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Abstract Binding affinity prediction is frequently

addressed using computational models constructed solely

with molecular structure and activity data. We present a

hybrid structure-guided strategy that combines molecular

similarity, docking, and multiple-instance learning such

that information from protein structures can be used to

inform models of structure–activity relationships. The

Surflex-QMOD approach has been shown to produce

accurate predictions of binding affinity by constructing an

interpretable physical model of a binding site with no

experimental binding site structural information. We

introduce a method to integrate protein structure informa-

tion into the model induction process in order to construct

more robust physical models. The structure-guided models

accurately predict binding affinities over a broad range of

compounds while producing more accurate representations

of the protein pockets and ligand binding modes. Structure-

guidance for the QMOD method yielded significant per-

formance improvements, both for affinity and pose pre-

diction, especially in cases where predictions were made on

ligands very different from those used for model induction.

Keywords QMOD � QSAR � Surflex � MM-PBSA �
Affinity prediction � Random forest

Introduction

The field of predictive modeling of chemical and biological

properties in medicinal chemistry has a long tradition of

pure ligand-focused model induction, starting with sub-

stituent-based QSAR approaches [1], continuing with the

elaboration of fragment- and descriptor-based methods [2,

3], and including physically oriented 3D QSAR approaches

[4–6]. Our introduction of the Surflex QMOD method [7]

continued in this vein, focusing on induction of binding site

models purely from ligand structures and associated

activity values. In the present study, we instead show that a

hybrid strategy that integrates information from experi-

mentally determined protein structures with structure–

activity data produces predictive models that are more

widely applicable and accurate for ligand affinity predic-

tion. Further, the strategy produces a binding pocket model

(a ‘‘pocketmol’’) directly related to the physical pocket.

The core, purely ligand-based, QMOD methodology

builds and tests a pocketmol in the following six steps:

1. Initial alignment hypothesis Two or three ligands are

chosen to serve as a seed alignment hypothesis, which

is derived by maximizing their mutual 3D molecular

similarity. The ligands are typically chosen to be

among the most active of available data and which

exhibit structural variation.

2. Training ligand alignment generation For each train-

ing molecule, the initial alignment hypothesis is used

to guide the generation of multiple poses (typically

100–200), again using 3D molecular similarity.
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3. Probe generation The collection of aligned active

training molecules (each in their multiplicity of poses)

are used to guide the placement of small molecular

probes that represent possible constituents of the

cognate binding pocket. Each individual training

ligand pose is tessellated by probes whose fine

positions are optimized for intermolecular interactions.

Those probes that are not redundant of previously

generated probes are retained, usually resulting in

several thousand such probes.

4. Probe subset selection A probe subset forming an

initial pocketmol is chosen to optimize multiple

constraints, the most important of which is that the

scores of training ligands against the pocketmol are

close to their experimental values. For each ligand, it is

the maximal scoring pose that defines its score.

5. Iterative model refinement The pocketmol is refined by

iteration of the following two steps. The process stops

when the final optimal ligand poses yield scores that

are close to the experimental values.

(a) Pocketmol refinement The fine positions of the

pocketmol probes are optimized such that the

deviation of computed training ligand scores to

experimental data is minimized.

(b) Ligand pose refinement The poses of each

training ligand are refined using the current

pocketmol in order to identify the optimal fit.

6. Prediction on new molecules The final pocketmol

serves as the target of a procedure very similar to

docking, in which new molecules are flexibly fit into

the pocketmol to seek the optimal score subject to

constraints on ligand energetics. The result produces a

prediction of affinity and pose along with a measure of

confidence.

The QMOD procedure is algorithmically complex,

combining aspects of molecular similarity [8–10], multi-

ple-instance machine-learning [11, 6], and docking [12–

14], but all steps are fully automated. We have shown that

the QMOD procedure is capable of making accurate pre-

dictions across varying chemical scaffolds [7], learning

non-additive structure–activity relationships [15, 16], and

guiding lead optimization toward potent and diverse

ligands [17].

However, there are two key areas, corresponding to

steps 1 and 3 above, which are particularly challenging

when making use of structure–activity data alone. The

initial alignment hypothesis is poorly constrained in the

case of data that are dominated by a single chemical series,

especially one with significant flexibility. In such a situa-

tion, many different initial alignment hypotheses can be

generated, all of which score equally well, but only one

solution will correspond well to the true binding pocket.

