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Abstract

The ever-increasing variety of microcontrollers aggravates

the challenge of porting embedded software to new devices

through much manual work, whereas code generators can be

used only in special cases. Moreover, only little technical doc-

umentation for these devices is available in machine-readable

formats that could facilitate automating porting efforts. In-

stead, the bulk of documentation comes as print-oriented

PDFs. We hence identify a strong need for a processor to

access the PDFs and extract their data with a high quality to

improve the code generation for embedded software.

In this paper, we design and implement a modular proces-

sor for extracting detailed datasets from PDF files containing

technical documentation using deterministic table process-

ing for thousands of microcontrollers. Namely, we system-

atically extract device identifiers, interrupt tables, package

and pinouts, pin functions, and register maps. In our evalua-

tion, we compare the documentation from STMicro against

existing machine-readable sources. Our results show that

our processor matches 96.5 % of almost 6 million reference

data points, and we further discuss identified issues in both

sources. Hence, our tool yields very accurate data with only

limited manual effort and can enable and enhance a signifi-

cant amount of existing and new code generation use cases in

the embedded software domain that are currently limited by a

lack of machine-readable data sources.

1 Introduction

With an ever-expanding product catalog of embedded hard-

ware comes the challenge of porting the corresponding

hardware-dependent software (HdS) stack to thousands of

devices [15]. Hardware vendors typically provide a HdS

implementation in the C programming language only. How-

ever, newer compiled languages and dynamic runtime envi-

ronments, such as C++ [34], Rust [59], Python [38], and

IoT-focused Femto-Containers [80], bring new programming

paradigms and features to resource-limited embedded sys-

tems, but they require a custom HdS stack [15, 30].

Porting HdS to other programming languages is mostly a

manual process, where software engineers consult technical

documentation to inform design and implementation deci-

sions, as well as extract device-specific hardware description

data from the documents and convert them into code [15].

However, the technical documentation is often only avail-

able as PDF, which complicates the extraction of structured

data [16, 54] due to its print-oriented content model [43].

Specifically, porting a HdS stack to a new device requires

data for the bootloader (processor, memories, vector table,

power management, clock graph), hardware abstraction layer

(HAL) (pinout, pin functions, peripherals, register map), de-

vice drivers (capabilities, pinout, communication type, regis-

ter map), and board support (microcontroller, external devices,

signal connections, power supply) [15]. Additional data is

needed for part evaluation, configuration tools, build systems,

testing, and simulation [15]. As a result, the porting process

is laborious and thereby slows down new HdS projects [15].

Some projects alleviate these limitations by using code

generators for large parts of their HdS stack [3, 34, 58–60],

with data extracted from machine-readable sources, such as

standardized formats [70], proprietary databases from tool-

ing [64], or provided by manually curated datasets [20, 27].

However, the scope and fidelity of the available machine-

readable data are usually significantly smaller than what is

available in the technical documentation [35, 60]. Exist-

ing work in the area of document information extraction is

focused on generic inputs and cannot provide the domain-

specific data found in technical documentation with the nec-

essary accuracy [9, 16, 54, 73].
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Figure 1: A data processor project 1 combining multiple in-

put sources into a shared database without manual supervision

promises to reduce overall development efforts. 2 A single

project using the database can 3 add features or fix issues

so that 4 all other projects benefit from the improvements.
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These observations motivate the need for combining multi-

ple sources to create the most complete dataset possible in an

automated, unsupervised process. As illustrated in Figure 1,

the database can then be shared among multiple projects,

which would significantly reduce development efforts.

Therefore, we identify a research gap in terms of a data

processor that connects information extraction of technical

documentation with code generation of embedded software.

We split our solution to this problem into four parts: (i) We

first convert the print-oriented PDF technical documentation

content into an accessible, structured form. (ii) We then

extract and assemble the information relevant to our use cases

as determined by domain experts. (iii) We then encode this

data into an unambiguous encoding and provide access to it

for code generation tasks. (iv) For our evaluation, we compare

both the completeness and correctness of the extracted PDF

data with the already existing machine-readable counterpart.

Contributions. Our tool achieves several contributions.

Our processor converts PDF technical documentation to

HTML and provides custom parsers for machine-readable

data. We apply table processing and text mining paradigms

to extract and convert data from the technical documentation

using a deterministic process that yields completely repro-

ducible results. We verify the processor functionality by com-

paring the data extracted from the technical documentation

against the existing machine-readable sources. In addition,

we further check the internal consistency of the processed data.

Thereby, we establish a method to merge multiple sources

and arbitrate conflicts based on qualitative metrics. We also

provide a detailed analysis of the quality, trustworthiness, and

completeness of each data source that can inform and guide

future extraction work. The extracted data is unambiguously

encoded as a knowledge graph via a custom ontology to de-

scribe the embedded hardware, making it widely accessible to

a number of different use cases. Our design is implemented

as a highly modular Python project, which is open-sourced

and maintained as part of the modm project [37].

Paper Organization. This paper is organized as follows.

In Section 2, we introduce the background relevant to the

remainder of this paper. We then describe related work in

Section 3 and define the issues to be addressed by our proces-

sor. In Section 4, we describe the design and implementation

of our processor, which we then rigorously evaluate against

STMicro documentation and data sources, and discuss the

results in Section 5. We conclude this paper in Section 6.

2 Background

In this section, we first lay the foundation for our processor

extracting the hardware description data required for creat-

ing embedded software. Accordingly, we give an introduc-

tion to technical documentation formats, table processing,

hardware-dependent software, and knowledge modeling in

the following.

2.1 Technical Documentation

Hardware vendors publish their products’ technical documen-

tation as PDF files, which, as a print-oriented format, contain

a stream of graphics and text objects placed at precise posi-

tions inside the document canvas [43]. As a result, documents

render identical on all platforms; however, all semantic and

hierarchical information is lost, which makes it difficult to

parse and convert them automatically [54]. For example,

PDFs published by STMicro contain text-supplementing ta-

bles and figures with valuable information [13]. Tables are

rendered using vector graphics to draw the cell borders and

text characters, as visualized in Figure 2. Extracting struc-

tured data from such tables is difficult when relying only on

text extraction heuristics [7,54,62]. Admittedly, deterministic

algorithms consuming vector graphics produce accurate and

reliable results [53].
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Figure 2: This table excerpt shows the bounding boxes of the

individual glyphs in red with their origin marked with a black

cross. Inter-document links like the footnote markers in the

Notes column are marked with a green box [13].

2.2 Table Processing

Table processing edits, converts, and formats data from un-

tagged but semi-structured inputs to semantically valuable

information [16]. Simple tables render an array of data as

a row-column structure of cells [26, 75]; however, complex

tables express hierarchical and multi-dimensional information

presented in their formatting [16, 26]. The visual rendering

of tables includes using different text, separator, and bor-

der styles, spanning cells spread over multiple rows and/or

columns, cells with multi-line content, and even splitting the

entire table into multiple parts to help fit into the presenta-

tion medium dimensions, usually a printable page or a digital

display [54, 75]. To separate the rendering from its logical

structure, the Wang abstract table model [75] defines an in-

dexing relation as a partial function δ that uniquely maps the

multi-dimensional header structure to a table cell resulting in

2



Journal of Systems Research (JSys) 2023

an attribute-value pair [16,26]. However, any further interpre-

tation and transformation of the tabular data require domain

knowledge about the content of the table [54].

2.3 Hardware-dependent Software

Hardware-dependent software (HdS) consists of the lowest

layers in an embedded system that directly interact with the

underlying hardware and provide a portable abstraction to

applications on different hardware [6, 30]. In doing so, the

HdS can only implement a system functionality together with

the underlying hardware and would lose its utility without this

dependence [15]. Figure 3 illustrates the typical layers of a

conceptual and simplified HdS architecture, of which embed-

ded software typically only implements the layers necessary

for the scope of the application [6,30]. Our tool focuses on the

hardware description and the HAL since these layers require

the most data and manual effort for porting.

