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Abstract The standard model (SM) production of four top
quarks (tt tt) in proton–proton collisions is studied by the
CMS Collaboration. The data sample, collected during the
2016–2018 data taking of the LHC, corresponds to an inte-
grated luminosity of 137 fb−1 at a center-of-mass energy of
13 TeV. The events are required to contain two same-sign
charged leptons (electrons or muons) or at least three leptons,
and jets. The observed and expected significances for the tt tt
signal are respectively 2.6 and 2.7 standard deviations, and
the tt tt cross section is measured to be 12.6+5.8

−5.2 fb. The results
are used to constrain the Yukawa coupling of the top quark
to the Higgs boson, yt, yielding a limit of |yt/ySM

t | < 1.7 at
95% confidence level, where ySM

t is the SM value of yt. They
are also used to constrain the oblique parameter of the Higgs
boson in an effective field theory framework, Ĥ < 0.12. Lim-
its are set on the production of a heavy scalar or pseudoscalar
boson in Type-II two-Higgs-doublet and simplified dark mat-
ter models, with exclusion limits reaching 350–470 GeV and
350–550 GeV for scalar and pseudoscalar bosons, respec-
tively. Upper bounds are also set on couplings of the top
quark to new light particles.

1 Introduction

The production of four top quarks (tt tt) is a rare stan-
dard model (SM) process, with a predicted cross section of
σ(pp → tt tt) = 12.0+2.2

−2.5 fb in proton–proton (pp) collisions
at a center-of-mass energy of 13 TeV, as calculated at next-
to-leading-order (NLO) accuracy for both quantum chromo-
dynamics and electroweak interactions [1]. Representative
leading-order (LO) Feynman diagrams for SM production of
tt tt are shown in Fig. 1.

The tt tt cross section can be used to constrain the mag-
nitude and CP properties of the Yukawa coupling of the
top quark to the Higgs boson [2,3]. Moreover, tt tt produc-

� e-mail: cms-publication-committee-chair@cern.ch

tion can be significantly enhanced by beyond-the-SM (BSM)
particles and interactions. New particles coupled to the top
quark, such as heavy scalar and pseudoscalar bosons pre-
dicted in Type-II two-Higgs-doublet models (2HDM) [4–6]
and by simplified models of dark matter (DM) [7,8], can
contribute to σ(pp → tt tt) when their masses are larger
than twice the mass of the top quark, with diagrams simi-
lar to Fig. 1 (right). Additionally, less massive particles can
enhance σ(pp → tt tt) via off-shell contributions [9]. In the
model-independent framework of SM effective field theory,
four-fermion couplings [10], as well as a modifier to the
Higgs boson propagator [11], can be constrained through a
measurement of σ(pp → tt tt). Conversely, models with new
particles with masses on the order of 1 TeV, such as gluino
pair production in the framework of supersymmetry [12–21],
are more effectively probed through studies of tt tt produc-
tion in boosted events or by requiring very large imbalances
in momentum.

Each top quark primarily decays to a bottom quark and a W
boson, and each W boson decays to either leptons or quarks.
As a result, the tt tt final state contains jets mainly from the
hadronization of light (u, d, s, c) quarks (light-flavor jets) and
b quarks (b jets), and can also contain isolated charged lep-
tons and missing transverse momentum arising from emitted
neutrinos. Final states with either two same-sign leptons or
at least three leptons, considering W → �ν (� = e or μ)
and including leptonic decays of τ leptons, correspond to
a combined branching fraction of approximately 12% [22].
The relatively low levels of background make these chan-
nels the most sensitive to tt tt events produced with SM-like
kinematic properties [23].

Previous searches for tt tt production in 13 TeV pp colli-
sions were performed by the ATLAS [24,25] and CMS [23,
26,27] Collaborations. The most sensitive results, based
on an integrated luminosity of approximately 36 fb−1 col-
lected by each experiment, led to cross section measurements
of 28.5+12

−11 fb with an observed (expected) significance of
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Fig. 1 Typical Feynman
diagrams for tt tt production at
leading order in the SM g
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2.8 (1.0) standard deviations by ATLAS [25], and 13+11
−9 fb

with an observed (expected) significance of 1.4 (1.1) stan-
dard deviations by CMS [23], both consistent with the SM
prediction.

The analysis described in this paper improves upon the
CMS search presented in Ref. [27], and supersedes the
results, by taking advantage of upgrades to the CMS detector
and by optimizing the definitions of the signal regions for the
integrated luminosity of 137 fb−1. The reference cross sec-
tion for SM tt tt, 12.0+2.2

−2.5 fb, used to determine the expected
statistical significance of the search, as well as in interpre-
tations for which SM tt tt is a background, includes NLO
electroweak effects, in contrast to the 9.2+2.9

−2.4 fb [28] used in
the previous search. In addition to the analysis strategy used
in the previous search, a new multivariate classifier is defined
to maximize the sensitivity to the SM tt tt signal.

2 Background and signal simulation

Monte Carlo (MC) simulated samples at NLO are used
to evaluate the signal acceptance for the SM tt tt process
and to estimate the backgrounds from diboson (WZ, ZZ,
Zγ, W±W±) and triboson (WWW, WWZ, WZZ, ZZZ,
WWγ, WZγ) processes. Simulated samples generated at
NLO are also used to estimate backgrounds from associated
production of single top quarks and vector bosons (tWZ,
tZq, tγ), or tt produced in association with a single boson
(tt W, tt Z, tt H, ttγ). Three separate sets of simulated events
for each process are used in order to match the different
data-taking conditions and algorithms used in 2016, 2017,
and 2018. Most samples are generated using the Mad-
Graph5_amc@nlo 2.2.2 (2.4.2) program [28] at NLO for
2016 samples (2017 and 2018 samples) with at most two
additional partons in the matrix element calculations. In par-
ticular, the tt W sample is generated with up to one additional
parton, and tt Z and tt H with no additional partons. The tt Z
sample, which includes tt Z/γ ∗ → ��, is generated with a
dilepton invariant mass greater than 1 GeV. For the WZ sam-
ple used with 2016 conditions, as well as all ZZ and tt H

samples, the powheg box v2 [29,30] program is used. The
MadGraph5_amc@nlo generator at LO with up to three
additional partons, scaled to NLO cross sections, is used to
produce a subset of samples for some of the data taking peri-
ods: Wγ (2016), ttγ (2017 and 2018), tZq (2018), and tγ
(2018) [28]. Other rare backgrounds, such as tt production
in association with dibosons (tt WW, tt WZ, tt ZZ, tt WH,
tt ZW, tt HH) and triple top quark production (tt t, tt tW), are
generated using LO MadGraph5_amc@nlo without addi-
tional partons, and scaled to NLO cross sections [31]. The
background from radiative top decays, with γ ∗ → ��, was
found to be negligible in this analysis.