When this happens, it is possible to derive a pocketmol that

is highly predictive within the series but where predictions

are poor on molecules with divergent scaffolds [15]. In

practice, making use of multiple chemical series helps

ameliorate this problem, but better means to determine an

initial alignment hypothesis that represents the correct

absolute configuration would lead to more predictive

models. The probe generation process, step 3, is also poorly

constrained, proceeding blindly without knowledge of

where protein and solvent may be. Given limited structure–

activity data with which to select and refine probes for a

pocketmol, models can arise where ‘‘walls’’ are placed

where only solvent exists in the true binding pocket. Both

of these problems were evident when inducing a model of

the CDK2 binding site using a congeneric series of

substituted guanines [15]. As with the alignment problem,

methods that constrain the potential pocket probe config-

urations such that they more closely match what is physi-

cally responsible for observed activity patterns will aid in

generalization.

In this work, we augment the standard QMOD proce-

dure in two ways, both of which make direct use of

experimentally determined structures of the protein target

in question. The structure-guided QMOD (SG-QMOD)

approach alters steps 1 and 3 of the standard procedure and

is illustrated in Fig. 1. Aligned protein structures with their

cognate ligands (panel a) are used to help guide the model

construction process. The standard QMOD steps 1–3 cor-

respond to panels b–d of the figure, with steps 4–5 con-

solidated into panel e, and the final step corresponding to

panel f.

The SG-QMOD procedure makes use of the protein-

ligand complexes in order to derive a more accurate initial

alignment hypothesis than is possible using molecular

similarity alone (panel b). Rather than relying solely upon

molecular similarity, the training ligands to be used for the

alignment hypothesis are docked into the representative

crystal structures and high scoring poses are retained for

each. A single pose for each is selected such that the

combined mutual 3D similarity among the training ligands

(including the known bound ligand poses) is maximized.

This produces an alignment hypothesis that is informed

both by optimal fitting with the proteins and by 3D shape

and electrostatic concordance with known ligand

configurations.

Additionally, the protein structures are used to filter the

set of possible pocketmol probes produced by the standard

probe generation procedure. This process removes probes

that are not within the vicinity of similar chemical frag-

ments in the protein binding pockets. A comparison of

panels a and d in Fig. 1 reveals good overall coverage of

the binding site between the protein structures in a and the
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initial probe set in d. Regions at the front and right-side are

adequately covered by the initial rich probe set, while the

hinge-binding region at the top is correctly represented by

steric and polar probes, and the opening of the pocket at

left remains unoccupied. This limits the initial pool to those

that are spatially and chemically justifiable. Apart from

these two modifications, the standard model induction and

testing procedures are used.

SG-QMOD was applied to CDK2, with detailed com-

parisons to the standard QMOD approach, docking-based

predictions, and descriptor-based QSAR modeling. Two

inhibitor sets were used, the ‘‘congeneric set’’ consisting of

substituted guanine inhibitors and the ‘‘diverse set’’ con-

sisting of structurally variant inhibitors with known bound

configurations. Additional comparisons included structure

activity data for urokinase, Chk1, and PTP1b [18].

There were three primary results of this study. First, the

SG-QMOD procedure was predictive within the congeneric

CDK2 series, but SG-QMOD yielded performance similar to

the purely ligand-based QMOD approach in terms of

numerical accuracy. This also held for the descriptor-based

QSAR predictions, with statistically indistinguishable

results from the two QMOD variants. Second, for the

structurally diverse set of molecules, the structure-guided

approach was more widely applicable and accurate in both

activity and pose predictions. Here, the SG-QMOD proce-

dure yielded much better results than the purely ligand-based

QMOD method, direct molecular docking, or descriptor-

based QSAR. Third, for all four targets, the structure-guided

procedure produced models that shared high physical con-

cordance with the protein targets under investigation. For

example, in the CDK2 case, the induced structure-guided

model showed a very direct relationship with key kinase

binding site elements known for their role in ligand recog-

nition. In the urokinase case, the key interactions within the

P1 recognition pocket were similarly well recapitulated. The

integration of structural information provided improvements

in activity prediction, bioactive pose prediction, and fidelity

of induced pocketmols to experimentally determined struc-

tures of binding sites.

