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The emergence of transition metal dichalcogenides (TMD) as crystalline atomically thin 

semiconductors has created a tremendous amount of scientific and technological interest.  Many 

novel device concepts have been proposed and realized (1–3).   Nonetheless, progress in k-space 

investigations of ground/excited state electronic structures has been slow due to the challenge to 

create large scale, laterally homogeneous samples.  Taking advantage of recent advancements in 

chemical vapor deposition, here we create a wafer-size MoS2 monolayer with well-aligned lateral 

orientation for advanced electron spectroscopy studies (4–6).  Low energy electron diffraction and 

scanning tunneling microscopy (STM) demonstrate atomically clean surfaces with in-plane 

crystalline orientation.  The ground state and excited state electronic structures are probed using 

scanning tunneling spectroscopy (STS), angle-resolved photoemission (ARPES) and time-resolved 

(tr-)ARPES.  In addition to mapping out the momentum-space quasiparticle band structure in the 



valence and conduction bands, we unveil ultrafast excited state dynamics, including inter- and intra-

valley carrier scattering and a rapid downward energy shift by ~ 0.2eV lower than the initial free 

carrier state at S point.     

Introduction 

Monolayers of semiconducting transition-metal dichalcogenides (TMDs) and their heterostructures 

have emerged as a powerful system to design novel devices for scientific and technological applications.  

Although many novel device concepts have been realized in recent years (1–3), realizing a scalable and 

high-quality materials platform remains an outstanding challenge.  Scientifically, the difficulty in preparing 

large area, well-oriented monolayer TMDs has slowed the progress in utilizing momentum space probe of 

electronic structures except in some limited cases, for example, molecular beam epitaxial growth of MoSe2 

and MoS2 on bilayer graphene (7, 8).  Recently, progress has been made in creating large area monolayer 

TMDs by exfoliation thus enabling applications of advanced electronic structure probing tools (9, 10).  

Nevertheless, the tedious exfoliation step remains a bottleneck and limits its wide applicability.  

Recently, there has been significant progress made in creating wafer scale, highly oriented TMD 

monolayers on a sapphire substrate using chemical vapor deposition (CVD) (4–6), albeit utilization of such 

platform for advanced electron spectroscopy has yet to be demonstrated.  Taking advantage of these recent 

developments of CVD growth, we demonstrate the ability to create a large scale, atomically clean 

monolayer TMD (e.g. MoS2) on graphite substrate for electron spectroscopy investigations. More 

importantly, using a collection of electron microscopy and spectroscopy tools, we provide a consistent 

picture of the ground state electronic structures and access the otherwise unoccupied excited state dynamics.  

Scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) reveal a wafer-scale, 

well-aligned crystallographic orientation. The high-quality sample enables us to apply angle-resolved 

photoemission (ARPES) and time-resolved (tr-)ARPES to map out ground/excited state electronic 

structures with high energy and momentum resolution. The capability of observing both the momentum 



resolved valence band and conduction band states in tr-ARPES permits the direct determination of the 

quasi-particle band gap.  Remarkably, all the critical points energy locations are corroborated with the 

scanning tunneling spectroscopy.  Moreover, we access the dynamical behavior of excited states, including 

inter- and intra-valley carrier scattering and a rapid energy shift (~0.2 eV) of quasiparticles at the S point.  

 

Results 

Figure 1 depicts the process in preparing the large scale well-aligned monolayer MoS2 for advanced 

electronic structure probe.  First, we grow monolayer TMDs on a 2” sapphire wafer using CVD.  The 

growth is based on a “substrate guided growth” procedure reported previously (4–6) but with significant 

refinement to reduce defect density and obtain monolayer TMDs with well-aligned orientation, i.e., all 

domains have either the same orientation or its mirror twin (Fig. S1).  Figure 1a shows a slice (5 cm x 1 

cm) of the wafer after monolayer MoS2 growth.  Depending on the location at the gas flow stream, the 

growth leads to either a continuous film (region A), a densely covered region (region B showing 80 ~ 90% 

coverage), or a low coverage (region C).   

