
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Computational analysis of single-cell alternative splicing

Permalink
https://escholarship.org/uc/item/32x0f1vp

Author
Botvinnik, Olga

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32x0f1vp
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Computational analysis of single-cell alternative splicing

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Bioinformatics and Systems Biology

by

Olga Borisovna Botvinnik

Committee in charge:

Professor Gene Yeo, Chair

Professor Sheng Zhong, Co-Chair

Professor C. Titus Brown

Professor Amy Pasquinelli

Professor Sam Pfaff

Professor Kun Zhang

2017



CC BY 4.0

Olga Borisovna Botvinnik, 2017

This work is licensed under a Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


The dissertation of Olga Borisovna Botvinnik is ap-

proved, and it is acceptable in quality and form for

publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2017

iii



DEDICATION

To my family, my parents, and Kwasi.

iv



EPIGRAPH

Always stay gracious, best revenge is your paper – Beyoncé Giselle Knowles Carter

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Single-cell mRNA processing: If you liked it, you should have

put a Seq on it . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Balancing high-throughput and high-resolution single-

cell technologies . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 High-throughput . . . . . . . . . . . . . . . . . . 7

1.2.2 Low-throughput . . . . . . . . . . . . . . . . . . 9

1.2.3 “Goldilocks” balance of throughput and resolution 10

1.3 Insights into RNA processing through single-cell tech-

nologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Chaotic, “bursty” transcription is harmonized

by slow nuclear export . . . . . . . . . . . . . . . 12

1.3.2 Variability in isoforms is nonrandom but func-

tional implications remain unclear . . . . . . . . 12

1.3.3 Adenosine to Inosine RNA Editing . . . . . . . . 15

1.3.4 Spatial organization of transcripts . . . . . . . . 16

1.3.5 Translation . . . . . . . . . . . . . . . . . . . . . . 17

1.3.6 Computational challenges and considerations . 17

1.4 Future technologies necessary to measure the entire life

cycle of RNA . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Across-cell distributions of RNA and protein

with high-throughput technologies . . . . . . . 21

1.4.2 Molecular organization in space and time . . . . 26

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . 31

vi



Chapter 2 The Expedition software suite: Computational tools for tran-

scriptome analysis . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 outrigger: Splicing estimation with de novo annotation
and graph traversal . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Algorithm overview . . . . . . . . . . . . . . . . 35

2.1.2 Comparison to other methods . . . . . . . . . . . 51

2.2 anchor: Modality estimation . . . . . . . . . . . . . . . 55

2.2.1 Algorithm overview . . . . . . . . . . . . . . . . 55

2.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . 60

2.2.3 Comparison to other methods . . . . . . . . . . . 68

2.3 bonvoyage: Transformation of distributions towaypoints
and voyages . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3.1 Algorithm overview . . . . . . . . . . . . . . . . 69

2.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . 71

2.3.3 Comparison to other methods . . . . . . . . . . . 74

2.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . 74

Chapter 3 Single-cell alternative splicing analysiswithExpedition reveals
splicing dynamics during neuron differentiation . . . . . . . 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Identification of alternative splicing events in

single cells with outrigger . . . . . . . . . . . . 78

3.2.2 Assignment of single cell alternative splicing

events to modalities using anchor . . . . . . . . 86

3.2.3 Splicing modalities exhibit distinct sequence and

evolutionary characteristics. . . . . . . . . . . . . 92

3.2.4 Cell-type specific AS are largely comprised of

high variance events. . . . . . . . . . . . . . . . . 101

3.2.5 Highly variant AS events can reveal subpopula-

tions invisible to gene expression analysis . . . . 105

3.2.6 Transformation of splicing distributions to “way-

points” reveals dynamic of AS events . . . . . . 117

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3.1 Cell culture and differentiation . . . . . . . . . . 128

3.3.2 Single-cell capture and library preparation . . . 129

3.3.3 RNA-Seq processing . . . . . . . . . . . . . . . . 129

3.3.4 Single-cell expression-level quality control and

outlier detection . . . . . . . . . . . . . . . . . . . 130

3.3.5 Estimation of alternative splicing . . . . . . . . . 131

3.3.6 Constitutive exons . . . . . . . . . . . . . . . . . 131

3.3.7 ICA on constitutively expressed genes and their

splicing events . . . . . . . . . . . . . . . . . . . 131

vii



3.3.8 Hierarchical clustering . . . . . . . . . . . . . . . 132

3.3.9 Gene Ontology Enrichment . . . . . . . . . . . . 132

3.3.10 Categorization of alternative splicing “modes” . 132

3.3.11 Sequence annotation of alternative isoforms . . 133

3.3.12 Correlation of splicing to expression . . . . . . . 136

3.3.13 Transformation of splicing profiles to 2d space . 137

3.3.14 Waypoint-weighted protein properties . . . . . . 137

3.3.15 Single-cell qPCR and primer design . . . . . . . 138

3.3.16 qPCR data processing . . . . . . . . . . . . . . . 139

3.3.17 RNA fluorescence in situ hybridization (FISH) . 139

3.3.18 RNA-FISH image acquisition and data processing140

3.4 Supplementary Notes . . . . . . . . . . . . . . . . . . . . 141

3.4.1 Bimodal AS events that partition cell populations 141

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . 145

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

viii



List of Figures

Figure 1.1: Overview of open questions in single-cell RNA processing. . . 4

Figure 1.2: Overview of what can be measured at different steps of the

central dogma in terms of RNA processing. . . . . . . . . . . . 11

Figure 1.3: Unmet needs in RNA processing and potential future tech-

nologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.1: Overview of outrigger’s three steps and associated com-

mands: indexing (outrigger index), validation (outrigger

validate) andpercent spliced-in (Psi/Ψ) calculation (outrigger

psi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.2: Internal steps of indexing via outrigger index: Exons identi-

fication and defining alternative events. . . . . . . . . . . . . . 36

Figure 2.3: Example output of outrigger index command. . . . . . . . . 40

Figure 2.4: Example output of outrigger validate command. . . . . . . 42

Figure 2.5: outrigger validation and pathological cases. . . . . . . . . . 43

Figure 2.6: Cases created by percent spliced-in calculation via the com-

mand outrigger psi. . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.7: Example output of outrigger psi command. . . . . . . . . . 50

ix



Figure 2.8: Examples of inconsistencies in MISO’s estimation with single-

cell data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 2.8: Overview of anchor parameterization of the Beta distribution. 58

Figure 2.9: Best and worst fitting modality data using anchor. . . . . . . . 61

Figure 2.10: Simulated “Perfect Modality” dataset to test performance of

anchor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 2.11: Simulated “Maybe Bimodals” dataset to test performance of

anchor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 2.12: Visualization capabilities of bonvoyage shown with simulated

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 3.1: Graphical abstract of biological findings from this chapter. . . 75

Figure 3.2: Cell-type specific alternative splicing is an independent feature

of cell identity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 3.3: Quality control of single cell expression and splicing data. . . 84

Figure 3.4: Assignment of single cell alternative splicing events to modali-

ties using anchor algorithm. . . . . . . . . . . . . . . . . . . . 87

Figure 3.5: Modality estimation at increasing gene expression cutoffs. . . 90

Figure 3.6: Supplementary molecular features of each splicing modality. 94

Figure 3.7: Bimodal AS events exhibit distinct sequence and evolutionary

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 3.8: Sequence enrichment of modality introns. . . . . . . . . . . . . 99

Figure 3.9: Dynamic AS events are primarily contributed by highly variant

bimodal and multimodal events. . . . . . . . . . . . . . . . . . 102

Figure 3.10: Switching AS events are enriched for transcriptome and post-

transcriptional regulation GO terms. . . . . . . . . . . . . . . . 104

x



Figure 3.11: Mulitmodal AS event in SNAP25 reveals subpopulations in-

visible by gene expression alone. . . . . . . . . . . . . . . . . . 107

Figure 3.12: BimodalAS event inDYNC1I2 reveals subpopulations invisible

by gene expression alone. . . . . . . . . . . . . . . . . . . . . . 110

Figure 3.13: Highly variant AS events reveal intricacies of cell states. . . . 113

Figure 3.14: Highly variant AS events in SUGT1, BRD8, MDM4, MEAF6,

and RPN2 reveal intricacies of cell states. . . . . . . . . . . . . 115

Figure 3.15: bonvoyage visualizes dynamic AS changes. . . . . . . . . . . . 119

Figure 3.16: Validation of voyaging events between iPSC and MN. . . . . . 122

Figure 3.17: Validation of alternative splicing events by sc-qPCR. . . . . . 123

Figure 3.18: qPCR validation and summary of biological findings. . . . . . 126

xi



ACKNOWLEDGEMENTS

There are too many people to thank but I will do my best.

Thank you to Dr. Yan Song for being a patient mentor, keeping me on

track, and giving key criticisms of the internal workings of all the algorithms,

and for making sure everything is explained as clearly as possible. I couldn’t

have done any of this without you.

Thank you to Dr. Gene Yeo for giving me freedom and opportunities

to teach my passions of open-source software, open science to unsuspecting

biologists.

Thank you to Dr. Sheng Zhong for key computational feedback on

anchor’s classifier.

Thank you to Dr. C. Titus Brown for believing in me and sponsoring me

for the NumFOCUS John Hunter Technical Fellowship.

Thank you to Dr. Amy Pasquinelli for keeping the broader biological

picture in mind, to Dr. Kun Zhang for knowing what’s out there in the single-cell

world, and to Dr. Sam Pfaff for neurobiological insights.

Thank you to Dr. Mike Lovci for teaching me about alternative splicing, to

Dr. Boyko Kakaradov for teaching me about machine learning, to Gabriel Pratt

for being my Python partner in crime, to Dr. Andrew Gross for answering my

annoying pandas questions and to the entire Yeo Lab for being supportive of my

open source endeavors.

Thank you especially to especially Pantea Khodami who will always me

my Kappa Alpha Theta big sister and has always been there for me and has

supportedme every step of the way. Thank you tomy friends Dr. Anne-Ruxandra

Carvunis, Dr. Charisse Crenshaw, Colleen Stoyas, Cynthia Hsu, Kara Gordon,

Emily Wheeler, David Nelles, Ron Batra, En-Ching Luo, Alain Domissy, Alice

xii



Ho, Rose Hurwitz, Alexa Robinson, Wendi Zhang, Nazita Lejevardi, Michelle

Ma, Liam Fedus .... Thank you to the Lean In and Stay Classy San Diego crew:

Dianna Cowern, Shari Haynes, Kristen Peña Breanna Berry, Daryl Fairweather,

Shelly Wanamaker, and ... Thank you to my current and former roommates and

affiliates Cailey Bromer, Daniella Bardalez Gagliuffi, Robert Schwartz, Jennifer

Hammond, Patrick Wise, Sara Glass, Keawe Kolohe, Sharon and Matt Scott, and

Andie Rotner for being a kind, supportive and welcoming environment to come

home to, and reminding me there’s so much more to life than just cells.

Thank you to my family, especially my mother and father for leaving the

Soviet Union and bringing me to the United States to give me the opportunity to

write a dissertation like this. Thank you to my brothers for being understanding

of my mad scientist ways, thank you to my stepmother Ira whose family warmly

accepted me as one of their own, especially Alya and Max Zolotorev.

Huge thank you to Kwasi Nti for surviving the Herculean task of dating

a PhD student, for listening so hard and making sure I always made the best

decision for me. I love you.

Chapter 1, in part, is currently being prepared for submission for publica-

tion of the material. Botvinnik, Olga; Song, Yan; Yeo, Gene W. The dissertation

author was the primary investigator and author of this material.

Chapter 2, in part, has been accepted for publication as the supplementary

material as it may appear in Molecular Cell, 2017, Yan Song
∗
, Olga B Botvinnik

∗
,

Michael T Lovci, Boyko Kakaradov, Patrick Liu, Jia L. Xu and Gene W Yeo (
∗

These authors contributed equally to this work). The dissertation author was one

of the primary investigators and authors of this paper.

Chapter 3, in full, has been accepted for publication as it may appear

in Molecular Cell, 2017, Yan Song
∗
, Olga B Botvinnik

∗
, Michael T Lovci, Boyko

xiii



Kakaradov, Patrick Liu, Jia L. Xu and Gene W Yeo (
∗
These authors contributed

equally to thiswork). The dissertation authorwas one of the primary investigators

and authors of this paper.

xiv



VITA

2010 S. B. in Mathematics, Massachusetts Institute of Technology

2010 S. B. in Biological Engineering, Massachusetts Institute of

Technology

2012 M. S. in Biomolecular Engineering and Bioinformatics, Uni-

versity of California, Santa Cruz

2017 Ph. D. in Bioinformatics and Systems Biology, University of

California, San Diego

PUBLICATIONS

Yan Song*,Olga BBotvinnik*, Michael T Lovci, Boyko Kakaradov, Patrick Liu, Jia

L. Xu and Gene W Yeo. Single-cell alternative splicing analysis with Expedition

reveals splicing dynamics during neuron differentiation. Accepted. * These

authors contributed equally to this work.

Curtis A Nutter, Elizabeth A Jaworski, Sunil K Verma, Vaibhav Deshmukh,

Qiongling Wang,Olga B Botvinnik, Mario J Lozano, Ismail J Abass, Talha Ijaz,

Allan R Brasier, Nisha J Garg, Xander H T Wehrens, Gene W Yeo, and Muge

N Kuyumcu-Martinez. Dysregulation of RBFOX2 Is an Early Event in Cardiac

Pathogenesis of Diabetes. Cell Reports, 15(10):2200-2213, 2016.

Jong Wook Kim*, Olga B Botvinnik*, Omar Abudayyeh, Chet Birger, Joseph

Rosen- bluh, Yashaswi Shrestha, Mohamed E Abazeed, Peter S Hammerman,

Daniel DiCara, David J Konieczkowski, et al. Characterizing genomic alterations

in cancer by complementary functional associations. Nature Biotechnology, 2016. *
These authors contributed equally to this work.

P Compeau and P Pevzner. Bioinformatics Algorithms Volume 1, volume 1 of An

Active Learning Approach. Active Learning Publishers LLC, 2 edition, 2015.

Contributed text, figures, problems and code solutions, primarily to “Chapter 4:

How Do We Sequence Antibiotics?”.

Kris C Wood, David J Konieczkowski, Cory M Johannessen, Jesse S Boehm, Pablo

Tamayo,Olga B Botvinnik, Jill P Mesirov, William C Hahn, David E Root, Levi A

Garraway, et al. MicroSCALE screening reveals genetic modifiers of therapeutic

response in melanoma. Science Signaling, 5(224):rs4, 2012.

A Goncearenco, P Grynberg,Olga B Botvinnik, Geoff Macintyre, and Thomas

Abeel. Highlights from the Eighth International Society for Computational

Biology (ISCB) Student Council Symposium 2012. BMC Bioinformatics, 2012.

xv



Naomi Galili, Pablo Tamayo, Olga B Botvinnik, Jill P Mesirov, Margarita R

Brooks, Gail Brown, and Azra Raza. Prediction of response to therapy with

ezatiostat in lower risk myelodysplastic syndrome. Journal of Hematology &
Oncology, 5(1):1, 2012.

Naomi Galili, Pablo Tamayo, Olga B Botvinnik, Jill P Mesirov, Jennifer Zikria,

Gail Brown, and Azra Raza. Gene Expression Studies May Identify Lower

Risk Myelodys- plastic Syndrome Patients Likely to Respond to Therapy with

Ezatiostat Hydrochloride (TLK199). Blood, 118(21):2779-2779, 2011.

Michael F Berger, Gwenael Badis, Andrew R Gehrke, Shaheynoor Talukder,

Anthony A Philippakis, Lourdes Pena-Castillo, Trevis M Alleyne, Sanie Mnaim-

neh, Olga B Botvinnik, Esther T Chan, et al. Variation in homeodomain DNA

binding revealed by high-resolution analysis of sequence preferences. Cell,
133(7):1266-1276, 2008.

xvi



ABSTRACT OF THE DISSERTATION

Computational analysis of single-cell alternative splicing

by

Olga Borisovna Botvinnik

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2017

Professor Gene Yeo, Chair

Professor Sheng Zhong, Co-Chair

Alternative splicing (AS) generates isoform diversity critical for cellular

identity and homeostasis in multicellular life. Although AS variation has been

observed among single cells for a few events, little is known about the biologi-

cal significance of such variation. We developed Expedition, a computational

framework consisting of outrigger, a de novo splice graph transversal algorithm to

detect AS; anchor, a Bayesian approach to assign modalities and bonvoyage, a

visualization tool using non-negative matrix factorization to display modality

changes. Applying Expedition to single iPSCs undergoing neuronal differen-

xvii



tiation, we discover up to 20% of AS exons exhibit bimodality and are flanked

by more conserved introns harboring distinct cis-regulatory motifs. Bimodal

exons constitute the majority of cell-type specific splicing, are highly dynamic

during cellular transitions, preserve translatability and reveal intricacy of cell

states invisible to global gene expression analysis. Systematic AS characterization

in single cells redefines our understanding of AS complexity in cell biology.

xviii



Chapter 1

Single-cell mRNA processing: If you

liked it, you should have put a Seq

on it

1.1 Introduction

The human body contains an estimated 3.72×10
13

cells
1
, all of which are

highly specialized in form and function, and yet despite their incredible diversity

in phenotypes, each cell contains nearly identical genotypes. These cells are

heterogeneous because of their different RNA, protein, and metabolite molecules,

which coordinately regulate the cell to express precise phenotypes. To study the

variation between cells, we turn to single-cell analysis.

The original tool for single-cell analysis is the microscope
2;3
, which can

visualize structural differences between individual cells, but the molecules

that create these differences are too small to resolve in live cells by current

microscope technology. To compare the molecules of single cells, recent advances

1
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in microfluidics have allowed for capture of one cell at a time, which can be

coupled with modern high-throughput technology to measure many messenger

RNA (mRNA) molecules per cell, and together these are combined to create

single-cell RNA-sequencing (scRNA-Seq)
4;5
. Computational analysis of these

high-dimensional data can identify distinct cellular states or delineate cellular

trajectories (reviewed by Bacher and Kendziorski
6
; Cannoodt et al.

7
; Liu and

Trapnell
8
; Trapnell

9
; Stegle et al.

10
).

While single-cell capture has enabled probing of cellular state mea-

sured through mRNA abundances, the study of an mRNAmolecule’s rich life

(Figure 1.1a) from birth (transcription) to death (degradation), the collection

of actions known as mRNA processing
11–15

, has only started to be addressed

at the single-cell level. As in bulk RNA-seq
16–23

, scRNA-seq has enabled the

investigation of RNA processing features that are measureable by sequencing,

such as alternative splicing, RNA editing, and alternative polyadenylation
24–29

.

However, the high-throughput nature of scRNA-seq captures only the abundance

of RNA transcripts in a snapshot in time and loses the information of RNA

modifications, dynamics, localization, binding partners, and secondary structure.

Thus, these features must be measured a different way.

Ideally, we would capture the entire cellular and molecular context of

an RNA molecule. To accomplish this, we turn back to the microscope, a tried

and true tool. While even the highest resolution microscopes cannot discern

individual molecules without significant amplification
30;31

, microscopy captures

cellular context including morphology and subcellular localization, and in the

case of live-cell imaging, dynamics. Microscopy is limited by the ability to design

fluorescent constructs to visualize RNA and protein molecules, and as a result,

can only be performed for a few targets a time. Middle-ground technologies that
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are relatively high-throughput but also measure several aspects of the same cell

or same transcript
32;33

have highest potential for discovery. We will review the

available methods to probe RNA processing at the single cell level, and highlight

the current limitations, showing opportunities for novel technology to make

breakthroughs in the knowledge of RNA processing.
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Figure 1.1 (next page): Overview of open questions in single-cell RNA pro-
cessing.
a. Overview of the processing steps in an RNA’s life cycle: transcription (biogen-

esis), alternative splicing, poly-adenylation, modification, export, localization,

translation, and degradation.

b. Dichotomy of investigating distribution of transcripts across cells with high-

throughput methods, and distribution of transcripts within cells using high-

resolution methods.

c. Examples of high-throughput measurements, where many transcripts can be

measured at once, but only one feature of them may be measured.

d. Examples of high-resolution measurements, where only a few transcripts can

be measured at once, but many features of them can be profiled.
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1.2 Balancing high-throughput and high-resolution

single-cell technologies

A complex tissue such as the human brain contains many different tran-

scripts, but by measuring them at the bulk level, the cell of origin for each

transcript is unknown (Figure 1.1b, left). Using single-cell technologies, we

quantify an RNA processing event either as presence or absence (e.g. m6A or

splicing) or a continuous quantity (e.g. abundance or poly-A tail length). With

these quantifications in hand, we want to be able to capture individual cells and

measure each cell’s transcripts to understand two separate questions (Figure 1.1):

How are transcripts distributed (1) across cells, and (2) within cells?

The questions of distributions of transcripts across cells and within cells

represent the ends of a spectrum, each with their own advantages and limitations.

Where on the one extreme there are high-throughputmethodswhich canmeasure

many transcripts per cell, but are low-resolution and can only measure one aspect,

abundance, and on the other extreme are high-resolution methods which can

measure a limited number of transcripts (low-throughput) but can measure many

aspects beyond abundance, such as dynamics and localization.

To measure RNA processing across cells, we use high-throughput single-

cell technologies to study cellular biology and answer the question, is a particular

RNA processing event found only within certain subpopulations of cells, or does

it co-occur within individual cells? If it’s found within the same cell, are these on

the same transcript, or on different transcripts in individual cells? Since these

technologies only extract a snapshot in cellular time, akin to a still frame in a

movie, we don’t know how these transcripts change over time or how they are
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physically used within an individual cell, and thus high-throughput technologies

are hypothesis-generating experiments.

To test these hypotheses, we turn to low-throughput, high resolution

technologies in molecular biology, which can answer the question, within cells,

are the different transcripts differentially localized in different populations? Does

the transcript have different temporal dynamics? Does it have different interactors,

binding partners, or three-dimensional structure? To truly understand this, we

would need to follow up with an experiment that turns the process of or over

expresses it to see how it affects cellular fate.

1.2.1 High-throughput

We define “throughput” as the number of different molecules that can be

measured at once from a single cell (Figure 1.1c). High-throughputmethods such

as scRNA-Seq can measure 18,000 transcripts per cell ( 2000 genes/cell) for up to

one million cells
34
. These high-dimensional datasets can be used to study two

main questions regarding the distribution of transcripts across cells (Figure 1.1b):

(1) Do these processes co-occur on the same transcript, or on different transcripts

within the same cell? (2) If they occur in different cells, do these cells comprise

distinct population sub-structures? Digging into the population sub-structures

can especially elucidate novel cell states or types, and understanding of cellular

biology. Thus, high-throughput methods allow for measurement of one feature

across many targets, and are especially enable the deep study of cellular biology

and cell state.

High-throughput technologies come at the cost of resolution: many

scRNA-seq techniques measures only the abundance of the 5’ end of the mature,

poly-adenylated mRNA
4;5;35

, thus missing large portions of the transcripts, the
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immature pre-mRNA and due to sequencing technology limitations, these meth-

ods cannot measure nucleotide modifications. Additionally, these measurements

are destructive and the original cells cannot be restored to re-analyze to observe

how they would respond to perturbations. If we develop a hypothesis from the

high throughput data, we must test it on completely new and independent cells.