Application

Middleware Board Support

Operating

System

Communication Protocols

Device Drivers

Boot

Firmware

Hardware Abstraction Layer

Peripherals Debug Support CPU Memory

System Bus

Figure 3: The simplified software stack of a typical HdS

architecture with its three layers: software, HdS, and hard-

ware [15]. Our work focuses on the hardware description and

hardware abstraction layer (marked gray).

Modern microcontrollers connect a microprocessor to

generic internal memories and specialized hardware regis-

ters located at specific addresses of an internal bus, known as

memory-mapped input/output (MMIO) [15]. To describe the

register names, addresses, and types, vendors publish system

view description (SVD) files that are the machine-readable

equivalent of the register descriptions in the technical docu-

mentation [4]. The SVD files are converted into C header files

using a closed-source conversion program called SVDConv as

part of the common microcontroller software interface stan-

dard (CMSIS) [72]. This form of MMIO register access is the

de-facto standard for all C-based HALs due to the simplicity

of the header files that work well with many compilers [4].

Vendors also publish custom tooling for their specific prod-

ucts. For example, the STM32CubeMX [64] tool by STMicro

allows a programmer to graphically connect peripheral signals

to pins, configure the clock system, estimate power consump-

tion, and enable several middlewares. The tool can then gener-

ate a complete HdS stack in C for a specific device, which is a

pragmatic choice due to its popularity and history as a system

programming language [6, 15], but also its main limitation.

The tool’s internal database contains a machine-readable ver-

sion of the pin definitions in the technical documentation and

is also available separately on GitHub [67].

Apart from C, open-source toolchains also support a num-

ber of newer compiled languages, such as C++ [5, 11, 34] and

Rust [59, 60]. Optimized runtimes also exist for interpreted

languages such as Python [21, 38, 51] and Go [22]. These

languages bring new programming paradigms and features

to resource-limited embedded systems that are simply not

supported by C, especially compile-time code execution and

extending the type system. However, all of these new lan-

guages must access the underlying hardware with the same

MMIO register mechanism. Therefore, they all require the

same information to generate their language bindings and

support tooling, regardless of what level of abstraction and

convenience they provide. However, in practice, all code

generation approaches that support new languages are limited

to vendor-published, machine-readable, or manually curated

data sources.

2.4 Knowledge Modeling

Knowledge graphs transitively model the available knowledge

about a set of entities; namely, knowledge graphs represent

facts about entities’ relations as edges, which can allow de-

ducting and validating new knowledge about the modeled

domain by combining multiple edges, i.e., deriving additional

rules on how to interpret entities and their relations [23, 28].

The rule set and data graph together constitute a formal rep-

resentation of domain-specific knowledge, an ontology [23],

which can be used to translate the abstract table model via its

partial function δ into related facts [73]. We can define the

scope and detail of an ontology depending on the extent and

quality of the input data and how much additional information

we want to query out of it using the same query language and

graph algorithms regardless of scale [23].

A concrete implementation of knowledge graphs is the se-

mantic web, which annotates HTML resources with semantics

using an XML-based syntax [23]. The data model for seman-

tic web knowledge graphs is the resource description frame-

work, which can be extended with descriptions of semantic

rules of increasing computational complexity relative to the

reasoning capabilities of a solver [23]. The most used exten-

sion is the web ontology language (OWL), which provides

basic vocabulary like a datatype hierarchy and pre-defined

properties using a description logic with well-understood com-

putational properties that allow reasoning solvers to terminate

on all queries [23].

Summary. In conclusion, the limitations of the PDF format

make accessing its text, figures, and tables difficult, while

3
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table processing allows for working with tabular data in a

format-agnostic way if only it were accessible. The technical

documentation contains important information for generating

HdS in languages other than C that can supplement existing

machine-readable sources, whose complex data model we

can describe using knowledge graphs. With our tool, we

bridge the gaps between these independent areas of research

for improved automation and robustness, irrespective of the

final use, especially for embedded devices.

3 Related Work

After introducing the technical background for this paper, we

now discuss related work in the areas of information extrac-

tion, hardware description pipelines, and embedded software

generators.

3.1 Document Information Extraction

Extracting structured information from non- or semi-

structured inputs is a wide area of research [16]; therefore,

we focus on table processing and knowledge modeling. The

foundation of table processing is the abstract table model [75],

used to decompose a table into its logical structural design,

tabular arrangement, and presentation style. Hurst [26] ap-

plies this abstract model to tables in documents for the pur-

pose of extracting their information into a semantic model.

Embley et al. [16] thoroughly enumerate table input formats,

presentation styles, and table processing paradigms. Out of

the four table categories in this survey, our work only uses two:

Symbolic tables are unambiguously encoded using markup

languages such as HTML or XML that separate the table lay-

out from cell content. Their visualization is performed as a

separate step, which allows for rendering the same table in

different styles [16]. Vector tables are found in PDFs and scal-

able vector graphics (SVG) and encode the table layout and

cell content separately using text instructions for rendering

glyphs and graphics instructions for rendering line art [16].

Table processing first requires detecting and locating, then

understanding the table’s structure and content [16, 29]. For

symbolic tables, detection can be as simple as matching on

special strings in the content stream [8]. However, for vector

tables in PDFs, a common approach is coalescing the bound-

ing boxes of text and graphics into larger clusters [7, 53, 62]

and categorizing these into text, figures, and tables. Three

common approaches exist: Generic, heuristic algorithms use

only the space between text clusters to detect borders [62]

if tables provide enough space between the cell content and

its borders [7, 53, 55, 56, 62]. A more accurate approach uses

the properties of vector graphics to determine table structures

directly [53]. However, in practice, both approaches are com-

bined [7, 10, 53] since figures and tables are often composed

of a mix of text with implicit whitespace borders and differ-

ent font properties, alignment, and graphics with various line

types and widths. A particularly robust method is to first

locate the table captions via text search and then find the cor-

responding graphics and text clusters nearby [10]. The last

common approach is to render the PDF input to images and

then use machine learning to classify the areas visually [57].

Information extraction algorithms then align the table struc-

ture and content with an externally provided schema to guide

the understanding process [16, 54]. Schemas can be user-

defined [18] or heuristically obtained [17] and then incremen-

tally merged into a larger ontology [18, 73]. Alternatively,

an already existing external ontology [9] or one text-mined

from the surrounding text [50, 79] can generate a feasible

table schema mapping. Machine-learning models can then

recognize tables with similar schemas but different format-

ting with 80–85 % accuracy [41]. The resulting ontology and

data are typically modeled via a knowledge graph that can

apply various internal reasoning methods in combination with

additional external data sources to improve accuracy [23, 28].

Historically, manual methods of information detection and

extraction were converted to statistical models and then fur-

ther generalized to machine-learning models that can parse

more input formats with higher accuracy. Recent research

now utilizes large language models [81] to accurately ex-

tract knowledge in structured form, albeit only from text

inputs [14]. To outline how these approaches are applied

in practice, we introduce existing hardware data extraction

pipelines next.

3.2 Hardware Description Data Pipelines

Extracting information from generic documents is a

widespread use case for commercial and open-source tools,

typically by applying optical character recognition to scanned

or photographed documents and heuristic algorithms on the

obtained text [29]. However, due to the format ambiguities

inherent in such documents, user input is usually required to

guide table detection and understanding [29]. For example,

Tabula [44] is a popular, open-source Java application that

extracts tables into Excel format with a graphical interface to

solicit human user input. Khurso et al. [29] compiled even

more methods and tools for table extraction in their survey.

However, we require tools that extract information specifi-

cally from several extensive technical documents related to

embedded software and hardware in an automated manner.

Instabuild [45] is a commercial tool to extract device pinout

descriptions from screenshots of datasheets but requires hu-

man supervision, similar to Tabula. In contrast, uConfig [47]

extracts device pinouts automatically using a carefully crafted

parser that interprets the text bounding boxes inside the rele-

vant figures but only succeeds for some PDF technical doc-

umentation. Finally, Datasheet2SVD [48] uses Tabula to

extract the memory map from reference manuals; however,

it is limited to work for only two Renesas PDFs documents.

