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EPIGRAPH

"With the exception of the 'explosive sounds' represented by p̣, q, ṭ, c̣,̌ ṣ and the
guttural χ (frequently pronounced k by Abyssinians themselves) the pronunciation of

Amharic presents little difficulty to an Englishman".
—Armbruster (1908)
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ABSTRACT OF THE DISSERTATION

Phonotactic probability in Amharic: a psycholinguistic and
computational investigation

by

Rebecca Irene Victoria Colavin

Doctor of Philosophy in Linguistics

University of California, San Diego, 2013

Professor Sharon Rose, Co-Chair
Professor Roger Levy, Co-Chair

In this dissertation, the robustness of the relationship between the lexical
frequency of phonotactic patterns and word-acceptability is examined for words of
Amharic, an Ethiopian Semitic language. The patterns under investigation span
the whole verb root and include both under-represented and over-represented con-
sonant distributions in the lexicon. A state-of-the-art probabilistic model, the Max-
imum Entropy phonotactic learner, is used to acquire a phonotactic grammar from
the input (the lexicon) and the predictions of that grammar are compared with the
results of two Amharic nonce-word rating tasks designed specifically to investigate
a range of consonantal phonotactic patterns. The first task investigates consonant

xviii



co-occurrence patterns (homorganic consonants, identical consonants, and frica-
tives). In the Amharic verb lexicon, identical consonants are under-represented in
some locations and over-represented in others whereas homorganic consonants and
fricatives (a previously unknown pattern independently acquired by the model)
are under-represented. The phonotactic learner successfully learned the under-
represented patterns and the comparison between the model predictions and the
experimental results show evidence for a relationship between lexical frequency and
word acceptability for under-representation. However, speaker judgements show
no preference for over-representation. The second task examines the distribution of
single consonants within the verb root with respect to under-representation, over-
representation and positional restrictions. Evidence for a relationship between lexi-
cal frequency and phonotactic probability was observed for both under-represented
and over-represented consonants, but tied to a particular location. The correlation
between speaker judgments and model predictions is low for this task, due in part
to the way the model deals with over-representation. This investigation demon-
strates not only that word acceptability is influenced by phonotactic probability
for both under-represented and over-represented patterns, but also that probabilis-
tic models can be used to investigate the phonotactics of a language, even in the
absence of speaker judgement data. These models can therefore be used to assess
the phonotactics of languages where experimental data is difficult to obtain and
broaden our knowledge of phonotactic typology.

xix



1 Introduction

Sounds are distributed within words according to particular patterns. The
range of possible patterns is extremely diverse; they may be simple, such as the
prohibition of the sound [ŋ] at the beginning of English words (although it occurs
frequently in word final position) or complex (for example, in Semitic languages,
consonants from the same place of articulation tend to not co-occur within verb
roots). These phonotactic generalizations, or rules that constrain the allowed pat-
terns, are part of the grammar of a language. Furthermore, research shows that
these patterns are not just fossilized evidence of diachronic change; speakers are
psychologically aware of the sound distributions that pertain to their language.
In word rating tasks, when speakers are asked to assign ratings according to how
acceptable a word (real or invented) would be in their language, results show a
relationship between the frequency of phonotactic patterns in the lexicon and word
acceptability such that the acceptability of a word is a function of the lexical fre-
quency of the patterns that it contains (all else being equal) (Albright and Hayes,
2003; Bailey and Hahn, 2001; Coleman and Pierrehumbert, 1997; Frisch et al.,
2000; Hammond, 2004; Hay et al., 2003; Ohala and Ohala, 1986; Treiman et al.,
2000; Vitevitch et al., 1997).

Regarding experimental phonotactic research, there is ample evidence that
speakers can reliably distinguish between nonce words containing only patterns
that occur in the lexicon (attested patterns) and those that contain patterns that
do not occur in the lexicon (unattested) patterns)(Scholes, 1966). For example,
English speakers are likely to prefer the nonce word ‘blick’ that contains only se-
quences that occur in the lexicon over ‘bnick’ that contains the sequence [bn] which
never occurs at the beginning of English words. Speakers have also been shown
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to be sensitive to differences in acceptability among words with patterns that do
not occur in the lexicon, based on the lexical frequency of their constituent nat-
ural class sequences. For example, speakers reliably prefer ‘bnick’ to ‘bzick’ even
though [bn] and [bz] are unattested as onset sequences and this is predictable be-
cause other stop-sonorant onset patterns do occur in the lexicon, but stop-fricative
sequences do not (Albright, 2009).

Experimental studies that evaluate gradient speaker judgements for nonce
words and control for phonotactic probability have primarily focused on specific
sub-parts of English words. For example, Scholes (1966), Coleman (1996), Al-
bright and Hayes (2003), Hay et al. (2004), (Treiman et al., 2000) and Albright
(2011a) have collected English speaker judgements for nonce words that differed
in the probability of their onsets, rimes or consonant clusters. Judgements tasks
for whole words (where the difference in probability between experimental items is
not limited to a specific sub-lexical unit) are somewhat rarer (Frisch et al., 2000;
Vitevitch et al., 1997). Research focusing on whole words in languages other than
English include Frisch and Zawaydeh (2001) for Arabic, Myers and Tsay (2005)
for Mandarin, and Kirby and Yu (2007) for Cantonese. The goal of this thesis
is therefore to examine the robustness of the relationship between the lexical fre-
quency of phonotactic patterns and word acceptability for whole words of Amharic,
a Semitic language that is under-studied compared to Arabic and Hebrew and that
has complex and interacting phonotactic patterns. We use a state-of-the-art prob-
abilistic model, the Maximum Entropy phonotactic learner (Hayes and Wilson,
2008) to acquire a phonotactic grammar from the input (the lexicon). The pre-
dictions of that grammar are compared to the results of two Amharic nonce-word
rating tasks designed specifically to investigate a broad range of phonotactic pat-
terns. The comparison between the model predictions and the experimental results
shows 1) evidence for the breadth of the relationship between lexical frequency and
word acceptability in terms of both under-representation and over-representation
of patterns, 2) the importance of the choice of representational systems used by the
model and 3) that when interpreted with prudence, the predictions of models such
as the Maxent learner can be used to discover previously unstudied restrictions.
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In Chapter 2, we review the assumptions and performance of the most in-
fluential computational models of word acceptability (Albright, 2009; Bailey and
Hahn, 2001; Coleman and Pierrehumbert, 1997; Hayes and Wilson, 2008; Vite-
vitch and Luce, 2004). Phonotactic probability models are designed to acquire a
phonotactic grammar based on the frequency of sound patterns in the lexicon.1

We determine that the Maximum Entropy (Maxent) phonotactic learner of Hayes
and Wilson (2008) has characteristics that recommend it compared to other mod-
els; using a statistically well-founded methodology, the Maxent learner acquires a
phonotactic grammar of weighted constraints from the input that assigns penalties
to patterns that are under represented in the lexicon. The phonologically motivated
representational system is rich and purposely designed to permit the modelling of
languages other than English. Finally, the performance of the model in predicting
speaker judgements, as measured by the correlation between the model predictions
and speaker judgements of unattested English onsets, is higher than for any other
model to date.

Chapter 3 describes the pertinent lexical, morphological and phonotactic
characteristics of the lexicon of Amharic verb roots drawn from Kane (1990).
Amharic recommends itself for a number of reasons. First, it is an under-studied
language in many respects, especially for investigations of its phonology and lexi-
con, and we believe that wherever possible, researchers should attempt to add to
the body of linguistic knowledge in the broadest way possible. Secondly, like other
Semitic languages (such as Arabic and Hebrew), Amharic has root-and-template
morphology. In this paradigm, semantically related words share a common con-
sonantal root and different derivations are obtained by modifications of the inter-
vening vowels and consonants according to specific templates. The assumption is
that if speakers are presented with verb roots in a given derivational form, the dif-
ferences in judgements between them will be motivated only by the consonants of
the root as all other material is constant. Finally, other well-documented Semitic
languages, Arabic and Hebrew, provide a comparative counterpoint to our results.

For our purposes, the most important characteristic of Amharic (like other
1Although word types are the most commonly used learning data, word token frequency may

also be taken into consideration (Vitevitch and Luce, 2004).
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Semitic languages) is that verb roots are subject to two robust and well-studied
restrictions. The first is a restriction over homorganic consonants called the Oblig-
atory Contour Principle as applied to place of articulation (OCP-Place). This is
a disharmony restriction that prohibits segments from the same place of articula-
tion from co-occurring within the same verb root, whether it be at the left edge
(C1C2X) of a tri-consonantal root, the right edge (XC2C3) or in non-adjacent
(C1XC3) position.2 Crucially, OCP-Place is a gradient restriction; although there
are few cases where homorganic consonants co-occur in the lexicon, they do exist
and the frequency of their occurrence is modulated by place of articulation and
location within the word. A second important characteristic of OCP-Place is that
it is a long distance restriction in two respects: 1) it is active over the consonants
of the verb root, unaffected by intervening materials and 2) root consonants in
non-adjacent position (C1XC3) are also restricted, showing that the restriction is
active even across an intervening root consonant.

In Amharic, there is also a restriction over the co-occurrence of identical
consonants within verb roots. As for other Semitic languages, identical consonants
co occur rarely within verb roots at the left edge (C1C2X) or in non-adjacent
(C1XC3) position but very frequently at the right edge (XC2C3). This pattern
of identical consonants, often analysed as arising through a the restriction on
the co-occurrence of identical consonants in underlying representation (McCarthy,
1981, 1986, 1988), poses a challenge to the modelling of OCP-Place. The model
must learn that homorganic consonants are generally restricted in left edge and
non-adjacent locations, but that only non-identical homorganic consonants are re-
stricted in the right edge location, where identical consonants are frequent. How
to represent identity becomes an important issue in the assessment of the model’s
performance.

Chapter 4 presents two series of simulations using the Maxent learner to
model speaker judgements for nonce words with OCP-Place violations. We evalu-
ate models both on their statistical fit (log-likelihood of the learning data) and by
measuring the correlation between the model predictions and the averaged word

2Although the examples given involve tri-consonantal roots, these restrictions also holds for
longer roots.



5

ratings from a pre-existing word rating task (King and Rose, 2003). We com-
pare the results of two models, an automatically learned model and a model with
hand-written constraints capturing the restriction on OCP-Place as it occurs in
the lexicon of Amharic verb roots and completed with automatically acquired con-
straints. Unlike the Hayes and Wilson simulations for English, our models are
extremely large (each contains 1000 constraints) in an attempt to capture the full
range of phonotactic probability. In the first simulation, the consonants of the
verb roots in the training data are encoded in their surface-true form and the
results show that the automatic model performed significantly less well in pre-
dicting speaker judgements than the hand-written model. Our analysis indicates
that the automatic model was not deficient in learning OCP-Place, but rather that
the frequency of identical consonants at the right edge of words leads the model
to over-estimate the importance of an independent harmony restriction on the co
occurrence of voiceless stops. A second simulation with a modified encoding of
successive occurrences of identical consonants so that they are no longer surface
true showed that the automatic model was no longer deficient compared to the
hand-written one.

The results of the simulations provide evidence for greater flexibility in the
representational systems of computational models and in particular that the second
occurrence of a consonant at the right edge of verb roots should not include the
same information load, in terms of distinctive features, as the first occurrence.

The results of the simulations also indicate the specific conditions for which
the model makes predictions but for which no test data exists for Amharic. Based
on the predictions from the automatically learned models, we determined two
important areas to investigate through word rating tasks: 1) nonce words with the
segments that tend to not co occur and 2) nonce words with segments representing
a range of distributional patterns, including segments that are either rare or very
frequent and segments that occur primarily in specific locations in the word.

Chapter 5 describes Experiment I, an investigation of speaker judgements
for differing patterns of consonantal co-occurrence in verb roots. The conditions
include OCP-Place violations, the co-occurrence of identical consonants in all loca-
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tions, and the co-occurrence of non-homorganic fricatives (a co-occurrence restric-
tion predicted by the automatic model and confirmed by the statistical analysis of
the lexicon, but previously unstudied). In the discussion of the methodology, we
motivate the selection of experimental items for the task. Unlike other researchers
in this area, we distinguish the selection of controls (defined as nonce words that are
statistically similar to the members of the set of phonotactically legal real words)
from the selection of stimuli (defined as nonce forms that are are statistically rep-
resentative of the set of nonce words available for a narrowly defined experimental
condition). The experimental items thus selected are presented in an online rating
task. The speaker ratings show that under-represented co-occurrence restrictions
(OCP-Place, non-homorganic fricatives and identical consonants in left edge and
non-adjacent locations) are rated as less acceptable than controls, but that the
over-represented patterns of identical consonants at the right edge are rated simi-
larly to controls, rather than as more acceptable as the frequency ∼ acceptability
hypothesis predicts.

Chapter 6 describes experiment II which investigates speaker ratings for
differing levels of segmental frequency. The conditions include nonce stimuli with
segments that are generally over-represented, under-represented or distributed ir-
regularly over the three possible root locations. To avoid the possibility that the
low acceptability ratings for very rare segments could over-shadow the more nu-
anced rating differences for moderately under- and over-represented segments, the
task is divided into two sections. In the first part, speakers are exposed only
to nonce forms with over-represented and moderately under-represented segments
and the second part includes stimuli for a broader range of segmental frequencies.
The analysis of results of Experiment II shows that speakers may, in optimal ex-
perimental circumstances, assign higher acceptability ratings to nonce words with
with over-represented segments than to controls. As the Maxent learner performs
poorly in predicting these results, they provide evidence that computational models
should be equipped to make predictions for the full range of phonotactic gradiency,
rather than just predicting that under-represented patterns are less acceptable..

The final chapter is a general discussion of the results, both from the sim-
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ulations and the experimental tasks, and presents avenues for future research.



2 Phonotactic models

2.1 Phonotactics

It has long been observed that for a given language, sounds do not occur
freely in all positions of a word or syllable. Consider the case of the segment [h]
in English. [h] occurs 1153 times as the onset of a word in the CMU online pro-
nouncing dictionary (http://www.speech.cs.cmu.edu) but it never occurs in word
or syllable final position. Restrictions over sound sequences may also be defined in
a specific word or syllable position. For example, in English, the consonant cluster
[rk] is perfectly acceptable in word and syllable final position, but never appears
word or syllable initially. Restrictions may operate across intervening material. In
Shona, a Bantu language, the vowel [e] may only occur in non-initial position if
the preceding vowel in the word is [e] or [o] (Beckman, 1997; Riggle, 1999). Re-
strictions may be absolute, as in the case of [h] in word and syllable final position
in English, or non-absolute, in cases where a pattern occurs in the lexicon, but
less frequently than would be expected, all else being equal. These last are called
gradient restrictions. For example, in many Semitic languages there is a general
restriction against the co-occurrence of homorganic (same place of articulation)
consonants in verb roots but this is not an absolute restriction; there are some
verb roots in the lexicon in which labial or coronal consonants do co-occur (Ben-
der and Fulass, 1978; Frisch et al., 2004; Greenberg, 1950; Rose and King, 2007).
The restrictions on the distribution of sounds within a language (of which these
examples are but a small sample) are called the phonotactics of the language.

8
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2.2 The generative linguistic tradition

An implicit assumption in generative linguistics is that the systematic gaps
in the lexicon of a language are the manifestation of a grammar or set of rules that
prohibits specific patterns.1 The theory also assumes a representation where the
phonemes 2 of a language can, at a more abstract level, be represented as a set (or
bundle) of sub-segmental phonetic characteristics called distinctive features. Dis-
tinctive features reference characteristics such as place of articulation and voicing,
for consonants, or height and rounding, for vowels. Sets of sounds that share one or
more distinctive features are called a natural class and have been shown to behave
similarly in a given context. For example, in English, /p, t, k/, the members of
the natural class of voiceless stops, become aspirated [ph, th, kh] at the beginning
of words and stressed syllables.

Phonotactic rules in linguistics are therefore expressed in terms of distinc-
tive features and natural classes and may refer to syllable positions (such as onset,
coda and rhyme) as well as word edges. Any word violating one or more of the rules
would be considered illegal. For example, the fact that English syllables cannot be-
gin with sonorant-stop sequences might be expressed as *$[+sonorant][-continuant]
(where ‘$’ indicates a syllable boundary).

Figure 2.1 shows a graphical representation of the space of possible words
of English which is defined as the set of all possible combinations of the sounds
in the native sound inventory3. Note that, for consistency, all strings (segment
combinations) are called words, regardless of their phonotactic well-formedness.
The set of all possible words, Ω, is framed by the rectangle. This is an infinite set
because it contains all possible combinations of segments with no upper bound on
length. Within that space, the pink area contains words with phonotactic patterns
that are attested in the lexicon. This area includes the words of the lexicon itself.
The words in the pink area that are not a part of the lexicon are considered to be

1There does not appear to be a specific reference for the pervasive assumption that the gram-
mar describes illegal forms only.

2Phonemes are the sound units of a language that can convey a contrast in meaning. For
example, /p/ and /k/ are different phonemes in English because the minimal pair /pæt/ (‘pat’)
and /kæt/ (‘cat’) do not have the same meaning.

3This representation assumes that syllabification rules are part of the phonotactic grammar.
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accidental gaps in the lexicon; they are not in the lexicon but neither are they ruled
out by the grammar. The white area is the set of words that contain sequences
that are unattested in the lexicon. According to the traditional generative view,
the phonotactic grammar is the set of rules or generalizations over unattested
patterns that eliminates words in this area as legal words of English. The words
of the lexicon (hereafter real words) necessarily contain only attested phonotactic
patterns. All the other words in the word space are nonce words. Because they are
not part of the lexicon, nonce words do not have an associated meaning. Nonce
words may contain attested and/or unattested patterns.

..

bnick

.

srrrrt

.

gzib

.

srztu

.

blick

.

glarble

.

spet

.

black

.

cat

.

constitution

.

words with unattested patterns

.

words with attested patterns

.

lexicon

.

Ω: all possible words

.

(given the segment inventory)

Figure 2.1: Structure of the (English) word space

The generative tradition does not attempt to account directly for the fre-
quency of patterns in the lexicon. Words are either legal with regard to the gram-
mar, or illegal; that some patterns are more frequent than others (for example, [k]
is a more frequent onset than [g]) is not meaningful. However, the presence or ab-
sence of a segmental pattern in the lexicon is not sufficient to determine its status
with regard to legality. Consider the case of the English onset [sf]. This pattern
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could be regarded as illegal because it is rare (‘sphinx’, ‘sphincter’) and because
there are no other s-fricative onset combinations in the language. However, the
onset [stw] never occurs in words of English but could be analysed as an accidental
gap in the lexicon because [s] can combine with many other two-segment onset
clusters where the first segment is a voiceless stop ([skw], [str], [spr]...). Such anal-
yses are controversial because the predicted boundary between legal and illegal
patterns does not correspond to the observable data.

2.3 Experimental evidence

The goal of phonotactic research is to provide evidence that speakers have
access to a phonotactic grammar containing knowledge about the sound patterns of
their language, distinct from the mental lexicon. Over the past 25 years, researchers
have have evaluated the extent and structure of speaker’s phonotactic knowledge
by investigating the acceptability of nonce words, the degree to which a nonce word
is an acceptable word of the language according to native speakers.

In such studies, speakers are asked to rate the acceptability of nonce words
with specific statistical and phonotactic characteristics. The results show that,
given a scalar judgement task, speakers do not assign binary legal/illegal accept-
ability ratings as a function of whether or not a nonce word violates the phonotactic
grammar of the language. In experiments by Bailey and Hahn (2001); Frisch et al.
(2000); Hammond (2004); Hay et al. (2004); Ohala and Ohala (1986); Treiman
et al. (2000); Vitevitch et al. (1997) speakers were asked to rate words on a scale
of acceptability and although each study asked slightly different questions (e.g.
“how far from English is this word?” or “how good a word of English would this
be?”) and the scales varied (between 7 and 11 points), speakers chose to give a
gradient acceptability rating rather than a binary legal/illegal judgement. Note
that real words are not usually included in these tasks because, 1) by definition,
they are acceptable words of the language and tend to be assigned optimum ratings
regardless of their phonotactic composition and 2) their presence tends to disrupt
the judgements for nonce forms in the same task (Albright, 2009; Shademan, 2007).
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The case might be made that speakers feel obligated to use the gradient
scale if one is made available to them and that their judgements are implicitly
binary. This appears somewhat unlikely because 1) results show that, within each
experiment at least, speakers have similar gradient judgements of nonce words,
and 2) as will be discussed, gradient speaker judgements are reproduceable and
predictable based on the statistics of the lexicon.

In a rating task investigating the acceptability of English onsets, we might
be unsurprised that speakers would prefer the nonce word [blɪk] compared to [θwɪk],
based on the observation that there are more words in the lexicon that begin with
[bl] than with [θw]. We might also expect that speakers would assign identical low
scores to nonce words with sound sequences that do not occur in the lexicon, such
as [bnɪg] and [bzɪg], and for which they therefore have no frame of reference. In
fact, it appears that speakers prefer nonce words with some unattested sequences
over others. For example, Berent et al. (2007) showed that English speakers were
more likely to reanalyze [lbɪf] as disyllabic than [bdɪf], showing that [lb] is a less ac-
ceptable onset for English speakers than [bd] even though neither sound sequence
appears in any English syllable. Albright (2011b) obtained English speaker judge-
ments for nonce words containing a range of unattested sequences and showed that
speakers reliably preferred the onset [bn] over [bd] and [bz]4.

2.4 Accounting for gradient speaker judgements

Given the experimental evidence, researchers have attempted to create
models accounting for gradient speaker judgements. A crucial issue for many
researchers is whether gradient speaker judgements of nonce words are motivated
by an underlying phonotactic grammar. According to the traditional generative
linguistic view, gradient speaker judgements for nonce words with patterns that
are under-represented or absent from the lexicon are accounted for by the phono-

4Albright attributes this preference to the fact that [-sonorant][+sonorant] natural class se-
quences occur in onsets, whereas [-sonorant][-sonorant] sequences do not. However, it might be
argued (as Berent et al. (2007) do) that speaker knowledge of the sonority scale is innate or that
speakers can learn the sonority scale from the input (Daland et al., 2011).
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tactic grammar but gradient speaker judgements for nonce forms that contain pat-
terns that occur commonly in the lexicon are accounted for by other mechanisms
(Frisch and Zawaydeh, 2001; Hayes and Wilson, 2008). Note that according to
this analysis, speaker judgements for nonce words that violate the grammar might
be expected to be qualitatively different than for other irregularities (see Becker
et al. (2011) and Hayes et al. (2009) for a discussion of natural versus unnatural
restrictions). For other researchers, gradient speaker judgements always reflect of
the statistics of the lexicon (Albright, 2009; Vitevitch and Luce, 2004).

Although the theoretical debate between these points of view (and the hy-
brids between them) is not without interest, the goal of this thesis is to investigate
the relationship between the input (the lexicon) and speaker judgements. In the
rest of this chapter, we present the principal models of gradient speaker judgements
and examine their performance in predicting speaker judgement data.

In the literature, models accounting for gradient speaker judgements are
usually divided into two groups, analogical models and phonotactic probability
models. For analogical models, gradient speaker judgements arise through analogy
with existing words and reflect the wordlikeness rather than the acceptability of a
word. A metric commonly used to evaluate wordlikeness is Neighborhood Density
(Luce, 1986). In its most basic formulation, the Neighbourhood Density (ND)
value of a word (real or nonce) is the number of its nearest neighbours where a
neighbour is defined as a real word within a single segment edit distance. For
example, the nonce word ‘blick’ has many neighbors (‘flick’, ‘black’, ‘blip’...) but
‘sfip’ has very few (‘slip’, ‘skip’) so ‘blick’ is predicted to be more wordlike that ‘sfip’.
Ohala and Ohala (1986) show a relationship between speaker ratings for nonce
words and ND using this single segment edit distance metric. For phonotactic
probability models, (which are also called lexical models by some authors), gradient
speaker judgements arise through speaker knowledge of the statistical qualities
of the lexicon. For example, the English onset [skl] (‘sclera’) occurs much less
frequently than the onset [st] (1 and 521 occurrences respectively5 based on the
125,000 plus words of the CMU Pronouncing Dictionary) and this likely accounts

5We use the CMU dictionary, www.speech.cs.cmu.edu, for consistency with Hayes and Wilson
(2008).
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for the intuition that [sklɪp] is a much less likely word of English than [stɪp]. The
phonotactic probability approach is supported by experimental evidence showing
a relationship between gradient speaker ratings of nonce words and the probability
of their constituent sound sequences (Albright, 2009; Hammond, 2004; Vitevitch
et al., 1997). For example, in a task where subjects were asked to indicate a
preference between two nonce words, Vitevitch et al. (1997) showed that speakers
preferred forms containing high-probability sounds or sounds sequences (such as
[fʌlˈʧʌn], for example) to those with low-probability sounds or sound sequences
(such as [ðaɪbˈʤaɪz]). Phonotactic probability models formalize such observations
by assigning a probability distribution (based on some version of the lexicon) over
possible words of the language. The hypothesis is that, at least for nonce words,
the probability of a form is monotonically related to its acceptability such that
higher probability implies higher acceptability.

Historically, phonotactic probability models have really been taken to mean
“n-gram models” but if that definition is broadened to mean any model that assigns
a probability distribution over possible phoneme strings, then one can construct a
phonotactic probability model that subsumes analogical (neighbourhood density)
effects. For example, the simple phonotactic probability models such as Vitevitch
and Luce (2004) and Albright (2009), described in the next sections, compute the
probability of a word based on the probability of the component unigrams or bi-
grams and do not reflect neighbourhood density in their predictions. However, a
more sophisticated phonotactic probability model would assign an acceptability
rating to a word based on the probability of all the component sequences and
therefore subsume the analogical model. For example, for such a model the pre-
dicted acceptability for a word such as [blɪk] (‘blick’) is a function not only of the
probability of the component unigrams [b], [l], [ɪ], [k], and bigrams [#b], [bl], [lɪ],
[ɪk], [k#], but also of longer (possibly discontinuous) sequences such as [lɪk], [#b_ɪk],
[#bl_k#], and [#blɪ] that directly reflect neighbourhood density. The construction
of such a model would be complicated by the large number of possible forms to
consider, given the learning data (lexicon). For a description of how such a model
could be implemented using kernel density estimation see Levy (2012).
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In the rest of this chapter, we present the most influential models of gra-
dient speaker judgements and examine their performance in predicting speaker
judgement data.

2.4.1 The Generalized Neighbourhood Model

Bailey and Hahn (2001) note that one of the issues with the use of ND as an
analogical metric is that many nonce words have few or no neighbours. They pro-
pose the Generalized Neighborhood Model, adapted from Nosofsky (1986), which
computes wordlikeness using a more sophisticated metric of neighbourhood den-
sity based on the phonological similarity between words. Phonological similarity
is a modified version of the similarity metric proposed by Frisch (1996) and Frisch
et al. (2004). Equation 2.1 shows how that the similarity between two words i
and j is a function of the natural classes of which they are both members, divided
by the sum of the number of natural classes that they both belong to and that
they each belong to individually (non-shared natural classes). The GNM similarity
score (equation 2.2) is a function of the frequency-weighted phonological similarity
between a word i and all of the other words j in the lexicon.

Similarityij =
Shared natural classes

Shared natural classes + non-shared natural classes (2.1)

Similarity Scorei =
∑

j∈lexicon

frequency weighted similarity (i, j) (2.2)

The GNM has two powerful advantages over the usual GN metric:

• GNM is sensitive to sub-segmental information. For ND, the similarity be-
tween [tʌb] ‘tub’ and [dʌb] ‘dub’ is the same as between [tʌb] ‘tub’ and [rʌb]
‘rub’, as there is a one segment difference between both pairs. However, the
GNM finds greater similarity between [tʌb] and [dʌb] because [t] and [d] are
more similar, in terms of natural classes (both are coronal stops that differ
only by the feature [voice]), than [t] and [r] (a coronal stop and a coronal



16

sonorant, respectively) which differ by a larger set of features (e.g. [sonorant],
[voice], [continuant]).

• Under ND, two words are either neighbours or they are not. For example,
[trʌk] ‘truck’ and [trɪk] ‘trick’ are neighbours but [trʌk] ‘truck’ and [trɪm] ‘trim’
are not, because there is more than one segment difference between them.
However, under GNM, the similarity metric is much more sensitive, so both
[trɪk] and [trɪm] (and many other words) make a contribution to the GNM
value of [trʌk].

