction is a cause of social interactions, or whether interactions result
from how the environment shapes animal movements, it is important to construct reference models that account for animal
space use patterns while controlling for the effects of their social attraction to each other.

A number of approaches have been proposed for disentangling social and spatial drivers of animal social interactions.
Most approaches to this question rely on comparing observed interactions with reference models that randomize the raw
movement data before constructing the social network (often called data-stream randomization), rather than shuffling nodes
of the social network itself. Randomizing raw movement data allows for the decoupling of social and spatial processes [14,17].
An initial data-stream randomization approach permuted the identities of individuals among movement trajectories [26] or
among groups [27], allowing one to ask if particular individuals were more likely than chance to occupy certain social positions,
given spatial constraints on animal movements. However, these methods could not determine whether interactions resulted
from social attraction or emerged from spatial constraints. Similarly, a recent method [28] can help identify population-level
interaction hotspots in the environment. However, this approach does not directly address whether animals arrive at attractors
because they are searching for resources, avoiding threats or seeking social encounters.

To address this gap, Spiegel et al. [14] introduced a novel path randomization approach that decouples the impact of animal
movements from that of social attraction on the formation of interactions. This decoupling is accomplished by randomizing
the temporal order of movement paths and inferring interactions from the randomized data. Because this randomization
decouples the movements of individuals from one another, while maintaining the impact of the physical environment on the
movement shape of each individual, it uncovers how social attraction (or repulsion) affects the formation of interactions in
the observed data. We will refer to this method as ‘path shuffling’ to distinguish it from other approaches that randomize
movement data-streams. In short, this approach permutes segments of movement paths within an individual’s own trajectory
(e.g. by shuffling day-long segments of movement) to decouple the synchronized movements of interacting individuals, while
maintaining the spatial component of each individual’s movement patterns. Importantly, this method retains the association
between individual identity and explicit use of space, preserving individual variation in movement and space use (i.e. territo-
ries, preferences for specific locations, variation in the amount or nature of movement, etc.). Thus, it allows one to identify
whether social interactions emerge solely from movement patterns, or whether they arise from social attraction and movement
synchrony. Path shuffling also allows for identifying whether the locations of encounters differ from those expected by chance
[20]. The path shuffling method has been implemented to understand patterns and drivers of social interactions in cows [29],
hyenas [30], colonial seabirds [31], caribou [32] and sleepy lizards [20]. It has been integrated into the widely-used R package
‘spatsoc’ [13], and a modified version also appears in the ‘contact’ R package [33]. The method, conducted on a timescale of
days, produces biologically sensible and robust reference models for central place foragers that return to the same location (e.g.
a burrow) every night. However, if one is interested in asking questions about animals that frequently move among sleeping
locations, the path shuffling approach introduces into the reference models biologically unfeasible ‘teleportations’—situations
in which a trajectory of an animal ends in one location on one day, and owing to the path shuffling procedure, continues
from a completely different place on the following day. Because reference models should be shaped by the biological question
asked and aspire to disrupt the observed data as little as possible, beyond the effect that is being tested, this ‘teleportation’
shortcoming can limit the applicability of path shuffling in some instances, highlighting the need to expand the generality of the
approach.

Here, we propose an alternative trajectory data-stream randomization approach that circumvents the teleportation problem.
The ‘wrap-around’ method, a modification of the path shuffling method, shifts the entire movement path of each individual
forward or backward in time, and wraps the trajectory back to the start (or end) to retain the duration and timing of the
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observation period (see more details in §2a). This method, like the path shuffling, also breaks the temporal synchrony between
individuals while retaining both the within day and day-to-day sequence of movements for each individual. Shifting trajectories
instead of shuffling them is not entirely new; a version of the wrap-around method was used by Benhamou et al. [34], and a
few other studies have also used temporal shifts [35–37]. Still, the wrap-around method has not been widely adopted, despite
its greater biological realism than path shuffling. Furthermore, its performance and ability to distinguish between social and
spatial drivers of interactions in different situations, compared with the path shuffling method, has not been evaluated. Here,
we use agent-based simulations to examine the performance of the wrap-around method, compare it with the path shuffling
approach, and apply it to animal data. Importantly, both methods use randomization to decouple spatial and social drivers of
interactions by randomizing spatial data along a temporal dimension. However, the degree to which the data are randomized
and the amount of temporal autocorrelation within the movement paths that is preserved in each randomization slightly differs.

After introducing the wrap-around method, we evaluate its performance under different movement scenarios using
agent-based simulations, and compare it with path shuffling. Specifically, we predict that while the path shuffling and wrap-
around methods will perform similarly when animals return to the same place each night, they will differ in their performance
when animals change sleeping sites over time. We further predict that as the amount of shifting of the movement trajectories
in the wrap-around method increases, the closer the outcome will be to the path shuffling and farther from the observed
interactions. We examine whether the path shuffling and wrap-around methods differ in their rate of false positives (likelihood
to detect sociality—either attraction or avoidance—when it is not simulated) or false negatives (not detecting sociality when it
is simulated); and how these differences are affected by movement patterns (e.g. when migrating or traplining). Furthermore,
we investigate whether the number of observations recorded each day affects the ability of the randomization procedures to
distinguish between social and spatial drivers of interactions. Finally, in addition to testing the method’s performance with
agent-based models (ABMs), we apply both the wrap-around and path shuffling randomizations to determine whether social
interactions of free-living wild griffon vultures (Gyps fulvus) are driven by social attraction, or if they are a by-product of the
vultures' movement patterns.