To the best of our knowledge, none of these projects utilize

4
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Tool or Project Open-Source Maintained Data Source Output Data Scope Interaction

Tabula [44] ✓ ✓ Any PDF Excel, CSV Any table Supervised

Instabuild [45] ✗ ✓ Image of PDF EDA symbol Pinout tables Supervised

uConfig [47] ✓ ✗ Datasheet PDF EDA symbol Pinout figures Scripted

Datasheet2SVD [48] ✓ ✗ Datasheet PDF CMSIS-SVD Register map Scripted

modm-devices [35] ✓ ✓
CMSIS-Header,

STM32CubeMX

Custom XML

with Python API

Peripherals, pinouts,

signals, memories

Scripted with

manual patches

embassy-rs [68] ✓ ✓
CMSIS-SVD,

STM32CubeMX

Custom JSON

with Rust API

Peripherals, pinouts,

signals, register map

Scripted with

manual patches

Table 1: Comparison of tools and projects that extract hardware description data from PDF and machine-readable sources.

vector graphics to detect and segment tables in the documents,

relying entirely on whitespace analysis, which has significant

limitations, and none give any kind of evaluation metric for

their accuracy or device coverage, and none facilitate a simple

merging of multiple information sources.

Other projects extract information only from machine-

readable sources such as CMSIS system view description

(CMSIS-SVD), CMSIS-Header, and the STM32CubeMX

database [64]. modm-devices [35] accumulates data on de-

vice pinouts, pin signal connections, peripheral type and

counts, and memory sizes for STM32, SAM, NRF, and

AVR microcontrollers, which is used to inform the C++ HAL

and toolchain generation in the modm project [34]. The

embassy-rs data pipeline [68] does almost the same for gener-

ating the embassy-rs Rust HAL [60] but is limited to STM32

only. Both tools further store their data in custom formats and

do not share any manual data fixes.

In summary, PDF-based tools are limited to extracting

very specific data for a limited number of devices, while

the most extensive datasets are only generated from the

machine-readable sources STM32CubeMX, CMSIS-Header,

and CMSIS-SVD. We provide a comparison summary of all

these tools and projects in Table 1. To provide an overview

of the use cases that can consume the hardware description

data generated by the pipelines, we present related work in

the area of embedded software in the next section.

3.3 Generating Hardware-dependent Software

Code generation is an essential tool for HdS design since the

limited code space on most devices makes runtime configu-

ration options infeasible [6, 15, 30]. The wide research area

of model-driven software engineering includes HAL genera-

tion [24, 25], automated testing [76], system modeling [61],

and deriving entire software drivers [2] mostly from existing

machine-readable sources (cf. Figure 1).

However, in practice, HdS projects only implement a sub-

set of the proposed research. For example, the Linux Zephyr

project [31] configures hardware via the DeviceTree [32] in-

terface and then formats it as C pre-processor definitions to

be used as an implicit code generator built into the toolchain.

The STM32CubeMX configuration tool [64] instead gener-

ates its C HAL in an explicit step before compilation, as

does modm [34] and Embedded Rust [59] for their respective

C++ and Rust HALs. I2CDevLib [27] accumulates manually

defined register maps for externally connected devices and

provides basic drivers for them. Cyanobyte [20] instead gen-

erates device drivers from an abstract dataset so that projects

with a custom HAL only need to provide a code template to

gain access to all drivers.

Specialized code generators convert CMSIS-SVD regis-

ter maps [70] found on GitHub [69] into language-specific

bindings: SVDConv [72] for generic C, SVD2Rust [58]

for Embedded Rust, SVD2Ada [3] for Embedded Ada, and

SrcGen [71] for generic Assembly, C or Clojure definitions.

However, a crowd-sourced effort to significantly improve

them is not progressing fast enough [65].

In conclusion, we point out that even though data extrac-

tion from tables is a hard but well-understood problem, data

pipelines in the embedded software space do not apply these

lessons at scale and instead either focus only on extract-

ing only specific data such as pinout detection from docu-

ments [45, 47] or only extract data for specific devices [48].

The most extensive pipeline projects [34, 59] eschew doc-

uments altogether and only use already machine-readable

data [64,70]. Projects using code generators are therefore lim-

ited to the scope of easily accessible data, with a current focus

on SVD files, or they are forced to manually build databases

to enable their use case [20, 27]. However, several research

ideas [2, 61, 76, 78] use very extensive datasets for which a

pipeline is missing as of now and, therefore, must derive the

required data heuristically or via user input.

4 Design and Implementation

The outlined lack of approaches that automatically process

and utilize technical documentation convinced us to come

up with a design and corresponding tool that transforms and

merges multiple data sources into a shared representation an-

notated with domain-specific semantics. In this section, we

give an overview of this design and its specifics. We separate

the entire processor into six specialized data pipelines, as visu-
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PDF Archive PDF → HTML
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SVD Archive SVD → OWL
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Config Tools DB → OWL
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Internal ExternalOWL Archive

8

Simple API

9
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Graph Query
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Figure 4: Design overview of our data processor. It relies on several internal pipelines (illustrated on the left side of the dotted

line: 2 – 7 ) and external access methods (shown on the right side: 9 – 11 ). First, 1 data sources from the hardware vendor

are retrieved. Then, 2 the PDF technical documentation is converted to HTML, and 3 the relevant tables contained within are

extracted into a knowledge graph (OWL). Additionally, the SVD memory maps are 4 extracted from the HTML, 5 CMSIS

header files, and vendor-provided SVD files to be 6 merged into an optimal representation and stored as a knowledge graph

(OWL). Finally, 7 the proprietary database (DB) contained in configuration tools is also converted into a knowledge graph

(OWL). Then, 8 the separate knowledge graphs are evolved into one canonical knowledge graph by a merging strategy that

corrects or at least minimizes data conflicts. This final knowledge graph is then 9 conveniently accessible via an external Python

API, 10 converted into specialized formats such as SVD, or 11 directly accessible via a knowledge graph query language.

alized in Figure 4. As a result, the individual conversion steps

are independent of each other. This modular design also al-

lows for manual or automatic inspection of intermediary data

between the stages to assess its quality and tune the conver-

sion process iteratively. Moreover, the data processor can be

composed of only those pipelines for which data sources are

available, which can then be merged using knowledge graph

evolution. For the design overview, we refer to Figure 4. We

now introduce the data-processing pipelines in more detail.

Input Data. 1 Input sources are usually available at ven-

dor websites (e.g., [63, 64]) or GitHub (e.g., [36, 66, 67, 69]).

PDF → HTML. The 2 PDF to HTML pipeline reverse-

engineers the formatting style of the PDF to assign the equiv-

alent HTML semantics to characters, vector graphics, and

images. To this end, we first abstract the PDF contents into

an internal document model via pypdfium2 v1.11 [49], before

locating table, figure, and image areas using their caption [10]

and vector graphics shape [53], with the remaining areas con-

taining only characters. We then convert each content area

separately into an abstract syntax tree (AST) [7,53,62], which

describes the logical content hierarchy together with vital for-

matting metadata, such as text indentation spacing to indicate

lexical scope. This metadata further contextualizes the in-

dividual object semantics. Subsequently, we unpaginate the

content areas by merging these small ASTs into one large

AST, which is iteratively modified to better align it to the

HTML content model for trivial serialization. The succeed-

ing pipelines can access the documentation now significantly

easier in HTML format.

HTML → X. The HTML representation provides an ab-

stracted input for the following pipelines 3 and 4 . For

tables, we provide a simple column-row (x,y) access with-

out regard for table structure or a partial function δ that pro-

vides attribute-cell pairs as described by the abstract table

model [75]. Together with basic text mining via regex match-

ing and substitution, these interfaces are enough to implement

all functionality. We now have a library of modular, reusable

HTML table queries that operates on the whole document set.

Header → SVD. The 5 CMSIS header files are converted

to CMSIS-SVD files by resolving the C pre-processor macros

into numeric values, which are then matched to the peripheral

and register names of the C type definitions elements to build

our hierarchical memory map. Any memory map definitions

in the CMSIS header format can now be parsed and converted.

X → OWL. The 6 CMSIS-SVD tree format is directly

converted into a knowledge graph. The 7 STM32CubeMX

tool database is encoded as XML and is converted almost

directly without significant effort. The pipelines 3 , 6 , and

7 use a manually-defined ontology and serialize to OWL

via owlready2 v0.40 [40]. All data is now unambiguously

encoded in a common format with shared semantics.