The top quark associated production modes for a heavy
scalar (H) or pseudoscalar (A) in the mass range of [350,
650] GeV, ttH/A, tqH/A, and tWH/A, with subsequent
decays of H/A into a pair of top quarks, are generated using
LO MadGraph5_amc@nlo, with one additional parton for
all but the tqH/A production mode. In the context of type-
II 2HDM, these samples are scaled to LO cross sections
obtained with MadGraph5_amc@nlo model, “2HDMtII”
[32,33]. For the choice tan β = 1 in the alignment limit [34],
where tan β represents the ratio of vacuum expectation val-
ues of the two Higgs doublets, these cross sections repro-
duce those of Ref. [6], which were also used in the previ-
ous CMS result [27]. In the context of simplified models of
dark matter, these samples are scaled to LO cross sections
obtained with the model used in Ref. [35], which includes
kinematically accessible decays of the mediator into a pair
of top quarks. The processes are simulated in the narrow-
width approximation, suitable for the parameter space stud-
ied here, in which the width of the mediator is 5% of its mass
or less. Samples and cross sections used for constraining
the modified Higgs boson propagator are generated using
MadGraph5_amc@nlo at LO, matching the prescription
of Ref. [11]. Cross sections used for SM tt tt enhanced by
scalar and vector off-shell diagrams are obtained at LO from
Ref. [9].

The NNPDF3.0LO (NNPDF3.0NLO) [36] parton dis-
tribution functions (PDFs) are used to generate all LO
(NLO) 2016 samples, while NNPDF3.1 next-to-next-to-
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leading order [37] is used for 2017 and 2018 samples.
Parton showering and hadronization, as well as W±W±
production from double-parton scattering, are modeled by
the pythia 8.205 [38] program for 2016 samples and
pythia 8.230 [39] for 2017 and 2018 samples, while the
MLM [40] and FxFx [41] prescriptions are employed in
matching additional partons from the matrix element cal-
culations to those from parton showers for the LO and NLO
samples, respectively. The underlying event modeling uses
the CUETP8M1 tune [42,43] for 2016, and CP5 [44] for
2017 and 2018 data sets, respectively. The top quark mass in
the Monte Carlo programs is set to 172.5 GeV. The Geant4
package [45] is used to model the response of the CMS detec-
tor. Additional pp interactions (pileup) within the same or
nearby bunch crossings are also included in the simulated
events.

3 The CMS detector and event reconstruction

The central feature of the CMS detector is a superconduct-
ing solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a sili-
con pixel and strip tracker, a lead tungstate crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator
hadron calorimeter (HCAL), each composed of a barrel and
two endcap sections. Forward calorimeters extend the pseu-
dorapidity (η) coverage provided by the barrel and endcap
detectors. Muons are detected in gas-ionization chambers
embedded in the steel flux-return yoke outside the solenoid.
A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant variables, can be found in Ref. [46].

Events of interest are selected using a two-tiered trigger
system [47]. The first level, composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a time interval of less than 4 μs. The second level, known
as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage.

The reconstructed vertex with the largest value of summed
physics-object squared-transverse-momentum is taken to be
the primary pp interaction vertex. The physics objects are the
jets, clustered using the jet finding algorithm [48,49] with
the tracks assigned to the vertex as inputs, and the associated
missing transverse momentum, taken as the negative vector
sum of the transverse momentum (pT) of those jets.

The particle-flow algorithm [50] aims to reconstruct and
identify each individual particle in an event, with an opti-
mized combination of information from the various ele-
ments of the CMS detector. The energy of photons is directly

obtained from the ECAL measurement. The energy of elec-
trons is determined from a combination of the electron
momentum at the primary interaction vertex as determined
by the tracker, the energy of the corresponding ECAL cluster,
and the energy sum of all bremsstrahlung photons spatially
compatible with the electron track [51]. The momentum of
muons is obtained from the curvature of the corresponding
track, combining information from the silicon tracker and the
muon system [52]. The energy of charged hadrons is deter-
mined from a combination of their momentum measured
in the tracker and the matching ECAL and HCAL energy
deposits, corrected for the response function of the calorime-
ters to hadronic showers. The energy of neutral hadrons is
obtained from the corresponding corrected ECAL and HCAL
energies.

Hadronic jets are clustered from neutral PF candidates and
charged PF candidates associated with the primary vertex,
using the anti-kT algorithm [48,49] with a distance parameter
of 0.4. The jet momentum is determined as the vectorial sum
of all PF candidate momenta in the jet. An offset correction
is applied to jet energies to take into account the contribution
from pileup [53]. Jet energy corrections are derived from
simulation and are improved with in situ measurements of
the energy balance in dijet, multijet, γ +jet, and leptonically
decaying Z+jet events [54,55]. Additional selection criteria
are applied to each jet to remove jets potentially affected by
instrumental effects or reconstruction failures [56]. Jets orig-
inating from b quarks are identified as b-tagged jets using
a deep neural network algorithm, DeepCSV [57], with a
working point chosen such that the efficiency to identify a
b jet is 55–70% for a jet pT between 20 and 400 GeV. The
misidentification rate is approximately 1–2% for light-flavor
and gluon jets and 10–15% for charm jets, in the same jet
pT range. The vector �pmiss

T is defined as the projection on
the plane perpendicular to the beams of the negative vector
sum of the momenta of all reconstructed PF candidates in an
event [58]. Its magnitude, called missing transverse momen-
tum, is referred to as pmiss

T .