Thus, high-throughput data such as scRNA-seq represents only a snapshot in

time and loses the dynamics of the transcript’s biogenesis, the localization of the

transcript in the cell, its interactors, and any modifications or secondary structure.

The digital measurements of high-throughput data are necessarily lossy

in part because the technology itself defines what can be observed, and all other

features remain undetected. This echoes Jaron Lanier’s “You are Not a Gadget”
36

which discusses how the digital representation of an object inevitably removes

all unmeasured features, and this can be problematic as they are still a part of the

object. As an analogy, digitizing an impressionist painting as a photo does not

capture the time of day the flax seeds were pressed to create the oil paints, the

tautness of the muslin cloth on the frame, or the names of every person who has

ever viewed the painting, but all of these are part of the history of the painting.

These are examples of incidental measurements that are lost as soon as the object

is digitized, because by digitizing, you’ve made decisions about what you think is

important, and lose information about what you’ve chosen not to measure. Thus,

as soon as you measure the abundance of a cell’s transcripts through RNA-seq,

you lose all other features of the transcript, such as its structure and nucleotide

modifications, its localization and binding partners, its lifespan, and even more

unmentioned features which have not yet been observed but could contribute to

the RNA molecule’s biography.

Finally, high dimensional data requires many computational manipula-
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tions
6;7;10

, which could retreat from the biology. Due to the lossy nature of the

digital measurements, computational methods may not retain the biology as

the algorithm may latch onto signals that are artefacts of the technology, rather

than true biology. To many, the enormous amounts of data may feel like staring

into “tea leaves” and trying to draw conclusions, and rigorous follow up and

investigation across multiple algorithms is required to ensure the analysis is

biologically correct. Thus, while high-throughput single-cell measurements such

as RNA-Seq allow for exploration of huge biological datasets and digging into

cellular populations, they are limited in their ability to study multiple features of

an mRNA transcript’s life cycle at once.

1.2.2 Low-throughput

To become closer to the biology, we turn to lower-throughput techniques

such as microscopy, which allows for observation of dynamics and localization,

trends that are not currently visible in high-throughput data (Figure 1.1d).

While almost an antediluvian tool, microscopy, especially fluorescence and

confocal microscopy heavily used in single-cell analyses, has undergone many

advances in resolution and throughput, allowing for visualization of RNA and

protein molecules in thick (millimeter) tissue slices
37–40

. To further investigate the

subcellular characteristics such as time scales and localization, of RNAprocessing,

we turn to low throughput analyses to answer two main questions: (1) Do the

processes exist at the same or different, time and place? (2) What is the fate of

transcripts with different RNA processing features? For example, if a gene’s

transcript with distinct RNA features co-occur in the same cell, how does the cell

use the diverse transcripts differently? By studying RNA processing in both time

and space, we will become ever closer to a deep understanding of the regulation
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of RNA.

1.2.3 “Goldilocks” balance of throughput and resolution

Technologies that balance both throughput and resolution that are “just

right,” as in the children’s fairy tale of where the Goldilocks character finds the

perfect porridge that isn’t too salty or too sweet. These in-between methods

are currently limited in the still-growing field of technological development in

single cells and are a major need. Most technological innovation has focused

on increasing either throughput or resolution, but we argue that the large leaps

will be made by combining the two to show several aspects of a single RNA

transcript molecule, in a way that has never been seen before. For example, in

situ sequencing
38;41–46

combines localization of transcripts with high-throughput

microscopy or sequencing to spatially resolve transcripts within, and across

cells. Other combination technologies include single-cell multiomics methods

which measure several aspects of a cell at once, to answer the questions of how

DNAmosaicism or epigenetics contribute to gene expression
33;47–49

, or how RNA

levels influence protein levels with Seq-well. The development of methods which

maximize the “bang for the buck” – i.e. high-throughput while retaining cellular

context – will revolutionize single-cell biology and create opportunities for novel

biological questions.
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1.3 Insights intoRNAprocessing through single-cell

technologies

Here we discuss the aspects of RNA processing that are measurable by

current technologies, and summarized in Figure 1.2.
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Figure 1.2: Overview of what can be measured at different steps of the central

dogma in terms of RNA processing.
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1.3.1 Chaotic, “bursty” transcription is harmonized by slow nu-

clear export

Single-cell analyses have long showed that cells do not constantly transcribe

genes, but rather do it in a, stochastic “bursty” fashion
50–53

. Single-molecule

imaging paved the way to show the stochasticity of gene expression within

genetically homogeneous cell populations
53;54

(, and was confirmed by single-cell

RNA-Seq, which also showed bursty and cyclical transcriptional kinetics that

would otherwise be masked in bulk sequencing data
27;55;56

. How does the cell

deal with what appears to be such chaotic creation of RNA? Two papers showed

that while sudden bursts of expression in the nucleus are common, mRNAs aren’t

immediately exported to the cytoplasm
57;58

, suggesting the mRNAs are first

sequestered in storage facility before they are exported. Thus, bursty transcription

is tempered with a slow drip of RNA export from the nucleus.

1.3.2 Variability in isoforms is nonrandom but functional im-

plications remain unclear

Alternative splicing (AS) is a co- and post-transcriptional modification of

mRNA that is a mechanism for proteomic diversity
59–64

. AS removes introns,

sequences from the immature mRNA which are not contained in the mature,

poly-adenylated mRNA. Since the outcome of AS is the presence or absence of

an intron, this can be readily measured using RNA-sequencing (RNA-Seq)
23
.

RNA-seq is a readily available technology for single cells and thus AS analysis

can be directly applied. We discuss below the applications of single-cell analyses

to studying alternative splicing.

Overall variation of AS in single cells can be studied using high-through-
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put methods such as RNA-sequencing. While bulk measurements show that

individual isoforms may vary within a population, this doesn’t show how indi-

vidual cells use different transcripts. Understanding how individual cells choose

one transcript or another has been challenging to measure. Do cells tend to have

only one isoform of a gene, or do they contain many? One question that RNA-seq

AS analysis can answer is, unbiasedly, which splicing events are changing within

a cell population, or across cell populations? One early study found variability

in isoforms using RNA fluorescence in situ hybridization (FISH)
65
. The earliest

scRNA-seq study found that single-cell AS was more “all or nothing” – each cell

tended to have only one isoform, compared to bulk samples, which showed many

isoforms
27
. This shows that individual cells tend to only have a single isoform,

and that variation in isoform composition, such as having multiple isoforms,

is likely observed in bulk samples because of the heterogeneity of cells, rather

than heterogeneity of transcripts within cells. Completeness of splicing is also

associated with higher conservation of introns and exons
66
. Another study used

full-transcript scRNA-seq to find that single cells had higher percentages of novel

splice junctions than bulk data
25
. Another study looked at alternative splicing in

single cells captured from the mouse visual cortex and found changes in alterna-

tive splicing throughout the different cortical layers
67
. Another study developed

statistical models to find variable splicing events across single cells, and applied

this to find splicing events that change with cell cycle
29
. Contrary to the initial

study that most splicing events are “all or nothing,” another study used UMIs

coupled with long-read sequencing to extract poly-adenylatedmRNAs from from

mouse oligodendrocytes and vascular and leptomeningeal cells
24
. They found a

purifying selection of exon splice sites in protein coding genes, with very few

junctions mapping to mis-spliced exons. They found up to 25 isoforms per cell,
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with most isoform differences occurring due to alternative transcription start and

end sites, rather than cassette exons or 3’ or 5’ end positional differences. Earlier

studies also showed that the choice of 3’ isoform is highly variable, more variable

than random selection
28
, a finding that was confirmed by RNA-FISH. More work

is needed to analyze the choice of final exons, which can be aided by advances in

computational methods for end-sequence analysis
68
. These results show that

overall, alternative transcript architectures are highly variable in a statistically

significant manner, but the purpose of this variation is still unknown. The ability

to decipher whether there is function in the variability
69–72

is limited by the

capture methods of transcripts, and is limited to highly-expressed transcripts.

The dynamics of splicing can be studied using microscopy of fluorescently

labeled transcripts. For example, the competition between transcript release and

splicing of the final intron of human beta-globin was found to favor transcript

release, then splicing. Interestingly, splicing of diffuse RNA occurred rapidly,

faster than diffusion
73

and alternative splicing is known to occur primarily after

transcription
54
. These studies have shed light onto how the transcription of RNA

is decoupled from the creation of alternative transcripts.

The differential usage of the same gene’s isoforms remains an interesting

question. Why would a cell contain multiple isoforms? What are their differ-

ent functions
72
? For example, the cell polarity gene Cdc42 has two possible

terminal exons, exon 6 and exon 7, but in non-neuronal cells, exon 6 is strongly

suppressed by polypyrimidine tract binding protein (PTB/Ptbp1) and only exon

7 is included
74
. However, in neurons, Ptbp1 is not expressed, and both exon 6 and

exon 7 transcripts are expressed in equimolar ratios, disrupting this equimolar

concentration resulted in defects in neuronal development. Too much of the

exon 6 isoform led to insufficient axonogenesis and too much of the exon 7
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isoform led to insufficient dendritic maturation. This suggests the exact ratios

and distributions are critical for normal neuronal development.

1.3.3 Adenosine to Inosine RNA Editing

Another method of transcriptome and proteome diversification is through

RNA editing, the most commonly occurring one being the deamination of

adenosine to inosine (A-to-I) editing
19;75

. Inosine has three positions for hydrogen

bonds and performs base-pairing like guanine, and thus by sequencing can be

detected by an A to G transition. However, true identification of editing sites is

difficult, as the negative control of knockout of the A-to-I editing enzyme family

ADAR is embryonic lethal in mammals (though not in Caenorhabditis elegans).

How can true editing sites be identified in mammals? Again, the questions

we are interested in are, how is A-to-I editing distributed (1) across and (2)

within cells? Across cells (1) could theoretically be answered with single-cell

full-transcript sequencing, but to our knowledge has not yet been performed.

Within cells (2) can be answered using microscopy based methods, for example

visualizing adenosine-to-inosine edited transcripts using inoFISH
76
. RNA in

situ hybridization methods can also be applied to RNA editing. There were

differences in variability between transcripts and between cells: editing of GRIA2

was highly variable from cell to cell but editing of NUP43 was fairly constant

between cells, suggesting that an individual gene’s editing is regulated separately.

By using microscopy, the authors were able to address questions of localization,

co-/post-transcriptionality, and variability within and between cells. A limitation

of this method is the need to design probes against all possible flanking sequences

of edited transcripts, and the cells must be fixed. Technology that can use live

cells and/or resolve tens or hundreds of edited sites at a time will allow for
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interrogation of broader trends.

Other forms of RNA editing, such as G-to-A
77
, C-to-U

11
, and U-to-C

78

editing, and their across-cell distributions, and within-cell localization and

dynamics have yet to be explored at the single cell level.

1.3.4 Spatial organization of transcripts

The physical location of an RNA molecule informs its position in the

mRNA life cycle, where immature transcripts are in the nucleus and mature in

the cytoplasm. For example, single-molecule RNA-FISH (smFISH) amplifies the

signal of individual RNA molecules using multiple probes or branching
31;79;80

can visualize individual transcripts with high resolution and has shown that

nonsense mediated decay doesn’t occur in the nucleoplasm but almost imme-

diately upon nuclear export
81
. Visualization of individual RNA molecules has

been multiplexed across many different RNA species in methods termed FISSEQ

and seqFISH
41;45;46

. Together with whole body clearing such as CLARITY
40
,

seqFISH can spatially resolve RNA molecules even in millimeter-thick brain

tissues
38;46

. Another method of increasing resolution of smFISH is “expansion

microscopy,” which links RNA molecules to an expandable polymer, and after

expansion, individual RNA molecules can be visualized without the need for

signal amplification. smFISH has also been applied simultaneously to RNA and

DNA, such as in the simultaneous measurement of DNA methylation and gene

expression
82
. Expanding on this work, the combination of CRISPR/Cas9 genome

editing “scratchpads,” with smFISH can visualize both the lineage histories

of individual cells and their gene expression in a method termed MEMOIR
83
.

Finally, the microscopy-free method of “spatial transcriptomics” uses location

barcodes in fixed tissues to mark RNA molecules by position, then perform
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scRNA-seq and reconstruct the two-dimensional position of the RNA
84
. Beyond

transcripton, the spatial resolution of RNA transcripts has only scratched the

surface of RNA processing and many opportunities for discoveries remain.

1.3.5 Translation

The penultimate step in an mRNA’s life is translation of its encoded

information into proteins. Exact regulation of translation rates is critical for

hematopoietic stem cells
85;86

, shown by marking nascent polypeptides with

fluorescent marker and measure incorporation using fluorescently-activated cell

sorting (FACS). This study found that modulating the translation rate by knocking

down a ribosomal subunit prevented proper hematopoietic development. Spatial

analysis of the “pioneer” round of translation using TRICK
87

showed that

endoplasmic reticulum proteins are translated almost immediately upon contact

with the ER. Live tracking of translation in neurons using SINAPS
88

showed

a translation rate of approximately 5 amino acids per second, and translation

occurred throughout the neuron, including while the ribosome was transported

along the axon. Insights into the conversion of RNA to protein will close the gap

in understanding how the transcriptome is converted to the proteome.

1.3.6 Computational challenges and considerations

Single-cell RNA-seq is inherently noisy and requires careful consideration

of experimental design
6
, cell capturemethods

5
, library preparation and transcript

barcoding
5;89

, and downstream computational analysis
10
.
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1.4 Future technologies necessary to measure the en-

tire life cycle of RNA

Using current technologies, tracking every step of the entire lifecycle of a

singleRNAtranscript, frombiogenesis, binding toproteins, editing,modifications,

localization, translation, and degradation is not possible. It is not known

what the prediction model is that takes an RNA sequence and can predict the

outcome of each step of RNA processing. For example, RNA transcripts are

specifically exported from the nucleus independently of transcription
90–93

, and

may be sequestered in one of many RNA granules
94–98

– how long is the typical

residence time of an RNAmolecule in these granules? How does this vary for

different transcripts or cell types? A universal framework for understanding the

contributions of RNA sequence to RNA processing is still needed.

Many steps of RNA processing are performed by RNA binding proteins

(RBPs), but many are seemingly redundant due to their high homology such

as in helicases and splicing factors, indicating a lack of understanding the

specific functions of individual proteins. Beyond redundancy, does a single RBP

have different activities based on cellular localization (nucleus vs cytoplasm) or

transcript region (intron versus UTR)? For example, the RBFOX1/2/3 family

of proteins all bind (U)GCAUG
99–103

, but are expressed in different cell types,

suggesting untapped complexity in understanding their activities. Recent papers

have shown that the proteins have differential functions based on localization in

the cytoplasm or nucleus
100

or binding partners
99
, but a general rule explaining

the activities of different RBPs based on their local molecular context has not

been established. An experiment that profiles the localization and transcript
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binding preferences of related RBPs in cellular context could reveal how related

RBPs have subtly different functions, or how a single RBP performs multiple

functions based on its neighbors. A general mapping of RBP amino acid sequence

to function and binding partners has yet to be established.

To deeply understand RNA processing events, we propose the creation

of new technologies, both high-throughput to establish distributions of RNA

features across a cell population, and high-resolution to demonstrate the within-

cell localization and dynamics of RNA processing. Many of these technologies

are extensions of existing methods which have not yet been adopted to the

single cell level due to scalability. The high-throughput methods that are still

only able to be performed at the bulk level tend to require high numbers of

input material as the purification methods are too lossy to capture a substantial

amount of molecules from every cell. For example, antibody-based methods

such as m6A sequencing
104–106

or the many methods for probing protein-RNA

interactions
107–110

would lose too much RNA and must be optimized to be more

sensitive to RNA detection. To study individual molecules within cells, high-

resolution measurements need strong signal amplification as microscopes are

not generally capable of resolving single molecules. For example, tracking of

RNA molecules using RNA-targeted CRISPR
111

has weak signal per molecule,

but the molecules are detectable in aggregation. Thus, sensitivity of molecular

detection, signal amplification, microscope resolution will be critical paths for

innovation in understanding RNA processing.
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Figure 1.3: Unmet needs in RNA processing and potential future technologies.

a. Left, example RNA transcript with RBPs (purple), A-to-I editing (blue), and

m6A (green). Right, possible inclusion and exclusion isoforms with different

post-transcriptional modifications of splicing, m6A, RBP binding, and m6A

modification.

b. Current technologies allow for visualization of RNA abundance, A-to-I edit-

ing, m6Amethylation, and protein binding, but cannot determine whether these

occur on physically different or the same molecules.

c. Technologies are needed to investigate multifunctionality of the same protein,

e.g. if it performs different functions based on where it binds in the transcripts.

Additionally, this would be interesting to study redundancy of different proteins

such as splicing factors.

d. Future direct RNA sequencing technologies would allow for direct identifi-

cation of multiple RNA modifications and edits on the same transcript, unlike

currently available technologies.
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1.4.1 Across-cell distributions of RNA and protein with high-

throughput technologies

Beyond model organisms such as Caenorhabditis elegans, the number of

different cell types and niches in the body are unknown at the organism level
112;113

.

For example, in the neurodegenerative disease amyotrophic lateral sclerosis (ALS),

protein aggregation in motor neurons of the spinal cord are thought to be the

main cause of disease
114;115

, but there are many other supporting cells in the

spinal cord such as glia and astrocytes whose functions are are unknown. As a

result, researchers either remove the entire spinal cord or laser-capture micro-

dissect only the motor neurons from donors
116–118

. But the spinal cord is an

integrated system of many cell types – how do glia and astrocytes contribute to

the progression of the disease? If instead researchers could perform single-cell

capture of the entire spinal cord, and then spatially reconstruct the cell types and

locations without a priori knowledge
119–122

, they then could focus on analyzing

the differences in RNA and protein processing within and across, cell types and

individuals, rather than making inferences based on incomplete information.

Such a “cell atlas” would greatly inform the understanding of disease.

Indeed, a Human Cell Atlas (HCA)
123–125

project is currently underway,

where researchers are working towards establishing molecular and physical

markers of cell types in the human body. In the future, it will be possible to

“align” a transcriptome of interest to the HCA and obtain the closest cell types

and cell locations, helping to provide a more complete understanding of human

cellular biology. This will reducing the burden for researchers to painstakingly

capture spatial locations of cells in the bodywhen harvesting tissue, thus lowering

the barrier for biological research and paving the way for discovery.
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Mutually exclusivity and co-occurrence of RNA features

Future understanding of the interdependence of RNA features will re-

quire the measurement of multiple aspects of RNA processing at once. Current

technologies to measure transcript abundance and over 120 possible nucleotide

modifications
126–130

, must be performed in separate, bulk experiments, and

beyond correlations, the co-occurrence of these features on the same transcript

is unknown (Figure 1.3a). One potential method for measuring multiple fea-

tures at once is direct sequencing of RNA and its modified bases, without

creation of a cDNA template such as by the Oxford Nanopore MinION
131–134

or Pacific Biosciences Single Molecule Real-Time (SMRT) Sequencing
135

. These

technologies can directly detect RNA modifications (Figure 1.3b) such as m6A

and inosine
129;136;137

, exon structure driven by alternative splicing in transcripts
24
,

and help to answer the question, what percentage of cells have a modification or

transcript structure? Unfortunately, these technologies are plagued with high er-

ror rates and this challenging problem of accuracy for single molecule sequencing

will need to be addressed. Additionally, many of the library preparation methods

for capturing entire transcripts measure onlymature, poly-adenylatedmRNA and

not any byproducts of mRNA processing such as mirtrons or circular RNAs
138

,

which can be cell-type specific and for which other capture methods must be

developed. Nonetheless, if the entire transcript is measured, these technologies

would reveal the co-occurrence of relationships such as between alternative

splicing and nucleotide modifications, shedding light on the co-dependence (or

independence) of RNA processing elements.

Translation of mRNAs can vary from tissue to tissue, but has not yet

been shown to vary from cell to cell. There are several methods for bulk
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samples to answer the question, which transcripts are actively translating?
139;140

.

BacTrap and RiboTag fluorescently label ribosomal subunits and then capture

the ribosomal-bound transcripts to perform full-length transcript sequencing
140

.

Ribosome profiling (also called “ribo-seq” or “ribosome footprinting”) measures

protected RNA fragments
141–143

, and can pinpoint the paused locations of

ribosomes. All of these are possible to scale to the single-cell level but will have

high rRNA contamination, and at the single-cell level, every nucleotide counts,

so protocols must be optimized to be sensitive only to the molecules of interest.

Beyond coding sequences, there are many disease-associated mutations

that occur in non-coding regions such as introns and 5’/3’ UTRs, which are likely

to influence its ability to form three-dimensional structures and can vary between

cells. For example, Thus, measuring RNA structure and binding partners at the

single-cell level is a critical problem, but due to technical limitations, remains

unsolved. Current methods for measuring RNA secondary structure, typically by

selectivelymeasuring only single- or double-stranded RNA, require high amounts

of starting material, meaning, many thousands of cells as input
144–150

, thus

averaging out the signal across many cells. Scaling these protocols down to single

cells will be challenging, it will require tiny amounts of each reaction occurring in

nanoliter volumes of captured cells. Double-stranded structure is also important

in lncRNAs, as their functions range from inhibiting entire chromosomes (XIST) to

sequestering RBPs (MALAT1)
151

. Combining the measurement of RNA structure

with RNA modifications will inform how individual nucleotides promote or

inhibit certain RNA structures. Capturing the three-dimensional structure of

RNA in single cells will be a challenging problem to solve, but will pay great

dividends in understanding RNA biology.

Even if there existed the perfect high-throughput method of interrogating
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all possible nucleotide modifications, RNA structures, and translating transcripts,

it is likely the subcellular context would be lost. Need to perform follow-up

experiments showing the localization and dynamics of the different transcripts.

These experiments would answer questions such as, what are the time-scales of

RNAmodifications and translational pausing? How transient are RNA structures

and how do they affect localization of the mRNA? While High-throughput

experiments can create millions of data points, they are merely a starting point,

creating a scaffold upon which to build knowledge of RNA processing.

RBP specialization in single cells

While high-throughput transcriptomics from single cells is possible

though imperfect, high-throughput proteomics in single cells is a challeng-

ing problem that remains to be solved. It is not yet possible to perform a massive

“sequencing-style” experiment on proteins as their building blocks, amino acids,

do not have Watson-Crick base-pairing rules. Instead, mass cytometry
152–156

using antibodies conjugated to heavy metal isotopes has been applied primarily

to immune and cancer genes, and could be applied to RBPs, specifically to

ribosomes
157

. Ribosomes have been shown to be specialized to certain tissues,

and have been shown to require specific subunits for proper function
86;158–162

.

Ribosomal dysfunction has been implicated in a wide variety of neurological

disorders such as Alzheimer’s disease and Charcot-Marie-Tooth disorder, as

well as viral infections such as foot-and-mouth disease
163;164

. Performing mass

cytometry of ribosomal subunits could be used to investigate, what is the exact

composition of ribosomal subunits of each ribosome in each cell (Figure 1.3c)?