OWL → OWL. The knowledge graph is 8 evolved by

resolving input data conflicts and merging them into a new

knowledge graph. We resolve data conflicts by majority vote

if we have three or more sources available. Otherwise, we

prefer the machine-readable source and add all missing data

from the other. This final output of the data processor contains

the least flawed data from the input sources that is backward

compatible with existing software engineering practice. Other

evolution strategies may be better suited for use cases that do

not need to interface with existing vendor source code, e.g.,

Embedded Rust [59].

OWL → X. To improve the quality of life for users, we

provide several external interfaces ( 9 , 10 , and 11 ) that

6
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offer machine-readable access to the extracted knowledge.

These data-processing pipelines manage the automated

translation of technical documents and other resources. Hav-

ing cross-platform use in mind, we implemented our de-

sign entirely in Python 3.11, for which we could find well-

maintained libraries for interacting with PDF, tree, and knowl-

edge graph data structures while still being sufficiently perfor-

mant for our use case. Both conceptually and implementation-

wise, we kept our design modular. Hence, it can be adapted

to other technical documents, vendors, and resources. It fur-

ther supports replacing or extending single data pipelines

and promises good utility as pipelines can be (de)selected as

needed. The processor is open-sourced and will be maintained

on GitHub [37] under an MPLv2 license, and we welcome

pull requests that augment our provided data pipelines and

data sources.

5 Evaluation

We now evaluate the performance of our tool and assess the

quality of datasets extracted from technical documentation by

STMicro by comparing them against the corresponding lim-

ited corpus of available machine-readable data. In Section 5.1,

we first describe the execution of our processing pipelines

and which input data is converted into intermediary artifacts

before estimating its performance in Section 5.2 and the im-

plementation effort required for realizing each conversion

step in Section 5.3. Subsequently, in Section 5.4, we compare

the data we extracted from the technical documentation with

their machine-readable counterpart to derive the quality of

our automated processing and the accuracy of the provided

(technical) documentation. We then discuss our findings in

Section 5.5. Finally, we conclude this section with the impact

of the evaluation in Section 5.6.

5.1 Experimental Setup

The data processor and all auxiliary code are written in

Python 3.11 and do not require any special hardware or soft-

ware setup. We execute all pipelines and measurements on

a 2022 MacBook Air with an 8-core Apple M2 processor,

16 GB of memory, and 1 TB of storage. For our evaluation,

we used the latest STMicro data sources as of March 2023.

Data Sources. Before we can properly evaluate our tool,

we first need to convert all data sources into a common knowl-

edge graph format. We automatically scraped the technical

documentation from STMicro every day between 16th Febru-

ary 2022 and 19th March 2023, resulting in a total of 1436

PDFs. The 2 PDF → HTML pipeline converts the latest

revision of 409 PDFs with 156999 pages in total: 70 reference

manuals (70 % of the total pages) and 339 datasheets (30 %).

The 3 HTML → OWL pipeline then only converts the latest

revision of the technical documents, resulting in one knowl-

edge graph for each of the 188 datasheets and 55 reference

manuals, 4 as well as 58 SVD files. The 5 CMSIS header

files for STM32 are converted into 185 SVD files, while 6

the 99 CMSIS-SVD files for STM32 are imported as is. The

STM32CubeMX database [64] expands into 1316 individual

XML files, which the 7 DB → OWL pipeline converts into

one knowledge graph for each of the 3024 STM32 devices.

PDF → HTML Quality. We fine-tuned the accuracy of this

pipeline during development through iterative manual com-

parison between a sample set of representative PDF pages

and their resulting HTML to discover formatting issues and

then adapted the code to address them. If the subsequent

data pipelines fail to validate their input while converting the

tabular data into the expected semantic types, we manually

create an HTML patch. This process allows us to repair only

the minimal set of actually used tables, which significantly

reduces the manual effort compared to supervised detection

methods. The final result consists of 35 patches with 3289

lines of HTML to almost exclusively add missing table cell

borders, which caused unrelated cells to be merged acciden-

tally. We focus on textual information and tables due to their

relevance and intentionally omit figures in the current real-

ization of this pipeline. For our purposes of only extracting

structured tabular data, this limitation comes with a good

trade-off in the implementation effort and does not impact the

data quality and its usefulness.

5.2 Processing Times

In the following, we report the average runtime of all pipelines

over 10 runs to assess their computational performance. All

conversions are compute-bound and utilize the whole proces-

sor with a peak memory usage of about 6 GB. The bulk of the

processing time is consumed during the 2 PDF → HTML

conversion, which takes about 65 min to complete (about

25 ms per page). Conversely, the remaining steps all terminate

after 2–4 minutes each, resulting in an additional processing

time of 12 min. These significantly shorter runtimes underline

the benefit of converting the PDF to an intermediary HTML

format first since the algorithmic complexity and the amount

of data to process would significantly slow down pipelines

depending on the PDF content directly.

5.3 Implementation Effort

Our tool must be realizable and maintainable with an effort

comparable to accessing machine-readable sources directly

to provide a practical alternative. We approximate this metric

by the lines of code, as listed in Table 2.

While the technical documentation pipelines consist

of only about twice the lines of code as the machine-

readable pipelines, they took about 3.5 times as long to

implement. The most complex implementation was the

PDF → HTML → OWL conversion. We estimate that ac-

cessing the technical documentation takes about three times

7
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Pipeline or Task Lines of Code

1 Downloading technical documentation 105

2 PDF → HTML + 3105

3 HTML → OWL + 1030

4 HTML → CMSIS-SVD + 313

Accessing technical documentation = 4553

1 Downloading machine-readable sources 124

5 CMSIS Header → CMSIS-SVD + 481

6 CMSIS-SVD → OWL + 821

7 STM32CubeMX DB → OWL + 790

Accessing machine-readable sources = 2216

Table 2: Our data processor requires about twice the lines

of code for accessing the technical documentation than the

machine-readable sources, as measured by pygount v1.5 [52].

the effort overall compared to accessing machine-readable

sources. This increased implementation effort is manageable,

especially since most of our pipelines can be reused when

adding new sources or vendors. Thus, the effort is likely less

for future work.

5.4 Quality of Extracted Data

We now compare the quality of the data extracted from the

technical documentation via pipelines 3 – 7 to existing

machine-readable sources, which constitutes the best ground

truth available. Given that different data sources use different

names to refer to the same entities and relations and aggregate

data into unequally large groups of devices, we only evaluate

the completeness of data if we can find an individual device

mapping from one source to another (87–93 % of devices).

We provide an overview of compared sources and utilized

pipelines with their respective sections in Table 3.

Dataset Sources Section

Device Identifiers
3 Datasheet vs.

7 STM32CubeMX
5.4.1

Interrupt Vector Table
3 Reference Manual vs.

5 Header
5.4.2

Package and Pinout
3 Datasheet vs.

7 STM32CubeMX
5.4.3

Pin Functions
3 Datasheet vs.

7 STM32CubeMX
5.4.4

Register Descriptions
4 Reference Manual vs.

5 Header vs. 6 SVD
5.4.5

Table 3: Compared sources and their respective sections.

5.4.1 Device Identifiers

Before we can compare any datasets, we first need to under-

stand which devices they belong to. This mapping needs to be

non-overlapping so that we can have an unambiguous relation

from the device identifier to a dataset for comparison. The 7

STM32CubeMX database [64] includes a list of 3098 STM32

devices. We removed all devices for which no datasheet or

reference manual exists, which retains 3024 devices. For each

3 datasheet, we produce the list of identifiers as an n-fold

cartesian product, which generates a total of 14302 STM32

identifiers, a four-fold increase over STM32CubeMX. Us-

ing the STM32 identifier schema, we compare the two data

sources in Table 4.