4 Event selection and search strategy

The identification, isolation, and impact parameter require-
ment with respect to the primary vertex, imposed on electrons
and muons are the same as those of Ref. [27] when analyzing
the 2016 data set, while for the 2017 and 2018 data sets the
identification of electrons and the isolation of both electrons
and muons are modified to take into account the increased
pileup. For electrons, identification is based on a multivariate
discriminant using shower shape and track quality variables,
while muon identification is based on the quality of the geo-
metrical matching between measurements in the tracker and
the muon system. The isolation requirement, introduced in
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Ref. [59], is designed to distinguish the charged leptons pro-
duced in W and Z decays (“prompt leptons”) from the leptons
produced in hadron decays or in conversions of photons in
jets, as well as hadrons misidentified as leptons (collectively
defined as “nonprompt leptons”). The requirements to min-
imize charge misassignment are the same as in Ref. [27]:
muon tracks are required to have a small uncertainty in pT

and electron tracks are required to have the same charge as
that obtained from comparing a linear projection of the pixel
detector hits to the position of the calorimeter deposit. The
combined efficiency to reconstruct and identify leptons is in
the range of 45–80 (70–90)% for electrons (muons), increas-
ing as a function of pT and reaching the maximum value for
pT > 60 GeV.

For the purpose of counting leptons and jets, the follow-
ing requirements are applied: the number of leptons (N�)
is defined to be the multiplicity of electrons and muons
with pT > 20 GeV and either |η| < 2.5 (electrons) or
|η| < 2.4 (muons), the number of jets (Njets) counts all jets
with pT > 40 GeV and |η| < 2.4, and the number of b-
tagged jets (Nb) counts b-tagged jets with pT > 25 GeV and
|η| < 2.4. In order to be included in Njets, Nb, and the HT

variable, which is defined as the scalar pT sum of all jets in an
event, jets and b-tagged jets must have an angular separation
ΔR > 0.4 with respect to all selected leptons. This angular
separation is defined as ΔR =

√
(Δη)2 + (Δφ)2, where Δη

and Δφ are the differences in pseudorapidity and azimuthal
angle, respectively, between the directions of the lepton and
the jet.

Events were recorded using either a dilepton+HT (2016)
or a set of dilepton triggers (2017 and 2018). The dilepton+HT

trigger requires two leptons with pT > 8 GeV and a mini-
mum HT requirement that is fully efficient with respect to the
offline requirement of 300 GeV. The dilepton triggers require
either two muons with pT > 17 and 8 GeV, two electrons
with pT > 23 and 12 GeV, or an eμ pair with pT > 23 GeV
for the higher-pT (leading) lepton and pT > 12 (8) GeV
for the lower-pT (trailing) electron (muon). The trigger effi-
ciency within the detector acceptance is measured in data to
be greater than 90% for ee, eμ, and μμ events, and nearly
100% for events with at least three leptons.

We define a baseline selection that requires HT >

300 GeV and pmiss
T > 50 GeV, two or more jets (Njets ≥

2) and b-tagged jets (Nb ≥ 2), a leading lepton with
pT > 25 GeV, and a trailing lepton of the same charge with
pT > 20 GeV. Events with same-sign electron pairs with
an invariant mass below 12 GeV are rejected to reduce the
background from production of low-mass resonances with
a charge-misidentified electron. Events where a third lep-
ton with pT > 7 (5) GeV for electrons (muons) forms an
opposite-sign (OS) same-flavor pair with an invariant mass
below 12 GeV or between 76 and 106 GeV are also rejected.
Inverting this resonance veto, the latter events are used to

populate a tt Z background control region (CRZ) if the invari-
ant mass is between 76 and 106 GeV and the third lepton has
pT > 20 GeV. After this baseline selection, the signal accep-
tance is approximately 1.5%, including branching fractions.

Events passing the baseline selection are split into sev-
eral signal and control regions, following two independent
approaches. In the first analysis, similarly to Ref. [27] and
referred to as “cut-based”, the variables Njets, Nb, and N�

are used to subdivide events into 14 mutually exclusive sig-
nal regions (SRs) and a control region (CR) enriched in tt W
background (CRW), to complement the CRZ defined above,
as detailed in Table 1. In the boosted decision tree (BDT)
analysis, the CRZ is the only control region, and the remain-
ing events are subdivided into 17 SRs by discretizing the
discriminant output of a BDT trained to separate tt tt events
from the sum of the SM backgrounds.

The BDT classifier utilizes a gradient boosting algorithm
to train 500 trees with a depth of 4 using simulation, and is
based on the following 19 variables: Njets, Nb, N�, pmiss

T , HT,
two alternative definitions of Nb based on b tagging working
points tighter or looser than the default one, the scalar pT

sum of b-tagged jets, the pT of the three leading leptons, of
the leading jet and of the sixth, seventh, and eighth jets, the
azimuthal angle between the two leading leptons, the invari-
ant mass formed by the leading lepton and the leading jet,
the charge of the leading lepton, and the highest ratio of the
jet mass to the jet pT in the event (to provide sensitivity to
boosted, hadronically-decaying top quarks and W bosons).
Three of the most performant input variables, Njets, Nb, and
N�, correspond to the variables used for the cut-based anal-
ysis. Top quark tagging algorithms to identify hadronically
decaying top quarks based on invariant masses of jet combi-
nations, similarly to Ref. [23], were also tested, but did not
improve the expected sensitivity. Such algorithms could only
contribute in the handful of events where all the top quark
decay products were found, and these events already have
very small background yields. In each analysis, the observed
and predicted yields in the CRs and SRs are used in a max-
imum likelihood fit with nuisance parameters to measure
σ(pp → tt tt), following the procedure described in Sect. 7.

5 Backgrounds

In addition to the tt tt signal, several other SM processes result
in final states with same-sign dileptons or at least three lep-
tons, and several jets and b jets. These backgrounds primarily
consist of processes where tt is produced in association with
additional bosons that decay to leptons, such as tt W, tt Z,
and tt H (mainly in the H → WW channel), as well as dilep-
ton tt events with a charge-misidentified prompt-lepton and
single-lepton tt events with an additional nonprompt lepton.
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Table 1 Definition of the 14 SRs and two CRs for the cut-based analysis

N� Nb Njets Region

2 2 ≤5 CRW

6 SR1

7 SR2

≥8 SR3

3 5 SR4

6 SR5

7 SR6

≥ 8 SR7

≥ 4 ≥ 5 SR8

≥ 3 2 5 SR9

6 SR10

≥ 7 SR11

≥ 3 4 SR12

5 SR13

≥ 6 SR14

Inverted resonance veto CRZ

The prompt-lepton backgrounds, dominated by tt W, tt Z,
and tt H, are estimated using simulated events. Dedicated
CRs are used to constrain the normalization for tt W (cut-
based analysis) and tt Z (cut-based and BDT analyses), while
for other processes described in the next paragraph, the nor-
malization is based on the NLO cross sections referenced in
Sect. 2.

