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Abstract

The mere exposure effect, in which subjects prefer items they
have previously been exposed to over unexposed items, is
explained as the effect of competitive learning in a
connectionist network. This type of unsupervised learning
will cause the network to respond more strongly to patterns on
which it has been trained. If it i1s assumed that positive affect
is proportional to total activation, then the mere exposure
effect is a direct consequence of this process. The addition of
a habituation rule, with a dishabituating recovery element, can
also explain factors which reduce or enhance the effect.
These include the effect of exposure count, display
presentation sequence, the complexity of the patterns, the
effect of a delay after presentation, and finally, the effects of
varying exposure duration. In the case of this last factor, in
addition to showing that very short exposure durations can
enhance the effect, the model reveals why it may be possible
to respond positively to a stimulus that one cannot recall
perceiving.

Introduction

The repeated presentation of an unreinforced and
unclassified stimulus will cause subjects to prefer this
stimulus over unexposed stimuli; this is known as the mere
exposure effect (Zajonc, 1968). This effect is perhaps the
most robust in the literature on aesthetic preference. It has
been found with a number of stimulus types including
nonsense words, meaningful words, Chinese characters.
photographs. music, and people (Harrison, 1977). Bornstein
(1989) carried out a meta-analysis on 208 published studies
on the mere exposure effect between the years 1968 and
1987. He found a combined significance of p < .0000001,
and a fail-safe N of 33,047. That is, there would have to be
this many unpublished studies with zero effect size to render
the combined probability insignificant.

In addition to demonstrating the consistency of the mere
exposure effect, Bornstein's analysis revealed a number of
factors which serve to enhance or reduce the size of the
effect. This paper will treat five of these:

1) Number of exposures

Bornstein found that the exposure effect was reduced in
studies with large number of exposures. A number of
studies have shown that preference is an inverted U-shaped
curve as a function of exposure count. For example, Kail
and Freeman (1973) found an increase followed by a
decrease in rated attractiveness of ideographs as a function
of number of exposures. Brentar, Neuendorf, and
Armstrong (1994) have found a similar result in response to
songs. This is consistent with the common pattem whereby
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one initially plays a newly acquired piece of music at high
frequency, but one finds one's attraction to it decline after
many repeated listenings. These results indicate that in
addition to whatever is causing the exposure effect, some
sort of habituation eventually sets in causing the preference
for the over-exposed stimulus to decline.
2) Homogeneous vs. heterogeneous display

Berlyne (1970) stressed the importance of the presentation
sequence in determining the size of the exposure effect.
Homogeneous display consists of exposing a subject to a
given stimulus a number of times, followed by the the
presentation of the next stimulus a number of times, elc.
Heterogeneous display is achieved by alternating the stimuli
during each exposure. Berlyne found that heterogeneous
display created a larger exposure effects with high-
frequency stimuli. Bornstein's (1989) meta-analysis
revealed that the combined homogeneous experiments
yielded no exposure effect, but that the combined
heterogeneous experiments showed a highly significant
effect (p < .0000001).
3) Complexity

Berlyne and his colleagues (1974) have stressed the
importance of complexity on aesthetic preference. In
particular, they showed that while ratings of interestingness
increase with increasing complexity, affective ratings such
as liking form an inverted U as a function of this variable.
They also demonstrated that complex stimuli exhibit a less
steep rise in affect as a function of exposure, and Berlyne
(1970) has also demonstrated less steep declines with
complex stimuli as a function of exposure. Bornstein (1989)
claims that six of nine studies have shown greater exposure
effects with complex stimuli than with simple ones, two
found no difterence, and one study favoured simple stimuli.
In summary, there is some support for the claim that
complex stimuli produce stronger exposure effects, although
may take more presentations to exhibit such effects.
4) Delay after exposure

Studies directly studying the effect of delay after exposure
have produced conflicting results (Harrison, 1977,
Bornstein, 1989). However, Bornstein's (1989) meta-
analysis revealed a significant "sleeper” eftect. The
exposure effect was greater if the ratings were completed
after all the stimuli were presented, rather than immediately
after each stimulus presentation. A forced delay after the
the presentation of all stimuli also resulted in a more
consistent effect than immediate ratings.
5) Exposure time

Bornstein's (1989) meta-analysis also showed that the
exposure effect is more consistent when stimuli are briefly
presented than when they are presented tor long periods of
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time. Bornstein and D'Agostino (1992) have tested this
hypothesis directly by using stimuli of 5-ms and 500-ms.
As expected. the former produced greater exposure effects.
In addition, recognition ratings for the briefly exposed
stimuli did not differ from chance. Apparently, the mere
exposure effect can be achieved without recognition. and
may even be enhanced by subliminal presentation
(Bornstein, 1989). This is discussed further in the final
discussion.