Identifier Keys STM32CubeMX Datasheet

Family+Name 167 171 +4

+Pin 656 679 +23

+Size 1230 1266 +36

+Package 1770 4576 +2806

+Variant 1985 6666 +4681

+Temperature 2744 -180 9698 +7134

+Temperature+Variant 3024 -205 14302 +11483

Table 4: Incrementally appending keys to the STM32 device

naming schema shows that the datasheet extraction signifi-

cantly overstates the number of produced devices, whereas

some valid temperature keys are missing from datasheets.

The identifier set matches well until the package key is

added when the datasheet identifier list explodes with 2806

additional devices. Our implementation does not respect that

the pin key, describing the number of pins on a device, inter-

locks with the package key, and therefore not all combinations

can be valid. When we add the temperature key, the miss-

ing devices begin to manifest with the full STM32CubeMX

identifier list containing 205 devices that cannot be mapped

to a datasheet since they are missing these temperature key

combinations. Since we could not find any mention of junc-

tion temperature in any of the relevant datasheet text or tables,

we can only extract 2819 (93 %) devices from the documen-

tation. However, these generated identifiers map onto each

datasheet and reference manual without any overlaps or gaps.

5.4.2 Interrupt Vector Table

The interrupt vector table is extracted from the 3 reference

manual and compared with the 5 CMSIS header files. We

can only check for naming conflicts at the same position, but

not for completeness, since the reference manual contains

the maximum population of the vector table, but the header

files remove the vectors for peripherals not available on the

device. We also ignore datasheets for multi-core devices

that implement incomparable, shared interrupt tables, leaving

2751 (91 %) devices to compare.

8
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Hierarchy Level Total Memory Map Size Reference Manual CMSIS Header CMSIS-SVD Overlap Matching

Peripherals 55 376 B 78.8 % 78.7 % 87.5 % 77.2 % 64.4 %

Registers 1 188 994 B 79.7 % 73.8 % 71.6 % 74.9 % 48.3 %

Bit Fields 5 711 619 bit 73.6 % 48.2 % 73.5 % 60.0 % 30.6 %

Table 5: The flat memory map locations are contributed similarly by all three sources, except for the bit fields, where the CMSIS

header files are missing a significant amount of data. We call memory locations with more than one source overlapping. If the

names of overlapping locations are identical after normalization, we call them matching. The overlap of memory locations gets

progressively worse per hierarchy level, with matching locations yielding unacceptably incomplete results.

Hierarchy Level Conflict Size Total Map Size Conflict-Free Locations Overlap Map Size Matching Locations

Peripherals 2 748 B 55 376 B 95.0 % 42 752 B 93.6 %

Registers 35 406 B 1 188 994 B 97.3 % 891 044 B 96.0 %

Bit Fields 379 180 bit 5 711 619 bit 93.3 % 3 425 903 bit 88.9 %

Table 6: The number of conflicts per level and their percentage of conflict-free locations relative to the total size of the memory

map or just the locations where two or more sources overlap. The low overlap of just 60 % (cf. Table 5) lowers the bit field

numbers even more.

Hierarchy Level
Resolvable by

Majority Vote

Reference Manual +

CMSIS Header

CMSIS Header +

CMSIS-SVD

CMSIS-SVD +

Reference Manual

Matching and

Resolved Locations

Peripherals 44.1 % 78.9 % 19.8 % 1.3 % 96.4 %

Registers 41.7 % 40.1 % 15.5 % 44.4 % 97.7 %

Bit Fields 63.0 % 38.8 % 22.9 % 38.3 % 95.9 %

Table 7: Conflicts can be resolved by majority vote only if two sources agree over one other. The reference manual and header

files agree the most; however, this pattern becomes less clear at bit-field level. With the voting mechanism, we can increase the

accuracy of the memory map, but only for overlapping locations.

Our pipeline discovered and assigned the correct table for

all devices after normalizing vector names. We matched

187 887 out of 190 109 (98.8 %) compared vector positions.

Of the mismatched positions, 1115 (0.6 %) were completely

missing, while 1107 (0.6 %) mostly only differed by a single

digit or letter.

5.4.3 Package and Pinout

The package and pinout are extracted from a shared table in

the 3 datasheet (cf. Figure 2), which contains a package

name, the pin positions, and its associated pin name. We

compared 2819 devices with a total of 247 756 pins from the

7 STM32CubeMX database against the data derived from

the datasheets by first finding the correct package, which was

successful for 2810 (93 %) devices, and then matching both

the name and the position of the pin on the package.

With these fixes, we matched 247 466 (99.88 %) matched

pin positions and names. We are left with 53 devices that

share 290 issues where pins were either missing, added, or

unequal in their name and/or position. We investigated each

issue manually and classified them into 12 mistakes in the

datasheet and 8 issues with the STM32CubeMX database,

as detailed in the appendix (Tables 9 and 10). The largest

source of errors is the confusion of packages in devices with

an optional switched mode power supply feature, which is

identified by the variant key and only differs slightly, followed

by missing entries or typos in datasheet tables, with plain

wrong data being very rare. In no cases did we find bugs

in our pipeline implementation or evaluation code, with the

packages for 9 devices simply missing from the datasheet.

5.4.4 Pin Functions

In this evaluation step, we compare the pin function tables in

the 3 datasheets (cf. Figure 2) with the 7 STM32CubeMX

database. We must exclude the STM32F1 device family due

to a different hardware implementation of pin functions, leav-

ing us with 2692 devices with a total of 1 107 035 pin func-

tions. However, since the pin function tables in the datasheet

contain the union of functions for all devices described, we

can only check for conflicts in a signal name against the

alternate and additional function index. After the normaliza-

tion step, we find 1 064 965 (96.2 %) matching pin-function

pairs, with the remaining 42 070 pairs either missing, added,

or wrong in one or the other source. All device families have

9
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Figure 5: For this graph, we arrange the total peripheral memory map sizes for each comparison by device family and alphabetical

order. Simpler device families, such as the STM32F0 and STM32L0, have smaller peripheral maps than complex devices,

such as STM32H7 and STM32L4+. The memory maps extracted from the PDF reference manuals can compete with the

machine-readable sources. Notice how closely the reference manual matches the CMSIS header for the STM32F3 family, while

the SVD files are better suited for STM32G4 devices.
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Figure 6: The large differences between the bit field memory maps can be explained by the CMSIS header files omitting

descriptions for registers with only a single bit field, thus significantly reducing the map’s total size. The effect is multiplied

when a device contains large arrays of registers with only one bit field, as seen with the STM32L4+ devices. In contrast, the

SVD files can define all possible bit fields, even if they do not exist on the specific device, as shown with the STM32F7 family.

a relative conflict rate of between 0.8 % and 8.2 %, as listed in

the appendix (Table 11). However, the STM32L1 family has

a relative conflict rate of 20 %, pointing to a systemic issue in

the data, which we investigated manually. A selection of the

most prominent patterns is part of the appendix (Table 12).

5.4.5 Register Descriptions

To evaluate the register description, we compare three sources:

the 4 reference manuals, the 5 CMSIS header files, and the

6 CMSIS-SVD files. We only compare STM32 devices with

an identical MMIO design (excluding ARMv8-M designs),

which leaves 2621 (87 %) devices for which all three sources

exist. Since these sources have limited device resolution, we

perform 183 unique three-way comparisons by checking for

name conflicts but not completeness.

Each register description is a tree structure made of pe-

ripherals ∋ registers ∋ bit fields. Therefore, we perform the

same conflict check at each level. We convert each level into

a flat memory map by expanding the peripheral, register, or

bit field from the tuple [address, width] into a range of bytes

or bits with the corresponding name attached. The total size

of each memory map and the amount each source contributes

and overlaps are listed in Table 5.

To better understand these numbers, we plot the size of

the memory map per three-way comparison, starting with the

register level in Figure 5. The figure visualizes how closely

our pipeline can reconstruct the register map from the refer-

ence manual. The reason for the large discrepancies in the

STM32H7 devices is due to the CMSIS header files defin-

ing registers related to dual-core management, which are not

classified as peripherals in the reference manual or simply

omitted in the CMSIS-SVD files. The bit field memory map

sizes in Figure 6 show a lack of data from the CMSIS header

10
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Figure 7: The distribution of register conflicts is not equally distributed, with simple devices having almost no conflicts, while
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Figure 8: The distribution of bit field conflicts is spread wider than for the registers; however, it compensates with an even higher

use of majority voting across all devices.

files compared to the reference manuals and SVD files. On

inspection, we noticed that the CMSIS header files do not

contain bit field definitions for registers that consist of only a

single integer value since a 32-bit or 16-bit value can be na-

tively constructed using the C types uint32_t or uint16_t,

respectively.