The strength of the GNM is that it makes phonologically motivated predic-
tions for both nonce words with attested sequences and nonce words with unat-
tested sequences. This contrasts with the two models which are described next,
the onset-rime model of Coleman and Pierrehumbert (1997) and the Phonotactic
calculator (Vitevitch, 1998; Vitevitch and Luce, 2004) which cannot, given their
representational systems, make predictions that differentiate between unattested
sequences.

2.4.2 Low-order n-gram models

The Onset-Rime model Coleman and Pierrehumbert (1997) accounts for
gradient speaker judgement data with a probabilistic model that uses a sub-lexical
representation. These researchers calculate the probability of all the onsets and
rhymes in English (modulated by word position and stress) and define the accept-
ability of a novel word as the the product of the probabilities of the constituent
parts determined according to the best parse:

Acceptability [blɪk] ∝ P(onset [bl]) ∗ P(rime [ɪk]) (2.3)

They find a significant correlation between their model predictions and
speaker ratings. The relationship between gradient speaker judgements for English
nonce words and the probability of their onset and rime constituents was confirmed
by Frisch et al. (2000) and for VC pattern rimes by Treiman et al. (2000) (both of
these studies used their own independently created nonce words).
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A weakness of the Coleman and Pierrehumbert model is that it cannot ac-
count for differences in speaker judgements between nonce words with unattested
sequences because all unattested onsets and rimes are assigned the same low prob-
ability by default. For example, the model predicts the same acceptability rating
for both [bwɪp] and [bzɪp] although according to Albright (2011b), the onset [bw]
is reliably rated as more acceptable than [bz].

The phonotactic probability calculator. Segmental n-gram models of
speaker judgements express statistical regularities as probability distributions over
segments (unigrams) and segment sequences (usually bigrams). An example of a
simple model in this category is the phonotactic probability calculator (Vitevitch,
1998; Vitevitch and Luce, 2004). Based on the Kucera and Francis (1967) frequency
dictionary,6 the phonotactic probability calculator computes positional unigram
and positional bigram frequencies. Based on the methodological descriptions in
Vitevitch and Luce (2004), Equation 2.4 shows the positional unigram frequency
for segment i in position a:

KFia = set of word types in KF that have segment i in position a

Na = number of word tokens in KF that have a segment in position a

F (ia) =

∑
x∈KFia

log10(frequency x )
log10(Na)

(2.4)

The log frequencies of all the word types in the dictionary that have segment
i in position a are summed and then divided by the frequency of word tokens in
the dictionary that have a segment in position a. Similarly for positional bigram
frequencies, the log frequencies of all the word types that have i in position a and
j in position b are summed and divided by the frequency of word tokens in the
dictionary that have segments in a and b:

6The Kučera and Francis frequency dictionary is a list of the unique words (types) and their
associated frequencies (tokens) in the Brown corpus.
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KFiajb = set of word types in KF that have i in a and j in b

Nab = number of word tokens in KF having segments in a and b

F (iajb) =

∑
x∈KFia

log10(frequency x )
log10(Nab)

(2.5)

This transcription of the computations is accurate based on the description
in Vitevitch and Luce (2004) but it seems likely that, as the phonotactic probabil-
ity calculator never returns values above 1, the computation is based on relative
frequencies rather than counts.

acceptability (blɪk) ≈ F(b1) + F(l2) + F(ɪ3) + F(k4)

and / or

acceptability (blɪk) ≈ F(b1l2) + F(l2ɪ3) + F(ɪ3k4)
(2.6)

Vitevitch and Luce use log-values of relative frequencies rather than just
raw relative frequencies to approximate type based estimates because these have
been shown to correlate better with performance.7 The acceptability of a nonce
word, according to this model, is a function of both the sum of the constituent po-
sitional unigram frequencies and the sum of the constituent bigram log frequencies
(equation 2.6). These two numbers are compared to the mean unigram and bigram
frequencies for the dataset under consideration. Words for which both measures
are above the median are predicted to have high acceptability; those below the
median are predicted to have low phonotactic acceptability.

The phonotactic probability calculator is sometimes used as a baseline
model against which to test more sophisticated models of speaker judgements
(Albright, 2009) or to design stimuli (Berent, 2008) and, in the limited domain

7The use of type frequency was also shown to produce models that better predicted speaker
judgements than token frequency in both Hayes and Wilson 2008 and Bailey and Hahn 2001.
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of nonce words with attested English onsets at least, its performance is compa-
rable to more sophisticated models (Albright, 2009). However, it was not really
designed to capture fine differences in acceptability and has limited capacity to
distinguish between two words with unattested sequences (where at least some of
the constituent segment sequences have a frequency of 0). For example, experi-
mental evidence (Moreton 2002) shows that speakers have a strong perceptual bias
against [dl] compared to [bw] (and therefore would likely judge [bw] to be a better
onset than [dl]). For the phonotactic probability calculator, the bigram frequency
measure is the same for both words (because in both cases, a constituent bigram
has a probability of 0) and the log-probability based on the constituent unigrams
assigns a higher acceptability score to [dl] than [bw], contrary to the predicted
speaker preference.

2.5 Accounting for unattested sequences

The phonotactic probability models presented in the previous section (the
onset-rime model and the phonotactic probability calculator) are ill-equipped to
distinguish between nonce words with unattested sequences ([bnɪk] and [bzɪk], for
example). This is because the elemental unit of representation of these models
is the segment (or onsets and rimes for the onset-rime model). If two patterns
are unattested, these models are silent with regard to the predicted acceptability
difference between them. Note that there might still be differences in predictions
between two nonce words having different unattested sequences but that difference
would be not be motivated by the unattested sequences themselves. For example,
the phonotactic probability calculator makes different predictions for [bnɪk] and
[bzɪk] based on the difference in unigram frequencies F (n2) and F (z2) and bigram
frequencies F (n2ɪ3) and F (z2ɪ3) but F (b1n2) and F (b1z2) bigrams themselves both
have a probability of 0.

Recent phonotactic probability models (Hayes and Wilson 2008, Albright
2009) have combined the phonotactic probability approach to predicting speaker
judgements with a sub-segmental distinctive feature and natural class representa-
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tion. The key intuition is that although onsets [bz] and [bn] are both unattested,
we do have frequency information about the constituent natural class sequences.
For example, we might show that [-sonorant][+sonorant] sequences occur in the
lexicon of English onsets but that [-sonorant][+strident] sequences do not and infer
that speakers would prefer [bn] over [bz].

The challenge of this approach is that every segment represented as a dis-
tinctive feature bundle belongs to a number of natural classes, so for a given
sequence, the number of possible natural class representations is C1×C2× ...×Cn

where C1 is the number of natural classes containing the first segment, C2 is the
number of natural classes containing the second segment, etc. Selecting the most
predictive natural class sequence from that set is a non-trivial problem. For ex-
ample, consider again the onsets [bz] and [bn]: both of these patterns could also
be described with the natural class sequence [+voice][+voice] but this choice of
generalization is unhelpful because it predicts them to be equally acceptable.

Albright, 2009 For Albright, the goal is to select a natural class sequence
that reflects both the frequency of that natural class sequence in the lexicon and the
specificity of each natural class to the segment it represents. The probability of a
segmental sequence ab where a ∈ ClassA and b ∈ ClassB is shown in equation 2.7:

Probability of segmental sequence [ab] as [class A][Class B] =

occurrences of [class A][class B] in the corpus
total number of biphones × P (a|A)× P (b|B)

(2.7)

To take advantage of the success shown by segmental models (such as the
phonotactic probability calculator) for attested sequences, Albright includes the
fully specified distinctive feature bundle as a possible natural class for each seg-
ment. For example, [t] is a member of a number of natural classes including
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Figure 2.2: Graphical representation of a bigram HMM

the fully specified bundle [-continuant][+coronal][-voice] of which it is the unique
member.

Equation 2.8 shows the probability of the very general representation [+con-
sonantal] [+consonantal] for the sequence [tl]. Note that in Albright’s example for
English data, there are 20 segments with the feature [+consonantal] so the prob-
ability of the representation is multiplied by 1/20 for [t] and 1/20 for [l].

Probability of sequence [tl] as [+consonantal][+consonantal] =

occurrences of [+consonantal][+consonantal] in the corpus
total number of biphones × 1

20
× 1

20

(2.8)

Compare this to equation 2.9 showing the probability of the more specific
[-voice, -continuant][l] representation where there are only three members in the
class [-voice, -continuant] and [l] is the only member of its unique class.

Probability of sequence [tl] as [-voice,-continuant][l] =

occurrences of [-voice,-continuant][l] in the corpus
total number of biphones × 1

3
× 1

1
(2.9)
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More formally, Albright’s model appears to be an implementation of a bi-
gram Hidden Markov Model (HMM, figure 2.2) where the segments are outputs
generated by the (hidden) natural class states. P (X1 = A, y1 = a,X2 = B, y2 = b),
the joint probability of a segment sequence output and a “hidden” natural class
sequence is the product of the transitional probabilities from each state (natural
class) to the next and the emission probabilities from states (natural classes) to
outputs (segments) as shown in equation 2.10. Note that this is equivalent to
equation 2.7.

P (X1 = A, y1 = a,X2 = B, y2 = b)

= P (A)× P (B|A)× P (a|A)× P (b|B)

= P (AB)× P (a|A)× P (b|B)

(2.10)

However, Albright’s model cannot be described fully as an HMM because
of the way in which bigrams are combined to create longer sequences. In a bigram
HMM, the probability of a natural class sequence ABC instantiated as the seg-
ment sequence [abc], is P (A) × P (B|A) × P (B|C) × P (a|A) × P (b|B) × P (c|C),
but in Albright’s model, the segment [b] may be assigned to one natural class in
for the [ab] bigram and to a different one in the [bc] bigram. For example, in
the sequence [stl], the most probable representation for the [st] bigram might be
[+sibilant, -voice][-voice, -continuant] and the most probable representation for
the [tl] representation might be [-sonorant][+sonorant]. In that case, combining
the two requires two different states for [t] and this is inconsistent with an HMM
formulation.

Albright compared the performance of several models on the same dataset
and showed that although his own model performs best overall in predicting speaker
judgements involving both attested and unattested sequences, it performs less
well in predicting judgements for nonce words with attested sequences than a
simple bigram probability segmental model (such as the phonotactic probability
calculator), and less well in predicting judgements for nonce words with unattested
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sequences than the Maximum Entropy (Maxent) phonotactic learner (Hayes and
Wilson, 2008) that slightly predates it.

2.5.1 The Hayes and Wilson Maxent Phonotactic learner

The Maxent learner is considerably more sophisticated in its concept and
design than any other model. Conceptually, the Maxent learner is a generative
model in the traditional sense because it is designed to learn, from positive evi-
dence only, a Maximum Entropy weighted grammar that describes the systematic
gaps in the lexicon. Although the rime-onset model, Phonotactic Probability Cal-
culator and Albright model can be conceptualized as grammars where the rules
are probability weighted sequences (in either onset-rime, segmental or natural class
representation), the Maxent learner is explicitly designed to account only for gra-
dient speaker judgements of phonotactic patterns that are unattested (or very
under-represented) in the lexicon.

Table 2.1: Sample of Maxent learner grammar for English onsets

constraint penalty weight

*[+sonorant,+dorsal] 5.64
*[+continuant,+voice,−anterior] 3.28

Description: A trained model consists of a Maximum Entropy weighted
set of constraints that can be used to assign speaker rating predictions to real
words or nonce forms. As the model is designed to penalize under-represented
patterns, it assigns only positive (penalty) weights.8. A part of the grammar for
English onsets, a set of constraints and their associated weights,9 is shown in
table 2.1. The score of a word x is the sum of the penalty weights that apply to it
(equation 2.11). In this example, the model has learned that the dorsal sonorant [ŋ]

8This is not a general characteristic of Maxent models which can be designed to assign both
positive (penalty) and negative (goodness) weights.

9From Hayes and Wilson 2008.
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and the coronal fricative [ʒ] do not occur in English onsets and assigns them both
a penalty weight. The model predicts that, all else being equal, speakers would
prefer words beginning with any segment other than [ŋ] or [ʒ], and that a word
beginning with [ʒ] (score 3.28) would be preferred to a word beginning with [ŋ]
(score 5.64). As these constraints are cumulative, both of these would be preferred
to words with the onset [ʒŋ] (score 5.62 + 3.28) or [ŋŋ] (score 5.62 + 5.62).

Score (x) =
n∑

i=1

wiCi(x)

wi : weight of the ith constraint

Ci(x) : number of times that the phonological form x

violates a constraint in the grammar

(2.11)

The model learns from two sources, (a) an inventory of the segments that
occur in the language expressed as distinctive feature bundles and (b) dictionary
data (for example, the list of onsets that appear in a dictionary of English and
their type frequencies). Before further describing the model, it’s important to
clarify vocabulary distinguishing the three contexts in the model where phonotactic
patterns are described in terms of natural classes and natural class sequences.

• restrictions are statistical sound patterns present in the lexicon (learning
data).

• phonological forms are members of the set of natural class sequences that
could potentially be picked to incorporate into the grammar as constraints.

• constraints are the restrictive phonological rules in the grammar —the set of
phonological forms which are penalized.

In a preliminary phase, the model generates the complete list of natural
classes for the given segment inventory necessary to represent the learning data
(lexicon) and creates all possible sequences of those natural classes. Note that the
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word boundary condition [#] is treated as a natural class. The maximal length of
these phonological forms is a parameter of the model. For example, if there were
just 2 natural classes [a][b] and the word boundary condition [#], and the maximal
sequence length was set to 310 then the set of phonological forms would be :

• All sequences of length 1: [a], [b], [#]

• All sequences of length 2: [a][a], [a][b], [a][#], [b][b], [b][a],[b][#], [#][#],
[#][a], [#][b]

• All sequences of length 3: [a][a][a], [b][b][b], [#][#][#], [a][a][b], [a][a][#],
[a][b][a], [a][#][a], [a][b][b], [a][#][#]... [#][#][#]

These phonological forms correspond to possible constraints11. For exam-
ple, the sequence [+voice][+voice] is one of the phonological forms generated by
the learner for English onsets. If the learning data shows evidence that adjacent
voiced segments are less frequent than would be expected, all else being equal,
then *[+voice][+voice] is a potential constraint and may be incorporated into the
grammar. The size of this set of phonological forms is Cn + Cn−1... + C where C
is the number of natural classes and n is the maximal length of the forms.

The learner selects a model, a grammar that describes the training data,
by iterating over the following two phases:

• Assigning weights: the constraints in the grammar are assigned penalty
weights. When the grammar is complete, it can be used to predict speaker
judgements of new words.

• Constraint selection: the set of phonological forms is evaluated to determine
which constraint should next be added into the grammar

10The length of a constraint is defined here as the number of sounds that it spans; for a
constraint over a single segment, the length is one, for a sequence over two segments, the length
is 2 etc.

11Presumably, redundant or useless phonological forms such as [#][#][#] are either not gener-
ated or eliminated from the set. However, this is not discussed in Hayes and Wilson’s description
of their model.
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Assigning weights The goal of the model is to learn a grammar that
maximizes Pθ(D), the probability of the data given the constraint weights θ.12

Pθ(D) is the product of the probability of every word in the data, given the weights
(equation 2.12).

Pθ(D) =
∏

x∈D Pθ(x) (2.12)

Each time that a constraint is added to the grammar, the entire grammar is
retrained and a penalty weight is assigned to each constraint θ such that Pθ(D) is
maximized.13 As there is no single-step method for determining the best weight for
each constraint, each weight must be incrementally modified until the probability
of the data can no longer be improved.

The weight adjustment process can be visualized as climbing a hill where
the constraint weights define a multi-dimensional surface. At each incremental
iteration, the constraint weights are adjusted until they reach the highest point on
the surface.

Maximizing Pθ(D) requires determining, at each iteration, how each con-
straint weight should be adjusted to improve it. The solution to this is to consider,
for each constraint Ci in the grammar, the difference between the number of Ob-
served violations of the constraint and the number of Expected violations given
the current grammar, O[Ci] − Eθ[Ci]. This number corresponds to a (positive)
slope that indicates the peak of the multi-dimensional surface (Della Pietra et al.,
1997). The weight for a given constraint is then adjusted according to the slope
at that point.

12This is a simplification of the weight assignment. To avoid over-fitting in Maxent models,
it is usual to penalize large weights (Duda et al., 2001). The goal is therefore to maximize the
penalized log-likelihood of the data rather than the raw log-likelihood. Hayes and Wilson use a
gaussian prior on the weights with µ set to 0 and σ set to 1 based on the discussion in Goldwater
and Johnson (2003). As the gaussian is an exponential of a sum of squares, the equation that is
being optimized has two summation terms, one of which is the likelihood and the other the sum
of the squares of the weights.

13For reasons related to the difficulties of computing very small numbers, and as the weights
that maximize Pθ(D) are also those that maximize log Pθ(D), log Pθ(D) is used rather than
Pθ(D) itself.
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Eθ[Ci] =
∑
x∈Ω

Pθ(x)Ci(x),

where

Pθ(x)is the probability of the representation x

Ci(x) is the number of times x violates C i and∑
x∈Ω

is the summation over all x in Ω

(2.13)

O[Ci] is simply the count of Observed violations of [Ci] in the training
data. Eθ[Ci] (equation 2.13), however, poses computational issues because it is
the product, for every word x in Ω (the set of all segment combinations shown in
figure 2.1), of Pθ(x), the probability of the word x, and the number of times that
word violates constraint i.

Pθ(x) =
Maxent value(x)

Z
Z = a normalizing factor

(2.14)

Pθ(x) (equation 2.14) is the Maxent value x shown in equation 2.1514

divided by a normalization constant Z to ensure that the distribution is proper.

Maxent Value (x) = exp (−(
n∑

i=1

wiCi(x))

wi : weight of the ith constraint

Ci(x) : number of times that the phonological form x

violates the ith constraint in the grammar

(2.15)

Even the normalization constant Z is computationally non-trivial because
it is the sum of the Maxent values of all the words y in Ω (equation 2.16).

14Note that the Maxent value is the negative score exponentiated (equation 2.11).
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Z =
∑
y∈Ω

Maxent value(y) (2.16)

As Ω is an infinite set, it is common practice to consider only strings no
longer than the longest word in the training data. Even so, the number of strings
to be considered is exponentially large. For English onsets, which are never longer
than 3 segments, and a segment inventory of 24 consonants, the size of the set of
possible segmental sequences is 243 + 242 + 24.

Hayes and Wilson solve this problem by using a finite state machine (FSM)
to find the Expected values of constraints. Each constraint is represented as a
weighted finite-state acceptor and these are then combined into an FSM where
each through-path corresponds to a string and the list of constraints (with their
weights) that it violates. The Eθ[Ci] values are obtained by summing through all
the paths of the FSM (Eisner 2001, 2002).

All constraints are initialized with a weight of 1. At each iteration and for
each constraint, the algorithm computes O[Ci] − Eθ[Ci] and the weight of each
constraint is then adjusted as a function of the slope at that point. The process
reiterates until the slope for each constraint is close to 0. Once the grammar
is complete, according to some criteria15, it can be used to evaluate both the
words in the lexicon (training data) and novel words. As noted previously, the
predicted acceptability of a word x is its score, the weighted sum of its constraint
violations (equation 2.11). As the weights penalize under-represented sequences,
higher Maxent values predict lower speaker acceptability.

Constraint selection The goal of constraint selection is to add the next
most useful constraint to the grammar. The model searches the set of phonological
forms and determines which one describes the most significantly under-represented

15The criteria for completion of the the model is determined by the researcher. Possible options
are to stop the learning when the grammar reaches a specified size or when there are no more
constraints with O/E values below a certain threshold. Although it is theoretically possible to let
the model acquire all the relevant constraints with O/E values < 1, the current implementation
does not allow this).
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sequence, given the current state of the grammar. The selected form is then added
to the grammar as a constraint.

Searching the set of phonological forms is not trivial. The model must
compute, for each phonological form, O[Ci]/Eθ[Ci], the ratio between the Observed
number of violations of the constraint and the Expected number of violations, given
the current state of the grammar. Consider the phonological form [+word bound-
ary][+consonantal, +continuant, +coronal, +anterior, -strident] which describes
a generalization over [#][ð] and [#][θ]. In terms of type (rather than token) fre-
quency, these are rare onsets in English so the phonological form [+word boundary]
[+consonantal, +continuant, +coronal, +anterior, -strident] may be incorporated
into the grammar as the constraint *[+word boundary][+consonantal, +continu-
ant, +coronal, +anterior, -strident], and all words that contain that sequence are
assigned a penalty weight. Now, the number of times that the onset [#ðr] and
[#θr] would be expected to occur, given that they are subject to a constraint in
the current grammar, is reduced. As the Expected value is smaller, O[Ci]/Eθ[Ci]

is higher so the phonological form [+word boundary] [+consonantal, +continuant,
+coronal, +anterior, -strident][+retroflex] is less likely to be picked as a constraint.

To summarize the difficulty, to select from the set of phonological forms the
one that has the lowest O[Ci]/Eθ[Ci] value given the current grammar, the model
must compute Eθ[Ci] for every word of Ω and this, for every member (potential
constraint) of the set of phonological forms. Computationally, this is orders of
magnitude more intensive than computing Eθ[Ci] values in the grammar weighting
phase because (in the Hayes and Wilson simulations at least) even a completed
grammar contains less that 100 constraints while there are up to 100 million natural
class sequences in the set of phonological forms.

Hayes and Wilson determined that building a finite state machine to eval-
uate the Expected value (equation 2.13) of the phonological forms, the method
used for constraint weighting, would be impractically slow for constraint selection
(given the size of the set of phonological forms). Instead, they elect to use Monte
Carlo sampling to estimate the Expected value for each constraint as the average
number of times that a constraint is violated in the sample is proportional to the
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number of times it is violated in the whole set.
Constraint selection proceeds over successive O[Ci]/Eθ[Ci] intervals starting

with the interval 0 to .01, then 0 to .1, 0 to .2 etc. Within a given O[Ci]/Eθ[Ci]

interval, the model is equipped with a heuristic that selects the most general con-
straint; short constraints are preferred over long ones and constraints with few
natural features are preferred over those with many.

Hayes and Wilson 2008: results The Maxent learner acquires a con-
straint grammar learned from the input, iterating over constraint selection and con-
straint weighting until the researcher-determined criterion for cessation of learning
is reached. In the case of the English onset simulations of Hayes and Wilson, the
grammar was deemed to be complete when there were no more phonological forms
available with O[Ci]/Eθ[Ci] values below the threshold of .3.

The acquired grammar is then used to assign penalty weights both to the
lexicon (training data) and to novel words. In the case of English onsets, Hayes and
Wilson compared the weights assigned by the grammar to the experimental results
of Scholes (1966). Scholes presented 33 7th grade English-speaking schoolchil-
dren with 66 nonce forms with onsets of varying legality and asked them to judge
whether they were acceptable words of English or not. These binary judgements
were averaged for each word to produce a gradient measure of acceptability16.

The predictions of the Maxent learner were shown to be very strongly cor-
related to the gradient measures obtained by Scholes (Pearson’s correlation: r
= .946). Hayes and Wilson also compared the predictions of their model with
implementations of Coleman and Pierrehumbert’s onset-rime model (1997), a seg-
mental n-gram model, the Bailey and Hahn GNMmodel (2001) and a hand-written
grammar (Clements and Keyser, 1983). The correlation between the Scholes ex-
perimental results and the Hayes and Wilson predictions was greater than for any
other model.

The predictions of the Maxent learner for unattested sequences are also
generally in line with experimental results other than Scholes that rank the ac-

16Frisch et al. (2000) show that there is a high correlation between pooled binary judgements
and judgements that directly assign a gradient score such as King and Rose (2003).
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ceptability of English onsets (Albright, 2009; Berent et al., 2007), However, there
are indications that the predictions may not always be accurate. The Maxent
learner assigns weights of 7.925 and 4.396 to [bw] and [dl] respectively, predicting
that [dl] is preferred over [bw]. However, Moreton (2002) showed in a perception
experiment that speakers have a stronger perceptual bias against [dl] than [bw]
indicating that in a word judgement task, speakers would likely prefer [bw] over
[dl].

One somewhat controversial aspect of the Maxent learner’s performance on
English onsets is that very few weights are assigned to attested onsets. This be-
haviour reflects the traditional generative assumption that gradient speaker judge-
ments for nonce words with attested sequences do not need to be accounted for
by the phonotactic grammar (which only describes systematic gaps). The model
is restricted in its predictions for nonce words with attested sequences by the in-
teraction of two mechanisms:

• The model assigns only positive (penalty) weights. This is because assigning
negative (goodness) weights would make the prediction that the repetition of
a favoured pattern would increase acceptability. For example, if the pattern
[ta] is assigned a goodness weight, then [tatata] should be even better.17

• The O[Ci]/Eθ[Ci] threshold for stopping learning is relatively low (.3 in the
simulations for English), corresponding to strongly under-represented pat-
terns.

While it is true that the fit between the Maxent learner predictions and
the Scholes experimental data, which contains some nonce words with attested
onsets, is high, this is a questionable result, both with regards to the model pre-
dictions and the experimental data. The fact that nonce words with attested
onsets were almost always assigned a perfect rating in the Scholes judgement task
is most likely an artefact of the experimental design. Scholes used both attested
and unattested onset sequence stimuli and speakers were asked to assign binary

17With thanks to Bruce Hayes (pc) for this example.
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acceptable-unacceptable judgements. Albright (2011b) points out that in such con-
ditions, asking speakers whether or not a nonce form is a possible word of English
may have diminished speaker sensitivity to the fine-grained difference between at-
tested sequences because the difference in acceptability between attested sequences
is much smaller than the difference between attested and unattested sequences.

However, a grammar that assigns positive weights only is not incompatible
with assigning differential weights to words with attested sequences. The key
concept is that if a pattern is over-represented, some other pattern or set of patterns
must be under-represented.

Example 2.17 shows a very simple demonstration of how the model could
predict a difference in acceptability between nonce forms with attested onsets [k]
and [g] (2764 and 537 occurrences respectively, in the CMU online pronouncing
dictionary). Given that [k] and [g] are both over-represented and [k] is more
over-represented than [g], it must be the case that the complement set of all the
segments that are not k ([ˆk]18) is more under-represented than the complement
set of g ([ˆg]). If a grammar is acquired such that, given the weights, there are
no under-represented sequences, [ˆg], which includes [k], receives a smaller penalty
weight than [ˆk], which includes [g], and [k] is therefore predicted to be preferred
by speakers over [g].

18The diacritic ˆ designates the complement class, the set of all segments not defined by the
matrix. For example [ˆ-voice,+labial] is the set of all segments other than [p] and [f].
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given :

1 < O/E [g] < O/E[k]

therefore

O/E[ˆk] < O/E[ˆg]< 1

a grammar is acquired such that

there are no under-represented patterns

weights assigned to [ˆk] > [ˆg]

as [k] ∈ [ˆg] and [g] ∈ [ˆk]

[k] is predicted to be preferred to [g]

(2.17)

Hayes and Wilson also report simulations for other languages but they
only compare their model’s predictions with speaker judgements for English onsets
which is a fairly simple dataset to characterize. For example, for simple onsets,
all consonants except [ŋ] are allowed. For two segment sequences, a subset of
obstruent-sonorant sequences are allowed and three consonant onsets can only
start with [s] followed by a subset of the permitted two consonant onsets. It is
not clear how well the model would fare on languages where restrictions are more
complex or encompass a larger number of segments, such as vowel harmony across
entire words19.

2.5.2 Conclusion

This review of phonotactic models of speaker judgements shows the evolu-
tion of the field towards models linking the probability of a sub-segmental sequence
to its acceptability for speakers. With regard to English onsets, at least, bigram

19Although Hayes and Wilson did train the model on data from Shona, a language with vowel
harmony, they did not compare the predictions of their model to speaker judgements.



34

models perform well in predicting nonce words with attested sequences, the Maxent
learner reliably predicts speaker judgements for nonce English words with unat-
tested sequences, and the Albright model predicts judgements for both attested
and unattested sequences, though with less success in each specific domain than
the other two. However, the Maxent learner stands out for its statistical wellfound-
edness, its phonological representational system and its capacity to be extended
in the direction of predicting attested sequences.

Most of the models presented here were compared on their performance
in predicting English speaker judgements of nonce words with differing attested
onsets. This is the benchmark task in the discipline because it is an easy and well-
understood data set with available test data. However, there is still much work to
be done for longer sequences (particularly whole words) and languages other than
English. In the upcoming chapters, we will address these limitations by evaluating
the performance of the Maxent learner in predicting whole word judgements for
existing speaker judgement data from Amharic, a Semitic language that has phono-
tactic characteristics that are different from English. Based on the results of those
simulations, we collect new Amharic speaker judgement data designed to clarify
both the model predictions and our understanding of the frequency∼acceptability
cline.