An effect as important and robust as mere exposure has
naturally attracted a number of theoretical treatments. Three
of those are now briefly discussed:

1) Opponent process models

These models propose two affective systems, positive and
negative, acting in opposition (Solomon & Corbit, 1974).
The initial response to a novel stimulus is assumed to be
negative. With repeated exposure and greater familiarity,
however, the negative affective response is weakened,
permitting the antagonistic positive affective system to have
greater input in determining the overall affective state.
Despite some evidence for the sort of rebound effects such a
model would predict, two problems remain. First, it
requires that one's initial response to a novel stimulus
invariably to be negative, which appears prima facie to be
false. Second, it does little, in itself, to explain the five
variables modulating the effect described above.

2) Arousal models

Most closely associated with D.E. Berlyne. arousal
models postulate that positive affect is an inverted U-
shaped curve as a function of the arousal potential of the
stimulus. Berlyne (1971) suggested that a complex
stimulus, initially somewhere to right of the inflexion point
on this curve, becomes subjectively less complex with
repeated exposures. Hence, it becomes more liked as it
comes closer to the apex of the inverted U. This would also
explain why simple stimuli become less well-liked with
repeated exposures. However, the model does less well in
predicting inverse relation between exposure duration and
the size of the exposure effect. and the role of delay on the
effect, and it is not clear how one could operationalize the
model to incorporate these auxiliary effects.

3) Two-process models

Two-process models suggest a familiarity effect is
counterbalanced by a habituation effect (Bornstein, 1989).
Initially, exposure to a stimulus causes it to become less
threatening, and therefore preferred to a larger extent.
However, eventually boredom will set in, causing the
subject to lose interest in the now overly familiar item.
Thus. one can explain the eventual downturn in affective
response with repeated presentations. The tendency for
homogeneous presentation, and long exposures to quash the
effect can be explained along similar grounds. Delay should
decrease boredom, and therefore will increase the exposure
cffect. Finally. presumably one becomes less bored with
complex stimuli than with simple ones, explaining the effect
of this variable.

However, two problems remain. First, familiarity, which
forms the basis for the first process in the two-process
theory. does not seem to be a requisite of the mere exposure
effect in that subliminal stimuli cause an exposure effect,
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and may be superior to supra-liminal stimuli in doing so
(Bornstein, 1989). Second, one would like to know how to
operationalize the notions of familiarity and boredom in
order to make predictions concerning the interactions
between the various modulating factors.. The purpose of this
paper is propose a two-process connectionist model that
meels these objections.

A Connectionist Model

The model rests on two unsupervised learning rules. Thus,
it is consistent with the fact that mere exposure effect occurs
in the absence of a teacher. In addition, the associative
character of the proposed rules is consistent with the fact
that the mere exposure effect is seen as far down on the
phylogenetic scale as insects (Bornstein, 1989). Before,
presenting the model in detail, however, a means of
measuring the aftective response of the model must be
proposed.

The fundamental assumption of this work is that positive
affect is a monotonic function of cortical activity Thus, this
measure contrasts with optimal arousal theories (Berlyne,
1970), which propose a downturn in affect with over-
arousal. One justification for this measure is that it is
consistent with the traditional aesthetic principle of unity in
diversity (Martindale. 1984). The more competing
representations the network is able to maintain, the higher
the overall activity of the network. Conversely, low activity
implies either low diversity in the input stimulus or the
inability of the network to represent the diverse aspects of a
complex stimulus at once. I have shown how this measure
is useful in understanding the unification of incongruities in
humourous stimuli (Katz, 1993), and how it may be used to
measure the worth of simple melodies (Katz, 1994).

The mere exposure effect follows immediately from this
premise acting in conjunction with an unsupervised learning
regime such as competitive learning (Rumelhart, & Zipser,
1986). Exposure to a stimulus causes the weights to realign
such that future presentation of the stimulus will provide
more activity to the classification layer. Eventually, this
realignment results in super-threshold activity in this layer,
and the organism prefers those stimuli that trigger such
activity over those that do not. A habituation effect must be
postulated in order to provide for the eventual downturn in
activity with over-exposure.

