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Abstract

Using a combination of experiment and simulation, we study how two-dimensional

(2D) crystals of colloidal nanoparticles grow on cylindrical substrates. The cylindrical

geometry allows us to examine growth in the absence of Gaussian curvature but in the

presence of a closure constraint – the requirement that a crystal loop back onto itself. In

some cases, this constraint results in structures that have been observed previously in

theory and nonequilibrium packing experiments: chiral crystals and crystals with linear

defects known as “line slips.” More generally, though, the structures we see differ from
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those that have been observed: the line slips are kinked and contain partial vacancies.

We show that these structures arise because the cylinder changes how the crystal grows.

After a crystal wraps around the cylinder and touches itself, it must grow preferentially

along the cylinder axis. As a result, crystals with a chiral line-slip tend to trap partial

vacancies. Indeed, we find that line slips that are less aligned with the cylinder axis

incorporate more partial vacancies on average than ones that are more aligned. These

results show that crystal growth on a cylinder is frustrated by the closure requirement,

a finding that may shed some light on the assembly of biological nanosystems such as

tobacco mosaic virus and might inform ways to fabricate chiral optical nanomaterials.

Keywords

colloidal crystallization, defects, frustration, crystal growth, self-assembly

1 Introduction

The morphology of a crystal depends on how it nucleates and grows. Consequently, the

structure of a real crystal often differs from an idealized equilibrium structure or ground

state.1 The connection between morphology and growth was first made by Steno2 in the 17th

century, long before the atomic theory. In the 1950s, Frank and coworkers3 elucidated the

relationships between crystal growth rates, thermal fluctuations, and atomic-scale structural

features, including steps and defects. More recently, experiments on colloidal nanoparticles,

which permit both structural details and growth4–8 to be directly visualized, have led to a

new understanding of crystal growth.

In particular, colloidal systems have revealed that curved substrates can fundamentally

alter crystal growth. Most studies have focused on the role of the substrate’s Gaussian

curvature, the product of its two principal curvatures. Owing to Gaussian curvature, large 2D

crystals of colloidal spheres on a spherical substrate must incorporate topological defects.9–15
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When these defects are energetically costly, the crystal alters its growth to avoid them. For

example, 2D crystals composed of particles with short-ranged attractions grow isotropically

on a flat surface but anisotropically on a sphere.16–19

Here we explore how a cylindrical substrate affects the growth of 2D crystals of colloidal

nanoparticles. At first glance, one would not expect a cylindrical substrate to modify how

such a crystal grows in the same way that a spherical substrate does: a cylinder has zero

Gaussian curvature (because the curvature is zero along one direction), and hence a crystal

on a cylinder need not incorporate topological defects. Furthermore, a colloidal crystal on

a cylinder – as opposed to one on a sphere – does not accrue stress as it grows. In other

words, it would seem to have no way to “know” that it is on a curved surface.

However, this argument neglects one important feature of a cylindrical crystal: when it

grows sufficiently large, it must meet itself, forming a closed loop. We show how this “closure

constraint” affects how the crystal grows. On a plane, crystals do not have to contend with a

closure constraint, and therefore we observe different patterns of growth and structure than

are seen in planar crystals. On a sphere, crystals do contend with a closure constraint, and

the effects of this closure constraint on spherical crystals have been studied in simulation.20,21

But for a sphere it is difficult to separate the effects of the global closure constraint from the

local effects of Gaussian curvature, which leads to stress in a growing crystal. By examining

a system with zero Gaussian curvature, we explore how closure alone might affect growth.

To this end, we first study the crystal morphologies and defects and then show what

they reveal about growth. Most previous work on the morphologies of cylindrical crystals

focuses only on idealized structures: densest packings and ground states. This problem

dates back to (at latest) the 1830s, with Louis and Auguste Bravais’s mathematical analy-

sis22 of phyllotaxis, the arrangement of leaves around a plant stem. More recently, Pickett

and coworkers23 showed that for certain values of the size ratio r – the ratio of the cylinder

diameter to sphere diameter – the densest packings of hard spheres inside a cylinder are

chiral crystals. They also found that between size ratios corresponding to these commen-
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surate crystals, the densest packings incorporate linear defects now known as “line slips,”

which consist of two parallel lines of spheres in which each sphere touches only five others.

These defects have zero net Burgers vector.24 Mughal and coworkers related these results

to packings on the surface of a cylinder25 (the phyllotactic problem) and showed that as

the size ratio increases, the densest packings vary between achiral hexagonal packings, chiral

hexagonal packings, and chiral hexagonal packings with line slips.26 Later simulations by

Wood and coworkers24 showed that line slips can also occur in the ground states of particles

with long-range attractions.