3 Overview of Amharic
morphology and phonotactics

Amharic, an Ethiopian Semitic language, has characteristics that recom-
mend it as a test case for phonotactic modeling:

• A complex and well-studied phonotactic restriction on the co-occurrence of
consonants is active within Semitic verb roots, including Amharic.

• The morphology of Semitic languages makes it possible to model whole words
(verbs) with a relatively small consonant inventory1 and to keep the vowels
constant across all words so that they do not impact consonant phonotactics.

• The Amharic lexicon of verb roots is not homogeneous; there are many roots
that do not conform to the canonical triliteral length. This allows us to
evaluate whether the generalizations that are true for canonical roots also
hold for other root shapes.

• There is appropriate experimental speaker judgement data against which to
test the model predictions (King and Rose, 2003).

The goal of this chapter is to provide an overview of the morphology and phonotac-
tics of Amharic, demonstrating that a Semitic language, and particularly Amharic,
makes an appropriate and interesting test case for the Maxent learner. The first
section describes the root-and-template morphology that is common to Semitic
languages and the shape of the lexicon of verb roots, in terms of the variety of

1The Maxent learner is impractically slow when the number of phonological forms, a function
of the segment inventory, is in excess of 100 million.
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root shapes and their frequencies. We review the frequency of verbs containing
identical consonants and the theoretical analysis for their distribution. The fol-
lowing section discusses the Obligatory Contour Principle as applied to place of
articulation, a restriction over homorganic consonants within Semitic verb roots
and provides a dictionary analysis of the co-occurrence of homorganic consonants
in the lexicon of Amharic verb roots. The chapter concludes with a description of
the experimental word rating data used to test the model.

The dictionary analysis of Amharic presented in this chapter is based on
an electronic database of 4243 verb roots extracted from the Amharic-English
dictionary (Kane, 1990) using only verb roots that could be conjugated (not the
fixed forms with auxiliaries such as ‘alə’).

3.1 Morphology

Amharic, like other Semitic languages, has root-and-template morphology
(Bender and Fulass, 1978; Leslau, 1995). In the root-and-template system, mor-
phemes are not simply added to a stem in a process of linear affixation but rather
morphological derivations are accomplished through templates combining a set of
root consonants with vowels and other consonants according to particular shapes.
In this way, a typical 3-consonant, or triliteral, root (represented hereafter as
C1C2C3) can, depending on the template selected, form a series of semantically
related nouns, verbs or adjectives2. Table 3.1 shows a group of semantically re-
lated words for the Amharic root /lwt’/, which has the lexical semantics ‘change’
and the root /dfn/ which has the lexical semantics ‘fill in’. The key observation
here is that there is a relationship between the consonants of the verb root that
is independent of intervening material. A difference in judgement between two
verbs conjugated in the same paradigmatic form should therefore be dependent
only on their respective roots. The advantage is that we can model judgements

2Not all researchers acknowledge the root as a morphemic entity (Bat-El, 1994; Bat-El, 2003;
Benmamoun, 1999; Ratcliffe, 1997; Ussishkin, 2000). However, this research is neutral with
regard to the actual status of the root.
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Table 3.1: Two example of verb roots and words derived from them

Root /lwt’/ gloss ‘change’ (Type B)

ləwwət-t’ə ‘he changed’ (tr.)
jɨ-ləwwɨt’-all ‘he is changing’ (tr.)
ləwwɨt’ ‘change!’ (tr.)
ləwawwət’-ə ‘he changed completely’
ləwt’ ‘change, alteration’
lɨwwɨt’ ‘changed’
mə-lləwawət’ ‘interchange’
lɨwwaʧ’ ‘thing given in return’

Root /dfn/ gloss ‘fill in’ (Type A)

dəffənə ‘he filled in (hole), blocked up, buried’
jɨ-dəfn-all ‘he is filling in’
dɨfən ‘fill in!’
dəfaffənə ‘he buried by digging holes here and there’
dɨfan ‘stopped up, plugged, buried’
dəfaɲ ‘one who plugs up or fills in a hole’
dəfəna ‘plugging up, act of covering over’

for whole verbs by keeping the vowels identical (for example, all [ə]), and altering
the consonants of the root.

We are aware that this is a simplifying assumption as there may be fre-
quency effects related to the number of derived words available for a given verb
root. The phonotactic characteristics of the non-verb root lexicon may also have
an influence on the judgements of verbs3.

In Amharic, triliteral verb roots (which are the most common at 44% of the
lexicon of verb roots) are divided into three lexical classes characterized primarily

3We are undertaking a statistical investigation of non-verb roots but this requires a hand-
annotated transcription of the lexicon that is not yet available.
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Table 3.2: Examples of gemination in different lexical classes

Type Type A Type B Type C 4-consonantal

gloss ‘break’ ‘want’ ‘take prisoner’ ‘mix, confuse’
perfective4 səbbərə fəlləgə marrəkə dəballək’-ə
imperfective jɨ-səbɨr jɨ-fəllɨg jɨ-marrɨk jɨ-dəballɨk’-ə
jussive jɨ-sbər jɨ-fəllɨg jɨ-mark jɨ-dəbalk’

by the occurrence of gemination (or lengthening) of the middle consonant (C2) (see
table 3.2).5 In Type A, gemination occurs only in the perfective form, in Type B,
gemination occurs throughout the paradigm and in Type C, gemination occurs in
the perfective and imperfective forms. Types B and C are further characterized by
segmental regularities: for Type B, palatal or labio-velar consonants are common
in C1 position and for Type C, the first vowel (between C1 and C2) is [a] for the
standard aspectual forms (perfective, imperfective and jussive, but other moods
and aspects are also possible). This is a lexical distinction, so some homophonous
verb roots may occur in more than one type without necessarily being semantically
related. For example, the Type A root /blg/ (‘bəlləgə’), means ‘rain in the season
of small rains; send out shoots’ while the Type C root /blg/ (‘balləgə’), means
‘misbehave, be naughty, be rude’. The frequency of the three classes is shown in
table 3.3.

Table 3.3: Frequency of verb types

Type Type A Type B Type C

count 770 627 210

Amharic also has a large number of roots with 4 (C1C2C3C4) or even 5
consonants. With respect to gemination, they are similar to Type C roots, as the

5Triliteral verb roots where the last two consonants are identical may belong to any of the three
lexical classes and are included in the counts of table 3.2. Verb roots with identical consonants
will be discussed in detail in section 3.2.
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penultimate consonant (C3) is geminate in the perfective and imperfective forms.
For example, /bdrg/ surfaces as `bədərrəgə', (‘to rise quickly’) and /dnbʃ/ surfaces as
`dənəbbəʃə' (‘go bad, be spoiled’).

Note that lexical class of Type A and Type B triliteral roots cannot be
determined based on the citation form (3ms perfective) because both classes have
gemination in the perfective aspect.6 This is a useful characteristic in designing
word judgement experiments as nonce verbs presented in citation form could be
either Type A or B which are the most frequent overall (see table 3.3). The
presence of a specific consonant might further bias speakers towards one class of
those classes over the other. For example, a nonce root with an initial palatal is
likely to be classified as Type B. However, nonce consonantal roots are unlikely to
be interpreted as type C, which has a distinctive vowel.

Table 3.4: Examples of weak verbs

missing C1 C3 C2

consonant

gloss ‘pass’ ‘measure’ ‘kiss’
perfective (class) alləf-ə (A) ləkka (B) sam-ə (hollow)
gloss ‘think’ ‘hobble’ ‘send’
perfective (class) assəb-ə (B) gadda (C) lak-ə (hollow)

Like other Semitic languages, Amharic has some bi-consonantal roots, la-
beled ‘weak roots’. However, synchronic and diachronic evidence indicates that a
third consonant was once present (or depending on the analysis, the third conso-
nant is still present in the underlying representation but absent from the surface
realization (SR)). Table 3.4 shows examples of how a missing root consonant is syn-
chonically marked through the location of the geminate consonant. When the C1

consonant is missing, the geminate appears as the left-most root consonant. Like-
wise, when the C3 consonant is missing, the geminate appears as the right-most
root consonant. Finally, when the middle (and therefore geminate) consonant

6Type C has the characteristic [a] vowel, so while its perfective form resembles the others in
terms of gemination, the [a] vowel creates a distinction.
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is missing, there is no geminate consonant in the root. In each case, a missing
guttural consonant is replaced by [a] (as shown in the examples). Although a con-
sonant may be missing from any position, roots with missing C2 are called hollow
and gemination does not occur. Note that because of the absence of gemination,
the lexical class of hollow roots cannot be determined 1) because the gemination
cue is absent and 2) the presence of [a], a cue for Type C, could also mark a vesti-
gial guttural. There are also triliteral weak forms similarly related to historically
quadriliteral roots. Weak roots are not a rare occurrence in the lexicon of Amharic,
17% of Amharic verb roots show evidence of one or more missing consonants.

Table 3.5: Examples of w-medial roots

gloss ‘run’ ‘think’ ‘be restless’

perfective (class) rot’-ə (A) ləwwət’-ə (B) nawwəz-ə (C)

The glides (/j/ or /w/) may also be missing from some roots. For type A
roots, a round vowel appears instead of medial [w] (table 3.5). For [j] in medial
position of type A roots, a modified vowel appears (mid in perfective and imper-
fective, high in jussive). However, if the first consonant is a coronal, there is no
vowel change and the coronal consonant becomes palatalized as shown in table 3.6
(Hudson, 1979). Type C roots are not included in the table because there is only
one type C root with [j] in medial position, where it appears as a geminate.

Table 3.6: Examples of j-medial roots

gloss ‘go’ ‘sell’ ‘ask, visit’

perfective (class) hed-ə (A) ʃət’-ə (A) t’əjjək’-ə (B)

3.2 The Obligatory Contour Principle

There is a strong cross-linguistic trend to avoid the co-occurrence of iden-
tical material within a word. This trend, formalized as the Obligatory Contour
Principle (OCP) was first used to account for the behaviour of tone (Leben, 1973)
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and later expanded (McCarthy, 1979, 1981) to state that adjacent identical ma-
terial cannot co-occur in Underlying Representation (UR) or through derivation.
Further research (McCarthy, 1986; Myers, 1997), argues that the OCP functions
as a constraint operative throughout the derivation.
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Figure 3.1: Prohibited derivations

OCP accounts for the distribution of identical consonants in Semitic verb
roots. The theory assumes that:

i. material in UR can be repeated in SR through a process of spreading or copy

ii. consonants map to template positions one-to-one from left to right; a remain-
ing template slot is filled by spreading rightwards.

iii. association lines between phonemes in UR and segments in SR cannot cross.

Under the theory, verb roots with identical left edge and non-adjacent con-
sonants in AAB and ABA patterns are underlying:

• AAB cannot be derived from AB because this would require right to left asso-
ciation or edge-in-association (Buckley, 1990; Yip, 1988) followed by leftward
spreading (or copy) of the A as shown in figure 3.1(i).

• ABA cannot be derived from AB because spreading would require crossing
the association line connecting the UR and SR of B as shown in figure 3.1(ii)
and copy is licit only from the rightmost consonant of the stem and to the
adjacent position.

As both AAB and ABA contain identical material, they represent violations
of OCP and this accounts for their rarity (note that to account for ABA forms,
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the analysis requires a formalization of OCP that prohibits identical material in
any position rather than only in adjacent position)7.
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Figure 3.2: Licensed derivations

Roots with patterns of identical consonants such as ABB, ABAB, ABCC
are more frequent:

• ABB roots, called doubled verbs, are common in Semitic languages. It is
assumed that the underlying root is AB with a spreading or copying of the
B to fill the tri-consonantal template (see figure 3.2 a).

• ABCC and ABAB type patterns are assumed to arise from 3-consonantal
and 2-consonantal roots in UR (ABC and AB, respectively). ABAB forms
are assumed to arise not by spreading (given the prohibition on crossing
association lines) but through a process of root copy (figure 3.2 b) whereas
ABCC forms can be derived similarly to ABB forms (figure 3.2 c).

For terminological convenience, I will refer to these roots with identical
consonants that can be analysed as rightward copy or spreading as reduplicative,
and those that have identical consonants in other positions as non-reduplicative,
even though we do not have a particular theoretical stance on the issue of whether
the repetition is due to a formal process of reduplication (copy) or spreading.

Table 3.7 summarizes reduplicated verb root patterns in Amharic. These
patterns are also attested in Tigre (Raz, 1983; Rose, 2003a,b), Tigrinya (Buckley,

7See Gafos (1998) for alternate views on the derivation of these forms
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Table 3.7: Semantics of reduplicative verb roots

Type Status
Semantic notion of

repetition or intensity

ABB phonological No
ABAB lexical Yes

ABCBC
lexical or morphological Yes

ABCDCD

ABCC lexical Yes

ABBC
morphological Yes

ABCCD

1990; Leslau, 1941), Harari (Leslau, 1958), Chaha (Prunet and Petros, 1996; Rose,
2000, 2003b), Inor (Prunet and Chamora, 2001) and Muher (Rose, 2003b). A
number of them (such as ABB, ABAB, ABCBC) are also attested in other Semitic
languages. Note that with the exception of doubled verbs (ABB), there may be a
relationship between reduplication and a semantic notion of repetition.

ABAB and ABCC roots are not usually derived from some unreduplicated
form that exists independently as a surface form (ABB8 and ABC, respectively)
and are therefore considered to be cases of lexical reduplication. Both of these
forms may have a semantic connotation of repetition, intensity or local movement
and ABCC roots may also encode a semantic notion of physical defect. ABCBC
patterns are assumed to be morphologically derived from ABC forms although
many do not have a related ABC form. In verbal derivations, these forms usually
have a tə- or a- prefix and may have a semantic connotation of repeated or intense

8Underlyingly AB
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Table 3.8: Examples of reduplicative verb roots encoding a semantic notion of
repetition or intensity

pattern examples gloss

ABAB
təbəttəbə ‘twist, tie, wind around’
fədəffədə ‘be in excess, exceed, run over’

ABCBC
tə-lmət’əmmət’ə ‘be chewed continually at length’
tə-mləgəlləgə ‘become slippery, slimy, viscous’

ABCC
ʃəbəllələ ‘wrap up, roll up’
fərəttətə ‘swell up’

action. Some examples of reduplicative verb roots that have a related semantic
connotation are shown in table 3.8.

Note that although ABB and ABCC forms share a characteristic repetition
of the final consonant, ABB forms do not share the semantic connotation of ABCC
forms. ABCBC and ABAB forms, which both have copies of two consonants, are
called ‘bi-consonantal reduplication’ by Unseth (2002) who documents their usage
in Amharic and other languages.

Table 3.9: Examples of verbs in frequentative aspect

1ms perfective gloss frequentative gloss

dəggəmə ‘repeat’ dəgaggəmə ‘review, repeat again
and again’

t’ərrəgə ‘sweep, clear,
wipe clean’

t’ərarrəgə ‘sweep up everything,
clean completely’

gərəbbədə ‘to open a door
wide’

gərəbabbədə ‘to open several doors
wide’

There are also cases of verb roots with identical consonants encoding in-
tensification or repetition of a related base form arising through productive and
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regular conjugation9. For Amharic, in the frequentative aspect (illustrated in ta-
ble 3.9), the penultimate root consonant is copied, producing ABBC and ABCCD
forms and the vowel ‘a’ appears between the consonants (Leslau 1939, Rose 2000,
2003, Schluter 2008). In a related Semitic language, Hebrew, the (rare) pəʕalaʕal
binyan, triconsonantal roots are copied into a ‘ABCBC’ template that confers some
notion of semantic intensification ( root: /sħr/, first binyan form: [saːħar] ‘to go
about’, pəʕalaʕal binyan form: [səħarħar] ‘to palpitate’) (McCarthy, 1981).

These cases are different from those mentioned above because the identical
consonants involve productive infixation or productive templatic selection derived
from an existing base form.

It is important to understand the distribution of identical consonants in
verb roots because the frequency of identical consonants (which are homorganic
by definition) in some locations of verb roots interacts with OCP-Place, a general
restriction over homorganic consonants described in the next section.

3.3 The Obligatory Contour Principle as applied
to place of articulation

The Obligatory Contour Principle as applied to place of articulation (OCP-
Place) is a special case of OCP. First identified as a restriction in Semitic languages
(Cantineau, 1946; Greenberg, 1950), OCP-Place is based on the observation that
in some languages, consonants from the same place of articulation10 tend not to
co-occur in verb roots. For example, triliteral roots such as /kgf/ and /brm/,
which have two consonants from the same place of articulation (dorsal and labial,
respectively) are rare.

The formulation of OCP-Place is dependent on the specific definition of
place of articulation. In his analysis of Semitic languages, with special attention
to 3775 Arabic roots, Greenberg (1950) defines four broad places of articulation;
back consonants (dorsals, pharyngeals, laryngeals), coronal sonorants, front con-

9Conjugation here is different from the affixation process of Romance languages, but refers
instead to the consonantal and vocalic modifications around the stem segments.

10In OCP terms, these roots contain identical material with regards to place of articulation.
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sonants (coronal stops and sibilants) and labials. Greenberg provides statistical
evidence that segments co-occur freely across, but not within groups, with two ex-
ceptions: velars co-occur freely with pharyngeals and laryngeals, and dental stops
and fricatives tend to co-occur more frequently with each other than they do within
each group (ie, dental stops co-occur rarely with other dental stops and coronal
sibilants rarely with coronal sibilants).

Based on an analysis of 3330 verb roots from a dictionary of Modern Stan-
dard Arabic, McCarthy (1988) repeats Greenberg’s findings and directly defines
five groups of non-co-occurring consonants, noting, as did Greenberg, that coronal
obstruents are restricted according to manner:

• labials: m, f, b

• coronal sonorants: l, r, n

• coronal obstruents: θ, ð, t, d, s, z, ʃ, sˤ, dˤ, tˤ, zˤ

• dorsal obstruents: k, g, q

• pharyngeals and laryngeals: ʁ, χ, h, ħ, ʕ, ʔ

For both Greenberg and McCarthy, the consonants /w/ and /y/ are ex-
cluded from the general analysis. Greenberg notes that these glides do not pattern
with any group and this this is likely because /w/ and /y/ replaced /u/ and /i/
in older root forms. For McCarthy, the absence of co-occurrence of these glides
is motivated not by OCP-Place but by “conspicuous phonological irregularities”
elsewhere in the language.

Although first identified in Semitic languages, OCP-Place has also been
studied in languages as diverse as English (Berkley, 1994), Russian (Padgett, 1995),
Javanese (Mester, 1986) and Muna (Coetzee and Pater, 2006). For Semitic lan-
guages, OCP-Place is attested in Arabic (Elmedlaoui, 1995; Frisch et al., 2004;
Frisch and Zawaydeh, 2001; Greenberg, 1950; McCarthy, 1979, 1981, 1988, 1994;
Pierrehumbert, 1992; Yip, 1988), Hebrew (Bachra, 2001; Koskined, 1964; Kury-
lowicz, 1972), Tigrinya (Buckley, 1997), Amharic (Bender and Fulass, 1978; Rose
and King, 2007) and Chaha (Rose and King, 2007).
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Figure 3.3: OCP gradiency

OCP-Place in Semitic languages is a considered to be a gradient restriction
because it may be violated. This means that while homorganic segments do co-
occur in the consonantal verb root template, they do so less often than would be
expected, all else being equal.

The strength of the restriction (and therefore the possibility that verb roots
with homorganic consonants are attested in the lexicon) is modulated by two fac-
tors:

• distance: homorganic consonants within the root are adjacent11 or non-
adjacent (Greenberg, 1950)

• place of articulation (POA) (Frisch et al., 2004)

The consequence of this granularity is that for triliteral roots of the form C1C2C3,
the restriction is stronger for homorganic consonants in adjacent position C1C2X or
XC2C3 than in non-adjacent position C1XC3. With regard to POA, the restriction
is stronger for dorsals or gutturals (note that gutturals do not occur in all Semitic
languages) than for coronals (according to manner of articulation), with labials
in an intermediate position. Figure 3.3 shows the strength of the restriction as a
function of POA and violation location.

3.4 Dictionary study

As discussed in the previous section, OCP-Place is a well-studied restriction
in Semitic languages generally. However, the dictionary of Amharic verb roots is

11Where adjacency is defined with respect to the root, not intervening vowels.
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the data that is used to train our model. The statistical analysis of that data
provides important information at two levels:

• precise knowledge of the shape of the lexicon is necessary to analysing the
performance of the Maxent learner as a function of the representational sys-
tem. For example, the number of forms with identical (and therefore homor-
ganic) consonants affects the generalizations that can be used to describe
OCP-Place.

• OCP-Place is a gradient (rather than categorical) restriction, so the eval-
uation of the relationship between pattern frequency and speaker ratings
requires a careful evaluation of co-occurrence patterns as a function of place
of articulation and location of violation.

Table 3.10: Composition of the lexicon of verb roots

root type count percentage

roots without identical consonants 2688 63%
roots with identical consonants 1555 37%
total 4243

Table 3.10 shows that for Amharic, 37% of Amharic verb roots contain
identical consonants. and table 3.11 shows that patterns that are compatible with
a spreading (ie, ABB, ABCC) or copy (ie, ABAB, ABCBC) analysis account for a
total of 1467 of the 1555 verb roots with identical consonants roots (94%). Patterns
such as AAB, ABA are much rarer. Note that the lexical ABBC pattern (for
which there is no related ABC form), may be historically related to the productive
frequentative form, but is rare.

This summary of the shape of the lexicon of Amharic verb roots shows that
a large proportion of them do not conform to the canonical triliteral pattern most
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Table 3.11: Distribution of Amharic verb roots with identical consonants

pattern count %

ABB, ABCC, ABCDD 665 15.7%
ABAB, ABCBC, ABCDCD 802 18.9%
AAB, ABA, ABAC... 111 2.6%
ABBC 10 .23%

commonly associated with Semitic verb roots. Accordingly, we made the decision
to base our analysis on the database of verb roots including weak roots, roots with
four or more consonants and roots with identical consonants regardless of their
assumed derivation. The reduplicative verbs pose a problem in how a model might
assess them – based on their assumed underlying representation without repetition,
or based on their surface realization. This is particularly problematic for lexical
reduplication, since a form without reduplication does not surface.

Our decision to assess OCP-Place over the entire lexicon of verbs (including
those with identical consonants) contrasts with (Frisch et al., 2004) and similar
studies because we assume that all verbs in the lexicon influence phonotactics and
speaker’s awareness of phonotactics, and that it is not just confined to a subset of
the data12. Note that as roots also allow for a large number of other derived forms
such as nouns and verbs (see table 3.1), the lexicon of verbs actually covers a large
proportion of the overall Amharic lexicon.13

3.4.1 Consonant inventory

According to Leslau (1995), Amharic has the inventory of 43 consonants14

shown in table 3.12. Leslau notes that many consonants may occur with labial-
12Although the subset of verb roots included in the analysis is not always explicitly described

in other studies, based on the database used for Frisch et al. (2004) available to us, the analysis
considers only tri-consonantal verbs in UR (these forms lack reduplicative consonants and if weak
roots are included, the missing consonant is present in the representation).

13The specific percentage is currently undetermined.
14As we are modelling words derived from the same basic template, vowels are not included in

the analysis.
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Table 3.12: Segment inventory

Place non-labialized labialized

labial p’, b, m, w, f bʷ, mʷ, fʷ
dorsal g, k ,k’ gʷ, kʷ, k’ʷ
glottal h hʷ
coronal-stop d, t, t’ dʷ, tʷ, t’ʷ
coronal-fricative s, s’, z, ʃ, ʒ sʷ, zʷ, ʃʷ
coronal-affricate ʧ, ʧ’, ʤ ʧʷ, ʧ’ʷ, ʤʷ
coronal-sonorant n, l, r, ɲ, j nʷ, lʷ

ization but that it is likely contrastive only in the case of dorsal stops and [h].
However, the number and phonemic status of labialized consonants varies widely
for different authors. Armbruster (1908) records no labialized consonants at all
and in the phoneme inventories of Cohen (1970) and Maddieson (1984)15, the only
labialized consonants are dorsal stops [kʷ, k’ʷ and gʷ] and, for Maddieson, [hʷ].
In later work, Hayward and Hayward (1992) find evidence for [p’ʷ bʷ, mʷ, fʷ, kʷ,
k’ʷ, gʷ, t’ʷ , hʷ] but do not indicate if all of these are contrastive. Unseth (2002)
provides the same inventory as Leslau (1995) and similarly notes that labialization
appears to be contrastive only for dorsal stops.

Leslau also notes that [p’] occurs only in older Greek loanwords and that
[p] and [v] occur only in modern load words such as ‘vino’ (‘wine’), ‘viza’ (‘visa’),
‘polis’ (‘police’) and ‘posta’ (‘mail). Note that unlike Arabic, there are no glottal
or pharyngeal consonants other than [h]16. For this dissertation, we will assume
the inventory of Leslau (1995).

15Maddieson’s inventory is based on Leslau (1968), Klingenheben (1966) and Sumner and
François (1957).

16According to Leslau (1995), there is a marginal glottal stop that occurs between vowels that
is also the reduction of [k’] for some speakers.
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3.4.2 OCP-Place

The metric generally used in phonology to evaluate the co-occurrence of
consonants is the Observed/Expected (hereafter O/E) ratio17, a measure of how
often two consonants appear together in words given how often they appear sepa-
rately18. Equation 3.1 shows the O/E ratio for AxBy, the co-occurrence of segment
A in position x and B in position emphy (and N is the number of words in the
lexicon). O/E was first used to evaluate OCP-Place in Arabic verb roots by Pier-
rehumbert (1992). O/E is equal to 1 for consonants that co-occur as many times
as would be expected (O = E), between 0 and 1 (O < E) for consonants that occur
less often than would be expected all else being equal, and greater than 1 (O > E)
for consonants that co-occur more often than would be expected.

O/E(AxBy) =
occurrences(AxBy)

N
occurrences(Ax)

N
∗ occurrences(By)

N

(3.1)

Based on the discussion in King and Rose (2003), the coronal obstruents
are analysed as two groups, fricatives and stops, contrary to the McCarthy (1988)
analysis of Arabic. Affricates are analysed as stops based 1) on the “affricates as
stops” approach to affricates described in Lin (2011), 2) the necessity, for pur-
poses that will be described in detail in Chapter 4, of restricting the number of
natural classes necessary to describe the segment inventory and 3) the fact that
the affricates in Amharic can be shown to be historically derived from stops via
palatalization (Leslau, 1957; Lowenstamm, 1986). [h], the sole (and rare) glottal,
is not included in the analysis.

As our test data (discussed below) contains triliteral forms only, we are con-
cerned with how the model will reflect the co-occurrence of homorganic consonants
in left edge adjacent (C1C2X), right edge adjacent (XC2C3), and non-adjacent
(C1XC3) locations. However, as we assume that all verb roots, including weak
roots and roots with more than three consonants, influence speaker judgements

17Not to be confused with O[Ci]/Eθ[Ci] used in the Expectation Maximization algorithm of
the Maxent Learner which is computed quite differently.

18A case might be made for the use of mutual information as a baseline metric, but O/E values
allow us to directly compare our results with those of other researchers.
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for triliteral forms, we must also determine how the presence of non-canonical
roots in the learning data will influence statistical learning of triliteral patterns.

To include the statistical contribution of weak roots, we do not include
the missing consonant in the representation, but, as speakers have cues (through
the presence of vowels and location of gemination) to the location of the missing
consonant, we use a place marker X in the place of the missing consonant to ensure
that the edges of the verb root are correctly aligned. For example, the root /dm/
of ‘addəmə’, (plot) has the same consonantal representation as /dm/ of ‘dəmma’
(bleed). By replacing the missing consonants with a place marker X, we obtain the
forms /Xdm/ and /dmX/ and the /dm/ sequence in ‘addəmə’ contributes to the
statistics for the right edge, and the /dm/ in ‘dəmma’ contributes to the statistics
for the left edge.

Table 3.13: O/E values of homorganic non-identical consonants in triliteral roots
POA adjacent

left edge
adjacent
right edge

non-
adjacent

Labial 0.15 0.18 0.5
Dorsal 0.14 0.0 0.0
Coronal-stops .2 0.5 0.56
Coronal-fricatives 0.0 .04 0.18
Coronal-sonorant 0.8 0.2 0.6

Table 3.13 shows the O/E values for non-identical homorganic sequences
in triliteral roots (the contribution of identical consonants is not included in this
computation). O/E values are low (<1) in all cases with lowest values for dor-
sals and segments in adjacent positions, and higher values for some coronals and
segments in non-adjacent positions. These results are similar to those previously
reported in King and Rose (2003) and Rose and King (2007).