Figure 1 shows how these two processes interact in the
proposed model. The model consists of two layers, an input
layer consisting of a grid of units, and a classification layer.
consisting of a set of winner-take-all clusters. Each such
cluster consists of excitatory connections from units to
themselves, and inhibitory connections to all other units in
the cluster. Excitatory connections also form between
active units in the input layer and active units in the
competitive clusters as the classification process occurs.
Inhibitory connections form between mutually active units
in the input grid to form a novelty filter (Kohonen, 1987),
1.c., a sub-system which provides more activily to novel
stimuli and less to frequently presented stimuli. This filter
provides the habituation effect necessary (o reduce activity
provided to the classification layer.



input grid

cluster 2

cluster 1

classification layer

Figure 1. The model. Units in the input layer connect in
an excitatory fashion to units in the classification layer
(solid lines). They form inhibitory connections between
themselves to form a novelty filter (shaded lines).

Learning between the input and classification layers is
governed by the competitive rule

Awij =A1@j/Zag) [ai/Za - wijl. (D)

where wj; is the weight between unit i in the input layer and
unit j in the classification layer. a; and aj are the activities of
units i and j respectively, I ay is the sum of the activity of
all the units in the cluster of which j is a member, Z a; is the
sum of the activities of all units in the input layer, and A is
the learning rate. Equation 1 reduces to the discrete
competitive rule (Rumelhart & Zipser. 1986)

Awij =X [1/Za - wj], )

when there is only a single winner j at full activation (1.0) in
the output layer (i.e., (ajfz ax) = 1), and when all input

units are also at unit activation. It is not possible to use
Equation 2, however, for two reasons. First, a clear winner
must emerge gradually in each cluster in order to simulate
the gradual increase in activity and therefore affect as
entailed by the exposure effect; selecting a single winner
artificially would mean that the activity in the classification
layer was constant, The term {aj/ L ak) in Equation |

accommodates the "soft" winner-take-all, or contrast
enhancement competitive network which permits multiple
activity at relaxation. Second. because of the novelty filter.
full activity cannot be guaranteed in the input layer. The
term (a; / Zaj) in Equation 1 maintains constant learning

despite lowered activity in the input layer (this will prove
important for low exposure durations discussed in section
3.5).

The novelty filter is governed by

Awij = - A ajay,
Awij = +A3,

when a; and a; > g, and (3)
otherwise.

The first part of Rule 3 ensures that mutually active units
form an anti-Hebbian, inhibitory connection, causing the
activity of such units to be reduced. The second part of the
rule enables the system (o dishabituate when the activity of
these units are decoupled, This part of the rule is for
recovery from habituation only; weights between input units
are not allowed to creep above 0.0.

Relaxation in the network follows the typical network rule

a =8 (Zwij aj). 4)

where

S(x) = 1/(1 +e (x-9)Ty (5)

is the sigmoid output function. Update is accomplished
asynchronously to prevent oscillation in the input layer and
the competitive clusters.

In summary, unsupervised learning in the network follows
two simple rules. The classification rule in Equation 1 is
essentially a normalized Hebbian rule, and the filter in Rule
3 is essentially an anti-Hebbian rule with a restorative
element. In the following simulations, it will be shown that
these rules, in conjunction with the assumption that positive
affect is proportional to the amount of activity registered by
the classification layer, provide results in accord with the
experimental data associated with the mere exposure effect.

Simulation Results

Five sets of simulations are now presented, corresponding o
the tive main exposure effects described in the introduction.
Except where noted, the following parameters are in force.
Learning rates in Rules 1 and 3, A, A,, and A, are all set to

0.2; e in Rule 3 isset 10 0.001. The threshold for all units 6
15 0.9, and the temperature T is 0.1. These two parameters
help ensure that only a single winner emerges in each cluster
once learning has occurred. Excilatory recurrent weights in
the competitive network are 0.5, and lateral inhibitory
weights are -0.5. Five clusters consisting of four units each
are used. Initial weights between layers are set at random
such that the sum of all weights to a given classification unit
sum to 1.0. Input stimuli consist of randomly generated
stimuli on a § by 5 grid with each grid element having a
50% probability of being on. Changing the parameters
within reasonable limits does not alter the qualitative form
of the resulls to be presented.