2. Methods
(a) Implementation of the wrap-around method
In contrast to the path shuffling method, the wrap-around method we propose here shifts animals' movement trajectories
forward and backward in time, breaking the temporal synchrony between individuals while retaining the sequence of move-
ments for each individual. Simply shifting each trajectory would expand the total observation period of the randomized data
relative to the observed data, and would reduce the density of individuals present on a given day (i.e. simultaneously tracked
individuals will seem to have been tracked during different periods). Therefore, when a shifted trajectory reaches the end of the
individual’s observation period, we take the remaining days in the trajectory and attach them back to the start of the trajectory,
effectively ‘wrapping’ the trajectory around like a conveyor belt. We note that this approach produces a more biologically
plausible randomization compared with ‘path shuffling’ because, with one exception (the juncture between the first and last
days of the original trajectory), path continuity between days is maintained. As a result, animals do not ‘teleport’ to a new
location each night, whereas path shuffling may generate teleportations on a daily basis (figure 1).

(b) Agent-based model description
To validate our method, we developed a series of ABMs, representing different types of animal movement. These ABMs
allowed us to apply the randomization method to a population with known social attraction rules, and to quantify the methods’
ability to detect the underlying social structure (which is unknown in real datasets), or the rates of false detections of sociality.
In each model, agents moved in discrete time steps according to a biased-correlated random walk (BCRW), with the direction of
each movement step determined by a Von Mises distribution [38]. To represent animals’ tendency to confine their movements to
a home range area, we incorporated randomly chosen bias points to simulate ‘home range centres’. The Von Mises distribution
has two parameters that determine step direction and concentration. The concentration parameter was chosen to give a
semi-linear path similar to that of real animal movements, while agents’ step directions were biased towards their home range
centre for the current day. Step lengths were drawn from a gamma distribution with a mean of 7 and a standard deviation of
5—set to produce trajectories that seemed similar to animal movements.

To explore whether the path shuffling and wrap-around methods differed in their performance more when animals
displaced farther from their starting points each day, we varied the location of each individual’s home range bias point to
create three scenarios (figure 2a). In the ‘static home ranges’ scenario, each individual’s bias point was held constant throughout
the duration of the simulation. In the 'locally changing home ranges’ and ‘directionally changing home ranges’ scenarios, the
bias point of each individual followed its own BCRW, with the direction of bias point movement chosen from a uniform (for
‘locally changing’) or a heavily concentrated (for ‘directionally changing’) Von Mises distribution. These different distributions
led to either highly tortuous or relatively linear bias point movements, resulting in changes to the home ranges and to the
individuals' tracks over the course of the simulation (figure 2b). Bias point movement step sizes were drawn from a gamma
distribution with mean equal to the agent step size multiplied by either 0.01 (static home ranges scenarios) or 10 (changing
home ranges scenarios) and a standard deviation of 0.75 times the mean home range step size. These values were selected to
produce trajectories that approximated the movement patterns that we were interested in investigating.

3

royalsocietypublishing.org/journal/rstb 
Phil. Trans. R. Soc. B 379: 20220531



For each of the above three scenarios, we compared ‘non-sociable’ and ‘sociable’ agents (figure 2b) to examine whether the
shuffling and wrap-around differed in their false positives (detecting sociality when it was not simulated) or false negatives (not
detecting sociality when it was simulated). Non-sociable agents were indifferent to others and did not adjust their movements
according to other agents in the simulation. Sociable agents could perceive other agents within a certain ‘social perception
distance’ (set to 1000 units) and bias their step direction towards the nearest perceived individual. The starting positions of
the agent home range centres were chosen randomly from a square with a side length of two-thirds of the social perception
distance—thus, all individuals could perceive each other initially. In our simulations of sociable agents, the agents biased
each of their steps towards the weighted average between their home range centre bias point and the position of the nearest
perceived conspecific. The relative impact of the nearest neighbour on the movement direction of an agent (social weight)
is a tunable parameter, which we set at 0.75 (heavier bias towards a conspecific versus towards the home range centre). To
evaluate the performance of the randomization methods at different levels of social attraction, we re-ran the ‘sociable agents’
simulations while varying the social weight between 0.1 and 1 in steps of 0.1. All simulations, analysis and data visualization
was conducted in R v. 4.3.1 [39], using the tidyverse packages for data wrangling [40]. The full R code is available on Github
(https://github.com/Collaborative-Vulture-Work/Vulture-Conveyor-Belt).

We ran each simulation scenario with 30 agents over 50 days with 50 movement steps per day. We considered one run of the
simulations to be the ‘observed’ movements’ and used these movements to determine the observed interactions of the agents.
Two individuals were considered to be interacting at a given observation time point if they were closer to each other than twice
the mean agent step length (14 units). (For a comparison of this ‘co-location’ definition of an interaction with a more restrictive
‘co-movement’ definition, in which individuals were only considered to be interacting if they were close to each other for two
consecutive time steps, see the electronic supplementary material, figures S4 and S5.) We then aggregated these interactions to
construct proximity-based weighted social interaction networks. We calculated the degree (number of unique individuals an
agent interacted with) and strength (sum of the weights of all social ties) of each agent.