Our study differs in two ways from these theoretical studies and from the few experimental

studies of sphere packings inside cylinders.27–30 First, we focus on how cylindrical crystals

grow, and not just on their structures. Second, the interactions between our nanoparticles

are comparable to the thermal energy kBT , so that nanoparticles in a growing crystal can

rearrange. In these two respects, the crystallization process we study is much more similar

to a the self-assembly of a biological nanosystem than it is to phyllotactic growth. Thus, at

the end of the paper, we compare our system to tobacco mosaic virus (TMV), which also

self-assembles at finite temperature and forms a cylindrical structure.

As we shall show, the closure constraint fundamentally alters the way the crystal grows,

as evidenced by the random incorporation of a new type of defect (the partial vacancy) into

the line slips. We find that crystals with highly helical line-slips are more frustrated than

crystals with less helical line-slips. This result raises the question of how nanomaterials can

be designed that avoid this frustration. The comparison with TMV suggests a potential

approach to make chiral nanomaterials.
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Figure 1: Formation of colloidal crystals on a cylinder. a, Scanning electron micrograph of an optical
fiber tapered from an original diameter of 125µm to about 200 nm at its thinnest part. Both thick and thin
segments in the image belong to the same fiber. We examine crystals that form where the fiber diameter
is between 1.5 and 5.5µm. b, Polystyrene colloidal nanoparticles with an average diameter of 710 nm are
attracted to the fiber through a depletion interaction mediated by SDS micelles with an effective diameter
of 30 nm.31,32 This effective diameter is larger than the physical diameter of 4 nm because it accounts
for electrostatic interactions. Blue shaded regions denote the volume excluded to the micelles. We adjust
the concentration of colloidal nanoparticles (0.25% w/v) and SDS (33.6–34mM) in solution to prevent the
formation of multiple crystal layers, large clusters of particles, or kinetic instabilities. c, Projection of a
stack of confocal microscope images of a colloidal crystal formed on the surface of a cylinder. d, Confocal
microscope images of crystals assembled on two cylinders with different size ratios r. Because the objective
is below the cylinder, images of the top and sides of the cylinder are distorted by lensing through the glass
fiber (see Fig. S2 for details of experimental setup). The blue lines denote the approximate boundaries of
different crystal grains that wrap around the cylinder. These grains are identified by the consistent chiral
angle found on both sides of the cylinder.
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2 Results and Discussion

2.1 Single crystals form on and wrap around a cylindrical fiber

In our experimental system, 2D colloidal crystals self-assemble on the surface of a hard cylin-

der, driven by a short-ranged depletion interaction33–35 between the particles and between

the nanoparticles and cylinder. We fabricate cylinders by simultaneously heating and pulling

a silica optical fiber.36–38 This method results in a tapered cylinder with a diameter d of a

few micrometers and with a smooth surface for crystal growth (Fig. 1a).

We introduce a depletion interaction between polystyrene nanoparticles (diameter D =

710 nm) and between the nanoparticles and the cylinder using sodium dodecyl sulfate (SDS)

micelles (Fig. 1b). Because the interaction between nanoparticles is isotropic, a 2D crystal

of such particles can bend freely and conform to the cylinder surface, which has no Gaussian

curvature but does have non-zero mean curvature. The potential-well depth is a few kBT (see

Supporting Information) and the interaction range is approximately the effective diameter

of the depletant micelles, or about 4% of the polystyrene nanoparticle size at the SDS

concentration we use (Fig. 1b).31,32 With such a weak and short-ranged attraction, isolated

dislocations or disclinations do not occur.17 Because only nanoparticles very close to one

another interact, we refer to the attraction between two neighboring nanoparticles as a

“bond.” Furthermore, we choose the SDS concentration so that the crystals grow slowly and

kinetic instabilities are avoided (Supporting Information).

Immediately after preparing the sample, we see multiple crystallites growing on the cylin-

der. In 3–5 hours, the cylinder is almost entirely covered with crystallites (Fig. 1c; for com-

parison, Fig. S5 shows crystallization on a flat surface). To study the closure of individual

crystallites, we limit our observations to size ratios r = d/D between 2 and 6, in which

case multiple grains form along the length of the cylinder, each of which wraps completely

around the cylinder (Fig. 1d and Fig. S6). The cylinder is slightly tapered, allowing us to

investigate growth at different size ratios. But because the diameter of the fiber changes
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negligibly along a single grain, we can consider the substrate to be cylindrical rather than

conical on the scale of the grain (Supporting Information).