We continue our evaluation by highlighting all memory lo-

cations whose names do not match after normalization for all

three levels resulting in Table 6. Compared to the whole mem-

ory map size, over 97 % of register locations are conflict-free;

for bit fields, still 93 % of locations are conflict-free. We can

improve these results with majority voting, which requires

two agreeing sources overruling one other per location. These

requirements are fulfilled by about 42–63 % of overlapping

memory locations, as shown in Table 7. We can also see sig-

nificant differences per level in the source combinations that

agreed most during the voting process, particularly on register

and bit field level, where the combinations using the reference

manuals agree most often, demonstrating the accuracy and

usefulness of our pipeline. This simple voting mechanism is

sufficient to significantly improve the percentage of conflict-

free overlapping memory, resulting in 98 % of registers and

96 % of bit fields.

When visualizing the relative conflict rate of registers per

device family in Figure 7, we discover that both the conflict

distribution as well as the majority voting opportunities are

not equally distributed among the memory maps. The largest

amount of conflicts is attributed to the STM32F7, STM32H7,

and STM32L4+ families, which are complex microcontrollers.

Simpler devices exhibit fewer conflicts to begin with and a

higher share of successful majority voting. For the bit field

conflict distribution shown in Figure 8, these patterns are

spread more widely, and the simpler devices have even more

opportunities to use majority voting.

When we aggregate the register conflicts into the top five

associated peripherals as compiled in the appendix (Table 13),

the STM32H7 devices alone are responsible for over half of

the observed conflicts. Comparing the three sources manu-

ally, we discovered most of the colliding register locations

to have aliases with differing bit fields depending on the

peripheral runtime configuration. While our 4 reference

manual pipeline extracts these location aliases faithfully, the

6 CMSIS-SVD files do not always encode these aliases cor-

rectly, and the 5 CMSIS headers get compromised by using

a single neutral name instead of a C union. Our linear memory

map model does not model multiple names per location and,

instead, keeps only the last name of register or bit field aliases,
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Dataset Sources Method of Comparison Result N

Device Identifier

3 Datasheet vs. 7 CubeMX

Datasheet ⊇ CubeMX 93.2 % 3024

Package Datasheet = CubeMX 99.68 % 2819

Pinout Matching pin name at package position 99.88 % 247756

Pin Function Matching index for function name at pin 96.2 % 1107035

Interrupt Vector Table 3 Reference Manual vs. 5 Header Matching vector name at table position 98.8 % 190109

Peripheral
4 Reference Manual vs.

5 Header vs. 6 SVD

Matching peripheral, register, or bit field name

at byte or bit address after majority voting

96.4 % 42752

Register 97.7 % 891044

Bit Field 95.9 % 3425903

All Datasets All Sources Weighted average over all data points 96.5 % 5910442

Table 8: The summary of all data comparisons we performed for this evaluation. The overall quality of the extracted data is very

high when compared to the machine-readable sources.

which can lead to artificial conflicts.

We conclude our evaluation with a summary of all the com-

pared datasets in Table 8. Our implementation was able

to match existing machine-readable data sources both in

quantity and quality with a high accuracy of 96.5 %. We

took care to eliminate systemic problems in our pipelines by

validating the consistency of our results and finding justifica-

tions for outliers manually.

5.5 Discussion of Findings

Overall, we studied four aspects related to technical documen-

tation: accessing them, processing their content, encoding the

extracted information, and assessing the resulting quality.

We accessed the technical documentation using a custom,

vendor-specific PDF parser, implemented with only three

times the effort compared to accessing machine-readable

sources directly. Still, we expect our modular design to reduce

this overhead when adding additional documentation styles

from more vendors in the future. The accuracy of the resulting

HTML is sufficient to yield reproducible results, with patches

required only to repair already-existing formatting issues in

the vendor-provided PDFs.

Both the table processing and a simple regex-based text

mining interface were simple to implement and yielded prac-

tical performance, even for complex table structures and text

fields, and derived highly-detailed datasets. We were able to

derive additional context from table captions and surrounding

text to further increase our device coverage. However, we

found that regex-based text mining is too limiting in practice,

as footnotes and text present important information often us-

ing different keywords and phrases, complicating the creation

of matching patterns.

We encoded the extracted hardware description data to-

gether with our custom ontology as a knowledge graph. We

solved naming differences between sources using only regex

substitution patterns. For sources that supported majority vot-

ing, we were able to merge machine-readable sources with

the technical documentation to detect and repair many data

conflicts automatically. The final knowledge graph is eas-

ily discoverable using third-party ontology editors, such as

Protégé [39], and can be accessed via the owlready2 Python

package [40] for integration with code generation tools.

Our extensive evaluation demonstrated the ability of our

pipelines to extract highly accurate and complete data from

the technical documentation, even when compared to (vendor-

provided) machine-readable sources. On top, we were able to

find issues in the machine-readable sources, particularly in the

pinouts and pin functions, that would have been very difficult

to detect manually. We can use these identified patterns to

guide manual patching efforts much more effectively, thereby

increasing the quality of all available data sources. Even for

the very large and complex register descriptions, we were

able to reconstruct a sufficient device resolution to match

other sources and repair conflicts via majority voting. While

we can send patches for machine-readable data to some of

the STMicro GitHub repositories [65–67], to the best of our

knowledge, a process to report issues or even encode patches

for the PDF documentation is missing so far, making our

HTML patches the only known mechanism to do so reliably.

These results give us high confidence in using our

pipeline for extracting data without machine-readable

counterparts and achieving similar accuracy, at least for

STMicro technical documentation. However, the architecture

of our pipelines and evaluation code is flexible enough to

accommodate new data sources and vendors in the future.

5.6 Impact of our Tool

The overall accuracy and flexibility of our processor removes

the bottleneck of manual data aggregation for many previously

described use cases in Section 3. Projects that were limited

only by accurate PDF access, such as Datasheet2SVD [48],

only need to port the PDF → HTML and relevant subsequent

pipelines instead of starting from scratch. Once the vendor

port is complete, it creates an opportunity to extract signif-
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icant amounts of tabular data with very little effort due to

the similar tabular data structures across a vendor’s product

line. Projects based on machine-readable data, such as the

modm-devices [35] and embassy-rs [68] projects, can now

collaborate on a common data processor (cf. Figure 1), reduc-

ing implementation efforts and sharing new fixes and features.

The extraction of data also applies beyond STM32 micro-

controllers: For example, about 40 % of the already converted

STMicro datasheets describe sensors, storage, and communi-

cation devices, which are interfaced through external busses

and controlled through registers. The I2CDevLib [27] and

Cyanobyte [20] projects would strongly benefit from adapted

HTML → X pipelines to extract device properties, create

SVD register maps, and state machines to generate drivers.

Since HTML is a widely used format, projects that previously

relied on custom PDF parsers for highly specific tasks, such

as uConfig [47] extracting package pinouts, can implement

their data extraction directly on HTML even without using our

subsequent pipelines. This flexibility can foster an ecosystem

of independent data extraction pipelines that can be integrated

back into our processor if needed.

Finally, in addition to this evaluation in March 2023, we

performed a previous evaluation in July 2022. While STMi-

cro released a total of 63 new datasheets and 18 new reference

manuals, our pipeline only required little adaptation, mainly

related to updating the HTML patches. The total number

of compared data points increased by about 1.7 %, yet the

relative quality presented in Table 8 varied by less than 0.3

percentage points. In addition, all intermediary results of the

individual comparisons (presented in Section 5.4) were very

similar, strongly hinting that our processor implementa-

tion will remain stable long-term with very few mainte-

nance requirements, ensuring the usefulness of our tool.

6 Conclusion and Outlook

Our evaluation has underlined the benefits and potential of

our tool—a modular processor for automatically extracting

hardware descriptions from PDF technical documentation. In

the following, we first conclude this paper before presenting

alternative concepts and orthogonal pointers for future work.

