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Abstract

Machine Learning for Information Extraction from Pathology Reports and Adaptive
Offline Value Estimation in Reinforcement Learning

by

Briton Park

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Chair

The thesis is divided into two parts. The first part focuses on a healthcare-related applica-
tion of machine learning, and the second part focuses on offline evaluation of reinforcement
learning agents, which is critical for estimating values of policies in high-risk and high-cost
applications of reinforcement learning, such as patient care.

The first part is comprised by the pathology report parsing work on data from UCSF.
Personalized medicine has the potential to revolutionize healthcare by enabling practitioners
to tailor treatment and assessment for each individual patient. However, personalized care
depends on the ability to leverage patient data intelligently. One major source of clinical
data are pathology reports which are currently stored electronically at clinical institutions.
However, much of the pathology report data cannot be easily leveraged since they exist in
unstructured and semi-structured text; they must be parsed in a structured form before
being used in downstream clinical applications. Furthermore, manual extraction of the data
is a time-consuming and expensive process for a human annotator. Thus, researchers have
studied ways to algorithmically parse reports via machine learning. Despite advancements
in machine learning, particularly deep learning, building accurate parsers is still challenging
due to the amount of training data that is required. In our work we focus on the sample
efficiency of machine learning parsers using limited annotations. In the first part of the
thesis, we develop machine learning-based data extraction methods for pathology reports
at UCSF based on natural language processing with limited training data sizes. For each
specific data field, such as the location of the tumor or the stage of the cancer, we train
a model to automatically extract the information from each report using a limited set of
human annotations as the training targets. We also analyze the sample efficiency of state-
of-the-art methods compared to our approaches and study practical considerations in the
deployment of such data extraction systems. We find that our proposed algorithms are able
to achieve accuracies comparable to the state-of-the-art using fewer annotated data points.
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In the second section, we focus on offline reinforcement learning, which is a data driven
approach for reinforcement learning. Offline reinforcement learning relies on learning from
static datasets, unlike the less restrictive, online setting which assumes learning is done via
a feedback loop between the agent and the environment. The offline setting is crucial for
applications in healthcare and robotics where deploying untrained or partially trained agents
can be costly or dangerous. Leveraging historical data without further data collection is a
unique challenge, because validating models must be done on data deriving from a different
model or set of models. In chapter 5, we focus on adaptive weighting of predictions based
on model stability for the goal of evaluating reinforcement learning policies, which is known
as offline evaluation. We experiment with two state-of-the-art evaluation methods: fitted
Q-evaluation and model-based evaluation. We propose a new estimator based on weighting
each model based on conditional stability estimates via ensembling, which is inspired by
online weighting of predictors for online prediction [11, 5] and the pessimistic reinforcement
learning literature [40, 46]. We benchmark the offline evaluation methods on simulated
environments detailed in chapter 5. We find that stability stemming from ensembling is
a promising avenue for adaptively weighting model estimates in the setting where model
selection and validation is difficult.
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Chapter 1

Overview

1.1 Extracting Information Across Pathology Reports
Across UCSF

Personalized healthcare depends on detailed and accurate patient data. The massive amounts
of unstructured medical text in electronic health records are a primary source of this data,
and the ability to reliably extract clinical information is a crucial enabling technology. Un-
fortunately, much of the relevant clinical data, such as cancer stage and histology, are stored
as free text in lengthy unstructured or semi-structured reports. [9] Leveraging the data
contained in these reports for precision medicine applications relies on manual efforts by an-
notators with domain expertise for many downstream automated methods. As a result, there
has been much interest in natural language processing and information extraction methods
[87, 9, 55, 58], to tackle healthcare text data which have been used in health informatics,
precision medicine, and clinical research [71, 93].

Implementing such extraction systems in practice remains challenging, as many systems
rely on large amounts of annotated textual data to perform well. However, annotating
healthcare text is a largely manual and time-consuming process that requires training and
medical knowledge. Combined with privacy considerations that limit sharing of corpora, it
can be difficult to obtain sufficient amounts of annotated data across many clinical domains.
While deep learning has been shown to be extremely powerful in NLP, it can underperform in
biomedical applications due to smaller training sets. Therefore, it is of considerable practical
importance to develop methods in biomedical NLP that perform well with small amounts of
labeled data.

We focus on pathology reports which contain clinical data that are particularly vital for
cancer treatment and risk assessment. An estimated 1.8 million Americans will be diag-
nosed with cancer in 2020. [74] In nearly all cases, diagnosis is made via tissue analysis,
described in detail in a pathology report, which is stored in most electronic medical record
systems as unstructured free text. Without manual data abstraction, these important details
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are unavailable for scalable and algorithmic approaches for case identification, risk stratifi-
cation, prognostication, treatment selection, clinical trial screening, and surveillance. [71,
93] Moreover, access to these data in structured formats can drive algorithmic personalized
treatment strategies based on pathologic information. For nearly 50 years investigators have
worked to develop natural language processing (NLP) algorithms to extract these details
from pathology reports. [45, 9] However, only a limited number of categorical data ele-
ments are typically extracted, model outputs often lack reliable uncertainty estimates and
furthermore these methods typically require a large labeled dataset, limiting the clinical ap-
plicability of these systems, only 10% of which have been reported to be in real-world use.
[9]

We detail the results of our sample efficiency and uncertainty estimation experiments using
state-of-the-art methods as well as our techniques for building a sample-efficient information
extraction system deployed across various cancer types for pathology across UCSF.

More specifically, in chapter 2, we investigate the amount of annotated data required to ad-
equately train state-of-the-art machine learning methods for pathology report information
extraction methods. We also investigate the uncertainty estimates of each method, which
is of practical importance in the clinical setting. In chapter 3, we propose a novel anno-
tation method which gives location-based information from pathology reports, in addition
to document-level annotations, and an algorithm called supervised line attention (SLA) for
leveraging the additional location-based data. In chapter 4, we propose transfer learning
and text-based similarity algorithms based off of SLA in cases where information is shared
across cancers and where the number of possible labels is large.

In addition to information extraction from electronic health records, we also focus on the
reinforcement learning setting. Specifically we focus on offline evaluation, a subarea of
reinforcement learning which revolves around estimating the value of policies using a static
dataset.

1.2 Adaptively combining estimates for offline
evaluation of reinforcement learning agents

Reinforcement learning is a subfield of machine learning where the goal is to train an agent to
behave well in a given environment. Unlike supervised learning where the goal is to predict
a label given a set of features, reinforcement learning agents are trained via an interactive
feedback loop with the environment where the agent chooses actions given states and rewards
provided from the environment. Reinforcement learning has been studied extensively for
decades, and in recent years deep learning applied to the reinforcement learning setting has
lead to promising results across a variety of data problems [84, 49, 57, 75].
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One aspect of reinforcement learning that limits its adoption is the fact that learning is
done online. Agents iteratively collect more data by interacting with the environment, while
improving its behavior or policy to collect optimal rewards [82]. In many instances, it
is assumed that a policy initialized randomly is deployed to the environment to start the
learning process. This kind of online interaction is not always feasible because data collection
can be costly or dangerous if the agent is not properly trained. Examples of data problems
where online training is especially an issue include patient care, autonomous driving, and
robotics [53, 43, 76].

Offline reinforcement learning is a subarea of reinforcement learning where a policy is learned
on a static dataset in a data-driven fashion [50]. Unlike online reinforcement learning, data
collection via repeated interactions with an environment is not possible. All learning is done
using historical data, and the goal is to construct a policy that maximizes rewards if it
were run on the actual environment. Unfortunately, offline reinforcement learning presents a
challenge that is not present in the online setting. Significant distributional shift may exist
between the policy or policies that generated the offline dataset (i.e. the behavior policy)
and the target policy. This problem can negatively affect an agent’s behavior if the agent
learns to select out-of-distribution actions whose values are overestimated [24]. To address
this issue, learned policies are generally trained in a way that is "close" to the behavior
policy [24, 32, 89].

In chapter 5, we focus on a sub-goal of evaluating reinforcement learning agents within the
offline setting, which is known as offline evaluation [67]. Offline evaluation methods strive
towards accurately estimating the value of reinforcement learning agents or policies without
online data collection. Evaluation is important because it is needed for model selection and
hyperparameter tuning which can avoid costly or dangerous interactions with the true en-
vironment. Unfortunately, similar to training offline reinforcement learning agents, training
offline evaluation models is challenging because validating and tuning the evaluation models
themselves without further interactions with the environment is an open question. However,
improving offline evaluation is essential for safe practice of offline reinforcement learning and
the adoption of reinforcement learning as a whole.

In this work, we develop an adaptive model weighting mechanism and experiment with
two state-of-the-art offline evaluation methods, fitted q-evaluation (FQE) and model-based
offline evaluation to improve conditional value estimation of agents using static, logged data
only. Inspired by work in weighted online learning [11, 5], where past predictability is used
to weight online predictors, we use model stability as a signal to weight model estimates
adaptively in offline evaluation for reinforcemetn learning. We propose two ways methods,
soft stability weighting and soft uncertainty weighting via partial rollouts, which leverage
stability stemming from ensembling neural networks. The principle underlying both methods
is that stability is a positive signal for the precision of a certain model in the local state space,
which cannot be deduced accurately in the offline setting. We compare the offline evaluation
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methods on simulated environments with varying behavior and evaluation policies against
a number of baseline methods, and perform stability checks to test the robustness of such
methods.
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Chapter 2

Information Extraction from Pathology
Reports with Uncertainty Estimation in
Limited Data Environments

In this chapter, we evaluate the performance and uncertainty estimates of machine learning
based parsers on varying data sizes using pathology reports from UCSF. We find that sim-
pler machine learning based methods can accurately parse reports using small datasets and
calibration methods are often required to obtain more precise uncertainty estimates.

Automated information extraction from pathology reports has traditionally been approached
using rule-based methods [58, 59, 27, 60]. However, designing rules is labor intensive and
requires deep involvement of clinical experts. The complexity and conflicts between rules
grow rapidly as the number of rules increases, and as the underlying documents shift, rules
quickly become ineffective. [21] NLP has been applied to pathology report information
extraction with promising results, using both classic NLP (boosting over a bag-of-ngrams
representation of the document) and deep learning approaches (convolutional, recurrent,
and hierarchical attention networks).[92, 25] While most work focuses on classification tasks
involving fields with a small number of labels (such as histology or margin status), Li and
Martinez (2010) investigate categorical fields as well as numeric fields such as the tumor
size and the number of lymph nodes examined. [51] Furthermore, many other information
extraction tasks and methods have been applied to pathology reports, such as Coden et al [14]
which creates a knowledge representation model to represent cancer disease characteristics;
Si et al [73] which uses a frame-based representation to extract information from clinical
narratives focusing on cancer diagnosis, cancer therapeutic procedure, and tumor description;
Xu et al [91] which considers attribute detection as a sequence labeling problem; and Oliwa
et al [62] uses NLP to classify gastrointestinal pathology reports into internal and external
reports and uses Named Entity Recognition to label accession number, location, date, and
sub-labels.
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Despite these developments, there has been comparatively little effort in understanding two
additional important criteria that are the basis for reproducibility and real-world use. The
first is evaluating performance as a function of training data size, which informs practition-
ers about how much data they may need to deploy similar systems. Creating an annotated
corpus is costly and time consuming, and accurate assessment of necessary sample size can
aid deployment. [16, 70, 61, 77, 22] Second, accurate uncertainty estimates for the pre-
dicted results are critical for clinical deployment, as different uses have varying acceptability
thresholds. Having accurate uncertainty estimates means that for all cases where the model
score outputs a probability p, it is correct p percent of the time. An example of a model
with inaccurate uncertainty estimates would be one that gives a predicted probability of
correctness of 90% on all examples, but is actually only correct 10% of the time. Accurate
uncertainty estimates are important for deployment, as lower certainty may be acceptable
if the results are used for initial screening with manual verification to follow, but higher
certainty is required for a clinical decision support system. Resources can be directed to
verification for cases of high uncertainty, supplanting the need for full manual abstraction.
The source code for this project will be made available under an open source license to
facilitate adoption of NLP tools in cancer pathology.

OBJECTIVE
Our objective was to investigate two practical issues that arise when deploying machine
learning-based information extraction systems to pathology reports, using prostate cancer
as a test case. First, we evaluate the performance of models as a function of dataset size for
tasks that involve categorical values, such as histologic grade or presence of lymphovascular
invasion, as well as numeric values, such tumor size Second, we describe an approach to
model calibration and calculation of uncertainty estimates for each prediction and assessing
the quality of the model’s uncertainty estimates. We address these gaps in the literature to
guide practitioners as they implement these systems in real-world settings.

MATERIALS AND METHODS

Data Sources

We used a corpus of 3,232 free text pathology reports for patients that had undergone radical
prostatectomy for prostate cancer at the University of California, San Francisco (UCSF) from
2001 - 2018, which were extracted from UCSF’s electronic health record (Epic Systems,
Verona, WI). For each document, annotations for 17 pathologic features, such as Gleason
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scores, margin status, extracapsular extension, and seminal vesicle invasion were extracted
(Table 2.1) in the Urologic Outcomes Database, which is a prospective database that contains
clinical and demographic information about patients treated for urologic cancer. Since 2001,
data have been manually abstracted by trained abstractors under an institutional review
board (IRB) approved protocol. This study was separately approved by the IRB.

The full corpus was divided into four parts, 64% training, 20% validation, 10% test, and 10%
true test. We looked at the true test only while compiling results. In order to handle our
diverse set of fields, we used two separate information extraction methods. For categorical
fields, we used a document-based classification method which has been previously applied
to information extraction from pathology reports. [92, 25] For fields with a large number
of possible values (such as numeric quantities), we used a sequence labeling task to extract
individual tokens from the document. [36] We applied our methods to the full training
dataset as well as randomly selected subsets of 16, 32, 64, 128, and 256 reports. All models
are implemented in using scikit-learn and pytorch.

Document Classifier Methods

For categorical data fields, such as the presence of lymphovascular invasion, we treat it as a
document classification problem. These fields have between two to six possible classes (Table
2.1). We apply classical methods, such as logistic regression, random forests, support-vector
machines (SVM), and adaptive boosting (AdaBoost) on bag-of-n-gram features, as well as
deep learning methods, such as convolutional neural networks (CNNs), and long short-term
memory networks (LSTMs).

Token Extractor Methods

Many critical clinical data elements, such as tumor volume, are not suited for classification
because they are not categorical in nature. In order to broaden the variety of data fields
extracted from the reports, we employ an additional approach which we refer to as token
extractor methods. These methods are well-suited to extract numerical quantities from a
document (such as the estimated tumor volume or the patient’s medical record number,
Table 2.1). For these fields, we take each token’s surrounding context of k words represented
as a bag of n-grams as the primary features. We additionally append the token type encoded
as a vector to the bag of n-grams context vector. The token type vector specifies whether a
particular token is an ordinary word, a numeric value, or a hybrid of the two. These features
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are used to predict whether or not the token is the token we aim to extract using logistic
regression, AdaBoost, or random forest methods. Unlike the document classifier methods,
we excluded SVMs and deep learning methods for the token classifier due to the impractical
computational requirements for our compute resources. Because our labeled data did not
contain the location information of the token of interest within the document, we labeled all
tokens that matched our label as a positive example at the time of training. At test time for
each token we compute the score under the model that this token should be extracted and
then choose the token with the largest score as our final prediction. This token extraction
method is applied to the following fields: pathologic T, N, and M stage, prostate weight,
and tumor volume. For additional details regarding the pathologic stage field, we refer the
reader to the supplementary material. We would like to give a comparison with a related
but slightly different information extraction task of Named Entity Recognition (NER), which
classifies named entities in text into categories. Like token extraction, this too is a sequence
labeling task. In NER, this involves labeling each token into a predefined category and in
our case, for a given field, we label each token with a 0 or 1 as to whether or not it is
the desired token for this field and document. As a clarifying example for the distinction
between the tasks, an NER system with procedure as a predefined category would label all
mentions of procedures in a pathology report as the procedures class. However, this is not
what we want, as pathologists will often discuss multiple procedures in a report, but we are
interested in only the specific procedure that resected the tumor.

Dataset Size and Performance

We investigate the performance over varying data-regimes, since for informaticists who wish
to build a machine learning parser on their data, a critical question is the quantity of data
points needed for adequate performance and which methods are most likely to perform well.
We fixed the training set size to 16, 32, 64, 128, and 256 reports, which were randomly drawn
from the full training set and averaged the results over 5 random draws.

Evaluation Metrics

For each field we report the weighted F1 score of the classifier, which is the weighted sum
of the F1 scores for each class in the field, where the term for each class is weighted by the
portion of true instances of the class. In the Supplementary Tables 1-4, we report the micro
F1 and macro F1 to better compare to existing literature. For token extractor models, we
compute the accuracy of whether the token extracted from the report was correct.
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Hyperparameter Tuning

To tune hyperparameters for the classification models on the full data, we used random
search with a validation set to tune each method. For each model, we randomly select 20
model-specific hyperparameter configurations, train the model on the training set, and obtain
weighted F1 scores on the validation set. The model with the hyperparameter configuration
with the highest score is used to obtain results on the test set. To tune hyperparameters
for the classification models in the low data regimes (training on ≤ 256 reports), we used
random search across 20 configurations of hyperparameters but with 4-fold cross validation
to calculate weighted F1 scores. For extractor models, we used random search with 20
hyperparameter configurations and 4 -fold cross-validation for both the full data and low
data regimes.

We chose 4-fold cross validation as it provided a good balance between performance and
computational cost in preliminary experiments. For more details regarding hyperparameter
ranges for different models, we refer the reader to the supplementary materials.

Calibration of Systems

To support multiple use cases for the outputs of our model, it is desirable to estimate the
model’s uncertainty reflecting the true probability of correctness for each predicted value.
For example, values that have a low probability of being correct can be flagged for manual
verification, or results can be limited to only those with a high probability of being correct.
More rigorously, for a model f and data distribution X ideally we would like a function P ∗

such that

Px (f (x) = y|P ∗ (x) = p) = p for all p ∈ [0, 1] .

One common definition of the discrepancy between the model’s predicted probability of
correctness and its true probability of correctness is given by the expected calibration error
which is the expected difference between the models confidence and its true probability of
being correct. [95]

Ex

[
|P
(
f (x) = Y |P̂ (x) = p

)
− p|

]
,
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where f (x) is the model’s prediction for a datapoint point x, Y is the true value, and P̂ (x) is
the model’s predicted probability of being correct for point x. However, this is typically not
able to be measured in practice, for example if P̂ (x) takes on a continuous set of values,
so instead P̂ (x) is discretized into bins and the Expected Calibration Error (ECE) [15] is
defined as follows:

ECE =
M∑

m=1

|Bm|/n|acc (Bm)− conf (Bm) |,

where Bm is the mth bin, acc (Bm) is the average accuracy of the model in bin m, and
conf (Bm) is the average value of P̂ (x) of the model in bin m.

To improve the calibration of our system we apply isotonic regression. [95] In the binary case
it takes the confidence of the models output of the positive class and fits a monotonic function
where the x-axis represents the model’s confidence score and the y-axis represents whether
or not the model was correct. In the multivariate case, the calibration method attempts
to calibrate the probability estimate of each class. It does this by first calibrating the
probability of each class in a one-vs-all setting, then after fitting, estimating the probabilities
by normalizing the one-vs-all probability for each class.