Processes with minor contributions are grouped into three
categories. The “ttVV” category includes the associated pro-
duction of tt with a pair of bosons (W, Z, H), dominated by
ttWW. The “Xγ” category includes processes where a pho-
ton accompanies a vector boson, a top quark, or a top-antitop
quark pair. The photon undergoes a conversion, resulting in
the identification of an electron in the final state. The cat-
egory is dominated by ttγ, with smaller contributions from
Wγ, Zγ, and tγ. Finally, the “Rare” category includes all
residual processes with top quarks (tZq, tWZ, ttt, and tttW)
or without them (WZ, ZZ, W±W± from single- and double-
parton scattering, and triboson production).

Since the tt W, tt Z, and tt H processes constitute the largest
backgrounds to tt tt production, their simulated samples are
corrected wherever possible to account for discrepancies
observed between data and MC simulation. To improve the
MC modeling of the additional jet multiplicity from initial-
state radiation (ISR) and final-state radiation (FSR), simu-
lated tt W and tt Z events are reweighted based on the num-
ber of ISR or FSR jets (N ISR/FSR

jets ). The reweighting is based
on a comparison of the light-flavor jet multiplicity in dilep-
ton tt events in data and simulation, where the simulation
is performed with the same generator settings as those of

the tt W and tt Z samples. The method requires exactly two
jets identified as originating from b quarks in the event and
assumes that all other jets are from ISR or FSR. The N ISR/FSR

jets
reweighting factors vary within the range of [0.77, 1.46] for
N ISR/FSR

jets between 1 and 4. This correction is not applied to

tt H (H → WW) events, which already have additional jets
from the decay of the additional W bosons. In addition to the
ISR or FSR correction, the tt W, tt Z, and tt H simulation is
corrected to improve the modeling of the flavor of additional
jets, based on the measured ratio of the tt bb̄ and tt jj cross
sections, 1.7±0.6 , reported in Ref. [60], where j represents a
generic jet. This correction results in a 70% increase of events
produced in association with a pair of additional b jets. Other
topologies, such as those including c quarks, are negligible
by comparison, and no dedicated correction is performed.

The nonprompt lepton backgrounds are estimated using
the “tight-to-loose” ratio method [59]. The tight identification
(for electrons) and isolation (for both electrons and muons)
requirements of the SRs are relaxed to define a loose lep-
ton selection, enriched in nonprompt leptons. The efficiency,
εTL, for nonprompt leptons that satisfy the loose selection
to also satisfy the tight selection is measured in a control
sample of single-lepton events, as a function of lepton flavor,
pT, and |η|, after subtracting the prompt-lepton contamina-
tion based on simulation. The loose selection is chosen to
ensure that εTL remains stable across the main categories of
nonprompt leptons specified in Sect. 4, allowing the same
εTL to be applied to samples with different nonprompt lep-
ton composition. For leptons failing the tight selection, the
pT variable is redefined as the sum of the lepton pT and the
energy in the isolation cone exceeding the isolation thresh-
old value. This parametrization accounts for the momentum
spectrum of the parent parton (the parton that produced the
nonprompt lepton), allowing the same εTL to be applied to
samples with different parent parton momenta with reduced
bias. To estimate the number of nonprompt leptons in each
SR, a dedicated set of application regions is defined, requiring
at least one lepton to fail the tight selection while satisfying
the loose one (loose-not-tight). Events in these regions are
then weighted by a factor of εTL/(1 − εTL) for each loose-
not-tight lepton. To avoid double counting the contribution
of events with multiple nonprompt leptons, events with two
loose-not-tight leptons are subtracted, and the resulting total
weight is used as a prediction of the nonprompt lepton yield.

The background resulting from charge-misidentified lep-
tons is estimated using the charge-misidentification probabil-
ity measured in simulation as a function of electron pT and
|η|. This probability ranges between 10−5 and 10−3 for elec-
trons and is at least an order of magnitude smaller for muons.
Charge-misidentified muons are therefore considered negli-
gible, while for electrons this probability is applied to a CR of
OS dilepton events defined for each same-sign dilepton SR.
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A single correction factor, inclusive in pT and |η|, is applied
to the resulting estimate to account for differences between
data and simulation in this probability. A correction factor,
derived from a control sample enriched in Z → e+e− events
with one electron or positron having a misidentified charge, is
very close to unity for the 2016 simulation, while it is approx-
imately 1.4 for the 2017 and 2018 simulation. Even with the
larger correction factors, the charge-misidentification prob-
ability is smaller in 2017 and 2018 than in 2016, due to the
upgraded pixel detector [61].

6 Uncertainties

Several sources of experimental and theoretical uncertainty
related to signal and background processes are considered
in this analysis. They are summarized, along with their esti-
mated correlation treatment across the 2016, 2017, and 2018
data sets, in Table 2. Most sources of uncertainties affect
simulated samples, while the backgrounds obtained using
control samples in data (charge-misidentified and nonprompt
leptons) have individual uncertainties described at the end of
this section.

The uncertainties in the integrated luminosity are 2.5, 2.3,
and 2.5% for the 2016, 2017, and 2018 data collection peri-
ods, respectively [62–64]. Simulated events are reweighted
to match the distribution of the number of pileup collisions
per event in data. This distribution is derived from the instan-
taneous luminosity and the inelastic cross section [65], and
uncertainties in the latter are propagated to the final yields,
resulting in yield variations of at most 5%.

The efficiency of the trigger requirements is measured in
an independent data sample selected using single-lepton trig-
gers, with an uncertainty of 2%. The lepton reconstruction
and identification efficiency is measured using a data sample
enriched in Z → �� events [51,52], with uncertainties of up
to 5 (3)% per electron (muon). The tagging efficiencies for
b jets and light-flavor jets are measured in dedicated data sam-
ples [57], and their uncertainties result in variations between
1 and 15% of the signal region yields. In all cases, simulated
events are reweighted to match the efficiencies measured in
data. The uncertainty associated with jet energy corrections
results in yield variations of 1–15% across SRs. Uncertainties
in the jet energy resolution result in 1–10% variations [54].