2.2 At long times, some crystals form dense packings but most

contain kinks
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Figure 2: Some, but not all, of the observed crystals have structures corresponding to densest
packings on a cylinder. a, Diagrams showing construction of commensurate cylindrical crystals. When
the side length of the dark rectangle is commensurate with an integer linear combination (m,n) of the lattice
vectors v1 and v2 (dark arrows show the vectors mv1 and nv2), the resulting segment of the lattice (middle
column) can wrap perfectly around a cylinder with circumference ∥mv1 + nv2∥. As shown in the middle
and right columns, the integers m and n determine the chiral angle ϕ. An achiral crystal results from
(m,n) = (10, 0), whereas chiral crystals result from (11, 4) and (8, 7). b, Confocal microscope images of
three crystals grown on the same tapered fiber. The chiral angles are ϕ = 0◦ (top), 16.3◦ (middle), and 27.6◦

(bottom). The resulting configurations are close to the corresponding diagrams in a. c, Confocal images
and bond (interaction) networks of two line-slip defects (blue boxes) with different helicity. The helicity of a
line slip is determined by the angle θ between the line slip and the azimuthal direction on the cylinder. Blue
circles show the particles that form the line slip. Images of both sides of the cylinders shown in panels b
and c are shown in Fig. S7.

We first describe the structures of the cylindrical crystals that we observe at long times
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(several hours). We find that some, but not all, have structures corresponding to the densest

packings predicted in previous theoretical studies: commensurate crystals and crystals with

line slips. We discuss the geometry of these structures because it is essential for understand-

ing the growth process and how it can lead to non-ground-state structures.

Some of the crystals we observe in our experiment are commensurate – the only defects

being vacancies – and some of these are chiral. Mathematical models of phyllotaxis25,39,40

show that commensurate crystals can appear for integer values of the chiral indices m and

n (Fig. 2a). These indices determine the size ratio and chiral angle of the crystal. We

characterize the chiral angle of the observed crystals, which is easier to measure than m

and n (Fig. 2b). We find that crystals with different helicity can spontaneously assemble on

different parts of the cylinder.

We also observe straight line-slip defects in some of the crystals (Fig. 2c). Such defects

have been observed previously in macroscopic systems26,29 but not, to our knowledge, in a

self-assembled system. They follow a helical path around the cylinder that is also parallel to

one of the lattice vectors of the crystal.

The line-slip defects that we observe are stable for the duration of our experiments (up to

18 h), though vacancies do appear and disappear during that time. The stability is expected

because line slips cannot disappear unless the crystal unwraps and rewraps, as shown in

previous simulations and theoretical studies.24,25 On a flat surface, defects similar to line

slips can occur between two grains with similar orientations (Fig. S8), but these defects

disappear when the grains translate. On a cylinder, the line-slip defect occurs within the

same grain, and thus translation along the line slip corresponds to a rotation of the crystal.

However, rotating the crystal would change its circumference, which would require it to

either penetrate or detach from the cylinder, both of which are energetically prohibitive.

We find, however, that most crystals do not adopt ground-state structures, even at long

times. Instead, they contain a new type of defect not previously seen in simulation or ex-

periment: kinked line-slips (Fig. 3a). The kinks contain gaps that we call “partial vacancies”
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Figure 3: Most crystals with line-slip defects have kinks and are not ground-state structures.
a, Confocal images and bond networks of three kinked line-slip defects, with the kinks circled in blue. We
characterize each defect by counting the number of steps (particle center-to-center distances) from its starting
to ending point. n1 is the number of steps taken along v1, the lattice direction aligned with the line slip, and
n2 along v2. Two parameters characterize the geometry: the line-slip length l = n1, which is the number
of particles in the line slip that have five neighbors, and the ground-state length L = n1 + n2, which is the
length if all the partial vacancies were to exit the line slip. Images of both sides of the cylinders are shown
in Fig. S7. b, Diagram of a line-slip defect in its ground state. L = l because there are no kinks. c, Diagram
of a line-slip defect with kinks. Because of the kinks, l < L. d, Plot of l as a function of L for ground states
(black line) and experiment (blue dots). To find l from experiment, we measure n1 and n2 from images of
116 crystals. The experimental data is shown as a box-and-whisker plot with data points in blue. The box
extends from the lower to upper quartile and the whiskers show the range of the data at each L.
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because they are smaller than a nanoparticle. We find that kinked line-slips emerge in crys-

tals with different chiral angles and with a variety of numbers of partial vacancies, as shown

in Fig. 3a. We characterize the different kinked structures using two length scales, as shown

in Fig. 3b,c. Quantification of these length scales for the observed structures (Fig. 3d) illus-

trates two points. First, most of the line-slips are kinked, and the proportion of line slips

that are in the ground state decreases with increasing line-slip length. Second, for a given

line-slip length, the number of partial vacancies can vary.