For STM, ARPES and tr-ARPES studies, the sample needs to have an electrical contact to complete 

the circuit loop when the electron is injected or ejected.  While previous experiments mostly used  side 

electrical contacts on a continuous film,  the presence of a Schottky barrier at the contacts often induces a 

lateral field (11, 12) along with the carrier motion.  Moreover, upon excitation of photoelectrons, transient 

field can build up (i.e. a photovoltage effect), introducing complications in the interpretation of 

experimental observations (9, 13, 14).  Finally, in the STM investigation, there will be significant tip-

induced band bending along the lateral direction (15), hindering a comparison between different electron 

spectroscopic studies. To circumvent these limitations, we have chosen to transfer the sample to a highly 

oriented pyrolytic graphite (HOPG) or a graphene substrate which prevents the formation of a surface 



photovoltage during photoemission and eliminates the tip-induced band bending during STM operation (16, 

17).   

Region B in Figure 1a is chosen (instead of the continuous film region A) so that the contrast in 

optical images can be used to gauge the success in sample transfer.  Detailed description of sample transfer 

can be found in the Supplementary (Fig. S2). We obtain a large sample size (0.4” x 0.4”) limited by the 

sample holder, which is essential for subsequent measurements.  The LEED image shows a well-defined 

pattern of six dots, confirming the high crystalline quality of the MoS2 monolayers including their twin 

pairs. The ring pattern is produced by the HOPG. The presence of the twin pairs prevents the spin or 

degenerate valleys to be resolved in spectroscopy measurements. The same LEED pattern is obtained when 

the electron beam scans across the sample, indicating a large size, atomically clean surface. The STM 

measurement was carried out at 77 K, revealing a lattice constant of 3.17 ± 0.03Å, close to the well-accepted 

value of 3.16	Å .   Additionally, ambient stability of MoS2 monolayers on HOPG substrate was also 

investigated to ensure the consistency of the sample quality when taken out from different chambers to air 

for different measurements (Fig. S3). 

The k-space electronic structures in the valence band are probed using regular ARPES with helium 

lamp excitation sources of 21.2 and 40.8 eV, as shown in the ARPES maps in Figs. 2a,b and corresponding 

K point energy distribution curves (EDCs) in Fig. 2c.  Each source offers distinct advantages and 

disadvantages.  The 21.2 eV source is brighter but has different sensitivities to dissimilar bands, whereas 

the 40.8 eV source is weaker (by about two orders of magnitude) but enables a more uniform 

photoionization cross section for all bands (18).  Figs. 2d,e show the respective second-derivative images 

which reveal better contrast for different bands.   The states near the VBM at G and K are well-resolved, 

revealing the K-valley spin-orbit splitting of 140 ± 4 meV and the G valley located at ~130 meV below the 

VBM.  The deeper valence bands are better revealed by using ℎ& = 40.8	+,  where the detailed band 

structures compare very well with the band structure for a free-standing single layer MoS2 (Fig. 2f) 

calculated using density functional theory (DFT).  



The excited state electronic structure and dynamics are investigated using high-repetition rate, 

extreme-ultraviolet(XUV) tr-ARPES (19). Here we focus on two aspects: (a) direct determination of quasi-

particle band gaps based on the excitation into otherwise unoccupied levels, and (b) excited state dynamics 

at different critical points.  The MoS2 monolayer is excited with 2.2-eV pump pulses from a frequency-

doubled optical parametric amplifier at 25 kHz repetition rate, with an incident fluence of »40 µJ/cm2.  In 

turn, p-polarized, 22.3-eV XUV probe pulses are used for photoemission. Shown in Fig. 3a is the band 

structure acquired at 300 K at a pump-probe delay time of t= 0.4 ps, where the valence band states and the 

pump-excited states near the conduction band minimum (CBM) can both be observed.  The EDCs taken at 

the K point at t = 1.27 ps are shown in Fig. 3b with two different sample temperatures (80 K and 300 K).  

The photoexcitation instantaneously shifts the K-point valence band by ~0.1 eV downward versus the 

equilibrium state (Fig. S4), then remains relatively steady during the measurement. This effect is observed 

at both temperatures and its origin will be discussed elsewhere.   Since both valence/conduction band states 

are detected simultaneously, the determination of quasi-particle band gap is not influenced by this effect.  