As discussed in Sect. 5, we correct the distribution of
the number of additional jets in tt W and tt Z samples, with
reweighting factors varying within the range of [0.77, 1.46].
We take one half of the differences from unity as the system-
atic uncertainties in these factors, since they are measured
in a tt sample, but are applied to different processes. These
uncertainties result in yield variations up to 8% across SRs.
Similarly, events with additional b quarks in tt W, tt Z, and
tt H are scaled by a factor of 1.7±0.6, based on the CMS mea-

Table 2 Summary of the sources of uncertainty, their values, and their
impact, defined as the relative change of the measurement of σ(tttt)
induced by one-standard-deviation variations corresponding to each
uncertainty source considered separately. The first group lists experi-
mental and theoretical uncertainties in simulated signal and background
processes. The second group lists normalization uncertainties in the esti-
mated backgrounds. Uncertainties marked (not marked) with a † in the
first column are treated as fully correlated (fully uncorrelated) across
the 3 years of data taking

Source Uncertainty (%) Impact on
σ(tttt) (%)

Integrated luminosity 2.3–2.5 2

Pileup 0–5 1

Trigger efficiency 2–7 2

Lepton selection 2–10 2

Jet energy scale 1–15 9

Jet energy resolution 1–10 6

b tagging 1–15 6

Size of simulated sample 1–25 < 1

Scale and PDF variations† 10–15 2

ISR/FSR (signal)† 5–15 2

ttH (normalization)† 25 5

Rare, Xγ, ttVV (norm.)† 11–20 < 1

ttZ, ttW (norm.)† 40 3–4

Charge misidentification† 20 < 1

Nonprompt leptons† 30–60 3

N ISR/FSR
jets 1–30 2

σ(tt bb̄)/σ (tt jj)† 35 11

surement of the ratio of cross sections σ(tt bb̄)/σ (tt jj) [60].
The resulting uncertainty in the yields for SRs with Nb ≥ 4,
where the effect is dominant, is up to 15%.

For background processes, uncertainties in the normal-
ization (number of events passing the baseline selection)
and shape (distribution of events across SRs) are consid-
ered, while for signal processes, the normalization is uncon-
strained, and instead, we consider the uncertainty in the
acceptance (fraction of events passing the baseline selection)
and shape. For each of the Rare, Xγ, and ttVV categories,
normalization uncertainties are taken from the largest theo-
retical cross section uncertainty in any constituent physics
process, resulting in uncertainties of 20%, 11%, and 11%,
respectively. For the tt W and tt Z processes, we set an ini-
tial normalization uncertainty of 40%, but then allow the
maximum-likelihood fit to constrain these backgrounds fur-
ther using control samples in data. For tt H, we assign a 25%
normalization uncertainty to reflect the signal strength, which
is the ratio between the measured cross section of tt H and its
SM expectation, of 1.26+0.31

−0.26 measured by CMS [66].
The shape uncertainty resulting from variations of the

renormalization and factorization scales in the event gener-
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Fig. 2 Distributions of Njets (upper left), Nb (upper right), HT (lower
left), and pmiss

T (lower right) in the summed SRs (1–14), before fitting to
data, where the last bins include the overflows. The hatched areas repre-
sent the total uncertainties in the SM signal and background predictions.

The tt tt signal assumes the SM cross section from Ref. [1]. The lower
panels show the ratios of the observed event yield to the total prediction
of signal plus background

ators is smaller than 15% for backgrounds, and 10% for the
tt tt and 2HDM signals, while the effect of the PDFs is only
1%. For the tt tt and 2HDM signals, the uncertainty in the
acceptance from variations of the scales is 2%. The uncer-
tainty in the scales that determine ISR and FSR, derived from
tt tt samples, results in up to 6 and 10% uncertainties in signal
acceptance and shape, respectively. When considering tt tt as
a background in BSM interpretations, a cross section uncer-
tainty of 20% (based on the prediction of 12.0+2.2

−2.5 fb [1]) is
additionally applied to the tt tt process.

The charge-misidentified and nonprompt-lepton back-
grounds are assigned an uncertainty of 20 and 30%, respec-
tively, where the latter is increased to 60% for nonprompt
electrons with pT > 50 GeV. For the charge-misidentified
lepton background, the uncertainty is based on the agree-

ment observed between the prediction and data as a func-
tion of kinematic distributions, in a data sample enriched in
Z → e+e− events with one electron or positron having a
misidentified charge. For the nonprompt-lepton background,
the uncertainty is based on the agreement observed in simu-
lation closure tests of the “tight-to-loose” method using mul-
tijet, tt, and W+ jets samples. The contamination of prompt
leptons, which is subtracted based on simulation, is below 1%
in the application region, but it can be significant in the con-
trol sample where εTL is measured, resulting in an uncertainty
up to 50% in εTL. The statistical uncertainty in the estimate
based on control samples in data is taken into account for both
backgrounds. It is negligible for the charge-misidentified lep-
ton background, while for the nonprompt-lepton background
it can be comparable or larger than the systematic uncertainty.
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Fig. 3 Distributions of Njets (left) and Nb (right) in the tt W (upper)
and tt Z (lower) CRs, before fitting to data. The hatched areas represent
the uncertainties in the SM signal and background predictions. The tt tt

signal assumes the SM cross section from Ref. [1]. The lower panels
show the ratios of the observed event yield to the total prediction of
signal plus background

Experimental uncertainties in normalization and shape
are treated as fully correlated among the SRs for all signal
and background processes. Two choices of correlation across
years (uncorrelated or fully correlated) were tested for each
experimental uncertainty, and their impact on the measure-
ment of σ(tttt) was found to be smaller than 1%. For sim-
plicity, these uncertainties are then treated as uncorrelated.
Systematic uncertainties in the background estimates based
on control samples in data and theoretical uncertainties in
the normalization of each background process are treated as
uncorrelated between processes but fully correlated among
the SRs and across the 3 years. Scale and PDF uncertainties,
as well as uncertainties in the number of additional b quarks,
are correlated between processes, signal regions, and years.
Statistical uncertainties due to the finite number of simulated
events or control region events are considered uncorrelated.