6.1 Conclusion

Our data processor presents a significant improvement over

existing generic information extraction solutions when ap-

plied to technical documentation due to a specialized PDF

parser, unsupervised and fast operation, domain-specific data

encoding, and highly accurate results. Our extensive evalu-

ation results confirm that our pipelines are free of systemic

issues and can extract information relevant to existing code

generation use cases with very high accuracy. In addition, our

tool is immediately applicable to a number of open-source

projects that would significantly benefit from its use.

With over 150 thousand captioned tables in our HTML

archive of STMicro technical documentation, they showcase

the significant potential for extracting data not available in

a machine-readable format and therefore provide access to

information only published in the documentation. We expect

many entirely new use cases to be made possible with our tool

that are unrelated to code generation: comparing revisions

of PDF documents in normalized HTML form, linking code

to sections of documentation automatically, using constraint

solvers to find layout solutions for pin signal usage in elec-

tronic design, validating compatibility of existing software

drivers with newly released microcontrollers.

6.2 Potential Tool Improvements

We anticipate three specific improvements to our tool that

increase its usefulness even beyond our current usage:

Text Mining. Our implementation uses regex pattern

matching to find information in text, which is a brittle and

error-prone manual process. However, since technical doc-

umentation uses a lot of domain-specific jargon with many

nouns and abbreviations only making sense in context, the

use of traditional text mining approaches may be difficult.

However, cutting-edge machine learning projects accessing

PDFs using large language models show significant promise

and can output data in structural form as well [14, 81, 82]. A

solution could be to enrich these machine-learning models

with the knowledge graph generated by our tool [19, 77].

Processing Figures. For our work, we only focused on

tables and text in the technical documentation since table pro-

cessing is a well-researched approach, and the table content

mirrored the data in the machine-readable source most accu-

rately. However, in addition to the 152 041 tables, the STMi-

cro datasheets and reference manuals also contain 52 568

figures. Other applications could benefit from processing

these figures since some data, especially state machine dia-

grams and board pinouts, is only encoded graphically. We

could convert the Postscript-based graphics into scalable vec-

tor graphics to preserve the vector and text data [16] so that

it can be programmatically accessed later on. For example,

quasi-regular tabular structures in figures can be found using

whitespace analysis [7, 10, 53] or by interpreting text in ge-

ometric shapes such as rectangles as imaginary table cells,

which allows using table processing for content extraction.

However, more complex figures will require more specialized

approaches with a better understanding of graphics rendering.

Mathematical formulas are a special case of graphics mixed

with text, e.g.,
√

2, which our implementation cannot correctly

detect or convert. An approach could be to convert them to

a markup language such as MathML [74] using a machine-

learning model [12].

Performance. Converting over 150 thousand PDF pages of

STMicro documentation to HTML currently takes a few hours

(cf. Section 5.2). While the PDF parsing library pdfium [46]
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is implemented in C++, the majority of the pipeline is written

in native Python code and thus relatively slow. A rewrite of

the PDF → HTML pipeline entirely in C++ or Rust could sig-

nificantly improve conversion times and apply future pipeline

improvements to a large set of documents much faster. The

remaining pipelines, however, are less compute intensive and

may therefore benefit less from a rewrite.

Other Technical Documents. Our PDF → HTML pipeline

design is highly flexible, and its implementation already sup-

ports two distinct PDF formats from STMicro. We are confi-

dent that adapting our pipeline to PDFs from other vendors

is feasible with only limited effort. However, the multitude

of technical documentation, also unrelated to electronic hard-

ware designs, hinders the implementation of a single universal

solution (pipeline). For these expert domains, extending our

processor can be a first step to making a lot of data accessible.

6.3 Future Work

We also anticipate future work in the fields of knowledge

modeling and machine learning to be enabled by our tool.

Hardware Ontologies. While many general-purpose and

specialized ontologies that allow complex reasoning about

their knowledge domain are available, we were unable to

discover an ontology that captures electronic hardware. As

we described in Section 3.3, existing use cases are limited to

machine-readable datasets, which are highly specialized. Our

tool can solve this chicken-and-egg problem by making the

large amounts of data in technical documentation accessible,

thus creating the demand for a hardware ontology.

With a sufficiently large ontology comes the ability to rea-

son about hardware, enabling, for example, implicitly compar-

ing and discovering peripheral implementations of the same

bus protocol between different microcontrollers, even if they

do not support these protocols officially. Such details can be

particularly helpful for parts selection and cost minimization.

Semantic Datasheets. Knowledge graphs in OWL format

can be encoded directly in HTML as part of the semantic

web technology stack [42], resulting in a format that is both

human- and machine-readable. This concept can be extended

to validate the document’s and knowledge graph’s integrity

using rule languages [33]. By integrating JavaScript into the

HTML document, the encoded structural information can be

made discoverable interactively directly inside the documents.

Presenting knowledge to a domain expert effectively also

presents a usability challenge worth investigating.

Machine Learning. The main challenge for creating ef-

fective machine-learning models is finding suitable training

data. Our tool can output finely tuned, deterministic, and large

datasets for every conversion pipeline with a reasonable man-

ual implementation effort and excellent quality that a model

can be trained against. The trained models can then extract

ontologies and data from documents without support in our

tool or from unrelated knowledge domains.

There are many more opportunities for future work to build

on our data processor to extract information from technical

documentation in other fields than just for firmware develop-

ment. Our tool lays the foundation for developing challenging

new use cases that require automatically processing technical

documentation and thus provides a vital contribution to im-

proving the porting process of embedded software. We will

actively maintain our tool in an open-source project to foster

its evolution [37].
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Artifacts

The specific processor evaluated in this paper has been

archived [1]. We will further develop and maintained the

processor as an open-source project on GitHub [37] under a

MPLv2 license and we welcome pull requests that augment

our provided data pipelines.
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A Appendix

In addition to our evaluation in Section 5, we inspected several

data points manually to confirm that our processor was free

of systematic issues that could skew our datasets. Here, as an

addendum, we present a selection of these manual evaluations

based on the STMicro input sources from March 2023.

A.1 Pinout

The device pinouts we extracted from the technical documen-

tation in Section 5.4.3 matched the STM32CubeMX data

very accurately at 99.88 %, with only 20 discrepancies. We,

therefore, manually investigated these issues by comparing

the PDFs with the raw STM32CubeMX database, where we

found formatting issues and confused packages to be the main

source of errors. The results of our manual evaluation are

encoded in Table 9 and Table 10.

A.2 Pin Functions

When we evaluated the pin functions in Section 5.4.4, we

noticed that the STM32L1 device family had a significantly

higher relative amount of conflicts than the rest, as shown

in Table 11. Since this amount of conflicts was too much

to manually inspect, we instead investigated the most promi-

nent patterns that emerged, in particular, the conflict of an

analog or special hardware function (“additional function”)

with a digital signal multiplexer (“alternate function”). We

verified that the hardware implementation of the alternate

functions is identical across all compared devices; therefore,

these conflicts are easy to detect since an analog signal can-

not be routed through the digital multiplexer and neither the

other way around. When we applied these assumptions to

our data, we found that particularly the STM32L1 family suf-

fers from systemic conflicts of only a few analog functions,

which were mapped wrong across the whole device range,

explaining why the family is such an outlier. A selection of

prominent patterns, including their explanations, is presented

in Table 12.

A.3 Register Descriptions

During the comparison of the register descriptions in the ref-

erence manuals, CMSIS header, and CMSIS-SVD files in

Section 5.4.5, we noticed a significant amount of register

conflicts in the STM32H7 devices, as listed in Table 13. Com-

paring the three sources manually, we found a lot of register

locations to have aliases with differing bit fields depending on

the peripheral runtime configuration. We also noticed slightly

different names in the reference manuals than in the other

sources; however, the bit field structures and their function-

ality appears to be compatible, according to the associated

textual descriptions. We imagine these issues to be the re-

sults of the large complexity of the peripherals, having many

registers with similar names and interlocking functionality.
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Affected Devices -Missing, +Added, =Renamed Positions Cause of Issue in Datasheet Table and Figures

STM32G431CBYx -A4, +A43 Typo for position A4, figure is correct.