At 80 K, the valence band spin-orbit splitting (~ 140 meV) at the K point is well-resolved, but slightly 

smeared out at 300 K.  The CBM at the K point appears at 0.25 eV at 80 K and becomes 0.18 eV at 300 K.  

The excited-state VBM at K does not change its energy location as a function of temperature beyond the 

energy resolution (-1.85 eV), yielding a quasi-particle band gap of 2.10 ± 0.01eV at 80 K and 2.03 ±

0.01eV at 300 K as shown in Fig. 3b.  Shown as the inset is the measured quasi-particle gap value at 80 K 

as a function of the excitation fluence which shows a very weak trend (if any) of smaller gap at higher 

fluence.   

The determination of the quasi-particle bandgap has been a central issue in TMD for several years 

(20).  Many groups have tackled this issue using different techniques but rather inconsistent results (16, 

21–25).  The ability to view simultaneously the valence and conduction band states in the momentum-space 

using tr-ARPES enables the unambiguous determination.   As well, in this study, the acquired quasi-particle 

band structure using tr-ARPES at 80 K shows excellent agreement with the STS acquired at 77 K on MoS2 



on graphite (shown in Fig. 3c) where the VBM is identified at -1.84 eV and CBM at 0.31 eV: with a band 

gap of 2.15 ± 0.06eV.  STS also identifies another threshold at 0.2 ± 0.05	eV above at CBM which is 

assigned as a local minimum at S point (also referred to as Q point (23)).  The S threshold is confirmed by 

using a !"!# spectrum acquired at constant current (green curve in Fig. 3c); this method for identifying 

different critical points in TMD monolayers was discussed previously (23).  This S state is also observed 

in tr-ARPES and visualized with an enhanced contrast in Fig. 4a albeit with a much lower count rate than 

the K point. 

Shown in Fig. 4a are color rendering images of intensity versus energy and momentum for states 

at K and S respectively acquired at 300 K with a pump energy of 2.2 eV (above the quasi-particle gap) at 

two different delay times (0.13 ps and 1.27 ps). We integrate the photoemission signal over a range in the 

momentum space (pink and blue dashed boxes) to enhance the signal to noise. The signal strength at S is 

more than an order of magnitude smaller than that at K. We first analyze the dynamics as a function of 

energy.  From the EDCs shown in Fig. 4b, one can observe that at the K point, the spectral peak shows a 

small downward shift by 34 ± 3	meV after t > 1 ps.  On the other hand, a significantly larger downward 

shift of 180 ± 26	meV from 0.34 eV to 0.16 eV is observed at the S point.  The 180 meV shift is likely an 

under-estimate since the EDC spectra are integrated over ±	0.2	34.  The initial energy location, labeled as 

Sc, is 0.16 ± 0.04 eV above the CBM, consistent with the energy differences measured using STS within 

the error bar.  The excited state dynamics at S is examined in energy as a function of time delay in Fig. 4c, 

illustrating a rapid shift to a level (labeled as S*) which is ~ 0.2 eV below the initial Sc state within 0.5 ps.   

The S*state then decay with a slower time scale of ~4 ps.  This large downward energy shift of ~0.2 eV for 

S* in reference to Sc implies either the formation of a bound state with a binding energy of ~ 0.2 eV or a 

significant band renormalization occurring in sub-picosecond scale. This point is further discussed below 

along with the K-valley dynamics. 



The excited state dynamics at the K point is quite distinct from those in the S valley. A small 

transient energy shift of ~34 meV is accompanied by clear changes in the dispersion. As shown in the inset 

of Fig. 5a, an upward dispersion is measured at t = 0.4 ps.  We analyze the time-resolved dynamics acquired 

at four different momentum regions near the K point as shown in Fig. 5a.  For region 1 (as labeled in the 

inset) with the highest energy and largest momentum deviation from K, the dynamics peaks at the shortest 

delay time of ~0.26 ps and exhibits the fast decay of 0.5 ps.  As one approaches K, the dynamics 

systematically peak at later times and then decay with longer time constants (regions 2 and 3).  Finally, at 

the K point the dynamics peaks at ~1 ps and decays with a time constant of ~10 ps.  This trend is consistent 

with a hot electron decay down to the local minimum in k-space.  In Fig. 5b we show two K-valley 

integrated EDC spectra acquired at t = 0.4 ps and 1.0 ps, respectively.  The fitted areas below each spectral 

peak are nearly identical, within 2%, indicating that the all the hot electrons in the K-valley are cooled to 

the energy minimum at K and the additional contribution from intervalley-scattered Sc electrons is minor.   