7 Results

Distributions of the main kinematic variables (Njets, Nb, HT,
and pmiss

T ) for events in the baseline region, as defined in
Sect. 4, are shown in Fig. 2 and compared to the SM back-
ground predictions. The Njets and Nb distributions for the
CRW and CRZ are shown in Fig. 3. The expected SM tt tt
signal, normalized to its predicted cross section, is shown in
both figures. The SM predictions are statistically consistent
with the observations.

A binned likelihood is constructed using the yields from
the signal regions, the CRZ, as well as the CRW for the
cut-based analysis only, incorporating the experimental and
theoretical uncertainties described in Sect. 6 as “nuisance”
parameters. The measured cross section for tt tt and the sig-
nificance of the observation relative to the background-only
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Fig. 4 Observed yields in the control and signal regions for the cut-
based (upper) and BDT (lower) analyses, compared to the post-fit pre-
dictions for signal and background processes. The hatched areas repre-
sent the total post-fit uncertainties in the signal and background predic-
tions. The lower panels show the ratios of the observed event yield to
the total prediction of signal plus background

hypothesis are obtained from a profile maximum-likelihood
fit, in which the parameter of interest is σ(pp → tt tt) and
all nuisance parameters are profiled, following the proce-
dures described in Refs. [22,67]. In addition, an upper limit
at 95% confidence level (CL) is set on σ(pp → tt tt) using
the modified frequentist CLs criterion [68,69], with the pro-
file likelihood ratio test statistic and asymptotic approxima-
tion [70]. We verified the consistency between the asymptotic
and fully toy-based methods. Alternatively, by considering
the SM, including the tt tt process with the SM cross section
and uncertainty [1], as the null hypothesis, the fit provides
cross section upper limits on BSM processes with new scalar
and pseudoscalar particles, as discussed in Sect. 8.

The values and uncertainties of most nuisance parameters
are unchanged by the fit, but the ones significantly affected

include those corresponding to the tt W and tt Z normal-
izations, which are both scaled by 1.3 ± 0.2 by the fit, in
agreement with the ATLAS and CMS measurements of these
processes [71–73]. The predicted yields after the maximum-
likelihood fit (post-fit) are compared to data in Fig. 4 for
the cut-based (upper) and BDT (lower) analyses, where the
fitted tt tt signal contribution is added to the background pre-
dictions. The corresponding yields are shown in Tables 3 and
4 for the cut-based and BDT analysis, respectively.

The tt tt cross section and the 68% CL interval is measured
to be 9.4+6.2

−5.6 fb in the cut-based analysis, and 12.6+5.8
−5.2 fb in

the BDT analysis. Relative to the background-only hypoth-
esis, the observed and expected significances are 1.7 and 2.5
standard deviations, respectively, for the cut-based analysis,
and 2.6 and 2.7 standard deviations for the BDT analysis.
The observed 95% CL upper limits on the cross section are
20.0 fb in the cut-based and 22.5 fb in the BDT analyses. The
corresponding expected upper limits on the tt tt cross section,
assuming no SM tt tt contribution to the data, are 9.4+4.3

−2.9 fb

(cut-based) and 8.5+3.9
−2.6 fb (BDT), a significant improvement

relative to the value of 20.8+11.2
−6.9 fb of Ref. [27]. The BDT

and cut-based observed results were found to be statistically
compatible by using correlated toy pseudo-data sets. We con-
sider the BDT analysis as the primary result of this paper, as
it provides a higher expected measurement precision, and use
the results from it for further interpretations in the following
section.

8 Interpretations

This analysis is used to constrain SM parameters, as well as
production of BSM particles and operators that can affect the
tt tt production rate. The existence of tt tt Feynman diagrams
with virtual Higgs bosons allows interpreting the upper limit
on σ(pp → tt tt) as a constraint on the Yukawa coupling,
yt, between the top quark and the Higgs boson [2,3]. Simi-
larly, the measurement can be interpreted as a constraint on
the Higgs boson oblique parameter Ĥ , defined as the Wilson
coefficient of the dimension-six BSM operator modifying
the Higgs boson propagator [11]. More generically, Feyn-
man diagrams where the virtual Higgs boson is replaced by
a virtual BSM scalar (φ) or vector (Z′) particle with mass
smaller than twice the top quark mass (m < 2mt), are used
to interpret the result as a constraint on the couplings of such
new particles [9]. In addition, new particles with m > 2mt,
such as a heavy scalar (H) or pseudoscalar (A), can be pro-
duced on-shell in association with top quarks. They can sub-
sequently decay into top quark pairs, generating final states
with three or four top quarks. Constraints on the production
of such heavy particles can be interpreted in terms of 2HDM
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Table 3 The post-fit predicted
background, tt tt signal, and total
yields with their total
uncertainties and the observed
number of events in the control
and signal regions in data for the
cut-based analysis

SM background tt tt Total Observed

CRZ 101 ± 10 0.83 ± 0.49 102 ± 10 104

CRW 331 ± 19 3.9 ± 2.3 335 ± 18 338

SR1 25.6 ± 2.1 2.0 ± 1.2 27.6 ± 2.1 33

SR2 9.1 ± 1.3 1.13 ± 0.65 10.3 ± 1.3 9

SR3 2.01 ± 0.58 0.73 ± 0.42 2.74 ± 0.67 3

SR4 11.3 ± 1.3 1.58 ± 0.90 12.9 ± 1.3 14

SR5 5.03 ± 0.77 1.68 ± 0.95 6.7 ± 1.1 5

SR6 2.29 ± 0.40 1.20 ± 0.67 3.48 ± 0.66 8

SR7 0.71 ± 0.20 0.88 ± 0.48 1.59 ± 0.49 0

SR8 3.31 ± 0.95 2.2 ± 1.3 5.5 ± 1.3 5

SR9 6.84 ± 0.80 0.71 ± 0.39 7.55 ± 0.80 6

SR10 2.10 ± 0.31 0.35 ± 0.22 2.45 ± 0.35 3

SR11 1.38 ± 0.75 0.23 ± 0.14 1.61 ± 0.75 1

SR12 2.03 ± 0.48 0.59 ± 0.34 2.62 ± 0.54 2

SR13 1.09 ± 0.28 0.69 ± 0.39 1.78 ± 0.44 2

SR14 0.87 ± 0.30 0.80 ± 0.45 1.67 ± 0.52 1

Table 4 The post-fit predicted
background and tt tt signal, and
total yields with their total
uncertainties and the observed
number of events in the control
and signal regions in data for the
BDT analysis