Error Analysis

To understand the potential failure modes of our models, for each field we manually analyzed
10 errors randomly chosen in our test set split of the best models in Table 2.2 by comparing
the model output and annotated label with the text of the report to check the source of the
error. If there were fewer than 10 errors for a field, we analyzed all the model’s errors

If the error was a result of an incorrect label in our original data set, it was named as an
annotation error. Model errors occurred when the model extracted the incorrect value for a
certain field. Next, an error was classified as a report anomaly if there was something wrong
with the raw text of the report, such as if the sentences of a report were repeated many times
in the text or there was internal inconsistency in the report. Lastly, the evaluation error
means that the extracted value was correct but the evaluation method incorrectly penalized
the model such as if the correct extracted token was 2 for volume of tumor and the model
extracted 2cm.
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RESULTS

Document Classifier Performance

We calculated the weighted F1-score for each data field using the true test set (Table 2.2).
When working with the full training corpus (n= 2,066), convolutional networks perform the
best (mean weighted F1 0.972 across all 12 clinical data elements). However, we see that
the best non-deep-learning method is not far behind with AdaBoost having a weighted F1
score of 0.965.

Token Extractor Performance

For token extraction we measure the accuracy of extracting the correct token from each
document (Table 2.2). In greater detail, we choose the most probable token over all tokens
in the document and compare this to the ground truth. We observe that random forests
perform the best out of all the methods with a mean accuracy of 0.883 across 5 fields.

Performance as a Function of Dataset Size

For the classification fields, the classical machine learning methods (logistic regression, SVM,
AdaBoost, and random forests) clearly outperform the deep learning methods on average,
likely due to the small amount of training data available. The results also show that 128
reports are needed for the best methods to achieve a 0.90 weighted F1 on average across all
classification fields. For the token extractor fields, the results seem to plateau at 64 reports.
Our experiments show that a training set size in the thousands is not always needed to
adequately extract structured data from these pathology reports, an important observation
for practitioners weighing the cost of creating an annotated dataset.

Effect of Calibration

We apply calibration to two of our models. For the classification model, we apply isotonic
calibration to boosting and for the extractor model we apply isotonic regression to the
random forest model. [17] For the extractor case, we treat the probability of the token with
the highest probability as the confidence score of the model. We fit our isotonic regression
calibration methods on the development test set and evaluate the expected calibration error
on the test set, binning our uncertainty estimates P̂ (x) into bins of width .1. (Table 4.2).
Additional experiments investigating the expected calibration error (ECE) as a function of
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the bin size, which we include in supplementary Figures 1 and 2, show that while the average
expected calibration error increased, the difference in the average expected calibration error
between the smallest bin size (4) and the largest (64) was less than .02 for both classification
and extraction tasks. [15]

We find that for most classifications fields, the model had expected calibration scores less
than .1 and that isotonic regression generally improves upon this. Since for each class the
one-vs-all probabilities are calibrated, the calibrated model’s predictions may differ from the
original model if it is not a binary classification problem, so in addition to the expected cali-
bration error of the model, we list the weighted F1 score of the calibrated model. Conversely,
extractor models are not well calibrated out of the box in general, but surprisingly, by only
using the probability of the token with greatest probability, performing isotonic regression
on this single value is enough to achieve sub .05 expected calibration errors.

We also examined when the model was most overconfident, where we look for examples with
high estimated probabilities of being correct, but which were nevertheless wrong. We found
the most overconfident example in each field and observed that in 10 of the 15 examples the
algorithm was correct and the label was actually incorrect.

Error Analysis

The most common type of evaluation error for the token extractor occurred when the model
extracted the right token, but the evaluation method did not correctly score the model (Table
6). For example, if the label for the estimated volume of tumor was 2 (in centimeters) and
the model extracted 2cm, the model would be penalized. The most common type of report
anomaly occurred when the text in the report was repeated. For example, in one case, each
sentence in the report was repeated 3 times. This was an issue in the raw text of the report
and was not an aberration in preprocessing. Overall, error analysis shows that the scores
given for the models are likely underestimates and the models actually perform better than
the raw results show.

For a comprehensive breakdown of errors, we refer the reader to Table 5) in the supplemen-
tary material. Because the pathologic stage errors are highly correlated (due to the fact that
the different types of stages are encoded in the same token in the text), only the results for
the pathologic T-stage are shown.
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DISCUSSION
We have investigated several practical issues in the clinical deployment of a machine learning
based pathology parsing system and developed a system that can accurately parse prostate
reports across a variety of fields and provide reliable per-label uncertainty estimates. Fur-
thermore, we evaluated the number of samples required for adequate performance to guide
outside practitioners who are considering using a learning based parsers for their datasets.

The dual classification/extraction approach to our pipeline was developed to accommodate
a larger variety of data fields. Yala et al (2017) applied boosting across twenty binary
fields on 17,000 labeled breast cancer reports and observed strong performance with F1
scores above .9 for many fields.[6] Gao et al (2018) applied hierarchical attention networks
to predict tumor site and grade from pathology reports within the NCI-SEER dataset and
noted improvement in micro-F1 (up to 0.2 greater) compared to baselines across two fields
(primary site and histologic grade) for a dataset of lung and breast cancer pathology reports.
[12] Much of the previous work does not attempt to extract all relevant data fields since they
rely primarily on document classification methods which cannot handle continuous values,
such as tumor size or prostate weight or perform the related but slightly different task of
NER. Although Li and Martinez (2010) attempt to extract data fields based on numeric
values using a hierarchical prediction method, the final prediction step relies on a rule based
method that has no clear way to be calibrated. [58] Furthermore, while our two methods
are not run on the same fields, our algorithm appears to have higher performance in general.
Our solution is developing a sequence tagging algorithm that extracts tokens corresponding
to the desired values directly, as well as employing classifier methods to extract categorical
data fields. Each method is also capable of outputting a score that can be directly calibrated
using isotonic regression. One limitation of our extraction methods is that we only consider
simple bag-of-n grams based representations and it would be interesting to see how sample
efficiency or calibration errors change under a deep learning approach.

Second, we investigated the necessary number of reports needed for accurate classification
for our pathology reports by varying the size of the training set of reports from 16 to 256
across both classification and extraction. While others have performed sample efficiency
analysis of NLP algorithms across many tasks [4, 29, 72] to our knowledge, this has not been
investigated for the important application of clinical information extraction from pathology
reports, with the exception of Yala et al. who plot dataset size vs performance over only
one method (boosting) and over fields that only take two values. [13] Overall, we found
that only 128 labeled reports were needed for the best methods for classification and only
64 for the token extractor, a small number compared to the dataset sizes used in prior work.
It is important for practitioners who have a smaller dataset to understand approximately
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how much performance to expect from a machine learning based approach as it can be
expensive and time-consuming to create a large corpus of annotated documents. We hope
this encourages more groups to explore these approaches, as large datasets may not always be
required. Our study is limited by focusing on a single cancer from one institution, and further
work can assess generalizability to other cancers and sites. Of note, there was heterogeneity
in report structure and style over 20 years.

Another important observation is that the classical statistical learning methods outperformed
deep learning methods by a large margin when fewer than 256 data points were available,
while deep learning only slightly outperformed logistic regression when using all 2,066 reports
in the training set. This suggests deep learning only adds marginal value and the complexity
of the problem, at least for the reports we worked with, is more suited to classical methods.

Finally, we investigated the reliability of uncertainty estimates of the model, which to the
authors’ knowledge, has not been investigated in other pathology information extraction
work. Knowing which reports are likely to be incorrect can decrease the time needed to
manually verify extracted data and filter uncertain predictions for tasks like clinical research
with small populations, where each predicted value may have a large impact on conclu-
sionsThrough our calibration work, we observed that the classification model was typically
well calibrated without any modification, whereas our token extraction algorithm was not.
However, by just using the probability of the selected token, isotonic regression was a very
effective calibration solution. We furthermore investigated when the model is most likely to
be overconfident and found that two-thirds of these errors were due to incorrect annotation
labels, not incorrect algorithm outputs.

CONCLUSION
Creating annotated datasets and reliable systems are serious practical concerns when de-
veloping and deploying biomedical information extraction systems due to the high cost of
creating annotations and the impact of errors on patients outcomes. We show when apply-
ing machine learning to pathology parsing, accurate results can be obtained using relatively
small annotated datasets and calibration methods can improve the reliability of per-label
uncertainty estimates.
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TABLES AND FIGURES

Table 2.1. Data elements extracted from pathology reports

Document Classifier Algorithm Fields

Gleason Grade
Primary, secondary, tertiary

Histologic grading of tumor aggressiveness based
on the Gleason grading system. Each specimen is
assigned a primary, secondary, and occasionally a
tertiary score, each of which are whole numbers
from 1-5

Tumor histologic type Primary histologic type, such as acinar adenocar-
cinoma, ductal adenocarcinoma, small cell neuro-
endocrine carcinoma

Cribriform pattern Whether the cells exhibit a cribriform growth pat-
tern (Gleason 4 only)

Treatment effect Indicator whether there is evidence of a prior
treatment, such as hormone treatment or radia-
tion therapy

Margin status for tumor To evaluate surgical margins, the entire prostate
surface is inked after removal. The surgical mar-
gins are designated as “negative” if the tumor is
not present at the inked margin and “positive” if
tumor is present at the inked margin.

Margin status for benign glands The benign margins are designated as “positive”
if there are benign prostate glands present at the
inked margin and “negative” otherwise

Perineural Invasion Whether cancer cells were seen surrounding or
tracking along a nerve fiber within the prostate

Seminal vesicle invasion Invasion of tumor into the seminal vesicle

Extraprostatic extension Presence of tumor beyond the prostatic capsule

Lymph node status Whether tumor was identified in lymph nodes

Token Extractor Algorithm Fields

Pathologic Stage Classification
T (primary tumor)
N (regional lymph nodes)
M (distant metastasis)

Based on American Joint Committee on Cancer
TNM staging system for prostate cancer. Based
on the edition used in each report (5th - 8th edi-
tion)

continued on next page
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continued from previous page
Tumor volume Amount of tumor identified in prostate specimen

(cubic centimeters)

Prostate weight Overall weight of the prostate (grams)



CHAPTER 2. INFORMATION EXTRACTION FROM PATHOLOGY REPORTS
WITH UNCERTAINTY ESTIMATION IN LIMITED DATA ENVIRONMENTS 17

Table 2.2. Weighted F1 scores for classification fields and mean accuracy for token ex-
tractor fields on full training data sample (n = 2,066)

Data Element Logistic
regres-
sion

Adaboost
classifier

Random
Forest

SVM CNN LSTM Majority
Class
Accuracy

Gleason Grade - Primary 0.978 0.971 0.941 0.932 0.981 0.628 0.709

Gleason Grade - Sec-
ondary

0.958 0.943 0.913 0.912 0.968 0.576 0.467

Gleason Grade - Tertiary 0.923 0.930 0.844 0.886 0.930 0.741 0.901

Tumor histology 0.989 0.995 0.995 0.993 0.995 0.994 0.991

Cribriform pattern 0.963 0.981 0.963 0.968 0.987 0.966 0.997

Treatment effect 0.981 0.979 0.981 0.981 0.981 0.973 0.985

Tumor margin status 0.941 0.953 0.888 0.918 0.950 0.630 0.799

Benign margin status 0.977 0.975 0.972 0.981 0.978 0.967 0.997

Perineural invasion 0.944 0.978 0.938 0.929 0.972 0.613 0.771

Seminal vesicle invasion 0.943 0.974 0.940 0.965 0.976 0.784 0.904

Extraprostatic extension 0.954 0.953 0.882 0.939 0.961 0.778 0.712

Lymph node status 0.983 0.952 0.983 0.973 0.986 0.824 0.570

Mean weighted F1 0.961 0.965 0.937 0.948 0.972 0.790 0.817

T Stage 0.951 0.954 0.948 - - - -

N Stage 0.954 0.954 0.948 - - - -

M Stage 0.972 0.969 0.969 - - - -

Estimate Tumor Volume 0.605 0.765 0.873 - - - -

Prostate Weight 0.846 0.855 0.914 - - - -

Mean Accuracy for
token extractor mod-
els

0.866 0.899 0.930 - - - -

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine

Table 2.3. Mean weighted F1 score ± standard deviation for classification models for
classification models and mean accuracy ± standard deviation for token extractor models on
increasing numbers of reports (n) after 5 trials
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Model n = 16 n = 32 n = 64 n =
128

n =
256

Classification Models (mean weighted F1 score across all classification fields ± SD)
Logistic 0.781 ±

0.175
0.846 ±
0.117

0.875 ±
0.090

0.911 ±
0.059

0.934 ±
0.041

AdaBoost 0.829 ±
0.140

0.878 ±
0.100

0.907 ±
0.066

0.928 ±
0.049

0.945 ±
0.034

Random
Forest

0.795 ±
0.169

0.835 ±
0.128

0.867 ±
0.101

0.882 ±
0.088

0.901 ±
0.070

SVM 0.738 ±
0.214

0.763 ±
0.209

0.786 ±
0.194

0.842 ±
0.112

0.860 ±
0.140

CNN 0.720 ±
0.225

0.790 ±
0.163

0.851 ±
0.122

0.893 ±
0.086

0.935 ±
0.055

LSTM 0.688 ±
0.205

0.729 ±
0.187

0.743 ±
0.203

0.739 ±
0.214

0.739 ±
0.212

Token Extractor Models (mean accuracy across all token extractor fields ±
SD)
Logistic 0.844 ± 0.085 0.897 ± 0.079 0.892 ± 0.096 0.902 ± 0.087 0.896 ± 0.092
Adaptive Boost 0.877 ± 0.097 0.892 ± 0.080 0.890 ± 0.084 0.896 ± 0.082 0.890 ± 0.092
Random forest 0.897 ± 0.180 0.898 ± 0.064 0.915 ± 0.054 0.920 ± 0.041 0.924 ± 0.038

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
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Table 2.4: Upper: Classifier accuracy and expected calibration error for boosting before
and after isotonic calibration. Lower: Expected Calibration Error for Random Forest Model
before and after isotonic calibration.

Classification Calibra-
tion

Data Element Weighted-
F1

ECE Isotonic
Weighted-
F1

Isotonic

ECE

Gleason Grade - Primary 0.95 0.03 0.93 0.03

Gleason Grade - Secondary 0.94 0.08 0.92 0.14

Gleason Grade - Tertiary 0.91 0.05 0.91 0.03

Tumor histology 0.99 0.009 0.99 0.007

Cribriform pattern 0.995 0.007 0.995 0.017

Treatment effect 0.99 0.007 0.99 0.003

Tumor margin status 0.96 0.15 0.94 0.013

Benign margin status 0.994 0.007 0.995 0.019

Perineural invasion 0.95 0.26 0.96 0.02

Seminal vesicle invasion 0.987 0.16 0.97 0.02

Extraprostatic extension 0.96 0.12 0.96 0.01

Lymph node status 0.96 0.04 0.98 0.01

Extractor Calibration

Data Element ECE Isotonic
ECE

T Stage 0.155 0.016

N Stage 0.144 0.013

M Stage 0.007 0.005

Estimated Volume of Tu-
mor

0.221 0.021

Prostate Weight 0.278 0.033
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Chapter 3

Supervised line attention for tumor
attribute classification from pathology
reports

In chapter 2, we found that limited annotated data is a major obstacle for building accurate
information extraction systems for pathology reports. In this chapter, we attempt to address
this challenge by developing a more sample efficient annotation and information extraction
technique. Unlike previous works, we leverage location-based information which we call
enriched annotations from pathology reports and a hierarchical algorithm for information
extraction leveraging enriched annotations which we name supervised line attention. We
compare supervised line attention with the state-of-the-art on 250 colon cancer reports and
250 kidney cancer reports at the University of California, San Francisco. Our proposed
method is able to achieve performance on par with previous state of the art techniques using
only half the amount of annotated data on average.

BACKGROUND
The abundance of textual data in the clinical domain has led to increased interest in de-
veloping biomedical information extraction systems. These systems aim to automatically
extract pre-specified data elements from medical documents, such as physician notes, radiol-
ogy reports, and pathology reports, and store them in databases. Converting the originally
free-text data into a structured form makes them easily available to clinical practitioners or
researchers.
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For categorical attributes, the information extraction task can be viewed as an instance of
document classification that classifies the tumor attribute based on document contents. For
a given attribute, the value is one of a fixed set of options selected based on information in the
document. As an illustration, the set of values for the attribute “presence of lymphovascular
invasion” could consist of the values “present”, “absent”, and “not reported”. Both classical
and deep learning classification methods have been applied to this task in the prior work
discussed below.

There has been success in applying classical machine learning techniques to classifying at-
tributes of tumors from pathology reports. Yala et al. classified over 20 binary attributes
from breast cancer pathology reports using boosting over n-gram features. [92] Jouhet et
al investigated applications of Support Vector Machines (SVMs) and Naive Bayes classifiers
to the task of predicting International Classification of Diseases for Oncology (ICD-O-3)
from cancer pathology reports. [35]. More recently, there has been success in applying deep
learning techniques to pathology report classification. Qiu et al. applied convolutional neu-
ral networks (CNNs) to predicting ICD-O-3 from breast and lung cancer pathology reports.
[69] Gao et al. applied hierarchical attention networks to predict tumor site and grade from
pathology reports within the NCI-SEER dataset and noted improvement in micro-f1 of up
to 0.2 compared to baselines across primary site and histologic grade for lung cancer and
breast cancer reports. [25]

There has also been work addressing pathology report classification in the absence of a
large amount of labeled data. Odisho et al. analyzed performance of machine learning
methods for extracting clinical information from prostate pathology reports across various
data regimes and found that, while deep learning performed best when trained on the full
dataset of 2,066 labeled documents and achieved a mean weighted-F1 score of 0.97 across
classification attributes, simpler methods such as logistic regression and adaBoost performed
best in smaller data regimes (<256 reports). [60] Additionally, Zhang et al, investigated the
problem of unsupervised adaptation across attributes in breast cancer pathology reports. [7]
Given a set of attributes with labels and a new attribute without labels but with relevant
keywords, they used adversarial adaptation with semi-supervised attention to extract data.
We use all of the above methods as baselines for our system to compare against, with the
exception of Zhang et al. due to the difference in tasks.



CHAPTER 3. SUPERVISED LINE ATTENTION FOR TUMOR ATTRIBUTE
CLASSIFICATION FROM PATHOLOGY REPORTS 22

MATERIALS AND METHODS

Data Sources

Our data consists of 250 colon cancer pathology reports and 250 kidney cancer reports from
2002-2019 at the University of California, San Francisco. The data was split into two sets,
a set of 186, which we used for training and validation, and a test set of size 64. We list the
tumor attributes and their corresponding possible values in Table 3.1. Institutional Review
Board approval was obtained for this study.

Our data consists of 250 colon cancer pathology reports and 250 kidney cancer reports from
2002-2019 at the University of California, San Francisco. The data was split into two sets,
a set of 186, which we used for training and validation, and a test set of size 64. We list the
tumor attributes and their corresponding possible values in Table 3.1. Institutional Review
Board approval was obtained for this study.