Table 3.14 shows the average O/E values for the co-occurrence of identical
consonants in triliteral roots. The O/E value is computed for the co-occurrence
of each segment and these are then are averaged across segments of like place
of articulation. As O/E values for rare and distributionally irregular segments
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Table 3.14: Average O/E values of identical consonants in triliteral roots

POA adjacent
left edge

adjacent
right edge

non-
adjacent

Labial 0.08 2.92 0
Dorsal 0.92 3.38 0.12
Coronal-stops 0.87 3.47 0.38
Coronal-fricatives 0.66 4.76 0.06
Coronal-sonorant 0.06 1.66 0

are strongly skewed (for example, the O/E value for p’p’ at the left is 229419),
only the 14 most frequent and evenly distributed segments20 are included in the
computation. The O/E value for non-adjacent and left edge identical consonants
is low (< 0), indicating that these forms are under-represented. However, the O/E
value for right edge identical forms is high (> 0), reflecting the frequency of right
edge reduplicative forms (ABB) in the lexicon.

Table 3.15: O/E values of all triliteral homorganic consonants (including identical
consonants)

POA adjacent
left edge

adjacent
right edge

non-
adjacent

Labial 0.18 0.7 0.4
Dorsal 0.3 0.9 0.01
Coronal-stops 0.4 1.07 0.57
Coronal-fricatives 0.2 1.6 0.19
Coronal-sonorant 0.9 0.78 0.5

Table 3.15 shows O/E values for the co-occurrence of homorganic conso-
nants in triliteral roots, including identical consonants. The O/E values for the
right edge position are higher that for right edge homorganic non-identical conso-
nants in table 3.13, showing the influence of identical consonants in that position.

Table 3.16 shows the O/E values for non-identical homorganic sequences
19p’ occurs only 6 times in the lexicon but there is 1 root with p’p’ at the left edge. The

observed occurrence of p’p’ is therefore much higher than the expected number of occurrences,
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Table 3.16: O/E values of homorganic non-identical consonants in quadriliteral
roots

POA adjacent non-adjacent
C1C2 C3C4 C2C3 C1C3 C2C4 C1C4

Labial 0.09 0.04 0.0 0.35 0.0 0.8
Dorsal 0.0 0.0 0.0 0.0 0.0 0.0
Coronal-stops 0.0 0.0 0.24 0.16 0.6 0.4
Coronal-fricatives 0.0 0.0 0.0 0.1 0.0 0.16
Coronal-sonorant 0.24 0.03 .27 2.3 0.98 0.13

in quadriliteral roots. The pattern is similar to the triliterals with low O/E val-
ues for all adjacent patterns and higher values for some coronals in non-adjacent
position. In particular, the O/E value for coronal sonorants in C1C3 = 2.3, an in-
dication that the pattern is over-represented. These results shows that OCP-Place
as a restriction over non-identical homorganic consonants is active in verb roots of
different lengths but that gradiency is an essential component of the description.

Table 3.17: Average O/E values for identical consonants in quadri-literal roots

POA adjacent non-adjacent
C1C2 C3C4 C2C3 C1C3 C2C4 C1C4

Labial 0.0 4.38 0.05 7.28 8.51 0.18
Dorsal 0.0 4.38 0.0 5.09 20.93 0.11
Coronal-stops 0.0 5.81 0.16 8.29 13.54 0.0
Coronal-fricatives 0.0 10.2 0.0 11.46 23.35 0.0
Coronal-sonorant 0.0 6.71 0.1 14.51 1.35 0.0

The O/E values for identical consonants in quadriliteral roots (table 3.17)
reflect the presence of numerous ABCC and ABAB forms. O/E values are low
at the left edge and in C2C3 (adjacent, non-edge) but O/E values for right edge
(influenced by the frequency of ABCC roots) and non-adjacent patterns C1C3 and
C2C4 (influenced by ABAB roots) other than C1C4 (where identical consonants

producing an exceptionally high O/E.
20These are b, f, m, n, l, r, t, t’, d, s, z, k, k’, g.
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occur rarely) are consistently over-represented (O/E > 1).

Table 3.18: O/E values for all quadri-literal roots (including identical consonants)
POA adjacent non-adjacent

C1C2 C3C4 C2C3 C1C3 C2C4 C1C4

Labial 0.04 0.9 0.02 1.6 1.7 0.45
Dorsal 0.0 1.0 0.0 1.13 4.4 0.01
Coronal-stops 0.04 1.02 0.24 1.41 2.9 0.26
Coronal-fricatives 0.0 1.7 0.08 2.61 4.4 0.06
Coronal-sonorant 0.17 1.29 0.23 4.0 1.17 0.35

The O/E values for the co-occurrence of homorganic consonants (including
identical consonants) in quadriliteral roots (table 3.18) directly reflects the fre-
quency of patterns of identical consonants. O/E values are low in C1C2, C2C3 and
C1C4 but high in all other positions.

With regard to longer roots, there are only 16 quinquiliterals without rep-
etition. The 300 or so quinquiliterals with repeated consonants are predominantly
ABCBC patterns (so doubtless contributing to higher O/E values in C3C5). Pat-
terns such as ABABA and ABABC are rare.

To summarize, OCP-Place is active over homorganic consonants in verb
roots, regardless of length, but is strongly modulated by three factors:

1 Place of articulation: dorsal consonants are most restricted and coronals the
least

2 Distance: adjacent consonants are more restricted than non-adjacent

3 Location of violation: OCP-Place is a restriction over homorganic non-
identical consonants in locations where identical consonants are frequent.

3.5 Experimental evidence

The general methodology for evaluating the psychological reality of a phono-
tactic restriction is to evaluate native speaker ratings for nonce words with specific
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phonotactic characteristics. Such experiments have shown that OCP-Place is an
active constraint over homorganic non-identical consonants in Hebrew (Berent and
Shimron, 1997), Arabic (Frisch and Zawaydeh, 2001) and Amharic (King and Rose,
2003). These results are compatible with models of phonotactics that predict low
acceptability for words with patterns that violate a phontactic restriction (all else
being equal).

For Hebrew, Berent and Shimron (1997) investigate the acceptability of
nonce words with identical consonants based on the observation that of the 1449
productive triliteral roots in the Even-Shoshan (1993) dictionary, only 12 have
initial identical consonants in AAB form. They create 24 nonce word triplets
in each of the three word classes (206 items total). Each triplet is composed of
one form with left edge identical consonants (AAB), one with right edge identical
consonants (ABB) and one with no identical or homorganic consonants (ABC).
The first experiment, a relative rating task where speakers are asked to assign a
grade of 1 (possible), 2 (less possible) or 3 (least possible) to each member of a
triplet, shows a dispreference for identical consonants in any position (AAB, ABB)
compared to ABC forms. The authors interpret these results as an indication that
both AAB and ABB forms violate OCP, according to an analysis under which OCP
constrains not only lexical representations (UR) but also derivations (McCarthy,
1986). For the second experiment, speakers are asked to rate the nonce words
freely on a 1-5 scale with 1 = ”impossible” and 5 = ”excellent” and the results
show that only AAB forms are dispreferred compared to ABC forms, with no
significant difference between ABB and ABC forms. A possible interpretation of
these results is that in the first experiment, the difference in acceptability between
the first and second points of the relative scale is not significant.

Similarity =
Shared natural classes

Shared natural classes + non-shared natural classes (3.2)

In an analysis proposed by Pierrehumbert (1992), the strength of the OCP-
Place restriction is a function of segment similarity. Based on the metric developed



57

by Pierrehumbert (1992), identical consonants are more similar than homorganic
but non-identical segments and are therefore predicted to be more strongly con-
strained. Note that this analysis assumes that ABB patterns of identical conso-
nants are derived and so not subject to OCP-Place. Frisch and Zawaydeh (2001)
investigate this claim for Arabic by comparing speaker ratings for nonce word pairs
with differing levels of similarity, ranging from no similarity (non-homorganic) to
complete identity.

Using the set of native and assimilated triliteral roots from the Wehr and
Cowan (1971) dictionary of Standard Arabic as a statistical foundation, Frisch and
Zawaydeh (2001) compared nonce words with OCP-Place violations to violation-
free controls, nonce words with accidental gaps (an accidental gap is a set of
non-co-occurring segmental pairs that does not correspond to a coherent natural
class) and evaluated the strength of the OCP-Place restrictions as a function of
the similarity between segments. Speakers were asked to rate the acceptability of
254 nonce words balanced for expected probability (high-low) and neighbourhood
density (dense-sparse) on a 1-7 scale with 1= “Impossible. This word sounds
terrible” and 7 = “Definitely. This word sounds very much like a verb of Arabic”.

The results showed that nonce words with OCP-Place violations were dis-
preferred compared to controls and that nonce words with OCP-Place violations
were dispreferred compared to nonce words with accidental gaps. For the simi-
larity comparisons, the small number of stimuli in each group makes the analysis
somewhat tentative. Although the similarity metric holds as a predictor of relative
badness within the group of non-identical homorganic consonants, identical conso-
nants in AAB and ABA patterns were rated better than non-identical OCP-Place
violations, contrary to the prediction. Finally, there was a trend such that ABB
patterns were rated on a par or better than controls.

The King and Rose (2003) word acceptability data for Amharic is the test
data that we use to evaluate the predictions of the model and is therefore described
here in detail.

The King and Rose experiment was designed to investigate the psycholog-
ical reality of two phonotactic restrictions in Amharic: OCP-Place and Laryngeal
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Agreement (LA). LA is a restriction such that oral stops must agree in laryngeal
qualities (voicing21 and glottalization). Note that unlike OCP-Place, LA is a har-
mony restriction. LA is attested in verb roots in both Amharic (Bender and Fulass,
1978; Wedekind, 1990) and Chaha, an Ethio-Semitic Gurage language related to
Amharic (Banksira, 2000; Rose and Walker, 2004). In Chaha, the restriction is
broad, such that oral coronal and dorsal stops in any position (adjacent or non-
adjacent) are either both voiceless (for example, /tkm/), both voiced (/fgd/) or
both ejectives (/k’rt’/). King and Rose evaluate the presence of LA in the Amharic
lexicon of verb roots and find that O/E values are low only for adjacent voiceless
stops that differ in glottalization (ie, /kt’m/ or /mtk’/) in left edge (≈ 0.33) and
right edge position (≈ 0.24). We will call this restriction narrow LA because it is
a subset of the general LA restriction.

The task contained 270 items:

• 135 controls

• 45 stimuli containing OCP-Place violations (balanced for place of articulation
and location of violation)

• 45 stimuli containing LA violations (balanced for location of violation).22

– stops differing in voice (/nkd/)

– stops differing in glottalization (/tnk’/)

– stops differing in both voice and glottalization (/t’gl/)

• 45 stimuli containing both an OCP-Place violation and a broad LA violation
(balanced for place of articulation and location of violation)

The nonce words were presented to 19 native Amharic speakers in Addis
Ababa (the capital of Ethiopia) in a paper-and-pencil rating task. The speakers,

21See Gallagher (2010) and Mackenzie (2011) for a discussion of whether the restriction involves
[voice].

22The stimuli included both broad and narrow LA violations even though the dictionary anal-
ysis suggested that only narrow LA violations would be active in Amharic. This was to facilitate
comparison with similar test items in Chaha.
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recruited through word of mouth, were asked to rate each word on an 6 point scale
with 1 = “very Amharic-like” and 6 = “not like Amharic at all”.

We (re)analysed the ratings of the judgement task with a maximal linear
mixed effect model (LMEM) with by-subject random slope for the fixed effect, and
by-item random intercepts for each nonce word using the ‘lmer’ function of the
statistical software R (package lme4). To estimate the p-value of a fixed effect, we
compute the likelihood ratio between two models identical with regard to random
effects but only one of which contains the fixed effect of interest. Where the p-value
< .05, factors with |t|-value > 2 are assumed to be significant contributors to the
effect23.

The results show that dual violations (combining both OCP-place and LA
violations), are significantly different from controls (p < .01) in all locations (t-
values: right edge = 3.02; left edge = 4.5; non-adjacent = 3.2). OCP-Place vio-
lations are significantly different to controls (p < .05) in both left edge and right
edge locations (t-values: left edge = 3.47; right edge= 2.68). However, the dif-
ference between controls and non-adjacent OCP-Place violations is not significant
(t-value = 1.29).

There is no significant difference between LA violations generally and con-
trols (p = .3), or between narrow LA violations and controls (p = 0.2). Nev-
ertheless, location is a significant effect for LA violations (p < .05) though the
t-values show that only right edge violations are significantly different to controls
( t-values: left edge = -.077; right edge = 2.7; non-adjacent = 0.26). Location is
not a significant factor for narrow LA violations overall (p = .16). However, the
t-values show that narrow LA violations at the right edge are significantly different
to controls (t-values: left edge = .16; right edge = 2.28; non-adjacent = 0.4).

To summarize the experimental results, the ratings show that speakers are
very sensitive to dual violations in all locations and OCP-Place violations in adja-
cent locations. There is no significant difference between controls and ratings for
non-adjacent OCP-Place violations. With regards to LA and narrow LA (which
operates only over voiceless stops difference in [constricted glottis]), there is a

23We give a detailed example of this in Chapter 5.
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significant dispreference for violations in right edge adjacent locations.
The results for OCP-Place are not unexpected. With regards to location,

the restriction is statistically weakest in C1XC3 position and this is where we fail
to find a significant dispreference in the speaker ratings. For LA, the results are
more surprising. According to the dictionary study of King and Rose, only nar-
row adjacent LA violations are significantly under-represented in the verb roots.
However, O/E values for right adjacent violations are consistently slightly lower
than for the left edge adjacent violations and this holds for all forms of layrngeal
agreement (different voice-different glottis, different voice-same glottis and same
voice-same glottis). It may be the case that the speaker judgements are influ-
enced by the frequent ABB forms (which were not included in the King and Rose
dictionary study) because these never violate LA at the right edge of the word
and necessarily decrease the O/E for the occurrence of stops differing in laryngeal
features at the right edge.

3.6 Conclusion

The goal of this chapter was to show that Amharic verb roots are an inter-
esting test case for the Maxent learner. Morphology makes it possible to model
whole words with consonants alone and the phonotactic restrictions over identical
and homorganic consonants are complex in terms of gradiency and length (because
they are even active over non-adjacent consonants). In particular, we foresee that
this data will pose at least four specific challenges to the Maxent learner:

1. The presence of numerous roots in reduplicative patterns makes it difficult to
state the OCP-Place restriction in terms of homorganicity alone. To capture
OCP-Place effects, the learner must be able to state the restriction over
homorganic but non-identical segments.

2. The gradient nature of OCP-Place means that although a statement of pro-
hibition against non-identical consonants can express the generalization, the
particular ways in which this is stated must be modulated according to POA
and location within the root.
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3. The relationship between the frequency of LA violations in the lexicon of
verb roots and the speaker ratings is unclear.

4. The variety of non-canonical root shapes (weak, reduplicative, quadri- and
quiquiliteral) is likely to make the acquisition of a grammar that encodes
broad generalizations more difficult.



4 Simulations

In previous chapters, we explained both the principles of the Maxent learner
and the specific challenges of modelling Amharic phonotactics. In this chapter,
we evaluate the performance of the Maxent learner in predicting (simulating),
speaker judgements of nonce words from the King and Rose (2003) word rating
task described in Chapter 3. We use this data rather than directly developing our
own because it provides us with a baseline for formulating speaker rating tasks
that specifically target our research needs.

Our main research goal is to investigate the relationship between the lexical
frequency of patterns and gradient speaker judgements so the correlation between
the model predictions and the experimental data of King and Rose (2003) is of
crucial interest to us. However, the performance of the model in predicting speaker
judgements may be affected by a number of factors such as the statistical quality
of the model, the representational system and the constraint selection algorithm
and each of these must also be evaluated to determine their contribution to model
performance.

Our general procedure is to train the model on our database of verb roots,
evaluating it incrementally as automatically selected constraints are added to the
grammar. In this way, we have a clear picture of how the model performs as a
function of grammar size. We also create a second model trained on the same data
but equipped with a ‘starter set’ of hand-written constraints describing OCP-
Place as it is expressed in the training data. The comparison of the results of
the two models, one automatic and one initialized with hand-written constraints,
allows us to evaluate the quality of the automatic constraint selection algorithm.
Both models are trained on the complete lexicon of verb roots, including roots

62
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with identical consonants, regardless of location. Vowels are not included in the
representation because, as discussed in Chapter 3, they are constant across a given
verbal derivation1 and, presumably, do not participate in the restrictions over the
consonants of the root.

In the first simulation, both models are trained on the full set of Amharic
verb roots expressed in surface-true form (with some modifications for weak roots
that we will discuss). The results show that the automatic model performs less well
in predicting speaker judgements than the model equipped with hand-written con-
straints and our analysis suggests that the representation of identical consonants
as surface true artificially reinforces the importance of LA (Laryngeal Agreement),
a weak harmony restriction.

Building on the results of the first simulation, a second pair of models
(again, one with fully automatic constraint selection, the second initialized with
a hand-written grammar) is trained on a modified representation of the verb root
lexicon where repeated occurrences of a consonant within a verb root are replaced
by a featureless place marker. The results show that 1) the hand-written model
is no longer significantly better than the automatic one, providing evidence that
identical consonants do not contribute to the perception of the harmony restriction,
2) there is evidence for a previously unstudied restriction over non-homorganic
fricative consonants in Amharic verb roots and 3) our test data is too narrow
in scope to fully explore the performance of the Maxent learner and that more
experimental data is needed.

In the next section, we describe our first simulation with particular attention
to explaining the rationale for our design choices and the details of the evaluation
methodology.

4.1 Simulation I: baseline model

Our goal in the first simulation is to make as few assumptions as possible
in the choice and representation of the training data, given the limitations of the

1This holds for verb Types A and B, but not Type C which has a distinctive vowel.
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software. The results for this simulation are then used to motivate modifications
in the second simulation.

4.1.1 Training data

The model has access to the training data through two files. In the first,
the consonants of the segment inventory are defined in terms of distinctive feature
bundles. The second is simply a list of the words of the lexicon.

Table 4.1: Segment inventory

Place non-labialized labialized

labial p’, b, m, w, f bʷ, mʷ, fʷ
dorsal g, k ,k’ gʷ, kʷ, k’ʷ
glottal h hʷ
coronal-stop d, t, t’ dʷ, tʷ, t’ʷ
coronal-affricate s, s’, z, ʃ, ʒ sʷ, zʷ, ʃʷ
coronal-fricative ʧ, ʧ’, ʤ ʧʷ, ʧ’ʷ, ʤʷ
coronal-sonorant n, l, r, ɲ, j nʷ, lʷ

Segment inventory The items in our training data are the consonontal
verb roots extracted from Kane (1990). Although vowels are not included in the
representation, the consonant inventory is still quite large and creates issues with
training the model.2 For this reason, we collapsed labialized consonants with their
non-labialized counterparts, thereby focusing on the major place of articulation.
The resulting set (table 4.1 repeated from Chapter 3) contains 25 segments defined
using 10 distinctive features. This design decision does not affect the calculation
of OCP-Place, which operates over primary place of articulation.3

2Attempts to use the Maxent learner with the full set of consonants did not produce usuable
results. Training was extremely slow and the software encountered internal errors.

3To validate this assumption, we computed O/E values for the co-occurrence of labial conso-
nants and labialized dorsal consonants. The average O/E value is 1.58.
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Our preference would be to avoid the use of under-specification in the dis-
tinctive feature bundle representation of segments because researchers do not agree
on how and what to underspecify (Steriade, 1995). However, when every segment is
specified for every natural class, the number of possible natural classes is large and
makes the model extremely slow to train. We decided to use under-specification
sparingly as shown in table 4.2. Constricted glottis is defined only for voiceless
obstruents because only voiceless consonants can be ejective. The feature anterior
is defined only for coronals as it is the feature that distinguishes between alveolar
coronals and post-alveolar coronals (Clements, 1985). For example, [anterior] is
the feature that contrasts the two voiceless coronal strident consonants [s] and
[ʃ], as [s] is [+anterior] but [ʃ] is [-anterior]. Features for place of articulation
are unary4 while all the others are binary. This use of underspecification is for
implementational reasons only and does not imply a particular theoretical stance.

Table 4.2: Use of underspecification

distinctive features specification scheme

consonantal

specified for all segments
sonorant
continuant
nasal
strident
anterior specified only for coronals
constricted glottis specified only for voiceless obstruents
dorsal

unary featureslabial
coronal

4Unary features are specified only where positive. For example, only dorsal segments are
specified for the feature dorsal.
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Lexicon As we have a strong bias towards avoiding theoretical assump-
tions where possible, our goal was to encode the training data in a form as close
to the surface realization as possible, given the constraints of the model. Our rep-
resentations contrast with the general trend in Semitic phonology where analysis
is performed over the (assumed) underlying form of regular triliteral verb roots
only (Frisch et al., 2004; Pierrehumbert, 1992). In such a representation, surface
consonants assumed to be derived through copy or spreading would be absent,
but the consonants missing from weak roots (which are assumed to be present in
underlying representation) would be present.

Our model is trained on the complete inventory of 4243 consonantal verb
roots drawn from Kane (1990). As our representation is designed to be neutral
with regard to the conjugation of the verb, it does not include information about
consonant gemination.5 The training data includes not only the standard Semitic
triliteral roots, but also weak roots (those appearing to lack a surface root conso-
nant), roots with 4, 5 or 6 consonants and roots with identical consonants. Roots
with 3 or more consonants and no identical consonants were encoded directly as
they appear in the dictionary, but the encoding of weak roots and roots with
identical consonants required some analytical decisions.

• Weak roots As described in Chapter 3, weak roots lack a consonant. How-
ever, the placement of the missing consonant can be induced through the
position of medial gemination, the presence of an extra vowel, or the palatal-
ization of the preceeding consonant. As some of these cues are not available
in the consonantal templatic representation (notably because there is no in-
dication of gemination), our objective is to supply the model with equivalent
information. We chose to replace the missing consonant with the place holder
‘X’ in that position. For example, the weak root ‘səbba’, which has final [a]
instead of a consonant, is encoded as [sbX], and the weak root ‘hedə’, which
is presumed to have a medial glide /j/ due to the front vowel, as [hXd]. ‘X’
is defined as having a single distinctive feature, ‘x’, and is unspecified for all

5The representation could be any conjugation of the verb or derived word, as long as the
non-root material is constant across forms.
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other features; all other segments are unspecified for ‘x’. This representation
is designed to be neutral with regard to the identity of the underlying con-
sonant but to encode the information about its position such that word edge
information is preserved.

• Identical consonants All roots in our database with identical consonants
are encoded as surface true. For example, roots such as ‘wəttətə’ ‘wander’
which follows the ABB pattern, is encoded with identical consonants: [wtt].

Table 4.3 summarizes the encoding choices in simulation I by root type.

Table 4.3: Verb root encoding by type

root type example gloss root encoding

surface true bəggənə ‘get furious’ bgn bgn
weak awwədə ‘perfume’ wd Xwd

identical
bədəbbədə ‘beat’ bd bdbd
bəbbətə ‘put inside’ bbt bbt
wəjjəwə ‘lament’ wjw wjw

Statistical analysis of OCP-Place To summarize the discussion in
Chapter 3, non-identical homorganic consonants are generally under-represented
in all locations for roots of all lengths (O/E values < 1) but less so in non-adjacent
locations. If the occurrence of identical (and therefore homorganic) consonants
is included in the computation of the O/E values, the description of OCP-Place
is modified and homorganic consonants are reliably under-represented only in the
left edge adjacent location where identical consonants rarely occur.

4.1.2 Test data

We evaluate model predictions against the King and Rose (2003) speaker
judgement data described in Chapter 3. To briefly summarize, a set of nonce
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verbs, which used only the 14 most frequent and evenly distributed consonants,
contained 90 forms with OCP-Place violations representing a range of predicted
acceptability according to location of violation (left edge, right edge, non-adjacent)
and place of articulation (dorsal, coronal6, labial). 19 native speakers of Amharic
were asked to rate the nonce forms (all conjugated identically as CəC:əCə) on a
1-6 scale with 1 = very Amharic-like and 6 = not like Amharic at all. Speakers
significantly dispreferred nonce forms with OCP violations over controls (p < .05).

4.1.3 Procedures

The model was programmed to acquire two distinct grammars:

i. an automatically learned model with 1000 constraints

ii. a Maxent weighted hand-written grammar.

We know from the statistical analysis that for our choice of lexicon, the
grammar must encode OCP-Place as a restriction over homorganic but non-identical
consonants. To evaluate the automatic constraint selection algorithm, we compare
a model with automatically selected to constraints to one that is initialized with
hand-written constraints. The hand-written grammar describes the restriction us-
ing constraints that are available to the Maxent learner and those constraints are
then weighted according to the principle of Maximum Entropy. Table 4.4 illus-
trates the hand-written grammar for the segment [b]. Note that as the restriction
must be described specifically for each individual segment, using only those natural
classes predefined by the model, the final hand-written grammar for the baseline
simulation contains 384 constraints. Once the constraints of the hand-grammar
are weighted, automatically selected constraints are added to the hand-written
model until grammar size reaches 1000 constraints.

6Coronals are subdivided according to manner: stops, fricatives and sonorants.
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Table 4.4: Example of hand-written constraints

condition expression

left edge (C1C2)
*[word boundary][b][Labial not b]
*[word boundary][Labial not b][b]

right edge (XC2C3)
*[b][Labial not b][word boundary]
*[Labial not b][b][word boundary]

non-adjacent (C1XC3)
*[Labial not b][not Labial][b]
*[b][not Labial][Labial not b]

4.1.4 Model evaluation

Our main goal is to evaluate the relationship between the frequency of pat-
terns in the lexicon and the speaker ratings. However, the predictive quality of the
model is not only a function of that relationship but also of the statistical quality
of the model, the constraint selection algorithm, and the available representational
system. The statistical quality of the model and the relationship between proba-
bilistic constraints and speakers judgements are evaluated via statistical metrics,
and the contribution of the constraint selection algorithm and representational
system are evaluated by inspection of the learned constraints and the comparison
of the performance of the automatic and hand-written models.

Statistical quality of the model Prior to evaluating the predictions of
the model, it is crucial to ascertain that the statistical model itself is functioning
correctly. The underlying principle of statistical models is to encode an accurate
statistical reflection of the learning data (according to some principle). Log-linear
models such as the Maxent learner learn by maximizing PΘ(D) as described in
Chapter 2. This is usually referred to as maximizing the likelihood of the data,
given the model. To avoid the problems of computing very small numbers, it is
usual to use logLθ(D), which varies monotonically with Lθ(D).

Evaluating logLθ(D) allows us both to incrementally evaluate the progres-
sion of learning and to compare the statistical quality of one model relative to
another. However, as the Maxent learner uses a hill-climbing algorithm to find
the constraint weights that maximize logLθ(D) without ever actually computing
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logLθ(D) itself, we need to manually compute logLθ(D) for each incremental gram-
mar.

Pθ(D) =
∑
x∈D

Pθ(x)

Z

Z = a normalizing factor

(4.1)

logLD(θ), which is equivalent to Pθ(D) described in Chapter 2 (equa-
tion 4.1) equals, for a given grammar, the sum of the Maxent values assigned
to the words of the training data divided by the partition function, the sum of the
Maxent values assigned to all words in Ω, the set of all possible words y of the
language (as this is an infinite set, only words no longer than the longest word in
the learning data are considered).

Z =
∑
y∈Ω

Maxent value(y)

Maxent value(y) = exp(−
∑

weights assigned to y)

(4.2)

Monitoring the progression of statistical learning during training also allows
us to evaluate over-training, a common issue with statistical models. In over-
training, the model is such an accurate reflection of the training data that it lacks
generalization power and does not perform well on novel items. We track over-
training by computing the 5-fold cross-validated logLθ(D). In this procedure, the
training data is partitioned into 5 equal sections. The model is trained on 4/5 of
the training data and the log-likelihood is evaluated on the final 1/5, which is called
the held-out (or unseen) data. This is repeated for each of the 4 other partitions
and the 5 measures of log-likelihood are then averaged. As learning progresses,
the cross-validated log-likelihood should rise; a fall would indicate that the model
is becoming too specific to the training data and losing generalization power.
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Predictiveness The stated goal of the Maxent learner is to model speaker
judgements. The predictive quality of the model is evaluated by measuring the
correlation between the weights assigned to novel words by the learned grammar
and the ratings assigned by actual speakers.

Linking function The linking function between the log-likelihood of the
data and the predictive capacity of the model is a foundational assumption of the
Maxent learner. According to this linking function, the grammars with the highest
log-likelihood should also be those most predictive of speaker judgements for novel
items.