In addition to the methodological results, another theme

emerged from the comparison of different methods. Within

A B C

D E F

Fig. 1 Derivation and testing of a CDK2 pocketmol using the SG-

QMOD procedure: a a collection of multiple protein structures are

aligned (bound ligands shown with a green surface); b an alignment

seed hypothesis, guided both by docking and similarity to known

bound ligands; c alignments for each training ligand are produced; d a

large set of probes (many thousands) is created where interactions

may exist; probes are filtered based on the location of similar type

fragments in the protein pockets; e a small near-optimal set of probes

(atom colored surface) is selected, followed by iterative probe and

pose refinement; f new molecules are tested by flexible alignment into

the final pocketmol to optimize their scores

J Comput Aided Mol Des (2013) 27:917–934 919
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chemical series where the effect of substituent changes is

largely additive, it is difficult to discern performance dif-

ferences between computationally expedient regression-

based methods, moderately expensive approaches such as

QMOD, or very intensive calculations such as dynamics-

based simulation approaches. However, additivity occa-

sionally breaks down quite dramatically [15, 16], and a

very common case in medicinal chemistry requires pre-

dictions on molecules quite different from those upon

which a model is constructed. In these cases, stark per-

formance differences emerge among different methods.

Methods and data

The primary results of this study involve two sets of CDK2

inhibitors, with additional control experiments on three

targets that were the subject of another study [18], all of

which are described here. Procedural details of the two new

algorithmic components that SG-QMOD adds to the stan-

dard QMOD protocol are also presented in this section.

Additional details regarding computational and data prep-

aration procedures presented in the ‘‘Experimental

section.’’

Molecular and activity data

For the CDK2 study, the availability of a large number of

compounds within a particular chemical series was com-

plemented by a set of inhibitors with diverse scaffolds

whose bound structures were known. The congeneric series

of inhibitors included 80 substituted guanine CDK2

inhibitors whose structures and activities were published

from 2002–2006 [19–21]. The 80 congeners were divided

randomly between 30 used for training and 50 used for

testing, following an earlier report [15]. Figure 2 shows

examples of the congeneric series (molecules 1–3).

A set of 77 X-ray co-crystal structures of CDK2 were

curated from Binding MOAD [22] and the RCSB Protein

Data Bank [23], with assay values also gathered from

BindingDB [24] where available. The co-crystal structures

were organized into two groups, one for use in structural

guidance during training and the other to provide a diverse

set for testing. The first group had deposition dates that

preceded publication of the aforementioned 80 inhibitors and

included 26 structures [25]. The 26 bound ligands were all

structurally different from the guanine series. From this set,

five X-ray crystal structures were chosen based on binding

pocket configurational diversity. These five were used for

structure-guided model construction. Figure 2 shows the

cognate ligands of these structures (molecules 4–9, respec-

tively corresponding to 1QMZ, 1KE6, 1KE8, 1JVP, and

1H07). The date cutoff was chosen such that the structures

used to inform model construction would have been avail-

able at the time that the congeneric series was being

investigated.

The remaining set of 52 structurally diverse compounds

were used as a challenging test of the QMOD models, both

for binding affinity prediction and for pose prediction.

Careful inspection was carried out to eliminate inadvertent

retesting of training molecules to ensure the integrity of

‘‘blind’’ tests. The automated curation procedure for the

diverse test set was designed to identify only those ligands

whose cognate PDB structure was deposited after initial

publication of the guanine series. However, subsequent

detailed manual inspection of the deposition records indi-

cated that 4 of the 52 had been deposited earlier. None-

theless, these were of varied chemical structure, and the 52

molecule test set was predominated by future compounds

relative to the initial investigation of the congeneric

guanine series.

Fig. 2 CDK2 ligands used for the alignment hypothesis. Molecules

1–3 are the top 3 most active ligands derived from the CDK2 training

series used in this study. Molecules 4–9 are the bound ligands

extracted from the five protein structures chosen for structural

guidance (all shown with activity values were included in the training

set)
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A comparison to the MM-PBSA approach was also

made, utilizing three targets (urokinase, Chk1, and PTP1b),

originally reported by Brown and Muchmore [18]. Each

data set was divided randomly between half used for

training and the remaining half used for testing. The uro-

kinase data set contained 75 ligands (37 training and 38

testing). The Chk1 set contained 123 ligands (59/57 train/

test, with seven molecules not used due to structural errors

or duplications). The PTP1b set contained 110 (55/55 train/

test). In addition, PDB co-crystal structures with bound

non-covalent inhibitors were organized for each data set to

serve as a selection pool from which structures were cho-

sen for model guidance (as with CDK2).