Data Annotation Methods

Pathology reports consist of free text describing a patient’s clinical history and attributes
describing the excised specimen, such as surgical procedure, cancer stage, tumor histology,
grade, cell differentiation, and presence of invasion to surrounding tissues. More recent
pathology reports also contain a synoptic comment section, which is a condensed semi-
structured summary of relevant cancer attributes. While many of the most clinically im-
portant attributes are reported in this synoptic comment, this is not always the case. All
attributes in the College of American Pathology reporting guidelines are annotated for each
cancer, but for this paper we restrict our investigation to attributes for which some label
appears in at least 90 % of reports [10]. These include tumor site, histologic type, proce-
dure, laterality, tumor grade, and lymphovascular invasion for both cancers. Additionally,
we have the cancer specific attributes of laterality and perineural invasion for kidney and
colon cancer specifically. We list all attributes, their set of possible values, and the frequency
of each value in Table ??. The Multi-document Annotation Environment (MAE) [78] was
used to annotate the documents.

Enriched Annotations

In previous work, annotations consisted of only the label for each attribute in a document.
[92, 60, 25] However, in this work, for each attribute of interest the annotator highlighted
all occurrences relevant to the label throughout the document, in addition to the label
itself. This provides us with the specific location within the text that directly indicates the
attribute’s label. Each highlight is classified into the corresponding College of American
Pathologists (CAP)-derived category. We investigate two types of annotation: the first we
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refer to as the "reduced annotation set", a minimal set of annotations containing the line of
a given attribute value’s first occurrence in the synoptic comment, or, if not in the synoptic
comment, the line of where that information is referenced elsewhere in the document. The
incremental time required to annotate this location is marginal because the annotator does
not need to read any more of the document than that required to annotate the first occurrence
of the attribute value. In fact, "We investigated the amount of additional time required to
create these enriched annotations and found that it took 20 percent longer on average,
primarily due to the time it took the annotator to navigate the attribute drop-down menu.
This could perhaps be improved through user interface (UI) considerations. In addition to
a reduced annotation set, we also investigate performance with all the occurrences relevant
to the final classification highlighted, a more laborious annotation scheme. For our results,
unless stated otherwise, we are using the reduced annotation set due to its comparable
annotation time to labeling the attribute values alone.

Data Preprocessing

For all methods, we replace all words that occur fewer than two times in the training data
with a special <UNK> token, and remove commas, backslashes, semi-colons, tildes, periods,
and the word “null” from each report in the corpus. For colons, forward slashes, parentheses,
plus, and equal signs, we added a space before and after the character. The spaces were
artificially added to preserve semantic value important to the task. For instance, colons
often appear in the synoptic comment, and so if an n-gram contains a colon, it can indicate
that the n-gram contains important information. If multiple labels for an attribute occurred
within a report, we concatenate them to form a single composed label. For example, if the
report contains both grade 1 and grade 2 as labels for histologic grade, we label the histologic
grade of the report as “grade 1 and grade 2” .

Baselines

For all classical baselines, we represent each document as a union of a set of n-grams where
n varies from 1 to N, where N is a hyperparameter. For all methods we use random search
[8] with 40 trials to tune our hyperparameters according to the 4-fold cross validation error
which we found in preliminary experiments to be a good compromise between performance
and computational efficiency.

Logistic regression
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We use sklearn’s [63] logistic regression model with L1 regularization and the liblinear solver.
We use balanced class weights to up-weight the penalty on rare classes. We generate 500
points from -6 to 6 logspace for the regularization penalty, and sample 40 points at random.

Support Vector Classifier

We use sklearn’s SVC model with balanced class weights. We define our parameter space as
500 points evenly generated from -6 to 6 in log space for the error penalty C of the model;
the kernel as linear or rbf; and the parameter of the kernel as either 0.001, 0.01, 0.1, or 1.
We then sample 40 points at random from this space.

Random Forest

We use sklearn’s random forest classification model with balanced class weights. The pa-
rameter space consists of the number of estimators from 25, 50, 100, 200, 400, 600, 800, and
1000; the minimum number of samples for a leaf from 1 to 128 in powers of 2; max depth of
a tree from 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100; and whether to bootstrap samples
to build trees or not. We sample 40 points randomly from this parameter set.

Boosting

We use the xgboost model from chen2016xgboost. The hyperparameters were 500 points
from -2 to -0.5 in logspace for the learning rate; a max depth between 3 to 7; a minimum
split loss reduction to split a node that is 0, 0.01, 0.05, 0.1, 0.5, or 1; a subsample ratio that
is 0.5, 0.75, or 1; and an L2 regularization on the weights that is 0.1, 0.5, 1, 1.5, or 2. We
sample 40 points at random from this parameter set.

Hierarchical Attention Network

We implement the hierarchical attention method from Gao et al. This model represents the
document as a series of word-vectors. For each sentence in the document it runs a gated
recurrent unit (GRU) [12] over the word vectors. It then uses an attention module to create a
sentence representation as a sum of the attention-weighted outputs of the GRU. To generate
the document representation, a GRU is run over the sentence representations, followed by
another attention module is applied to the GRU outputs. The document representation is
the attention-weighted sum of the GRU outputs.
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For our hyperparameters we use random search across the learning rate, which is either 1e-2,
1e-3, or 1e-4; the width of the hidden layer of the attention module, which is either 50, 100,
150, 200, 250, or 500; the hidden size of the GRU, which is either 50, 100, 150, 200, 250,
or 500; and the dropout rate applied to the document representation, which is either 0, 0.2,
0.4, 0.6, or 0.8. We use a batch size of 64 and ADAM [42] as our optimizer.

OUR METHOD: SUPERVISED LINE ATTENTION
In order to take advantage of annotations enriched with location data, we propose a two-
stage prediction procedure in which we first predict which lines in the document contain
relevant information. We then concatenate the predicted relevant lines and use this string
to make the final class prediction using logistic regression.

Finding Relevant Lines

The first stage predicts which lines are relevant to the attribute. We do this by training an
xgboost binary classification model that takes a line represented as a bag of n-grams as its
input and outputs whether or not the line is relevant to the attribute. The relevance of each
line is predicted independently by this initial classifier.

We then take the top-k lines with the highest scores under the model (where k is a hyperpa-
rameter). Groups of adjacent lines are conjoined into one line so that sentences which span
multiple lines are presented to the model as a single line.

Finally, we represent each line as a set of n-grams vectors and compose a document repre-
sentation as the weighted sum of each vector representation, which is weighted by the score
of that line under the xgboost model. If a line is conjoined, its weight is the maximum of all
the xgboost scores for each line in the conjoined line. Mathematically, this is represented as

dr (l1, ..., ln) =
∑
liϵSk

v (li)m (li) ,
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where dr represents the vector representation of a document d , Sk are the top-k lines with
the highest scores under the xgboost model, v is the mapping from a line li to its set of
n-grams representation, and m (li) is the xgboost score for line li .

With this final weighted representation concatenated with a vector of the line scores, we
train another xgboost model which acts as the final classifier to predict the final class.

We refer to this method as “supervised line attention” due to its relationship to supervised
attention in the deep learning literature which predicts relevant locations and creates a
weighted representation of the relevant regions’ features. Supervised attention in the deep
learning literature has been used to match a neural machine translations attention distri-
bution to match an unsupervised aligner [52] and to match a sequence-to-sequence neural
constituency parser’s attention mechanism with traditional parsing features [38], for example.
Our approach can be viewed as a form of supervised attention for document classification.
The principle difference from existing work is that in supervised attention in the deep learn-
ing literature the method is trained in an end-to-end fashion with neural networks, whereas
we train each module independently with classical methods and our feature representation
for sentences are sets of n-grams instead of dense real-valued vectors.

Rule-based line classifier

As a baseline, we also include a line classifier that selects relevant lines by searching for
expert-generated keywords and phrases. After the lines are selected, the final representation
is generated the same way, with the exception that all lines are given a weight of 1; thus,for
all li εSk , m (li) = 1.

Oracle Model

In addition to the line attention model, we also evaluate a model that uses the correct
relevant lines from the annotator directly as input to the final classifier, which we refer to as
the “oracle model” . Using the oracle lines, the final representation is generated the same
way as the rule-based line classifier, where all lines are given a weight of 1.
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Hyperparameter tuning

Similar to our baselines, we perform random search for 40 iterations and choose the hyper-
parameters that minimize 4-fold cross-validation error. The hyperparameters for our shallow
attention method are an n-gram size for finding relevant lines between 1 and 4; an n-gram
size for the second stage of making the final classification between 1 to 4.

For xgboost, the hyperparameters were 500 points from -2 to -0.5 in logspace for the learning
rate; a max depth between 3 to 7; a minimum split loss reduction to split a node that is 0,
0.01, 0.05, 0.1, 0.5, or 1; a subsample ratio that is 0.5, 0.75, or 1; and an L2 regularization
on the weights that is 0.1, 0.5, 1, 1.5, or 2.

For the final classifier, the L1 penalty is chosen from 500 evenly spaced points from -6 to 6
in logspace. Additionally, since the final representation is a weighted representation of the
features of the top-k lines under the line classifier model, we have a hyperparameter k which
determines how many lines to use, where k is between 1 and 5.

Ablation Experiments

For our ablation experiments, we investigate the relative contribution of each component in
our model.

No weighting

Here we investigate if weighting the features in each line by the classifier scores increases
performance compared to weighting the features in each line by one.

No joining

Here we investigate how joining affects the results when information spans multiple lines.
Instead of conjoining lines that occur adjacent to each other, we leave them as separate lines
for our final classifier.
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No weighting and no joining

Here we neither weight the features vectors representing each line nor do we join adjacent
predicted lines.

Error Analysis

To better understand model performance, we inspect all errors that the supervised line
attention model makes for each attribute and cancer domain. In our investigation we find 6
primary types of errors, which we define below:

Attribute Qualification Error occurs when the model correctly extracts the relevant lines,
but fails to classify the final label correctly because the label text is negated or qualified by
an additional phrase indicating information is not available, such as in the following example:
"If we were to classify the tumor, it would be grade 2 but due to the treatment effect it is
unclassified."

Rare Phrasing Error occurs when the model correctly predicts the relevant lines, but the
relevant lines contain rare or unusual phrasing and the model assigns an incorrect final
classification.

Irrelevant Lines Error occurs when the model includes irrelevant lines in its final predictions,
which can influence the final classification.

Multi-Label Error occurs when a report contains a conjoined label (such as “grade 1 and
grade 2” ), but the model only correctly predicts one of the labels.

Annotator Error occurs when the model’s prediction is correct, but on re-review we noted
that the annotator’s label was incorrect.
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Unknown error occurs when the underlying cause of the error is not known. This often
occurs when the model correctly extracts out the relevant line but assigns an incorrect final
label.

RESULTS
We trained our methods using various training set sizes of 32, 64, 128, and 186 with 4-fold
cross validation. We take the average of 10 runs where we reshuffle the data and generate
new splits each time and compute 95% confidence intervals for all methods using bootstrap
resampling, with the exception of the HAN method due to computational limitations. For
our results, unless stated otherwise, we are using the reduced annotation set due to its
comparable annotation time to labeling the attribute values alone. As shown in Figure 3.1
and Table 3.4, our shallow attention model frequently improves substantially over existing
methods in terms of micro and macro-f1, particularly in the lowest data regimes. For ex-
ample, for colon cancer we see an absolute improvement of 0.10 micro-f1 and 0.17 macro-f1
over previously existing methods with 32 labeled data points. Furthermore, SLA frequently
tends to perform as well or better than state of the art methods with only half the labeled
documents. Two exceptions are in kidney cancer micro-f1 scores, where boosting performs
.01 better in micro-f1. We see that the rule-based line classifier method tends to do better
than existing methods with 64 labeled data points or fewer, but its performance plateaus
and XGBoost outperforms it with 128 and 186 labeled data points. Furthermore, we see
that the rule-based line classifier consistently performs worse than supervised line attention.

Ablation Results

We plot the results of our ablation experiments in Figure 3.2, using the same setup as
our main result where we have training set sizes of 32, 64, 128, and 186 with 4-fold cross
validation. Again, we take the average of 10 runs where we reshuffle the data and generate
new splits each time and compute 95% confidence intervals for all methods using bootstrap
resampling. We see mixed results for joining adjacent predicted lines; it appears to be
inconsequential for colon cancer and detrimental for kidney cancer. However, weighting the
features by line predictor seems beneficial for the macro-f1 scores. This seems to suggest
that weighting helps primarily for rare classes since the macro-f1 score weights the f1 scores
of each class equally.
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Full Annotations

Here we compare how well reduced annotation compares to the more laborious full annotation
setting where we highlight all areas in the document relevant to final classification. We use
the same setup as for our main results as wells as our ablation experiments and present our
results in Figure 3.3. We can see that the full annotation set leads to a consistent increase
in performance. However, it is unclear whether the extra time required to create this full
annotation scheme is beneficial overall as it would lead to fewer documents annotated in the
same amount of time.

Error Analysis

We provide a compilation of the number of errors across attributes in Table 3.2 and Table
3.3 for colon and kidney cancer, respectively. We see that the most common error is the
multi-label error. This is primarily problematic for colon cancer histologic grade, where
pathologists will describe a range of grades such as “grade 1-2” and tumor site for colon
and kidney cancer as tumors can inhabit multiple sites. This suggests that treating this as
a multi-label classification problem instead of naively conjoining multiple labels may reduce
many of the errors.

DISCUSSION
We have investigated the efficacy of location-enriched annotations and a corresponding sim-
ple and interpretable method, which we call Supervised Line Attention, for extracting data
elements from pathology reports across colon and kidney cancers at UCSF. By leveraging lo-
cation annotations, our two-stage modeling approach can lead to increases of micro-f1 scores
up to 0.1 and macro-f1 scores up to 0.17 over state-of-the-art methods and typically reduces
the required annotation by 40% to achieve the performance of existing methods.

Our SLA approach with enriched annotations was primarily developed to tackle the prob-
lem of achieving accurate performance with minimal labeled data. Previous approaches that
attempt to leverage additional data use multi-task learning and transfer learning using infor-
mation from other cancer domains with complex modeling architectures. For example, [69]
investigated using transfer learning with convolutional neural networks to extract data from
942 breast and lung cancer reports, achieving 0.685 and 0.782 micro-f1 scores, respectively.
[2] implemented multitask learning with convolutional neural networks to classify tumor at-
tributes in 942 pathology reports for breast and lung cancers, and achieved 0.77, 0.79, and
0.96 micro-f1 scores for tumor site, histologic grade, and laterality, respectively.
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An important observation is that our approach is more interpretable than previous machine
learning methods, since addition to outputting the probability and predicted value for a
certain report, our system outputs the exact lines of the text used to make the classification
as well. This enables practitioners to easily check predictions by examining the lines output
by the extraction system, and verify the system is working as expected before making clin-
ical decisions. The hierarchical attention approach used by [26] also can output the most
pertinent sentences for a classification by using the attention mechanism to hierarchically
filter out pieces of text. However, our experiments show that HAN requires a large train-
ing size to achieve adequate performance due to the more complex architecture used, and
requires significantly more development and computational time to search the hyperparam-
eter space. Additionally, there have been recent concerns regarding the interpretability of
attention distributions from neural networks [31].

Our study has a few limitations. Although we observe high performance of our methodology
in both colon and kidney cancer reports at UCSF, our investigation was done at a single
institution; this may limit the generalizability of our findings to other institutions that
use different pathology reporting or data collection systems. Second, within the field of
natural language processing, there has been strong empirical evidence showing the benefit of
pre-trained contextualized representations for a variety of tasks, both in and out of clinical
applications [64, 18, 48, 30]. In preliminary experiments, we investigated the efficacy of using
biomedical word vectors [68] as feature representation input to our SLA model, but did not
see an improvement in results. However, it would be interesting to investigate the effect that
more sophisticated contextualized representations may have on downstream performance,
and this may increase performance of SLA even further.

CONCLUSION
Our work has shown that leveraging location-based information in addition to document-
level labels can reduce the number of labeled documents to adequately train machine learning
based extraction models for pathology reports. We formulate one such method, supervised
line attention, to incorporate location-based information for tumor attribute classification.
Our experiments show that supervised line attention can achieve accuracies comparable
to the state-of-the-art while relying on much less annotated data and allowing for greater
interpretability.
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Tables

Table 3.1. Extracted attributes and their possible values

Tumor Site
Colon Cannot be determined, cecum, colon not otherwise specified,

hepatic flexure, ileocecal valve, left descending colon, other,
rectosigmoid junction, rectum, right ascending colon, sigmoid
colon, splenic flexure, transverse colon, or not reported

Kidney Upper pole, middle pole, lower pole, other, not specified, or not
reported

Histologic Type
Colon Adenocarcinoma, adenosquamous carcinoma, carcinoma, type

cannot be determined, large cell neuroendocrine carcinoma,
medullary carcinoma, micropapillary carcinoma, mucinous ade-
nocarcinoma, neuroendocrine carcinoma poorly differentiated,
other histologic type not listed, serrated adenocarcinoma, signet-
ring cell carcinoma, small cell neuroendocrine carcinoma, squa-
mous cell carcinoma, undifferentiated carcinoma, or not re-
ported

Kidney Acquired cystic disease associated renal cell carcinoma, chromo-
phobe renal cell carcinoma, clear cell papillary renal cell carci-
noma, clear cell renal cell carcinoma, collecting duct carcinoma,
hereditary leiomyomatosis and renal cell carcinoma-associated
renal cell carcinoma, mit family translocation renal cell carci-
noma, mucinous tubular and spindle renal cell carcinoma, mul-
tilocular cystic clear cell renal cell neoplasm of low malignant
potential, oncocytoma, other histologic type, papillary renal cell
carcinoma, papillary renal cell carcinoma type 1, papillary renal
cell carcinoma type 2, renal cell carcinoma unclassified, renal
medullary carcinoma, succinate dehydrogenase sdh deficient re-
nal cell carcinoma, t611 renal cell carcinoma, tubulocystic renal
cell carcinoma, xp11 translocation renal cell carcinoma, or not
reported

Procedure
continued on next page
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continued from previous page
Colon Abdominoperineal resection, left hemicolectomy, low anterior re-

section, not specified, other, polypectomy, right hemicolectomy,
sigmoidectomy, total abdominal colectomy, transanal disk exci-
sion, transverse colectomy, or not reported

Kidney Total nephrectomy, partial nephrectomy, radical nephrectomy,
other, or not reported

Laterality
Colon Not applicable to colon cancer
Kidney Left, right, or not reported
Grade
Kidney, Colon Grade 1, 2, 3, 4, not applicable, or not reported
Lymphovascular
Invasion
Kidney, Colon Present, absent, or not reported
Perineural Inva-
sion
Colon Present, absent, or not reported
Kidney Not applicable for kidney cancer

Table 3.2: Error analysis: Colon cancer
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Attribute Histologic
Grade

Histologic
Type

Perineural
invasion

Lymphovascular
invasion

ProcedureTumor
Site

Total

Attribute
Qualification
Error

1 0 0 0 0 0 1

Rare
phrasing

0 0 0 1 3 0 4

Irrelevant Lines
Error

1 0 0 0 5 0 6

Annotator Er-
ror Error

3 1 1 0 5 0 10

Multi-label Er-
ror

6 0 0 0 0 6 12

Unknown error 1 0 0 0 6 0 7
Total by at-
tribute

12 1 1 1 19 6 40

Table 3.3: Error analysis: Kidney cancer

Attribute Histologic
Grade

Histologic
Type

Specimen
Lateral-
ity

Lymphovascular
invasion

ProcedureTumor
Site

Total

Attribute Quali-
fication Error

0 0 0 0 0 0 0

Rare
phrasing

0 0 0 1 5 0 6

Irrelevant Lines
Error

1 0 0 1 1 1 4

Annotator Error 1 2 0 1 1 0 5
Multi-label Er-
ror

0 4 0 0 2 6 12

Unknown error 1 4 0 1 1 5 12
Total by at-
tribute

3 10 0 4 10 12 39
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Figure 3.1: Average micro-f1 and macro-f1 performance across attributes of different
methods as a function of 32, 64, 128, 186 labeled examples on colon cancer and kidney cancer
pathology reports. SLA: supervised line attention; oracle: oracle model that gets access to the
true lines as input; rules: line prediction done with a rule-based method and logistic regression
to predict the final class; boost: XGBoost; SVM: Support Vector Machine; logistic; logistic
regression; RF: Random forest; HAN: Hierarchical attention network. We present the mean
result across 10 random shufflings of the data as well as 95% bootstrap confidence intervals.
We see that our method SLA outperforms existing methods in almost all cases. Furthermore,
we see that predicting relevant lines outperforms our rule-based method to extract relevant
lines.