The latter conclusion is further corroborated with the time-dependent dynamics acquired at Kc and 

Sc respectively in Fig. 5c. The time evolution of Sc shows a rapid rise time of ~160 fs [the root mean square 

(RMS) width of the cross-correlation of pump-probe pulses  is 140 fs], indicating rapid population of free 

carrier states at Sc (26) which then shift within ~ 0.5 ps to S*. On the other hand, the time evolution of Kc 

shows a long rise time of ~0.4 ps and decays within ~10 ps. While inter-valley scattering from Sc to Kc may 

contribute to the hot carrier distribution in the K valley (27, 28), its contribution should be minimal given 

that the intensity at Sc is smaller by an order of magnitude.  This analysis shows that the K-valley dynamics 

is dominated by hot electron cooling with the above gap excitation.   

On the other hand, the rapid evolution of Sc to S* suggests a different origin.  We note that in a 

recent study of tr-ARPES of WSe2, a similar rapid shift has been observed for both K- and S-valleys which 

was interpreted as the formation of exciton (K) and dark exciton (S) respectively (13).  In our case, however, 

the large energy shift is observed only for S-valley and not for K-valley.  One possibility is that bound 



states are formed at both valleys but the K-valley exciton signal is overshadowed by the free carrier signal 

at K-valley whose population is orders of magnitude higher.  It is known that photoluminescence of 

monolayer MoS2 on graphite is quenched by more than two orders of magnitude in comparison to MoS2 

monolayers on insulating substrates (24).   

In conclusion, by successfully creating large scale monolayer MoS2 with well-aligned in-plane 

orientation and atomically clean surface, we investigate its ground and excited state electronic structure. 

The equilibrium band structure is measured via ARPES and is confirmed to be consistent with DFT 

calculations.  Using extreme-ultraviolet tr-ARPES as a tool to access the unoccupied conduction band 

across momentum space, we found a remarkable agreement on the electronic gap using STM and 

photoemission measurements. Moreover, tr-ARPES provides access to valley-specific excited-state 

dynamics. While a nearly instantaneous energy shift (~0.2 eV) to a lower energy state is observed at the S 

point  the dynamics at the K valley is dominated by hot carrier decay over a few picoseconds for the above-

gap excitation.  Future experiments that fully explore the complex electron dynamics in time, energy, and 

momentum will guide the search for new valley and exciton physics and devices based on TMD monolayers 

and heterostructures.   

  



Methods 

ARPES and trARPES 

The regular ARPES measurements of the occupied band structure (Fig. 2) were performed at room 

temperature. A Helium lamp (21.2 and 40.8 eV) was used as the photon source. The spectra were collected 

using a Scienta R3000 analyzer. During the Helium lamp operation, the pressure was maintained under 

6 × 10$%& Torr.  XUV-trARPES measurements were conducted at Berkeley Lab. The measurements for 

the unoccupied band structure were performed at 300 K and 80 K. 2.2-eV pump pulses and p-polarized 

22.3-eV probe pulses with 25-kHz repetition rate were used in the measurements. Averaged pump power 

was measured to be 25 mW in front of the chamber entrance window. We estimated the maximum incident 

fluence on the sample to be 40	67/9:', leading to an absorbed fluence of ~26 67/9:' (excitation density 

~7×1011 cm-2) after taking into account surface reflections. The pump-probe cross-correlation RMS width 

was estimated as 140 fs via the fastest photoemission dynamics. The setup highest energy resolution as 

measured from Au is 60.4 meV (19). During the XUV-trARPES measurements, the pressure was 

maintained at 3 × 10$%&	Torr. 