Follow-up experiments showing how differently composed ribosomes function

differently in binding preferences, translation rates, or localization would be
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needed. For true discovery, it is important to have the ability to shatter all

proteins and reassemble them as in sequencing using technologies such as mass

spectrometry
165;166

, but these have not yet been scaled to single cells and would

require a dramatic reduction in cost to be accessible to researchers.

The concurrentmeasurement of RNA and proteinwould inform howRBPs

specialize todifferent aspects ofRNAprocessing indifferent contexts (Figure 1.3d).

An intermediate technology could be to measure RNA abundance and protein

levels simultaneously. Seq-well, RNA-seq coupled with antibody-based markers

has applied to immune genes
32
. Seq-well could be extended to RBPs, for

example, to dissect families of related proteins, such as ribosomal subunits

or splicing factors, relative to transcript abundance. However, a multiplexed

approach measuring the sequence specificities of proteins in addition to the RNA

abundance would be more informative.

For example, heart, brain and muscle all express members of the ho-

mologous RBFOX family at different levels
99–103

. RBFOX proteins have been

implicated in splicing and in transcript stability
167;168

, in some cases dependent on

the localization of the protein
100

. Understanding exactly which of RBFOX1/2/3

bind at different locations in the transcript would inform how these highly

similar proteins have very specialized functions. There are existing methods for

measuring RNA-protein interactions is cross linking and immunoprecipitation

(CLIP)-Seq, which now has many variants (eCLIP/iCLIP/irCLIP)
107–110

However,

few RBP-RNA interaction sites exist relative to the total amount of RNA and due

to the inefficiency of antibodies, these techniques require high numbers of cells

as input to be able to detect even a few interaction sites. Scaling *CLIP-Seq to

single cells will require substantial optimization of the protocol. Ideally, detecting

several RBPs, their RBP-RNA interaction sites and the entire transcript could
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be measured, to provide insight into how homologous RBPs differentially bind

in different cellular contexts and ultimately create a wide variety of distinct

phenotypes.

1.4.2 Molecular organization in space and time

How do different RNA isoforms influence the protein product? To capture

the RNA-protein transformation, need technologies that combine RNA and

protein measurements. For example, coupling of RNA-FISHwith antibody-based

immunofluorescence of the protein product would allow for visualization of

differential isoform usage and protein localization. For example, if one isoform

appears in cells where the protein is cytoplasmic while the other appears with a

nuclear protein localization (Figure 1.3e), this suggests that the different mRNA

isoforms influence the localization signals of the protein. However, this only

examines cells fixed in one state, and can only garner correlations but not causes –

need perturbations and/or dynamics to visualize how isoforms are differentially

processed. For example, do the isoforms have different transcription or splicing

kinetics? How do their differential sequence, modifications, editing, binding

partners, and structure, contribute to localization and translation?

Moonshot target: Live cell imaging of both dynamics and spatial organization

of RNA processing

Ideally, one could measure the phenotype of a cell, then perturb that

same cell and observe the result. However, most single-cell technologies are

destructive – once you sample the cell, you can’t put it back and see how it

responds in a new situation. Live cell imaging of RNA and protein enables

encoding information of both localization and time scales (reviewed by Buxbaum
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et al.
37
). However, imaging-basedmethods are low throughput as they cannot yet

resolve individual molecules without significant signal amplification, or discover

novel RNA molecules. Nonetheless, as smFISH began by measuring a single

RNA and can now be multiplexed to visualize hundreds of molecules
46
, live cell

imaging has started with a few RNAs at a time and will eventually expand to

visualize poly-adenylation sites, editing, nucleotidemodifications, RNA structure,

and binding partners such as DNA, RNA, protein, and metabolites.

Just as transcription factors come together in pulses
169–178

, RBPs that facil-

itate transcription and perform co-transcriptional tasks must also be aggregated

in pulses, and are especially important for the assembly and disassembly of

membrane-free organelles used in RNA storage and splicing such as paraspeckles,

stress granules and the spliceosome. How does the cell “know” it is time to

transcribe and “tell” the molecular components to convene in one place? How

exactly do these molecules come together? Current methods for live cell imaging

of transcripts are difficult because they require design of RNAs containing bulky

hairpins, then adding the hairpin coat protein, creating large structure on the

RNA molecule and possibly disrupting normal RNA processing
73;179;180

.

Technologies to measure the assembly of these organelles in live cells will

be necessary, labeling both RNA and protein with fluorophores. RNA could

be labeled in cellulo fluorescently without adding much molecular weight
181

,

with molecular beacons
182

, or with novel RNA-targeted CRISPR technologies
111

,

provided the technique scaled to the single molecule level. The biggest challenges

in optimizing the protocol to single molecules is signal amplification and multi-

plexing across multiple RNA molecules, but techniques from in situ sequencing

could be applied to increase the number of fluorophores and increase the number

of different transcripts measured. Given the ultimate system that images single
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RNA molecules in real time, would allow for real-time visualization of an RNA

molecule’s life.

“Goldilocks” balance: Single-cell multiomics

Previously, it was thought that there are certain unalienable “uncertainty

principles” in biology, such that one could not know both both the genotype

and phenotype of a living cell
183

or both the cellular “position” (current cell

state) and “momentum” (a cell’s past or future, i.e. its lineage or differentiation

trajectories)
184

. However, recent work in single-cell multiomics has turned these

principles on their head [reviewed in Macaulay et al.
33
]. Both the genotype

and phenotype can be measured from a single cell by capturing both DNA

and RNA
49;185

, and even coupling with measuring epigenomics and RNA
47;48

.

A cell’s “position” and “momentum” can be inferred through algorithms that

delineate cellular trajectories from phenotypic measurements such as RNA-seq,

reviewed thoroughly by Cannoodt et al.
7
. While simultaneous capture of the

(epi)genome and transcriptome have been major breakthroughs, there are many

more aspects of cellular state that are still invisible to the sequencing eye. We

expect more technologies to upend traditional thinking of what is possible at the

single cell level.

The ability to simultaneously measure RNA and DNA has not yet been

applied to questions of RNA processing, and there are many “low-hanging fruit”

opportunities to study the question, are RNA features marked (epi)genomically

in the DNA?With the simultaneous measurement of both the (epi)genetic context

and transcriptome, researchers can observe mutual exclusivity/co-occurrence of

DNA features and RNA processing, as with within RNA features (Figure 1.3a).

For example, there is evidence that alternative splicing regulation is influenced
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by polymerase speed, GC content and epigenetic marks
63;186;187

. These simulta-

neous measurements would help to to answer the questions, how do chromatin

modifications
188;189

, four-dimensional genome structure
190

, and single nucleotide

polymorphisms influence alternative splicing? In a perfect world, to study the

interplay between DNA and alternative splicing, one could observe genomic

features, transcription speed, and alternative splicing simultaneously, for all

transcripts. Alternative splicing is but one facet of RNA processing, and these

multiomics measurements would help to answer, Is an RNA’s fate encoded in the

(epi)genome?

Another method to create additional context for each individual cell is

to combine high-throughput measurements with genome editing such as with

CRISPR/Cas9, allowing for dissection of complex phenotypes inmammalian cells

at large scales. For example, Perturb-seq is a method that combines knockdown

of genes using CRISPRi with single-cell RNA-seq, and was used to study the

unfolded protein response
191

and effect of lipopolysaccharides on dendritic

cells
192

. This created a computational scientist’s dream dataset, as for each gene

that was knocked down, there was a control dataset, and thus for developing

algorithms, one could always have a negative control to check with. Perturb-Seq

could be applied to study any aspect of RNA processing, e.g. systematically

knocking down ribosomal subunits or splicing factors, enabling fine-tuned

dissection of high-level regulatory units.

So far, the technologies we have discussed have focused on observing

a cell’s present, but recent developments have enabled encoding of a cell’s

history or lineage in its genome using CRISPR/Cas9
83;193

. Coupling phenotypic

measurements such as RNA-Seq or smFISH with lineage tracing, would allow

for comparison of present cell state while considering cellular time. Using
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phylogenetic techniques, cell lineages could be reconstructed and even the times

at which cells asymmetrically divided to change fates could be found. If RNA-seq

encodes a cell’s present, then its traced lineage encodes its past. This lineage

tracing method, coupled with direct RNA sequencing, would help to understand

how developmentally regulated RNA processing events such as RNA editing,

m6A, and alternative splicing, are finely tuned in different lineages. Do all cells

that were committed to a particular lineage also have certain RNA processing

events? This could indicate inheritability of the event, either encoded through

the genome or by asymmetrically dividing the RNA content of a mother cell.

The simultaneous measurement of a cell’s past and present will illuminate a

deeper understanding of cellular processing and will enable the computational

prediction of cellular futures.

1.5 Conclusions

Each RNA molecule lives a rich, fulfilled life, and while advances single-

cell technologies have greatly expanded our understanding of RNA processing,

many questions remain. How do the many transient aspects of RNA, such

as nucleotide modifications, binding partners, 3D structure, and localization,

affect each other? What is the effect of non-RNA, such as DNA, protein, or

metabolites, on RNA? Where in the cell does an RNA molecule travel? What

does it interact with on the way? Finally, when a feature is variable, is it noise or

is it functional? Maybe the noise itself is functional
69–71

? In conclusion, there

are ample opportunities for application of current and future technologies to

understanding the entirety of an RNA’s existence, and ultimately the molecular

processes that drive diversity in cell types across human life.
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Chapter 2

The Expedition software suite:

Computational tools for

transcriptome analysis

In this paper, we developed the Expedition suite, consisting of software

packages that addressed three key deficiencies in single-cell alternative splicing

analysis:

1. Detect and quantify alternative splicing quickly, with minimum false

positives: outrigger, Section 2.1

In single-cell analysis, absolute quantitation of gene expression or “percent

spliced-in” (Psi/Ψ) is important and enable us to learn the distribution of

these quantitations. Previously, relative quantitation for splicing (∆Ψ) is

more commonly used to calculate the difference between groups. Such

relative quantitation tolerates false positive better, as false positives may

not vary between groups, ∆Ψ ∼ 0 and are thus not noticeable in pairwise

comparisons. However,when studyingdistributionof absolute quantitation,

32
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such false positives obscure the observation in unpredictable way and

hinder biological interpretation. The second main problem of previous

splicing algorithm is the inflexible definitions of alternative exons. The

same alternative exons may utilize different flanking exons in different

cells/samples, thus leading to different biological interpretation. To address

these problems, we create outrigger, which uses junction reads to find de

novo exons, creates a splice graph to define junction-based alternative events,

filters for conserved splice sites, and strictly rejectes cases of alternative

events incompatible with the data at hand. Finally, we discuss and compare

to the popular MISO
194

algorithm.

2. Classify modalities of alternative splicing events, including bimodal:

anchor, Section 2.2

The power of single-cell analyses rises from the ability to study the dis-

tribution of a parameter-of-interest. There are a few statistical methods

for finding bimodal distributions, but none are sufficient because they are

either not sensitive enough, or not robust enough to noise. Additionally,

these methods only deal with bimodal distribution and do not classify

other distributions, such as unimodal or multimodal. To create a sensitive

distribution classifier for all modalities, we used Bayesian methods to

create anchor, and compare our method to a simple binning method, the

bimodality index
195

, and the bimodal dip test
196

.

3. Quantify and visualize dynamics in distributions: bonvoyage,

Section 2.3

While there are many statistical tests to compare changes in distributions,

few of them is coupled with visual tools to present changes in distribution
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with both magnitude and direction. For the specific question of alternative

splicing changes, we are interested in observing a event becomes more

included or more excluded. Thus we have employed machine learning

methods to create a visualizable, interpretable 2d space with “included”

and “excluded” axes. This method is compared to the quantification offered

by the Jensen-Shannon Divergence (JSD)
197

.

2.1 outrigger: Splicing estimation with de novo an-

notation and graph traversal

Currently available tools for AS detection and quanitification have two

major problems: (1) inflexible definitions that cannot handle different config-

urations of flanking exons for the same alternative junctions, and (2) lack of

rejection of an alternative event even if its definition is incompatible with the

data-at-hand. The first problem is solved with outrigger index, which defines

all potential alternative events based on the junctions and alternative exons from

the aggregate of entire sample sets in a given project, and enumerates all biologi-

cally possible flanking exon combinations. This step maximize the likelihood to

identify all possible alternative events. To ensure only valid alternative events

were generated, we added outrigger validate to remove alternative events

with introns lacking conserved splice sites. The second prolbem is solved with

outrigger psi, which applies strict rules to only permit junctions with sufficient

coverage for an event in a given sample. All the parameters in the rules can

be user-defined. Thus, outrigger addresses key issues with current alternative

splicing software.



35

2.1.1 Algorithm overview

Broadly, the goal of outrigger is to create a custom, de novo alternative

splicing annotation by using junction reads and exon definitions to create a

exon-junction graph, traversing the graph to find alternative events, and calculate

percent spliced-in (Psi/Ψ) of the alternative exons.

1. outrigger index

2. outrigger validate (optional)

3. outrigger psi

Reject cases with 
insufficient junction reads

Detect exons
de novo

Input: Junction reads from data
Cell 1
Cell 2

Input: Exon definitions from annotation
Gene A Gene B

Annotated exons

Novel exon
Alternative junction

Exon-exon junction read

Legend

Remove alternative exons with
non-canonical splice sites

Input: Junction reads from data
Cell 1
Cell 2

Inclusion
Exclusion

2 2

3

Input: Alternative exons

inclusion reads
inclusion + exclusion reads

inclusion reads
total readsΨ = =

2
SEInclusion reads

Exclusion reads
2 3
MXE

Output: Percent spliced-in (Psi/Ψ) 
for each cell and alternative exon

Inclusion
Exclusion

2 2

3

Output: Alternative exons

Inclusion
Exclusion

2 2

3

Output: Valid alternative exons
Inclusion
Exclusion

2 2

3

Input: Alternative exons

Figure 2.1: Overview of outrigger’s three steps and associated commands:

indexing (outrigger index), validation (outrigger validate) and percent

spliced-in (Psi/Ψ) calculation (outrigger psi). In the first step of building

an index, outrigger considers the entirety of junction reads from the user-

input dataset to detect exons de novo, adds annotated exons, then searches for

alternative exons. In the second, optional, step of validating the detected events,

outrigger removes alternative exons with flanking introns lacking consensus

splice sites. For the third step of calculating Psi/Ψ, outrigger utilizes junction

reads together with alternative exons defined in the indexing step and calculates

Ψ for each sufficiently covered event. Only junction reads are used to represent

inclusion or exclusion reads. SE, Skipped Exon; MXE,Mutually Exclusive Exons.
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Figure 2.2 (next page): Internal steps of indexing via outrigger index: Exons
identification and defining alternative events.

a. Internal workings of the indexing step via outrigger index. User-provided

inputs junction reads can be either genome-aligned .bam files, the .SJ.out.tab
splice junction files from the STAR aligner, or a compiled table in .csv of all

junction reads from all samples for the project. Step 1, only junction reads

with sufficient depth in a cell/sample are retained. By default, the minimum

number of reads is 10 per cell/sample, which can be modified with the flag

--min-reads. Step 2, junction reads are used to identify junction locations, and

reads are aggregated across all cells/samples regardless of which cell/sample

it came from. Step 3, if there is a “gap” between two junctions that is smaller

than certain length X (by default, X � 100 nucleotides but can be modified with

the flag --max-de-novo-exon-length), then an exon is inserted. Step 4, the

identified exons are compared with the annotated exons to obtain the pairwise

relationships between exons and junctions. Step 4 outputs a table of “triples:” of

(exon, direction, junction) encoding the directional relationship between

exons and junctions. Step 5, the output tables from step 4 are utilized to

connect exons through junctions and creates a graph database. Finally, in Step 6,

alternative exons are identified by traversing the graph database. The output

of the indexing step run by the command outrigger index, is junction-based,
outputting the alternative exon and all possible configurations of flanking exons

for each event. For example, on the bottom right, the same skipped exon

event using the same alternative junctions, have four possible configurations of

flanking exons. They are considered to be the same event, but are reported with

all four configurations for the ease-to-use in downstream analysis.

b. Defining alternative events and comparison of biological interpretability

of events found by MISO and outrigger. For a given alternative exon (black

box), there can be multiple transcripts corresponding to the alternative exon

but with different flanking exons. MISO chooses to define the alternative event

using the shortest exons on both sides. Yet, this MISO-defined alternative event

may not actually exist as a transcript in the dataset and will be misleading to

interpret. For example, attempts to translate such non-existing transcript(s)

will be inappropriate. In contrast, outrigger defines the event based on the

junctions, and outputs all corresponding flanking exon configurations, thus

enabling broader use of the outputs and more relevant biological interpretation.
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 to obtain global structure

Step 6: Search for alternative exons
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Step 4: Add annotated exons to obtain
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outrigger index: Create customalternative splicingannotation. The

following is a narrative describing Figure 2.2a.

Inputs. Two inputs are required for outrigger index: junction counts

and gene annotations. The junction counts can be provided in many forms: either

.bam198
genome alignment files, splice junction count .SJ.out.tab files created

by the STAR aligner
199

, or a pre-compiled table of samples’ junction reads in a

.csv format. The gene annotations can be provided in .gtf or .gff format.

Step 1: Retain junctions from each cell with sufficient read depth. Junctions

with reads in an individual sample less than the minimum number of reads, rmin

are removed. By default, rmin � 10, and can be adjusted by the user, for example to

a minimum of 88 reads, with --min-reads 88 on the command line. To illustrate,

if one junction is observed with two (2) reads in 100 samples, although there

were a total of 200 reads observed on the junction, it will be discarded at this

step. Because, there is not sufficient evidence to suggest that this junction is

well-covered in any sample.

Step 2: Collapse reads on shared exon-exon junctions, across all samples. The

aggregate of all junctions fromall samples in a given project are create tomaximize

the likelihood of identifing all potential alternative events.

Step 3: Detect exons de novo. If the gap between two junctions is under X

nucleotides, an exon will be inserted at the gap. This maximum X is necessary,

because otherwise we could insert “exons” that are many kilobases long, but

aren’t true exons -- they are the intergeneic space between genes. By default,

X � 100, and this can be adjusted by the user, for example to 157 nucleotides,
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with the command line flag, --max-de-novo-exon-length 157.

Step 4: Integrate exon annotation to obtain pairwise exon-junction relationships.

Annotated exons are integrated with the de novo exons and create a table of the

pairwise relationships of each exon to each junction. We do this by creating a

database of genes, transcripts, and exons from a GTF gene annotation file using

gffutils200
, and observing which junctions are adjacent to each exon. This

outputs an “exon-direction-junction” table which is used in Step 5.

Step 5: Combine pairwise relationships to obtain global structure. We then

use the adjacencies to build a directional graph which connects exons to each

other via junctions. This graph database was built using graphlite201
, a Python

program that provides a lightweight graph wrapper over SQLite.

Step 6: Search for alternative exons. To find alternative events, all exons in

the graph database were transversed to test, if starting from that exon, it could be

a first exon of an skipped exon (SE) or mutually exclusive exon (MXE) event.

Outputs. The output of outrigger index is a folder containing the

following. The events.csv file contains the event definitions will be used by

outrigger psi. The exonN.bed files, where N is an exon number, will be used

by outrigger validate to check for canonical or non-canonical splice sites.

The splicing event definitions in the events.csv files are specified by the

junctions and the alternative exon. As there may be multiple potential flanking

exons with the same junctions, rather than choosing a single version (as is done

byMISO, Figure 2.2b), we output all possible flanking exon configurations. Thus,

while the critical alternative exons are exon 2 for SE events and exons 2 and 3
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outrigger_output/
index

gtf...............................................................Added by Step 3

gencode.vM10.annotation.gtf...............................Added by Step 4

gencode.vM10.annotation.gtf.db...........................Added by Step 4

novel_exons.gtf.............................................Added by Step 3

exon_direction_junction.csv...................................Added by Step 4

mxe...............................................................Added by Step 6

event.bed....................................................Added by Step 6

events.csv...................................................Added by Step 6

exon1.bed....................................................Added by Step 6

exon2.bed....................................................Added by Step 6

exon3.bed....................................................Added by Step 6

exon4.bed....................................................Added by Step 6

intron.bed...................................................Added by Step 6

se................................................................Added by Step 6

event.bed....................................................Added by Step 6

events.csv...................................................Added by Step 6

exon1.bed....................................................Added by Step 6

exon2.bed....................................................Added by Step 6

exon3.bed....................................................Added by Step 6

intron.bed...................................................Added by Step 6

junctions............................................................Added by Step 1

metadata.csv ....................................................Added by Step 2

reads.csv........................................................Added by Step 1

Figure 2.3: Example output of outrigger index command.

for MXE events, we show all possible exon flanking exon 1s and exon 3s for SE,

and all possible flanking exon 1s and exon 4s for MXE events (Figure 2.2a, lower

right).

Below is an example command using outrigger index:

outrigger index --bam *sorted.bam \
--gtf gencode.vM10.annotation.gtf

This creates a folder called outrigger_outputwith the following contents:

Besides outputting the relevant events.csvwhich is used in outrigger

psi to define events, we also output .bed files for the entire event, the alternative

intron, and each exon, facilitating downstream sequence analysis.

outrigger validate: Remove alterantive splicing lacking conserved

splice sites. The following describes the biological intuition behind Fig-

ure 2.5a. Major (U2) splicesome recognize splice-sites as (5
′
end of intron/3

′
end
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of intron) GT/AG and GC/AG the Minor (U12) spliceosome recognizes splice-sites

as AT/AC202;203
. By default, these combinations of splice-sties are allowed. But

the valid splice sites can be user-specified and changed for example to AA/AA and

GG/GGwith --valid-splice-sites AA/AA,GG/GG.

The output of outrigger validate is a splice_sites.csv folder con-

taining the splice sites, and an additional folder in the splice type folder, called

validated, containing filtered events.csvwhich only contain alternative events

with valid splice sites. For example, as a follow up on our previous outrigger

index command, we validate the alternative exons with the command,

outrigger validate -{}-genome mm10 \
-{}-fasta GRCm38.primary_assembly.genome.fa

This creates the following additions to the outrigger_output folder:

Potential “Franken-events” created by combining junctions over multi-

ple datasets. Asmany junctionsmay occur spuriously in a single cell (sample),

aggregating all junctions across all cells (sample) may create events that were not

observed in any individual cell (Figure 2.5b). We wanted to ensure we strictly

defined when events were valid or not in these cases.

In the case of SE events, the exon will haveΨ �NA for the cell with the

observed inclusion junctions, since they don’t have sufficient reads on both sides

of the exon. For the cell with the exclusion junction, it will haveΨ � 0 since no

inclusion reads were observed.