CHAPTER 3. SUPERVISED LINE ATTENTION FOR TUMOR ATTRIBUTE
CLASSIFICATION FROM PATHOLOGY REPORTS 36

Colon
HAN RF SVM Boost LogisticRules SLA Oracle

Micro-
F1
32 .45 .57 .51 .69 .63 .75 .80 .80
64 .50 .62 .57 .79 .70 .79 .84 .84
128 .60 .69 .62 .84 .79 .83 .87 .88
186 .61 .73 .68 .86 .83 .84 .89 .89
Macro-
F1
32 .18 .22 .21 .32 .28 .43 .50 .50
64 .19 .29 .24 .46 .37 .52 .60 .59
128 .25 .34 .30 .57 .53 .56 .66 .67
186 .37 .40 .35 .62 .59 .59 .69 .70
Kidney
Micro-
F1
32 .54 .57 .56 .73 .66 .79 .80 .85
64 .54 .67 .60 .80 .75 .81 .83 .86
128 .63 .75 .68 .85 .81 .83 .84 .87
186 .71 .77 .71 .86 .83 .84 .85 .88
Macro-
F1
32 .25 .28 .29 .37 .35 .46 .48 .51
64 .27 .35 .30 .46 .42 .49 .52 .54
128 .36 .42 .38 .52 .49 .51 .54 .55
186 .47 .46 .42 .54 .51 .54 .56 .56

Table 3.4: Average micro-f1 and macro-f1 performance across attributes of different
methods as a function of 32, 64, 128, 186 labeled examples on colon and kidney cancer.
Highest performing non-oracle method is bolded.

Figure 3.2: Ablation studies for SLA measuring the average micro-f1 and macro-f1 perfor-
mance across attributes of different methods as a function of 32,64,128,186 labeled examples
on colon cancer and kidney cancer pathology reports. We investigate the impact of joining
adjacent selected lines prior to featurization as well as the impact of weighting the features
by the line classifier scores. We present the mean result across 10 random shufflings of the
data with 95% bootstrap confidence intervals. While it appears that joining adjacent predicted
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lines leads to mixed or potentially even negative performance over not joining adjacent pre-
dicted lines, weighted methods seem to outperform their unweighted alternatives, especially
for macro-f1 scores, suggesting that weighting helps in particular for rare classes
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Figure 3.3: Comparing the more laborious scheme of annotating the location information
for all relevant lines for a given attribute as compared to the more lightweight annotation
method of only annotating the first line in the synoptic comment, if the synoptic comment
contains the information, or the first relevant line in the document otherwise. We see that
having the additional information yields a consistent, though sometimes small, benefit.
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Chapter 4

Improving information extraction from
pathology reports using transfer learning
and text similarity

In this chapter, we develop methods building upon supervised line attention in two cases. In
the first case we incorporate different types of transfer learning when information is shared
across cancers. This allows us to leverage annotated pathology reports from different cancer
types to expand the training set size for a particular cancer of interest. In the second case,
we leverage text similarity techniques to facilitate zero-shot learning which is particularly
important in cases when the amount of labels is particularly large compared to the amount
of training data. These techniques help us achieve accuracy comparable to the state-of-the-
art while requiring much less annotated data. We compare our proposed methods against
existing methods in the literature on lung, colon, and kidney cancer reports at the University
of California, San Francisco.

BACKGROUND

Despite a long history of approaches to biomedical information extraction which include
rules-based methods [59], classical machine learning methods [92, 55], and deep learning
methods [69, 26],few works have focused on sample efficient learning. Yala et al [92] carried
out a performance analysis of boosting tree extraction models and found that approximately
400 training examples were required to obtain an accuracy of 0.9 for 20 breast cancer at-
tributes, though they only considered tumor attributes that take on present or absent val-
ues. In chapter 2, we showed non-deep learning methods largely outperformed deep learning
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methods with data sizes below 256 for prostate cancer reports.16 In chapter 3, we out-
lined developed a novel supervised line attention (SLA) approach using more fine-grained,
location-based annotations and showed the fully supervised location-based approach outper-
formed the state-of-the-art methods using training data sizes below 186 for colon and kidney
cancer reports. However, these methods still require hundreds of labeled examples.

Transfer learning has been shown as a promising approach to improve medical data extraction
performance. Qiu et al. found that intra-class transfer learning on convolutional neural
networks provided improvements of up to 0.04 in micro-F1 and macro-F1 scores for lung and
breast tumor sites [69]. Alawad et al. show that multi-task convolutional neural networks
trained across cancer types achieve up to 0.17 improvement in the macro-F1 score over single
cancer registry models [3].

Zero-shot learning is also a promising avenue for achieving better sample efficiency in limited
data settings [1, 90]. It is a setting where the model learns to classify test instances with
labels not previously seen in the training set. Typically, a zero-shot learning approach learns
to make a prediction by using the original features of an instance and auxiliary information
of classes, which are related to the feature space. For example, for a document classification
task, the features could include the document text, while the class name and description
could be used as the class auxiliary information. The learned relational information be-
tween auxiliary information and features allows the model to generalize to new classes when
auxiliary information is available.

In this work, we extend the existing SLA approach based on enriched annotations using
transfer learning and zero-shot learning. For tumor attributes with labels that are shared
across colon, kidney, and lung cancers, we develop a cancer-to-cancer transfer learning proce-
dure to leverage cancers with many labeled examples for cancers with few labeled examples.
Transfer learning is applicable here, since much of the language is shared when reporting
an individual attribute that is shared across different cancers. For tumor attributes with
labels that are unique to a specific cancer type, we develop zero-shot string similarity (ZSS)
methods to augment our SLA approach. ZSS finds the predicted label by calculating string
similarity scores between the label and text. Note that character-based similarities can be
calculated for unseen labels as long as the label name is available at prediction time. Since
ZSS only requires a string similarity score to make a prediction, ZSS can generalize to labels
never seen during training.
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MATERIALS AND METHODS

Data Sources

We randomly sampled 250 pathology reports each across colon, lung, and kidney cancers
from the University of California, San Francisco from 2002 to 2019. For each cancer type,
we sampled and annotated 250 reports to create 10 random cancer-specific, train-validation-
test splits. Each split for a cancer consists of the same 250 annotated reports overall, but
the individual training, validation, and test sets differ due to randomness. The full train,
validation, and test sets consist of 40, 20, and 190 annotated reports, respectively. We chose
to place a majority of the data in the test set and limit the number of reports in the training
and validation splits, since we are interested in performance in the low data regime (10–40
examples). Each experiment is run separately on each of the 10 splits. We obtain confidence
intervals for the evaluation metric scores computed on the test set of each of the 10 splits.

Tumor attributes

Tumor attributes of interest are histologic grade and the presence of lymphovascular invasion
for transfer learning on shared labels across cancers and tumor site, histologic type, and the
surgical procedure carried out on a patient for the text based similarity method.

Enriched Annotations

Our pathology reports contain annotations for ground-truth labels as well as highlighted
text throughout the report relevant to the label as in the previous chapter. These fine-
grained annotations provide the lines in the report that determine the value of a tumor
attribute. Similar to the previous chapter we use the "reduced annotation set", which
consists of the minimal set of annotations containing the line of a given data field’s value in
the synoptic comment or the first line that contains the relevant information if the report
does not contain a synoptic comment. These synoptic comments are typically common
in more recent pathology reports and are a brief standardized portion of the text where
relevant cancer attributes are reported. As mentioned in the previous chapter, reduced
location-specific annotations take 20 percent longer on average than typical annotations.
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Before any kind of vectorization of the text, we replace words that occur once in the training
data and words that never appear in the training data with a special <UNK> token. We
then remove commas, backslashes, semi-colons, tildes, periods, and the word “null” from
each report and add spaces around colons, forward slashes, parentheses, plus and equal
signs. Additionally, we also concatenate labels if multiple labels are assigned to a report for
a specific field. For example, if the report contains both “upper” and “lower” labels for the
field tumor site, then we aggregate the labels so the final label is “upper and lower.”

SUPERVISED LINE ATTENTION

Our models are based on the SLA framework, outlined in chapter 3. The goal is to predict
the lines in the report that contain information on a specific tumor attribute and then use
the predicted lines to make the final class prediction for an attribute. There are 2 separate
classifiers for the line prediction task and the class prediction task trained using location-
based and label annotations. As in previous work, separate XGBoost models are used for
the line prediction task and the class prediction task.

Tumor attributes are divided into 2 distinct categories. The first category contains tumor
attributes with shared labels across cancers, such as the histologic grade. Most cancers
are graded on a numeric or ordinal scale, and while the underlying biology and clinical
significance of the grades differ, the labels are similar. The second category contains tumor
attributes whose labels are not shared across cancers. An example is the procedure; for each
organ system or cancer type, there are a different set of surgical procedures for resecting
tumors. The first group is a natural candidate for a transfer learning approach, whereas
transfer learning is less applicable for the second group, since the labels are not shared
across cancer types. We propose 2 methods to perform extraction depending on whether the
labels are shared across cancers.

1) Shared labels

When labels are the same across cancers, knowledge can be transferred from one cancer
type to another. For example, for the presence of lymphovascular invasion, identifying
the relevant lines in a report is domain-independent because lymphovascular invasion is
a relevant attribute for many cancers. Furthermore, identifying the correct label is again
domain-independent because the categories (present and not identified) are the same across
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cancers. Shared knowledge is important because reports from other domains can be used to
improve performance through data augmentation.

We create a transfer learning technique to learn data extraction using the shared information
across cancer types for the relevant tumor attributes. We build off SLA by training both
the line classifier and the final classifier on reports from all domains, which we refer to as
hierarchical cancer to cancer transfer learning (HCTC). We apply cancer-to-cancer transfer
learning hierarchically at both stages of SLA: predicting the relevant lines in the report and
predicting the final classification of a report. As a sensitivity analysis, we report results with
ablations to HCTC where we only share information for the line classifier (HCTC-line) or
the final classifier (HCTC-final).

2) Unique labels case

Unlike the shared labels case, we opt against a transfer learning approach as the applicability
is uncertain due to a different label space for each cancer. Furthermore, some attributes have
a large number of labels (there are 32 possible labels for kidney histologic type). It is highly
likely that we will encounter labels at test time that were not present in the training data.
Typical machine learning models need a sufficient number of examples for each possible
label to learn classification tasks and generalize to new data. As seen by the large set of
possible labels for our attributes, it is possible to see few or no examples of a class during
training. Consequently, a technique that can handle a large set of labels is essential here
and in particular, a method capable of zero-shot learning is necessary.

We develop a novel method that enables a more sample efficient method capable of zero-
shot learning, referred to as ZSS. At a high level, ZSS first predicts the relevant lines for
the label using the line classifier as in Altieri et al [6], then calculates the string similarity
score between each possible label and the concatenated text of the top 3 lines output from
the line classifier using a subroutine we call the fuzzy jaccard score (Algorithm 1). Finally,
we take the label with the highest fuzzy jaccard score as the final prediction. The possible
labels we use are defined in the College of American Pathology reporting guidelines.

ZSS involves calculating pairwise character-based similarity scores between a predicted line
of a report and each possible label using the fuzzy jaccard score as a subroutine (Algorithm
1). We use the line in the report with the highest probability computed using the line classi-
fier as the predicted line. The similarity between the predicted line and a candidate label is
computed with the Ratcliff-Obershelp algorithm. We evaluated several character-level string
similarity algorithms, such as the Jaro–Winkler similarity, Levenshtein similarity, and Ham-
ming distance but found that the Ratcliff–Obershelp approach performed best according to
the mean F1-micro score using the training set averaged across the all splits for lung, colon,
and kidney cancers for each data size. The label with the highest Ratcliff–Obershelp score
is used as the final prediction. The full routine is described in Algorithm 2.
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Zero-shot similarity (ZSS)

Input: Predicted line in a report, the probability output from the line classifier, a set of labels
for a given field (the possible values that a data field can take), and a learned cutoff parameter
used to predict ‘NA’ or not reported

Output: Predicted label

1. For eachcandidate label, calculate its fuzzy jaccard score with the predicted line

2. Take the label with the highest fuzzy jaccard score. If there is a tie between multiple
labels, take the label with the most characters as the prediction

3. If the fuzzy jaccard score is less than 0.5, then predict “other”

4. If the line probability is less than the cutoff, then predict “NA”

Fuzzy jaccard algorithm

Input: Predicted line in a report and a candidate label

Output: Similarity score

1. For each unique word in the candidate label, calculate its string similarity score with
each unique word in the predicted line using the Ratcliff-Obershelp contiguous matching
subsequence algorithm and find the max similarity score.

2. Sum up the max similarity scores across unique words for the candidate label

3. Scale the resulting sum by the number of unique words in the label

Ensembling String Similarity with the SLA Approach:

While we found ZSS to be effective on its own, we found that it suffered from a few weak-
nesses. In particular, we found that the “other” class particularly challenging, as it consists
of all possible values the field can take outside of the defined label set in the CAP protocols.
For example, if the field is “procedure”, then the “other” class corresponds to all other pos-
sible procedures not listed in the CAP protocols, which will all have low string similarity to
the label “other”. Furthermore, there are cases where the label in general is very dissimilar
to how it occurs in the text. With these examples, no matter how many data points our
algorithm is trained on, it will never get these right. Therefore, we aim to get the best of
both ZSS and the SLA approach by developing a hybrid approach to the problem. If the
final string similarity score is above a learned threshold, then we output the ZSS prediction.
Otherwise, we output the SLA prediction. We call this method ZSS-thresholding.
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We include an oracle method for the sake of comparison that chooses the SLA prediction
if it is equal to the ground truth and the ZSS prediction otherwise. This oracle method
serves as an upper bound on the performance of our string similarity enhancement of the
SLA method. Our final method is ZSS-doc which is using ZSS on the entire text of the report
instead of the lines output from the line classifier. This allows us to gauge how necessary
the location targeting approach is for the ZSS methods.

BASELINE METHODS

1) Shared labels

Our first set of baselines is document-level classification methods, such as logistic regression,
XGBoost, random forest, and support vector machines. These methods take as input all
the tokens in a given report and predict the class value of a particular data field. The bag
of words approach is used to vectorize the text in each document and train the outlined
machine learning methods. This approach only uses the final document-level labels and is
trained on the cancer of interest as well as the out-domain cancer reports.

Our next baseline is the hierarchical attention network (HAN) for document classification
[26]. In particular, we study the hierarchical attention network (HAN) in terms of transfer
learning. We pretrain the model on out-domain reports for a shared field and then fine-tune
the model on in-domain reports.

We also use the SLA approach outlined in the previous chapter as an additional baseline.
XGBoost is used as the line prediction model, while the logistic regression is used as the
final label classifier. Location-based annotations are used to train the line prediction model,
while the document-level label annotations are used to train the final classifier.

2) Unique labels

The baselines in the unique labels scenario include the ordinary document-level classifiers
and the SLA approach similar to the previous case. All the methods in the unique labels
case are trained on a single cancer domain.
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HYPERPARAMETER TUNING

For all our experiments, we train each method with 40 randomly chosen hyperparameter
values and choose the set that maximizes the average 4-fold cross-validation score.

Model-based parameters

For the xgboost method we sample from 1000 points from -2 to -0.5 in logspace for the
learning rate; values 3 to 7 for max depth; a minimum split loss reduction to split a node
from 0, 0.01, 0.05, 0.1, 0.5 and 1; a subsample ratio values from 0.5, 0.75, or 1; and L2
regularization values from 0.1, 0.5, 1, 1.5, or 2. For logistic regression, we sample 1000
evenly spaced points from -6 to 6 in logspace for the L1 regularization parameter.

SLA parameters

The SLA method has additional model-independent hyperparameters which are the n-gram
size for the line classifier which is between 1 and 4, the n-gram size for the final classifier
which is again between 1 and 4, the number of selected lines to use as input to the final
classifier which is between 1 and 5.

Text similarity parameters

The text similarity approach has an additional model-independent cutoff parameter sampled
from 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 which is used to handle NA values for a given data
field. We specifically use the maximum line classifier probability from the positively predicted
lines. If this probability is less than the cutoff value, then the predicted value from the string
similarity method is replaced by “NA.”

SLA + string similarity parameters

The SLA data augmented variation contains a threshold parameter that is sampled from
0.8, 0.85, 0.9, 0.95, and 1.0. This parameter is used to select instances outside the train
set to augment the training data. All instances which have a similarity score with a label
greater than the threshold value is used along with the string similarity prediction for data
augmentation.
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Similarly, the SLA thresholding variation contains a threshold parameter sampled from 0.8,
0.85, 0.9, 0.95, and 1.0. If a given instance has a string similarity score with a label greater
than the threshold value, then the SLA prediction is replaced with the string similarity
prediction.

RESULTS

We run two sets of experiments across lung, colon, and kidney cancers: one for the shared
field and shared labels case and another for the shared field and unique labels case. Each
method is trained on training data sizes of 10, 20, and 40 in-domain reports along with 372
out-domain reports with validation set sizes of 5, 10, and 20 in domain reports, respectively.
The test set consists of 186 held out reports from the domain in question.

Each experiment is run 10 times where the training, validation, and test splits are randomly
formed. We compare across methods using the mean micro-F1 and macro-F1 scores and
obtain uncertainty bounds around the means.

Shared labels

Our experiments show that HCTC and HCTC-final consistently outperforms all other meth-
ods (Table 4.3). Compared to boosting, which performs the best among baselines on macro-
F1, HCTC achieves performance gains by 0.03–0.04 in macro-F1 across data sizes. Compared
to SLA, which performs the best among baselines on micro-F1, HCTC requires half the data
to perform better in both macro-F1 and micro-F1. Additionally, we find that for data sizes
17 and 33, HCTC-final outperforms HCTC, suggesting the main benefit of transfer learning
comes from the final classifier and not the line classifier.

Unique labels

ZSS-thresholding also requires approximately half the data to perform similarly or better
than the baseline methods for the unique labels setting (Table 4.4). ZSS-thresholding with
8 points achieves an increase of 0.14 in micro-F1 and 0.16 in macro-F1 over boosting trained
on 20 data points. Furthermore, ZSS-thresholding trained on 17 data points achieves an
increase of 0.05 in micro-F1 and an increase of 0.06 in macro-F1 compared to boosting
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trained on 40 data points. A similar trend holds when computing differences in extraction
quality between ZSS-thresholding and SLA which suggests that the string similarity approach
enhances models trained on small data.