Representational system The well-foundedness of Maxent models for
modelling linguistic data is well-established (Berger et al., 1996; Della Pietra et al.,
1997; Eisner, 2001; Manning and Klein, 2003; Rosenfeld, 1996). However, the rep-
resentational system and process of constraint selection used by the Maxent learner
are novel. To evaluate the performance of these, we compare the performance of
automatically learned grammars with a grammar of Maxent weighted hand-written
constraints and we examine the specific constraints that correspond to a rise or
fall in log-likelihood or predictiveness.

It is to be noted that these metrics are related in complex ways. For ex-
ample, a disconnect between the progression of the log-likelihood of the data and
model predictiveness would not necessarily mean that the linking function should
be called into question. It might simply be the case (among many other things)
that the representational system does not allow the model access to information
that is available to speakers.

Evaluation schedule The automatic and hand-written models are both
evaluated incrementally as new constraints are added to the grammar. The cor-
relation between the automatic model and the speaker judgements is evaluated
after the acquisition of each new constraint until the grammar size reaches 100,
and every 20 constraints thereafter. The correlation between the hand-written
model and the speaker judgements is first evaluated after the 384 hand-written
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constraints are incorporated into the model, and then after every 20 constraints in
the same manner as for the automatic model. The evaluation of the log-likelihood
of the training data is considerably more time-intensive as, for each data point, it
requires the evaluation of the partition function Z (equation 4.2) for each of the
five folds of the training data. For these evaluations we compute Z exactly by ex-
haustive enumeration of the unnormalized probability for all possible wordforms.
For the automatic model, the log-likelihood is evaluated in increments of 40 con-
straints and then, for those sections that show a sharp change in log-likelihood, for
each individual grammar. For the hand-written model, the log-likelihood is first
evaluated at 380 constraints (so just before all the 384 hand-written constraints
are integrated into the model), in increments of 20 constraints over areas of the
curve that show sharp change, and in increments of 40 constraints elsewhere.

4.1.5 Results and discussion

Cross-validated log-likelihood of data For the automatic grammar,
figure 4.1 shows that the model is performing as we would expect: as constraints are
first added to the grammar, the log-likelihood rises sharply and then tapers off. The
constraints learned during the initial period describe strongly under-represented
segments and patterns. For example, one of the earliest selected constraints assigns
a weight to [p’], which is an extremely rare segment. The log-likelihood peaks at
360 constraints and then starts to fall slowly, an indication that the model is
becoming over-trained.

The 384 hand-written constraints of the hand-written grammar do not raise
the overall log-likelihood of the model as much as the constraints that are added
to it by the automatic selection algorithm. The log-likelihood of the hand-written
model peaks at 900 constraints and continues to rise moderately, showing no sign
of over-training. The peak of the hand grammar is slightly higher than that of the
automatic model (-9888 and -9893, respectively).

Correlation between model predictions and speaker judgements
Figure 4.2 shows the correlation between speaker judgements and model predic-
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Figure 4.1: Log-likelihood of training data

tions for both models. The peak in the hand-written model at 384 constraints
(r = .45) is higher than the peak in correlation for the automatic model (r =
.34 at 80 constraints). This difference is statistically significant (p < .01, with
non-parametric bootstrapping).7 This implies that automatic constraint selection
is less optimal than a phonologically motivated grammar that explicitly encodes
OCP-Place.

One unexpected result is that for the hand-written model, the correlation
with speaker judgements falls off as automatically selected constraints are added
to the grammar. This fall in correlation between the hand-written grammar and
the speaker judgements between 384 and 1000 constraints is significant (p < .01,
with non-parametric bootstrapping).

7Bootstrap method used for comparing two models, A and B: For each of N replications,
sample the items in the training data with replacement. Calculate the correlation coefficient
between the scores of each model with the speaker judgements on that sample. The proportion
of samples for which A has a higher correlation coefficient than B can be taken as the p-value of
a one-tailed hypothesis test that A is better than B.
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Figure 4.3: Speaker predictions and model performance for OCP-Place

Performance on OCP-Place Figure 4.3 shows violin density plots of
speaker ratings grouped together for the main experimental conditions of King
and Rose (2003) (OCP violations, LA violations (stops that differ in voice and/or
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constricted glottis), OCP-LA violations (nonce forms that violate both restrictions)
and controls) side-by-side with the predictions of the best (most predictive) hand-
written and automatic models. A violin density plot is similar to a boxplot except
the width of the box is proportional to the frequency of observations in that area.
The blue line designates the second and third quantiles and the square blue box
is the median. Note that the speaker judgements for forms with OCP-Place and
OCP-LA violations are higher (indicating lower acceptability) than for controls,
and that both models make similar predictions.

Analysis of automatically acquired constraints

Table 4.5: First six constraints acquired by the automatic grammar

Constraint
number

Constraint

1 *[ˆ+dorsal,+constricted-glottis][+consonantal]
[+labial,+constricted-glottis]
(*[not k’][not j or w][p’])

2 *[+labial,+constricted-glottis]
(*[p’])

3 * [+nasal,-anterior]
(*[ɲ])

4 *[-sonorant,+coronal][-sonorant,-anterior]
(*[ʒ, d, ʤ, s, s’, t, t’, ʧ, ʧ’, z][ɲ, ʒ, ʤ, ʧ, ʧ’])

5 *[-voice,+strident][+voice,+strident]
(*[s, s’, ʧ, ʧ’][ʒ, ʤ, z])

6 *[-continuant,-anterior][-sonorant,-
continuant,+anterior]
(*[ɲ, ʤ, ʧ, ʧ’][d, t, t’])
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Automatic constraints corresponding to a rise in log-likelihood
The constraints that correspond to a sharp rise in log-likelihood are similar for
both models. Table 4.5 shows the six first automatically selected constraints of
the automatic grammar. The first three involve rare segments ([p’], [ɲ]). The
fourth, fifth and sixth constraints encode a restriction over coronal obstruents in
adjacent position without reference to word edge. As discussed in Chapter 3, OCP-
Place has been found to be active over coronals generally, although it is stronger
within the stop and fricative groups than between (Greenberg, 1950; McCarthy,
1986) so this constraint appears to be a reasonable generalization for a super-set of
OCP-Place for coronal fricatives and stops in adjacent position (bearing in mind
that, all else being equal, the constraint selection heuristic favours short constraints
over long ones and constraints involving many segments over those that involve
few) .

Table 4.6: First six constraints acquired automatically by the hand grammar

Constraint
number

Constraint

385 *[-word boundary][ˆ+sonorant,+continuant,+anterior]
[+labial,+constricted-glottis]
(*[any segment][not r, l, n][p’])

386 *[+nasal,-anterior][-word boundary][-word boundary]
(*[ɲ][any segment][any segment])

387 *[ˆ+voice,-anterior][-voice][+voice,-anterior]
(*[not ʤ, ɲ or ʒ][p’, f, ʃ , s’, s, ʧ, ʧ’, t’, t, k’, k][ɲ, ɲ, ʤ, ʒ])

388 *[+labial,+constricted-glottis]
(*[p’])

389 *[-sonorant,+anterior][-sonorant,-anterior]
(*[d, s, s’, t ,t’, z][ʃ, ʒ, ʤ, ʧ, ʧ’])

340 *[-sonorant,-anterior][+continuant,+strident]
(*[ʃ, ʒ, ʤ, ʧ, ʧ’][ʃ, ʒ, s, s’, z])
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For the hand-written model, the correlation peaks at 384 constraints but
the log-likelihood rises sharply thereafter. Table 4.6 shows that the first six au-
tomatically learned constraints are very similar to those of the fully automatic
model; the first four are restrictions over rare ([p’], [ɲ]) and distributionally irreg-
ular ([ʤ]) segments followed by two constraints generalizing over OCP-Place for
coronal obstruents similar to those of the automatic grammar (although they do
not improve the correlation with speaker judgments).

Automatically learned constraints corresponding to a fall in pre-
dictiveness For both the automatic and hand-written grammars, the acquisition
of some constraints corresponds to a fall in predictiveness. In particular, in the
hand grammar, the correlation between the grammar and the speaker judgements
falls from .45 to .38 with the acquisition of a single constraint over the co-occurrence
of ejective voiceless stops and affricates and non-ejective voiceless obstruents:

*[-continuant,-constricted glottis][+constricted glottis]

For the automatic grammar, the acquisition of constraints involving seg-
ments with differing values of constricted glottis also corresponds to a fall in pre-
dictiveness (the correlation falls by .25 for two combined).

*[-constricted glottis,-strident][-sonorant,+continuant][+constricted glottis]

*[+voice,+coronal][+constricted glottis][+labial]

Our analysis is that although the model is effectively acquiring the restric-
tion over non-identical homorganic consonants as it is encoded in the experimental
items of the speaker judgement task, the representation of lexically reduplicated
consonants in a manner analogous to ordinary consonants is problematic. In par-
ticular, the encoding of identical consonants alters the nature of LA in the lexicon.
As discussed previously, in Amharic, LA (both broad and narrow) is a weak re-
striction both statistically (King and Rose, 2003) and in speaker judgements. The
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Figure 4.4: Speakers judgements for LA violations

King and Rose (2003) judgement task data investigated Amharic speaker sensi-
tivity to both OCP-Place violations and LA violations and the results show that
there is a moderate dispreference for LA violations in the right edge location only.

The results of the judgement task are shown in the violin density plot in
figure 4.4 that compares ratings for OCP and OCP-LA violations (combined) to
LA violations and controls. Note the similarity between the ratings for controls
and for LA violations. This result contrasts with figure 4.5 which shows predicted
acceptability ratings for the best automatic model. The predictions for LA viola-
tions are stretched more to the unacceptable range than is the case for the speaker
judgements.

This over-estimation of the unacceptability of nonce forms with LA viola-
tions is directly related to the presence of identical consonants in our training data.
Consider the case of the roots [mlt] and [fnk’] and their possible counterparts with
identical consonants [mltt] and [fnk’k’]. The repeated stops agree in voice and
constricted glottis, strengthening the statistical adherence to LA.

Our general analysis for the baseline simulation is that the model makes
predictions for many restrictions over rare and positionally restricted consonants
that are not included in the speaker judgement data and that cannot therefore be
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Figure 4.5: Automatic model predictions for LA violations

evaluated. Moreover, the model’s prediction that LA violations would be dispre-
ferred by speakers appears to be an artefact of the encoding of identical consonants.
It may be the case that identical consonants are produced through a process that
is distinct from single feature harmony (such as LA) and that the two processes do
not interact (Gallagher, 2008) or that identical consonants are effectively absent
from UR where harmony is computed. Our analysis does not allow us to determine
which of these hypotheses is correct but it does motivate a second simulation that
modifies the representation of identical consonants such that they do not reinforce
harmony constraints.

4.2 Simulation II: modified model

In simulation I, every occurrence of identical consonants in the training data
is an occurrence of identical distinctive features. For laryngeal features, this poses
a problem because it strengthens the presence of LA, an otherwise weak harmony
restriction, and the model over-estimates speaker dis-preference for nonce words
that violate the restriction. The goal of simulation II is therefore to modify the
representation such that an occurrence of identical consonants does not entail the
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occurrence of identical distinctive features.
In recent work, Berent et al. (2012) propose a representational system that

addresses the issue of interaction between reduplication and single-feature har-
mony and the need to be able to generalize over patterns of identical consonants.
These researchers show that Hebrew speakers are capable of generalizing their
knowledge of identical consonant patterns to consonants that are not native to
their language. For example, speakers dis-prefer identical consonants at the left
edge of the root even if the consonants do not occur in Hebrew. Their solution
is to enrich the set of phonological forms (potential constraints) with 1) a feature
matrix [segment] and 2) a representation of identical consonants where the second
consonant is void of features and indexed to the first. For example, in our version
of the Maxent learner, the phonological form *#[+labial,+nasal][+labial,+nasal]
represents two [m] segments at the left edge of a word, but the Berent et al. ver-
sion of the model also has access to *#[+labial,+nasal]i_i and *#[segment]i_i

where the second segment is indexed to the first but has no distinctive features
of its own. The *#[segment]_i representation solves Berent et al.’s problem of
generalization to non-native segments and presumably, the *#[labial,+nasal]i_i

representation would allow the model to acquire knowledge of identical consonant
patterns without reinforcing single-feature harmony.

Unfortunately, the model used by Berent et al. (2012) was not available
at the time we ran these simulations. Our solution was to replace identical con-
sonants after the first occurrence in a word with the featureless placeholder X
representation used for weak roots . For example, roots such as ‘bələssəsə’ ‘to bare
the teeth‘, which has the root consonants ‘blss’ (The second occurrence of ‘s’ is a
geminate), and follows the ABCC pattern, are encoded as [blsX]. The placeholder
method allows reference to the templatic pattern and word edge information of the
root, in the case of ‘bələssəsə’, a quadriliteral pattern, and keeps it distinct from
an unrelated triliteral root, [bls] for the verb ‘bəlləsə’ ‘to be very tired‘. In deciding
which of the identical consonants in a root should be coded as ‘X’, we decided that
the first occurrence of a consonant (counting from left to right) should be coded as
surface true, and that successive occurrences would be coded as ‘X’. The purpose of



81

this decision was to preserve information about the left word-edge because, as our
learning data contains roots of different lengths, the left edge is the single location
shared by all roots where identical consonants are rare and is therefore a strong
cue to finding the OCP-Place restriction.

This representation is not ideal. It encodes neither the relationship between
the first and successive occurrences of a consonant (so [blX] could encode either
‘blb’ or ‘bll’) nor does it distinguish between copies of different consonants (so
[blXX] could be ‘blll, ‘bllb, ‘blbl’ etc). A better method would be to use a different
placeholder representation for each consonant; the placeholder for [r] would be
different from that for [t]. However, the limitations of the model in terms of the
size of the segment inventory would have made this solution difficult to implement.

Table 4.7: Verb root encoding by type

root type example root sim I sim II

surface true bəggənə‘get furious’ bgn bgn bgn
weak awwədə ‘perfume’ wd Xwd Xwd

identical
bədəbbədə ‘beat’ bdbd bdXX
bəbbətə ‘put inside’ bbt bXt
wəjjəwə ‘lament’ wjw wjX

Table 4.7 contrasts the encoding in the baseline and modified models. The
shaded cells show patterns with identical consonants where any occurrence of a
consonant after the first is encoded as the placeholder ‘X’. Note that this decision
deprives the model of any information about the relative frequency of identical
consonants, including those in non-reduplicative patterns.

The absence of identical consonants from the representation modifies the
description of OCP-Place for the hand-written grammar. For the baseline model,
the hand-written grammar encoded a restriction over homorganic but non-identical
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Table 4.8: Comparison of hand-written grammars
condition expression

Baseline model

left edge (C1C2X)
*[word boundary][b][Labial not b]
*[word boundary][Labial not b][b]

right edge (XC2C3)
*[b][Labial not b][word boundary]
*[Labial not b][b][word boundary]

non-adjacent (C1XC3)
*[Labial not b][not Labial][b]
*[b][not Labial][Labial not b]

Modified model
left edge (C1C2X) *[word boundary][Labial][Labial]
right edge (XC2C3) *[Labial][Labial][word boundary]
non-adjacent (C1XC3) *[Labial][word boundary][Labial]

consonants. However, absent the identical consonants, the hand-written grammar
can simply be stated as a restriction over homorganic consonants according to place
of articulation and word location. Table 4.8 contrasts the encoding of OCP-Place
in the hand-written grammar of the baseline model and the modified model. Given
the important role of LA in the first simulation, we included constraints describing
the restriction over stops with different features of glottis into the modified hand-
grammar. The complete hand-written grammar of the modified model (including
constraints for LA) contains only 27 constraints compared to 384 in the baseline.

In all aspects other than the encoding of identical consonants and the ex-
pression of the hand-written grammar, the modified simulation is identical to the
first: two competing models, a fully automatic model and a model initialized with
a hand-written set of constraints, are evaluated and compared as for the baseline.

4.2.1 Results and discussion

Figure 4.6 shows logLθ(D) for simulation II. Note that for both models,
the curve appears to fall after 360 or so constraints. This is likely a sign of over-
training. Similarly to simulation I, the log-likelihood of the hand-written model
does not rise until after the incorporation of the (18) hand-written constraints.

After incorporation of the hand-written constraints, the curves for both
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Figure 4.6: Log-likelihood of data: simulation II

models are extremely similar. For both models, and as for simulation I, the
sharp rises in log-likelihood corresponds in many cases to the automatic acquisition
of constraints over generally rare segments and positionally restricted segments.
There is essentially no difference between the two models in terms of log-likelihood
as the automatic model peaks at -9907 for 380 constraints and the hand written
model peaks at -9904 with 340 constraints.

Figure 4.7 shows the correlation between the models and speaker judge-
ments. The hand-written model peaks at 40 constraints (r = .45) but the automatic
grammar peaks much later at 380 constraints (r = .39). However, the difference
between the peak of the automatic model and the peak of the hand-written model
is no longer statistically significant p > .05).

Model performance on OCP-Place Figure 4.8 shows that, as for sim-
ulation I, both the hand-written and automatic models perform well in predicting
that nonce forms with OCP and OCP-LA violations are worse than controls. The
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Figure 4.7: Speaker judgment correlation: simulation II
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Figure 4.8: Speaker predictions and model performance for OCP-Place

improvement in the general correlation between the best automatic model and the
speaker judgements may be a consequence of the modification in the encoding of
identical consonants.

Figure 4.9 shows that the automatic model predictions for LA violations are
very similar to controls as is the case for the speaker judgements (figure 4.4). This
contrasts with the predictions of the automatic model in simulation I where the
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Figure 4.9: Automatic model predictions for LA violations: simulation II

predictions for LA violations were somewhat stretched towards higher (more unfa-
vorable) ratings (figure 4.5). Furthermore, although the hand-written constraints
for LA in the most predictive hand-written grammar were assigned weights by the
model, their inclusion did not improve model predictiveness compared to simula-
tion I.

Note that we are not claiming that the improvement in the predictions of
the modified model is due entirely to eliminating the over-estimation of LA, but
that including identical consonants in frequent patterns in the training data (given
the available representation) may have consequences for model quality.

We also note that both models quickly acquired the following constraint:
*[-sonorant,+continuant][+continuant,+voice] (21st and 42nd constraint for the
automatic and hand-written models, respectively). This constraint encodes a gen-
eral restriction over the co-occurrence of fricatives where the second fricative is
voiced, rather than the narrower restriction over homorganic coronal fricatives (s,
s’, z, ʧ...) that is expected as part of OCP-Place.

The statistical analysis of our verb root database (table 4.9) shows that
non-homorganic fricative sequences are effectively under-represented (O/E values
< 1) in adjacent position but only when the first fricative is voiceless8. Although

8This analysis is over triliteral verb roots with the 14 most frequent and evently distributed
segments



86

no such restriction is documented for Amharic, a general restriction against the
co-occurrence of fricatives is attested in Chaha, a neighboring language (Banksira,
2000).

Table 4.9: O/E values for coronal/labial fricative sequences

location C1C2X XC2C3 C1XC3

fz 0 0.46 0.76
fs 0.78 0.45 1.2
zf 1.64 1.5 1.51
sf 0.53 0.34 1.46

4.3 Discussion

Our simulations suggest that although the OCP-Place restriction is acquired
by the automatic models in both simulations, the encoding of identical consonants
as they appear in surface realization may be problematic (for example, the root
[rtt] is represented with all three consonants although the second occurrence of [t]
could be analysed as absent from the surface representation). In some patterns
these identical consonants are very frequent and their presence may be reinforcing
the otherwise weak LA harmony restriction. It may well be the case that speaker
judgements operate over some representation from which identical right edge con-
sonants are absent, or that the process of reduplication does not interact with
single feature harmony but, in its current incarnation, the Maxent learner does
not provide an appropriate representation.

Our stated goal in this section was to investigate the performance of the
Maxent learner on a co-occurrence restriction across whole words, in contrast with
the Hayes and Wilson simulations for English onsets. OCP-Place, a statistically
robust restriction over verb roots, seemed to be a promising test case for the
modelling of a complex restriction. However, although OCP-Place in Semitic lan-
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guages is well-documented in theoretical and statistical studies as well as experi-
mental work, the learned grammars include heavily weighted constraints for many
restrictions other than OCP-Place, such as restrictions over rare and irregularly
distributed consonants. There is also evidence for a previously unstudied general
restriction over the co-occurrence of fricatives (rather than the usual OCP-Place
restriction over coronal fricatives).

A further aspect of the phonotactic grammar of Amharic that we did not
evaluate is the acceptability of nonce words with identical consonants in different
locations. Based on our hypothesis that the acceptability of a nonce word is
a function of the lexical frequency of the component phonotactic patterns, we
would expect speakers to have different judgements for nonce words with identical
consonants in left edge and non-adjacent patterns (ABA and AAB, for example)
which are rare, compared to more frequent patterns such as ABB and ABCC.

The rather inevitable conclusion is that a full evaluation of the performance
of the Maxent learner requires experimental data that explores the full range of
restrictions that characterize the language rather than our current data which is
narrowly focussed on OCP-Place and LA violations.



5 Experiment I: Co-occurrence
patterns

5.1 Overview

In the previous chapter, we saw that it is not possible to make a full eval-
uation of the performance of the Maxent Learner (Hayes and Wilson, 2008) in
predicting speaker judgements because our test data (King and Rose, 2003) in-
vestigates only OCP-Place and Laryngeal Agreement violations. The goal of the
experiments is therefore to obtain judgement data for a broad range of phonotactic
restriction types:

• OCP-Place violations

• Non-homorganic fricative sequences.

• Verb roots with identical consonants.

• Distributionally irregular segments

We concluded that a single experiment exploring speaker judgements for
those four broad conditions would be uncomfortably long for participants so we
decided to break the task into two separate experiments. The first experiment
is focused on consonant co-occurrence restrictions, and regroups OCP-Place, co-
occurrence of identical consonants and co-occurrence of non-homorganic fricative
sequences. The rationale is that these three are co-occurrence restrictions, so they
form a natural group on that dimension. It also allows us to compare judgements

88
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for nonce words with identical consonants, OCP-Place violations and controls in
the same experiment. The fourth condition (distributionally irregular consonants)
is reserved for the second experiment.

The choice of conditions for experiment I is motivated by the dictionary
analysis of Chapter 3 and the simulations of Chapter 4. To summarize those
findings:

• verb roots with OCP-Place violations are under-represented in the lexicon

• verb roots with identical consonants in left edge (AAB) and non-adjacent
(ABA, ABAC) patterns are under-represented in the lexicon

• verb roots with adjacent non-homorganic fricatives are under-represented in
the lexicon when the first segment is voiceless

• verb roots with identical consonants in right edge patterns compatible with
copy or reduplication are over-represented in the lexicon

Collecting speaker judgement data for Amharic poses some difficulties. It
was not possible for us to directly collect data in Ethiopia (as King and Rose did)
and we considered that the lack of technological infrastructure would make it dif-
ficult to obtain data through a web-based experiment targeting speakers living in
Ethiopia. For that reason, we collect data through a web-based self-paced accept-
ability task targeting the diaspora community in the North America. Although
this situation is not ideal because 1) our participants do not have the chance to
ask questions if they do not understand the nature of the task and 2) they are
likely bilingual in English and Amharic, the initial pilot study indicated strong
statistical trends in the predicted direction, justifying the use of the methodology.

5.2 Methodology

There are significant differences between our methodology and that used
for the King and Rose task (summarized in table 5.1). Our task is presented in an
internet based on-line format to speakers who are at least bilingual in English and
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Amharic and we assume that speakers are not communicating during the task.
King and Rose use a paper and pencil format directly presented to speakers in
Ethiopia. As the subjects were educated, they had some knowledge of English but
the task instructions, both written and oral, were in Amharic. Several speakers did
the task at the same time and were given the opportunity to ask questions about
the task with the experimenter before beginning, but they did not communicate
between themselves.

Table 5.1: Comparison of methodology

King and Rose Colavin, Levy and Rose

presentation paper-and-pencil online
rating scale 1-6 1-9
randomization limited pseudo-randomization
nonce word selection see below

Our format also made it possible to use pseudo-randomization of experi-
mental items, which was not possible in the King and Rose study. It is because
of these methodological differences and to ensure that our test data is consistent
across conditions, that we decided to obtain new judgements for OCP-Place vio-
lations, as well as the new phonotactic restrictions.

The judgement task of King and Rose contained 270 items and took around
45 - 60mn to complete. As the participants found the task taxing, we decided to
limit the number of items in our experiment to 200. The detail of the items is
shown in table 5.2.

5.2.1 Novel verb construction

As rare and distributionally irregular consonants are the object of a separate
experiment, only the 14 most frequent and evenly distributed segments [m, l, f, t,
t’, d, s, z, n, l, r, k, k’, g] are used. Root length is also likely to affect speaker
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Table 5.2: Overview of experimental items

OCP-Place

5 places of articulation

45 items
(Lab. Dor, Cor-stop,Cor-fric,Cor-son)
3 locations
(left edge, right edge, non-adjacent)
3 repetitions

identical consonants

14 segments

36 items
3 locations
(left edge,right edge,non-adjacent)
- 6 exceptional cases for which are ap-
propriate nonce verbs

fricative sequences

4 patterns (fs-sf-fz-zf)

36 items
3 locations
(left edge,right edge,non-adjacent)
3 repetitions

controls 83 items

Total 200 items

judgements (and should at some point be investigated), so our nonce verbs are all
triliteral following the classic Semitic pattern that is also the single most common
form in Amharic.

An important goal of our experimental methodology is to ensure that the
experimental items encode the target condition with minimal interference from
other statistical or phonotactic characteristics. The general procedure in a similar
study (Frisch and Zawaydeh, 2001) is as follows:

1) Dictionary analysis. The purpose of the dictionary analysis is to provide a
statistical foundation for the creation of experimental items. For Semitic-
language word judgement tasks, the dictionary is the lexicon of verb roots1

and the analysis computes, for each word of the lexicon, those statistical and
1For Frisch and Zawaydeh (2001), at least, the analysis is based on triliteral roots only.
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phonotactic characteristics that may affect speaker judgements. The list may
vary, but would include at least the following:

– positional unigram probability (PP). For a word ‘abc’, PP is defined as

- P(a in position 1) * P(b in position 2) * P(c in position 3)

– transitional probability (TP). For a word ‘abc’, TP is defined as

- P(a|#) * P(b|a)* P(c|b) * P(#|C)

– Neighbourhood density (ND) is the number of neighbours for a given
word. A neighbour is defined as the number of words that are within a
single segment edit distance, through a single substitution, deletion or
insertion. For a word ‘abc’, the neighbours are:

- xbc, axc, abx, xabc, axbc, abxc, abcx, ab, bc, ac.

This definition of neighbourhood density is broader than that used in
Frisch and Zawaydeh (2001) which counts as neighbours only words that
share two of the three consonants with the target. However, our lexicon
contains such a large proportion of non-triliteral roots that the broader
metric seems reasonable.

2) Create the set of all possible non-words with the target phonotactic charac-
teristics.

3) For each nonce word of that set, compute the PP, TP and ND.

4) Select nonce words such that they represent a uniform a distribution over
PP, TP and ND.

Although versions of this method have obtained good results in previous
studies, we prefer a slightly modified version with a dictionary analysis adapted
to the verb root lexicon of Amharic and a method for nonce word selection that
recognizes the fundamental difference between controls and stimuli and narrowly
defines the necessary characteristics of each.
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Dictionary analysis Although our controls and stimuli are all triliteral
forms, the lexical analysis is based on the entire lexicon of 4243 verb roots expressed
in surface realization. Surface realization differs from the underlying representation
in two important aspects.

• Identical consonants in patterns that are assumed to arise through a process
of spreading or copying (Gafos, 1999; McCarthy, 1979) are absent from the
underlying representation.

• In weak roots, a (specific) consonant absent from the surface realization is
assumed to be present in the underlying representation. For the former
guttural consonants (but not the glides), it is assumed to be replaced by [a].

Not only do we have a stated preference for avoiding theoretical assumptions where
possible, but the use of surface realization rather than underlying representation
makes particular sense in this context for two reasons:

• As discussed in chapter 3, the lexicon of Amharic verb roots is very diverse,
with a range of root lengths (there are many weak and quadriliteral roots)
and roots with identical consonants. Given our assumption that speaker
judgements for verb roots are influenced primarily by the lexicon of verb
roots, ignoring such a large number of them means that our statistical anal-
ysis would be limited to a small subset of the lexicon.

• Our experimental stimuli includes judgements for nonce verbs with identical
consonants, so it makes sense to base the statistical analysis on the surface
representation where such patterns are present.