For MXE events, if each of the four junctions was observed independently

in a different cell, then all of the cells will haveΨ �NA for that splicing event

since there are no cells which have sufficient reads on all junctions of either

isoform.
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outrigger_output/
index

gtf
gencode.vM10.annotation.gtf
gencode.vM10.annotation.gtf.db
novel_exons.gtf

exon_direction_junction.csv
mxe

event.bed
events.csv
exon1.bed
exon2.bed
exon3.bed
exon4.bed
intron.bed
splice_sites.csv............................Added by outrigger validate
validated.....................................Added by outrigger validate

events.csv................................Added by outrigger validate
se

event.bed
events.csv
exon1.bed
exon2.bed
exon3.bed
intron.bed
splice_sites.csv............................Added by outrigger validate
validated.....................................Added by outrigger validate

events.csv................................Added by outrigger validate
junctions

metadata.csv
reads.csv

Figure 2.4: Example output of outrigger validate command.
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b

Cell 2

Cell 1

Cell 3

Skipped exon “Franken-event”

Indexing via
outrigger index

Psi calculation via
outrigger psi

Mutually exclusive exon “Franken-event”
Cell 1

Cell 4
Cell 3
Cell 2 Indexing via

outrigger index
Psi calculation via
outrigger psi

Exon ExonIntron valid intronMajor Spliceosome

outrigger validate (optional)

Exon ExonIntron valid intronMinor Spliceosome

Exon ExonIntron
valid intronMajor Spliceosome

Exon ExonIntron invalid intronNon-canonical splicing

--valid-splice-sites GT/AG,AT/AC,GC/AG
Configurable options

--valid-splice-sites GG/GG
(default)
(only allow GG/GG splice sites)

a

Figure 2.5: outrigger validation and pathological cases.

a. Validation via outrigger validate: Removal of alternative events with

introns lacking consensus splice sites. In this optional step, exons with flank-

ing introns lacking known splice site motifs are removed. This is config-

urable. By default, the valid splice sites are specified as, --valid-splice-sites
GT/AG,GC/AG,AT/AC, but can be any pair of two nucleotides.

b. Possible pathological cases of outrigger. These “Franken-events” consist

of junctions that were observed in independent samples. At the indexing

step, aggregated reads from multiple cells/samples are considered to construct

an index of all junctions to maximize the number of AS events. Yet, at the

Psi/Ψ calculation step, in each individual cell/sample, insufficient reads may

be observed for certain junction resulting inΨ �NA in some cells/samples for

the same event. Top, skipped exons, if each junction is observed only in one

cell, the cell with the exclusion junction is assigned aΨ � 0 while the remaining

cells are assigned as Ψ �NA. Bottom, mutually exclusive exons, Ψ �NA for

all 4 cells, as there is insufficient evidence of exon inclusion or exclusion in

any one cell. Thus, the number of detected events output by outrigger index
can greatly overestimate the number of valid events in the dataset found by

outrigger psi.
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outrigger psi: Calculate percent spliced-in of alternative exons To

calculate percent spliced-in (Psi/Ψ) of a potentially alternative exon identified in

outrigger index, we use the equation forΨ �
inclusion reads

total reads

23
, with substantial

checks for whether the event is valid (Figure 2.6). For SE, there is only one

exclusion junction and thus the the exclusion junction is weighted by two to

compensate (Eq. Equation (2.1)). For MXE, the calcluation is simply the inclusion

reads divided by the total reads (Eq. Equation (2.2)). The junction reads between

exon i and exon j are presented as ri , j , displaying inclusion reads in red and

exclusion reads in blue.

SEΨ

Ψ �
r1,2 + r2,3

r1,2 + r2,3 +2r1,3
(2.1)

MXEΨ

Ψ �
r1,2 + r2,4

r1,2 + r2,4 + r1,3 + r3,4
(2.2)

Multiple validation steps were incorporated to ensure that the junction

reads observed in each sample are consistent with the type of splicing event

annotated by outrigger. This process is described in Supplementary Software

. Figure 2.6.
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Figure 2.6 (next page): Cases created by percent spliced-in calculation via the

command outrigger psi.
The table describes the 11-step sequential logic of outrigger to reject an event

in a cell/sample based on that cell/sample’s junction reads. If an event reaches

a Ψ � NA case, then it is rejected from that sample, otherwise, it continues

through the cases. If the event is rejected, then it is assignedΨ �NA, if it is not

rejected, then it gets a 0 ≤Ψ ≤ 1 value based on the junction reads.

Strict evaluation of percent spliced-in (Psi/Ψ). To compute the percent spliced-in

(Psi/Ψ) of skipped exon (SE) and mutually exclusive exons (MXE) alternative

events during the execution of the command outrigger psi, we use Ψ �
inclusion reads

total reads
. We represent the number of reads spanning the junction between

exoni and exon j as ri , j .
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Psi (Percent spliced-in) calculation via outrigger psi 

Sufficient reads on the junction...

Insufficient reads on the junction

Much more than sufficient reads
...

Reads on junction spanning exon i to exon j

Minimum number of reads per junction, default 10 
and can be user-defined with the flag --min-reads

Legend

Compatible w/
annotation?Notes

inclusion reads
inclusion + exclusion reads

SE
Isoform1 (inclusion)

Isoform2 (exclusion)

MXE

1 2 3 1 2 3 4

Total Junction reads

Number of junctions in splicing event type
(e.g. 3 for SE or 4 for MXE)

e.g. for an MXE event (4 junctions) and
a minimum of 10 reads per junction:

Threshold for total junction reads in the event***

** The multiplier for how much greater one side junction can be is 
    user-defined with the flag --uneven-coverage-multiplier, 
    here shown with the default value of 10. 
   To deal with 0 reads, a pseudocount of 1 is added to all junctions 
    for this test only:

0 5

1200
0 50

1200

Passes

Doesn’t
pass

1 6

1201
1 51

1201

*                  can mean three things:
   1. Transcript was not expressed
   2. Insufficient evidence to confidently call exon inclusion or exclusion
   3. Junctions map to different alternative or flanking exon(s) – considered
       as distinct events during the indexing step, outrigger index

Junctions map to different alternative exon(s)

Same alternative exon(s), different junction(s)

Not applicable,
see below

SE MXE

For a SE event, if the junctions map to different alternative exon (small black exon on the top), 
then the event with smaller exon has a Ψ value ranging from zero to one, but for the 
wider exon (on the bottom), which doesn’t have matched inclusion reads, 
this event is called excluded with Ψ=0 

Original event

Configurable options

--min-reads 10 (default)rmin

--uneven-coverage-multiplier 10 (default)

--bam
--sj-out-tab
--junction-reads-csv

Junction read
inputs

(default: reads from outrigger index)

Zero observed readsCase 2

One junction with >10x reads than the other**Case 5

Exclusion: Isoform2 with sufficient reads and 
Isoform1 with zero readsCase 6

Inclusion: Isoform1 with zero reads and
Isoform2 with sufficient readsCase 7

Sufficient reads on all junctionsCase 8

Only one junction with sufficient readsCase 4

All compatible junctions with insufficient readsCase 3

Case 9 Isoform2 with sufficient reads but
Isoform1 has one or more junctions with insufficient reads

a. Total reads ≥ rthreshold

b. Total reads < rthreshold

***

Not applicable Isoform1 and Isoform2 each have both sufficient and
insufficient junctionsCase 11

a. Total reads ≥ rthreshold

b. Total reads < rthreshold

Case 1 Not applicable Incompatible junctions with sufficient reads

Case 10
a. Total reads ≥ rthreshold

b. Total reads < rthreshold

Isoform1 with sufficient reads but
Isoform2 has one or more junctions with insufficient reads
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Case 1: Incompatible junctions with sufficient reads. This step checks whether

the junction reads are compatible with a MXE event, or rather a twin

cassette event. Specifically, evidence of r2,3 > rmin or r1,4 > rmin suggests

this junction is a twin cassette event but not an MXE event. In such cases,

Ψ�NA. As described in outrigger index, the minimum number of reads

is user-defined, for example to 37 with --min-reads 37.

Case 2: Zero observed reads. Given no reads is observed, this event isΨ �NA,

rather thanΨ � 0 sinceΨ � 0 indicates exclusion.

Case 3: All compatible junctions with insufficient reads. No single junction

has the minimum number of reads rmin, by default rmin is 10, and can be

modifiable by the --min-reads flag. If this is the case, we assignΨ �NA.

Case 4: Only one junctionwith sufficient reads. This applies to a single junction

of two junctions per isoform, e.g. Isoform2 of either SE or MXE events, and

Isoform1 of an MXE event, has sufficient reads. Since only one junction

has the minimum number of reads, rmin, no sufficient evidence indicates

inclusion of exon-of-interest, thus, we assignΨ �NA.

Case 5: One junction with > 10×more reads than the other. When the alterna-

tive exon is covered on the two sides with junction reads of great disparity,

there is insufficient evidence supporting the inclusion of alternative exon

or suggests the exon may involved in a complex splicing, rather than a SE

or MXE. Thus,Ψ �NA. The default multiplier is 10 and can be modified

by the user, for example to 55 by --uneven-coverage-multiplier 55.

Case 6: Exclusion: Isoform2 with sufficient reads and Isoform1 with zero

reads. All junctions on Isoform2 have greater than the minimum reads
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rmin, and all junctions of Isoform1 have no observed reads, thusΨ � 0.

Case 7: Inclusion: Isoform2 with zero reads and Isoform1 with sufficient

reads. All junctions on Isoform2 have no observed reads and all junctions

of Isoform1 have greater than the minimum reads rmin, thusΨ � 1.

Case 8: Sufficient reads on all junctions. Both Isoform1 and Isoform2 have

greater than the minimum reads on all their junctions. This is the best

possible case for alternative splicing.

Case 9: Isoform2with sufficient reads but Isoform1 has one or more junctions

with insufficient reads. If the exclusion isoform, Isoform2 has sufficient

reads, but the inclusion isoform (Isoform1) does not, thenwe assess whether

the total read coverage of the event,

∑
i , j ri , jexceeds rthreshold. If so, aΨ is

calculated; if not,Ψ �NA. We define rthreshold as the number of junctions n

times the minimum number of reads rmin. For example, with a minimum

read count is 10 on an SE event, rthreshold � 30. For a minimum read count

of 10 on an MXE event, rthreshold � 40.

Case 10: Isoform2 has one or more junctions with insufficient reads but Iso-

form1 has sufficient reads. Similar to Case 9, we again test if the total read

coverage is sufficient to calculate Ψ, i.e. if

∑
i , j ri , j ≥ rthreshold. If so, we

calculateΨ, and if not, we assignΨ �NA.

Case 11: Isoform1 and Isoform2 each have both sufficient and insufficient

junctions. This case only applies to MXE events as SE events have as single

Isoform2 junction, and cannot have both sufficient and insufficient junctions.

If by the per-junction coverage, it is unclear whether the event has sufficient

coverage, then we test if the total coverage of the event is sufficient. If so,
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we calculateΨ, and if not, we assignΨ �NA.

Outputs The output of outrigger psi is added into the

outrigger_output folder by creating a psi folder for each splice type. psi.csv

contains Ψ in a matrix, and the summary.csv produces a summary of all the

events observed in all samples with their junction reads.

To follow up with our outrigger index and outrigger validate com-

mands, we can run the below example command in the same directory:

outrigger psi

This command adds to the existing output folder outrigger_output.

Therefore, we don’t need to specify a genome location or reads or index location

if this command is run from the same folder as the outrigger index command

was run, and there exists in the directory a folder called outrigger_output.

Advantages and limitations of outrigger. The main advantages of

outrigger are speed and conserved memory footprint. As outrigger operates

only on junction reads, rather than resampling reads from a .bam alignment

file, which can range in size from 500MB to 20GB and results in a high memory

footprint, outrigger summarizes each .bam file to only its junction reads and uses

that to estimate Psi/Ψ values. Additionally, employing three steps of outrigger

outrigger is able to maximize the number of potential alternative events and

subsequently apply strict validation rules in the step of outrigger psi calculation to

eliminate false positive events from each sample. However, currently, outrigger

can only deal with SE and MXE events. We are in the process of incorporating

other alternative splice types.
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outrigger_output/
index

gtf
gencode.vM10.annotation.gtf
gencode.vM10.annotation.gtf.db
novel_exons.gtf

exon_direction_junction.csv
mxe

event.bed
events.csv
exon1.bed
exon2.bed
exon3.bed
exon4.bed
intron.bed
splice_sites.csv
validated

events.csv
se

event.bed
events.csv
exon1.bed
exon2.bed
exon3.bed
intron.bed
splice_sites.csv
validated

events.csv
junctions

metadata.csv
reads.csv

psi.........................................................Added by outrigger psi
mxe......................................................Added by outrigger psi

psi.csv.............................................Added by outrigger psi
summary.csv........................................Added by outrigger psi

outrigger_psi.csv.....................................Added by outrigger psi
se.......................................................Added by outrigger psi

psi.csv.............................................Added by outrigger psi
summary.csv........................................Added by outrigger psi

Figure 2.7: Example output of outrigger psi command.
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2.1.2 Comparison to other methods

In comparison to the popular splicing program MISO
194

, outrigger has

three major advantages:

1. Ability to build de novo exon indexes (outrigger index)

2. Flexiblity of junction-based definitions of alternative exons, enumerating

all possible flanking exons (outrigger index)

3. Ability to eliminate incompatible alternative events (outrigger psi)

4. Speed of evaluation. Instead of using the huge .bam alignment files directly,

outrigger summarizes the files as junction reads, leading to much faster

calculation of percent spliced-in. Once an index is built with outrigger

index (24-48 hours), then calculation of Ψ/Psi takes 2-4 hours, even on

hundreds of samples. With MISO, the calculation can take 8 hours per

sample.

Ability to build de novo exon indexes. MISO provides pre-built

alternative splicing indexes, which may not be incompatible with the data at

hand. There is a program, GESS
204

to detect alternative exons from .bam files,

which can only handle a handful files at a time and freezewhen given hundreds of

single-cell .bam files. In contrast, in the outrigger indexing step, outrigger builds

indexes based on provided data, which will be integrated with provided exon

annotation allowing identification of novel exons.

Flexiblity of junction-based definitions of alternative exons, enumer-

ating all possible flanking exons. Multiple possible flanking exons can be

associated with an alternative exon, most algorithms, including MISO and
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rMATS
22
, choose a single set (often the shortest one), rather than being flexible

and allowing the user to choose the relevant ones. The resulting “best guess” of

the alternative event may not be biologically relavent and may be misleading

to interprete. In such case, computational translation of alternative events, as

demonstrated in Figure 4, will not be possible.

Ability to eliminate incompatible alternative events Comparing

MISOΨ values side-by-sidewith a corresponding outrigger psi calculation, we

find that 46% of MISOΨ values are rejected and assignedΨ �NA by outrigger

(Figure 2.8).

A large group of false positives that are correctly rejected by outrigger are

Case 1, where only incompatible junctions present sufficient reads. For example,

when twin cassette events are annotated as MXE events and the data indicates

inclusion of both alternative exons, MISO will calculateΨ as 0.5. Because MISO

uses a prior of Ψ � 0.5 and resamples the data to calculate Ψ. In such a case,

MISO is never convinced thatΨ should be towards 1 or 0 and remains atΨ 0.5

(Figure 2.8a).
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Figure 2.8 (next page): Examples of inconsistencies in MISO’s estimation with

single-cell data.

a-c. Representative examples of SE and MXE AS events measured by MISO, but

were unsupported with visual inspection on IGV browser, and were disqualified

by outrigger. To identify SE and MXE events, outrigger constructs a de novo
splicing index based on the junction reads in all libraries in the dataset (see

details in Figures figures 2.2, 2.5 and 2.6). The following examples are not

considered by outriggeras true SE or MXE events, therefore annotated as NA.

Note, MISO does not estimate modality for each event, anchor (see details in

Figures 2.10, 2.11 and 3.4) was used to estimate modality.

a. Top, a MISO-annotated MXE event in ARF4 with MISO estimatedΨs ∼ 0.5
and classified as “middle” modality in each of iPSC, NPC, and MN by anchor.
Yet, in the IGV browser (bottom), this event appears as a twin cassette event,

where both exons 2 and 3 are included, indicating that at least in our dataset

this event is not consistent with the MISO annotation. Outrigger disqualifies

this event as a MXE and assign NA (top left).

b. Top, a MISO-annotated SE event in CLF1 with MISO estimatedΨs ranging

from 0.1 to 0.6 and is classified as a “middle” modality event by anchor in

each of iPSC, NPC, and MN. Yet, in the IGV browser (bottom), exon 1 for this

annotation is not covered at all. Given the data, outrigger do not consider this

as a bona fide SE event and assign NA to this event.

c. Top, a MISO-annotated MXE event in AHSA1 with a wide range of MISO

calculatedΨs and is classified as the “multimodal” modality in each of iPSCs,

NPC, and MN populations by anchor. Bottom, in the IGV browser. Exons

2 and 3 are the annotated alternative exons for MXE, however, another two

well-covered exons between exon 2 and 3 were observed and one extra exon

between exon 3 and 4, which disqualify this event as anMXE event. Furthermore,

when both exon 2 and 3 are included, MISO estimatedΨ scores are closer to 1

instead of around 0.5, as was seen in (a). Thus, outrigger rejects this as MXE

and assign NA.

d.Using outrigger ’s strict rules onMISO annotations, the majority (51%) of the

data generated byMISOwas rejected by outrigger (left). Right, using the exact

same annotation from MISO, outrigger 22% of events found by outrigger
had too wide of a confidence interval (> 0.4) by MISO.

e. Heatmap comparing the numbers and percentages of alternative events that

were within |∆Ψ| < 0.2, switched to exactly 1 or 0 in outrigger, were NA in

either MISO or outrigger, or were in another case.

f. Barplot of the number of cases found only in MISO (orange) and rejected

as NA by outrigger, and of the cases found only by outrigger(green) and
considered to have too wide of a confidence interval by MISO.

To summarize, outrigger follows strict rules to identify alternative splicing

(Figures figures 2.2, 2.5 and 2.6) and provides aΨ distribution more localized

at the extremes ofΨ � 0 andΨ � 1. Although outrigger, may identify fewer

events, they are true SE and MXE events.
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The majority of the false positives are Case 4, where only one junction

has sufficient reads. As MISO counts both junctions to calculate Ψ, shown in

Figure 2.8b-c, many of the events are not covered on both sides of the alternative

exons, which may suggest the events are not true SE events, but rather alternative

first exon events, for instance.

We used MISO’s event definitions and found that as many as 50% of

MISO events did not pass the stringent rules of outrigger, primarily due to the

incompatibility with the annotation of SE and MXE and insufficient coverage

(Figure 2.8j-l).

2.2 anchor: Modality estimation

2.2.1 Algorithm overview

Model modalities as beta distributions We define modality as a dis-

tinct type of distributions. SinceΨs are continuous value between (0,1), distribu-

tion ofΨ can be modeled as Beta distribution. The probability density function

for the Beta distribution, Pr(α, β) is defined between (0,1), with parameters α > 0

and β > 0,

Pr(α, β) ∼ 1

B

(
α, β

) x(α−1) (1− x)(β−1) , (2.3)

where B

(
α, β

)
is the Beta function, defined by α > 0 and β > 0. It may be

easier to think about how the α and β parameters affect distribution by observing

the mean and variance Figure 2.8a. The beta distributions can be described by

four parameterizations: 1 ≤ α < β, α � β > 1, α > β ≥ 1, α � β < 1 (Figure 2.8b).

Conveniently, these four configurations correspond to the four modalities we are
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interested in: 1 ≤ α < β corresponds to excluded, α � β > 1 to middle, α > β ≥ 1 to

included, and α � β < 1 to bimodal (Figure 2.8c). The final multimodal modality

corresponds to α � β � 1, which is equivalent to the uniform distribution used as

null model.

Model parameterization To describe feature distribution as modali-

ties, we parameterized the four parameterizable modalities and used Bayesian

model selection to choose the best model to describe the distribution. Python

package scipy205;206
was used to implement Beta distribution. For included

(excluded) modality, we fixed β (α) at 1 and linearly increased α (β) from 2

to 20 (Figure 2.8d). We chose 2 as a starting parameter since it is near the

α � β � 1 uniform distribution, as we wanted to allow excluded and included

distributions with noise. For bimodal (middle) modality, we changed α and

β simultaneously, monotonically decreasing (increasing) the parameters from

α �
1

12
, β � 1

12
(α � 2, β � 2) to α �

1

30
, β � 1

30
(α � 20, β � 20). The parameters for

bimodal start at
1

12
rather than

1

2
because starting the parameters from

1

2
resulted

in more false positive “bimodal” events, whereas starting the parameters from
1

2

ensures any density near 0.5 is downweighted.

The fit of feature distribution is assessed to the four configurations using

Bayes Factors, represented by K,
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K(m) �
P(D |M(m)

1
)

P(D |M0)
(2.4)

�

∑
i P(α(m)i , β(m)i |M

(m)
i )P(D |α

(m)
i , β(m)i ,M(m)i )∑

P(α0, β0 |M0)P(D |α0, β0,M0)
(2.5)

�

∑
i P(α(m)i , β(m)i |M

(m)
i )P(D |α

(m)
i , β(m)i ,M(m)i )

1

(2.6)

�

∑
i

P(α(m)i , β(m)i |M
(m)
i )P(D |α

(m)
i , β(m)i ,M(m)i ) (2.7)

Where M(m)i is the model of interest (e.g. M(bimodal)
i ) and α(m)i , β(m)i are

the corresponding parameters from the parameterization shown in Figure 2.8d.

The null model, M0 is the uniform distribution, where α0 � β0 � 1, and thus

P(D |M0) � 1 for all datasets. We use a Bayes Factor cutoff of Kcutoff to indicate

the threshold where the model begins to explain the data reasonably well. In

practice we set Kcutoff � 2
5
(log

2
Kcutoff � 5).

The excluded and included modalities vary only one parameter at a

time, whereas middle and bimodal modalities vary both α and β simoutanously.

Models with more parameters are more likely to fit, thus we fit to the one-

parameter models first, assessing whether K > Kcutoff for either excluded or

included. No distribution can fit both excluded and included modalities, thus it

is assigned to the modality with highest K. Next, the distribution is fitted to the

two-parameter bimodal and middle models, checking if K > Kcutoff. If neither

modality applies, we assign the modality to multimodal (2c).
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Figure 2.8 (next page): Overview of anchor parameterization of the Beta distri-

bution.

a. Top, equation for the Beta distribution of the random variable x with parame-

ters α, β > 0. Bottom left, equation for the mean (µ) of the Beta distribution as a

function of its parameters. Bottom right, equation for the variance (σ2
) of the

Beta distribution as a function of parameters.

b. Cartoon of valid values of α and β parameters of Beta distribution, showing

how the space is partitioned by the modalities.

c. Violinplots representing the four ideal modalities, plus the null “multimodal”

distribution. Each modality is annotated with examples of four cells represent-

ing within-cell distributions of included (dark grey) and excluded (light grey)

transcripts, and the corresponding parameters of the Beta distribution.

d. Violinplots of 1 million random samples of the family of Beta distributions

specified by the α and β (x tick labels) parameterization of the four modalities:

excluded, bimodal, included, and middle.
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As exact 0 and 1 are not in the range of the Beta distribution, we implement

this model selection by adding a small number (0.001) to 0 and subtracting this

small number from 1. Thus, we approximate the data-derived distribution from

the invalid closed interval [0, 1] to the valid open interval of (0, 1).

2.2.2 Simulations

We optimized the algorithm parameters using test datasets and visually

inspecting random samples from both the best- and worst-fitting data and

ensuring that the even the worst fitting data was still believably categorized as

the modality (Figure 2.9).