STM32L412TBY6P -E5 Typo for position F5, figure is correct.

STM32H745XxHx,

STM32H747XxHx,

STM32H755XxHx,

STM32H757XxHx

+VDD VDD name is placed into the position column instead of name column.

STM32H747ZIY6 -A13 Missing pin position, figure shows A13=NC.

STM32H750XBH6 -G2, -F1 Missing pin position, figure shows G2=NC, F1=NC.

STM32H757ZIY6 -A13 Missing pin position, figure shows A13=NC.

STM32L071VxIx,

STM32L072VxIx
-E3 Missing pin position, figure shows E3=VSS.

STM32L151QCH6,

STM32L152QCH6,

STM32L162QCH6

-K1 Missing pin position, figure shows K1=OPAMP3_VINM.

STM32L053CxUx,

STM32L063CxUx

Pins 2. . . 7

renamed
Position cells are shifted down by 1 row.

STM32L062C8U6 -46 Missing position row, figure shows 46=PB9.

STM32L412CBxxP

22=(PB11, VDD),

45=(PB8, PB9),

46=(PB9, VDD)

Missing both package column and figures for the SMPS package variant.

Our pipeline instead uses the closest non-variant match.

STM32L562QEI6P
B4=(PG15, VDD12),

M11=(PG11, VDD12)

Missing both package column and figures for the SMPS package variant.

Our pipeline instead uses the closest non-variant match.

Appendix Table 9: These pin position and name mismatches are all attributed to mistakes in the datasheet: missing entries, typos

in cells, and formatting issues. Our pipeline could not find two packages for devices with a switched mode power supply (SMPS)

feature and instead used the closest non-variant match.

Affected Devices -Missing, +Added, =Renamed Positions Cause of Issue in STM32CubeMX Database

STM32F038E6Y6 E2=(PB1, NPOR) Wrong entry, datasheet table and figure both show E2=NPOR.

STM32F048TxY6
D2=(NPOR, PB1),

F2=(PB1, NPOR)
Wrong entry, datasheet table and figure both show D2=PB1 and F2=NPOR.

STM32L452REYxP 29 renamed pins Uses non-variant instead of SMPS package.

STM32L476QxIxP,

STM32L4P5QxIxS,

STM32L4R5QxIxP

C6=(PG14, VDD12),

L11=(PB11, VDD12)
Uses non-variant instead of SMPS package.

STM32L476QxIxP,

STM32L4P5QxIxS,

STM32L4R5QxIxP

C6=(PG14, VDD12),

L11=(PB11, VDD12)
Uses non-variant instead of SMPS package.

STM32L4R5AII6P
C6=(PG15, VDD12),

M10=(PH11, VDD12)
Uses non-variant instead of SMPS package.

STM32L552QEI6

B4=(V15SMPS, PG15),

M10=(VLXSMPS, PG13),

M11=(V15SMPS, PG11),

M9=(VDDSMPS, PG14)

Uses SMPS instead of non-variant package.

STM32L552VET6
Pins 20. . . 51,

98, 99 renamed
Uses SMPS instead of non-variant package.

STM32L552ZETx
Pins 31. . . 73,

126. . . 143 renamed
Uses SMPS instead of non-variant package.

Appendix Table 10: The STM32CubeMX database is often using the wrong package for devices with an optional switched mode

power supply (SMPS) feature as indicated by the variant key in the identifier. As shown in the first two rows, only three other

pins were simply wrong, with the rest of the data matching the datasheet.
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Family Number of Functions Number of Conflicts Absolute Rate of Conflicts Relative Rate of Conflicts

STM32H7 215442 10184 24.2% 4.7%

STM32L1 30124 6037 14.3% 20.0%

STM32G0 66469 3960 9.4% 6.0%

STM32L4 174531 3889 9.2% 2.2%

STM32F4 130518 3750 8.9% 2.9%

STM32F7 114590 3130 7.4% 2.7%

STM32F0 29487 2430 5.8% 8.2%

STM32G4 85415 1539 3.7% 1.8%

STM32F2 22151 1411 3.4% 6.3%

STM32L0 62437 1220 2.9% 2.0%

STM32F3 43468 1052 2.5% 2.4%

STM32U5 52067 1047 2.5% 2.0%

STM32L5 19778 858 2.0% 4.3%

STM32WB 8487 677 1.6% 8.0%

STM32WL 5888 384 0.9% 6.5%

STM32H5 42602 321 0.8% 0.8%

STM32C0 3581 181 0.4% 5.1%

Appendix Table 11: The conflict rates of pin functions sorted by absolute rate. The STM32H7 devices have the largest amount of

pin functions and, therefore, also the largest absolute share of conflicts, while their relative rate of about 5 % is comparable to

other families. Meanwhile, over one-fifth of the pin functions of the STM32L1 family conflict, pointing to a systemic data issue.

Occurances Functions Conflict Description and Cause of Issues

654

23

COMPx_INP

COMPx_INM
A ̸=14

Comparator input is analog, STM32CubeMX database is wrong for the entire STM32L15x

family.

446 TIMx_ETR 1̸=A Digital signal where the STM32CubeMX database is wrong for the entire STM32L1 family.

514

319

SYS_WKUP

SYS_TAMP
A ̸=0

Special digital input signal hardwired into PA0 pin to wake up from deep sleep and tamper

detection. STM32CubeMX database is wrong for the entire STM32L1 family.

497

497

RCC_OSC_IN

RCC_OSC_OUT
A ̸=0

Special analog signal that must be configured by RCC peripheral. This is a datasheet issue

on some STM32F2/F4 devices and a STM32CubeMX database issue on STM32L1 family.

296

105

93

69

UCPDx_FRSTX

6̸=A

4̸=A

0̸=A

1̸=A

Digital signal that is wrong in the STM32CubeMX database for the entire STM32G0 family.

258

256

128

128

128

108

91

TIMx_BKIN

1̸=3

13̸=3

1̸=12

12̸=2

12̸=3

1̸=14

2̸=3

Digital signal collide on alternate function index, as the STM32CubeMX database for

the STM32L4 and STM32L5 family contains two functions TIMx_BKIN and TIMx_BKIN2

that seem to have gotten confused.

Appendix Table 12: A selection of the most interesting and common patterns of pin function conflicts. All of these should

have been easy to catch, even without a comparison with other sources, by simply validating how digital vs. analog signals are

multiplexed.
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Family Share of Conflicts Top 5 Peripherals with Register Conflicts

STM32F0 0.2% 100% DBGMCU

STM32F1 0.5% 62% FSMC 12% ADC 12% USB 6% SDIO 3% CEC

STM32F2 1.7% 42% ETH 32% USB 14% FSMC 11% ADC

STM32F3 1.1% 41% ADC 32% HRTIM 20% EXTI 4% CEC 4% I2C

STM32F4 5.4% 20% USB 18% I2C 15% FSMC 14% DFSDM 10% QSPI

STM32F7 12.6% 48% DFSDM 19% USB 12% FSMC 8% DSI 3% ADC

STM32G0 2.0% 56% DMA 11% SYSCFG 12% EXTI 8% UCPD 6% COMP

STM32G4 3.8% 40% DMA 24% HRTIM 10% ADC 9% FSMC 7% UCPD

STM32H7 60.2% 23% DMA 17% DFSDM 16% RAMECC 10% ETH 9% HRTIM

STM32L0 0.8% 61% FLASH 26% COMP 13% SYSCFG

STM32L1 1.2% 59% RI 26% FSMC 8% RTC 7% OPAMP

STM32L4 3.9% 63% DFSDM 18% RTC 10% FSMC 6% USB 4% DAC

STM32L4+ 6.6% 36% DFSDM 30% DSI 11% FSMC 8% DMA 5% USB

Total 100% 22% DFSDM 17% DMA 11% USB 9% RAMECC 7% HRTIM

Appendix Table 13: The STM32H7 family is responsible for the majority of register conflicts. The peripherals with the most

conflicts are all very complex, which probably contributes to the issue in general.
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