(c) Randomizations and analysis
To compare the performance of the shuffling and wrap-around randomization methods, we conducted 100 iterations of each
randomization method. For the path shuffling method, we randomized dates using the ‘trajectory’ method of the ‘randomiza-
tions’ function in spatsoc [13]. For the wrap-around method, individual trajectories were shifted forwards or backwards by a
positive integer s, for a total ‘time-shift range’ of 2 s (so if s is 3 days, then each trajectory may be shifted by a number of days
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Figure 1. A schematic comparison of the path shuffling and wrap-around randomization methods. Five individuals (A–E) are shown tracked over 5 days, represented
conceptually as coloured circles connected by black lines, with hues progressing from dark to light over time (a). In the path shuffling method (b), the order of days is
permuted for each individual, resulting in a large number of ‘teleportation’ events (grey slashed lines). In the wrap-around method (c), trajectories are shifted forward
or backward by a number of days selected from a uniform distribution between −2 and 2 (the time-shift range), with each individual’s time-shift shown to the right of
its trajectory. This method creates a maximum of one ‘teleportation’ event per individual and maintains the order of consecutive days.
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drawn from a uniform distribution between −3 and +3). We note that the power of the method is constrained by s (a very small
s implies that more individuals will maintain their original synchrony in the shifted dataset). Thus, to determine the impact
that the time-shift range might have on the performance of the wrap-around randomization method, we ran wrap-around
randomizations at each value of s between 0 and 25, resulting in time-shift ranges between 0 and 50 days (0–100% of the entire
simulation duration). For each randomization iteration, we identified interactions and quantified the degree and strength of
each agent, as explained above.

Randomization methods were considered to have succeeded in detecting sociality (i.e. a true positive) if the observed
population mean value of degree or strength was significantly more extreme than the population mean values of the random-
izations. To quantify the size of the difference, we calculated Z-scores for the observed values (electronic supplementary
material, tables S1–S3), similar to the method described in [41]. To determine each method’s likelihood of falsely detecting
sociality, we examined only the non-sociable simulations. We were interested in cases where the observed agents interacted
significantly more or less (or with more or fewer others) than would be expected by chance according to the randomizations.
Specifically, we defined false positives of sociality as cases in which we would conclude, based on the difference between the
observed data and the randomizations, that social attraction or avoidance existed in the population, when in fact none was
simulated. To determine the false-positive rate, we calculated the proportion of the randomization iterations for which the
population mean (degree or strength) was either greater than or smaller than the top or bottom 2.5% of the simulation runs to
obtain a two-tailed p-value (since we were interested in cases where the observed sociality was either significantly greater than
or significantly less than expected by the randomizations). To determine each method’s likelihood of failing to detect sociality
where it existed (i.e. false negatives), we examined simulations with sociable agents at varying levels of social weight. We were
interested in cases where the observed agents did not interact significantly more or less than would be expected by chance
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Figure 2. Examples of movement trajectories of home ranges and agents in the ABM. The home range centres to which agents are attracted are either static (a(i); b(i),
b(ii), changing locally (a(ii); b(iii), b(iv)), or changing in a directional manner (a(iii); b(v), b(vi)). In (a(i)), the home range centre is shown as a large black circle and
in (a(ii), (iii)) the numbers on the large circles of home range centres represent five days. Lines are the walking trajectory of an agent attracted to these home range
centres, with line colour corresponding to the colour of each day’s home range centre. The movements of each agent in the ABM are based on correlated random walks
in which individuals are either non-sociable (b(i), (iii), (v)) or sociable and attracted to their nearest neighbour (social weight = 0.7, b(ii), (iv), (vi)) when home range
centres are static (b(i),(ii)), changing locally (b(iii), (iv), or changing in a directional manner (b(v), (vi)). In (b), the walking trajectories of 10 randomly selected agents
throughout the 50 days of a single simulation are shown in colour and the 20 trajectories of the remaining individuals are in light grey. Note the different spatial scales
across (b(i)-(vi)).
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according to the randomizations. To determine the false-negative rate, we first obtained a two-tailed p-value for detection of
sociality, as described above (true-positive rate), and subtracted that from 1 (electronic supplementary material, figure S3).

Because animal tracks are often limited in their observation frequency or have incomplete observations, we examine the
effect of observation frequency (i.e. sampling effort) on the false-positive rate. We downsampled the non-sociable 'observed'
simulation data for each home range scenario from 50 points per simulation ‘day’ to 25, 10 or 5 points per day. Owing
to computational constraints, we ran 50 iterations of each randomization (path shuffling, and wrap-around with time-shift
ranges between 4% and 100%). We constructed proximity-based social networks for each randomization, and calculated the
false-positive rate for each sampling frequency, type of randomization and time-shift range separately.

(d) Vulture system
To demonstrate the applicability of our proposed method, we applied it to empirical data from a population of free-ranging
Eurasian griffon vultures (G. fulvus, hereafter ‘griffon vultures’) in the Negev Desert. The study system has been extensively
described in Acácio et al., Anglister et al., and Sharma et al. [42–44]. Griffon vultures are large soaring fliers and obligate
scavengers [45]. They travel long distances to feed on ephemeral and widely distributed carcasses, relying on thermal and
orographic uplift to save energy in flight. They fly the most during the summer and autumn, when the weather is warm and
favourable for thermal soaring. Griffons interact frequently with conspecifics in several social situations [44]. In flight, they
rely on visual social cues to locate carcasses [46, 47] and often fly in proximity to conspecifics for extended periods of time
[48]. As such, their interactions have the potential to be driven by both conspecific social attraction (or avoidance) and by the
distribution of resources on the physical landscape (such as food or uplift). While individual griffons vary in their use of space,
they do not consistently return to the same roost every night. Individuals may prefer certain central roost locations, but they
alternate between roost locations fairly frequently, even when their daily movements are within the same general area. This
makes the vulture dataset particularly suitable for testing how the randomization methods will perform on animals that are not
strict central-place foragers.