Dataset 1: “Perfect Modalities” with noise To test the limits of

anchor, we simulated perfectly excluded, middle, included, and bimodal distri-

bution, added uniform random noise with 100 iterations, and estimated modality

at each noise level with iteration (Figure 2.10a). As expected, the most frequently

predicted modality was “multimodal,” since the dataset was created from ran-

domly added noise (Figure 2.10b). The next frequent modality was bimodal,

followed by a tie with excluded and included, and the least frequent one is

middle modality. We found that these parameterizations can accurately predict

modality with up to 35% noise added to the middle modality, 50% noise added

to excluded and included modalities, and up to 70% noise added to the bimodal

modality(Figure 2.10d). By visual inspection of distributions fit best or worst

to each modality (Figure 2.9a), we observed that the bimodal distributions are

sufficiently different from other parameterizations, demonstrating the robustness

of the algorithm.
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Figure 2.9 (next page): Best and worst fitting modality data using anchor.
Left, 10 events with largest Bayes Factor, K (best fit) from the assigned modality.

Right, 10 events with smallest Bayes Factor, K (worst fit) from their assigned

modality. For multimodal, as there is no fit, this simply shows 20 random events.

a. Bayesian anchor method on “Perfect modalities” dataset.

b. Bayesian anchor method on “Maybe bimodals” dataset.
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Figure 2.10 (next page): Simulated dataset to test performance of anchor.
a. Violinplots depicting the creation of simulated modality datasets with in-

creasing noise. The base dataset (% Noise = 0) consisted of 100 samples of either

all zeros (excluded), half zeros and half ones (bimodal), all ones (included), or

all 0.5s (middle), exactly representing the four modalities. Uniform random

noise was added in 5% increments, with 100 iterations at each noise level.

b. Percentage of events categorized as different modalities by anchor in the

randomly generated test datasets, across all noise levels, as illustrated in (a).
Number of events for each modality is annotated on top of the barplots.

c. Percentage of events categorized as different modalities by binning in the

randomly generated test datasets, across all noise levels, as illustrated in (a).
Number of events for each modality is annotated on top of the barplots.

d-g. Specificity of modality estimation. Recapitulation of the original modality

as a function of additional noise, using anchor (d), binning (e), Bimodality

index (f), and diptest (g) methods. The x-axis depicts the percent of uniform
random noise added (visualized as a triangle gradient), and the y-axis depicts
the fraction of times a noisy feature was categorized into each modality. The

hue of the line is the modality.
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Dataset 2: “Maybe Bimodals” with noise To test the proportions of

zeros and ones that able to constitute “bimodal” distribution, we created another

dataset comprised 100 samples of varying amounts of 0s and 1s, and adding

random uniform noise ( Figure 2.11a). The primary predicted modality was

bimodal, then multimodal, and finally included and excluded (Supplementary

Figure 2.11b). No distribution was predicted as the middle modality, indicating

the bimodal and middle modalities are drastically different with little chance of

mis-assignment. The falloff of correctly predicting bimodality is at adding 70%

noise (Supplementary Figure 2.11b), consistent with the previous simulation

with “Perfect Modalities” dataset (Figure 2.10d). We found that bimodality is

determing with a 90:10 (10:90) proportion of samples of 0:1 (0:1) (Supplementary

Figure 2.11d). Visual inspection of distributions fit best or worst to each modality

confirmed the assignment of each modality(Figure 2.9b).

To summarize, simulation with two different datasets indicates that 1)

bimodal modality can tolerate to up to 70% of uniform random noise, and

middle modality is least tolerable to noise at only 30%, 2) included and excluded

modalities are drastically different, so as the middle and bimodal modalities,

thus the two step modality assignment procedure (Figure 2) is well-grounded, 3)

anchoris able to determine a bimodal modality with up to 90:10 proportion of

zeros and ones.
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Figure 2.11 (next page): Simulated bimodal dataset to test performance of anchor.
a. Violinplots depicting the creation of the “Maybe Bimodals” test set consists

of potential bimodal events, each containing 100 samples of only zeros (Ψ � 0)

and ones (Ψ � 1) in every combination, shown here as relative to the number of

ones. We added uniform random noise in increasing 5% levels for 100 iterations

at each level. While each combination of 1s and 0s was created, only a subset

are shown for brevity – 1:99, 25:75, 50:50, 75:25, and 99:1 ratios of 1:0 are shown,

with added uniform random noise of 0% (original), 25%, 50%, and 75%.

b. Percentage of events categorized in modalities by anchor in the randomly

generated bimodal test datasets, across all noise levels, as illustrated in (h).
Number of events for each modality is annotated on top of the barplots.

c. Percentage of events categorized in modalities by binning in the randomly

generated bimodal test datasets, across all noise levels, as illustrated in (h).
Number of events for each modality is annotated on top of the barplots.

d-k. Accuracy of bimodality prediction, as a function of the noise added to the

dataset.

d-g. Specificity of bimodality estimation upon addition of uniform random

noise. The x-axis shows the percent added uniform random noise (visualized as

a triangle gradient), and the y-axis indicates the fraction of time features in each

noise percentage and proportion of 1 : 0 was categorized as bimodal. Overall, all

but the very extremes of the 1 : 0 proportions were consistently categorized as

bimodal until 70% noise, after which point nearly all events became multimodal.

Modality estimations are shown using anchor (k), binning (l), Bimodality Index

(m), and Diptest (n).
h-k. Sensitivity of bimodality detection. Percentage of events predicted as

bimodal given different proportions of 0s and 1s, and increasing uniform

random noise. Events are called as bimodal with approximately 9:1 ratio of

0s and 1s (and vice versa), shown with a dotted line at 10% ones and 90%

ones. Bottom triangle gradient shows increasing ratio of ones to zeros, i.e. from

exclusion to bimodal, to inclusion. Bimodality estimations are shown using

anchor (o), binning (p), Bimodality Index (q), and Diptest (r).
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2.2.3 Comparison to other methods

Simple binning We can compare this to other methods we attempted,

such as fixing bins of [0,0.3,0.7,1] and using cutoffs for the densities, which does

not account for the continuous nature of the underlying distributions. We found

the modality whose binned distribution was the smallest distance (measured

by Jensen-Shannon Divergence
197

) away from each binned event. In both the

simulated modalities and simulated bimodal datasets, we found a sharp increase

in multimodal distributions and by eye, poorer categorization of the bimodal

modality, especially at the decision boundary of low JSD (Figures figure 2.11c, e,

j, l, p).

Bimodality index Another test for bimodality is the Bimodality In-

dex
195

(BI), which requires estimating each feature as a mixture of Gaussian

models. We used the implementation of Generalized Mixture Models in

scikit-learn207
to estimate two Gaussian distributions for each model, and

calculated the BI. For perfect bimodal featues, the value is large, for example,

we found that for the zero-noise bimodal event, the BI � 402) and was the single

bimodality index that was larger than 100 for any feature (Figure 2.11f, j). This

shows that our method is more sensitive to finding bimodal features with the

addition of noise, which BI cannot handle.

Hartigan’s Dip test A commonly used test for unimodality is Harti-

gan’s dip test
196

. If the distribution fails the unimodality test, then it is considered

bimodal. To define a cutoff for when the dip statistic becomes reliable, we

calculated the dip statistic using a Python implementation of the test, called

diptest208
. We used a p-value cutoff of p < 0.05 as our threshold for assigning

an event as bimodal. We used the diptest statistic on the two datasets, and found
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that while the zero-noise bimodal event was not detected as bimodal, adding

as small amount of noise improved the diptest’s detection of bimodal events

(Figure 2.11g,k), and the accuracy dropped off at a very high noise level - 90%.

As expected, the excluded, included, and middle modalities weren’t detected as

bimodal, except at higher noise levels, which we also saw with anchor.

2.3 bonvoyage: Transformation of distributions to

waypoints and voyages

2.3.1 Algorithm overview

The goal of bonvoyage is to be able to summarize the entire distribution of

a feature into a single point in space, enabling visualizationmultiple distributions

at a time with intuitive interpretation. To accomplish this, we will transform

one-dimensional vectors into two-dimensional space. Specifically, the x-axis

will represent the excluded dimension and the y-axis will represent the included

dimension, and all points will be described as a sum of excluded and included

components (6a, left). For example, for two distinct cell-types, we can imagine a

feature that starts at a included modality in the first and changes to a excluded

event in the second, or changes from middle to bimodal (6a, right).

Data discretization We will use a reduced representation of our splic-

ing data by binning each feature on bins b of size 0.1, where bn represents the nth

bin. We represent the binned splicing matrix with BΨ, where BΨ[k , j] represents

the fraction of non-null samples in feature j with Ψ value contained in bk . In

practice, we pre-filter the data by using only features for which there are enough

samples. In the main text for this paper, we used a minimum of 10 cells.
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Dimensionality reductionvianon-negativematrix factorization Non-

negative matrix factorization (NMF) is a parts-based dimensionality reduction

algorithmwhich results inmeaningful, interpretable results
209

. It is an alternative

to other dimensionality reduction methods such as principal- and independent-

component analyses (PCA and ICA) because its features are both independent,

and non-negative, and thus each feature is composed of a sum of the underlying

structure of the data, without pesky negative terms.

Thus, for NMF, we will be reducing BΨ as such,

BΨ ≈W ×H, (2.8)

Where W is a (features, 2)-size matrix of the composition of each feature

as a sum of how many samples are excluded and included. We found that in

the alternative splicing data, the primary components were the included and

excluded values, but in other datasets, this may not be the case. Thus, as the

components of NMF are the most prominent features, to ensure reproducibility

of the axes across datasets, we seeded the NMF transformation with a matrix that

is composed of features that are primarily excluded plus a single included feature.

We used the Python package scikit-learn207
for the Projected Gradient NMF

implementation.

We call the projected distributions “waypoint space,” and the distance

between two points a “voyage,” such as the voyage of the MXE event in PKM

(Figure 3.15c).
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2.3.2 Simulations

Transformation of static distributions To demonstrate the ability of

bonvoyage, we created a simulated dataset which we call “Maybe Everything”

consisting of every combination of 0s, 1s, and 0.5s (Figure 2.12a-d), essentially

incorporating both the “Perfect Modalities” (from Section 2.2.2) and “Maybe

Bimodals” (from Section 2.2.2) into a single dataset. Again, we added uniform

random noise at 5% intervals. We transformed the entire simulated dataset into

the “waypoint” space.

To identifying features which change in distribution, we calculate the

“voyage” between them in waypoint space. As a demonstration, we shuffle the

simulated data to create two different in silico phenotypes. We will use each

feature as a “waypoint” along the voyage, and calculate total travel distance of

each feature between the phenotypes.

A key aspect of the waypoint space is that while changes from exclusion

to inclusion are easy to spot by a change in means, the change from a middle

to a bimodal is not, and requires a battery of other tests to find. Here, voyage

space has a significant advantage as it gives both the magnitude of change and a

directly interpretable direction.
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Figure 2.12 (next page): Visualization capabilities of bonvoyage shown with

simulated data

a-d. Datasets used for testing bonvoyage. Uniform random noise was added in

5% intervals to all datasets, up to 95% noise, for 100 iterations at each noise level.

a. Perfect middle, included, and excluded modalities, with added noise. Only

0%, 25%, 50% and 75% noise levels are shown for brevity. Top, averaged

violinplots for all features at a given level of noise. Bottom, waypoint space of

all features at the specified noise level.

b.Maybe middle-included modalities, created with every combination of 0.5
and 1.0 values. Only the 0% noise dataset is shown for brevity. Top, violinplots,

bottom, waypoint plots.

c. Maybe excluded-middle modalities, created with every combination of 0.0
and 0.5 values. Only the 0% noise dataset is shown for brevity. Top, violinplots,

bottom, waypoint plots.

d.Maybe bimodal modalities, created with every combination of 0 and 1 values.

Only the 0% noise dataset is shown for brevity. Top, violinplots, bottom,

waypoint plots.

e. Comparison of voyage magnitude and JSD between “Maybe everything” data

and a shuffled copy to show the entire distribution.
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2.3.3 Comparison to other methods

As there exist many methods for comparing distributions, we will show

that the magnitude of change obtained from bonvoyage is comparable to other

metrics for assessing changes in distribution. In particular, we will show the

metricswithin eachmodality, and acrossmodalities, compared to Jensen-Shannon

Divergence
197

(JSD) in (Figure 2.12). While JSD is more sensitive to slight changes

in distribution (their scatterplots are skewed towards the right), it does not also

encode directionality of change. Thus, bonvoyage offers a unique perspective on

how to interpret changes in distribution.
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3.1 Introduction

Alternative splicing (AS) generates protein diversity in human cells as

over 90% of multi-exon genes are alternatively spliced
23;210–212

. Transcriptome

profiling by sequencing (RNA-seq) has emerged as a powerful technology to

detect and quantify AS in tissue or cell populations
23;213;214

. Neural tissues

have especially high levels of alternative splicing, though it is unclear whether

it is a result of high levels splicing within each cell or heterogeneity of cells,

impeding precise understanding of AS regulation and dynamics. While single-

cell technologies (scRNA-seq) can, in principle, address the issue of heterogeneity,

and AS variation has been observed in single-cells
25;27;29

, we still do not know if

variable AS events are evolutionarily or biologically distinct from less variable

events. Robust computational methods are needed to fully characterize the

complexity of AS at the whole transcriptome level in single cells.

Previous studies that investigated AS in single cells were limited to only a

few examples
27;65

or simply discovered novel splice junctions
25
. However, the

key challenge in single-cell AS analysis is not only to measure, but to describe

variation in ASwithin a group of single cells, enabling the discovery of differential

AS distribution between populations. Most computational tools for AS were

developed for bulk RNA-sequencing andwere designed for pairwise comparisons

to compute relative differences, such as DEXSeq
16

and rMATs
22
. Yet, for single

cells, calculating all pairwise comparisons are impractical. Additionally, many

algorithms do not consider the compatibility of splicing annotation with the

observed data. Algorithms, such as MISO
194

, utilize probabilistic priors which

can assign AS events percent-spliced-in (Psi) values near the prior (Figure 2.8),

resulting in false positive AS events and also prevent meaningful estimation of
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splicing variation. Other available methods that reconstruct isoforms or estimate

read dispersion (Cufflinks, TIGAR2, WemIQ)
215–217

are not appropriate due to

the current low molecular capture rate and uneven transcript coverage in single

cell RNA-seq datasets. Thus, the lack of computational tools to describe the

distribution of AS limits single cell AS analysis to only a few cells or a few events

and prevents us from applying systems biology methods to understand AS

complexity on a global scale. Similarly, inability to visualize distribution changes

from one cell-type/state to another impedes identification of dynamic AS events

subjected to specific regulation.

Three key concepts need to be addressed in single-cell AS analyses: (1)

implementation of strict rules to identify AS events and ensure compatibility of

the annotation and observed data, (2) description of variation and distribution

of AS events and (3) visualization of AS distribution and its dynamics from

one cell-type or state to another. Therefore, we developed Expedition, a suite of

algorithms integrated in a complete software package. Expedition can identify

and quantify AS events in scRNA-seq data (outrigger), categorize splicing

modalities (anchor) and visualize modality dynamics (bonvoyage). To illustrate

its utility we sequenced and analyzed single cells from induced pluripotent

stem cells (iPSCs), in vitro differentiated neural progenitor cells (NPCs) and

motor neurons (MNs). AS events were quantitated and classified into five

distinct modalities. Up to 75% of AS events exhibit unimodality, where exons are

primarily included or excluded with low variance in each cell population. Only

20% of AS events are highly varying, composed primarily by bimodal AS events.

Interestingly, these bimodal AS events account for essentially all AS events that

change modalities during neuronal differentiation, thus representing cell-type

specific splicing. Furthermore, we demonstrate that individual bimodal and
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multimodal events are able to reveal the substructure of a cell population that

was undetected by global gene expression analysis. Finally, our study revealed

that highly variance AS events exhibit evolutionary and sequence characteristics

distinct from unimodal events, illustrating the importance of single-cell analysis

of RNA processing.

3.2 Results

3.2.1 Identification of alternative splicing events in single cells

with outrigger

To study alternative splicing in a neural differentiation system, human

iPSCs were differentiated towards neural progenitor cells (NPCs) and motor

neurons (MNs), as supported by immunofluorescence staining and qRT-PCR of

known markers (Figure 3.2a, Figure 3.3a). We prepared scRNA-seq libraries
218

which were sequenced to an average depth of 15-25 million, 100 bp paired-

end (PE) reads per cell (Figure 3.3b). Bulk sequencing libraries were also

generated from 1,000 cells. We mapped reads to the hg19 genome using RNA-

STAR
199

and estimated gene expression as transcripts per million (TPM) using

sailfish
219

. Genes detected in at least 10 cells were retained and 4,000-11,000

genes were identified per cell in each population (Figure 3.3c-d). Downstream

analyses were performed on scRNA-seq datasets from 62 iPSCs, 69 NPCs and

60 MNs that satisfied stringent quality control metrics, after excluding outliers

detected by k-means clustering (Figure 3.3e). Lineage-specific transcription

factors (POU5F1, PAX6 and ISL1) and RNA binding proteins (LIN28A, MSI1 and

RBFOX1) that distinguished each cell-type were observed (Figure 3.3f). Principal
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and independent component analysis (PCA and ICA) confirmed that iPSCs,

NPCs and MNs were homogenous, yet distinct populations (Figure 3.3g, h).
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Figure 3.2 (next page): Cell-type specific alternative splicing is an independent

feature of cell identity.

a.Human iPSCs are directly differentiated into neuron progenitor cells (NPC) or

motor neurons (MN) in vitro. Cell identity is verified by immunofluorescence

staining. 63 iPSCs (light green), 73 NPCs (medium green) and 70 MNs (dark

green) passed QC and were retained for splicing analysis. Bulk samples are

independent samples of 1000 cells.

b. Pyruvate kinase M (PKM) is consistently expressed in iPSCs, NPCs and MNs,

shown by log2(TPM+1) in single cells by cell-types.

c. Differential inclusion of a mutually exclusive exon (MXE) alternative splicing

(AS) event in PKM is observed in the three cell-types from single cell RNA-seq.

top, Schematic of the MXE composed by exon 10 (e10) and exon 9 (e9). bottom,

distribution ofΨ for exon 9 in single cells is illustrated by cell-types. Ψ score

is estimated by outrigger (see Methods). Each green dot in the violin plots

represents one cell. Black dots represent measurements in bulk samples.

d. Coverage track of MXE exons in pyruvate kinase M (PKM) gene. Each row

represents a single cell/sample.

e. Preferential inclusion of e10 and e9 in iPSCs and MNs, respectively, were

demonstrated in single cells by smRNA-FISH. Probe sets against constitutive

exons (green in merge images) and either exon 10 or exon 9 (red in merge

images) were designed in PKM gene. Representative smRNA-FISH images for

exon 10 (upper) and exon 9 (lower) (left panel). Distribution of normalized exon

inclusion is depicted in iPSCs (light blue with dashed outline) and MNs (dark

blue with solid outline; right panel). 74 iPSCs and 101 MNs were counted for

e10 inclusion; 125 iPSCs and 67 MNs were counted for e9 inclusion. Normalized

inclusion fraction is determined by the percentage of exon specific probes co-

localized with constitutive probes/constitutive probes, and resulting percentage

is normalized by the 95 percentage of the maximal inclusion.

f-g. AS profile is an independent feature of cell-types. 12,685 Non-differentially

expressed (non-DE) genes were identified by non-parametric Kruskal-Wallis

test with Bonferonni-corrected q-values > 1.

f. ICA on gene expression values of non-DE genes failed to distinguish the three

cell-types.

g. ICA on Ψ scores of the AS events residing in non-DE genes, showing AS

events are able to group iPSCs, NPCs andMNs, independent of gene expression.
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To identify and quantify alternative splicing (AS) events in scRNA-seq, we

developed outrigger, an algorithm that uses only junction-spanning scRNA-seq

reads to detect and quantify AS. outrigger then builds a de novo index based

on the aligned reads to identify known and novel AS events (Figures 2.1, 2.2,

2.5 and 2.6). Strict rules were applied to ensure only events with sufficient read

coverage, contained valid splice sites, and were compatible with skipped exon

(SE) and mutually exclusive exon (MXE) definitions were reported (Figure 3.3j).

Requiring at least 10 reads per junction, outrigger detected 2,000-10,000 SE and

MXE events in each cell. Single iPSCs contained a higher number of AS events

( 5,000-10,000) compared to NPCs or MNs ( 2,000-6,000) (Figure 3.3k,l), likely due

to higher RNA content in iPSCs. The bulk samples consistently comprised of

10,000 events, more than most single cells. When an AS event is detected in only a

few cells, it may be due to biological variation, aberrant splicing or technical noise.