For ZSS and ZSS-thresholding, we additionally include micro-F1 and macro-F1 scores com-
puted on test instances which have labels never seen during training across colon, kidney,
and lung cancers (Figures 4.1 and 4.2). For colon cancer, the zero-shot performances are
near or above 0.3 macro-F1 and 0.4 micro-F1 for both methods. For lung cancer, the perfor-
mances are consistently near or above 0.25 macro-F1 and 0.4 micro-F1. For kidney cancer,
the performance we see benefits of up to 0.1 macro-F1 and 0.25 micro-F1. These metrics
show ZSS is a viable zero-shot approach for this application and is able to learn to predict
classes never observed in the training set.

DISCUSSION

We have developed 2 ways to improve the performance of learning-based extraction systems
when the amount of annotated reports is limited. For attributes where the tumor attribute
and labels are shared across domains, it is natural to aggregate annotations across domains
to augment the data used to train the models. Our experiments with enhancing the SLA
method show that the gain in performance is consistent across data sizes; there is a 0.09
increase in micro-F1 and 0.02 increase in macro-F1 for data size 8 and 0.09 increase in
micro-F1 and 0.04 increase in macro-F1 for data size 33 over the state-of-the-art averaged
across the 3 cancers. We note that, to the authors’ best knowledge, this is the first work to
investigate transfer learning techniques across more than 2 cancers in NLP.

In the case of attributes where the labels differ across domains, we opt for a string similarity
enhancement instead of a transfer approach. Because the categories for these attributes
are unique for each domain, there is less room for improvement via transfer learning due
to cancer-unique labels. String similarity is a more viable approach because typically in
this case the text will contain strings close to the label names. Our experiments show
that interpolating learning-based solutions with string similarity prediction can lead to a
significant increase in performance—up to 0.26 micro-F1 and 0.23 macro-F1 for data size
8 and 0.04 micro-F1 and 0.06 macro-F1 for data size 33 over the state-of-the-art averaged
across the 3 cancers. In terms of zero-shot performance of ZSS, the results vary across
cancers and tops at 0.55 micro-F1 and 0.34 macro-F1 for a specific cancer.
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Zero-shot learning has previously been studied in the context of medical information extrac-
tion, specifically on the public MIMIC II and MIMIC III datasets [34]. Rios and Kavululu
[1] used natural language descriptors of labels and label space structure as auxiliary infor-
mation to achieve zero-shot learning. Their approach matches textual summaries of reports
obtained from attention-based CNNs to feature vectors of labels obtained from graphical
neural networks and achieves recall-at-10 scores of up to 0.362 on MIMIC II and 0.495 on
MIMIC III for zero-shot labels. Lu et al [54] similarly use pre-defined label relations, label
descriptions, and pre-trained word embeddings as auxiliary information. Information from
multiple graphs built on label descriptions, label taxonomy, and label co-occurrences ob-
tained from graph convolutional networks are matched with document embeddings obtained
from CNN encoders. They achieve recall-at-10 scores of up to 0.462 on MIMIC II and 0.553
on MIMIC III. While deep learning has been shown to be extremely effective in the pres-
ence of a large amount of labeled data, it can often struggle on smaller datasets. We note
that MIMIC II and III contain 18,822 and 37,016 patients, respectively, orders of magnitude
larger than our dataset size of 40.

Our findings motivate future directions for information extraction with small data regimes.
While in preliminary experiments, we found that using pre-trained word embeddings to
measure similarity performed worse than our string-based method, we believe one promising
direction is taking advantage of models pre-trained using large corpuses of text on language
modeling tasks. Recent work in NLP has shown fine-tuning such models on specific tasks with
small amounts of data lead to improvements in performance for a given task. Combining such
models, such as BERT [19] with the SLA framework can potentially improve upon ZSS-based
methods especially for cases when synonyms of class names are used in the report in lieu of
the class name. Furthermore, we did not study how much transfer learning benefits learning
across different attributes for a particular cancer. Though most attributes have different
label sets for a given cancer, there are instances where knowledge can be transferred. One
such case is when a pathologist denotes that a particular attribute is not reported in the
text which is applicable to many tumor attributes. Hence a fully unified extraction model
may perform better than a model trained on a specific tumor attribute. In practice, it is
also easier to maintain one model over maintaining many individual models.

Another promising direction is improving the ensembling method between machine learning
methods and rules-based or string similarity methods for the unique labels case. Our results
on the oracle ensembling model shows that there is still much room for improvement when
combining string similarity predictions with machine learning predictions. For example, the
oracle model has up to 0.075 improvement in both macro and micro-F1 over our method
of thresholding based on the learned similarity score cutoff. Potential approaches include
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basing the decision-making process on the uncertainties of each algorithm or combining
model probabilities and string similarity scores for each possible label and outputting the
label with the highest score

CONCLUSION

Large datasets in medical contexts are expensive to generate, limiting the generalizability of
many NLP systems. We develop a novel cancer-to-cancer transfer learning approach and a
ZSS approach that can halve the amount of labeled data required, which potentially opens
doors to more widespread implementation of these systems in the real world.

TABLES

Table 4.1. Extracted attributes and their possible values for the shared fields and shared labels
case

Field Possibles values
Histologic grade Grade 1, grade 2, grade 3, grade 4, or not reported
Lymphovascular
invasion

Present, absent, or not reported

Table 4.2. Extracted attributes and their possible values for the shared fields and unique
labels case

Tumor Site Possible values
Colon Cannot be determined, cecum, colon not otherwise speci-

fied, hepatic flexure, ileocecal valve, left descending colon,
other, rectosigmoid junction, rectum, right ascending
colon, sigmoid colon, splenic flexure, transverse colon, or
not reported

continued on next page
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continued from previous page
Kidney Upper pole, middle pole, lower pole, other, not specified,

or not reported
Lung Upper lobe, middle lobe, lower lobe, bronchus, or not reported
Histologic Type Possible values
Colon Adenocarcinoma, adenosquamous carcinoma, carcinoma,

type cannot be determined, large cell neuroendocrine
carcinoma, medullary carcinoma, micropapillary carci-
noma, mucinous adenocarcinoma, neuroendocrine carci-
noma poorly differentiated, other histologic type not listed,
serrated adenocarcinoma, signet-ring cell carcinoma, small
cell neuroendocrine carcinoma, squamous cell carcinoma,
undifferentiated carcinoma, or not reported

Kidney Acquired cystic disease associated renal cell carcinoma,
chromophobe renal cell carcinoma, clear cell papillary re-
nal cell carcinoma, clear cell renal cell carcinoma, collect-
ing duct carcinoma, hereditary leiomyomatosis and renal
cell carcinoma-associated renal cell carcinoma, mit fam-
ily translocation renal cell carcinoma, mucinous tubular
and spindle renal cell carcinoma, multilocular cystic clear
cell renal cell neoplasm of low malignant potential, oncocy-
toma, other histologic type, papillary renal cell carcinoma,
papillary renal cell carcinoma type 1, papillary renal cell
carcinoma type 2, renal cell carcinoma unclassified, renal
medullary carcinoma, succinate dehydrogenase sdh defi-
cient renal cell carcinoma, t611 renal cell carcinoma, tubu-
locystic renal cell carcinoma, xp11 translocation renal cell
carcinoma, or not reported

continued on next page
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continued from previous page
Lung Adenocarcinoma in situ mucinous, adenocarcinoma in situ

nonmucinous, adenocarcinoma acinar predominant, inva-
sive adenocarcinoma acinar predominant, pulmonary ade-
nocarcinoma acinar predominant, adenosquamous carci-
noma, atypical carcinoid tumor, carcinoma, combined
small cell carcinoma, fetal adenocarcinoma, invasive ade-
nocarcinoma micropapillary predominant, invasive ade-
nocarcinoma papillary predominant, invasive adenocarci-
noma lepidic predominant, invasive mucinous adenocar-
cinoma, invasive squamous cell carcinoma keratinizing,
invasive squamous cell carcinoma non-keratinizing, inva-
sive squamous cell carcinoma basaloid, large cell carci-
noma, large cell neuroendocrine carcinoma, lymphoepithe-
lioma, minimally invasive adenocarcinoma, minimally in-
vasive adenocarcinoma mucinous, mucinous adenocarci-
noma, mucoepidermoid carcinoma, non-small cell carci-
noma, small cell carcinoma, squamous cell carcinoma in
situ, solid adenocarcinoma with mucin, typical carcinoid
tumor, squamous cell carcinoma, other, or not reported

Procedure Possible values
Colon Abdominoperineal resection, left hemicolectomy, low an-

terior resection, not specified, other, polypectomy, right
hemicolectomy, sigmoidectomy, total abdominal colec-
tomy, transanal disk excision, transverse colectomy, or not
reported

Kidney Total nephrectomy, partial nephrectomy, radical nephrec-
tomy, other, or not reported

Lung Bilobectomy, completion lobectomy, wedge resection,
lobectomy, segmentectomy, pneumonectomy, other, or not
reported

Table 4.3. Average micro-f1 and macro-f1 performance as a function of 10, 20, and 40
labeled examples on colon, kidney, and lung cancer pathology reports



CHAPTER 4. IMPROVING INFORMATION EXTRACTION FROM PATHOLOGY
REPORTS USING TRANSFER LEARNING AND TEXT SIMILARITY 53

Macro-f1 Micro-f1

In-domain train-
ing sizes

10 20 40 10 20 40

Hierarchical at-
tention network

0.298 0.287 0.355 0.580 0.574 0.718

Logistic 0.344
(0.055)

0.441
(0.059)

0.467
(0.073)

0.634
(0.039)

0.676
(0.037)

0.708
(0.047)

Random forest 0.276
(0.025)

0.307
(0.034)

0.340
(0.044)

0.586
(0.039)

0.614
(0.030)

0.641
(0.036)

SVM 0.221
(0.048)

0.269
(0.034)

0.310
(0.034)

0.519
(0.102)

0.560
(0.051)

0.570
(0.052)

Boost 0.436
(0.036)

0.468
(0.044)

0.548
(0.052)

0.704
(0.049)

0.732
(0.037)

0.789
(0.038)

SLA 0.211
(0.024)

0.338
(0.037)

0.466
(0.043)

0.579
(0.031)

0.700
(0.029)

0.790
(0.026)

HCTC 0.461
(0.038)

0.508
(0.034)

0.544
(0.028)

0.797
(0.023)

0.832
(0.022)

0.858
(0.018)

HCTC-final 0.421
(0.034)

0.502
(0.047)

0.584
(0.048)

0.776
(0.027)

0.842
(0.030)

0.882
(0.024)

HCTC-line 0.205
(0.013)

0.341
(0.035)

0.473
(0.040)

0.579
(0.044)

0.700
(0.041)

0.800
(0.025)

Table 4.4. Average micro-f1 and macro-f1 performance across a function of 10, 20, and
40 labeled examples on colon, kidney, and lung cancer pathology reports
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Macro-f1 Micro-f1

In-domain train-
ing sizes

10 20 40 10 20 40

Hierarchical at-
tention network

0.051 0.026 0.079 0.255 0.118 0.264

Logistic 0.208
(0.029)

0.277
(0.047)

0.354
(0.048)

0.473
(0.033)

0.578
(0.053)

0.651
(0.033)

Random forest 0.177
(0.045)

0.223
(0.024)

0.323
(0.043)

0.438
(0.044)

0.516
(0.042)

0.618
(0.028)

SVM 0.152
(0.029)

0.172
(0.031)

0.239
(0.030)

0.387
(0.066)

0.425
(0.036)

0.517
(0.044)

Boost 0.155
(0.021)

0.288
(0.040)

0.382
(0.034)

0.421
(0.029)

0.608
(0.051)

0.715
(0.028)

SLA 0.095
(0.015)

0.178
(0.012)

0.219
(0.016)

0.472
(0.036)

0.651
(0.023)

0.738
(0.016)

ZSS 0.442
(0.024)

0.436
(0.017)

0.428
(0.028)

0.743
(0.016)

0.737
(0.011)

0.742
(0.009)

ZSS-doc 0.359
(0.023)

0.356
(0.022)

0.341
(0.019)

0.546
(0.024)

0.540
(0.021)

0.528
(0.007)

ZSS-
thresholding

0.441
(0.024)

0.447
(0.022)

0.449
(0.029)

0.739
(0.017)

0.765
(0.018)

0.780
(0.015)

Oracle 0.454
(0.031)

0.501
(0.029)

0.529
(0.024)

0.775
(0.019)

0.829
(0.017)

0.862
(0.011)

FIGURES

Figure 4.1: Average macro-f1 (A) and micro-f1 (B) performance for test instances where
the label is not seen during training as a function of 10, 20, and 40 labeled examples on
colon, kidney, and lung cancer pathology reports. The results presented include the mean
performance using ZSS across 10 random splits of the data and 95 percent confidence intervals
for the unique labels case. Note that the number of zero-shot test instances decreases as the
number of training instances increase.
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Figure 4.2: Average macro-f1 (A) and micro-f1 (B) performance for test instances where
the label is not seen during training as a function of 10, 20, and 40 labeled examples on
colon, kidney, and lung cancer pathology reports. The results presented include the mean
performance using ZSS-thresholding across 10 random splits of the data and 95 percent con-
fidence intervals for the unique labels case. Note that the number of zero-shot test instances
decreases as the number of training instances increase.
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Chapter 5

Improving fitted Q-evaluation and
model-based evaluation via stability
weighting

This chapter revolves around improving offline evaluation estimates of reinforcement learning
policies. Offline evaluation is critical for estimating the value of agents in high risk or high
cost settings. For example, in healthcare, it is not feasible to test out treatment policies
on real patients in order to compare outcomes of patients under each possible policy [53].
Instead, offline methods leverage logged or offline datasets D = {(si, ai, ri, s′i} which contain
historical transitions from the actual environment. If the logged data is intelligently leveraged
by a practitioner, risks or costs stemming from online data collection can be reduced. In
actual data problems, qualitative checks and domain knowledge should first be applied to
the logged data to validate whether the underlying dynamics of the target environment are
accurately captured.

A unique challenge in offline evaluation is that it is not possible to validate such estimates,
since it requires running policies on the real environment [67]. As a consequence, model se-
lection is difficult compared to supervised learning because typical validation is not possible.
This is a significant roadblock to offline reinforcement learning, because despite the fact that
many offline evaluation methods have been proposed in previous work, knowing when to use
one particular method over another is an open problem. In our work, we attempt to address
this need by investigating using model stability as an avenue for adaptively combining offline
estimates on simulated environments which can be viewed as a form of soft model selection.

This chapter is organized as follows. First we start with a background on reinforcement
learning and offline evaluation. We next outline our proposed method for adaptively com-
bining offline estimates from state-of-the-art offline evaluation algorithms using stability as
a weighting mechanism. Then we detail the simulated environment which serves as a bench-
mark for offline evaluation and finally the experiments conducted on simulated environments.
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BACKGROUND

Reinforcement learning

In the reinforcement learning setting, we assume we have an agent which interacts with some
environment over time [82]. The environment is typically assumed to be a Markov Decision
Process M = (S,A, p, r, µ0, γ) where S is the state-space, A is the action space, p(s′|s, a) is
the transition function given state s and action a, r(s, a) denotes the reward function given
a state s and action a, µ0(s) is the initial state distribution, and γ ∈ [0, 1] is the discount
factor. At each time step t, the agent receives some state st and selects an action at via
π(at|st) to take and receives reward rt and the next state st+1 from the environment. Thus,
at each time step, there is an interaction with the environment and feedback, which the
agent must use to plan actions in the future as shown in Figure 5.1.

Given a policy π(a|s), the value of π is defined to be v(π) = Es∼µ0 [V
π(s)] where

V π(s) = Es′∼p(s,a),a∼π

[
∞∑
t=1

γt−1rt|s

]
is the state value function in the infinite horizon setting and

V π(s) = Es′∼p(s,a),a∼π

[
N∑
t=1

γt−1rt|s

]
in the finite-horizon setting with maximum horizon length N . Related is the Q-function
which restricts the action taken at state s and is defined to be

Qπ(s, a) = Es′∼p(s,a)(r(s, a) + γ ∗ V (s′)).

In the typical reinforcement learning setting, the goal is to train a policy π such that the
value function is maximized. Mathematically we can write this as

max
π

Eat∼π(.|st),st+1∼p(.|st,at)

[∑
t

γt−1 ∗ r(st, at)

]
.

Many reinforcement learning algorithms have been proposed over the years, including policy
gradient methods, model-based reinforcement learning, and temporal difference methods.
Policy gradient methods require optimizing policies directly on the expected return from
monte carlo rollouts on the environment via gradient descent [81, 37] but often require many
interactions with the environment to perform well. Temporal difference learning methods
involves fitting a value function by minimizing the temporal difference error [82] which can
be written as

min
Q

N∑
i=1

(Q(si, ai)− r(si, ai)− γ ∗ V (s′i))
2
,
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where N is the size of the dataset. A policy can then be extracted by taking actions which
maximize the Q-function given a state. Popular temporal difference algorithms include
SARSA [82] and Q-learning [88]. Model-based reinforcement learning methods are the most
sample efficient and generally learns the dynamics, in other words the reward and transition
functions, of the environment first and leverages the predicted dynamics for decision making
[82]. Different variations of model-based reinforcement learning have been studied previously,
including settings where dynamics models are used for planning at testing time or where
a policy is learned along with the dynamics model by employing backpropagation through
time [65]. These algorithms listed for policy gradients, temporal difference learning, model-
based learning, and other hybrid methods, such as the actor-critic method, require access
and interaction with the actual environment over time.

An additional goal in reinforcement learning is to evaluate the value of a policy π. The aim is
to compute an estimate of V π(s) where s is directly given or where s ∼ µ0. In the case where
s ∼ µ0, the simplest solution is to run π on the environment a number of times and average
over the collected sum of discounted rewards. In other words, rewards collected along monte
carlo rollouts on the actual environment are used to estimate the value of π. Additionally,
temporal difference learning methods have commonly been employed for value estimation.
Prominent temporal difference learning methods include temporal difference (TD) learning
[79], gradient temporal difference (GTD) learning [80], temporal difference learning with
gradient correction (TDC) [83]. Such methods train a Q-function which can then be used to
evaluate the policy. An additional research area is off-policy evaluation or offline evaluation
which is the focus of this work. This area revolves around estimating the value of a policy
using data deriving from another policy. We outline offline evaluation in greater detail in
the next section.

Offline setting

In this chapter, we focus on the offline reinforcement learning setting which is data-driven.
Unlike the typical reinforcement learning setting, one only has access to logged data of the
form D = (si, ai, ri, s

′
i) and access to the real environment M is not available [67]. The

logged data is derived from one or more behavior policies which is denoted by πb. In the
episodic reinforcement learning scenario, the logged data can also be written as D = {τi}
where τ = (s1, a1, r1, s

′
1, . . . , sn, an, rn, s

′
N) where the length of the episode N can vary across

episodes. In the typical setting, the logged data is static and assumed to come from the
target environment. Additional data collection from the actual environment is not possible.
A visual depiction of offline reinforcement learning is shown in Figure 5.2.

The offline setting is generally more difficult than the typical reinforcement learning setting,
also known as the online setting, because running a target policy on the true environment
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is not possible. This is especially a challenge if the logged data has insufficient coverage of
the state-space. Thus, states and rewards that a target policy is likely to visit and collect
may not be represented in the logged data if the behavior policy is unlikely to visit them.
This issue is commonly referred to as distribution shift between the behavior policy and the
target policy. In practice, trained policies are often kept similar to the behavior policy in
order to mitigate the problem of distribution shift and the risk of overestimating values in
states not sufficiently visited [89, 24, 32].