For this analysis, we focused on data collected from 75 GPS-tagged vultures during the summer of 2022 (15 May–15
September) which makes up approximately 70% of the total population in the area at that time. The GPS tags transmit the
location of the vultures approximately every 10 min, providing us with detailed information about their movements (electronic
supplementary material, figure S1). We constructed proximity-based social networks of in-flight interactions, to focus on
interactions that emerge from continuous movement. Consistent with previous research on this system [44], we defined an
in-flight interaction as two individuals flying (i.e. moving faster than 5 m s−1) within 1 km of each other during two consecutive
10 min time intervals (to avoid counting simple path-crossings as interactions). We constructed social networks based on these
interactions over the duration of the summer. The weight of the edge between each pair of individuals was represented as a
simple ratio index—how frequently two individuals were observed interacting, out of the total number of time periods when
they were both tracked and possibly could have been observed interacting [49–51]. We calculated each individual vulture’s
degree and strength.

We randomized the individual vultures’ movement trajectories according to the path shuffling and wrap-around random-
ization methods, in units of days. The total length of the summer was 124 days. We tested two time-shift ranges for the
wrap-around method, allowing individual trajectories to shift within either a 24 day window (up to ±12 days shift, approxi-
mately 20% of the total tracking period) or a 2 day window (up to ±1 day shift, approximately 2% of the total tracking period).
Individual vultures were tracked for 121 days on average (range: 60–124 days; s.d.: 9.22 days), had an average daily path length
of 118 km (range: 0.07–404 km; s.d.: 72.1 km), and had an average daily displacement (distance between the first and last point
of the day) of 17.1 km (range: 0–237 km; s.d.: 26 km). We conducted 100 iterations of each randomization, and then constructed
proximity-based social networks from each iteration of the randomized data. We compared the degree and strength of each
individual in the observed co-flight social network with its value in the networks constructed from randomized data for each
method.

3. Results
(a) Comparing path shuffling to the wrap-around randomization using agent-based models
Both randomization methods detected sociality in all cases where it was simulated (figure 3a,b(ii),(iv),(vi) ; electronic supplemen-
tary material, figure S3). However, the wrap-around randomization often resulted in values that were closer to observed,
compared to the path shuffling method (figure 3a(vi); b(ii),(iv),(vi)). Furthermore, the more the location of the home range
centre of the animals changed, the larger the difference was between the two methods, as predicted. When home ranges were
stationary, there was very little difference between the expected values generated from the wrap-around method and the path
shuffling method, especially for degree (figure 3a(i),(ii)) and only a slight difference for strength (figure 3b(ii)). When home
ranges changed locally, the values from the wrap-around method were more similar to the observed values than were the
path shuffling values (figure 3a(iii); 3b(iv)), or the two methods were nearly identical (figure 3a(iv); 3b(iii)). Finally, when home
ranges changed in a directional manner, the difference between the two randomizations was the greatest, with the wrap-around
values being substantially closer to the observed values relative to path shuffling randomization (figure 3a,b(v, vi)).

When social weight was high (agents more strongly biased towards nearby conspecifics than to their own home range
centres), none of the randomization methods failed to detect sociality; population mean degree and strength values differed
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significantly from the population means of the randomizations (electronic supplementary material, figure S3). The wrap-around
method, when trajectories were allowed to shift over the entire simulation duration, closely resembled the path shuffling
method in its likelihood of failing to detect sociality, and was even more sensitive than the path shuffling method at low levels
of sociality in the locally changing home ranges scenario (electronic supplementary material, figure S3c). When used with a very
small time-shift window, the wrap-around method did have a slightly elevated likelihood of returning a false-negative result at
lower levels of sociality, especially for degree in the static home ranges scenario (electronic supplementary material, figure S3a).

When simulating non-sociable agents, both methods did not detect sociality when home ranges were stationary (figure
3a,b(i)). When home ranges centres changed locally, both methods slightly over-predicted both degree and strength (figure
3a,b(iii)); the small difference between the two methods is discussed later in the section about false positives. Finally, both
randomization methods detected ‘false-positive’ sociality when home ranges changed in a directional manner (figure 3a,b(v)).
As predicted, this false-positive detection of sociality was more apparent when using the path shuffling method than when
using the wrap-around method, which came closer to correctly identifying that the observed values were generated by a
non-sociable process. We explore this further in the section below about false positives.

(b) Effect of time shifts on wrap-around randomization performance
The size of the time-shift range affected how similar the wrap-around randomization results were to the observed values. The
shorter the time-shift range, the more similar the randomized data was to the observed data (darker blue lines in figure 4).
Note that the wrap-around method results shown in the figure 3 boxplots are for a 20% (10 day) time-shift range, selected
arbitrarily from the time-shift range values that we tested. Despite the similarity of short time-shift ranges to the observed
data, even the shortest time-shifts still detected sociality—in all scenarios and both for degree and strength (in both figure
4a,b(ii),(iv),(vi)). Moreover, when home range centres were changing in a directional manner, only the smallest time-shift ranges
avoided false positives for sociality (i.e. only the darkest blue curves overlapped with the dashed line representing observed
degree or strength in both figure 4a,b(v)).

The time-shift range of the wrap-around method impacted its performance relative to the path shuffling method. For
strength, in all scenarios, larger time-shift ranges gave strength values that were more similar to the path shuffling method
than those yielded by smaller time-shift ranges (figure 4b). When paths were allowed to be shifted over their entire movement
range (100% shift proportion, lightest blue lines in figure 4), the strength values returned by the wrap-around method were very
similar to those from the path shuffling method (orange lines in figure 4). However, for degree (figure 4a), the path shuffling
method tended to be most similar to intermediate time-shift range values.