Thus, we retained 13,910 AS events that were detected in at least 10 non-outlier

cells in each population within genes that satisfy an expression threshold of

TPM > 1 (Figure 3.3m-o). An example of an AS event detected by outrigger is a

MXE event of exons 9 (e9) and 10 (e10) in the PKMgene, encoding pyruvate kinase,

which is known to be differentially spliced between committed and proliferative

tissues
220;221

(Figure 3.2b). PKM is highly expressed across the three cell-types,

yet individual iPSCs almost exclusively utilizes e10 whereas e9 is the major AS

event in MNs, although 20% (14 out of 60) MNs were observed to possess both

isoforms (Figure 3.2c,d). To verify the differential inclusion of e10 and e9 in iPSCs

and MNs, we designed RNA-FISH probes that target constitutive exons of PKM

and two probe sets targeting e9 or e10, exclusively. Our RNA-FISH results agreed

with outrigger predictions (Figure 3.2e). Furthermore, ICA based on the Psi

value for each AS event within non-differentially expressed genes generalized
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our findings with PKM splicing. Indeed, single-cell alternative splicing profiles

identified by outrigger distinguish the three cell-types (Figure 3.2f,g), revealing

that AS discerns single cell identities, independent of gene expression.
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Figure 3.3 (next page): Quality control of single cell expression and splicing data.

a. RT-qPCR validation of biomarker expression in the bulk populations of iPSCs

(light green), NPCs (medium green), MNs (dark green). Relative expression of

the indicated genes were normalized to housekeeping genes RPL27 and PGK.

b. Sequencing depth for single cell libraries were depicted in box plots. On

average, 10-20 million reads of 100bp length was obtained.

c. Number of detected genes for single cell libraries shown as boxplots. Approx-

imately 4,000-6,000 genes were detected at TPM > 1 in single cells.

d. Number of detected genes compared to the sequencing depth for each sample.

x-axis, number of reads that mapped uniquely to the genome (fewer than 10

locations), y-axis, number of genes with TPM > 1 detected in each sample. Bulk

samples are indicated with a black outline and outlier samples are indicated

with a grey outline. Left, iPSC samples, middle, NPC samples, right, MN

samples.

e. Outlier MN cells identified by K-means clustering exhibited a transcriptome

resembling NPCs. Unsupervised hierarchical clustering demonstrated that MN

outliers are clustered together with NPCs.

f. Expression of lineage-specific transcription factors (left) and RNA binding

proteins (right). Specifically, POU5F1/OCT4 and LIN28A are specific to iPSCs,

PAX6 and MSI1 are more highly expressed in NPCs, and ISL1 and ELAVL4 are

only expressed in MNs.

g. PCA of highly variant gene expression. Highly variant is defined as two

standard deviations away from mean gene-level variance across all samples.

h. ICA on highly variant gene expression. Highly variant is defined as two

standard deviations away from mean gene-level variance across all samples.

i. Barplot showing the

textttoutrigger cases found across all splicing events and all samples.

j. The number of AS exons (both SE and MXE event types) detected per single

cell library.

k. Histograms of number of cells per detected AS exon, in each cell type. Many

AS exons were found in only one cell. A minimum of 10 cells per phenotype

used, indicated by a dashed red line.

l. Histogram of gene expression across all single cells in iPSC, NPC and MN

populations.

m. Expression of genes containing AS exons. 90% of the detected splicing events

reside in transcripts expressed between 2.5-10 of log
2
(TPM+1), as indicated by

a dashed black line.

n. Number of detected AS events compared to the sequencing depth for each

sample. x-axis, number of reads that mapped uniquely to the genome (fewer

than 10 locations), y-axis, number of non-NA AS events detected in each sam-

ple. Bulk samples are indicated with a black outline and outlier samples are

indicated with a grey outline. Left, iPSC samples, middle, NPC samples, right,

MN samples.
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3.2.2 Assignment of single cell alternative splicing events to

modalities using anchor

To categorize the distribution of single cell Psi values, we developed

a Bayesian framework, anchor, to designate each AS exon’s distribution into

one of five modalities (Figure 3.4b): (1) excluded, where most cells contain the

excluded isoform and Psi is close to 0; (2) bimodal, where two subpopulations

with either the excluded (Psi near 0) or included isoform (Psi close to 1) can be

observed; (3) included, where most cells contain the inclusion isoform (Psi close to

1); (4) middle, where most individual cells have both the inclusion and exclusion

isoforms (Psi distribution is centered around 0.5); and (5) multimodal, where the

distribution of inclusion and exclusion isoforms does not fit any of the previous

categories (Figures 2a,b). Within each cell-type, the Psi distribution for each AS

event was modeled using a Beta distribution
222

. We use a two-step process to

assign modality (Figure 3.4c), a Bayes Factor (K) of fit was first calculated for the

one-parameter models, namely included and excluded. If K did not meet the

cutoff (log
2

K < 5), these events are then assessed for their fit to the two-parameter

models, namely middle and bimodal. Remaining events were assigned to the

multimodal modality. Detection of unimodality was robust up to the addition

of 50% uniform random noise (Figure 2.10) and bimodality was detected up

to a 9:1 ratio of inclusion to exclusion, and is robust with up to 70% uniform

random noise (Figure 2.11). Thus, we conclude that anchor is a robust classifier

of alternative splicing modalities.
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Figure 3.4 (next page): Assignment of single cell alternative splicing events to

modalities using anchor algorithm.

a. Schematic of SE and MXE alternative splicing events. Isoform A refers to

exclusion of alternative exon (exon 2 in SE and exclusion of exon 2 (black)

but inclusion of exon 3 (grey) in MXE), and isoform B refers to inclusion of

alternative exon (exon 2 in SE and MXE) of alternative exon. Circles illustrate a

single cell containing RNAmolecules of a given AS event. Light grey represents

isoform A and dark grey represents isoform B.

b. A schematic of the proposed five modalities tested by anchor. Distribution

of Ψ for each AS event can be modeled as beta probability distribution pa-

rameterized by and . Modality of excluded (Ψ density concentrated around

0), bimodal (Ψ density concentrated towards 0 and 1), included (Ψ density

around 1), middle (Ψ density around 0.5) or multimodal (Ψ density spread out

uniformly across 0 to 1). The first four modalities are tested by anchor, and the

final multimodal modality represents the null model.

c. Two-step modality assignment process is utilized by anchor. For the Ψ

distribution of a given AS event, the Bayes Factor (K) of fit is first calculated for

one-parameter models (only one of or is parameterized), including included

and excluded modalities. If , modality is assigned to the modality with highest .

When is not satisfied, an event will be tested in the 2nd step, in which the Bayes

Factor (K) of fit is calculated for two-parameter models (where both and are

parameterized), indicating bimodal and middle modalities. If an event cannot

fit at either step, it will be assigned to multimodal modality. for both steps.

Five events from each modality assigned by anchor were randomly selected as

examples. d. Composition of AS modalities is similar in iPSCs, NPCs, and MNs.

right, zoomed-in panel shows middle and multimodal modality are less than

1% in the three populations.

e. Composition of modalities of permuted splicing data. Psi scores from all

identified AS events in all cells were randomly permuted 1,000 times, then

anchorwas applied to estimate modalities. Almost 100% of permuted events

are assigned as bimodal. Error bars represent 95% confidence interval from

1,000 bootstrapped intervals. Right, zoomed-in panel shows low percentage of

unimodal events in permuted data.
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In all three cell-types, exons within the excluded and included modalities

account for 25-30% and 45-50% of all AS exons analyzed, respectively, indicating

that up to 70-80%ofASevents in a given cell-type exhibit unimodality (Figure 3.4d,

Figure 3.5a), with events largely shared across cell-types Figure 3.5b). In com-

parison, AS events that exhibit bimodality account for up to 20% of detected AS

events, whereas the middle and multimodal modalities account for less than

1% of AS events. The high-variance bimodal and multimodal events differ the

most from bulk samples’ AS estimates with a ∆Ψ>0.1 for 40-80% of the events

(Figure 3.5c). Simulations indicate that the observed percentages of unimodal

and bimodal AS events are statistically unexpected (random permutations expect

99% bimodality and 0% unimodality; Figure 3.4e). As we increased the gene

expression thresholds, the total number of reliably detected AS events decrease

for all modalities. Yet, bimodal events continue to be observed even in the

genes with the highest expression (log
2
TPM > 9, Figure 3.5d-g), suggesting that

sampling biases cannot account for the observation of bimodality. Therefore, our

algorithm anchor estimated that most AS events are either included or excluded

in single cells, with up to a fifth of events exhibiting bimodality or multimodality,

which are undetected in bulk splicing analyses.
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Figure 3.5 (next page): Modality estimation at increasing gene expression cutoffs.

a. Summary of total number of AS events identifed by

textttoutrigger and their modality identified by

textttanchor for each cell type.

b. Venn diagrams of events shared in modalities between cell types. AS events

in included and excluded modality are largely shared across the three cell types,

but fewer bimodal events are shared across three cell types. Boxed, all AS events,

regardless of modality.

c. Percentage of modality AS events inconsistent with pooled estimates, where

the mean difference of psi between singles and pooled (|∆ ¯Ψ|) is greater than 0.2.
d-g. Effect of the expression level per AS event on modality estimation.

d. Number of genes remaining at the expression cutoffs.

e. Number of AS exons at varying expression cutoffs.

f. Percentage ofmodality estimated at different expression cutoffs (right, zoomed

in panel).

g.Number of modality events estimated at different expression cutoffs (right,

zoomed in panel).
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3.2.3 Splicing modalities exhibit distinct sequence and evolu-

tionary characteristics.

To investigate whether events in different modalities had distinct proper-

ties, we first measured the degree of evolutionary conservation of exon sequences

across placental mammals. Expectedly, exon sequences within AS events in

the included modality show the highest degree of sequence conservation equiv-

alent to that of constitutive exons, whereas exons in the excluded modality

are least conserved (Figure 3.7a). Bimodal exons exhibit an intermediate level

of evolutionary conservation, which is statistically significantly different from

excluded and included modalities (q < 10
−50

, q < 10
−100

, respectively). However,

intronic sequences flanking excluded and bimodal AS are both significantly

more conserved than introns flanking included or constitutive exons, a trend that

increased along neural differentiation (Figure 3.7b and Figure 3.6a,b). While both

excluded and bimodal introns are highly conserved, bimodal introns are more

conserved in the 5-20bp window adjacent to the exon-intron junction, whereas

conservation for excluded modality decreases in the same region. We also

examined the evolutionary history of genes containing bimodal and multimodal

exons. Human protein-coding genes have been categorized into 20 phylostrata,

with archea as phylostratum 1 (ps1) and human as ps20
223

. Interestingly, 98

genes harboring multimodal and 1832 genes containing bimodal AS events

are more likely found in recent phylostrata in comparison to genes containing

excluded, included AS events or all genes containing any AS exon (Figure 3.7c).

Additionally, orthologous exons of 28 bimodal and 3 multimodal AS are more

frequently alternatively spliced across mammals (Figure 3.7d). The exon lengths

and the flanking introns of bimodal AS events are significantly longer than
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those of the included modality and constitutive exons (Figure 3.7e, Figure 3.6c).

Repetitive elements such as Alu are known to be stochastically exonized
224

, and

we find Alu elements more enriched in excluded exons, fewer within bimodal

exons, and almost absent from AS events in the included modality (Figure 3.6d).

Other features analyzed, including splice site strengths, GC content, showed that

bimodal and multimodal exons as intermediate between excluded and included

modalities (Figure 3.6e-i). We conclude that bimodal and multimodal events are

enriched for longer flanking introns with higher conservation, present in recently

evolved genes, have orthologs in mammals that are also AS events, in agreement

we previous findings
225

.



94

Figure 3.6 (next page): Supplementary molecular features of each splicing modal-

ity.

a. Flanking intron sequence is more conserved in bimodal modality. Shown in

motor neurons, intron conservation of bimodal events is slightly higher than

excluded AS events. b. Barplot of mean placental mammal PhastCons score

in introns flanking modality exons, across cell types. Bimodal exons in motor

neurons andNPCs are statistically enriched for higher conservation as compared

to iPSCs (Kolmogorov-Smirnov test, Bonferroni-corrected).

c. Significance (top) and boxplots (bottom) of the length of the alternative exons

of different modalities. Constitutive exons are statistically enriched for longer

exons, compared to excluded modality (Kolmogorov-Smirnov test, Bonferonni-

corrected).

d. Heatmap of the number of AS events in each modality overlapping with

repetitive elements with AS exons, shown in iPSC. Excluded modality is statisti-

cally enriched for overlap (q < 10
−50

, Hypergeometric test).

e. Significance (top) and boxplots (bottom) of the 5
′
splice site scores of the

exon, specifically the splice donor site as measured by MaxEntScan. Bimodal

and excluded exons have statistically significantly lower splice site scores than

included exons (Kolmogorov-Smirnov test, Bonferonni-corrected).

f. Significance (top) and boxplots (bottom) of the 3
′
splice site scores of the

exon, specifically the splice acceptor site as measured by MaxEntScan. Bimodal

and excluded exons have statistically significantly lower splice site scores than

included exons (Kolmogorov-Smirnov test, Bonferonni-corrected).

g. Significance (top) and boxplots (bottom) of the mean expression level of genes

(log
2
(TPM+ 1), x axis) harboring corresponding AS events in each modality.

While events from all five modalities are detected across entire range of gene

expression, genes containing bimodal exons are statistically enriched for lower

expression (Kolmogorov-Smirnov test, Bonferonni-corrected).

h. Significance (top) and boxplots (bottom) of the GC content of the alternative

exons of different modalities. Excluded exons are statistically enriched for

higher GC content, compared to included exons (Kolmogorov-Smirnov test,

Bonferonni-corrected).

i. Significance (top) and boxplots (bottom) of the number of exons per gene har-

boring corresponding modalities, measured by the maximum number of genes

in any transcript of a gene. Genes containing excluded exons are statistically

enriched for fewer exons per gene (Kolmogorov-Smirnov test, Bonferonni-

corrected).
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Figure 3.7 (next page): Bimodal AS events exhibit distinct sequence and evolu-

tionary features.

All results are shown for iPSCs that have highest number of AS events (12,690).

Results are similar in three cell-types, except where indicated. All q-values

of significance were derived from multiple hypothesis corrected (Bonferonni)

non-parametric Mann-Whitney U test, unless otherwise indicated.

a. Cumulative distributions of the mean Placental Mammal PhastCons score

in each modality are shown, with constitutive exons as comparison. AS exons

from included modality (red) are as conserved as constitutive exons (black),

while excluded exons (blue) are least conserved, followed by bimodal (purple)

and multimodal (grey) exons. right, heatmap of pairwise significance scores

between each modality or constitutive exons (right panel).

b. Mean Placental Mammal PhastCons scores of flanking intronic regions of

exons in excluded (blue) bimodal (purple), multimodal (grey), included (red)

modalities, and constitutive (black) exons in all cell-types. bottom, heatmap of

base-wise significance of PhastCons scores is presented 0 < for clarity.

c. Phylostratum scores are summarized for genes harboring AS events in each

modality together with genes containing constitutive exons. right, heatmap of

pairwise significance scores between each modality or constitutive exons.

d.Alternative splicing events conserved inmammalswere extracted fromMerkin

et al, 2012 (Merkin et al., 2012) and their percentage among each modality is cal-

culated. Hypergeometric test (multiple hypothesis corrected with Bonferonni)

indicated q < 10-5 statistical significance. Fraction indicates No. of conserved

events in each modality(nominator)/total events in the modality(denominator)

e. Intron lengths summarized in excluded, bimodal, multimodal, included

modality together with constitutive exons. top, heatmap of pairwise significance

scores between each modality or constitutive exons.

f. Conserved intronic sequences in each modality are enriched with distinct nu-

cleotides. Motifs enriched for each modality are presented by PCA, shown with

each circle as a motif and the vectors as component loadings of intron groups.

left, Representative motifs are annotated with logos from the CISBP database.

right, A simplified illustration of distinct nucleotide enrichment in each in-

tron group. An interactive version of this plot is available at https://plot.ly/

~OlgaBotvinnik/32/cisbp-motif-t-test-enrichments-background-phenotype/

https://plot.ly/~OlgaBotvinnik/32/cisbp-motif-t-test-enrichments-background-phenotype/
https://plot.ly/~OlgaBotvinnik/32/cisbp-motif-t-test-enrichments-background-phenotype/
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Next, we asked whether there are cis-regulatory elements within flanking

intronic sequences. Position weight matrices (PWMs) for motifs recognized

by RBPs were obtained from the CISBP motif database
226

and transformed

into k-mers
227

. We defined an intron group as 200 intronic bases upstream or

downstream of alternative exons of a specific modality and cell-type. Within each

intron group, we calculated Z-scores of k-mer enrichment (Figure 3.8a,b). By

PCA analysis, we found bimodal and included modalities are separated on the

first principal component (PC1) and enriched for U-rich and G-rich sequences,

respectively (Figure 3.8c). Curious whether such U-G division is present at the

motif level, enriched motifs were identified by calculating a t-statistic between

the motif-derived k-mer Z-scores against the Z-scores of all identified k-mers

in the same intron group (Figure 3.8d,e). We then subjected the t-statistics

of motif-derived k-mer enrichments in each intron group to PCA (Figure 3.7f,

Figure 3.8f). Principal component 1 (PC1) explains 72% of the variance of k-mer

enrichment and readily separates the included modality from bimodal modality.

Meanwhile, principal component 2 (PC2) distinguishes motifs located upstream

or downstream of the alternative exons and account for 8% of total variance.

Consistent with k-mer results, bimodal and included modalities are enriched for

U-rich and G-rich motifs, respectively, regardless of the cell-types. Moreover,

upstream intronic sequences of included modality are enriched for GC and

the downstream counterpart are enriched for GA motifs (Figure 3.7f, right).

This finding suggests that the sequence properties of the introns, together with

the trans-factors associated with these motifs distinguish each AS modality,

independent of cell-type. Together, our results reveal that exons with highly

variant AS events have sequence and evolutionary attributes distinct from other

modalities.
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Figure 3.8 (next page): Sequence enrichment of modality introns.

a. Overview of defining “Intron groups” defined by cell-type, modality, and

intron context, and process for obtaining their conserved k-mer Z-scores.

b. Boxplots of the Z-scores of k-mer enrichment in the different intron groups,

labeled with a colorbar of modality, intron context, and cell-type.

c. PCA on k-mer Z-scores, with each point as a k-mer and the vector components

as the introns. k-mers with principal comoponent greater than 2.5 standard de-

viations away from zero were labeled with the sequence, colored by the majority

nucleotide. If there was a tie for the majority nucleotide, it was assigned the

color grey. An interactive version of this plot can be viewed here: https://plot.

ly/~OlgaBotvinnik/20/modality-k-mer-Z-scores-background-phenotype/.

Multimodal is not shown because its k-mer enrichment has a much larger range

than the other modalities and overwhelms the plot.

d. Overview of motif enrichments calculated from intron groups using a t-test
and their transformation into PCA for visualization.

e. Boxplots of the t-statistics of motif enrichment in different intron groups,

labeled with colorbars of modality, intron context, and cell-type.

f. PCA on the t-statistics of the Motif enrichment, labeled with the motif ID and

RPB name from CISBP v0.6. An interactive version of this plot is available at

https://plot.ly/~OlgaBotvinnik/32/cisbp-motif-t-test-enrichments-\

background-phenotype/

https://plot.ly/~OlgaBotvinnik/20/modality-k-mer-Z-scores-background-phenotype/
https://plot.ly/~OlgaBotvinnik/20/modality-k-mer-Z-scores-background-phenotype/
https://plot.ly/~OlgaBotvinnik/32/cisbp-motif-t-test-enrichments-\ background-phenotype/
https://plot.ly/~OlgaBotvinnik/32/cisbp-motif-t-test-enrichments-\ background-phenotype/
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3.2.4 Cell-type specific AS are largely comprised of high vari-

ance events.

We next asked whether there are AS events that change modalities during

the differentiation of iPSCs to NPCs or MNs (Figure 3.9a, Figure 3.10a). To

our surprise, we find that only 20% of AS events shared between pluripotent

stem cells and the neuronal derivatives exhibit a change in modality (q < 10
−100

,

hypergeometric test, corrected for multiple hypothesis testing). As these events

have a unique modality in each cell-type, they are cell-type specific. Less than a

quarter ( 18%) of the AS events detected in two cell-types (iPSCs and NPCs or

iPSCs and MNs) exhibited a change in modality (Figure 3.9b), At least 98% of

these switching events are comprised of bimodal AS events (Figure 3.9c). As cells

transition from iPSCs to NPCs or to MNs, 66% and 72% of the unimodal events

became bimodal or multimodal, and conversely, 34% and 27% of bimodal events

switched to a unimodal modality. These “switching” AS events are enriched

for GO functional categories, such as ’protein localization or transportation,’

and ’RNA processing’ (Figure 3.10b). Thus, we conclude that bimodal and

multimodal AS events likely play an important role in cell-type specificity and

are more malleable during differentiation, in contrast to included and excluded

events.
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Figure 3.9 (next page): Dynamic AS events are primarily contributed by highly

variant bimodal and multimodal events.

a. AS events change modalities during iPSC to MN transition. A total of 5,675

AS events was identified as common ones in both iPSCs and MNs. The compart-

mentalization of these common events in five modalities is presented in iPSCs

(y-axis) against their corresponding modalities in MNs (x-axis). Gradient of

heat map represents the percent of events in the iPSC modality row, annotated

with the exact number of events. The diagonal indicates events remained in the

same modality. Notably, 88% of excluded events in iPSCs remained in excluded

modality, and 86% of included events in iPSCs remained as included in MNs. In

contrast 52% of bimodal events in iPSCs switch to either included or excluded

modalities in MNs. Multiple hypothesis corrected (Bonferonni) hypergeometric

tests were used to calculate significance.

b. During the differentiation from iPSCs to MNs or from iPSCs to NPCs, we

found 1,586 (17.6%) or 1,029 (18.0%) AS events switched modality, respec-

tively. c. Within the switching events, 99% events either switched from a

bimodal/multimodal state or switched towards a bimodal/multimodal state.

Around 1% of switching events were observed among other types of modality

changes.

d-f. AS events in bimodal modality exhibits flexibility in protein coding.

d. Schematic of predicted translation changes associated with AS exon in-

clusion.

Exclusion and inclusion of AS exon is termed as Isoform A and Isoform B,

respectively. Six categories of coding outcomes are depicted when the isoform

switch occurs. Pink, highlights creation of translated proteins or protein domain

clades when AS exon is included. Purple, represents maintenance of protein

clades with or without change of domain clades. Blue, represents loss of domain

clades or disruption of translation when AS exon become included. The square

and circle illustrate different Pfam domain clades. The square with dashed

outline represents translated protein, possibly containing a Pfam domain clade.

e. The coding outcomes are summarized in the six categories based on all

AS events. The percentage of each translation configuration is used as the

background distribution for significance calculations in f.
f. AS events in bimodal modality favor protein and domain maintenance. The

dominant isoforms in included and excludedmodalities favor protein or domain

creation and switching to the other isoform results in overwhelming disruption

of protein coding. Enrichment is calculated against population average (shown

in e) in each category using multiple hypothesis test corrected hypergeometric

tests. *: q < 10
−10

**: q < 10
−100
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Figure 3.10: Switching AS events are enriched for transcriptome and post-

transcriptional regulation GO terms.

a. AS events change modalities during iPSC to NPC transition. A total of 7,962

AS events was identified as common events in both iPSCs and MNs. Notably,

≈ 82% of excluded events in iPSCs remained in excluded modality, and ≈ 84%

of included events in iPSCs remained as included in NPCs. In contrast 42% of

bimodal events in iPSCs switch to either included or excluded modalities in

NPCs.

b. Of the common events shared by all three populations, the events changing

between iPSCs to NPCs (light green) and iPSCs to MNs (dark green). Venn

diagram show the overlap between the two sets of switching AS events and GO

function terms for each section of switching events.

Since bimodal and multimodal events are more dynamic, we asked

whether they are more likely to preserve protein-coding capacity. For simplicity,

the transcripts with excluded and included AS exons are designated as isoform

A and isoform B, respectively (Figure 3.9d). We required that at least one

isoform is a GENCODE-annotated coding transcript and utilized hmmscan
228;229

to search Pfam
230;231

for protein domain clades (Figure 3.9e). Both included and

excludedmodality exonswere enriched for the presence of knownprotein domain

clades in their dominant isoform (q < 10
−10

, hypergeometric test corrected for

multiple hypothesis testing). Switching to the other isoform either disrupted the

reading frame or the functional protein domain, underscoring the importance of

maintaining their dominant isoform. Surprisingly, the bimodal and multimodal
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AS events appear to balance domain creation, maintenance and disruption

between isoforms. In particular, 65% of multimodal and 50% of bimodal

events result in domain maintenance where a functional domain has been

exchangedorpreserved, in contrast to 15-30%of excluded and includedmodalities

(Figure 3.9f). Thus, the highly variant AS events adapt their coding capacity

during differentiation.

3.2.5 Highly variant AS events can reveal subpopulations invis-

ible to gene expression analysis

As highly variant bimodal and multimodal AS events appear to be most

sensitive to differentiation, we surmised that they can provide an opportu-

nity to identify subpopulations that were otherwise invisible when analyzing

gross expression differences in single cell RNA-seq data. To illustrate, SNAP25

(synaptosomal-associated protein 25) is a presynaptic plasma membrane protein

of the trans-SNARE complex that mediates synaptic vesicle membrane docking

and fusion. Mutually exclusive exons 5a and 5b are characterized as a high

variance multimodal event in MNs (Figure 3.11a-c, Figure 3.13a). Exon 5b is

more included in adult brain
232

which may facilitate faster exocytosis
233

. We

identified genes that correlated with the Psi values of this event (Spearman

correlation |R | > 0.5; Figure 3.13b). The correlated genes separated the MNs into

two clusters that correspond to Psi values of greater than 0.5 or less than 0.5

(Figure 3.11d-g). Excitingly, MNs which included exon 5a (Ψ > 0.5) are enriched

for genes essential in cytoskeletal reorganization required for axon guidance

and dendritic spine formation and maturation, such as KATNAL1, ZMYND10,

WASF2 and STX16. They also express genes associated with repression of cell

proliferation (Figure 3.11d, red labels). Thus, MNs utilizing exon 5a are less
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’mature’, may have recently exited cell proliferation and are forming synapses.