This variation shows that the partial vacancies do not affect the commensurability of the

crystal with the cylindrical constraint. In fact, kinked line-slips can in principle convert to

straight line-slips when partial vacancies move into the grain boundaries – or, equivalently,

when multiple nanoparticles move in a direction parallel to the line slip. Such a relaxation

does not require a change in cylinder circumference; instead, the excess void space can be

absorbed by the grain boundaries. Thus, a kink can be viewed as an excitation of a straight

line-slip. Kinked line-slips would therefore not have been observed in previous simulations

on cylindrical crystals24 that examined only the ground states.

2.3 Kinked line-slips form during growth

Having shown that defects arise that do not change the commensurability constraint, we now

turn to what these defects reveal about the growth process. To understand why the kinked

line-slips occur so frequently in our experiments, we watch line slips form in experiment

(Fig. 4a and Movie S1). We find that kinked line-slips tend to form when two parallel line-

slips grow, trapping partial vacancies in between. These observations suggest a mechanism

for the formation of partial vacancies (Fig. 4b).

We also find that, once formed, most kinked defects do not relax into straight line-slips

on the timescale of the experiment (Fig. S9), although the kinks and grain boundaries do

fluctuate (Fig. S10). Hence, in contrast to crystals that close without a line slip (Fig. S11

and Movie S2), crystals with kinked line-slips appear to result when partial vacancies are
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0 min 1.76 min 10 min 11.75 min 13.75 min

partial
vacancy

a

b

Figure 4: Kinked line-slips form during growth of the crystal. a, Confocal images and bond networks
showing the formation of a kinked line-slip defect. At 0min, a line-slip defect begins to form when the crystal
wraps around the cylinder. At 1.76min, another line slip starts to form in parallel, leaving partial vacancies
between the two. The line slips continue to grow until 10min, after which we observe fluctuations in the
kinked shape but not in the number of partial vacancies. Not all particles are shown in the bond network
diagrams. b, Diagrams illustrating a mechanism for kink formation. The growing line slip is shown by the
dark red particles. In the second diagram, a particle that attaches to the crystal prevents the line slip from
growing. In the third diagram, another particle attaches and traps a partial vacancy. In the fourth diagram,
additional particles attach and continue the line slip, which is now kinked.
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kinetically trapped during crystal growth. Brownian-dynamics simulations of particles in-

teracting on a cylinder through a short-range potential that approximates the experimental

depletion attraction (Supporting Information and Movie S3) show that kinks arise during

growth and not afterward (Fig. 5a–d and Movie S4).
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Figure 5: Line slips that are more aligned with the cylinder axis are less kinked. a–d, Renderings
of the simulated growth of four crystals with line slips. In each image the crystal is shown cut and unwrapped,
such that the entire circumference of the cylinder (same for all four crystals) is visible. The line-slip angle
θ and parameter δ = (L − l)/L are shown at right for each crystal, and particles in the line slip and grain
boundaries are shown in yellow. In a, the line slip is nearly aligned with the cylinder axis. It forms kinks
but eventually rearranges into a straight line-slip. In b, the line slip makes a larger angle with the axis.
The crystal, however, grows preferentially in the axial direction and consequently traps partial vacancies,
resulting in a larger value of δ. In c and d, the line slips have angles between those of a and b, and their
values of δ also lie between those of a and b. e, Contour plot showing probability distribution (kernel
density estimate) of kinked line-slip defects as a function of δ and θ for 79 simulated crystals with fixed r.
f, Same type of plot as e, but showing data from 116 crystals found in experiment with varying r. The
correlation coefficient in the experiment (−0.49) is smaller than that of simulation (−0.77), likely because
the experimental data are not taken at a single size ratio. The data points used to create the kernel density
estimates in panels e and f are shown in Fig. S12.

The observation that these new defects arise during growth is the first clue that the

cylindrical geometry affects the growth process itself. The second clue is that the parameter

δ = (L− l)/L, the number of partial vacancies per unit length of the total defect, is inversely
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correlated with the line-slip angle θ in both simulation (Fig. 5e) and experiment (Fig. 5f).