(c) Sampling frequency and false positives
The likelihood of a method to falsely detect sociality was affected by sampling effort (or proportion of missing data), differed
between randomization methods, and was influenced by the size of the time-shift range in the wrap-around method. In general,
as sampling frequency decreased, the false-positive rate tended to increase, as seen by the negative trends of the lines in figure

(a) (b)(i) (ii)

(iii) (iv)

(v) (vi)

(i) (ii)

(iii) (iv)

(v) (vi)

6

Non-sociable Sociable

Ranked agents

Randomization wrap-around Path shuffling

Ranked agents

D
irectio

n
ally

 ch
an

g
in

g

h
o
m

e ran
g
ers

L
o
cally

 ch
an

g
in

g

h
o
m

e ran
g
ers

S
tatic h

o
m

e

ran
g
es

Non-sociable Sociable

12 0.09

0.20

0.15

0.10

0.05

0.00

0.06

0.03

0.00

0.04
0.100

0.075

0.050

0.025

0.000

0.03

0.02

0.01

0.00

0.025

0.020

0.015

0.010

0.005

0.000

0.08

0.06

0.04

0.02

0.00

8

4

4

3.00

9 12

0.009 0.04

0.03

0.02

0.01

0.02

0.01

0.00
0.001

0.002

6

4

21

2

3

4

0.003

0.004

0.008

0.007

0.006

0.005

11
10

9
8

8
7
6

7.0
6.5
6.0
5.5

0.020

0.019

0.018

0.017

0.016

M
n
. 
d
eg

re
e

M
n
. 
d
eg

re
e

Frequency

0.07
0.06
0.05
0.04
0.03

Frequency

2.75
2.50
2.25

2

0

15

10

D
eg

re
e

S
tr

en
g

th

5

0

10.0

7.5 10

5

0

5.0

2.5

0.0

20

15

10

5

Figure 3. Comparing the path shuffling and wrap-around randomization methods using ABMs. In each plot, agents are ordered by their observed value of degree
(a) or strength (b) (open circles), which are shown on the y-axes. Agents are either non-sociable ((i), (iii), (v)) or sociable ((ii), (iv), (vi)) and their home range centres
are static ((i), (ii)), change locally ((iii), (iv)) or change in a directional manner ((v), (vi)). The degree or strength values of each agent from 100 iterations of the shuffled
(orange) or the wrap-around (blue) randomizations (with a maximum time-shift of 10 days, or 20% of the simulation duration) are shown as boxplots which range
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5a,c,d Interestingly, sampling frequency had less of an effect when home ranges changed in a directional manner (figure 5e,f).
The path shuffling method showed a weaker relationship between sampling frequency and likelihood of detecting sociality in
non-sociable simulations than did the wrap-around method (figure 5c,e,f). However, the path shuffling method also detected
significantly higher or lower values of degree than expected by chance in both of the non-sociable changing home ranges
scenarios (figure 5c,e), and more extreme values of strength than expected by chance in the non-sociable, directionally changing
home ranges scenario (figure 5f). Neither randomization method detected false-positive social attraction in the stable home
ranges scenario (figure 5a,b). For the wrap-around method, the size of the time-shift range affected the method’s likelihood
of detecting sociality. When home ranges changed locally, the wrap-around method returned false positives only at small
time-shift ranges (figure 5c,d). But when home ranges changed directionally, the method returned false positives, especially at
large time-shift ranges (figure 5e,f), more similar to the path shuffling method.

(d) Applying shuffling methods to data from free-ranging vultures
When comparing the interactions of vultures with both path shuffling and wrap-around reference models, we found that all
individuals had more interactions (both degree and strength) than expected by chance (figure 6). While both randomization
approaches resulted in substantially lower social interactions than observed, the wrap-around method produced degree and
strength values that were closer to the observed values than the path shuffling method (applied for the entire period). A
time-shift range of 24 days (figure 6a,c) yielded a much greater difference between the observed and expected values of both
degree and strength than did a 2 day time-shift range (figure 6b,d), but even this small time-shift range was sufficient to
distinguish observed patterns of social interaction from the randomization.

4. Discussion
In their paper introducing the path shuffling method, Spiegel et al. [14] suggested that ‘A parallel randomization approach that
offsets the entire track of a given individual by a varying period… should achieve similar performance’. They noted that such
an approach should be developed and analysed—as we do here. The existing path shuffling method and the new wrap-around
randomization method performed similarly when the agents in our simulation had static home ranges. However, as the agents
ranged over larger areas (more mobile home range centres) and changed their foci of activity, the two randomization methods
gave more and more different predictions for rates of ’chance’ social encounters (figure 3). When the movement trajectories in
the wrap-around method were allowed to be shifted over a wider time range, strength value outcomes became more similar to
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supplementary material, figure S2.
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those from the path shuffling method (figure 4b). However, degree values were most similar between the path shuffling method
and intermediate time-shift range values (figure 4a).

Neither method failed to detect underlying social attraction where it existed (i.e. no false negatives) for the strong sociality
scenarios we considered, for any of the simulations we tested. Even at low levels of social attraction, observed population means
nearly always differed significantly from the randomizations (figures 3, 4: (ii),(iv),(vi)) and the measure that was most impacted
by low social attraction was degree in the stable home range situation (electronic supplementary material, figure S3). However,
the path shuffling method was more likely to detect false positives of sociality compared to the wrap-around method, especially
when agents’ home ranges moved large distances in a directional manner (figure 5). The wrap-around method’s likelihood of
detecting false positives increased as the sampling effort decreased (figure 5). Finally, both randomization methods detected
sociality when we applied them to empirical data on flight interactions in a population of free-ranging vultures, though the
wrap-around method was more similar to the vultures’ observed sociality values than the path shuffling method was, probably
reflecting a better conservation of their movement continuity (figure 6).