In contrast, MNs that included exon 5b (Ψ < 0.5) are enriched with many genes

associated with synapse organization and synaptic vesicle trafficking, such as

SYNGR3, DCTN1, COPA and PCLO, as well as plasma membrane receptors and

cell-cell contact genes such as CELSR2, INADL/PATJ, ATP1B3, and GLRA2. At

the same time, these MNs expressed multiple genes associated with intracellular

vesicle trafficking (Figure 3.11d, blue labels), reflecting a more mature neuronal

state with active protein transport and vesicle trafficking (Figure 3.11d). Finally,

genes correlating with Psi scores are able to separate the two subgroups in PCA,

whereas a complete list of expressed genes from MNs fail to do so (Figure 3.11f,

g). Thus, the variation of the MXE event in SNAP25 reveals substructure in MN

populations.
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Figure 3.11 (next page): Mulitmodal AS event in SNAP25 reveals subpopulations

invisible by gene expression alone.

a-g. SNAP25 alternative splicing reveals a more mature subpopulation in motor

neuron population.

a. SNAP25 is primarily expressed in MNs.

b. Usage of alternative exon 5 (a MXE containing exon 5a and exon 5b) in the

three populations. Shown is the usage of alternative exon 5a of SNAP25.

c. Summary of exon 5 usage in motor neurons.

d. Preferential usage of exon 5a or exon 5b of SNAP25 in MNs reveals intricate

cell states. Genes correlated with the Psi score of this MXE in SNAP25 (above

an empirical threshold) were used to cluster all MNs containing this event. Two

main subgroups are observed, one with Psi close to 1 (red in the legend bar),

the other with Psi close to 0 (blue in the legend bar). Cells with Psi around 0.5

are illustrated with yellow. Black and light grey indicate qualified and outlier

MNs based on k-means clustering, respectively. Gradient of purple indicates

gene expression in log
2
(TPM+1), with darker being highly expressed. A few

representative genes from the two subgroups are highlighted.

e. Examples of representative genes correlating with Psi of this MXE in SNAP25.

KATNAL1 and ANAPC16 are more enriched in the cells withΨ ≈ 1. DCTN1

and PCLO are more enriched in the cells with Ψ ≈ 0. X-axis represents the

Psi score, and y-axis represent gene expression in log
2
(TPM+1). Each MN is

depicted as a green circle. Solid green line represents simple linear regression

line between Psi and the expression of indicated genes. Shaded green represents

95% confidence interval of the regression.

f-g. Genes correlating with this MXE event distinguish the two subgroups of

MNs. Each MN is depicted as a dot in PCA. Red: cells withΨ ≈ 1; blue: Ψ ≈ 0;

yellow: Ψ ≈ 0.5; X: cells with a Psi assigned as NA.

f. PCA of all expressed genes in MNs failed to separate the two subgroups.

g.Using only the genes correlatedwithPsi of theMXE in SNAP25, two subgroups

are readily separated. Percentage of variance explained are labeled at each PC.
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As another example, we observed a SE event from DYNC1I2 (Dynein

Cytoplasmic 1 Intermediate Chain 2), which is bimodal in both iPSCs and NPCs

(Figure 3.12a-f, Figure 3.13c). DYNC1I2 encodes a non-catalytic component

of the cytoplasmic dynein 1 complex, which acts as a retrograde microtubule

motor to transport organelles and vesicles
234

. NPCs were clustered into two

groups by genes that correlated with Psi scores of the SE exon (Figure 3.12c,d).

The subgroup with Ψ ≈ 1 are enriched for genes associated with a variety of

mature neuronal genes, such as ONECUT2, a generic transcription factor of

motor neurons and numerous genes related with axon guidance and cytoskeleton

reorganization (Figure 3.12c). This subgroup is also enriched formultiple neuron-

specific RNA binding proteins (RBPs), including ELAVL2-4 and SRRM4. On the

other hand, the subgroup of NPCs withΨ ≈ 0 is strongly enriched with genes

associated with cell division, DNA replication and translation. Again, in contrast

to all genes detected in NPCs, only genes correlating with Psi scores reveal the

substructures of NPC population in PCA (Figure 3.12e,f). Thus, the bimodality

of this SE event is a sufficient statistic to delineate NPCs into a more proliferative

subgroup (Ψ ≈ 1) consistent with their progenitor fate and a subgroup (Ψ ≈ 0)

that appears farther on the trajectory of neuronal fate.
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Figure 3.12 (next page): Bimodal AS event in DYNC1I2 reveals subpopulations

invisible by gene expression alone.

a-m. A bimodal SE event in DYNC1I2 as an example to dissect NPCs into a

more proliferating subgroup and a subgroup on the trajectory of neuronal

differentiation.

b. Expression of DYNC1I2 in the three populations.

c. Psi distribution of a SE event in DYNC1I2 in the three populations. This event

is bimodal in both iPSCs, NPCs and becomes included in MNs.

d. Genes correlating with Psi of this SE event is able to cluster the NPCs into

two subgroups. Rows represent the genes and columns represent single cells

in NPCs. Genes detected in NPC and correlated with Psi (Spearman R > 0.5).
Green: NPC. Blue: cells with Psi around 0. Red: cells with Psi around 1. Light

Blue to yellow: cells with Psi around 0.5. Black and grey: cells designated as

qualified cells versus outlier-cells based on k-means clustering. Representative

genes enriched in the two subgroups are highlighted in blue or red.

e. Example genes enriched in the two subgroups of NPCs. ONECUT2 and DCC

are more highly expressed in cells withΨ ≈ 1; ORC3 andMKI67 are more highly

expressed in cells withΨ ≈ 0. Psi scores of the SE in DYNC1I2 is plot on x-axis

and expression of indicated genes is plotted on y-axis.

f-g.Only genes correlating with Psi are able to separate two subgroups in NPCs,

with each NPC depicted as a dot in the PCA. Red: cells withΨ ≈ 1; blue: Ψ ≈ 0;

yellow: Ψ ≈ 0.5; X: cells with a Psi assigned as NA.

f. PCA of all expressed genes in NPCs failed to separate the two subgroups.

g. Genes correlating with Psi are able to segregate the two subgroups by PCA.
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Lastly, we examined how themultimodalMXE event containing e9 and e10

in PKMdistinguishes cell states inMNs. Notably,MNswere partitioned into three

subgroups by genes that correlatedwith the Psi score of this event (Figure 3.13d-f).

The first subgroup is primarily composed of outlierMNs previously characterized

by k-means clustering and PCA, which prefers inclusion of exon 9 (Ψ < 0.5) and

is enriched with genes related to cell proliferation or signaling in progenitor

cells (Figure 3.13d, labeled in light blue). The second subgroup represents MNs

also preferring exon 9 (Ψ < 0.5), but have lower expression of progenitor genes,

and have not expressed neuron-specific genes (Figure 3.13d, labeled in dark

blue). The third subgroup MNs using exon 10 (Ψ > 0.5) is highly enriched

with neuron-specific genes (Figure 3.13d, labeled in red) confirming their motor

neuron fate. Therefore, a single variance event in PKM provides a sufficient

information that unravels distinct cell states (Figure 3.13f). Many additional

examples were found including AS exons in SUGT1, BRD8, MDM4, MEAF6, and

RPN2 that demonstrate that high variance AS events extracted from single cells

offer an additional layer of information to demarcate cell states that are otherwise

hidden in overall gene expression (Figure 3.14a-i).
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Figure 3.13 (next page): Highly variant AS events reveal intricacies of cell states.

a. Read coverage tracks for SNAP25 in MNs. Numbers indicate observed

junction reads.

b. Spearman correlation values of a gene’s alternative splicing score (Ψ) to gene

expression values, with a dotted line at the threshold of R > 0.5.
c. Tracks from NPCs were shown to illustrate the bimodal inclusion of exon 5.

Numbers indicate observed junction reads covering this SE in DYNC1I2.

d-f. A multimodal MXE event in PKM as an example to dissect MNs into three

subgroups.

d. Genes correlating with Psi of the MXE event containing exon 9 and exon

10 (Figure 3.2) is able to cluster the MNs into three subgroups. Subgroup 1,

mostly composed of outliers identified by k-means clustering (Supplementary

Figure 3.4), contain characteristic genes for progenitors. Subgroup 2 and 3 are

enriched for neuronal genes. Rows represent the genes and columns represent

single cells in MNs. Genes detected in MNs and correlated with the Psi, using

an emipircally-defined threshold of Spearman’s R greater than two standard

deviations away from the mean permuted correlation values. Psi/Ψ ranged

from 0 (blue) to 0.5 (yellow) to 1 (red). Black and grey: cells designated as

qualified cells versus outlier-cells based on k-means clustering. Representative

genes enriched in two of the subgroups are highlighted in blue (high with exon

10 inclusion) or red (high with exon 9 inclusion).

e. Example genes enriched in two of the subgroups of MNs. MAP2 and NRXN1

are more highly expressed in cells with Ψ ≈ 1; ETV5 and MASTL are more

highly expressed in cells withΨ ≈ 0. Psi scores of the MXE in PKM is plot on

x-axis and log
2
(TPM+1) of indicated genes is plot on y-axis.

f. Genes correlating with Psi is able to separate the three subgroups in MNs.

Left, PCA using all detected genes in MNs. Right, PCA using genes correlating

with Psi.
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Figure 3.14 (next page): Highly variant AS events in SUGT1, BRD8, MDM4,

MEAF6, and RPN2 reveal intricacies of cell states.

a-f. A bimodal SE event in SUGT1 as an example to dissect NPCs into two

subgroups.

b.Genes correlatingwith Psi of the SE event cluster theNPCs into two subgroups.

Genes detected in NPCs and correlated with the Psi. Blue: cells with Psi around

0. Red: cells with Psi around 1. Light Blue to yellow: cells with Psi around

0.5. Black and grey: cells designated as qualified cells versus outlier cells based

on k-means clustering. Representative genes enriched in two of the subgroups

are highlighted in blue (high upon exon exclusion) or red (high upon exon

inclusion).

c. Expression of SUGT1 in the three populations.

d. Psi distribution of a SE event (lower) in SUGT1 in the three populations. This

event is excluded in iPSCs, and bimodal in both NPCs and MNs.

e. Example genes enriched in the two subgroups of NPCs. TBC1D1 and ELOVL4

are more highly expressed in cells with Psi ≈ 1; MMP16 and TSPAN14 are more

highly expressed in cells with Psi 0. Psi scores of the SE event in SUGT1 is plot

on x-axis and log
2
(TPM+1) of indicated genes is plotted on y-axis.

f.Only genes correlating with Psi is able to separate the two subgroups in NPCs.

Left: PCA using all detected genes in NPCs. Right: PCA using genes correlating

with Psi.

g-j. PCA using all detected genes in perspective population fail to identify

substructures of seemingly homogenous cells (left panel). PCA using gene

correlating with each AS events (right panel) is able to identify the delicate

substructures of cells.

g. Bimodal SE event in BRD8 distinguishes iPSC substructure.

h. Bimodal SE event in MDM4 distinguishes NPC substructure.

i. Bimodal SE event in MEAF6 distinguishes NPC substructure.

j. Bimodal SE event in RPN2 distinguishes MN substructure.
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3.2.6 Transformation of splicing distributions to “waypoints”

reveals dynamic of AS events

To visualize changes in modalities, we developed bonvoyage, where the

distribution of Psi values of each AS event across single cells from a cell-type

is first discretized, then reduced via non-negative matrix factorization (NMF)

(Figure 3.15a, left and middle). NMF is a dimensionality reduction algorithm

which factorizes data into its components using a parts-based approach
209

. The

Psi values are factorized into two components, excluded (x-axis) and included

(y-axis), which depict the “waypoint” space (Figure 3.15a, right). Usage of

the waypoint space is illustrated using simulated modality data (Figure 2.12a-

d). Each AS event is depicted as a point in waypoint space, which represents

the distribution of Psi scores in single cells (Figure 3.15b). All the AS events

measured in a cell-type were projected into waypoint space, and colored by their

corresponding modalities identified previously by anchor (Figure 3.15c, d). In

such a representation, eachmodality occupies a discrete region in waypoint space.

Also, AS events that change their Psi distributions during differentiation undergo

“voyages”. To illustrate, exon 9 of PKM is excluded in iPSCs, becomes more

included inNPC and is a bimodal exon inMNs. Such a change ofmodality creates

a voyage in waypoint space (Figure 3.15e). In contrast, projection of this event

measured in bulk MNs failed to capture the bimodality. Additionally, MAP4K4

encodes a member of the serine/threonine protein kinase family and inclusion

of exon 16 extends MAP4K4’s protein kinase-like domain. This event became

progressively more included along MN differentiation, readily observed in a

voyage plot, which we independently confirmed by RNA-FISH (Figure 3.16a-b).

Thus, bonvoyage is an effective method to visualize and identify AS events that
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change across populations.
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Figure 3.15 (next page): bonvoyage visualizes dynamic AS changes.

a. A schematic to illustrate the transformation of splicing profiles into the

two-dimensional waypoint space by bonvoyage. Splicing distribution of each

event (A, B, C and D represent 4 different AS events) was discretized into bins

(left), factorized by non-negative matrix factorization (NMF) and projected onto

2-dimensional space (middle), such that each data point represents a distribution

of alternative splicing. The origin point represents a distribution that all cells

have 50% of inclusion and 50% exclusion reads observed in scRNA-seq. When

the distributions of the same event (either event B or C) are visualized in two

different cell-types or states, the dynamic of the event is illustrated by its voyage

in the waypoint space (right panel).

b. AS events in iPSCs projected in the waypoint space. The shade of hexagon

indicates the number of events.

c. AS events in iPSCs (same as b), colored by the modality estimated by anchor.
Each dot represents distribution of one AS event. Note, each modality occupies

a distinct region of the waypoint space. Black-outlined circle highlights PKM

MXE event.

d. AS events in MNs are colored by their modalities and presented in waypoint

space. Black-outlined square highlights PKMMXE event.

e. Dynamics of the MXE event in PKM is illustrated in the waypoint space.

Shown is the inclusion of exon 9 of the MXE, which is included in both iPSCs

and NPCs and becomes bimodal in MNs.

f-g. Global splicing dynamics between iPSC and MN, aggregated by voyage

direction instead of modalities.

f. Number of events originated in iPSC and travel in the indicated directions to

land in excluded, bimodal, included, middle, or multimodal modality in MN.

g. Same data as (f), visualized by vectors representing the iPSC (tail) and MN

(tip) position of the alternative exon. Color of arrows are coded based on event

modalities in iPSCs.
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We next sought to establish a global view of AS changes between cell-

types. Focusing on exons with large voyages (Figure 3.16c), we visualized the

voyaging exons using vectors between iPSC and MNs. We regard voyages

as complementary to delta Psi (∆Ψ) used in two-sample AS comparisons of

bulk RNA-seq data. Consistent with our modality-based analysis (Figure 3.9a),

the majority of the dynamic exons changed from or to the bimodal modality

(Figure 3.15f-g, Figure 3.16d). To evaluate the consequences of voyages on the

protein properties of resulting isoforms, we transformed each property into a

waypoint-weighted score by multiplying the property of each isoform with its

corresponding coordinate in the waypoint space, enabling a more integrated

evaluation of protein property based on both isoforms and their distribution

in single cells. Among many properties investigated, we found that MNs favor

splicing that generates more disordered and basic proteins such as the events

in RPS24, and ZNF207/BuGZ (Figure 3.18a, b). Thus, AS voyages allow for

population-based investigation of the protein outcomes of isoform preferences.
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Figure 3.16: Validation of voyaging events between iPSC and MN.

a. Validation of a SE event in MAP4K4 by smRNA-FISH.

b. MAP4K4 smRNA-FISH. Left, probe sets are designed for constitutive exons

and alternative exon 16. Exon 16 is excluded in iPSCs (n � 113, light purple

with dashed line) and become more included in MNs (n � 68, dark purple with

solid outline. Middle, quantitation of normalized inclusion of exon 16. Arrows

point out foci overlapped for both constitutive and exon 16 probes. Normalized

inclusion ratio is calculated by percentage of e16 probes co-localized with

constitutive probes/constitutive probes, and resulting percentage is normalized

by 95 percentage of the maximal percentage.

c. MAP4K4 single-cell RNA-Seq. Left, violinplots percent spliced-in inclusion

values, and right, waypoint space of exon 16.

d. Magnitude of change in waypoint space (voyages) from iPSC to NPC, and

iPSC to MN, with a cutoff shown as a black dashed line at 0.2.

e. Global splicing dynamics between iPSC and MN modalities, visualized as

vectors from iPSC to MN in waypoint space. Underlying data is the same as

Figure Figure 3.9a. Color of arrows are coded based on event modalities in

MNs.
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Figure 3.17 (next page): Validation of alternative splicing events by sc-qPCR.

a-g. Distribution of alternative exon inclusion by single-cell RNA-Seq for

indicated events in EWSR1 (a), DYNC1I2 (b), CLTC/CLCT2 (c), EIF5 (d),
THYN1 (e), RBPJ (f), and EIF4A2 (g), shown in violin plots (left) and in waypoint

plots (right). Percent spliced-in (Psi/Ψ) is calculated based on single cell RNA-

seq data, illustrated in green. Black dots indicate bulk samples ( 1,000 cells) for

each cell type.

h-n. Distribution of percentage of inclusion by single-cell qPCR of indicated

events EWSR1 (h), DYNC1I2 (i), CLTC/CLCT2 (j), EIF5 (k), THYN1 (l), RBPJ (m),

andEIF4A2 (n), basedon single cell qPCRshown inviolinplot (left) andwaypoint

plot (right), illustrated in blue.
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To validate the Psi distributions of bimodal and high-magnitude voyaging

AS events during motor neuron differentiation, we designed splicing-sensitive

primers to assess exon usage by qPCR at single cell resolution in iPSCs, NPCs

and MNs. We observed that 60% AS events recapitulated an exon inclusion

distribution similar to our findings using scRNA-seq (Figure 3.18c-f, Figure 3.17a-

n). For example, a SE event that introduces a stop codon and removes three

amino acids from C-terminal in RPS24, encoding a ribosomal subunit protein

S24, previously reported in different human tissues
235

. In single cells, this

event was partially included in individual iPSCs (middle modality), and became

completely included in almost all NPCs andMNs (Figure 3.18c). These dynamics

were confirmed by sc-qPCR (Figure 3.18d). Also, exon 9 in ZNF207 encoding

serine-rich sequences that may affect post-translational modifications, starts

as multimodal in iPSCs and becomes more included in MNs (Figure 3.18e).

The dynamics and voyages of these and many other exons were validated by

sc-qPCR (Figure 3.18f, Figure 3.17a-n). Thus, by enabling comparison of splicing

profiles and protein properties, the bonvoyage resource enables visualization of

AS dynamics across cell populations.
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Figure 3.18 (next page): qPCR validation and summary of biological findings.

a-b. Waypoint-weighted protein properties changing between iPSC and MN.

Significant changes(blue) are identified by a factor of three on Mahalanobis

distance relative to all iPSC-MN comparisons.

a. Protein disorder by IUPred, where a score above 0.5 (red dashed line) indicates

disorder.

b. Isoelectric point (pI), where the black dashed line indicates pI � 7. X-axis,

weighted protein property in iPSC and y-axis, weighted protein property in MN.

c-f. Distribution of AS inclusion is verified by single cell qRT-PCR (sc-qPCR).

Primer sets for inclusion, exclusion and gene expression were designed for

each event tested. Percent inclusion measured in sc-qPCR is calculated by

2
inclusion Ct

2
inclusion Ct+2

exclusion Ct
(See Methods for more details) in both iPSCs (n � 134) and

MNs (n � 95).

c. Percent spliced-in (Psi/Ψ) distributions for RPS24 exon 5 measured by single-

cell RNA-Seq shown as violinplots (left) and voyages (right).

d. Percent exon inclusion distributions for RPS24 exon 5 measured by single-cell

qPCR shown as violinplots (left) and voyages (right).

e. Percent spliced-in (Psi/Ψ) distributions for ZNF207 exon 9 measured by

single-cell RNA-seq shown as violinplots (left) and voyages (right).

f. Percent exon inclusion distributions for ZNF207 exon 9measured by single-cell

qPCR shown as violinplots (left) and voyages (right).

g. Summary: At single cell resolution, three main categories of modalities

can be identified: included, excluded and bimodal. Each modality has unique

sequence, coding and evolutionary features. During cell differentiation, majority

of unimodal events are static, whereas the highly variance events are dynamic,

playing a key role in shaping the transcriptome.
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3.3 Methods

3.3.1 Cell culture and differentiation

iPSCs were cultured on matrigel coated plated using mTeSR (Stem Cell

Technologies) media with mTeSR supplement at 37
◦
C incubator with 5% CO2.

Neuronal progenitor cells (NPCs) were differentiated from iPSCs. Briefly,

iPSCs were cultured in Matrigel coated plates and dislodged by dispase. To

form embryonic bodies, the dislodged colonies were cultured in DMEM/F12

(Invitrogen) with GlutaMax and N2 supplement in non-adhere petri dish. Media

were replaced every other day for 7 days. EBs were then plated onto matrigel

coated plate to allow rosette formation. Clean rosette were picked manually and

maintained in EB media for 7 days and subsequently dissociated with accutase

and cultured in NPC media (DMEM/F12, GlutaMax, N2 and B27 with 2 µg/µL

FGF) to allow neuron progenitor cell differentiation. NPCs were maintained in

NPC media.

Motor neurons were directly differentiated from iPSCs as previous de-

scribed
236

. Briefly, iPSCs were cultured on matrigel coated plates until fully

confluent in mTeSR then switch to knock-out serum replacement media (KSR)

containing Dorsomorphin(1 µm) and SB431542 (10 µm). Upon day 4 of differenti-

ation, increasing amounts of N2 media (25%, 50%) was added to the KSR. From

day 7 of differentiation, 1.5 µm retinoic acid and 200 nm Smoothened Agonist

(SAG, EMDMillipore) were added to induce patterning. Cells were dissociated

on day 17 of differentiation and replated in poly-D-lysine and laminin coated

plates. Maturation was performed using BDGF (2 ng/µL), GDNF (2 ng/µL),

CNTF (2 ng/µL), ascorbid acid, sonic hedgehog and retinoic acid in N2 and B27
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media up until 35 days of differentiation.

3.3.2 Single-cell capture and library preparation

iPSCs, NPCs and MNs were dissociated using Accutase (Stem Cell

Biotechnologies) and filtered through 40 µm cell strainers to obtain single cell

suspension. Single cells were captured on C1 auto prep platform (Fluidigm,

CA) according to manufacturer’s instructions. C1 auto prep chips were visually

inspected with a light microscopy at 20X to ensure singularity of captured cells.