In the case of weak roots, as speakers have access to non-root phonological cues to
the diachronic presence of a consonant, the consonant missing from SR is replaced
by a place marker ”X” to preserve word edge information.

Based on this representation, we compute PP, TP 2and ND:

• Positional unigram probability (PP) is defined as above.
2The probabilities for PP and TP are estimated with relative frequency estimation.
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• Transitional probability (TP) For this study, for a root /abc/, TP is defined
as:

– P(a|#)*P(b|a)*P(c|b)

Note that in computing TP, it is usual to include P(#|c), the probability of
the word boundary given the final segment. We have not done so because
there are some differences in right word-edge distributions between triliteral
roots and roots with more than three consonants where identical consonants
are common.

• Neighborhood density (ND) is defined as above.

Nonce word selection In contrast to similar studies, we make a clear
distinction between the selection of controls and stimuli. We define the purpose of
controls as a baseline against which the experimental condition stimuli can be com-
pared. The ideal controls are therefore statistically similar to the most statistically
representative or bland words in the lexicon, words that have none of the phono-
tactic characteristics that might be assumed to affect speaker judgements. Stimuli,
however, are designed to encode phonotactic patterns that are either rare in the
lexicon (under-represented) or overly frequent (over-represented) so stimuli should
be representative of the experimental condition that they target, rather than the
distribution of real words. The full list of experimental items for experiment I is
listed in Appendix A.

Controls To select the set of nonce forms that fulfil our criterion of being
statistically similar to real words, we proceed as follows:

1. Select all triliteral (because all our nonce forms are triliteral) real words that
have none of the phonotactic characteristics that may be assumed to affect
speaker judgements in Amharic such as OCP violations, identical consonants,
narrow LA violations (voiceless stops differ for the feature CG, constricted
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glottis) and fricative sequences.3 Nasal sequences were also eliminated be-
cause nasal assimilation is typologically common between adjacent conso-
nants and in some derivations, root consonants may be in adjacent position.

2. For that set, compute the median and quantiles4 for ND, TP and PP. We
assume that the inter-quartile range (in the 2nd and 3rd quartiles) is most
representative of the statistical characteristics of real triliteral verb roots.

3. Create the set of all the possible nonce triliteral roots with no phonotactic
violations.

4. Select those nonces for which the ND, PP and TP values fall within the
corresponding inter-quartile ND, PP and TP ranges for the real triliteral
verb root dataset.

Figure 5.1: Distribution of controls compared to real words

3Broad LA violations (stops differing in voice, stops differing in both voice and constricted
glottis) violations were not eliminated because 1) to do so would have considerably narrowed the
space of possible nonce forms, and 2) the original analysis of the King and Rose task indicated
that such violations do not significantly affect speaker judgements.

4The inter-quartile range was used rather than the standard deviation because the distribution
of the data is often skewed.
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In figure 5.1, the set of triliteral real words with no known phonotactic
violations is represented in blue. The 96 nonces which fulfil the condition of falling
within the interquartile ranges of the real words for ND, TP and PP are in pink.
After verification by a native speaker (it is possible that some of the nonces are
real words, such as recent slang, that are not included in the dictionary), we select
the final 70 controls.

Stimuli For stimuli selection, our goal is to select nonce forms that are
statistically representative of the target condition. Ideally, given the entire set of
words with OCP-Place violations (both real words and nonces), the selected nonce
stimuli would represent equal numbers of high, low and median values of ND, PP
and TP for that set. Our preliminary method of stimuli selection was as follows:

1. Find the set of all possible nonce and real words for the condition

2. Compute ND, PP and TP for each word of that set.

3. Define the median values for ND, TP, PP

4. Select nonces such that they are matched with the set of potential experi-
mental items for ND, TP and PP.

However, we found that it is not possible to select a balanced stimuli set
with this method. There are several issues but the one that best illustrates the
general problem is the distribution of TP. There is experimental work to show
that speakers are sensitive to biphones probabilities (Michael S. Vitevitch and
Auer, 1999; Vitevitch, 1998; Vitevitch et al., 1997) so it is an important metric.
However, TP poses two problems, 1) it is not informative about non-adjacent
conditions (such as OCP-Place violations in C1XC3) and 2) it varies very widely
between conditions. For example, TP values for real words (for triliteral, average
TP = -9.13) tend to be higher than those for nonce words (-18.85), left edge OCP-
Place violations values tend to be low (-33.65), while values for right edge identical
consonants are close to those of real words (-9.83).5

5Trigram TP would have been a possible solution to this problem, but adding a metric con-
siderably increases the difficulty of selecting a set of nonce forms balanced for all of the metrics
under consideration.
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A reasonable solution to this problem is to select stimuli by creating all the
possible nonce words for each narrowly defined condition, and finding the set of
nonces that have TP, ND and PP values that fall within the inter-quartile range
for that set. Stimuli are then selected from the inter-quartile set. For example, for
the condition ‘ocp-non-adjacent-labial’ (figure 5.2) we create all the possible nonce
forms for that condition and compute the ND, TP and PP for each item. We then
select stimuli from the subset of nonce forms that have ND, TP and PP values that
fall within the interquartile range for that condition. Note that although similar
to the procedure for the selection of controls, there is a crucial difference; controls
are selected based on the interquartile range for NP, TP and PP of real words
whereas stimuli are selected on the interquartile range for ND, TP and PP of the
set of available nonces.

This method also solves a similar problem with neighbourhood density. As
discussed in Chapter 2, real words (and presumably nonce words with no phono-
tactic violations) tend to inhabit denser neighbourhoods than nonce words with
under-represented sequences. This is certainly true for our dataset. For example,
real words have an average of 28 neighbours whereas nonce words with left edge
identical consonants usually have 0 neighbours.

Figure 5.2: Selection of nonce forms for the ocp-labial-left edge condition
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To summarize, our search for a motivated and consistent method of stim-
uli selection has led us to select stimuli that are statistically representative (fall
within the interquartile range for PP, TP and ND) of the nonces available for that
condition.

The case might be made that our method is deficient on the grounds that
our stimuli encode the average statistical values for each condition and that they
represent only a narrow sample of the possible statistical variation for a given
condition. A possible counter-argument is that our target conditions are more
narrowly defined than in similar studies (for example, the stimuli for OCP-Place
are broken down by location of violation and by POA, rather than just by location
of violation) in a way that effectively represents the gradiency of the restriction.

There were some cases where even this refined method of stimuli selection
was not satisfactory. For a few conditions over adjacent consonants, the values of
TP were bi-modal and heavily skewed such that choosing all the stimuli from the
IQ range was not possible. In those cases, we hand selected the stimuli according
to our best judgement to represent the condition, given the available set of nonces.

OCP-Place For each of the 15 specific conditions (3 locations * 5 POA),
we followed the general procedure described above. However, in several conditions,
there were insufficient nonces fulfilling the requirement of being in the inter-quartile
range for ND, PP and TP. This problem arose for patterns that are extremely rare
in the lexicon, such as dorsals in the left edge location where the values for TP are
extremely skewed. In those cases, we selected nonces that were in the inter-quartile
range for ND and PP only.

Identical consonants The general procedure was used to select left edge
and non-adjacent reduplication stimuli for each of the 14 segments, as these are
strongly under-represented. However, right edge identical consonants are so fre-
quent in the lexicon that there are very few nonce forms available, particularly as
we are using only the most frequent segments. Stimuli for the right edge condition
were therefore directly hand selected from the list of all nonce forms with right
edge reduplication but no other distinctive characteristics. In the case of [b, l,



99

m, n, r], there are no nonce forms available that do not also have an some other
phonotactic particularity (for example, [nrr] and [lrr] violate OCP-Place). For this
reason, the final stimuli set for the right edge reduplication condition contains only
9 stimuli, instead of 14.

Fricative sequences Fricative sequences were selected with the general
procedure: for each of the 12 specific conditions (4 patterns: f-s, s-f, f-z, z-f * 3
locations: left edge, right edge, non-adjacent), we first created nonce forms that
fulfill the condition (for example, left edge-s-f) and computed the ND, TP and PP
interquartile ranges. We then determined the subset of nonces for which the ND,
TP and PP values fall in the inter-quartile range. Each condition is represented by
three items, so three stimuli were then selected from that inter-quartile set, such
that the consonants not involved in the fricative sequence present some variation
over manner and POA.

5.2.2 Presentation

As the participants for the study are geographically dispersed, we devel-
oped an internet accessible version using the Ibex software for running self-paced
acceptability judgement tasks online through a web browser6. Nonce words are
presented in 3ms perfective (dictionary citation) form which is CəCCəCə, where
the 2nd consonant is geminated. Although gemination is not conveyed in the
Amharic writing system, this is not problematic since subjects know which form
of the verb the data are presented in. The perfective form does not distinguish
between Type A and Type B, and all nonce forms will therefore be uniform in
their prosodic shape.

The experiment is divided into 5 parts:

• The first screens are in English and are used to obtain informed consent for
the experiment and to collect some information on the participant’s language
background (where the participant learned to speak Amharic, what other
languages are spoken, and countries where the participant has lived). This

6http://code.google.com/p/webspr/.
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section also collects a password that participants use to claim their payment.
This is the only section presented in English. All subsequent screens are in
Amharic.

• To ensure that participants do know Amharic, they are presented with 3
real words of Amharic and 3 invented words in a randomized sequence and
are asked to indicate which ones are real words by pressing ‘yes’ and ‘no’
buttons.

• Instructions: There are several screens explaining that the goal is to assign
a grade to invented verbs presented in 3ms perfective (dictionary citation)
form. Participants are instructed to assign the grade based on whether they
think that it would be a good word for Amharic.

• Training: Training consists of a list of 19 nonce verb roots that are represen-
tative of the conditions and controls of experimental items. The goal is to
allow the participants to become familiar with the use of the 9 point scale.
Each training item appears on the screen above square buttons numbered
1-9. To the left of the ‘1’ button, is the Amharic term for ‘good’. To the
right of the ‘9’ button appears the Amharic expression for ‘not good’. Below
the button scale appears the Amharic expression for ‘use the number keys
to respond’. Each item remains on the screen until the participant presses
a number key. The item is replaced by a screen that displays a large red
star. The star remains on the screen for 500ms before a new item appears.
This was done to ensure that subjects noticed the change to the next test
item. The training items are pseudo-randomized but are presented in the
same order across participants.

• Main task: The presentation of the 200 experimental items is similar to that
of the training task. The items are pseudo-randomized between subjects such
that a specific experimental condition does not appear more than twice in a
row. The task is divided into 4 blocks with a rest period between each. The
participant determines the length of the rest by pressing a button when he
or she is ready to continue to the next block).
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A sample rating screen and part of the Amharic experiment instructions
are shown in Appendices A and B respectively.

5.2.3 Participants

The targeted participants are native speakers of Amharic aged 18 years or
older who have access to a computer and internet connection. Given the nature
of the task and the necessity of giving limited instructions (to avoid biasing the
results), we expected that some participants would misunderstand the nature of
the task. Feedback (via email) from 5 participants showed that this was indeed
the case. For example, one participant thought that there was some connection
between acceptability and the possibility that the word might be used in a poem
and others thought that the task was to determine if the experimental items were
real words. These misunderstandings produced unary or binary ratings. Unary
ratings do not have a clear interpretation given the experiment instructions and,
although Frisch et al. (2004) showed that averaged binary ratings are strongly cor-
related with gradient ratings, our subjects were instructed and trained to use the
full rating scale. As subjects are not given a means of explaining their response
strategies, we cannot know on what basis binary ratings were assigned. For this
reason, unary and binary ratings are considered uninterpretable and are not in-
cluded in the analysis. 3-ratings were considered to be an attempt to use the scale
as instructed and were included in the analysis. Participants were primarily from
the USA and Canada, but two were from Ethiopia, contacted by family in the
USA. Participants receive payment of $25 paid by check or Western Union money
transfer for those outside the USA.

5.3 Model predictions for Experiment I

The choice of a reference model to use for predicting speaker ratings is not
straightforward. The representational system used in simulation II poses problems
for modelling words with identical consonants. In the training data for that simu-
lation, occurrences of a consonant in a word after the first one (starting from the
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left edge of the word) are replaced by a single place marker ‘X’. This representation
effectively means that the model sees no examples of words with identical conso-
nants in any pattern. Presumably, as identical consonants do not occur in the
learning data, experimental items with identical consonants in surface realization
would receive a heavy penalty. Alternatively, we could encode the experimental
items with ‘X’ in the place of identical consonants in the same way as for the
learning data. Presumably, the simulation II model learned that ‘X’ in C2 is rare
(AAB forms) but ‘X’ in the case of ‘X’ in C3 is ambiguous because ‘X’ as a copy
of C1 (ABA) is rare but ‘X’ as copy of C2 is frequent (ABB). For this reason, we
compare speaker ratings to predictions of the automatic model created in simula-
tion I where the identical consonants in the training data are encoded in surface
realization. We determined that the most logical grammar size to use to model
the judgements is the one with the highest log-likelihood (360 constraints, see fig-
ure 4.1 on page 73) based our assumption that speaker judgements are a function
of Lθ(D).

(a) location of violation

model prediction

controls

C1C2X

C1XC2

XC2C3

0 2 4 6 8

(b) place of articulation

model prediction

controls

coronal
fricative

coronal
sonorant

coronal
stop

dorsal

labial

0 2 4 6 8

Figure 5.3: Model predictions for OCP-Place violations

OCP-Place Figure 5.3 shows the predicted weights for the stimuli with
OCP-Place violations. (a) shows that all locations of violation are predicted to be
rated as less wordlike than controls, though non-adjacent violations are predicted
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to be mildly less so than adjacent violations at either word edge. (b) shows that
OCP-Place violations are predicted to be rated worse than controls for all POA,
though slightly less so for some coronals.

location of identical consonants

model prediction

controls

C1C2X

C1XC3

XC2C3

5 10

Figure 5.4: Model predictions for identical consonants

Identical consonants Figure 5.4 shows the reference model predictions
for patterns of identical consonants according to location. Left edge (C1C2X)
patterns, which are rare in the lexicon, are correctly predicted to be worse than
controls but right edge patterns (XC2C3) are predicted to be slightly worse than
controls although, given their frequency, we might expect them to be more ac-
ceptable than controls. Finally, non-adjacent (C1XC3) patterns are predicted to
be rated as similar to controls, which is surprising given how rare they are in the
lexicon. This may be the combined result of the generalization algorithm which
selects, all else being equal, constraints over natural classes with few features over
those with many,7 and short constraints over long ones.

Non-homorganic fricative sequences Regarding non-homorganic frica-
tive sequences, the statistical analysis (chapter 4) indicated that only adjacent non-
homorganic fricatives where the first segment is voiceless are under-represented.

7As there is no mechanism for generalizing over identical consonants, a constraint restricting
the co-occurrence of identical consonants would have to use enough features to fully specify each
consonant.
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Figure 5.5: Model predictions for non-homorganic fricative sequences

However, figure 5.5(a) shows that all non-homorganic f, s, z sequences regardless
of pattern and location are predicted to be dis-preferred compared to controls with
a stronger dis-preference for sequences containing [z].

5.4 Experimental results

Based on Baayen et al. (2008),we use maximal LMEMs (linear mixed effect
models) with by-subject random slope for the fixed effect, and by-item random
intercepts for each nonce word, using the lmer function of the statistical software
R (package lme4). To estimate the p-value of a fixed effect, we compute the
likelihood ratio between two models identical with regard to random effects but
only one of which contains the fixed effect of interest. For a p-value < .05, factors
with |t|-values > 2 are assumed to be significant contributors to the effect. To
clarify the procedure, we explicitly detail the analysis for OCP-Place violations
according to location of violation.

OCP-Place Using a subset of the experimental data that contains only
controls and stimuli with OCP-Place violations, we create two models. :

>m1 <- lmer(rating ~ location + (location |subject_number) +
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(1 | stimuli_number), ocp_and_controls,REML=F)
>m0 <- lmer(rating ~ 1 + (place | subject_number) +
(1 | stimuli_number), ocp_and_controls,REML=F)

The models m0 and m1 are identical except that m1 has a fixed effect for
location with “controls” as the baseline level of the factor. We compare the models
with the anova function of R.

>ocp_and_controls_anova<-anova(m1,m0)
>ocp_and_controls_anova
Data: ocp_and_controls
Models:
m0: rating ~ 1 + (location | subject_number) + (1 | stimuli_number)
m1: rating ~ location + (location | subject_number) + (1 | stimuli_number)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
m0 13 11399 11475 -5686.6
m1 16 11378 11472 -5673.2 26.788 3 6.522e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see from this that the difference between the models is significant with p <
.001. Based on this, we examine the t-values (which refer to the comparison with
the baseline factor) for the factors of m1, the model with the fixed effect.

> m1
Linear mixed model fit by maximum likelihood
...
Fixed effects:

Estimate Std. Error t value
(Intercept) 4.1988 0.2964 14.166
locationleft 1.4912 0.3092 4.823
locationnon 0.8112 0.2567 3.160
locationright 1.8712 0.2869 6.522
...

In this example, the baseline level is the control condition and the other
conditions are evaluated in comparison to that baseline. For the non-baseline levels,
the |t|-values > 2 show that all locations of violation are significant contributors to
the effect (left edge: 4.823, right edge: 6.52, non-adjacent: 3.160). This is shown
graphically in figure 5.6(a).
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Figure 5.6: Speaker ratings for OCP-Place

The analysis of OCP-Place violations in isolation (so without the controls)
with non-adjacent violations as the baseline factor shows that left edge and right
edge violations are rated significantly worse than non-adjacent nonces (p < .01,
t-values: C1C2X -2.16, XC2C3 3.3).

The analysis of OCP-Place violations and controls according to place of
articulation, figure 5.6(b), shows that place of articulation is significant (p < .0001)
and that all places of articulation are contributors to the effect (t-values: dorsals
5.144, coronal fricatives 4.936, labials 4.632, coronal sonorants 2.761, coronal stops
2.827). For OCP-Place violations in isolation with coronal sonorants as the baseline
factor (because these received the lowest ratings), place of articulation is not a
significant fixed effect (p = .07). However, the t-values show that the difference
between coronal sonorant violations and dorsal violations (which receive the highest
ratings) is significant (t-values: coronal fricatives 1.67, coronal stops -0.04, labials
1.25, dorsals 2.69).

Identical consonants The analysis of identical consonants and controls
(figure 5.7) shows that location is a significant fixed effect (p < .01) but only left
edge C1C2X (AAB) and non-adjacent C1XC3 (ABA) are significant contributors
to the model (t-values: C1C2X (AAB) 4.097, C1XC3 (ABA) 2.627, XC2C3 (ABB)
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Figure 5.7: Speaker ratings for identical consonants

1.237). The analysis of ratings for stimuli with identical consonants (without
controls) according to location with the XC2C3 (ABB) location as the baseline
factor (because these are rated lowest) shows that location is significant (p < .01)
and t-values show thatXC2C3 (ABB) patterns are significantly better than C1C2X

(AAB) and C1XC3 (ABA) (t-values: C1C2X (AAB) = 3.7; C1XC3 (ABA) = 3.3).

(a) location

rating

controls

C1C2X

C1XC3

XC2C3

2 4 6 8

(b) pattern

rating

control
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sf

zf
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Figure 5.8: Speaker ratings for non-homorganic fricatives

Non-homorganic fricative sequences The location of the pattern is a
significant contributor to the model (p < .001) (figure 5.8(a)). Right edge and non-



108

adjacent sequences are rated significantly worse than controls (t-values: C1C2X

3.4, C1XC3 3.5, respectively) but this not the case for left edge sequences (t-value:
XC2C3 1.4). Model comparison for non-homorganic fricatives without the controls
according to location (and the left edge location as the baseline factor), shows that
location is not a significant effect (p = .2) and the t-values show that neither non-
adjacent nor right edge patterns are significantly different to left edge patterns
(t-values: XC2C3 1.3, C1XC3 1.4).

Figure 5.8(b) shows the results for non-homorganic fricatives according to
pattern. The comparison of a model with controls and non-homorganic fricatives
according to pattern shows that the pattern is a significant effect (p < .001) but
only ’fs’, ‘fz’ and ‘zf’ sequences are significantly different to controls (t-values: ‘fs’
3.8, ‘fz’ 4.1, ‘zf’ 2.6). Ratings for ‘sf’ sequences are not rated significantly differently
to controls (t = -0.6). Model comparison for non-homorganic fricatives without the
controls according to pattern (and the ‘sf’ pattern as the baseline factor), shows
that pattern is a significant effect (p < .01). t-values show that all other patterns
are significantly different to ‘sf’ patterns (t-values: ‘fs’ 3.1, ‘fz’ 3.7, ‘zf’ 2.4).

5.5 Discussion

5.5.1 Speaker ratings

The results of the judgement task show that the model predictions for
under-represented sequences generally confirm the hypothesis that low-frequency
patterns are dis-preferred by speakers. However, the relationship between lexical
frequency and speaker judgements for ABB nonces, if such a relationship exists, is
not straightforward.

OCP-Place violations (regardless of POA and location of violation) are
always dis-preferred compared to controls. OCP-Place is generally described as
gradient, where the strength of the restriction is a function of POA and location
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of violation8 such that:

POA bad coronal → labial → dorsal worst

location bad CXC → CCX → XCC worst

Our results show that 1) adjacent violations are rated worse than non-
adjacent 2) there is no difference between the two kinds of adjacent (C1C2X and
XC2C3) and 3) that coronal-sonorant violations are less dis-preferred than dorsal
violations. It may be that our experimental task is not sensitive enough to capture
gradiency but these results also raise interesting questions regarding the frequency
differential required for speakers to rate two conditions as significantly different.

For identical consonants, the model predicts AAB patterns to be worse than
controls (and this is in line with the dictionary analysis), ABA forms (which are
rare) to be rated on a par with controls and ABB forms (which are very frequent)
to be slightly worse than controls. Speakers rate both ABA and AAB nonces
as significantly less acceptable than controls , but ABB sequences are rated no
differently to controls. In fact, the trend seems to be that they are slightly less
acceptable than controls. This result indicates that speakers are not judging ABB
sequences on frequency alone (see the high O/E values for ABB patterns shown
in table 3.14). It has been noted that there may be methodological issues in the
elicitation of speaker judgements for both high and low frequency patterns within
the same task as the subtle differences in acceptablity between normally and over-
represented patterns are likely to be compressed by the presence of strongly un-
acceptable forms (Albright, 2011b). On the other hand, these ABB forms are not
judged to be significantly less acceptable than controls as was the case for in a very
similar study for Hebrew (Berent and Shimron, 2003) where speakers were asked
to rate (on a 5 point scale) the acceptability of nonce roots with either right edge
identical consonants, right edge homorganic (non-identical) consonants or neither.
The results of that study could be accounted for by assuming that ABB (underly-
ing AB) roots are rated lower because of their morphological complexity (Bat-El,
2006) base on the assumption that, all else being equal, morphological complexity

8This is confirmed for Amharic by the dictionary study in Chapter 3.



110

influences speakers to judge a word as less acceptable. However, morphological
complexity is presumably similar in both Hebrew and Amharic.

Table 5.3: Comparison of Hebrew and Amharic triliteral roots with identical
consonants

Hebrew Amharic

triliterals 1449 1872
AAB 4 (.27%) 57 (2.5%)
ABA 21 (1.44%) 16 (0.7%)
ABB 140 (9.66%) 320 (14.12%)

A possible analysis is that the shape of the lexicon distinguishes the two
languages. The Hebrew database used by Berent et al. (2012) and Berent and
Shimron (1997) contains 1449 triliteral roots and includes verb roots with identi-
cal consonants in all locations. With regard to weak roots, they are either absent
from the database, or the consonant missing from the surface realisation has been
replaced. We compared the Hebrew database to the set of triliteral Amharic verb
roots including those with identical consonants and without weak roots9 Table 5.3
shows that ABA and AAB patterns are rare in both databases and that the per-
centage of ABB forms is larger for Amharic than for Hebrew10 (14.12% and 9.66%
respectively). Such a trend could explain the difference in acceptability of these
roots in the two languages, but a comparison of the full lexicon of verb roots for
both languages would be desirable.

As the model predicts, non-homorganic fricative sequences are generally
dis-preferred compared to controls. However, the statistical analysis reported in
Chapter 4 predicted that only adjacent sequences that start with a voiceless frica-
tive would be dispreferred whereas the speaker ratings show only ‘sf’ patterns

9The construction of the Hebrew database implies a preference for surface realization, so we
assume that weak roots have been removed.

10It would be good to have the equivalent data for Arabic, but verb roots with identical
consonants, in any location, are not included in the database made available to me by Stefan
Frisch
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are not rated as significantly worse than controls and that both right edge and
non-adjacent are dis-preferred compared to controls.

In fact, the dictionary analysis reported in Chapter 4 was based on the set
of triliteral verb roots and evaluated only the fricatives ‘f’, ‘s’ and ‘z’. We made this
choice because the analysis of the entire database that included all non-homorganic
fricatives did not reveal any evidence that non-homorganic fricative sequences are
generally under-represented (O/E values were generally close to 1). The alternate
database was chosen because our nonce forms are all triliterals and contain no
fricatives other than ‘f’, ‘s’ and ‘z’.

Given the experimental results, a possible hypothesis is that the restriction
is motivated by statistical patterns present in the larger lexicon. The hypothe-
sis that speakers generalize across locations and patterns and cannot distinguish
between them appears unlikely in this case because there is no apparent reason
that ‘sf’ sequences would be less dis-preferred than other patterns. Note that as
‘sf’ is rated as acceptable but ‘fs’ is not, it does not appear that there is a type
of laryngeal agreement operating among fricatives, in the same way as laryngeal
agreement operates among stops.

5.5.2 Simulations

We will now compare the reference model predictions to speaker judgements
on an item by item level. In the simulations using the King and Rose (2003) test
data, the best correlation between the speaker ratings and the model predictions
was r = .45 for the best hand-written grammar and r = .39 for the best automatic
model. The correlation between the speakers ratings of Experiment I and the refer-
ence model (see discussion in section 5.3) predictions is r = .49. This improvement
indicates that our experimental methodology, in spite of the shortcomings due to
the online presentation, is successful.

Figure 5.9 shows the relationship between speaker ratings and the reference
model (r = .49). Within each category (figure 5.10), the model performs best on
OCP-Place violations (r = .48) and identical consonants (r = .40), but less well on
non-homorganic fricatives (r = .317) and controls (r = .27). Note that although
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Figure 5.9: Comparison of speaker ratings and model predictions for OCP-Place
patterns (homorganic, non-identical consonants), rare patterns of identical con-
sonants (ABA and AAB), frequent patterns of identical consonants (ABB) and
non-homorganic fricatives

the correlation between model predictions and controls is low, including them into
the model always improves the correlation. For example, the correlation between
model predictions and speaker judgements for OCP-Place violations and controls
is r = .65. This is compatible with Albright’s (2009) analysis that the Maxent
learner’s excellent performance on English onsets is in part based on the binary
separation between under-represented and non-under-represented patterns.

5.6 Conclusion

The results of this first experiment show that the frequency∼acceptability
hypothesis holds for restrictions over the co-occurrence of consonants, such as
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Figure 5.10: Comparison of speaker ratings and model predictions

OCP-Place and identical consonants in rare patterns (AAB, ABA). Speakers also
showed a dis-preference for non-homorganic fricative sequences and this is a first
step in showing that the model can be used to discover previously unknown con-
straints. Although speakers did not show a preference for nonce words with ABB
patterns of identical consonants over controls, this may not be a failure of the
frequency˜acceptability hypothesis for over-represented patterns because the role
of morphology in these judgements is undetermined.

One of the goals of this study is to determine whether the Maxent learner (or
equivalent models) can be used to approximate speaker judgements in phonological
research. Experiment I shows that the model performs acceptably in predicting
judgements for nonce words with under-represented patterns, but although the



114

model performs acceptably in predicting ratings for nonce words with identical
consonants in ABB patterns relative to rarer patterns, both the experimental re-
sults and model predictions are unexpected and require further investigation. The
simulations also predict penalties for rare and distributionally irregular segments
and the the goal of the second experiment will examine the well-foundedness of
those predictions.

The second experiment, which elicits judgements for words with under-
represented segments, over-represented segments and irregularly distributed seg-
ments (segments which have an affinity or avoidance for a particular location) is
designed specifically to investigate a range of frequencies, including nonce forms
with [r], the most frequent (and over-represented) segment in Amharic verb roots.
The stimuli for [r] are designed to test the frequency˜acceptability hypothesis for
the over-representation condition where morphology is not a confound.