The goal of offline evaluation or off-policy evaluation is to estimate v(πe) where πe denotes
the evaluation policy. The evaluation policy is the policy which we want to estimate the value
using the logged data D deriving from the behavior policy. Offline evaluation is especially
difficult because the goal is estimate the value of a policy which is typically not represented
in the logged data. Furthermore, the issue of insufficient coverage plagues offline evaluation
as well, because states that the evaluation policy may visit may not be represented in the
logged data. In comparison, evaluating the behavior policy πb is straightforward, because
the logged returns can directly be used to estimate v(πb).

Relation to PCS

The PCS (Predictability, computatibility, and stability) framework [94] outlines principles
for a data science problem and an approach with an underlying aim of providing reliable, re-
sponsible, and transparent results in the data science life cycle. Many of the ideas outlined in
the PCS framework are very applicable to this data-driven setting of reinforcement learning.
For example, predictability is an important reality check when working with logged data.
Before extrapolating results to the actual environment, reality checks on the logged data and
trained policies or critics are required especially in high-stakes data problems that motivate
offline reinforcement learning, such as clinical decision making, autonomous driving, and
robotics.

Stability is also an essential check as results should be reproducible to small perturbations
to data and models. Stability is especially important in reinforcement learning where the
performance of particular algorithms rely on careful tuning and tricks in practice. Our work
is tied to the stability principle in PCS as the main notion underlying the methodology is
inspired by the stability of models. We further apply this principle to test the robustness of
our proposed methods to human judgement calls in our experiments which can potentially
impact results and conclusions.
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OFFLINE EVALUATION METHODS
Many algorithms have been proposed to do offline evaluation of reinforcement learning
agents, including importance sampling methods, doubly robust methods, fitted q-evaluation
(FQE), and model-based evaluation [47, 66, 44, 13, 56].

The basic importance sampling estimator [66] uses importance weights πe(a|s)
πb(a|s)

to weight the
observed rewards in the logged data to compensate for the distribution shift between the
behavior πb and evaluation policy πe. If the behavior policy is known and πe(a|s) = 0
whenever πb(a|s) = 0 for all (s, a), then the importance sampling estimator is unbiased and
consistent for the value of πe. However, in practice, importance sampling estimators are
prone to high variance especially in the scenario when πe significantly deviates from πb.

Doubly robust methods [33, 85] combine the importance sampling method with an estimator
of the reward function. They are called doubly robust because the estimator is consistent
and unbiased for the policy value if either the importance sampling estimate or the reward
function estimator is unbiased. Doubly robust methods typically have lower variance than
the importance sampling estimator. However, empirical work have shown the doubly robust
estimator to have larger errors than counterpart offline evaluation methods due to high
variance in importance sampling weights or stochastic transitions [86, 85].

In this work, we focus on FQE and model-based evaluation, which we cover in more detail
in this section. We focus specifically on FQE and model-based evaluation, since both have
empirically been shown to perform well across a variety of reinforcement learning tasks and
are popularly used [23]. Note, however, that performance across different evaluation methods
can vary greatly across different types of reinforcement learning tasks. Furthermore, it is not
straightforward to estimate which particular algorithm or even model is suited for a specific
task. This motivates a need for a way to extract some signal about when a particular method
is suited for a task and/or region of the state space, since better estimates can be constructed
by weighting towards more suitable methods.

Fitted Q-evaluation

Fitted Q-evaluation (FQE) is a off-policy temporal difference learning algorithm based on a
slight variation of the fitted Q-iteration algorithm [47]. FQE involves learning the following
Q function from the logged data:

Qπ(s, a) = Eπ
s′∼p(s,a)

(
N∑
i=1

γi−1ri|s1 = s, a1 = a

)
,
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which can intuitively be interpreted as the value of taking action a at state s and then
following policy π for the rest of the trajectory. Note that the value of the policy can be
written in terms of the Q-function E[Qπ(s, π(s))] where s ∼ µ0. The Q-function is trained
by minimizing the following

E(s,a,r,s′)∼D[(Qθ(s, a)− r − γ ∗Qθ′(s
′, π(s′))2],

where θ are the parameters of the function class used to approximate the Q-function and θ′

are the parameter values in the previous iteration of the training process.

FQE has been studied theoretically in a variety of literature. Much of the work relies on
the assumption of completeness which says for any function f ∈ F , we have that T πf ∈ F ,
where F is the function class and T π is the Bellman operator defined as

T πV π(s) =
∑
a∈A

π(a|s)

[
r(s, a) + γ ∗

∑
s′∈S

P (s′|s, a)V π(s′)

]
,

where r(s, a) is the reward function, A is the set of possible actions, V π(s) is the value
function, and P (s′|s, a) is the transition function. Duan et al. [20] proved a minimax lower
bound for FQE using a linear function approximation which matched the upper bound
under completeness (i.e. the Bellman operator maps to state-action value functions that
are a linear combination of the given features). Under the same assumption, Hao et al.
[28] proved the FQE estimator with linear function approximation is asymptotically normal
around 0 and its asymptotic variance achieves the Cramer-Rao lower bound for the value
function. More recently, Zhang et al. [96] focused on FQE with general and differential
function approximators using Z-estimation theory. They show the FQE estimation error is
asymptotically normal, prove a finite sample error bound, show that bootstrap estimators are
distributionally consistent, and prove that the general FQE estimator achieves the Cramer-
Rao lower bound under completeness.

In practice, FQE has found more empirical success compared to importance sampling and
doubly robust methods due to the lower variance of the estimate and generalizability from
function approximation. Additionally, computing value estimates using FQE does not rely
on simulating entire rollouts unlike the model-based method, where errors can compound if
the horizon is especially long. However, a downside to FQE is that is unclear how to tune
the parameters and architecture of FQE if function approximation is used.

FQE is typically implemented as shown below [47]. We assume an evaluation policy πe, a
function class F, and a dataset D = {(si, ai, ri, s′i)}ni=1. The algorithm proceeds as follows:

1. Randomly initialize parameters of Qπe
0 ∈ F

2. for k from 1 to K



CHAPTER 5. IMPROVING FITTED Q-EVALUATION AND MODEL-BASED
EVALUATION VIA STABILITY WEIGHTING 62

3. a) Compute FQE target yi = ri + γQπe
k−1(s

′
i, πe(s

′
i)) for every i

b) Construct training data as follows: DFQEk
= {(si, ai, yi)}ni=1

c) Solve Qπe
k = argminf∈F

1
n

∑n
i=1(f(si, ai)− yi)

2

4. Output Qπe
K

Model-based evaluation

Model-based (MB) evaluation is similar to model-based reinforcement learning in that it
involves learning a simulation of the real environment M. More specifically, both the tran-
sitions p(s′|s, a) and the reward function r(s, a) are learned via the logged data D using
standard supervised learning techniques. The fitted transition and reward functions are
then used to simulate trajectories using the behavior policy. The observed rewards of the
simulated trajectories can then be used to calculate values for the behavior policy. These
trajectories can be referred to as monte carlo rollouts.

To estimate the Q-value using the fitted reward and transition models, we have that

Q̂π
MB(s, a) =

N∑
t=0

r̂(s, a) + γ ∗ V̂MB(s
′)),

where s′ ∼ p̂(s, a) and V̂ (s) is given by

V π
MB(s) = Es′∼p̂(s,a),a∼πe

[
N∑
t=1

γt−1r̂t|s

]
.

The model-based method performs well when the environment transition and reward func-
tions are simple and can be easily approximated through function approximation. It is
typically easier to tune the hyperparameters of dynamics models, compared to tuning FQE
models, since a validation loss based on the observed transitions and rewards can be com-
puted on a hold-out set. A downside to the model-based method is that estimates derived
from simulated trajectories may compound errors over time if the maximum horizon length
is long. This is the case since values are calculated from rewards along trajectories which
are simulated autoregressively for the model-based method. This is not the case for FQE,
which directly output q-values.
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2D WORLD
In this section, we detail the simulator we created to benchmark the offline evaluation, the
behavior policies, the evaluation policies, and the logged data generation process.

Environment

The environment is depicted in Figure 5.3. The agent observes its position relative to the
x and y axes, its horizontal and vertical velocities, and the time step. Each episode has a
maximum horizon of 300 time steps and terminates when the time step reaches the maximum
horizon or when the agent reaches the goal ( upper right corner given by x ≥ 4 and y ≥ 4).
Note that the agent’s x and y positions as well as the velocities are continuous values. The
boundaries of the environment are given by the following lines: x = 0, y = 0, x = 5, y = 5.
The agent is within the boundaries at all times. At each time step, the agent receives a
negative reward conditioned on its x and y position outlined in Figure 5.3. If the agent
successfully reaches the goal, the agent receives a completion reward of +10. At each step,
the agent can choose from a set of 9 actions which correspond to moving to the left, right,
up, down, and neutral as well as combinations of the horizontal and vertical moves.

The transition dynamics of the environment is detailed as follows. The horizontal and
vertical velocities at time t are outlined by

velt = max(min(velt−1 + at ∗ f, 0.1),−0.1),

where f = 0.001, at ∈ {−1, 0, 1}. The velocities then affect the horizontal and vertical
positioning as follows:

post = max(min(post−1 + velt, 5), 0).

If the agent hits the horizontal or vertical boundaries of the environment, its corresponding
directional velocity is set to 0. Note that the transitions and rewards are deterministic.
However, the starting state of the agent is stochastic. The agent’s x and y positions are
uniformly sampled from [0, 5/6] at time step t = 1, while the horizontal and vertical velocities
are set to 0.

Policies

Two behavior policies were constructed by training deep Q-networks on the 2D world envi-
ronment in typical online fashion. A multi-layer perceptron (MLP) network with 2 hidden
layers with a hidden layer size of 50 were trained using the ADAM optimizer [41] with a
learning rate of 0.001 and a batch size of 32 for both behavior policies with varying number
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of updates and initializations. Stochasticity was artificially embedded into the resulting Q-
networks by adding a random probability of 0.25 where the agent performs a random action
instead of the action given by its Q-network. The resulting behavior policies πb1 and πb2

had online value estimates of −79.4 and −83.4, respectively. The vertical and horizontal
positions over time of each behavior policy are given by Figure 5.4.

Three evaluation policies were constructed in a similar fashion as the behavior policies with
differing number of updates and initializations. Unlike the behavior policies, stochasticity
was not embedded into the policy. The resulting evaluation policies πe1, πe2, and πe3 had
online value estimates of −72.5, −85.0, and −92.0, respectively. The vertical and horizontal
positions over time of each evaluation policy are given by Figure 5.5.

Offline datasets

Behavior policies πb1 and πb2 were used to generate two offline datasets from interacting with
the actual environment. Datasets Db1 and Db2 were derived from running the corresppnding
policy for 1000 episodes in total. Summary statistics, such as the size of the datasets and
proportions of each action taken, are shown in Table 5.1.

OFFLINE EVALUATION TRAINING
We pair up each evaluation policy with each behavior policy to produce 6 pairs of behavior
and evaluation policies. We also include two pairs that consist of each behavior policy paired
up with itself as the evaluation policy. The goal is to estimate the value of the evaluation
policy using the logged data deriving from the corresponding behavior policy for each pair
of behavior policy and evaluation policy. The two offline evaluation methods we consider
are FQE and model-based evaluation outlined in the previous section.

Fitted Q-evaluation

We detail how we train a FQE model on the logged data D. A MLP with 2 residual blocks
and a hidden layer size of 50 was initialized randomly. The neural network is trained on
the tuples of D using the ADAM optimizer [41] with a learning rate of 0.001 using a batch
size of 32. The FQE model was trained for a max number of iterations of 75000. At every
500 iterations, the temporal-difference error was computed on a validation set of 20 episodes
from the logged data.



CHAPTER 5. IMPROVING FITTED Q-EVALUATION AND MODEL-BASED
EVALUATION VIA STABILITY WEIGHTING 65

Typically in the supervised learning case, model selection is used via computing the target
metric on a validation set. In this setting, we cannot compute the target metric on the
validation set, because the validation set contains trajectories by following actions derived
from the behavior policy. Instead, we can use the temporal difference error as a proxy for
the target metric where the temporal difference error is defined by

Qπe(s, a)− r(s, a)− γ ∗Qπe(s
′, a′),

where (s, a, r, s′, a′) denotes the state, action, reward, next state, and next action. Note that
only the true Q function of πe minimizes the temporal difference error. Early stopping was
applied by computing the absolute difference of the mean of the last 5 temporal difference
error estimates and the previous 5 starting at the previous index. Mathematically we denote
the stopping condition as

|TDi−5,i − TDi−6,i−1| < 0.001.

Model-based evaluation

We now detail how we train a model which learns the dynamics of the environment (reward
and transition functions) to estimate values of offline agents. We first split the logged data
D into a training set Dtrain and a validation set Dval. We then initialize two neural network
models, one that learns the reward function r(s, a) and another that learns the transition
function p(s, a). Both neural network models were initialized with a hidden layer size of 200,
with 3 hidden layers, and a learning rate of 5e−4 using the ADAM optimizer [41].

Both the reward and transition models are trained in a typical supervised learning fashion
unlike FQE with the data being organized as {((s, a), r)} and {((s, a), s′)} for the rewards
and dynamics model, respectively. The mean squared error was used as the loss function
train both the rewards and transition model. Each model trained using a max number of
iterations of 50000. Every 1000 steps the loss was calculated on the validation data and
early stopping was applied with a patience of 7.

INTEGRATING FQE AND MODEL-BASED
ESTIMATES
In this section, we propose using empirical stability estimates as an avenue for improving
FQE and model-based estimates of the evaluation policy conditioned on the state space
and action. We weight the outputs from each method based on our empirical stability
estimates across ensembles of randomly initialized neural networks. Our idea is inspired
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from previous work in weighted online learning, where past predictability is used to weight
different online predictors [11, 5]. Cesa-Bianchi et al. [11] weight online boolean predictors
using exponential weighting computing using the number of mistakes made by each predictor
in the past. Altieri et al. [5] propose the CLEP (combined linear and expoential predictors)
algorithm for forecasting covid-19 cases and deaths. CLEP weights each predictor based on
recent predictive performance, where more accurate predictors are assigned higher weights.
Unlike these works, we use the stability of ensembles conditioned on the state-space as a
weighting mechanism instead of local or past predictive performance.

The main contribution of our work is leveraging model stability for the goal of adaptive model
weighting between FQE and model-based estimation. In the offline evaluation setting, the
same insufficient coverage problem of using logged data in leiu of the environment affects
both FQE and model-based estimation. However, we hypothesize that due to the differing
training objectives of FQE and dynamics model learning, FQE and dynamics models likely
have varied success conditioned on the state space and reinforcement learning task.

EMPIRICAL EVIDENCE FOR LEVERAGING MODEL
STABILITY ACROSS AN ENSEMBLE
In this section, we empirically show evidence that FQE and model-based evaluation can
outperform one another conditioned on the state-space despite having been trained on the
same logged data. We then show that stability from an ensemble of models initialized with
different random seeds provides a positive signal for adaptive model weighting.

First, we compare FQE and model-based estimates on (s, a, r, s′) tuples deriving from the
evaluation policy. We first sample rollouts from the evaluation policy on the actual environ-
ment and sample 500 (s, a, r, s′) tuples from the resulting dataset. For each sample tuple,
we extract the q-value from the trained FQE and dynamics models and the online target
estimate using the true environment via monte carlo rollouts. Figures 5.6 and 5.7 show the
sample tuples and highlights which method outperforms the other on the conditioned state.
We see that empirically success in extrapolation to states with lower coverage is dependent
on the behavior policy and evaluation policy pair and the state itself. Tables 5.2 and 5.3 also
show that the difference in errors of each method on partitions where one outperforms the
other is large. This suggests that weighting between FQE and the model-based approach
may considerably improve value estimation averaged across samples across the state-space
if we are able to determine which method is likely to outperform the other adaptive to the
state the agent is on.

Next, we show how stability via ensembling models is one viable avenue for extracting a
positive signal for local predictiveness, which is related to weighted online learning. However
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unlike previous work which uses local predictiveness as a weighting mechanism, we use the
stability of models. First we train an ensemble of 5 FQE models and 5 pairs of reward
and transition models using a random initialization of the network weights using the same
procedure outlined above. For each tuple in the sampled tuples deriving from the evaluation
policy, we then compute the stability from the ensemble, defined by the standard deviation
across the ensemble predictions. We report the proportion of times the method with more
instability had the higher error conditioned on the state and action pair from the sampled
tuples from the evaluation policy in Table 5.4. The high proportions across evaluation and
behavior policy pairs show the positive relation between model stability and the error of
the model in this offline evaluation setting. Note that this signal, although close to 0.5 for
some pairs, is powerful in this setting where it is not possible to estimate model errors on a
hold-out set, and thus do any type of model selection or tuning.

SOFT STABILITY WEIGHTING (SSW)
In this section, we propose one method to weight between FQE and the model-based method
using stability as a weighting mechanism. We first assume an ensemble of FQE models
and an ensemble of dynamics models are trained using the logged data deriving from the
behavior policy. Given an arbitrary state s and action a, we can then compute an stability
estimate for FQE (and analogously the model-based method) based on the predictions of
the ensemble of FQE models. The stability estimate is based on the standard deviation of
the predictions of the ensemble of FQE models conditioned on state s and action a, which
we denote as stdFQE(s, a). We normalize the previous standard deviation using quantiles of
the distribution of standard deviations of ensemble predictions computed on samples from
the behavior (logged) dataset, denoted as quantileDπb

(stdFQE, c) where Dπb
is the dataset

corresponding to the behavior policy πb and c is the quantile. The overall stability value for
FQE can then be written as

uFQE(s, a) =
stdFQE(s, a)− quantileDπb

(stdFQE, c)

quantileDπb
(stdFQE, 1− c)− quantileDπb

(stdFQE, c)
,

where 1 − c > c. We additionally bound the stability by 0 and 1 in the case where
stdFQE < quantileDπb

(stdFQE, c) or stdFQE > quantileDπb
(stdFQE, 1 − c). We also noted

that normalizing the standard deviations instead of using the standard deviations directly
helped performance empirically. We use quantiles instead of minimums and maximums for
robustness against outliers in the logged data. Lastly, note that we weight between median
values of each ensemble due to the robustness of the median to outliers.

Once both uFQE(s, a) and uMB(s, a) are computed, we can compute the weight α as follows:

α(s, a) = σ

(
log

(
uFQE(s, a)

uMB(s, a)

))
,
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where σ is the sigmoid function and 0 ≤ α(s, a) ≤ 1. The final soft stability weight estimate
can then be written as

SSW (s, a) = QFQE(s, a) ∗ (1− α(s, a)) +QMB(s, a) ∗ α(s, a).

Intuitively, α(s, a) biases towards 0 and puts more weight on QFQE(s, a) if the stability value
of the FQE ensemble is low relative to model-based method. α(s, a) biases towards 1 and
puts more weight on QMB(s, a) if the stability value of the FQE ensemble is high relative to
model-based method. In the case that the stability values for each method is similar, α(s, a)
biases towards 0.5 which puts equal weight on QFQE(s, a) and QMB(s, a).