SM background tt tt Total Observed

CRZ 102 ± 12 1.11 ± 0.43 103 ± 12 104

SR1 3.95 ± 0.96 < 0.01 3.96 ± 0.96 4

SR2 14.2 ± 1.8 0.01 ± 0.01 14.2 ± 1.8 19

SR3 25.5 ± 3.5 0.04 ± 0.03 25.6 ± 3.5 19

SR4 34.0 ± 4.0 0.08 ± 0.05 34.0 ± 4.0 33

SR5 36.7 ± 4.0 0.15 ± 0.07 36.8 ± 4.0 36

SR6 39.8 ± 4.2 0.23 ± 0.12 40.0 ± 4.2 44

SR7 40.3 ± 3.7 0.31 ± 0.16 40.6 ± 3.8 41

SR8 47.3 ± 4.3 0.72 ± 0.28 48.0 ± 4.3 46

SR9 58.5 ± 5.2 1.18 ± 0.46 59.7 ± 5.2 48

SR10 52.1 ± 4.3 1.91 ± 0.74 54.1 ± 4.2 61

SR11 43.0 ± 3.5 3.0 ± 1.2 46.0 ± 3.5 62

SR12 32.1 ± 3.0 3.7 ± 1.4 35.8 ± 2.9 40

SR13 16.7 ± 1.6 4.3 ± 1.6 21.0 ± 2.0 15

SR14 10.1 ± 1.2 4.2 ± 1.6 14.3 ± 1.8 16

SR15 5.03 ± 0.77 4.1 ± 1.5 9.1 ± 1.6 4

SR16 2.49 ± 0.61 3.4 ± 1.3 5.9 ± 1.3 7

SR17 0.57 ± 0.36 1.08 ± 0.42 1.65 ± 0.50 3

parameters [4–6], or in the framework of simplified models
of dark matter [7,8].

When using our tt tt to determine a constraint on yt, we
verified using a LO simulation that the signal acceptance is
not affected by the relative contribution of the virtual Higgs
boson Feynman diagrams. We take into account the depen-
dence of the backgrounds on yt by scaling the tt H cross
section by |yt/ySM

t |2 prior to the fit, where ySM
t represents

the SM value of the top quark Yukawa coupling. As a result
of the tt H background rescaling, the measured σ(pp → tt tt)

depends on |yt/ySM
t |, as shown in Fig. 5. The measurement is

compared to the theoretical prediction obtained from the LO
calculation of Ref. [2], scaled to the 12.0+2.2

−2.5 fb cross section
obtained in Ref. [1], and including the uncertainty associated
with doubling and halving the renormalization and factoriza-
tion scales. Comparing the observed limit on σ(pp → tt tt)
with the central, upper, and lower values of its theoretical
prediction, we obtain 95% CL limits of |yt/ySM

t | < 1.7, 1.4,
and 2.0, respectively, an improvement over the previous CMS
result [27]. Alternatively, assuming that the on-shell Yukawa
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Fig. 5 The observed σ(pp → tt tt) (solid line) and 95% CL upper
limit (hatched line) are shown as a function of |yt/ySM

t |. The predicted
value (dashed line) [2], calculated at LO and scaled to the calculation
from Ref. [1], is also plotted. The shaded band around the measured
value gives the total uncertainty, while the shaded band around the
predicted curve shows the theoretical uncertainty associated with the
renormalization and factorization scales

coupling is equal to that of the SM, we do not rescale the tt H
background with respect to its SM prediction, and obtain
corresponding limits on the off-shell Yukawa coupling of

Fig. 6 The 95% CL exclusion regions in the plane of the φ/Z′-top
quark coupling versus mφ or mZ′ . The excluded regions are above the
hatched lines

|yt/ySM
t | < 1.8, 1.5, and 2.1. Since yt affects the Higgs

boson production cross section in both the gluon fusion and
tt H modes, constraints on yt can also be obtained from a
combination of Higgs boson measurements [74]. However,
these constraints require assumptions about the total width of
the Higgs boson, while the tt tt-based limit does not. For the
Ĥ interpretation, the BDT analysis is repeated using simu-

Fig. 7 The observed (points) and expected (dashed line) 95% CL upper
limits on the cross section times branching fraction to tt for the produc-
tion of a new heavy scalar H (left) and pseudoscalar A (right), as a
function of mass. The inner and outer bands around the expected limits

indicate the regions containing 68 and 95%, respectively, of the dis-
tribution of limits under the background-only hypothesis. Theoretical
values are shown for Type-II 2HDM in the alignment limit (solid line)
and simplified dark matter (dot-dashed line) models
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Fig. 8 The observed (solid curve) and expected (long-dashed curve)
95% CL exclusion regions in the tan β versus mass plane for Type-II
2HDM models in the alignment limit for a new scalar H (upper left),
pseudoscalar A (upper right), and both (lower) particles. The short-

dashed curves around the expected limits indicate the region containing
68% of the distribution of limits expected under the background-only
hypothesis. The excluded regions are below the curves

lated samples of tt tt signal events with different values of Ĥ
to account for small acceptance and kinematic differences,
as described in Sect. 2. We rescale the tt H cross section by
(1 − Ĥ)2 to account for its Ĥ dependency [11]. This results
in the 95% CL upper limit of Ĥ < 0.12. For reference, the
authors of Ref. [11] used recent LHC on-shell Higgs boson
measurements to set a constraint of Ĥ < 0.16 at 95% CL.

To study the off-shell effect of new particles with m <

2mt, we first consider neutral scalar (φ) and neutral vec-
tor (Z′) particles that couple to top quarks. Such particles
are at present only weakly constrained, while they can give
significant contributions to the tt tt cross section [9]. Hav-
ing verified in LO simulation that these new particles affect
the signal acceptance by less than 10%, we recalculate the
σ(pp → tt tt) upper limit of the BDT analysis including an
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Fig. 9 Exclusion regions at 95% CL in the plane of mχ vs. mH (left)
or mA (right). The outer lighter and inner darker solid curves show the
expected and observed limits, respectively, assuming gSM = gDM = 1.