Thus, line slips that are less aligned with the cylinder axis have more partial vacancies

on average. This result was unexpected to us because the partial vacancies neither reduce

the energy of the crystal, nor do they change the commensurability of the crystal with its

substrate.

2.4 The cylindrical geometry affects the growth process

We make sense of the negative correlation between the line-slip angle and the density of

partial vacancies as follows. On a flat plane, near equilibrium, a crystalline grain grows

isotropically. The same should be true of a crystal on a cylinder until the grain wraps

around the cylinder and the crystal touches itself. At this point, growth along the azimuthal

direction of the cylinder is hindered, and the flux of particles arriving at the crystal is no

longer isotropic. A line slip that is aligned with the cylinder axis can continue to grow

without kinks after it meets itself (Fig. 6a) because of symmetry: the two other faces of

the crystal make the same angle with the cylinder axis, and therefore particles can attach

to them at the same rates (Fig. 6b). By contrast, a line slip that is less aligned with the

cylinder axis faces a challenge when it meets itself (Fig. 6c) because the other two faces make

different angles with the line slip. Continuing the line slip without defects requires particles

to attach to both faces at the same rates (Fig. 6d), but the broken symmetry makes this

scenario unlikely: the larger the angle between the cylinder axis and the face corresponding

to the line slip, the higher the probability that particles land on this face and trap partial

vacancies by the mechanism of Fig. 4b.

Although this simple picture of the growth dynamics ignores effects such as diffusion

of partial vacancies, it does describe the dynamics seen in simulations. To quantify these

dynamics, we measure the lengths of all three faces of the crystal as a function of time. These

lengths are related to the rates at which particles attach to faces – for example, the length of

face 1 increases when particles attach to faces 2 and 3 – but are easier to measure. We find
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Figure 6: Kinks result from anisotropic growth after a crystal meets itself. a, Illustrations of
a crystal growing on a cylinder. Darker colors correspond to later stages of growth. The crystal grows
isotropically until it wraps and meets itself, forming a line slip. b, The crystal must then grow along the
cylinder axis. Gray circles indicate particles that attach to the two exposed faces of the crystal to continue
the line slip. c and d, Same as a and b, but for a line slip that is less vertical. For the line slip to remain
straight, the growth on the light and dark gray faces must be the same. But because these two faces make
different angles with the average growth direction (along the axis), partial vacancies can become trapped
by the mechanism of Fig. 4b. (e) Rendering of a nearly vertical line-slip (θ ≈ 80◦) found in simulation.
Diagram at right shows the area of the crystal (shaded region) and three faces. f, Lengths of the three faces
as a function of time. The lengths are comparable until 2 × 105τsim (where τsim = 180ms), at which point
face 1 (aligned with the line slip and closely aligned with the crystal axis) starts to dominate. g and h, Same
as e and f, but for a less vertical line slip (θ ≈ 45◦). Because face 2 is nearly aligned with the cylinder axis,
it competes with face 1, and the line slip becomes kinked.
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that for a crystal with a line slip that is nearly aligned with the cylinder axis (Fig. 6e and

Movie S5), the lengths of the faces are approximately the same at short times, indicating

isotropic growth (Fig. 6f). At longer times, the growth becomes anisotropic, with the face

aligned with the line slip (face 1) growing much longer than the other two (faces 2 and 3).

The disparity between the length of the face 1 and the lengths of faces 2 and 3 indicates

that relatively few particles attach to face 1. As a result, the crystal incorporates few partial

vacancies. A crystal with a line slip that is misaligned with the cylinder axis (Fig. 6g and

Movie S6) also shows approximately isotropic growth at short times (Fig. 6h), but at longer

times, the face aligned with the line slip (face 1) competes with face 2, which is more closely

aligned with the cylinder axis. As a result, the crystal traps several partial vacancies.

2.5 Conclusion

We have shown how the closure constraint changes how a crystal composed of nanoparticles

grows on a cylindrical substrate. The crystal grows approximately isotropically (as shown

by our simulations) until it meets itself, at which point it must grow preferentially along the

cylinder axis. As a result, the larger the angle between the line slip and the cylinder axis,

the more partial vacancies the crystal incorporates.