Simulation 1: Number of Exposures

In this simulation, a single input was repealedly exposed to
the network. The graph in Figure 2 show the mean activity
in the cluster layer as a function ol the number of exposures
with full habituation (i.e., A3,= A; = 0.2, as usual) and for
reference, no habituation in the input layer (i.e.. Ay,= Ay =
0.0). Both curves are the averages of the curves obtained
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over 10 trials. With no habituation, the exposure effect is
monotonic, and the winning units in the classification layer
asymptotically approach 1.0 as the weights become aligned
to the input vectors. A similar effect can be seen when
habituation is in place, but at after 6 exposures the activily
in the input layer causes a decline in activity achieved in the
classification layer, asymptotically approaching 0.0 as the
number of exposures increase. Thus, in common with all
two-factor theories, the network model accounts for the
inverted U relating affect to exposure number. The
following four sections show how providing heterogeneous
display, increasing stimulus complexity, inserting a delay
after exposure, and decreasing exposure time can overcome
some of the habituation to provide a stronger or longer
lasting exposure effect.

1.0

1=
s _08 e
g é‘é —4— no habituation
= 5 0.6 —— with habitatuation
20
=5 0.4
S A
g 02

e -

1 3 5 7 9 11 s 1 i

exposure number

Figure 2. Mean activation per cluster for a single
stimulus as a function of exposure number, with and
without habituation in place.

Simulation 2: Homogeneous/Heterogeneous Display

In this simulation, 5 input stimuli were presented to the
network in a homogeneous display sequence or a
heterogeneous display sequence. In the former case, a given
stimulus was presented for the specified number of
exposures, followed by the next stimulus presented in this
manner. Activily in the classification layer was measured
for all 5 stimuli at the end of this sequence. Heterogeneous
display meant that stimuli 1-5 were presented sequentially,
and this process was repeated for the specified number of
exposures, after which network activity was measured. All
stimuli were presented in the same order across
presentations in both cases.

Heterogeneous and homogeneous display involve equal
numbers of presentations of a given stimulus for a given
exposure number. Despite this, the graph in Figure 3 shows
radically different results for the two presentation types
(each data point represents the average of ten trials). In
accord with the human experimental results showing that
homogeneous presentation yields weak exposure effects.
these data show a small exposure effect for low exposure
frequency and then a decline as exposure number increases.

Two factors contribute o the lack of exposure
effect for high frequency homogeneous presentations. First,
successive presentation of a single stimulus results in
habituation: this lowers the activity in the input layer for the
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Figure 3. Mean activation per cluster for multiple
stimuli as a function of presentation sequence and
exposure number,

last few stimuli presented. Earlier stimuli are able to
recover from this habituation because other stimuli are
interposed between their original exposure and the final test
of their activity. However, because of this interval, they fall
prey to the second factor. The interposed stimuli will share
some of the same winners as the earlier stimuli, but will
cause the weights to be realigned in accord with these later
patterns. This lessens the response to the earlier stimuli.
Heterogeneous presentation counteracts these factors by
permitting the dishabituation to occur because successive
stimuli will have non-overlapping features. Furthermore,
heterogeneous presentation ensures that all stimuli have
been presented a relatively short time before (testing,
ameliorating the effect of the second factor.

Simulation 3: Complexity

Stimulus complexity in this simulation was operationalized
in a manner similar to that of Berlyne (1974). Simple
stimuli are assumed to differ from each other in relatively
few ways, while complex stimuli differ along a number of
differing features. Four levels of complexity over five
features were tested here. The first, simplest level was
created by allowing one feature (o take two possible
equiprobable values; all the other features took one value
only. Thus, there were a total of 2 possible stimuli, with an
uncertainty of U = log(2) = 1 bit. In the next level, 3
features took 2 possible values, the other 2 features took
only one value, resulting in an uncertainty of U = log(8) = 3
bits. For the next level of complexity, 4 features took 2
values resulting in an uncertainty of U = log(16) = 4 bits.
The last, highest level of complexity consisted of 4 features
taking 2 values, and 1 feature taking three, with an
uncertainty of U = log (48) = 5.58 bils.

Five stimuli were chosen according to a given complexity
level and presented to the network in a heterogencous
fashion. The graph in Figure 4 shows activity in the
classification layer as a function of the number of times that
these sets were presented. In accord with the experimental
data, larger exposure effects were found with higher
complexity (high uncertainty) stimulus sets after 15
presentations of the set. Less interstimulus similarity within
a set, and therefore lower habituation explains this
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Figure 4. Mean activation per cluster as a function of
the uncertainty U of the stimulus set and exposure
number.

result.  Also in accord with experimental data, high
complexity initially exhibited a less steep rise in activity as a
function of exposure number. This is the effect of low
complexity stimuli sharing more winners because they are
more similar, causing a faster rise in this curve before
habituation sets in. In order to extend these results to
experiments with natural stimuli such as simple and
complex pieces of music, it must be assumed that the raw
input is transformed into feature space before it is operated
on (see Katz, 1994 for an example of how exposure effects
can be demonstrated with melodies of varying complexity).