All non-single cells were discarded from analysis. SMARTer Ultra Low RNA

cDNA Synthesis Kit (Clontech) was used to reverse transcribe polyA-tailed RNA.

cDNA was amplified using Advantage 2 Polymerase Mix by PCR at 95
◦
C for 1

minutes, followed by 21 cycles of 15 seconds at 95
◦
C, 30 seconds at 65

◦
C and 6

minutes at 68
◦
C, followed by another 10 minutes at 72

◦
C as a final extension.

cDNAs were inspected using Agilent Bioanalyzer High Sensitivity DNA chips

and quantitated by PicoGreen dsDNA Assay kit (ThermoFisher). cDNAs were

diluted to 1 ng to generate libraries using the Nextera XT DNA kit (Illumina, La

Jolla, CA). Libraries were multiplexed and sequenced on Illumina HiSeq 2000 to

generate 100bp PE reads.

3.3.3 RNA-Seq processing

RNA-seq reads were trimmed using cutadapt v1.8.1 of adapter sequences

TCGTATGCCGTCTTCTGCTTG, ATCTCGTATGCCGTCTTCTGCTTG,

CGACAGGTTCAGAGTTCTACAGTCCGACGATC, GATCGGAAGAGCACACGTCTGAACTCCAGTCAC,

[A]
50
, [T]

50
, mapped to repetitive elements (RepBase v18.05

237
) using the STAR

199

splicing-aware aligner (v2.4.01). Reads that did not map to repetitive elements
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were then mapped to the human genome (hg19), using GENCODE
238

(v19) gene

annotations to create the splice junction database. We used the SJ.out.tab

files from STAR to create alternative splicing annotations and calculate percent

spliced-in (see Section 2.1). Gene expression was quantified with sailfish
219

using GENCODE v19 protein-coding and long non-coding RNA annotation, and

we then aggregated transcript-level expression to genes.

3.3.4 Single-cell expression-level quality control and outlier de-

tection

We retained genes expressed with TPM > 1 in at least 10 cells for a total of

18,594 genes, and filtered out cells which had < 4,000 expressed genes, which

was a natural cutoff in the data. For the three cell types, n � 63 iPSCs, n � 73

NPCs, and n � 70 MNs had enough expressed genes to pass gene expression

level quality control.

We performed K-means clustering with k � 3 on the gene expression

matrix, with 1000 different random initializations. For each cell that clustered

into a group that consisted of a majority of a different cell type (e.g. a motor

neuron that was clustered in the group with majority NPCs), we called these cells

outliers and discarded them from analysis. Overall, for iPSC: 71 were captured,

63 passed QC, 1 outlier for 62 total; for NPC: 98 were captured, 73 passed QC, 4

outliers for 69 total; for MN: 93 were captured, 70 passed QC, 10 outliers for 60

total.
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3.3.5 Estimation of alternative splicing

We used outrigger to create a custom alternative splicing index on the

splice junction (SJ.out.tab) files created by STAR, and used GENCODE v19

to define possible exons. This created 40,534 skipped exon (SE) and 13,217

mutually exclusive exon (MXE) possible alternative events, and we calculated

percent spliced-in (Psi/Ψ) with a minimum of 10 junction reads. We then filtered

for events that were alternative, not constitutively included or excluded across all

cells. Alternative events were defined by, 0 <Ψ < 1,Ψ , 0,1 in at least one cell.

Events were then filtered for events that were detected in at least 10 cells of any

celltype, resulting in 13,910 events.

3.3.6 Constitutive exons

Wedefined constitutive exons as those that did not appear as the alternative

exon in any of the splice types (MXE and SE), and had at least 10 reads on both

upstream and downstream junctions, in at leat 10 cells per cell type.

3.3.7 ICA on constitutively expressed genes and their splicing

events

First, 12,685 genes were identified as non-DE genes across the three

populations using a non-parametric Kruskal-Wallis testwith Bonferroni-corrected

p-value, called q, with q > 10 as the cutoff.

Second, AS events were extracted from non-DE genes and their Psi scores

are subjected to Independent Component Analysis (ICA). To impute the null

values widespread in splicing data, we replaced NAs with an arbitrary number
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(100) out the of range of Psi values. We did not find that the choice of the arbitrary

number affected the ICA results. We then calculated ICA on the imputed matrix.

3.3.8 Hierarchical clustering

We performed hierarchical clustering on samples in Python, using the

fastcluster239
package and performing optimal leaf ordering

240
using the

polo241
package. All clustering was performed using the Euclidean distance

metric with Ward’s method
242

. We visualized using the matplotlib
243

and

seaborn
244

visualization libraries in Python.

3.3.9 Gene Ontology Enrichment

We calculated Gene Ontology (GO) enrichment by using the Gene On-

tology mapping queried to the Entrez gene database using the Python package

mygene245;246
. We calculated GO enrichment using only the “biological pro-

cess” category, and corrected for multiple hypothesis testing using Bonferroni

correction as performed in the Python package goatools247
.

3.3.10 Categorization of alternative splicing “modes”

We calculated modality using the default parameters of the

textttanchor software (see Section 2.2) only on splicing events observed in at

least 10 cells per cell-type. The performance of anchor was tested extensively

using simulated data in comparison to existing bimodality detecting methods.
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3.3.11 Sequence annotation of alternative isoforms

We annotated alternative events and their biological features at different

levels of the Central Dogma.

DNA-level

Evolutionary conservation. We used units of evolutionary conserva-

tion as measured by Placental Mammal PhastCons
248

scores calculated previ-

ously
102

(Figure 3a-b, Supplementary Figure 3.7).

For average conservation of exons, we used bigWigAverageOverBed249
to

calculate the mean conservation (treating bases without annotated conservation

as NA) across each exon. For base-wise conservation, we used the HTSeq
250

Python package to create a memory-mapped GenomicArray, and queried this

object with the intronic intervals.

Repetitive element overlap. We used the Repeat Masker track
251

from UCSC’s Genome Browser
252

and used bedtools intersect253
to overlap

with our exon definitions. We grouped repeats into families defined by the

Dfam
254

database of repetitive DNA elements (Figure 3.6e). For simplicity of

interpretation, we used only repetitive elements that appeared at least 10 times in

the excluded modality, as it was the modality with the most repetitive elements.

Gene age (Phylostratum) We used the Phylostratum classification of

genes as found previously
223

(Figure 3.7e). For each splicing event, we found

all overlapping genes in the same genomic locus, and aggregated all genes with

at least one event in each modality. Meaning, a gene could appear in multiple

modality categories if it had one exon in the included modality and another in

the bimodal category.
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k-mer counting and motif (PWM) enrichment We used placental

mammal conserved elements as downloaded from UCSC
251

, taking only con-

served elements upstream and downstream of alternative exons. We used

kvector255
to count k-mers in these conserved elements, and calculated a Z-score

of k-mer enrichment for each intron group defined by cell-type, intron context,

and modality (Figure 3.8a-b, Figure 3.7d). Interested in which k-mers were

enriched in each modality, we used the total k-mer counts in the intron context

and celltype, for all modalities, as the background. We then performed principal

component analysis using the Python package scikit-learn207
on the modality

introns (Figure 3.7m, Figure 3.8c). We labeled k-mers by the standard color of the

majority nucleotide (if there was a tie for the winner, the k-mer was assigned grey)

whose squared PCA distance was greater than two squared standard deviations

from the center, i.e. an ellipse around the origin of the plot. We used the Python

package adjustText256
to move the text labels away from each other and make

them readable.

To find which RNA binding protein motifs were enriched for different

modalities, we used version 0.6 of the CISBP-RNA binding database
226

and

transformed each position-weight matrix (PWM) into a Boolean vector of k-mers

that could exactly fit into the PWM, with no mis-matches (Figure 3.8d). We

ignored psuedocounts by setting all values ≤ 0.1 to zero. We then used this

Boolean matrix to obtain motif k-mers and calculate enrichment using a t-test, as

compared to all k-mers of that intron group. We then performed PCA on the

motif t-statistics, using the intron groups as features (Figure 3.6p, Figure 3.7e-f).

We labeled motifs whose squared PCA distance was greater than two squared

standard deviations from the center, i.e. an ellipse around the origin of the plot.

We used the Python package adjustText256
to move the text labels away from
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each other and make them readable.

RNA-level

Consistency of splicing between bulk and single-cells To calculate

the total difference between the bulk Ψ and single-cell Ψ estimates, for each

event, we calculated the average difference between the pooled sampleΨ and

every single-cellΨ, much like a sample mean calculation (Figure 3.6a).

Splice site strength We used bedtools253
and pybedtools257

to ob-

tain the 5
′
(relative to exon-intron boundary: -20nt into intron and +3nt into exon)

and 3
′
(relative to exon-intron boundary: -3 into exon and +6 into intron), and

obtained the transcript sequences for these regions. We used MaxEntScan
258

to

calculate the strength of the alternative exon (exon 2 in both the SE and MXE

cases) splice sites (Figure 3.6f-g).

Expression of splicing events For finding the gene expression per

splicing event, for each event, we used all genes that could map to it. Sometimes

multiple genes could map to a single event, as a result of poor annotation, or

multiple read-through transcripts. To mitigate this, for each event, we summed

all gene expression by the log
2
(TPM+1) values, and plotted the distribution of

expression per modality (Figure 3.6h).

Intron and exon length As we used outrigger to calculate splicing,

it also output the lengths of the introns and exons for each alternative event,

which is what we used (Figure 3.7c and Figure 3.6d).

Protein-level

We are in the process of packaging the splicing event isoform translation

and domain scanning code into a package called poshsplice259
.
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Protein translation Using events which had at least one isoform

annotated with a CDS in GENCODE v19 (22,152 SE and MXE events), we

translated the exon trio and duo (SE, included isoform has three exons and and

excluded has two) or exon trios (MXE, both included and excluded isoforms

contain three exons) to its transcript-annotated reading frame. If these exons

participated in transcripts with multiple reading frames, we used all translations.

Domain search Weused thehmmscan command from theHMMer
228;229

software suite (v3.1b1) to search for protein domains matching those in the manu-

ally curated Pfam-A database
230

. We used a domain-independent E-value cutoff

of 10
−5
. With this raw data, we observed “domain switching” between isoforms

in instances such as “Kinase” to “Tyrosine Kinase”, when indeed the exact char-

acters of domain name changed, but the overall function didn’t. To alleviate this

problem, we aggregated domains into clades using Pfam’s annotations. We then

annotated each individual event with whether only the exclusion or inclusion

isoforms had an annotated translation, only one isoform, contained a clade, both

contained the same clade, or the clades switched (Figure 3.9d).

3.3.12 Correlation of splicing to expression

We correlated bimodal and multimodal splicing events to genes with

variant expression, defined as two standard deviations away from the mean

variance of all genes. We used Spearman correlation to compare splicing profiles

to gene expression, and used a threshold of absolute correlation values |R | > 0.5

across all samples.
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3.3.13 Transformation of splicing profiles to 2d space

We used bonvoyage (see Section 2.3) to transform one-dimensional splic-

ing profiles into two-dimensional space (Figure 3.15a-c), using the default pa-

rameters. We performed the transformation within cell-type, and required at

least 10 cells per splicing event to transform.

3.3.14 Waypoint-weighted protein properties

To obtain protein properties, we used IUPRED
260

to calculate protein

disorder and the ProtParam module in BioPython
261

to calculate aromaticity,

instability index, molecular weight, secondary structure properties (alpha-helix,

beta-sheet, and turns), flexibility, grand average of hydropathy (GRAVY) and

isoelectric point.

We summarized isoform protein properties for each phenotype by using

the NMF-transformed waypoint space into a weighted average. Using pincluded

and pexcluded to represent the protein property value (e.g. molecular weight or

disordered protein score) of each isoform, and wincluded and wexcluded to represent

the splicing event’s waypoint space position for the included (y) and excluded (x)

axes. We calculated the weighted protein property, pw , within each phenotype,

as we did for the modality and waypoint calculation.

pw � pincludedwincluded+ pexcludedwexcluded (3.1)

For properties that had a relative center, e.g. isolectric point which has

a neutral value of 7, we subtracted the center value for each protein property,
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pcenter so the multiplication by the waypoint space would amplify the distance

from center.

pw � pcenter+ (pincluded− pcenter)wincluded+ (pexcluded− pcenter)wexcluded (3.2)

Voyaging protein properties

Interested in which protein properties which changed significantly be-

tween cell types, we usedMahalonobis distance
262

(dm), a non-parametricmethod

of finding outliers from distributions. In the two-dimensional case, this means

values that are significantly “off-diagonal” when comparing two cell types, e.g.

iPSC to MN. We used a multiplier of 3dm as the threshold for highly changing

protein properties.

3.3.15 Single-cell qPCR and primer design

Single iPSCs and differentiated MNs were captured on C1 auto prep

platform (Fluidigm, CA).All non-single cellswere discarded fromanalysis. cDNA

from single cells were prepared using the Single-Cell-to-Ct kit (ThermoFisher,

USA) and pre-amplified with a pool of primers designed for the splicing events

and the expression of corresponding genes. Inclusion and exclusion primers

were specifically designed to quantitate inclusion and exclusion of AS exons

and expression primers were designed from constitutive exons. All primers

were tested for amplification efficiency. High-throughout quantitative PCR was

performed on 96.96 Dynamic Arrays on BioMark system (Fluidigm) according to

manufacturer’s instructions. Each pre-amplified STA sample was diluted 1:15

for iPSCs and 1:10 for MNs. 3 housekeeping genes (RPL22, RPL27, PGK) and
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lineage genes (POU5F1, LIN28A, DPPA2, ISL1, MNX1, STMN2, NFEL, DCX)

were included.

3.3.16 qPCR data processing

The log expression of each primer set g was computed as log(Eg ,c) �

25−Ct(g ,c) where c is the cell and Ct(g ,c) is the Ct value for corresponding primer

set. iPSCs were filtered by (RPL22 > 5, LIN28A > 8 and POU5F1 > 8) and MNs

were filtered by (RPL27 > 9, ISL1 > 2 and STMN2 > 5). A total of 134 single

iPSCs and 95 single MNs were retained for further analysis. If Ctxp,c > 25 (Ct

value for the expression primer), the corresponding Ct(inc,c) (Ct value for the

inclusion primer) and Ct(exc,c) (Ct value for the exclusion primer) were excluded

from analysis. Percentage of inclusion is calculated by
2

Ct
inc

2
Ct

inc+2
Ctexc

. Distribution of

percentage of inclusion is plotted by violinplot or decomposed into 2-dimension

space (nmf(dataset, 2, “lee”)) and projected into waypoint space in R.

3.3.17 RNA fluorescence in situ hybridization (FISH)

To verify alternative splicing of MXE event composed of exon 9 and 10

in PKM, we designed 3 probe sets (Custom Stellaris® FISH Probes, Biosearch

Technologies, Inc., CA) using the Stellaris® RNA FISH Probe Designer available

online. One set against constitutive exons of PKM labeled with Quasar 570, two

probe sets specifically against exon9 or exon 10, respectively, labeled with Quasar

670. For Exon16 SE event in MAP4K4, one probe set against constitutive exons

was designed and labeled with Quasar 570 and another probe set against exon16

was designed and labeled with Quasar 670.

iPSCs and MNs grown on coverslip were fixed with 3.7% formaldehyde
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PFA for 10 minutes at room temperature. The probes for constitutive (1.25 µm)

and alternative exons (1.25 µm) were mixed and hybridized to the cells in 10%

deionized formamide for overnight at 37
◦
C, according to manufacturer’s instruc-

tions. For MNs, a probe set against ISL1 is designed and labeled with fluorescein

to allow the counting of only motor neurons.

3.3.18 RNA-FISH image acquisition and data processing

Imageswere acquired onApplied PrecisionOMXSuper Resolution System

at the Microscopy Core in the School of Medicine. Specifically, transmission and

acquisition timewere set at 100% and 2minutes for both FISH probes (constitutive

and alternative exons). DAPI was acquired at 10% transmission and 20 second to

localize the cells. Sections were taken at 0.125 µm for the diameter of the cells,

usually around 10–12µm. The resulting stacks of images were deconvoluted on

Applied Precision OMX workstation. Foci of RNA molecules were quantified

using Volocity 6.3 (PerkinElmer). The raw count files were then processed in R to

compute ratio of exon inclusion. To limit non-specific foci, only the foci identified

by both inclusion probe and constitutive probe were counted for included exons.

Normalized inclusion ratio is calculated by percentage of included probes co-

localized with constitutive probes/constitutive probes, and resulting percentage

is normalized by 95 percent of the maximal percentage.
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3.4 Supplementary Notes

3.4.1 Bimodal AS events that partition cell populations

Another example is a bimodal SE event in SUGT1 gene (MIS12 Kinetochore

Complex Assembly Cochaperone), encoding a protein involved in kinetochore

function and required for the G1/S and G2/M transition. Though alternative

variants have been observed, their functions are largely unknown. By clustering

global expression with Psi of this event, we identified two distinct subgroups

of cells clustered by their Psi score. Noticeably, the subgroup with <0.5 Psi

score, indicating exclusion of the alternative exon, demonstrates consistently

high expression of ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a master

transcription factor regulating epithelial polarity, and was recently reported to be

highly expressed in neuron progenitor cells to control neuronal differentiation by

repressing polarity genes. Progenitor cells losingZEB1 expression are likely to exit

proliferation and become polarized
263

. Additionally, this subgroup is enriched

with MMP16, reported to be expressed in less differentiated cells
264

and a few

genes associated with signaling (TSPAN14, involved in presentation of ADAM10,

andYES1, a src family tyrosin kinase). In contrast, the other subgrouputilizing the

alternative exon highly expresses ERC2 (ELKS/RAB6-Interacting/CAST Family

Member 2), encoding a protein actively involved in presynaptic organization

of cytomatrix at the active zone (CAZ) complex and function as regulators of

neurotransmitter release
265

, suggesting this subgroup may be on the path to

become nascent neurons. Supporting such a possibility, this subgroup is enriched

with genes associated with different aspects of neuronal differentiation, such as

TBC1D1 (acts as a GTPase-activating protein for Rab family protein(s) involving in
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vesicle trafficking), ELOVL4 (Very LongChain 3-Ketoacyl-CoA Synthase 4), EOGT

(EGF Domain Specific O-Linked N-Acetylglucosamine Transferase, modifying

Notch receptor), FAM60A (Subunit of the Sin3 deacetylase complex (Sin3/HDAC),

repressing components of the TGF-beta signaling pathway). Lastly, the two outlier

NPCs (demonstrated sufficient coverage of this event and highlighted in grey)

presenting higher inclusion of this alternative exon, are projected more towards

MNs on PCA (Supplementary Fig 1g) in comparison to the rest of NPCs. Thus,

among the NPCs demonstrating bimodality of this SE event in SUGT1, the

subgroup with exclusion Psi appears to be more ‘progenitor-cell’ like, whereas

the subgroup with inclusion Psi is likely to be geared toward nascent neurons.

3.5 Discussion

We developed the Expedition software suite to address key aspects of AS

analysis from single-cell RNA-seq data. The Expedition suite consists of three

packages that integrate the detection and quantification of AS events (outrigger)

with the assignment of modalities (anchor), and a method for visualization of

changes in modality (bonvoyage). As an application, Expedition was used to

analyze AS in single cells from three homogenous cell-types, specifically human

pluripotent stem cells, neural progenitors and motor neurons.

Many studies have performed RNA sequencing from bulk samples to

measure AS, where the “relative” inclusion (∆Ψ) of alternative exons in a

comparison (e.g. treatment versus control or between tissues) is the primary

metric used. However, ∆Ψ comparison across all single cells are impractical.

Thus, robust estimation of Psi is required to assess the distribution of Psi amongst

a population of single cells. It is also important that Psi values reflect the
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actual biological phenomenon, such that a Psi value of 0.5 indicates that 50% of

transcripts include the alternative exon while the other 50% exclude it. Thus,

using Psi of 0.5 as a prior in probabilistic models and assessing the confidence

of estimates by resampling data
194

is not appropriate in single cell splicing

analysis as it does not eliminate cases where the observed data and annotation are

incompatible (examples shown in Supplementary Software Fig. 1). In contrast,

outrigger identifies splicing events by constructing de novo splicing annotation

based on only junction-spanning reads, reconstructs the exon trio (quartet) for SE

(MXE) events using graph traversal, and quantifies Psi. outrigger also applies

user-defined rules that ensure compatibility and sufficient read coverage of the

AS events.

anchor enables the robust classification of AS exons into five modalities

(included, middle, excluded, bimodal and multimodal). anchor characterizes

AS events by their distribution and variation at the population level using a

Bayesian approach, instead of estimating the noise or cell-to-cell variation of AS

events
25
. The representation of modalities in all three cell-types is remarkably

consistent: 30% excluded, 50% included and 20% bimodal modalities, with

small contributions frommiddle andmultimodal modalities, indicating that AS is

largely unimodal at the single-cell level. The ability to categorize AS distribution

and variation into modalities allowed us to identify distinct sequence and

evolutionary features for the threemajormodalities (summarized in Figure 3.18g).

While high variance bimodal and multimodal AS events exhibit some features

intermediate between included and excluded modalities, other features suggest

that theseAS events reflect an evolutionarily important class of exons distinct from

included and excluded. High variance events contain more highly conserved and

longer flanking intronic sequences. The conserved flanking intronic sequences
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contain cis-motifs enriched for U or UA nucleotides, in contrast to the G rich

sequence in included modality. G-rich sequences have been shown to create

G-quadruplexes that increase efficiency of splicing
266–268

, and thus the lack of

G-rich sequences in bimodal may promote their flexibility to be regulated by

trans-factors. Interestingly, high variance AS events are also enriched for genes

present in more recently evolved phylostrata. This enrichment is concomitant

with a peak of gene emergence associated with the evolution of multicellularity,

shortly before the Cambrian explosion
223

. At the same time, orthologous exons

of the human bimodal AS events detected in our cells are also more frequently

regulated as AS across other mammalian lineages
213;214

.

Lastly, a distinct property of multimodal AS exons is their preference to

maintain protein translatability, possibly with a different function, between the

two isoforms. It appears thatmultimodal exons provide cells flexibility to increase

protein diversity without severely compromising protein-coding capacity. This

is in contrast to the exons within the included or excluded modalities that tend

to create or disrupt reading frames. While it is currently unknown whether these

multimodal AS events are a consequence of selective allelic expression or splicing,

our evidence suggests that the creation and preservation of bimodal AS exons

is required to build a flexible repertoire of protein variants to efficiently cope

with evolutionary or environmental changes. Moreover, we illustrate that high

variance AS events reveals cellular states invisible to gene expression analysis

alone, emphasizing the need to analyze AS at the single cell level. Our findings

in single cells that high variance AS events are primary determinants of cell-type-

specific splicing is reminiscent of findings that the cell-type- or state-specific

master regulators are more likely to be variable in either gene expression
27;269

or

epigenetic control
270

.
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In summary, our study provides a technological framework to deconvolute

the complexity of AS at a single cell level. Prospectively, Expedition can be

applied to other increasingly popular data types represented by distributions

of continuous variables (including but not limited to RNA-editing, nucleotide

modifications such as psuedo-uridine and N6-methyl adenosine, alternative

polyadenylation sites, and polyA tail lengths), providing advanced analysis to

categorize, and describe these molecular features at single-cell resolution.
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