SOFT STABILITY WEIGHTING VIA PARTIAL
ROLLOUTS (SSWPR)
In this section, we propose a second stability-based weighting method based on rollouts
of length k from dynamics models where k is less than the maximum horizon length and
rollouts are defined as simulated trajectories. We refer to these rollouts as partial rollouts
since the rollouts are prematurely terminated at step k before the end of the simulated
trajectory. This second stability weighting method is inspired from the previous stability
based adaptive weighting mechanism in the previous section and the λ-k method studied in
previous literature [82].

Given an ensemble of dynamics models, an ensemble of FQE models, and a specific state-
action pair (s, a) we want a conditional value estimate for, we compute independent partial
rollouts up to k steps starting from (s, a) from each of the dynamics models in the given
ensemble. At each simulated step of each rollout, we compute the SSW (sit, a

i
t) between

individual pairs of FQE and dynamics models where (sit, a
i
t) is the state and action at time

t in the ith partial rollout as well as CRi
t which is the discounted sum of rewards of partial

rollout i up to time t. Given a time point t and a partial rollout i, we then have an estimate
of the value of (s, a) given as

ˆval
i

t(s, a) = CRi
t + γt ∗ SSW (sit, a

i
t).

We compute stability values using the standard deviation across all partial rollouts for a
fixed t as

ut = std( ˆvalt(s, a)).

We can then compute weights using the softmax function across t:

αt = softmax(−u)t,
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where
k∑

t=1

αt = 1.

We then compute final value estimate for (s, a) as

k∑
t=1

αt ∗median( ˆvalt(s, a)).

where the median is computed across partial rollouts. Intuitively, we can interpret the
SSWPR estimate as weighting across time where estimates at each time point is an interpo-
lation between the SSW estimate at time t in the partial rollout and the collected rewards
from partial rollout i up to time t. The combination of estimates at different simulated time
points is the main difference of the SSWPR method from the SSW method. Unlike SSW,
SSWPR can leverage value estimates from simulated states local to the original state that
is being conditioned upon. If the value estimates at a simulated state at time t are more
stable, then more weight is placed on median( ˆvalt(s, a)) relative to other times and vice
versa. Again, we use the median instead of the mean due to the robustness of the median
to outlier values. We show a depiction of the SSWPR method in Figure 5.8.

The full algorithm is given below. Note that for the experiments in this work, we used
k = 5 steps for the partial rollout length. We chose to use a smaller value of 5 compared
to the max time step of 300 in the 2D-world environment due to the computational cost
of querying value estimates on partial rollouts. However, in our stability experiments we
compare against using values of k = 3 and k = 7 to check the robustness of SSWPR to a
perturbation of this parameter.

Soft stability weighting via partial rollouts algorithm

Inputs: An ensemble of FQE models {FQEi}, an ensemble of dynamics models {(p̂i, r̂i)}
where p̂ denotes the transition model and r̂ denotes the rewards model, an ensemble size of
Nensemble, a maximum horizon of k, and a given state and action (s, a)

1. For i in 1 to Nensemble

a) Compute partial rollout PRi from transition model p̂i for up to k simulated steps

b) For j in 1 to Nensemble

i. Compute SSW (sit, a
i
t) using FQE model FQEj and dynamics model (p̂j, r̂j)

for each time step t in PRi
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ii. Compute conditional value for (s, a) using time step t as ˆval
i

t(s, a) = CRi
t +

γt ∗ SSW (sit, a
i
t) where CRi

t =
∑t

j=1 r̂i ∗ γt−1 is the collected rewards from
the partial rollout i up to time t

2. For t in 1 to k

a) Compute standard deviation std( ˆvalt(s, a)) across rollouts

b) Compute median value across rollouts median( ˆvalt(s, a))

3. Compute weights αt = softmax(−std( ˆvalt(s, a)))t

4. Output
∑k

t=1 αt ∗median( ˆvalt(s, a)) as the final conditional value estimate

BASELINE METHODS
To compare against the proposed methods of incorporating stability in adaptively combining
estimates from FQE and the model-based method, we outline baseline methods in this
section. First, we use an ensemble of FQE models and an ensemble of dynamics models
for model-based evaluation as two separate baselines for the stability methods. Ensembles
are required to make a fair comparison, because the proposed methods require stability
estimates resulting from ensembling. Note that we use medians instead of means of the
ensemble due to the robustness of the median to outliers compared to the mean. Next, we
take a simple average of conditional estimates from the FQE ensemble and the ensemble of
dynamics models as a further baseline. This baseline shows whether the stability weighting
mechanism has any performance boosts compared to non-adaptively combining estimates.
The last baseline is an adaptive oracle selection between FQE and model-based method
where value estimates conditioned on the state come from the method with the lower error.
This final baseline is unrealistic in practice but serves as a useful benchmark for the potential
improvement of the two proposed methods.

RESULTS
We outline the evaluation procedure of the two proposed methods, as well as the baseline
methods outlined in the previous section. To evaluate each method trained using the dataset
of a particular behavior policy and a given evaluation policy, we first sample 500 (s, a, r, s′)
tuples from monte carlo rollouts using the evaluation policy on the oracle environment.
This setup allows us to evaluate how accurately the offline evaluation methods can estimate
the value of the evaluation policy throughout the state-space where the evaluation policy is
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likely to visit. We compute conditional value estimates using each of the outline methods and
compare them against the estimate using monte carlo rollouts using the target evaluation
policy on the oracle environment. The latter estimate serves as ground-truth values to
compare the offline evaluation methods against. This is done for each possible pair of
behavior and evaluation policies.

The results for each pair of behavior and evaluation policies are shown in table 5.5, and
summary results across pairs are shown in table 5.6. Empirically, SSW and SUPRW have
the lowest mean average error of 9.2 and 9.1, respectively, across pairs of behavior and
evaluation policies. Note that SSW and SUPRW outperform both FQE and the model-
based method individually, which achieves average errors of 12.7 and 15.0. Table 5.5 also
shows that neither SSW and SUPRW are outperformed by both FQE and the model-based
method on any pair of behavior and evaluation policy. Half the time, SSW and SUPRW
outperform both FQE and the model-based method. Lastly, SSW and SSWPR outperform
a simple averaging of FQE and the model-based method, which achieves an average error of
10.6.

We visualize individual predictions of SSW, SSWPR, FQE, and the model-based method
against the target values in Figures 5.9 to 5.16. Qualitatively, we see that in cases where the
model-based method and FQE are biased in opposite directions, SSW and SSWPR tend to
outperform both FQE and the model-based method, exemplified by Figure 5.12 and Figure
5.15. We also see that SSW and SSWPR tend to reduce the extremity of outlier values
produced by either the model-based method or FQE, shown by Figure 5.12, 5.13, and 5.15.
In the case that FQE and the model-based method are biased in the same direction, SSW and
SSWPR tend to have less utility as shown in Figure 5.14. We additionally include histogram
of absolute errors of SSW, SSWPR, FQE, and the model-based method in Figures 5.17 to
5.24. Visually, we see that SSW and SSW tend to produce less extreme absolute errors
compared with FQE and the model-based method as shown in Figure 5.20, 5.22, and 5.24.
Both stability methods give lower errors in many cases unlike FQE as shown in Figure 5.20,
and 5.22, 5.24.

We note that SSW and SSWPR have similar errors on average. We visualize the predictions
in SSW and SSWPR in Figures 5.25 and 5.26. We see that the difference in predictions
between SSW and SSWPR are small across most of the experiments on the environment.
The experiments using behavior policy πe3 tend to produce the most variation in predictions
between SSW and SSWPR which imply there are cases where one can outperform the other,
as shown in Table 5.9.
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Stability of results on human decisions

We additionally test the stability of the results of SSW and SSWPR against ad-hoc decisions
for the parameters. The first involves perturbing the soft weighting normalization outlined
previously. Note that the following equation contains a human decision of using the 0.2 and
0.8 quantiles of the distribution of uncertainties stemming from the behavior dataset:

uFQE(s, a) =
stdFQE(s, a)− quantileDπb

(stdFQE, 0.2)

quantileDπb
(stdFQE, 0.8)− quantileDπb

(stdFQE, 0.2)
.

We check whether the results are robust across perturbations of the quantiles used. On this
end we use two pairs of values (0.15, 0.85) and (0.25, 0.75) and rerun the SSW. Results are
shown in table 5.7 and summarized in table 5.8.

We next check the stability of the SSWPR method against the decision of using max horizon
length of 5 when creating partial rollouts. We use values horizon lengths of 3 and 7 and rerun
SSWPR. Results are shown in table 5.7 and summarized in table 5.8. Note that on average
deviations from the original settings of SSW and SUPRW are small, suggesting that the two
methods are robust to these parameters. We even see that, on average, both perturbations to
SSWPR perform marginally than the original SSWPR (8.9/9.1 vs 9.2 average errors). Thus,
the results in table 5.5 and 5.6 do not seem to rely on the particular choices of parameters
used.

Results on the mountain car task

As an additional check on SSW and SSWPR, we rerun experiments on a separate environ-
ment. We include the mountain car task as additional experiments [82]. Note that the set
up and hyperparameters are kept the same mostly the same as the experiments on the 2D
world environment. One difference is the stopping condition for FQE was changed to be

|TDi−5,i − TDi−6,i−1| < 0.00025,

instead of using 0.001 like in 2DWorld. The behavior policies πb1 and πb2 were trained and
achieve mean values of −82.5 and −82.8, respecetively. The evaluation policies πe1 , πe2 , and
πe3 achieved mean values of −95.1, −74.5, and −75.9, respectively. The summary of results
for each environment are summarized in tables 5.9 and 5.10. From Table 5.10, we see that
SSW and SSWPR are able to outperform both FQE, the model-based method, and a simple
average of FQE and the model-based method on average. However, there are cases where
the model-based method outperforms SSW and SSWPR on individual rows of Table 5.9,
which show that stability weighting may not always outperform either method.
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Similar to the 2DWorld task, we visualize individual predictions of SSW, SSWPR, FQE, and
the model-based method against the target values for the mountain car task in Figures 5.27
to 5.34 and include histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method in Figures 5.35 to 5.42. Like the results on the 2DWorld task, SSW and SSWPR tend
to reduce the extremity of outlier estimates produced by the model-based method or FQE
on average. We also include scatterplots comparing predictions between SSW and SSWPR
for the mountain car task in Figures 5.43 and 5.44 which show that the predictions between
the two methods are very similar. However, there are cases where moderate variation exist
between two methods as shown in parts C and D in Figures 5.43 and 5.44 which imply one
may outperform over the other.

DISCUSSION
We have investigated using stability across an ensemble of neural networks with different
initializations as a weighting mechanism in the setting of offline evaluation of reinforcement
learning agents and have proposed two methods, SSW and SSWPR, to incorporate stability
for adaptively combining conditional model estimates. Our methods provide a positive
signal for when a particular method is suited given a local region of the state space. The
guiding principle behind the two methods is that if a model’s prediction is unstable then its
predictive estimate should not be trusted. This principle is powerful in the offline setting
where it is unclear how to validate a model’s prediction and compare against other models.
These methods are particularly valuable in the offline evaluation setting, because a variety
of algorithms exist for providing value estimates while model selection is an open problem.

We test our methods on three simulated environments across combinations of different behav-
ior and evaluation policies. By leveraging stability values stemming from model ensembling,
we are able to outperform one of FQE and the model-based method every time and both
FQE and the model-based half the time. Our experiments suggest that using stability can
provide improvements when used to combine estimates of different evaluation algorithms.

SSW and SSWPR are related to the idea of CLEP ensembling [5] in weighted online learning.
CLEP produces a weighted average of predictions from individual time series models where
the weight of a model’s prediction given a set of features is based on the recent performance
of the predictor on past data. Unlike the covid-19 forecasting setting, our offline evaluation
models do not have comparable performance metrics due to the distributional shift between
the behavior and evaluation policies. Thus, we rely on the stability of the model to ex-
tract a signal about local predictability. Our experiments show that stability is empirically
correlated with the error of the model.
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We note that both SSW and SSWPR are related to the idea of perturbation intervals outlined
in the PCS framework which quantify the stability of target estimates to perturbations [94].
In our setting, the perturbations are at the data and model level, where randomization of
the model initialization is used as perturbations. The notion underlying both methods are
that the resulting variability in estimates outline regions of the state space which models are
stable and unstable. The key assumption is that stability to such perturbations can help to
identify in which scenarios a certain model or method is more reliable than another.

Our proposed methods SSW and SSWPR are also related to the pessimism principle stud-
ied in offline reinforcement policy learning. The main notion of the pessimism principle
leveraged in these works is that areas of the state-space where the Q-function or dynamics
model is uncertain or unstable should be avoided due to insufficient coverage of the behavior
policy. Kidambi et al. [39] incorporate pessimism into model-based reinforcement learning
and construct a pessimistic markov decision process using an ensemble of learned dynamics
models which partitions the state space into known and unknown regions and artificially
penalizes an agent with a negative reward for visiting unknown regions. Kumar et al. [46]
train policies by maximizing the most conservative estimate from an ensemble of Q-functions
as well constraining the policy to the support of the behavior policy

max
π∈

∏
ϵ

Ea∼π(.|s)

[
min

j=1...K
Q̂j(s, a)

]
,

where
∏

ϵ is the set of policies sharing the support of the behavior policy. We apply similar
reasoning to the offline evaluation setting by using the stability of model ensembles to weight
offline estimates.

Our study has a few limitations that should be mentioned. First, we have only provided
empirical evidence for using stability as a model weighting mechanism across a few simulated
environments. Further experimentation and testing needs to be done to better understand
the soft weighting mechanism and under which cases the soft weighting is likely to lead to
significant improvements in performance over baselines as well as benchmarking on more
complex environments. Our experiments show that if the bias of FQE and the model-
based method are in opposite directions, improvements over both FQE and the model-based
method are likely. Additionally, our weighting methods outperform a simple average of
FQE and the model-based method, which show the utility in using stability as a weighting
mechanism over naive averaging. A second limitation is that our methods are based on
parameters including the weighting normalization for SSW and the partial horizon length
for SSWPR which may require tuning based on the specific application. Although our
experiments shows that SSW and SSWPR are robust to perturbations of the values for
the parameters used in the environments we test on, more experimentation should be done.
Lastly, we use perturbations on the model level via different randomization of neural network
weights to evaluate stability. However, other forms of perturbations can and should be
experimented, including those at the data level, which can be challenging in the reinforcement
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learning setting. One future direction is to include bootstrapped data as an avenue of
assessing stability.

CONCLUSION
Model selection and validation is a difficult problem in the offline reinforcement learning
setting due to the lack of access to the environment for data collection. We propose using
stability of evaluation functions as a weighting mechanism inspired by ideas from weighted
online learning when typical validation is not possible. Our proposed methods SSW and SS-
WPR, which leverage stability via ensembling, have shown to improvement offline estimates
from FQE and the model-based method, potentially increasing the viability of reinforcement
learning to applications like healthcare where safety is paramount.

TABLES

Table 5.1. Summary statistics for each offline dataset corresponding to behavior policies πb1

and πb2 on the 2DWorld environment

Statistic Dataset Db1 Dataset Db2

Dataset size 160,745 156,253
Mean steps per episode 159.7 155.3
Mean reward per episode -159.9 -177.7
Proportion of time collecting -1
rewards

0.97 0.83

Proportion of time collecting -2
rewards

0.02 0.14

Proportion of time collecting -4
rewards

0.0 0.02

Table 5.2. Errors for FQE and the model-based (MB) method on partition A (sampled
tuples from the evaluation policy where FQE outperforms the MB method) and partition B
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(sampled tuples from the evaluation policy where the MB method outperforms FQE) using
models trained on data corresponding to the behavior policy πb1) and the 2DWorld environ-
ment

Evaluation
policy

FQE error on
partition A

Model-based
error on par-
tition A

FQE error on
partition B

Model-based
error on par-
tition B

πb1 3.7 6.5 9.3 3.4
πe1 NA NA 11.6 2.8
πe2 8.0 13.4 16.3 4.9
πe3 19.1 83.5 18.0 5.3

Table 5.3. Errors for FQE and the model-based (MB) method on partition A (sampled
tuples from the evaluation policy where FQE outperforms the MB method) and partition B
(sampled tuples from the evaluation policy where the MB method outperforms FQE) using
models trained on data corresponding to the behavior policy πb2) and the 2DWorld environ-
ment

Evaluation
policy

FQE error on
partition A

Model-based
error on par-
tition A

FQE error on
partition B

Model-based
error on par-
tition B

πb2 5.9 27.0 19.9 7.7
πe1 3.2 4.8 36.0 8.6
πe2 7.8 18.0 18.5 7.5
πe3 12.1 49.4 7.5 14.0

Table 5.4. Proportion of times method with the higher stability out of FQE and the model-
based method had the higher error across pairs of behavior and evaluation policies using the
2DWorld environment

Behavior policy Evaluation policy Proportion
πb1 πe1 0.65
πb1 πe2 0.63
πb1 πe3 0.62
πb1 πe4 0.77
πb2 πe1 0.63
πb2 πe2 0.59
πb2 πe3 0.74
πb2 πe4 0.49
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Table 5.5. Mean absolute error for conditional value estimates from (s, a, r, s′) tuples
from monte carlo rollouts of the evaluation policy on the 2DWorld environment for proposed
adaptive stability weighting methods and baseline methods)

Evaluation
policy

Behavior
policy

FQE Model-
based

FQE
and
model-
based
average

Oracle
non-
adaptive
selec-
tion

SSW SSWPR

πb1 πb1 5.9 3.7 4.0 3.7 4.4 4.1
πb1 πe1 5.0 3.8 3.2 3.8 3.5 3.9
πb1 πe2 13.3 8.7 9.3 8.7 8.6 8.6
πb1 πe3 18.0 51.1 21.4 18.0 11.8 11.9
πb2 πb2 10.5 5.4 7.4 5.1 6.3 6.0
πb2 πe1 20.1 8.1 14.1 8.1 8.6 8.6
πb2 πe2 11.5 8.1 14.1 8.1 13.5 14.6
πb2 πe3 17.1 31.1 17.3 17.1 17.8 16.1

Table 5.6. Error summaries for conditional value estimates from (s, a, r, s′) tuples from
monte carlo rollouts of the evaluation policy on the 2DWorld environment for proposed adap-
tive stability weighting methods and baseline methods

Method Average abso-
lute error

# times best
performing

# times worst
performing

# times out-
performing

FQE 12.7 0 6 NA
Model-
based

15.1 3 2 NA

Average
FQE and
model-
based

10.6 1 0 2

SSW 9.2 3 0 4
SSWPR 9.2 2 0 3

Table 5.7. Mean absolute error for conditional value estimates from (s, a, r, s′) tuples from
monte carlo rollouts of the evaluation policy on the 2DWorld environment for perturbations
on proposed adaptive stability weighting methods)
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Evaluation
policy

Behavior
policy

SSW SSW
0.15/0.85

SSW
0.25/0.75

SSWPR SSWPR
3

SSWPR
7

πb1 πb1 4.4 4.4 4.9 4.1 4.2 4.4
πb1 πe1 3.5 3.4 3.6 3.9 4.0 3.9
πb1 πe2 8.6 8.6 8.5 8.6 8.7 8.6
πb1 πe3 11.8 11.0 12.7 11.9 12.1 12.6
πb2 πb2 6.3 6.3 6.3 6.0 6.1 5.6
πb2 πe1 13.5 14.5 13.4 14.6 13.3 13.2
πb2 πe2 7.9 8.5 7.8 8.0 7.4 7.3
πb2 πe3 17.8 17.6 18.2 16.1 16.8 15.8

Table 5.8. Error summaries for conditional value estimates from (s, a, r, s′) tuples from
monte carlo rollouts of the evaluation policy on the 2DWorld environment for perturbations
on adaptive stability weighting methods and baseline methods

Method Average abso-
lute error

SSW 9.2
SSW
0.15/0.85

9.3

SSW
0.25/0.75

9.6

SSWPR 9.2
SSWPR
5

9.1

SSWPR
7

8.9

Table 5.9. Mean absolute error for conditional value estimates from (s, a, r, s′) tuples
from monte carlo rollouts of the evaluation policy on the mountain car task for proposed
adaptive stability weighting methods and baseline methods)
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Evaluation
policy

Behavior
policy

FQE Model-
based

FQE
and
model-
based
average

Oracle
non-
adaptive
selec-
tion

SSW SSWPR

πb1 πb1 6.8 9.6 7.6 6.8 5.6 5.4
πb1 πe1 14.0 3.1 5.9 3.1 3.5 3.5
πb1 πe2 7.4 5.0 5.9 5.0 5.6 5.5
πb1 πe3 12.1 5.2 8.2 6.2 5.0 5.9
πb2 πb2 6.1 5.0 4.8 5.0 4.8 4.8
πb2 πe1 16.3 14.7 15.3 14.7 13.9 12.6
πb2 πe2 7.6 7.4 7.3 7.4 7.2 6.7
πb2 πe3 15.5 6.8 10.8 6.8 6.6 6.3

Table 5.10. Error summaries for conditional value estimates from (s, a, r, s′) tuples from
monte carlo rollouts of the evaluation policy on the mountain car task for proposed adaptive
stability weighting methods and baseline methods

Method Average abso-
lute error

# times best
performing

# times worst
performing

# times out-
performing

FQE 10.7 0 7 NA
Model-
based

7.1 2 1 NA

Average
FQE and
model-
based

8.2 1 0 2

SSW 6.5 3 0 6
SSWPR 6.3 5 0 5

Figure 5.1: A depiction of online reinforcement learning where s,r,a, and s’ is the state,
reward, action, and next state and πk is the policy which is a mapping from a state to
an action to be taken by the agent. Rollout data consists of the (s, r, a, s′) transitions taken
from the policy πk interacting with the environmenet. πk is trained interactively with repeated
interactions with the environment via a feedback loop
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Figure 5.2: A depiction of offline reinforcement learning where s,r,a, and s’ is the state,
reward, action, and next state, πB is the behavior policy (the policy that generates the offline
data), and π is the policy, which can be either deterministic or stochastic, to be trained.
Unlike online reinforcement learning, training π does not involve interacting with the envi-
ronment.