The excluded regions, shaded, are above the limit curves. The dashed
lines show the limits assuming a weaker coupling between H/A and χ ,
gDM = 0.5

additional 10% uncertainty in the acceptance, and obtain the
95% CL upper limit of 23.0 fb on the total tt tt cross section,
slightly weaker than the 22.5 fb limit obtained in Sect. 7.
Comparing this upper limit to the predicted cross section in
models where tt tt production includes a φ or a Z′ in addi-
tion to SM contributions and associated interference, we set
limits on the masses and couplings of these new particles,
shown in Fig. 6. These limits exclude couplings larger than
1.2 for mφ in the 25–340 GeV range and larger than 0.1 (0.9)
for mZ′ = 25 (300) GeV.

We consider on-shell effects from new scalar and pseu-
doscalar particles with m > 2mt. At such masses, the pro-
duction rate of these particles in association with a single top
quark (tqH/A, tWH/A) becomes significant, so we include
these processes in addition to ttH/A. As pointed out in
Ref. [6], these processes do not suffer significant interference
with the SM tt tt process. To obtain upper limits on the sum of
these processes followed by the decay H/A → tt, we use the
BDT analysis and treat the SM tt tt process as a background.
Figure 7 shows the excluded cross section as a function of the
mass of the scalar (left) and pseudoscalar (right). Compar-
ing these limits with the Type-II 2HDM cross sections with
tan β = 1 in the alignment limit, we exclude scalar (pseu-
doscalar) masses up to 470 (550) GeV, improving by more
than 100 GeV with respect to the previous CMS limits [26].
Alternatively, we consider the simplified model of dark mat-
ter defined in Ref. [35], which includes a Dirac fermion dark
matter candidate, χ , in addition to H/A, and where the cou-

plings of H/A to SM fermions and χ are determined by
parameters gSM and gDM, respectively. In this model, exclu-
sions similar to those from 2HDM are reached by assuming
gSM = 1 and gDM = 1, and taking mH/A < 2mχ . Relax-
ing the 2HDM assumption of tan β = 1, Fig. 8 shows the
2HDM limit as a function of H/A mass and tan β, consider-
ing one new particle at a time and also including a scenario
with mH = mA inspired by a special case of Type-II 2HDM,
the hMSSM [75]. Values of tan β up to 0.8–1.6 are excluded,
depending on the assumptions made. These exclusions are
comparable to those of a recent CMS search for the resonant
production of H/A in the p → H/A → tt channel [76].
Relaxing the mH/A < 2mχ assumption in the dark matter
model, Fig. 9 shows the limit in this model as a function of
the masses of both H/A and χ , for gDM = 1 and for two dif-
ferent assumptions of gSM. Large sections of the phase space
of simplified dark matter models are excluded, and the reach
of this analysis is complementary to that of analyses consid-
ering decays of H/A into invisible dark matter candidates,
such as those of Refs. [35,77].

9 Summary

The standard model (SM) production of tt tt has been studied
in data from

√
s = 13 TeV proton–proton collisions col-

lected using the CMS detector during the LHC 2016–2018
data-taking period, corresponding to an integrated luminosity
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of 137 fb−1. The final state with either two same-sign leptons
or at least three leptons is analyzed using two strategies, the
first relying on a cut-based categorization in lepton and jet
multiplicity and jet flavor, the second taking advantage of a
multivariate approach to distinguish the tt tt signal from its
many backgrounds. The more precise multivariate strategy
yields an observed (expected) significance of 2.6 (2.7) stan-
dard deviations relative to the background-only hypothesis,
and a measured value for the tt tt cross section of 12.6+5.8

−5.2 fb.
The results based on the two strategies are in agreement with
each other and with the SM prediction of 12.0+2.2

−2.5 fb [1].
The results of the boosted decision tree (BDT) analysis

are also used to constrain the top quark Yukawa coupling
yt relative to its SM value, based on the |yt| dependence of
σ(pp → tt tt) calculated at leading order in Ref. [2], resulting
in the 95% confidence level (CL) limit of |yt/ySM

t | < 1.7.
The Higgs boson oblique parameter in the effective field the-
ory framework [11] is similarly constrained to Ĥ < 0.12 at
95% CL. Upper limits ranging from 0.1 to 1.2 are also set
on the coupling between the top quark and a new scalar (φ)
or vector (Z′) particle with mass less than twice that of the
top quark (mt) [9]. For new scalar (H) or pseudoscalar (A)
particles with m > 2mt, and decaying to tt, their production
in association with a single top quark or a top quark pair is
probed. The resulting cross section upper limit, between 15
and 35 fb at 95% CL, is interpreted in the context of Type-II
two-Higgs-doublet models [4–6,75] as a function of tan β

and mH/A, and in the context of simplified dark matter mod-
els [7,8], as a function of mH/A and the mass of the dark
matter candidate.
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52: Also at Şırnak University, Sirnak, Turkey
53: Also at Tsinghua University, Beijing, China
54: Also at Beykent University, Istanbul, Turkey
55: Also at Istanbul Aydin University, Istanbul, Turkey
56: Also at Mersin University, Mersin, Turkey
57: Also at Piri Reis University, Istanbul, Turkey
58: Also at Gaziosmanpasa University, Tokat, Turkey
59: Also at Ozyegin University, Istanbul, Turkey
60: Also at Izmir Institute of Technology, Izmir, Turkey
61: Also at Marmara University, Istanbul, Turkey
62: Also at Kafkas University, Kars, Turkey
63: Also at Istanbul Bilgi University, Istanbul, Turkey
64: Also at Hacettepe University, Ankara, Turkey
65: Also at Vrije Universiteit Brussel, Brussels, Belgium
66: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
67: Also at IPPP Durham University, Durham, UK

123



Eur. Phys. J. C            (2020) 80:75 Page 31 of 31    75 

68: Also at Monash University, Faculty of Science, Clayton, Australia
69: Also at Bethel University, St. Paul, Minneapolis, USA
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