(a) Comparing path shuffling to the wrap-around randomization
Because both randomization methods disrupted the spatiotemporal synchrony of individuals that were moving together, they
both succeeded in detecting underlying social attraction in all of the simulation scenarios (for Z-scores see the electronic
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supplementary material, tables S1–S3). This was owing in part to the relatively high level of social attraction we simulated.
However, both methods still detected sociality even at much lower social weight thresholds, for both degree and strength
(electronic supplementary material, figure S3). Overall, observed degree and strength values were more similar to the wrap-
around randomization than to the path shuffling randomization because the wrap-around method retains temporal, as well as
spatial, autocorrelation. By contrast, shuffling paths over the entire randomization period allows individuals to ‘teleport’ across
their spatial range, allowing them to cover the spatial area more evenly in time.

The methods differed from each other the most when animals changed their activity areas directionally over the course of
many days because the effect of ‘teleportation’ on the randomized trajectories was largest in this situation. Consider a case of
two individuals who spend some multi-day portion of the study period preferring to associate with each other. If we apply the
wrap-around method and end up shifting these two individuals' trajectories (relative to each other) by an amount less than their
original period of association, then those two individuals will still have some co-occurrence (in time and space) in parts of their
shifted trajectories. If, instead, we shuffle those trajectories across the entire study period, then there is no guarantee that the
days when the two individuals interacted will stay adjacent; they could be reassigned to any date within the entire tracking
period. If the individuals were changing their home ranges directionally, shuffling the days could also mean being separated far
enough in space that interactions would be impossible.

The way that individuals use space is important for understanding how the two randomizations perform when there
is no underlying social attraction. Notably, the path shuffling method over-predicted the population mean degree for the
non-sociable agents whose home range centres changed locally (orange curve in figure 4a(iii)). Spiegel et al. [14] observed the
same over-prediction of degree when they initially described the method. Key to this finding is the overlapping space use of the
agents in the locally changing home ranges scenario (figure 2b(iii),(iv)). By applying path shuffling to these non-sociable agents,
we increased the number of chance encounters with other unique individuals (i.e. increasing degree), which in the observed
simulation are precluded by the temporal separation of the agents. By contrast, the wrap-around method maintains the internal
spatiotemporal autocorrelation of each agent’s path, thereby retaining temporal isolation as a means of preventing encounters
between certain individuals. Wrap-around-randomized individuals may interact with different unique individuals than in the
observed simulation, but they will not necessarily encounter more individuals.

The distinction between the two methods is salient mostly for degree, which is a measure of the number of unique interac-
tion partners, regardless of interaction duration or frequency. Neither the static home ranges scenario nor the directionally
changing home ranges scenario resulted in larger than random degree values for the non-sociable simulation (figure 4a(i),(v))
because they lack the overlapping space use that characterizes the locally changing home range. This over-prediction of degree
by the path shuffling method when animals have highly overlapping home ranges highlights the importance of constraining the
extent to which we randomize movement trajectories—by constraining the shifting of each day based on its temporal sequence,
we fix the problem of degree over-prediction and successfully capture the observed degree value (blue lines in figure 4a(iii)).
This suggests that the wrap-around method may be especially important for biological questions about the number of unique
individuals animals interact with (degree) and study systems in which overall space is shared between animals and social
structure is maintained by temporal separation.
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(b) Effect of time shifts on wrap-around randomization performance
To apply the wrap-around randomization method, it is necessary to choose a time range that determines how far each
individual’s trajectory can be shifted, as a proportion of the total tracking period. This limit represents a trade-off between
test power and expected false-positive rate, and the selected time-shift range should reflect the biology of the system and the
relevant rate of change in individuals’ movement and space use. While the wrap-around and shuffling methods randomize
paths by days, to avoid decoupling activities that occur at different times of day, there could be biological systems and research
questions in which shorter or longer time units would be more appropriate. Restricting time-shifts to very small ranges (e.g. 2
days in our simulations) results in randomized trajectories that are very similar to the observed data: each individual has only
two possible starting days, so each individual will remain correlated with half of the others in the population—thus reducing
the statistical power and potentially leading to a higher false-negative rate. Indeed, we found that when social attraction was
very slight, the likelihood of a false-negative result was higher for the highly restricted wrap-around method than for either the
path shuffling method or wrap-around with a wider range (electronic supplementary material, figure S3). At the other extreme,
letting trajectories shift over the entire tracking period effectively allows any first day of a trajectory to fall on any other day,
bringing the adjacent days in the trajectory along with it. By increasing the number of possible start dates, the largest possible
time-shift range would minimize the chance of any two individuals being exactly aligned with each other. Interestingly, it did
not take much time-shifting to disrupt the social structure and detect sociality. Even the shortest time-shifts still returned results
that were significantly different from the observed values (figure 4a,b(ii),(iv),(vi)), including when the randomization method
was applied to empirical data (figure 6). A randomization that changes the data minimally while still distinguishing between
the causal factors of interest is desirable because it avoids problems associated with longer time scales, such as changing
environmental conditions.

The time-shift size that is required for detecting sociality when using the wrap-around method can depend on the duration
of social interactions relative to the duration of the time-shift units. In our simulation, social interactions were brief, while
trajectories were shifted backward and forward by entire days. Therefore, even shifts of 1 or 2 days were sufficient to disrupt
social associations. This was especially true for our analysis of vulture data, in which co-flight interactions could be very brief.
If the shifting and interaction durations are on similar time scales, one might be able to examine different time-shift ranges
to determine the duration of a biologically meaningful interaction. Such an approach would be similar to Whitehead’s [52]
lagged association-rate analysis. Further analysis of the wrap-around method can highlight its use for identifying the time
scale over which social interactions occur and persist. Another relevant consideration is how social interactions are defined.
We used a simple co-location definition of social interactions in our simulations, in which being in close proximity during
one time step was sufficient for two individuals to be considered interacting. This may or may not be biologically accurate
for a given study system. The definition of a social interaction may change the extent of the difference between observed
and randomized networks, with the co-movement definition excluding brief ‘path-crossings’ from consideration and therefore
potentially causing randomizations to differ even more from observed networks than under a co-location interaction definition.
A reanalysis of our simulated social networks with a co-movement definition of social interactions yielded qualitatively similar
results for all simulations (electronic supplementary material, figures S5), but we encourage further examination of the effect of
interaction definitions on randomization results.