Figure 5.3: 2DWorld: positional depiction. Agent starts at a random position from
[0, 5/6] in both its x and y positions and receives a negative reward at each time step condi-
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tioned on the subgrid the agent currently subsides. The agent receives a completion reward
of +10 if the goal is reached ([25/6, 5] in both its x and y positions.)

Figure 5.4: Vertical and horizontal positions over time from episodes derived from behav-
ior policies πb1 (A) and πb2 (B) trained on the 2DWorld environment
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Figure 5.5: Vertical and horizontal positions over time from episodes derived from eval-
uation policies πe1 (A), πe2 (B), and πe3 (C) trained on the 2DWorld environment
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Figure 5.6: Scatterplots of the x and y positions of sampled tuples on the 2DWorld envi-
ronment colored by the best performing method trained on the behavior dataset corresponding
to πb1. The evaluation policies used include πb1 (A), πe1 (B), πe2 (C), πe3 (D).

Figure 5.7: Scatterplots of the x and y positions of sampled tuples on the 2DWorld envi-
ronment colored by the best performing method trained on the behavior dataset corresponding
to πb2 The evaluation policies used include πb2 (A), πe1 (B), πe2 (C), πe3 (D).
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Figure 5.8: A depiction of the SSWPR method with ensembles of size two for FQE and
the model-based method and a maximum partial horizon of 3 where std_dev represents the
standard deviation, median(V (st)) represents the median of all value estimates at time t, sij
represents the simulated state from dynamics model i at time step j, and rij represents the
reward given from dynamics model i at time step j.
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Figure 5.9: Scatterplots of the predictions and target values for evaluating πb1 on the
logged data deriving from πb1 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.10: Scatterplots of the predictions and target values for evaluating πe1 on the
logged data deriving from πb1 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.11: Scatterplots of the predictions and target values for evaluating πe2 on the
logged data deriving from πb1 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.12: Scatterplots of the predictions and target values for evaluating πe3 on the
logged data deriving from πb1 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.13: Scatterplots of the predictions and target values for evaluating πb2 on the
logged data deriving from πb2 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.14: Scatterplots of the predictions and target values for evaluating πe1 on the
logged data deriving from πb2 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.15: Scatterplots of the predictions and target values for evaluating πe2 on the
logged data deriving from πb2 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.16: Scatterplots of the predictions and target values for evaluating πe3 on the
logged data deriving from πb2 on the 2DWorld environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.17: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πb1 on the logged data deriving from πb1 on the 2DWorld environment
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Figure 5.18: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe1 on the logged data deriving from πb1 on the 2DWorld environment
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Figure 5.19: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe2 on the logged data deriving from πb1 on the 2DWorld environment
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Figure 5.20: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe3 on the logged data deriving from πb1 on the 2DWorld environment
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Figure 5.21: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πb2 on the logged data deriving from πb2 on the 2DWorld environment
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Figure 5.22: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe1 on the logged data deriving from πb2 on the 2DWorld environment
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Figure 5.23: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe2 on the logged data deriving from πb2 on the 2DWorld environment
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Figure 5.24: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe3 on the logged data deriving from πb2 on the 2DWorld environment
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Figure 5.25: Scatterplots of the predictions of SSW vs SSWPR for evaluating A) πb1, B)
πe1, C) πe2, D) πe3 on the logged data deriving from πb1 on the 2DWorld environment
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Figure 5.26: Scatterplots of the predictions of SSW vs SSWPR for evaluating A) πb2, B)
πe1, C) πe2, D) πe3 on the logged data deriving from πb2 on the 2DWorld environment
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Figure 5.27: Scatterplots of the predictions and target values for evaluating πb1 on the
logged data deriving from πb1 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.28: Scatterplots of the predictions and target values for evaluating πe1 on the
logged data deriving from πb1 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.29: Scatterplots of the predictions and target values for evaluating πe2 on the
logged data deriving from πb1 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.30: Scatterplots of the predictions and target values for evaluating πe3 on the
logged data deriving from πb1 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.31: Scatterplots of the predictions and target values for evaluating πb2 on the
logged data deriving from πb2 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.32: Scatterplots of the predictions and target values for evaluating πe1 on the
logged data deriving from πb2 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.33: Scatterplots of the predictions and target values for evaluating πe2 on the
logged data deriving from πb2 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.34: Scatterplots of the predictions and target values for evaluating πe3 on the
logged data deriving from πb2 on the mountain car environment using the model-based method,
FQE, SSW, and SSWPR.
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Figure 5.35: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πb1 on the logged data deriving from πb1 on the mountain car environ-
ment
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Figure 5.36: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe1 on the logged data deriving from πb1 on the mountain car environ-
ment
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Figure 5.37: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe2 on the logged data deriving from πb1 on the mountain car environ-
ment
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Figure 5.38: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe3 on the logged data deriving from πb1 on the mountain car environ-
ment
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Figure 5.39: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πb2 on the logged data deriving from πb2 on the mountain car environ-
ment



CHAPTER 5. IMPROVING FITTED Q-EVALUATION AND MODEL-BASED
EVALUATION VIA STABILITY WEIGHTING 116

Figure 5.40: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe1 on the logged data deriving from πb2 on the mountain car environ-
ment
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Figure 5.41: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe2 on the logged data deriving from πb2 on the mountain car environ-
ment
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Figure 5.42: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based
method for evaluating πe3 on the logged data deriving from πb2 on the mountain car environ-
ment
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Figure 5.43: Scatterplots of the predictions of SSW vs SSWPR for evaluating A) πb1, B)
πe1, C) πe2, D) πe3 on the logged data deriving from πb1 on the mountain car environment
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Figure 5.44: Scatterplots of the predictions of SSW vs SSWPR for evaluating A) πb2, B)
πe1, C) πe2, D) πe3 on the logged data deriving from πb2 on the mountain car environment
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Appendix A

Appendix

SUPPLEMENTAL NOTES

Corpus Statistics

The prostate cancer reports have a mean length of 912 words and 22382 unique words in
the vocabulary. After replacing rare words with the special <UNK> token, there are 6803
unique words in the vocabulary. We include the percentage of reports containg each data
element in supplemental table 6.

Text Preprocessing Methods

We removed commas, backslashes, semi-colons, tildes, periods, and the word “null” from
each report in the corpus. For colons, forward slashes, parentheses, plus, and equal signs
we added a space before and after the character, because these frequently had semantic
value important for the classification task, for example colons typically occur in the synoptic
comment where most of the relevant is contained, so if an n-gram has a colon in it, then this
is indicative that it may contain important information. Each report was preprocessed so
that every token in the report had one space preceding and one space following it. We then
created a vocabulary of words using only reports in the traing corpus. If a token occurred
fewer than 10 times in the traing corpus vocabulary, it was replaced with a “<UNK>” token
for every report.
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Pathologic Stage Information

We applied the token extractor methods rather than the classifiers to the pathologic stages,
even though the number of classes for each stage type is small. The reason is the way the
pathologic stages are encoded in the reports. For example, each pathologic stage is encoded
in a single token, such as pt2an0m0. The letters t, n, and m denote the pathologic stage
type, while 2a and 0s that follow immediately denote the class for each stage type. Classifier
methods are not well suited for this task, because the number of possible token encodings
is large (equal to the number of classes for the t-stage multiplied by the number of classes
for the n and m-stages). It may even be the case that a certain encoding may show up in
the test set and does not show up in the train set if a certain combination of the stages is
new. For this reason, we first extract the stage token (eg pt2an0m0 ) and then determine
the values for the t, n, and m stages using a regular expression rule-based method.

Model hyperparameters

We sampled regularization values from -6 to 6 in logspace for logistic regression models. For
the random forest, we varied parameters such as bootstrapping or not, the max depth of
each decision tree from 10 to 50 in increments of 10, the number of trees from 200 to 1000
in increments of 200, and the minimum number of samples per leaf from 2 to 64 by factors
of two. For the support vector machines method, we sampled the regularization parameter
from -6 to 6 in logspace, the kernel from either linear or radial basis kernel, and the gamma
parameter from -3 to 1 in logspace. For the boosting classifier we sampled the learning rate
from -4 to 1 in logspace using the SAMME.R algorithm in scikit-learn.

For the convolutional neural network, we sampled the learning rate from -6 to -1 in logspace,
the number of convolutional filters from 50 to 400 in increments of 50, drop out parameter
from 0, 0.125, 0.25, and 0.5, batch sizes from 16 to 32, and filter sizes from 3 to 6. For the
LSTM, we sampled the learning rate from -6 to -1 in logspace, the drop out from 0, 0.125,
0.25, and 0.5, the hidden dimension size from 50 to 300 in increments of 50.
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SUPPLEMENTAL TABLES

Supplemental Table 1. Macro F1 scores for classification fields
across on full traing data sample (n = 2,066)

Data Element LSTM Logistic
regres-
sion

Adaboost
classifier

SVM Random
Forest

Gleason Grade - Primary 0.329 0.864 0.865 0.751 0.624
Gleason Grade - Secondary 0.300 0.680 0.561 0.649 0.536
Gleason Grade - Tertiary 0.268 0.692 0.771 0.492 0.385
Tumor histology 0.498 0.496 0.499 0.498 0.499
Cribriform pattern 0.583 0.493 0.807 0.593 0.493
Treatment effect 0.492 0.620 0.496 0.496 0.496
Tumor margin status 0.553 0.932 0.953 0.902 0.864
Benign margin status 0.489 0.593 0.701 0.496 0.972
Perineural invasion 0.600 0.942 0.978 0.927 0.936
Seminal vesicle invasion 0.550 0.888 0.946 0.884 0.876
Extraprostatic extension 0.555 0.898 0.953 0.856 0.687
Lymph node status 0.550 0.657 0.636 0.650 0.657
Mean Macro F1 across
classification data ele-
ments

0.481 0.730 0.764 0.683 0.669

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
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Supplemental Table 2. Micro F1 scores for classification fields
across on full traing data sample (n = 2,066)

Data Element LSTMCNN Logistic re-
gression

Adaboost
classifier

SVM Random
Forest

Gleason Grade - Primary 0.604 0.981 0.978 0.972 0.935 0.947
Gleason Grade - Secondary 0.577 0.969 0.959 0.947 0.913 0.919
Gleason Grade - Tertiary 0.750 0.935 0.925 0.935 0.907 0.876
Tumor histology 0.993 0.997 0.984 0.997 0.993 0.996
Cribriform pattern 0.972 0.975 0.975 0.981 0.975 0.975
Treatment effect 0.972 0.981 0.981 0.984 0.987 0.987
Tumor margin status 0.645 0.951 0.941 0.953 0.919 0.891
Benign margin status 0.959 0.981 0.975 0.966 0.987 0.969
Perineural invasion 0.614 0.972 0.944 0.978 0.929 0.938
Seminal vesicle invasion 0.787 0.975 0.941 0.975 0.941 0.941
Extraprostatic extension 0.753 0.960 0.953 0.953 0.941 0.901
Lymph node status 0.824 0.988 0.984 0.953 0.975 0.984
Mean Micro F1 across clas-
sification data elements

0.788 0.972 0.962 0.966 0.950 0.944

LSTM: Long Short-Term Memory Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
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Supplemental Table 3. Mean macro F1 scores and standard
deviations across columns for classification models on varying
number of reports (N) across 5 runs

Model N = 16 N = 32 N = 64 N = 128 N =
256

Logistic 0.434 ± 0.121 0.495 ± 0.116 0.532 ± 0.129 0.586 ± 0.154 0.630 ±
0.170

AdaBoost 0.475 ± 0.133 0.545 ± 0.155 0.590 ± 0.169 0.620 ± 0.182 0.658 ±
0.183

Random for-
est

0.445 ± 0.148 0.476 ± 0.135 0.508 ± 0.143 0.529 ± 0.134 0.562 ±
0.140

SVM 0.420 ± 0.141 0.444 ± 0.147 0.460 ± 0.148 0.503 ± 0.131 0.531 ±
0.161

CNN 0.386 ± 0.159 0.416 ± 0.162 0.460 ± 0.173 0.504 ± 0.171 0.577 ±
0.174

LSTM 0.387 ± 0.135 0.408 ± 0.128 0.405 ± 0.131 0.417 ± 0.126 0.430 ±
0.127

Supplemental Table 4. Mean micro F1 scores and standard
deviations across columns for classification models on varying
number of reports (N) across 5 runs

Model N = 16 N = 32 N = 64 N = 128 N = 256
Logistic 0.808 ± 0.164 0.851 ± 0.123 0.880 ± 0.089 0.913 ± 0.060 0.937 ± 0.041
AdaBoost 0.845 ± 0.131 0.883 ± 0.098 0.907 ± 0.067 0.931 ± 0.050 0.949 ± 0.034
Random for-
est

0.828 ± 0.148 0.860 ± 0.117 0.888 ± 0.088 0.901 ± 0.077 0.913 ± 0.065

SVM 0.764 ± 0.202 0.774 ± 0.205 0.798 ± 0.179 0.853 ± 0.106 0.868 ± 0.138
CNN 0.722 ± 0.216 0.763 ± 0.180 0.786 ± 0.183 0.852 ± 0.122 0.901 ± 0.077
LSTM 0.691 ± 0.208 0.740 ± 0.186 0.740 ± 0.207 0.768 ± 0.182 0.778 ± 0.166
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Supplemental Table 5. Counts for each outcome of error analysis
for each field from 10 randomly sampled errors (or all errors if
fewer than 10 errors were made)

Field Annotation
Error

Model
error

Report
anomaly

Evaluation
Error

Not
reported
in text

Total Best
model

Gleason Grade - Pri-
mary

3 6 1 0 0 10 Cnn

Gleason Grade - Sec-
ondary

4 5 1 0 0 10 Cnn

Gleason Grade - Ter-
tiary

4 6 0 0 0 10 Cnn

Tumor histology 0 3 0 0 0 3 Cnn

Cribriform pattern 3 1 0 0 0 4 Cnn

Treatment effect 3 3 1 0 0 7 Cnn

Tumor margin status 1 1 0 0 0 2 Boost

Benign margin status 0 1 0 0 0 1 Svm

Perineural invasion 3 6 1 0 0 10 Boost

Seminal vesicle inva-
sion

1 8 1 0 0 10 Cnn

Extraprostatic exten-
sion

4 5 1 0 0 10 Cnn

Lymph node status 2 8 0 0 0 10 Cnn

Prostate weight 3 3 0 2 2 10 Boost

Estimated volume of
tumor

2 1 0 3 4 10 Random
forest

Pathologic T-stage 3 0 1 0 6 10 Logistic

Supplemental Table 6. Number of annotated data elements by
number of reports used in the traing set

Field Percent of reports containg field

continued on next page
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continued from previous page
Gleason Grade - Primary 0.99

Gleason Grade - Sec-
ondary

0.99

Gleason Grade - Tertiary 0.15

Tumor histology 1.00

Cribriform pattern 1.00

Treatment effect 1.00

Tumor margin status 1.00

Benign margin status 1.00

Perineural invasion 1.00

Seminal vesicle invasion 1.00

Extraprostatic extension 1.00

Lymph node status 0.99

Prostate weight 0.98

Estimated volume of tu-
mor

0.98

Pathologic T-stage 0.95

Pathologic M-stage 0.94

Pathologic N-stage 0.38
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SUPPLEMENTAL FIGURES

Supplemental Figure 1. Expected Calibration Error as a function of
the bin size for boosting classification model averaged across fields
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Supplemental Figure 2. Expected Calibration Error as a function of
bin size for random forest extractor models averaged across fields
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Figure 1A: Average pre-calibration and post-calibration ECE
estimates across transfer learning variations of the two-stage
method as a function of 10, 20, and 40 labeled examples on colon,
kidney, and lung cancer pathology reports. The results presented
include the mean performance across 10 random splits of the data
and 95% confidence intervals. The two-stage method with transfer
learning for both the line and final classifiers consistently
outperforms other variations of the two-stage method including no
transfer. Calibrating the models via isotonic regression is shown to
reduce ECE scores across all methods.
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Figure 2A: Average pre-calibration and post-calibration ECE
estimates across baseline methods as a function of 10, 20, and 40
labeled examples on colon, kidney, and lung cancer pathology
reports. The results presented include the mean performance
across 10 random splits of the data and 95% confidence intervals
for the shared field and shared labels case. Compared to the
transfer learning variations of the two-stage method, the baselines
are less calibrated.
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Figure 3A: Average pre-calibration and post-calibration ECE
estimates across string similarity variations of the two-stage
method as a function of 10, 20, and 40 labeled examples on colon,
kidney, and lung cancer pathology reports. The results presented
include the mean performance across 10 random splits of the data
and 95% confidence intervals for the shared field and unique labels
case. The string similarity variations consistently outperform the
two-stage method using the ECE metric. Surprisingly the string
similarity method in isolation has lower ECE after calibration than
the other string similarity variations of the two-stage approach.
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