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ABSTRACT OF THE DISSERTATION

Computational analysis of single-cell alternative splicing

by

Olga Borisovna Botvinnik

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2017

Professor Gene Yeo, Chair
Professor Sheng Zhong, Co-Chair

Alternative splicing (AS) generates isoform diversity critical for cellular

identity and homeostasis in multicellular life. Although AS variation has been

observed among single cells for a few events, little is known about the biologi-

cal signi�cance of such variation. We developed Expedition, a computational

framework consisting of outrigger, a de novosplice graph transversal algorithm to

detect AS; anchor, a Bayesian approach to assign modalities and bonvoyage, a

visualization tool using non-negative matrix factorization to display modality

changes. Applying Expedition to single iPSCs undergoing neuronal di�eren-

xvii



tiation, we discover up to 20% of AS exons exhibit bimodality and are �anked

by more conserved introns harboring distinct cis-regulatory motifs. Bimodal

exons constitute the majority of cell-type speci�c splicing, are highly dynamic

during cellular transitions, preserve translatability and reveal intricacy of cell

states invisible to global gene expression analysis. Systematic AS characterization

in single cells rede�nes our understanding of AS complexity in cell biology.
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Chapter 1

Single-cell mRNA processing: If you

liked it, you should have put a Seq

on it

1.1 Introduction

The human body contains an estimated 3:72� 1013 cells1, all of which are

highly specialized in form and function, and yet despite their incredible diversity

in phenotypes, each cell contains nearly identical genotypes. These cells are

heterogeneous because of their di�erent RNA, protein, and metabolite molecules,

which coordinately regulate the cell to express precise phenotypes. To study the

variation between cells, we turn to single-cell analysis.

The original tool for single-cell analysis is the microscope 2;3, which can

visualize structural di�erences between individual cells, but the molecules

that create these di�erences are too small to resolve in live cells by current

microscope technology. To compare the molecules of single cells, recent advances

1



2

in micro�uidics have allowed for capture of one cell at a time, which can be

coupled with modern high-throughput technology to measure many messenger

RNA (mRNA) molecules per cell, and together these are combined to create

single-cell RNA-sequencing (scRNA-Seq)4;5. Computational analysis of these

high-dimensional data can identify distinct cellular states or delineate cellular

trajectories (reviewed by Bacher and Kendziorski 6; Cannoodt et al.7; Liu and

Trapnell 8; Trapnell 9; Stegle et al.10).

While single-cell capture has enabled probing of cellular state mea-

sured through mRNA abundances, the study of an mRNA molecule's rich life

(Figure 1.1a) from birth (transcription) to death (degradation), the collection

of actions known as mRNA processing 11�15, has only started to be addressed

at the single-cell level. As in bulk RNA-seq 16�23, scRNA-seq has enabled the

investigation of RNA processing features that are measureable by sequencing,

such as alternative splicing, RNA editing, and alternative polyadenylation 24�29.

However, the high-throughput nature of scRNA-seq captures only the abundance

of RNA transcripts in a snapshot in time and loses the information of RNA

modi�cations, dynamics, localization, binding partners, and secondary structure.

Thus, these features must be measured a di�erent way.

Ideally, we would capture the entire cellular and molecular context of

an RNA molecule. To accomplish this, we turn back to the microscope, a tried

and true tool. While even the highest resolution microscopes cannot discern

individual molecules without signi�cant ampli�cation 30;31, microscopy captures

cellular context including morphology and subcellular localization, and in the

case of live-cell imaging, dynamics. Microscopy is limited by the ability to design

�uorescent constructs to visualize RNA and protein molecules, and as a result,

can only be performed for a few targets a time. Middle-ground technologies that



3

are relatively high-throughput but also measure several aspects of the same cell

or same transcript 32;33have highest potential for discovery. We will review the

available methods to probe RNA processing at the single cell level, and highlight

the current limitations, showing opportunities for novel technology to make

breakthroughs in the knowledge of RNA processing.



4

Figure 1.1 (next page): Overview of open questions in single-cell RNA pro-
cessing.
a. Overview of the processing steps in an RNA's life cycle: transcription (biogen-
esis), alternative splicing, poly-adenylation, modi�cation, export, localization,
translation, and degradation.
b. Dichotomy of investigating distribution of transcripts across cells with high-
throughput methods, and distribution of transcripts within cells using high-
resolution methods.
c. Examples of high-throughput measurements, where many transcripts can be
measured at once, but only one feature of them may be measured.
d. Examples of high-resolution measurements, where only a few transcripts can
be measured at once, but many features of them can be pro�led.
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