In the version of path shuffling we used for comparison, days are randomized over the entire tracking period (any day can
be assigned to any other day). This approach is most similar to conducting the wrap-around randomization with the largest
possible time-shift range. However, they are not identical because even when trajectories shift over many days, some pairs of
individuals will, by chance, have relative shifts that are small enough to maintain more social interactions than they would when
using the path shuffling method. Path shuffling can be alternatively implemented with restricted time windows, as discussed
by Spiegel et al. [14]. For instance, one could choose to break a 100 day season into 10 day segments and randomly shuffle the
days only within each segment, which would preserve some of the spatiotemporal autocorrelation that is lost when days are
shuffled across all 100 days. Note that the default implementation of the path shuffling method in the R package ‘spatsoc’ [13]
randomizes across the entire tracking period, but the user can break the tracking period into shorter segments. Spiegel et al.
[14] conducted a thorough analysis of the effect of the time-window size on the performance of the path shuffling approach.
Here, we shuffle paths over the entire tracking period, because this is how the path shuffling method has been implemented
in most cases [29–31] and because even the smallest time-shift ranges of the wrap-around method allow for the possibility
of interchanging trajectory segments at either end of the tracking period. Future work could examine how the time window
for path shuffling and the time-shift range of the wrap-around method correspond to each other. For both methods, shorter
time-shift ranges are recommended if the typical duration of a social interaction and the rate of environmental change are
shorter.

From our comparison of just one path shuffling time-window to many time-shifts of the wrap-around method, we see
that the relationship between the two methods differs depending on the network measure examined (degree or strength).
When considering strength, the path shuffling method was most similar to the wrap-around method with the widest possible
time-shift range (lightest blue lines, figure 4b). This is as expected, considering that both of these methods can randomize
any day to any other. However, we did not observe the same pattern for degree—instead, path shuffling was most similar
to wrap-around with an intermediate time-shift range (medium blue lines, figure 4a). This pattern is explained by the concep-
tual difference between degree (which counts interaction partners, no matter how brief the interaction) and strength (which
considers interaction frequency). Allowing trajectories to shift by a large number of days increases the number of pairs of
individuals whose trajectories will be decoupled to the point that they will never interact (reducing their degree), while smaller
shifts will preserve at least some chances for them to encounter each other. By contrast, path shuffling creates new, brief
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interactions between individuals that would never have met otherwise. Those fleeting interactions are sufficient to increase
degree (because even a single interaction counts, whereas the effect on strength is minute). In this way, degree can reach beyond
its value in the observed data—as discussed below. Meanwhile, strength does not show the same effect, because it is agnostic to
the identities of the interacting partners. Therefore, in selecting a randomization method and a time-shift range, it is important
to consider how randomization methods may behave differently depending on the network measure that is being examined.
Depending on the research question, there are many other network measures, in addition to the two commonly used ones we
considered here. The difference observed here between degree and strength suggests a potentially general pattern that social
network measures that are sensitive to extreme events (like degree) will show more differences across randomization methods
compared to those that are the cumulative effect of many connections (like strength).

(c) Sampling frequency and false positives
While both randomization methods succeeded in detecting social attraction in our sociable agents simulations, the changing
home ranges sometimes led to detecting social attraction or avoidance when it did not exist (non-sociable agents). A false-pos-
itive signal of social avoidance was detected only once by the path shuffling method, for degree in the locally changing
home ranges scenario (orange curve in figure 4a(iii)) because of individuals' overlapping space use, as discussed above. A
false-positive signal of social attraction was detected for both degree and strength in the directionally changing home ranges
scenario, for both path shuffling and the long (but not the shortest) time-shift ranges in the wrap-around method (figure 4a,b(v),
(vi)). When animals in the simulation had directionally changing home ranges, they all started relatively close to each other and
then radiated outwards and away from the starting position and from each other. When trajectories are wrapped around, the
end of the trajectory is linked to its start, allowing individuals that were too far from each other at the end of the simulation to
interact with each other. Only the smallest time-shifts maintain the overall spatial structure of the population, resulting in the
lowest rates of false positives when animals move in a directional manner. Finally, the size of the time-shift range had opposite
effects on the likelihood of the wrap-around method to detect false positives in each of these scenarios because one of them is a
case of the observed being artificially above the expected (false positive for attraction in the directionally-changing home ranges
scenario, figure 5e,f), while the other is a case of the observed being artificially below the expected (false positive for avoidance
in the locally-changing home ranges scenario, figure 5c,d).

The rate of false positives increased as trajectory data was downsampled for the wrap-around method, especially when the
home range centre of the agents moved locally (figure 5c,d). As data become more sparser, error rate increases, just as with any
sampling method, not only of movement data. An increase in error rate results in higher rates of type I errors, i.e. more false
positives, using any statistical approach. Both randomization methods had some false-positive rates at very low sampling rates
(when only 10% of the data was sampled) for the locally changing home ranges scenarios, suggesting that as information about
the movement pattern becomes less complete, the difference in performance of the two methods is smaller when animals have
locally moving home ranges. Interestingly, sampling frequency did not have as much of an effect on the likelihood of reporting
a false positive using the wrap-around method with small time-shifts, in the directionally changing or static home ranges
scenarios (figure 5a,b,e,f). This lower impact of sample size on false positives might be owing to the very localized, or the large
ranging movements of the individuals that are both still captured relatively well within the time scale of the randomization with
downsampled movement data. Thus, the way in which animals move around in their environment could influence the impact
that sampling effort has on the ability to test hypotheses about the underlying causes of sociality.