Simulation 4: Delay after exposure

In this simulation, a single stimulus was presented
repeatedly to the network. A variable number of randomly
generated stimuli were then presented, after which the
network's response to the original stimulus was measured, to
simulate a delay between exposure and measurement of
affect. Figure 5 shows these results as a function of the
number of delay stimuli and the number of presentations of
the original stimulus: each data point is the average of ten
trials. For all three exposure frequencies. there is a rise in
network response as a function of the delay. The reason for
this is that repeated presentation of the original stimulus
results in habituation, but the delay stimuli result in
dishabituation, restoring the input layer to its original
response. However, as the results also show, this restoration
works best if the original stimulus was not highly over-
exposed. The reason for this is that high exposure results in
a near complete dampening of input layer activity. This
causes no clear winner to emerge, and therefore affects
classification learning. These results do not explain the fact
that the exposure effect is augmented by mere time delay
(Bornstein 1989), although this could be possibly explained
by a passive dishabituation effect.

Simulation 5: Exposure duration

In the final simulation, activity in the classification layer
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Figure 5. Mean activation per cluster as a function of

the number of initial exposures of a single stimulus and
the number of subsequent delay stimuli.

is studied as a function of exposure duration. Five input
patterns were presented in homogeneous sequence for 10 or
20 exposures. Instead of allowing the system to relax, as in
the previous simulations, these stimuli were permitted to
activate the network for a specified amount of time. This
time was measured in relaxation cycles and fractions
thereof. In the case of fractional relaxation cycles, the
activation value of a unit was proportional to the fractional
value. For example, a unit's activation after 1.4 cycles was
the activation value after a single relaxation cycle plus 0.4
of the difference between this value and what it would have
been if 2 relaxation cycles had taken place. The graph in
Figure 6 shows the results of measuring classification
activity after the network was exposed to the patterns (the
network was allowed to relax in this testing phase); each
data point is the average of ten trials. In accord with the
experimental data, both initial exposure frequencies show
increased activity for shorter exposure times. Lack of
habituation makes the lower exposure frequency
presentation somewhat more effective. These results occur
because short exposure durations result in less activity in the
input units, and by Rule 3 less habituation. Learning in the
normalized competitive Rule 1 is not affected by low
activity in the input layer. Thus, low exposure duration is
favoured. However. learning with very low exposure
duration, though resulting in higher activity in the clusters.
does not reliably produce a clear winner, when fully
exposed to the original pattern. This occurs because the
contrast enhancement mechanism provided by the winner-
take-all clusters does not have time to suppress the activity
of the losing units, and therefore they are subject to the
learning process in addition to the winner. This often results
in all units becoming active in a cluster to a small extent
when the network is exposed to the pattern in the test phase:
this is discussed further in the next section.

Discussion

In summary, two simple learning rules, in conjunction with
an activation measure of affect, yield simulation results
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Figure 6. Mean activation per cluster as a function of
the exposure duration for two exposure frequencies.

in accord with the experimental data. The basic exposure
effect occurs because competitive learning causes a network
to be more responsive to stimuli to which it has been
previously exposed. The other effects, including the fall off
in the exposure effect with over-exposure, the greater
effectiveness in producing the effect of heterogeneous vs.
homogeneous display, the greater effectiveness of complex
stimuli vs. simple stimuli, and the increase in the eftect with
delay and low exposure duration can be explained by
competitive learning acting in conjunction with a novelty
filler. The network model is also capable of making
predictions about the interactions between these variables,
which is not necessarily possible in models which are less
completely specified.

In particular, the model may reveal why exposure to
subliminal stimuli can produce an exposure effect in the
absence of recognition. On the face of it, this is a strange
result - subjects are responding positively to stimuli they
have been exposed to, and at the same time claiming they
have never seen the stimuli. One explanation is that two
systems are subserving perception, one aftective, and one
cognitive (Zajonc, 1980), and that the affective system is
amenable to subliminal effects, while the cognitive one only
works in conjunction with awareness. The model proposed
here provides an alternative explanation. Recall that that
low exposure duration resulted in an exposure effect, but
that it did so by activating all units in a cluster to a small
extent, rather than producing a clear winner. It is possible
that subjects say they do not recognize the stimulus because
it does not produce these winners, as a supra-liminal
stimulus would. However, the net activity in this layer is
still greater than for an unencountered stimulus. In eftect,
the warm glow of affective response occurs without
Titchener's warm glow of recognition.
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