Phonologists are also interested in the relative strength of different restric-
tions and the discussion of the model performance in predicting relative strength
(rather than a determination of whether a sequence is generally rated as more or
less wordlike than controls) is reserved for the full analysis of the results from both
experiments.



6 Experiment II: Segmental
irregularities

6.1 Overview

The goal of experiment I was to investigate speaker ratings for patterns of
consonantal co-occurrence. The results of that experiment show that speakers as-
sign lower acceptability ratings to nonce words with patterns of under-represented
consonants such as OCP-Place violations, non-homorganic fricative sequences and
identical consonants in rare patterns (ABA, AAB). The results for identical con-
sonants in the frequent ABB pattern did not show a speaker preference for over-
represented patterns but, given the possible confound of morphological complexity,
it is not clear whether this is effectively a failure of the frequency ∼ acceptability
hypothesis for over-represented patterns.

The goal of experiment II is to investigate speaker ratings of nonce stimuli
with segments of differing levels of over- and under-representation, allowing us to
determine 1) if, absent the confound of morphological complexity, nonce forms with
sound patterns that are over-represented are rated as more wordlike than controls
and 2) if it is possible to model speaker judgements of non-under-represented items
with a model such as the Maxent learner than assigns only positive weights, and
3) if there is a statistical threshold for speaker sensitivity to phonotactic patterns.

The decision to attempt to find evidence for speaker preference of over-
represented sequences has two consequences for the experimental design:

• The most frequent segments in the lexicon of Amharic verb roots are [r] and

115
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[t]. These segments were part of the set of 14 most frequent and evenly
distributed segments used to create nonce forms for experiment I. For ex-
periment II, [r] and [t] are part of the experimental conditions so the set of
segments used to create controls is reduced to twelve: (m, l, f, t’, d, s, z, n,
l, k, k’, g).

• Neighbourhood density may be a confound in rating tasks that include nonce
words with under-represented segments in the same word acceptability task
as nonce words with over-represented segments. The argument, developed
by Shademan (2007), is based on the comparison of results from rating tasks
containing both real and nonce words. Shademan hypothesizes that the pres-
ence of real words (which tend to inhabit denser neighbourhoods than nonce
words) activates analogical processing (evaluation by comparison with words
in the lexicon) rather than probabilistic processing. Similarly, nonce words
with high frequency patterns tend to have more neighbours than those with
rare patterns and, in rating tasks containing both, probabilistic processing
might be masked for nonce words with high frequency patterns. By evalu-
ating speaker judgements for nonce words with high-frequency patterns in
a separate task, the neighbourhood density effects are kept constant and
the effects of phonotactic probability, though possibly muted, should be dis-
cernible because speakers can express them over the full range of the scale.
For this reason, experiment II is divided into two parts. Part A investigates
judgements for nonce words with segments that are not generally under-
represented, and part B explores judgements for segments representing a
broad range of segmental frequencies, from strongly under-represented to
mildly over-represented. The rationale for including non-under-represented
segments in part B is that it allows us, at no cost, to evaluate the hypothesis
that nonce words from sparse neighbourhoods should not be evaluated in the
same task as nonce words from dense neighbourhoods.

In experiment I, the choice of experimental conditions was motivated by
O/E values. Recall that O/E is a measure of how frequently two segments (or
natural classes) co-occur, given their individual frequencies. We determined that,
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according to the metric, non-identical homorganic consonants, non-homorganic
fricative sequences and identical consonants in rare patterns AAB and ABA are
under-represented in the lexicon of verb roots but that ABB patterns of identical
consonants are over-represented. For experiment II, we use three metrics (equa-
tion 6.1), OESword, evaluates the general lexical frequency of a segment type, given
the number of segment types. For example, [s’] is generally under-represented in
verb roots (OESword(s’) = .15). OESlocation evaluates the frequency of a segment
type in a specific location, given the number of segment types possible in that
location. OESlocation(s’C1) = .2, so [s’] is also under-represented in the C1 location.
OESrelative evaluates the frequency of a segment type in a specific location, given
the frequency of that segment type. OESrelative(s’C1) = 1.27, so although [s’] is
both generally under-represented and under-represented in position C1, it is not
under-represented in C1 relative to its frequency in other word locations. Note that
for each of these metrics, as for O/E, values below 1 indicate under-representation
and values above 1 indicate over-representation.

OESword(x) =
count of segment x in corpus

total segments in corpus
size of segment inventory

and

OESlocation(xm) =
count of segments x in location m

total segments in position m
size of segment inventory

and

OESrelative(xm) =
count of segments x in location m

total number of segments x in corpus
number of positions in word

(6.1)

As the goal of experiment II is to investigate ratings for triliteral nonce
verb roots containing one segment that has an unusual distribution, we began by
evaluating all three metrics for the C1, C2 and C3 positions that are represented
in the experimental items. However, it was not obvious how to evaluate O/E
values for the C3 position. One solution would be to assume that the C3 position
corresponds to the final segment of roots, regardless of length. In that case, the
C2 consonant could be equated either to second root consonant (the actual C2
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of triliterals) or the penultimate consonant (Croot_length−1) for longer roots. For
the co-occurrence patterns in Chapter 5, we computed O/E values over several
versions of the lexicon of verb roots because OCP and OCP-Place restrictions are
assumed to be active primarily over verb roots. However, there is no particular
reason to assume that judgements for nonce roots with segmental irregularities
are not influenced by the statistics of the non-verb root lexicon. For this reason,
we based the statistical analysis for experiment II on the set of all triliteral non-
reduplicative roots1, assuming that, with regards to segmental frequencies, non-
reduplicative verb roots are statistically representative of words generally. Given
this broad picture, we first selected segments that are over-represented, normally-
represented and under-represented. Within those broad categories, we attempted
to find segments that were unevenly distributed over the three possible locations
in the word (C1, C2, C3). For example, we chose [w] as a condition because
its OESword value is close to 1 (.94), indicating that it appears in verb roots
as often as would be expected, but it is rare in position C3 both compared to
other segments (OESlocation = .01) and compared to how often it occurs in other
locations (OESrelative = .02).

Table 6.1 shows the distribution of the segments chosen as experimental
conditions and the statistics that motivated their selection. The conditions that are
of special interest to us are highlighted in gray. Both [s’] and [ʤ] are globally under-
represented but [ʤ] is particularly rare in C3 (OESlocation = .04, OESrelative = .25).
[w] and [t] are not generally under-represented but [w] is very under-represented
in C3 position and [t] is moderately under-represented in C1 and C2. [r], although
generally over-represented, is moderately rare in C1 position.
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Table 6.1: Segmental frequencies

condition segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2 C3

globally rare in all po-
sitions

[s’] 33 (.15) 15
(.2)
(1.27)

10
(.14)
(1.1)

8
(.11)
(.72)

globally rare; posi-
tionally restricted

[ʤ] 36 (.17) 16
(.22)
(1.33)

17
(.23)
(1.42)

3
(.04)
(0.25)

not rare; positionally
restricted

[w] 200 (.94) 106
(1.4)
(1.59)

93
(1.3)
(1.4)

1
(.01)
(.02)

[t] 247 (1.16) 53
(.74)
(.64)

63
(.88)
(.77)

131
(1.8)
(1.59)

over-represented; po-
sitionally restricted

[r] 485 (2.27) 52
(.7)
(.32)

191
(2.69)
(1.18)

242
(3.4)
(1.5)

6.2 Methodology

We have discussed the rationale for dividing the experiment into two parts,
Part A containing stimuli with segments that are not strongly under-represented
(as judgements for these might mask the more nuanced differences between over-
and moderately under-represented conditions), and Part B containing a broader
range of segmental frequencies. For consistency, it would be desirable to repeat
all of the conditions of Part A in Part B but the space of possible triliteral nonce
words with [r] is extremely narrow so stimuli with [r] are not included in Part B.

1Consonants assumed to be missing from weak roots are replaced by a place marker to main-
tain edge information.
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Table 6.2: Experimental items for part A
Experiment II: part A

segment locations repetitions total
w 2 3 6 items
t 3 3 9 items
r 3 3 9 items
controls 27 items
Total 54 items

Table 6.3: Experimental items for part B
Experiment II: part B

segment locations repetitions total
s’ 3 3 9 items
ʤ 3 3 9 items
w 3 3 9 items
t 3 3 9 items
controls 36 items
Total 72 items

The division of experimental items for parts A and B is summarized in tables 6.2
(Part A) and 6.3 (Part B). Note that Part A includes only conditions for [r] and
[t], and [w] in C1 and C2 which range between strong over-representation and mild-
under-representation (but not [w] in C3 which is strongly under-represented) and
that Part B includes a range of frequencies such as [t] in C3, which is mildly over-
represented, [w] in C1 which has an OESlocation value close to 1 (so occurs about
as often as would be expected) and strongly under-represented segments such as
[w] in C3 and [s’] in all locations.

As for experiment I, each sub-part of experiment II is preceded by a training
sequence. For part A, this contains 15 items: 3 locations (C1, C2, C3) * 2 segments
([r],[t]), 2 locations (C1, C2) for [w]) + 6 controls = 14. At the end of part A, a
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screen appears explaining that the second part of the experiment requires extra
training. For part B, the training sequence contains 18 items: 3 locations (C1, C2,
C3) * 4 segments ([s’], [ʤ],[t],[w])+ 6 controls = 18. In all other aspects, Part A
and Part B are analogous to experiment I.

6.2.1 Nonce word selection

For consistency, we used the same methodologies for nonce word selection
(controls and stimuli) that was used in experiment I. Even the modified procedures
had been sometimes difficult for experiment I, 1) because the TP, PP and ND values
for some co-occurrence conditions tend to be heavily skewed and 2) because the
space of nonce words using only the most frequent and evenly distributed segments
is very restricted. For experiment II, the space of nonce words available with [r],
[t] and [w] (in C1 and C2) is limited. In the case of [r] and [t] nonces it was not
possible to follow our usual procedure and we were forced to use almost all the
available nonces, without reference to the metrics and, for [r] nonces, there were
only enough available for part A. For the rare segment conditions of part B, the
space of possible nonce words is much larger and selection posed no problems. The
full list of experimental items is listed in Appendix B.

Controls For control selection, we used the same methodology that we
developed for experiment I. We created the set of all possible bland2 triliteral
nonce words using the 12 most frequent and evenly distributed segments (rather
than the 14 used in experiment I) and selected controls from the subset of nonces
having TP (transitional probability), PP (positional unigram probability) and ND
(neighborhood density) values in the inter-quartile range of the values for the set
of similar bland triliteral real words. In practice, the space of nonce triliteral roots
with the 12 most frequent and evenly distributed consonants is very restricted so
26 of the controls used in experiment II are also used in experiment I.

2Where ‘bland’ denotes forms that have no known phonotactic irregularities such as OCP-
Place violations or identical consonants, etc.
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Stimuli We created all possible triliteral nonce forms containing 2 mem-
bers of the set of 12 most frequent and evenly distributed segments and 1 segment
from the set of experimental condition segments. We then selected stimuli such
that their PP, TP and ND values fell within the inter-quartile range of nonce
words for that segment and location. For example, the stimuli for [s’] in C1 were
selected from the set of nonces for which the ND, TP and PP values fall within
the interquartile range for the set of nonces with [s’] in C1 (and no other known
phonotactic violations).

6.2.2 Presentation and speakers

The online presentation and recruitment of speakers was analogous to ex-
periment I. There were 32 participants and 20 were usable according to our pre-
viously defined criteria (subjects were eliminated for unary or binary usage of the
rating scale). In experiment I, only one participant was currently living in Ethiopia,
but for experiment II, a linguistics graduate student in Addis Ababa kindly for-
warded the link to the experiment to colleagues and 8 of them participated in the
study. However, the language background of subjects living in Ethiopia is similar
to that of North American participants; their first language is Amharic, but they
are fluent in English and sometimes in other regional languages.

6.3 Model predictions

In this section, we evaluate the predictions of our reference model (see
discussion in section 5.3)

6.3.1 Part A

In the general predictions for Part A, shown in figure 6.1 (All), we can
see that the predictions for [r] are slightly lower than for controls (indicating a
predicted preference for nonce words with [r] compared to controls). The me-
dian weights assigned [t] and [w] nonces are slightly higher than those assigned to
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All

predictions

controls

[r]

[t]

[w]

2 4 6 8

[r]

predictions

controls

C1
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[t]

predictions

controls

C1

C2

C3

2 4 6 8

[w]

predictions

controls

C1

C2

2 4 6 8

Figure 6.1: Model predictions for Part A

controls.
For [r] nonces according to location, our metrics indicate that [r] is slightly

under-represented in C1 but over-represented in C2 and C3, with the highest oc-
currence in C3. The predicted ratings are somewhat similar to our expectations.
The model predicts [r] in C2 to be slightly better than controls but both C1 and
C3 occurrences are predicted to be similar to controls.

The statistical analysis of the database shows that [t] is mildly under-
represented in C1 and C2 and mildly over-represented in C3. The model effectively
predicts C3 occurrences to be better than controls and C2 to be worse but C1

occurrences are close to controls.
The dictionary study shows that [w] is mildly over-represented in C1 and

C2 but the model predicts [w] in C1 and C2 to be slightly worse than controls.
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6.3.2 Part B

The predictions for all the conditions of part B, are shown in figure 6.2.
The reference model predicts a general dispreference for [s’],[w] and [ʤ] (though
least so for [w]) over controls and a mild dispreference for [t] nonces.

All

predictions

controls

[dZ]

[s']

[t]

[w]

0 5 10

Figure 6.2: Model predictions for Part B

Regarding the predictions broken down according to the location of occur-
rence (figure 6.3), the predictions for [t] nonces are similar to those for the stimuli
of Part A and correspond to the predictions of the dictionary analysis, with C3

preferred to control) and C2 and C1 dispreferred to controls.
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[w] in C3 nonces are predicted to be strongly dispreferred (where it is very
rare, according to the dictionary analysis) and on a par or mildly dispreferred to
controls in the other positions.

Both [ʤ] and [s’] (which are both rare in all positions), are predicted to be
dispreferred in all positions.

[t]

predictions

controls

C1

C2

C3

0 1 2 3 4

[w]

predictions

controls

C1

C2

C3

0 1 2 3 4 5 6

[dZ]

predictions

controls

C1

C2

C3

0 5 10

[s']

predictions

controls

C1

C2

C3

0 2 4 6 8

Figure 6.3: Model predictions for Part B (by segment)

6.4 Results and discussion

All results are analysed as for Experiment I; to reiterate the procedures,
we use maximal LMEMs with by-subject random slope for the fixed effect, and
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by-item random intercepts for each nonce word using the lmer function of the
statistical software R (package lme4). To estimate the p-value of a fixed effect, we
compute the likelihood ratio between two models identical with regard to random
effects but only one of which contains the fixed effect of interest. For a p-value <
.05, factors with t-values > |2| are assumed to be significant contributors to the
effect.

6.4.1 Part A

Table 6.4: Segmental frequencies ([r])

segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2 C3

[r] 485 (2.27)
52 191 242
(.7) (2.69) (3.4)
(.32) (1.18) (1.5)

rating

control

C1

C2

C3

2 4 6 8

Figure 6.4: Over-represented segment [r]
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[r] is over-represented both globally and in C2 and C3 positions but mildly
under-represented in C1 (table 6.4). Figure 6.4 (a) shows the distribution of speaker
ratings for nonce forms with [r] compared to controls. There is no significant
difference between controls and the set of all nonces with [r] (p = .45, t-value=.75),
but the model with a factor for location (figure 6.4(b)) is significantly better than
the model without (p < .03). However, only [r] in position C1 and C2 are significant
contributors (t-values: C1 : 1.68, C2 : −2.57, C3 : −.56).

To summarise the results for [r], in the case of [r] in C2 there is a significant
effect in the expected direction -a preference compared to controls, and for C1, a
predicted and significant dis-preference.

Table 6.5: Segmental frequencies ([t])

segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2 C3

[t] 247 (1.16)
53 63 131
(.74) (.88) (1.8)
(.64) (.77) (1.59)

Table 6.5 is a summary of the dictionary analysis for [t] and figure 6.5
shows the results for the experimental results according to location. A model with
factors for [t] stimuli as a group and controls is not significantly better than one
without (p = .6). The model with controls and stimuli with [t] by location is not
significantly better than one without (p = .2). However, t-values show that the
dispreference for [t] in position C2 is very close to significance (C1 : .1, C2 : 1.92,
C3 : −.9). This is contrary to the frequency prediction according to our database
as the frequency (according to our metrics) of [t] is lower in C1 than in C2, though
not by much.

To summarise the results for [t], the trend in figure 6.5 is in line with our ex-
pectations based on the dictionary analysis, but the results are close to significance
only for the [t] in C2 (trend towards dispreference compared to controls).
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rating

control

C1

C2

C3

2 4 6 8

Figure 6.5: Normally-represented segment [t]

Table 6.6: Segmental frequencies ([w])

segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2

[w] 200 (.94)
106 93
(1.4) (1.3)
(1.59) (1.4)

Table 6.6 shows that [w] is mildly over-represented in C1 and C2 but speaker
ratings with [w] in C1 and C2 locations are not significantly different to controls
(p = .4) (figure 6.4.1) and the t-values are not close to significance (C1 : 1.2,
C2 : .12).

The results for [w] are very close to our predictions based on the dictio-
nary analysis. These patterns are mildly over-represented but are not rated as
significantly different to controls.

The experimental results for part A are generally in line with frequency
based predictions, providing some evidence that nonce words with over-represented
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rating

control

C1

C2

2 4 6 8

Figure 6.6: [w] in C1 and C2

segments may be rated better than controls. However, the ratings do not precisely
line up with predictions for specific word locations. This may be because speakers
are influenced by non-verb root lexical effects that are not accounted for by our
database. It is also possible that judgements for a segment in a given location are
not influenced only by the frequency of the segment in that location, but also by
the frequency of that segment in other locations.

The role of the C2 location is thought provoking. [r] is rated significantly
better than controls only in that position, although it is actually more frequent
in position C3, and [t] is rated significantly worse than controls only in position
C2 although it is less frequent in position C1. These results seem to indicate that
the C2 location is more salient, even though word onsets are generally considered
the most salient part of the word (Cole and Jakimik, 1980; Grosjean, 1980). In
the 3ms perfective verb forms used in all our experiment, (C1əC2C2əC3ə) the C2

consonant is geminated. This is not a part of our model, since it is part of the
perfective template rather than the root. However, it could serve to promote the
saliency of segments in that position.

Part A: simulations The correlation between the average speaker judge-
ments for the items of Part A and the reference model predictions is very weak
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Figure 6.7: Predictions and ratings for Part A

(r = .19). Figure 6.7 shows the relationship between the reference model (360
constraints) predictions and speaker ratings.

The relationship between the ratings and model predictions according to
condition and location in figure 6.8 show that the model predictions are weak for
both the stimuli conditions and the controls.

6.4.2 Part B

The [t] condition was repeated in part B (with different nonce forms). As
in Part A, the model with factors for controls and [t] according to location was not
better than the one without (p = .59). The t-values (C1 : −.8, C2 : −1.1, C3 : −.3)
show that the trend towards significance for location C2 (t-value: 1.92) in part A
is no longer present.
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Figure 6.8: Predictions and ratings for Part A (detail)

Part B includes all three locations for the segment [w]. The dictionary
analysis (table 6.7) shows that [w] is very under-represented in C3. However, for the
speaker ratings (figure 6.10), a model with a factor for location is not significantly
better than the one without (p = .36). The t-values (C1 : −.36, C2 : .84, C3 : 1.58)
indicate only mild trend for [w] in C3 to be dispreferred compared to controls, even
though [w], at least in our database, is extremely rare in that position. It is worth
nothing that the only triliteral that has [w] in C3 is an ABA form. There are,
however, quite a number of quadriliterals with [w] in C3. It may be the case that
people are processing the [w] in C3 as the third consonant from the beginning of
the word, regardless or root length, rather than as the final consonant.

For [ʤ], the dictionary analysis (table 6.8) shows that this segment in under-
represented in all locations. For the speaker ratings (figure 6.11), there is a signifi-
cant difference between controls and nonce words with [ʤ] (p < .001). Location is
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Figure 6.9: Nonce words with [t] (Part B)

Table 6.7: Segmental frequencies ([w])

segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2 C3

[w] 200 (.94)
106 93 1
(1.4) (1.3) (.01)
(1.59) (1.4) (.02)

significant (p < .0011) for C2 and C3 (t-values: C2: 4.7, C3: 3.7) and approaching
significance for C1 (t-value: 1.9). For [ʤ], the experimental results are in line with
our predictions, but we note that the effect (in this case a dispreference) is more
salient in C2 (relative to other locations) than we would have predicted based on
the dictionary analysis.

There is a significant difference between controls and [s’] (all locations)
(p < .05) but the model comparison with a factor for location although significant
(p < .0001), shows that only the C2 and C3 locations are significantly differnt to
controls (t-values: C1: .26, C2: 3.4, C3: 3.3). This result is unexpected because
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Figure 6.10: Nonce words with [w]

Table 6.8: Segmental frequencies ([ʤ])

segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2 C3

[ʤ] 36(.17)
16 17 3
(.22) (.33) (.04)
(1.33) (1.42) (.025)

table 6.9 indicates that [s’] in C1 is only slightly more frequent than in any other
locations. Furthermore, although our dictionary analysis considers only triliterals,
there are also very few quadri- or quinquiliterals with [s’] in initial position. [s’] is
rare in Amharic through a diachronic process of fortition to [t’], but is preserved
as [s’] more frequently in word initial position in words associated with religion
and culture (Leslau, 1995) and if these are token frequent, this might account for
the speaker preference for this location over others. [s’] is also the only condition
where there is a significant dispreference for a rare segment in C3 compared to
controls.
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Figure 6.11: Nonce words with [ʤ]

Table 6.9: Segmental frequencies ([s’])

segment count (OESword)

positional count
(OESlocation)
(OESrelative)
C1 C2 C3

[s] 33(.15)
15 10 8
(.2) (.14) (.11)
(1.27) (1.1) (.72)

Part B: simulations Figure 6.13 shows the predictions of the reference
model and speaker ratings for part B. The correlation between the reference model
predictions and speaker ratings is moderately high (r = .58).

Figure 6.14 shows the correlation between the speaker judgements and the
reference model predictions for each Part B condition as a function of location.
Note that the model tends to assign 0 or low weights to items that are not strongly
under-represented ([t] in C3, [w] in C1 and C2 locations). Overall, the model
performs best on nonce words with strongly under-represented segments.
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Figure 6.12: Nonce words with [s’]

6.5 General discussion

Although the ratings for [s’] in C1 and [w] in C3 are unexpected, the results
of Part B show that low-frequency segments are generally rated as less acceptable
than controls. The metric that best predicts speaker ratings is OESlocation and it
is most reliable for the C2 location. OESword is only a good predictor of speaker
ratings for [s’] and and [ʤ] which are strongly under-represented in all locations.
We can eliminate OESrelative as a useful metric because it is not predictive of
speaker ratings. For example, there is no case where the predictions of OESlocation

and OESrelative conflict and OESrelative makes the correct prediction. For example,
for [s’] in C3, OESrelative = 1.1 and OESlocation =.11 but speakers disprefer nonce
forms with [s’] in C3, indicating that OESlocation is a better metric. Furthermore,
OESrelative > 1 does not predict a speaker preference. For example, OESrelative(ʤ)
is highest for C2 (1.42), yet nonce forms with [ʤ] in that location are preferred
neither to controls nor to nonce forms with [ʤ] in other locations.

With regards to a threshold for speaker sensitivity to segmental irregulari-
ties, we must distinguish the case of C2 from other locations. We can say that for
[t] (part A), which is moderately under-represented, OESlocation < .88 in C2 is suffi-
cient to find a significant effect on speaker ratings compared to controls but that in
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Figure 6.13: Predictions and ratings for Part B

other locations, the threshold is undetermined, but lower than .74 (OESlocation(t)
in C1 = .74). For over-represented segment [r], OESlocation = 2.69 in C2 is sufficient
to find an effect, but in C3, even OESlocation=3.4 is not sufficient.

For strongly under-represented segment [ʤ], OESlocation = .33 in C2 is suf-
ficient to find a statistical difference with controls, but in other locations, that
threshold is lower. For example, OESlocation(ʤ) = .22 in C1 but the difference
between [ʤ] in C1 and controls does not quite reach significance.

Finally, the results for nonce words with [t] modestly support the hypothesis
that analogical processing plays a role in speaker judgements for nonce words from
dense neighbourhoods because an effect that was close to significance in Part A was
absent in Part B, indicating that stimuli from dense neighbourhoods and stimuli
from sparse neighbourhoods should not be included in the same task.
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Figure 6.14: Predictions and ratings for Part B (according to location)

6.6 Conclusion

One goal of experiment II is a proof of concept; to show that speakers may,
in optimum circumstances, assign ratings to nonce worlds with over-represented
and moderately under-represented segments that are significantly different to con-
trols. The results of part A has shown some success in this area. Our second
goal was to determine whether the Maxent learner, a model that assigns only
penalty weights, can be used to model the full range of phonotactic probability.
The model consistently performs quite poorly in predicting speaker judgements for
nonce words with patterns or segments that are not strongly under-represented,
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such as controls in experiment I, and the experimental conditions of Part A. At
the same time, the experimental results themselves are quite noisy and it may be
the that the experimental methodology is insufficiently sensitive to capture such
fine distinctions of acceptability.

Finally, there is some evidence that the C2 position may play a greater role
in judgements for verb roots than has previously been discussed. This finding will
need to be confirmed in a task designed to test that specific condition, but if it
is the case, there is currently no model that can make predictions accounting for
that type of saliency. For example, we could include consonant length as part of
the representational system of the Maxent learner, but the model would learn that
long consonants are frequent in C2 position, not that irregularities occurring in
that location are more important than elsewhere.

In the final chapter, we will present the general discussion of our simulations
and experiments, and indicate the many avenues for further research.



7 Conclusion

The main goals of this dissertation are 1) to investigate the frequency-
acceptability hypothesis for an under-studied language, 2) to evaluate the repre-
sentational system necessary to model a language with long distance constraints
over homorganic consonants and 3) to determine whether a probabilistic model
such as the Maxent learner that assigns only positive weights can be used to model
the full range of phonotactic probability.

With regards to the first goal, experimental results confirm that Amharic
speakers are sensitive to under-represented patterns in nonce verb-roots, both in
terms of co-occurrence restrictions (experiment I) and rare segments (experiment
II, Part B). The results of experiment II, Part A, also provide modest evidence
that speakers are sensitive to the presence of over-represented segments in the
data. It is clearly more difficult to show gradience of speaker judgements of non-
under-represented patterns as a function of phonotactic probablity than for under-
represented conditions.

Our simulations (chapter 4) show that the representation system of the
Maxent learner needs to be modified to account for the fact that identical con-
sonants in frequent patterns do not add to speaker knowledge of harmony. In a
rating task, Berent et al. (2012) collected Hebrew speaker judgements for nonce
words with identical consonants and showed that speakers can extend their knowl-
edge of identical consonant pattern frequency to consonants that do not occur in
their language. They propose enriching the model with two new representations,
1) a natural class that applies to all segments and 2) an indexed representation
allowing successive occurrences of a natural class matric to be represented as void
of distinctive features. Although we do not have access to this modified version of

139
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the Maxent learner, given our results, we suspect that it would perform well on
the Amharic data.

Regarding the performance of the Maxent learner in predicting speaker
judgements, we model speaker judgements for whole words based on the consonants
of a subset of the lexicon, and without frequency information (both in terms of
the token frequency of verb roots and of the number of words that are derived
from a given root). Given these limitations, the model performs surprisingly well
in predicting speaker judgements for under-represented conditions.

The model performs poorly in predicting speaker judgements for non-under-
represented conditions. The correlation between stimuli and model predictions in
experiment II, Part A, is very low. There are several (possibly interacting) ex-
planations for this failure. First, it is possible that model is correctly predicting
speaker judgements based on the frequency of patterns in the lexicon, but that 1)
the role of analogical processing masks probabilistic processing and 2) the speaker
rating task is insufficiently sensitive. It might also be the case that the model is
too noisy to correctly predict speaker judgements for non-under-represented items.
Although it is theoretically possible to model the full range of phonotactic prob-
ability with a model like the Maxent learner that assigns only penalty weights,
it requires the acquisition of an exhaustive grammar. Albright (2010) attempted
to model English onsets with (some approximation) of an exhaustive grammar
and found that model predictiveness deteriorated as a function of grammar size.
This problem might be solved by modifying the constraint selection algorithm such
that useless constraints are eliminated when a later, better generalization is found.
However, given that our experimental evidence indicates that phonotactic proba-
bility plays a role in speaker judgements for all conditions, it would be desirable
that the model acquire both positive and negative weights.