While we investigated the performance of our proposed method when the simulated data were downsampled, we did
not explore the effect of irregular missing observations or missing individuals. Furthermore, in animal tracking studies, it is
common for individuals to be tracked over different portions of the overall study period. Future work could explore how the
wrap-around method performs when individuals are not tracked for the entire study duration. There are two ways to adjust
the wrap-around method to datasets with individuals differing in sampling duration: (i) wrap each individual’s trajectory
around itself, retaining the distinction between tracked and untracked days (the approach we took for the vulture data); and
(ii) assuming that individuals are present in the population even when they are not tracked, shifting trajectories throughout
the entire tracking period, including days in which an individual was not observed. The potential effects of each of these
wrap-around versions on the sensitivity and specificity of the wrap-around method should be explored.

(d) Using path randomizations to determine the causes of sociality in free-ranging vultures
Both randomization methods detected social attraction when applied to empirical data from a population of free-ranging
vultures, rejecting the hypothesis that vultures interact at random and supporting the common understanding that vulture
interactions emerge from conspecific attraction, beyond the influence of spatial constraints alone (figure 6; [45,48]). Vultures
do change their centres of activity from day to day, but not to the same extent as our directionally changing home ranges
simulation scenario (see the electronic supplementary material, figure S1 for examples of vulture trajectories). Their movements
are highly spatially overlapping over the course of the season; conceptually, they might fall somewhere between our static and
locally changing home range scenarios (electronic supplementary material, figure S1). Congruent with our findings from the
simulation data, both randomization methods were significantly different from the observed values for degree and strength,
reflecting vultures' strong sociality. Indeed in the simulations, both methods, but especially the wrap-around method with a
wide time-shift range, succeeded in detecting social attraction even when it was quite weak (electronic supplementary material,
figure S3), and can therefore be used on species with low rates of sociality. As with the simulated data, the wrap-around method
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produced results that were more similar to observed values than the path shuffling method, because wrap-around maintains
the spatial as well as the temporal autocorrelation of the data. Wrap-around randomization detected clear deviations from
random for both degree and strength even when time-shifts were limited to a very small range (figure 6b,d). Future work should
examine the effect of the absolute number of days, rather than just the length of the time-shift range relative to the length of the
entire sampling period, on the difference between observed and expected values. Furthermore, having rejected the hypothesis
that vultures interact at random after accounting for their movement patterns, we anticipate further work examining the relative
importance of spatial attractors and social preferences in shaping their social behaviour.

Both randomization methods face challenges when the landscape itself changes frequently. The case study of the vultures
provides particular examples for potential pitfalls related to changing resources. Vulture flight movements are strongly affected
by the location and strength of thermal and orographic uplift, which are temporally (and, in the case of thermal uplift, spatially)
variable [53–55]. The carcasses they feed on are ephemeral and also highly variable in space and time [56,57]. A particular
carcass may be visited for a few consecutive days, serving as a local attractor. The goal of randomizations is to decouple the
temporal synchrony of pairs of individuals while keeping each individual’s movement tied to the geographical space in which
it is moving. However, when key features of the landscape (such as uplift, ephemeral food, etc.) are themselves changing in
time, randomizing trajectories will also decouple individuals' movements from the times when the resources were present. Such
decoupling could generate false-positive signals of social attraction when animals are aggregating around fleeting resources
rather than being attracted to each other [58,59]. Adjusting the time-shift range (for wrap-around) and time window (for path
shuffling) to suit the temporal scale over which resources change could minimize the impact of this decoupling. We have shown
that even time-shifts of a day or two are sufficient for detecting significant differences between observed and randomized data.
If a particular resource tends to change approximately every 3–5 days, then shifting trajectories by 1–2 days could minimize
the decoupling of individuals from ephemeral resources while still disrupting temporal synchrony among individuals. Still,
disentangling the influences of a changing landscape on animal movements—and therefore on their social interactions—from
the effects of their social preferences, and our ability to detect them, and other potential drivers of sociality, remains a significant
challenge that is not adequately addressed by some of the current methods [8].

5. Conclusions
Uncovering the underlying causes of sociality is often addressed by comparing observed data to expected values from
randomizations that decouple parameters of interest, like spatial and social processes. The way in which randomizations are
designed therefore impacts the ability to make inferences about underlying biological processes. We show that randomization
approaches that retain spatiotemporal attributes of movement paths in different ways differ in their ability to detect sociality for
certain types of movement patterns. Specifically, the wrap-around method that we proposed here outperforms the commonly
used path shuffling approach by: (i) producing randomizations that are more similar to the observed data, thus creating values
that are more biologically feasible; and (ii) reducing the false-positive detection rate when animals shift their home ranges.
Thus, the wrap-around method is applicable to more types of animal movements than path shuffling and is especially more
suitable for systems in which space is shared between animals but social structure is maintained by temporal separation. We
note however that regardless of which method is used, if the density of individuals changes over time (e.g. because individuals
spread out in certain seasons) the false-positive rates will increase if the time scale of seasonal effects is not considered. It
would be further interesting to examine how the two randomization approaches perform when populations are composed of
individuals that differ substantially in their movement patterns. Considering the use of the wrap-around method to a broad
range of movement types, its lower error rate, and increased biological realism, we recommend implementing it in the highly
used R package spatsoc [13] and using it over the path shuffling method—especially when animals do not return to the same
location each night.
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