These results have both fundamental and practical implications for nanomaterials. From

the fundamental perspective, they show that a closure constraint alone can frustrate crystal

growth. This is a different type of geometric frustration15,41 from the more well-studied form

arising from Gaussian curvature.41,42 It does not occur in planar 2D crystals, where there

is no closure constraint. It manifests only when the crystal size becomes comparable to

the circumference, which is why the defects, partial vacancies, occur only where the crystal

meets itself.

From a practical perspective, our results show that some ground-state cylindrical crystals

are harder to make than others. In particular, it is difficult to grow a dense crystal having a

line slip that is tightly wound about the axis, owing to the mismatch between the line slip
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and the growth direction. Thus, self-assembly may be an inefficient way to make certain

chiral nanomaterials, which have applications in sensors43 and optical metamaterials.44 In-

deed, existing self-assembly routes to such nanostructures rely on templates such as TMV

capsids44,45 and DNA origami rods46 that guide nanoparticles into a prescribed helicity. An

interesting question is whether there are conditions under which nonspecific substrates, like

the fibers we use, can template the formation of large, single crystals with prescribed helicity

and line-slip structure.

To address this question, it is useful to examine self-assembled cylindrical nanosystems

that are not frustrated. Single-wall carbon nanotubes,47,48 for example, can adopt diame-

ters corresponding to commensurate crystals, and microtubules can adopt straight line-slips

(called “seams” 49) because these structures do not form around a cylindrical template. How-

ever, in systems like ours, the nanoparticles must satisfy the closure constraint while simul-

taneously adhering to a template. There are several systems in biology that face a similar

set of competing constraints.40

Of these, tobacco mosaic virus (TMV) has a particularly interesting way to satisfy both

the closure and adhesion constraints. The coat proteins of TMV self-assemble into a cylindri-

cal capsid around the viral RNA, even in vitro 50 – indeed, the TMV capsid is the structure

that first inspired the term “self-assembly”.51 However, the assembly pathway differs from

that in our system. The coat proteins first assemble into disks,52 and a single site on the

RNA nucleates the formation of the cylindrical capsid from these disks.53 During nucleation

and assembly, the disks “dislocate”,52,54 or shear, to form helical structures, thereby reducing

their diameter and adhering to the RNA.

Thus in TMV the proteins first satisfy the closure constraint by forming disks and af-

terward adhere to the RNA template. They maintain the closure constraint during the

dislocating process. By contrast, the nanoparticles in our system first adhere to the tem-

plate, then form crystals that must close. Our results show that even a single crystal can

be frustrated by the closure constraint; therefore the control over nucleation that the RNA
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provides may not be as important to eliminating frustration in TMV as the sequential nature

of the assembly. This assembly pathway might have evolved in part to prevent the formation

of line slips or partial vacancies that would expose the RNA to degradation by nucleases.

There are, of course, other differences between our system and TMV. For example, the

interactions between coat proteins are longer-ranged in TMV, which might help vacancies

exit by allowing dislocations to form and glide helically to relax stresses.55,56 But the most

striking difference is that the assembly is staged in a way that allows for both closure and

adhesion. Engineering a similarly staged process may permit the directed self-assembly of

nanoparticles into prescribed chiral crystals with high yield.

Another question for future work is why the kinked line-slips take so long to relax.

Understanding their relaxation dynamics – and how those dynamics slow with increasing

interaction strength and line-slip size – might reveal more about the relatively simple but

unexplored form of geometric frustration imposed by a cylindrical surface.

3 Methods

See Supporting Information for all details of the experimental and computational methods.
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Supporting Information Available

The following files are available free of charge.

• Supporting information document: includes detailed Materials and Methods, Figs. S1

to S12, and Table S1

• Movie S1: Confocal images showing a crystal on a cylinder forming a kinked line-slip

defect. Snapshots of this movie are shown in Fig. 4 of the manuscript.

• Movie S2: Confocal images showing a crystal on a cylinder without any defects. Snap-

shots of this movie are presented in Fig. S11.

• Movie S3: Rendering of crystal growth on a cylinder from a Brownian-dynamics sim-

ulation. The four images are of the same cylinder taken from four azimuthal angles at

90◦ intervals.

• Movie S4: Rendering of crystal growth on a cylinder from a Brownian-dynamics simu-

lation, showing the cylinder cut and unwrapped. Snapshots of this movie are presented

in Fig. 5 of the manuscript.

• Movie S5: Renderings of Brownian-dynamics simulation showing the growth of a crys-

tal with a line slip that is nearly aligned with the cylinder axis.

• Movie S6: Renderings of Brownian-dynamics simulation showing the growth of a crys-

tal with a line slip that is misaligned with the cylinder axis.
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