There are many avenues for future work. We cannot rule out the role of
the non-verb-root lexicon word token and frequency effects in determining speaker
judgements. We are currently in the process of creating a database of non-verb-
roots and we are hopeful that a dictionary analysis of the data will be informative
in our analysis of speaker judgements for verbs. Regarding frequency information,
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we suspect that the advent of Amharic corpora and online text will make this
information accessible in the medium term.

The results of our experimental work provide an unusually broad perspec-
tive on the phonotactics of an under-studied language and this is because we did
not select the experimental conditions based solely on phonological insights and
previous work for related languages. Our choices were guided by the predictions
of the Maxent learner and, although it might be said that we collected data for
idiosyncratic phenomenon that are not of general interest to phonologists, the
results provide information beyond the use that we have made here. For exam-
ple, such results might enrich the debate on the difference in importance between
phonologically natural and unnatural constraints (Hayes et al., 2009).

There is still much work to be done in the area of probabilistic phonotactics,
but this thesis constitutes a contribution to this research area. However, one of
the the main challenges of the field is to find appropriate and diverse experimental
data to test models. Our hope is that our use of the Maxent learner to investigate
the phonotactics of a language, and the success of our online rating task using
a non-latin script will provide researchers with tools that will motivate them to
investigate other under-studied languages.



Appendix A: Experimental items
I

stimuli root condition location POA ND PP TP
ለረመ l r m ocp left son 19 -8.15 -50.3
ረለቀ r l k’ ocp left son 22 -8.76 -50.64
ነለሰ n l s ocp left son 22 -8.4 -50.28
ተደለ t d l ocp left stop 21 -9.39 -12.52
ተደረ t d r ocp left stop 27 -9.21 -12.29
ደጠዘ d t’ z ocp left stop 7 -9.44 -12.91
ከገለ k g l ocp left dor 27 -8.23 -48.49
ገከሰ g k s ocp left dor 19 -8.29 -48.66
ገቀነ g k’ n ocp left dor 23 -8.31 -48.6
ሰዘበ s z b ocp left fric 13 -9.31 -49.06
ዘሰመ z s m ocp left fric 11 -9.4 -49.22
ዘሰተ z s t ocp left fric 13 -9.32 -49.66
መፈደ m f d ocp left lab 15 -8.54 -12.85
ፈመለ f m l ocp left lab 18 -8.42 -49.04
ፈበቀ f b k’ ocp left lab 17 -8.58 -12.96
በለረ b l r ocp right son 33 -7.43 -49.17
ሰነለ s n l ocp right son 24 -7.58 -49.25
ከነረ k n r ocp right son 23 -7.44 -10.65
ለመፈ l m f ocp right lab 14 -8.94 -12.97
ሰፈበ s f b ocp right lab 13 -8.56 -13.35
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stimuli root condition location POA ND PP TP
ጠመፈ t’ m f ocp right lab 18 -8.7 -12.91
በሰዘ b s z ocp right fric 12 -9.61 -49.29
ነዘሰ n z s ocp right fric 17 -10.02 -49.52
ጠዘሰ t’ z s ocp right fric 11 -9.78 -50.64
መተደ m t d ocp right stop 14 -9.02 -12.3
ለደጠ l d t’ ocp right stop 14 -9.25 -12.62
ሰተደ s t d ocp right stop 10 -9.27 -12.76
ፈከገ f k g ocp right dor 13 -9.14 -50.09
ለገቀ l g k’ ocp right dor 18 -8.83 -50.12
ነገከ n g k ocp right dor 15 -9.2 -49.67
ከለገ k l g ocp non dor 21 -7.97 -8.3
ገመቀ g m k’ ocp non dor 23 -7.74 -8.37
ገፈከ g f k ocp non dor 16 -8.41 -8.9
ለጠነ l t’ n ocp non son 23 -9.41 -9.32
ረገነ r g n ocp non son 23 -9.53 -9.24
ረቀለ r k’ l ocp non son 17 -9.55 -9.09
ተበደ t b d ocp non stop 15 -9.09 -9.64
ተለደ t l d ocp non stop 18 -8.55 -9.99
ደሰጠ d s t’ ocp non stop 19 -8.71 -9.99
ሰመዘ s m z ocp non fric 13 -9 -9.34
ሰከዘ s k z ocp non fric 13 -9.36 -11.02
ዘጠሰ z t’ s ocp non fric 9 -9.3 -11.05
መዘበ m z b ocp non lab 17 -9.07 -8.77
ፈገበ f g b ocp non lab 21 -8.6 -9.31
በከፈ b k f ocp non lab 16 -8.88 -9.12
በበነ b b n redup left lab 22 -8.49 -9.93
ደደፈ d d f redup left stop 18 -9.07 -8.39
ፈፈጠ f f t’ redup left lab 19 -8.75 -8.8
ገገዘ g g z redup left dor 30 -8.47 -8.98
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stimuli root condition location POA ND PP TP
ከከፈ k k f redup left dor 25 -8.88 -8.67
ቀቀነ k’ k’ n redup left dor 33 -8.37 -7.85
ለለቀ l l k’ redup left son 27 -8.22 -8.56
መመሰ m m s redup left lab 22 -8.27 -8.89
ነነገ n n g redup left son 10 -8.39 -8.96
ረረደ r r d redup left son 16 -8.65 -10.53
ሰሰመ s s m redup left fric 17 -9.1 -8.83
ተተፈ t t f redup left stop 15 -9.89 -9.62
ጠጠለ t’ t’ l redup left stop 18 -8.83 -8.25
ዘዘገ z z g redup left fric 11 -9.86 -8.44
በጠበ b t’ b redup non lab 24 -8.77 -8.6
ደመደ d m d redup non stop 23 -8.45 -8.48
ፈቀፈ f k’ f redup non lab 13 -9.17 -9.96
ገሰገ g s g redup non dor 18 -8.49 -9.03
ከነከ k n k redup non dor 10 -8.17 -8.38
ቀፈቀ k’ f k’ redup non stop 22 -8.11 -9.17
ለበለ l b l redup non son 26 -8.58 -8.63
መተመ m t m redup non lab 14 -9.06 -8.97
ነዘነ n z n redup non son 20 -9.98 -8.97
ረበረ r b r redup non son 28 -8.94 -8.85
ሰደሰ s d s redup non fric 13 -9.14 -10.94
ተመተ t m t redup non stop 24 -9.07 -9.84
ጠደጠ t’ d t’ redup non stop 8 -9.01 -13.15
ዘጠዘ z t’ z redup non fric 7 -9.78 -11.95
ረደደ r d d redup right stop 38 -10.11 -10.15
ነቀቀ n k’ k’ redup right dor 43 -9.18 -8.9
ደፈፈ d f f redup right lab 35 -8.75 -8.59
ነገገ n g g redup right dor 36 -9 -9.03
ዘከከ z k k redup right dor 20 -9.37 -10.99
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stimuli root condition location POA ND PP TP
ተሰሰ t s s redup right fric 29 -9.72 -10.61
ረተተ r t t redup right stop 33 -10.22 -10.27
ከዘዘ k z z redup right fric 15 -10.08 -10.81
ፈሰደ f s d frics fs left 11 -9.34 -11.14
ፈሰቀ f s k’ frics fs left 16 -9.18 -9.78
ፈሰለ f s l frics fs left 24 -9 -9.11
ሰፈደ s f d frics sf left 14 -8.78 -10.09
ሰፈገ s f g frics sf left 15 -8.8 -10.13
ሰፈጠ s f t’ frics sf left 29 -8.47 -9.5
ፈገሰ f g s frics fs non 27 -8.85 -9.93
ፈነሰ f n s frics fs non 25 -8.24 -9.43
ፈተሰ f t s frics fs non 17 -9.58 -10.45
ሰደፈ s d f frics sf non 24 -9.11 -10.29
ሰገፈ s g f frics sf non 23 -8.54 -9.32
ሰቀፈ s k’ f frics sf non 20 -8.9 -9.59
ደፈሰ d f s frics fs right 28 -8.78 -9.15
ገሰፈ g s f frics sf right 26 -8.47 -9.52
ከሰፈ k s f frics sf right 24 -9.09 -9.35
ለሰፈ l s f frics sf right 12 -9.51 -10.45
ረፈሰ r f s frics fs right 16 -9.82 -10.29
ተፈሰ t f s frics fs right 10 -9.44 -10.16
ፈዘደ f z d frics fz left 5 -9.81 -14.32
ፈዘነ f z n frics fz left 17 -9.81 -10.6
ፈዘጠ f z t’ frics fz left 9 -9.5 -12.37
ፈገዘ f g z frics fz non 18 -9.33 -10.12
ፈከዘ f k z frics fz non 11 -9.64 -11.86
ፈለዘ f l z frics fz non 23 -8.72 -9.76
ደፈዘ d f z frics fz right 12 -9.26 -10.72
ቀፈዘ k’ f z frics fz right 13 -8.78 -10.89
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stimuli root condition location POA ND PP TP
ረፈዘ r f z frics fz right 8 -10.3 -11.86
ዘፈከ z f k frics zf left 6 -9.3 -9.73
ዘፈለ z f l frics zf left 24 -8.75 -8.87
ዘፈጠ z f t’ frics zf left 31 -8.78 -8.97
ዘገፈ z g f frics zf non 21 -8.85 -8.81
ዘከፈ z k f frics zf non 14 -9.15 -10.67
ዘጠፈ z t’ f frics zf non 16 -9.26 -10.65
ደዘፈ d z f frics zf right 7 -9.5 -11.37
ረዘፈ r z f frics zf right 10 -10.53 -10.85
ተዘፈ t z f frics zf right 8 -10.16 -12.22
መሰተ m s t control 34 -8.77 -8.99
መዘለ m z l control 29 -8.95 -8.6
መተለ m t l control 29 -8.68 -8.61
መደሰ m d s control 25 -8.9 -8.98
መደቀ m d k’ control 30 -8.7 -8.81
መጠሰ m t’ s control 25 -8.75 -8.82
መቀለ m k’ l control 35 -8.31 -8.53
ፈለከ f l k control 27 -8.42 -8.77
ፈረከ f r k control 31 -8.15 -8.43
ፈደረ f d r control 35 -8.87 -8.9
ፈከለ f k l control 29 -8.78 -9.06
ፈገነ f g n control 26 -8.81 -9.21
ፈቀለ f k’ l control 29 -8.83 -8.78
በሰተ b s t control 26 -9.05 -9.31
በደቀ b d k’ control 35 -8.98 -9.13
በጠነ b t’ n control 33 -8.98 -8.55
በከሰ b k s control 30 -8.91 -9
በገለ b g l control 30 -8.23 -9.01
በቀነ b k’ n control 32 -8.92 -8.63
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stimuli root condition location POA ND PP TP
በቀጠ b k’ t’ control 27 -8.61 -8.8
ለመተ l m t control 27 -8.9 -9.39
ለበተ l b t control 29 -8.88 -9.28
ነበሰ n b s control 35 -8.95 -8.77
ነበደ n b d control 30 -8.91 -8.74
ነገፈ n g f control 29 -8.99 -8.98
ነገጠ n g t’ control 41 -8.68 -9.05
ሰመተ s m t control 29 -8.45 -9.19
ሰመደ s m d control 25 -8.49 -8.75
ሰመቀ s m k’ control 26 -8.33 -9.48
ሰበደ s b d control 26 -8.46 -8.77
ሰበጠ s b t’ control 37 -8.15 -8.54
ሰለገ s l g control 36 -7.94 -8.41
ሰተለ s t l control 29 -8.92 -9.07
ሰጠለ s t’ l control 25 -8.62 -9.45
ሰገመ s g m control 32 -8.58 -8.76
ሰገለ s g l control 38 -8.2 -8.41
ሰገነ s g n control 30 -8.54 -8.9
ሰቀነ s k’ n control 25 -8.89 -8.6
ዘመጠ z m t’ control 31 -8.48 -8.57
ዘበቀ z b k’ control 25 -8.61 -9.09
ዘለመ z l m control 30 -8.27 -8.51
ዘለበ z l b control 32 -8.01 -8.67
ዘለተ z l t control 33 -8.19 -9.11
ዘተረ z t r control 34 -9.05 -9.27
ዘገተ z g t control 30 -8.8 -8.97
ዘገደ z g d control 27 -8.85 -8.35
ዘቀለ z k’ l control 26 -8.86 -8.96
ዘቀረ z k’ r control 32 -8.68 -8.67
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stimuli root condition location POA ND PP TP
ተመረ t m r control 35 -8.59 -9.16
ተፈረ t f r control 27 -8.89 -9.05
ተበለ t b l control 25 -8.75 -9.11
ተበረ t b r control 34 -8.57 -8.85
ተለፈ t l f control 30 -8.55 -9.19
ተለበ t l b control 35 -8.33 -9.16
ተረመ t r m control 26 -8.32 -8.57
ተረሰ t r s control 36 -8.31 -9.23
ተረዘ t r z control 26 -8.8 -9.47
ደመሰ d m s control 35 -8.48 -8.51
ደበዘ d b z control 32 -8.94 -8.76
ደበከ d b k control 26 -8.64 -8.83
ደሰለ d s l control 26 -8.68 -8.87
ደሰረ d s r control 32 -8.51 -9.18
ደከሰ d k s control 36 -8.84 -9.16
ጠመለ t’ m l control 26 -8.36 -8.48
ጠመሰ t’ m s control 32 -8.73 -8.93
ጠለገ t’ l g control 25 -8.15 -9.05
ጠነቀ t’ n k’ control 33 -7.98 -8.7
ጠቀለ t’ k’ l control 30 -8.76 -8.65
ከመለ k m l control 28 -8.17 -8.32
ከመሰ k m s control 26 -8.55 -8.76
ከመደ k m d control 25 -8.52 -8.72
ከረዘ k r z control 26 -8.2 -8.64
ከሰበ k s b control 27 -8.87 -8.52
ገፈደ g f d control 34 -8.2 -8.73
ገሰነ g s n control 32 -8.47 -8.36
ገሰተ g s t control 29 -8.43 -9.16
ገዘበ g z b control 31 -8.73 -8.57
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stimuli root condition location POA ND PP TP
ገደሰ g d s control 37 -8.56 -8.44
ቀፈጠ k’ f t’ control 36 -7.95 -8.65
ቀሰበ k’ s b control 29 -8.32 -8.57
ቀዘለ k’ z l control 37 -8.67 -8.75
ቀደፈ k’ d f control 31 -8.59 -9.29
ቀደነ k’ d n control 26 -8.58 -9.09



Appendix B: Experimental items
II

item root condition location Part ND PP TP
ከደበ k d b control control A 22 -8.91 -9.57
በከሰ b k s control control A 30 -8.91 -9
ደቀመ d k' m control control A 20 -8.9 -9.59
መደሰ m d s control control A 25 -8.9 -8.98
ሰቀነ s k' n control control A 25 -8.89 -8.6
ገጠዘ g t' z control control A 23 -8.89 -9.99
ጠቀበ t' k' b control control A 18 -8.89 -9.33
ፈቀጠ f k' t' control control A 23 -8.86 -9.14
ዘቀለ z k' l control control A 26 -8.86 -8.96
ፈገደ f g d control control A 24 -8.82 -9.18
ፈገነ f g n control control A 26 -8.81 -9.21
ለቀበ l k' b control control A 25 -9.13 -9.06
ነበከ n b k control control A 17 -9.13 -9.35
ፈከነ f k n control control A 22 -9.12 -9.38
ጠቀፈ t' k' f control control A 17 -9.11 -9.84
ለፈቀ l f k' control control A 23 -9.08 -9.6
ለከበ l k b control control A 20 -9.08 -9.48
ነከበ n k b control control A 23 -9.07 -9.3
ደሰነ d s n control control A 23 -9.02 -9.05
በጠገ b t' g control control A 20 -9.01 -9.75
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item root condition location Part ND PP TP
ለገፈ l g f control control A 22 -8.99 -9.43
ነገፈ n g f control control A 29 -8.99 -8.98
ቀጠዘ k' t' z control control A 24 -8.96 -9.61
ለመገ l m g control control A 20 -8.96 -9.34
ሰጠነ s t' n control control A 22 -8.96 -9.5
መዘለ m z l control control A 29 -8.95 -8.6
ሰቀመ s k' m control control A 20 -8.93 -9.46
በሰቀ b s k' control control A 28 -8.93 -9.01
ጠሰለ t' s l control control A 17 -8.93 -9.26
ረቀደ r k' d r C1 A 15 -9.89 -10.81
ረጠሰ r t' s r C1 A 15 -9.99 -10.65
ረሰበ r s b r C1 A 13 -9.84 -10.6
ዘረበ z r b r C2 A 34 -7.74 -8.34
ዘረቀ z r k' r C2 A 33 -7.8 -8.32
ደረመ d r m r C2 A 34 -7.66 -8.28
ደሰረ d s r r C3 A 32 -8.51 -9.18
ፈደረ f d r r C3 A 35 -8.87 -8.9
ዘቀረ z k' r r C3 A 32 -8.68 -8.67
ተበከ t b k t C1 A 13 -9.31 -10.26
ተሰለ t s l t C1 A 17 -9.34 -10.22
ተበዘ t b z t C1 A 15 -9.61 -10.19
ዘተመ z t m t C2 A 16 -9.61 -10.32
በተሰ b t s t C2 A 16 -9.33 -10.1
ለተገ l t g t C2 A 13 -9.74 -10.02
ዘከተ z k t t C3 A 27 -9.11 -10.42
ለመተ l m t t C3 A 27 -8.9 -9.39
በሰተ b s t t C3 A 26 -9.05 -9.31
ወዘጠ w z t' w C1 A 18 -9.31 -9.98
ወጠሰ w t' s w C1 A 18 -9.08 -9.63



152

item root condition location Part ND PP TP
ወሰገ w s g w C1 A 15 -9.17 -8.91
ደወከ d w k w C2 A 15 -9.48 -10.53
ዘወጠ z w t' w C2 A 20 -9.29 -10.14
ጠወገ t' w g w C2 A 18 -9.53 -10.01
ከፈደ k f d control control B 23 -8.81 -8.98
ደከፈ d k f control control B 18 -8.81 -9.28
ዘመገ z m g control control B 16 -8.81 -9.26
ደሰበ d s b control control B 19 -8.8 -9.37
ጠገመ t' g m control control B 26 -8.79 -9.79
ፈከለ f k l control control B 29 -8.78 -9.06
ለመቀ l m k' control control B 23 -8.78 -9.68
በሰጠ b s t' control control B 17 -8.78 -9.45
ጠቀለ t' k' l control control B 30 -8.76 -8.65
መጠሰ m t' s control control B 25 -8.75 -8.82
ሰጠበ s t' b control control B 23 -8.74 -9.54
መደቀ m d k' control control B 30 -8.7 -8.81
ሰመከ s m k control control B 18 -8.7 -9.41
ደሰለ d s l control control B 26 -8.68 -8.87
ደመከ d m k control control B 16 -8.67 -9.13
ጠፈለ t' f l control control B 22 -8.65 -9.01
ደበከ d b k control control B 26 -8.64 -8.83
ደቀበ d k' b control control B 23 -8.64 -9.21
ዘመቀ z m k' control control B 21 -8.63 -9.6
ሰከበ s k b control control B 20 -8.62 -9.04
ሰጠለ s t' l control control B 25 -8.62 -9.45
በቀጠ b k' t' control control B 27 -8.61 -8.8
ዘበቀ z b k' control control B 25 -8.61 -9.09
ደከበ d k b control control B 22 -8.59 -9.76
ቀደነ k' d n control control B 26 -8.58 -9.09
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item root condition location Part ND PP TP
በገደ b g d control control B 23 -8.57 -9.47
ከመሰ k m s control control B 26 -8.55 -8.76
ሰገነ s g n control control B 30 -8.54 -8.9
ከመደ k m d control control B 25 -8.52 -8.72
ሰመደ s m d control control B 25 -8.49 -8.75
ቀመዘ k' m z control control B 20 -8.48 -9.18
ሰበገ s b g control control B 20 -8.48 -9.83
ከለዘ k l z control control B 19 -8.47 -9.23
ደመገ d m g control control B 16 -8.47 -8.86
ሰበደ s b d control control B 26 -8.46 -8.77
ሰበነ s b n control control B 26 -8.46 -9.83
ጀነዘ ʤ n z ʤ C1 B 6 -10.24 -11.05
ጀለዘ ʤ l z ʤ C1 B 11 -10.23 -10.63
ጀፈገ ʤ f g ʤ C1 B 8 -10.6 -10.56
ሰጀገ s ʤ g ʤ C2 B 8 -10.84 -49.18
ነጀቀ n ʤ k' ʤ C2 B 9 -11.11 -49.08
ሰጀበ s ʤ b ʤ C2 B 10 -10.6 -48.3
ቀፈጀ k' f ʤ ʤ C3 B 7 -9.93 -11.4
ሰመጀ s m ʤ ʤ C3 B 8 -10.15 -11.16
ዘለጀ z l ʤ ʤ C3 B 9 -9.89 -10.86
ጸበነ s' b n s’ C1 B 8 -10.75 -12.52
ጸመቀ s' m k' s’ C1 B 9 -10.62 -12.15
ጸመለ s' m l s’ C1 B 11 -10.44 -11.01
ደጸመ d s' m s’ C2 B 8 -11.19 -49.71
ነጸጠ n s' t' s’ C2 B 10 -11.32 -48.92
ከጸደ k s' d s’ C2 B 7 -11.22 -48.82
መደጸ m d s' s’ C3 B 8 -11.5 -48.91
መጠጸ m t' s' s’ C3 B 11 -11.35 -48.75
ጠለጸ t' l s' s’ C3 B 11 -10.77 -12.01
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item root condition location Part ND PP TP
ተገፈ t g f t C1 B 14 -9.17 -9.89
ተመገ t m g t C1 B 12 -9.13 -9.79
ተበሰ t b s t C1 B 18 -9.13 -9.68
ለተበ l t b t C2 B 16 -9.5 -9.98
ነተገ n t g t C2 B 12 -9.73 -9.89
ሰተገ s t g t C2 B 15 -9.28 -9.67
ለበተ l b t t C3 B 29 -8.88 -9.28
ነፈተ n f t t C3 B 27 -9.19 -9.23
ሰመተ s m t t C3 B 29 -8.45 -9.19
ወጠለ w t' l w C1 B 22 -8.71 -8.91
ወለዘ w l z w C1 B 23 -8.53 -8.78
ወሰቀ w s k' w C1 B 21 -8.99 -8.73
ደወገ d w g w C2 B 18 -9.28 -9.7
ጠወነ t' w n w C2 B 20 -9.51 -9.54
ዘወነ z w n w C2 B 21 -9.6 -9.47
ቀደወ k' d w w C3 B 7 -10.6 -10.46
ቀዘወ k' z w w C3 B 8 -11.02 -10.16
ሰከወ s k w w C3 B 8 -10.85 -10.01
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Appendix D: Experiment
instructions

የዚህ፡ ጥናት፡bአላማ፡ የኣማርኛ፡ ቃላት፡ ከሌሎች፡ ቋንቋዎች፡ ቃላት፡ በምን፡ እንደሚለያዩ፡

ለመረዳት፡ነው። ቃላቶቹም፡ አዲስ፡ የተፈጠሩ፡ ሲሆኑ፡ የሚሰጡትም፡ አስተየየት፡ እያንዳንዱ፡ ቃላት፡

ምን፡ ያክል፡ የአማርኛ፡ ቃል፡ ሊሆን፡ እንደሚችል፡ ሀሳቦን፡ እንዲሠጡ፡ ነው። ለቋንቋ፡ ጥናት፡

የተፈጠሩት፡ ቃላት፡ ሁሉ፡ በቃለ፡ መዝገባት፡ ውስጥ፡ የግሥ፡ ክፍል፡ ናቸው። ለምሳሌ፤ ሰበረ ("he

broke")

በያንዳንዱ፡ ገፅ፡ አንድ፡ ቃልና፡ ከአንድ፡ እስከ፡ ዘጠኝ፡ የሚያሣይ፡ ሚዛን፡ ይኖራል።

ቃሉ፡ ጥሩ፡ የአማርኛ፡ ቃል፡ መሆን፡ የሚችል፡ ከሆነ፡ አንድ(1)፡ ቁጥር፡ ይመርጣሉ። ቃሉ፡

ፈፅሞ፡ የአማርኛ፡ ቃል፡ሊሆን፡ የማይችል፡ ከሆነ፡ ዘጠኘ (9)፡ ቁጥር፡ ይመርጣሉ። ቃሉ፡ ጥሩ፡

የአማርኛ፡ ቃል፡ ባይመስልም፡ የአማርኛ፡ ቃል፡ ሊሆን፡ የሚችል፡ ከሆነ፡ ከአንድ፡ ቁጥር፡ የቀረበ፡

ቁጥር፡ ይስጡት። ቃሉ፡ የአማርኛ፡ ቃል፡ባይመስልም ፡ምናልባት፡ የአማርኛ፡ ቃል፡ የሚመስል፡

ካልሆነ፡ ወደ፡ ዘጠኝ (9)፡ ቀጥር፡ የቀረበ፡ቁጥር፡ ይስጡት።

የመጀመርያ፡ ሀያ (twenty) ፡ ቃላት፡ የመለማመጃ፡ ቃላቶች፡ ናቸው። በያንዳንዱ፡

ቃላት፡ ብዙ፡ጊዜ፡ አያሳልፉ። እያንዳንዱ፡ ቃል፡ ምን፡ ያህል፡ ጥሩ፡ የአማርኛ፡ ቃል፡ እንደሚሆን፡

በቁጥር፡ከገመቱ፡ በኃላ፡ ይቀጥሉ፡ የሚል፡ ምልክት፡ ይጫኑ። የዚህ፡ ጥናት፡ አላማ፡ የኣማርኛ፡

ቃላት፡ከሌሎች፡ ቋንቋዎች፡ ቃላት፡ በምን፡ እንደሚለያዩ፡ ለመረዳት፡ ነው። ቃላቶቹም፡ አዲስ፡

የተፈጠሩ፡ ሲሆኑ፡ የሚሰጡትም፡ አስተየየት፡ እያንዳንዱ፡ ቃላት፡ ምን፡ ያክል፡ የአማርኛ፡ ቃል፡ሊሆን

፡እንደሚችል፡ ሀሳቦን፡ እንዲሠጡ፡ ነው። ለቋንቋ ፡ጥናት፡ የተፈጠሩት፡ ቃላት፡ ሁሉ፡ በቃለ፡ መዝገባት፡

ውስጥ፡ የግሥ፡ ክፍል፡ ናቸው። ለምሳሌ፤ ሰበረ ("he broke")

በያንዳንዱ፡ ገፅ፡ አንድ፡ ቃልና፡ ከአንድ፡ እስከ፡ ዘጠኝ፡ የሚያሣይ፡ ሚዛን፡ ይኖራል።

ቃሉ፡ ጥሩ፡ የአማርኛ፡ ቃል፡መሆን፡ የሚችል፡ ከሆነ፡ አንድ (1)፡ ቁጥር፡ ይመርጣሉ።

ቃሉ፡ፈፅሞ፡ የአማርኛ፡ ቃል፡ ሊሆን፡ የማይችል፡ ከሆነ፡ ዘጠኘ (9)፡ ቁጥር፡ ይመርጣሉ። ቃሉ፡

ጥሩ፡የአማርኛ፡ ቃል፡ ባይመስልም፡ የአማርኛ፡ ቃል፡ ሊሆን፡ የሚችል፡ ከሆነ፡ ከአንድ፡ ቁጥር፡
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የቀረበ፡ቁጥር፡ ይስጡት። ቃሉ፡ የአማርኛ፡ ቃል፡ ባይመስልም፡ ምናልባት፡ የአማርኛ፡ ቃል፡ የሚመስል፡

ካልሆነ፡ ወደ፡ ዘጠኝ (9)፡ ቀጥር፡ የቀረበ፡ ቁጥር፡ ይስጡት።

የመጀመርያ ፡ሀያ (twenty) ፡ቃላት፡ የመለማመጃ፡ ቃላቶች፡ ናቸው። በያንዳንዱ፡ ቃላት፡

ብዙ፡ጊዜ፡ አያሳልፉ። እያንዳንዱ፡ ቃል፡ ምን፡ ያህል፡ ጥሩ፡ የአማርኛ፡ ቃል፡ እንደሚሆን፡ በቁጥር፡

ከገመቱ፡ በኃላ፡ ይቀጥሉ፡ የሚል፡ ምልክት፡ ይጫኑ።
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