Density functional theory(DFT) calculation 

 The DFT calculation was carried out using the Quantum Espresso package (29, 30) to obtain the 

free-standing monolayer MoS2 band structure. Full relativistic projector augmented wave (PAW) 

pseudopotential was engaged to include spin-orbit coupling and plane wave basis with 40 Ry plane wave 

cutoff energy were employed.  Perdew-Burke-Ernzerhof (PBE) form of exchange-correlation functional 

was used in the generalized gradient approximation (GGA). The Brillouin zone sampling was performed 

on a 12 × 12 × 1 k-point grid. The atomic coordinates and lattice constant were fully relaxed before 

calculating the electronic band structure.  
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Figure 1 Sample preparation and characterization. (a) Highly oriented MoS2
monolayers are grown on a wafer scale sapphire substrate via substrate-guided CVD
growth method. Zoomed-in optical images of the CVD-grown MoS2 monolayers on the
sapphire substrate in region A, B and C are in the upper panels. (b) Optical images after
wet-transfer onto HOPG substrates. Due to the different reflectivity of the substrates in
optical images, MoS2 monolayers appear as bright regions on a sapphire substrate, but
dark on HOPG substrate. (c) The lateral sample size (0.4 inch) is limited by the physical
size of the sample holder. A clean sample surface following UHV annealing permits
surface probes such as STM and ARPES. (d) The high quality of the sample on a HOPG
substrate is confirmed with LEED at 68 eV and STM topography images.
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Figure 2 Regular ARPES measurements on monolayer MoS2 on HOPG. Different
photon energies of a helium lamp are used to measure occupied band structure of MoS2
monolayer, (a) ℏ" = 21.2 eV (b) ℏ" = 40.8 eV respectively. For a better visualization,
second derivative images of (a) and (b) are represented in (d) and (e) respectively. (c)
EDC at K point integrated over ± 0.025Å!". Red and blue solid lines indicate 21.2 and
40.8 eV photon energy, respectively. The spin orbit splitting was measured to be 140 ±
4 meV. (f) Electronic band structure of a free-standing MoS2 monolayer obtained by
DFT calculations using the Quantum espresso package.
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Figure 3 XUV tr-ARPES measurements and scanning tunneling spectroscopy (STS) on
monolayer MoS2 on HOPG. (a) E-k dispersion along Γ − K direction taken at 0.4ps and
integrated over ± 0.2 ps. Conduction band above the Fermi energy at K point is clearly
observed. (b) EDC at K point, taken at different sample temperatures, at t = 1.27 ps and
integrated over ± 0.5 ps. The gap size is 2.03 ± 0.01 eV at 300 K and increases to
2.10 ± 0.01 eV at 80 K. Error bars represent standard deviation(SD) from Gaussian
fitting. (c) STS dI/dV curve (blue) and dI/dZ curve(green) taken at liquid nitrogen
temperature show a good agreement with tr-ARPES measurement regarding the VBM
and CBM peak position.
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Figure 4 Ultrafast carrier relaxations at Σ and K points measured at 300K. (a)E-k
images are taken at different delay times with an integration time window of ± 0.2 ps
to improve the signal-to-noise ratio. The images visualize a large shift at Σ point. (b)
We extract EDCs from the dashed box regions in (a) to quantitatively show the energy
shifts at Σ and K points. (c) Integrated electron density in dashed box (Δ5 = 0.25 Å!")
at Σ point along the time delay. All data was subtracted from the equilibrium state to
remove the background signal. A movie of the data is included in the Supplementary.
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Figure 5 Intra- and Inter- valley scattering at 300K. (a) Electron intensity versus time
delay at different positions near the K point in the CB. The signals are integrated in colored
boxes in the inset. (b) Momentum integrated EDC at K point. The area of the curve stands
for total number of photoelectrons detected in the CB K-valley. (c) Time delayed electron
density distribution integrated over Δ5 = 0.25 Å!" at Σ and K conduction bands. The
black Gaussian function (8 = 140 fs) represents the cross-correlation between the pump
and probe pulses. Time delayed signal from K point conduction band was fitted with a
biexponential function (solid red curve) and Σ point conduction band was fitted with a
single exponential decay function convoluted with a Gaussian function (solid blue curve).
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