Structural guidance in alignment generation

The standard QMOD procedure would make use of mol-

ecules 1–3 using molecular similarity alone. Given the

common core structure and significant flexibility in some

of the compounds, many high-scoring alignment solutions

that are inconsistent with fitting into the CDK2 binding site

are generated. Given that the SG-QMOD procedure makes

direct use of experimentally determined structures to aid in

determining molecular alignment, the obvious approach

would be to simply dock the chosen molecules and make

use of their top-scoring poses. The difficulty with this

straightforward approach is that the ‘‘cross-docking’’

problem is well-established to be challenging for docking

algorithms [26, 27]. With aggressive search procedures,

using conformational variants of the protein binding sites

during docking, it is possible to frequently obtain an

accurate pose among the top scoring set, but it is often the

case that the single top scoring pose is inaccurate.

Consequently, the SG-QMOD procedure combines the

docking approach with molecular similarity, as follows:

1. The ligands to be used in an alignment hypothesis are

docked using a standard multi-structure docking pro-

tocol [26]. The top 100 highest scoring poses for each

are retained. For CDK2, molecules 1–3 in Fig. 2 were

subjected to docking. Default parameters for multi-

structure docking with Surflex-Dock are used [28].

2. The poses from step 1 are combined with those of the

cognate ligands from the multi-structure docking. For

CDK2, the cognate ligands were molecules 4–9 in

Fig. 2. Molecules 1–3 have uncertainty, existing as

multiple poses, but molecules 4–9 have a single pose

each.

3. The pairwise 3D molecular similarities for all poses of

all ligands are computed and retained. Default param-

eters for Surflex-Sim are used [9].

4. A brute-force optimization procedure is used to

identify the single pose for each molecule which

maximizes the sum of all pairwise molecular similarity

values.

Figure 3 shows the result of this procedure applied to

the CDK2 case. Panel A shows the selected poses super-

imposed with one of the known bound ligands (compound

5, PDB code 1KE6). There is high concordance among the

hinge-binding polar moieties at the top-right, a matching

ring orientation in the center, and matching disposition of

the sulfonamide/sulfone substituents at the left. Panel b

shows the same alignment, but includes the bound pose of a

guanine analog not used for model construction (compound

10, PDB code 1H1S). The chosen poses for training com-

pounds 1–3 fully mirrored compound 10.

Figure 4 shows the contrasting results obtained by using

pure molecular similarity or pure docking. In the former case

(panel a), an extended conformation of the guanine analogs

was chosen, with nitrogen-substituent being flipped opposite

to the oxygen-substituent. This configuration is clearly not

correct in terms of the absolute geometry of such inhibitors

within the CDK2 pocket (see Fig. 3). However, because the

correspondence of parts among the inhibitors is reasonable, it

is possible to induce a model that is predictive within this

series, as will be discussed below. In the case of docking, the

five highest scoring poses for each of the three ligands are

shown (panel b), each of which fall within a narrow window

of scores. There was some positional variation of the

hydrophobic substituent, but the uncertainty in the orienta-

tions on the left-hand side were more substantial, allowing

for two alternatives for the sulfonamide substituent. Within

the collection of docked poses, however, there were a set of

poses that were both concordant with one another and also

with the bound poses of molecules 4–9 used to help guide the

SG-QMOD procedure. Panel c shows these poses, which

correctly disambiguate the orientation of the sulfonamide

substituent as well as providing a tight initial alignment of

the hydrophobic pendant group.

The SG-QMOD alignment procedure makes use of

docking, but it employs molecular similarity as an addi-

tional constraint, thus allowing a more coherent set of

poses to be derived. Consideration of similarity to known

bound configurations of other ligands offers the type of

guidance that an experienced modeler may employ when

working with a target where additional experimental

information exists. In the CDK2 case, poses chosen in this

fashion are reasonable, based the concordance between the

guanine analogs to a highly similar analog whose bound

structure was known (see Fig. 3).

Structural guidance in pocketmol probe generation

Lacking any information about the true binding site, the

standard QMOD procedure simply identifies the positions

J Comput Aided Mol Des (2013) 27:917–934 921
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of all three types of probes that can make favorable inter-

actions with any part of any pose of an active training

ligand. For the alignment hypothesis depicted in Fig. 3, this

results in the probe set shown in Fig. 5. In contrast to the

filtered set shown in Fig. 1d, the full set locates probes in

places that are exposed to solvent. While it is possible to

learn that a part of space is not part of the true pocket, this

requires the presence of structural variation within a ligand

training set in all such locations.

In the structure-guided procedure, the probes are filtered

so that a probe will only exist in a position that is close to

an atom of similar type within any of the protein pocket

variants being used. In order to survive the process, a steric

probe must fall within 1.0 Å of a hydrophobic atom of a

protein variant, and a polar probe must fall within 2.0 Å of

an atom of the same polarity on a protein variant.

Fig. 3 Alignment hypothesis

yields conformational

concordance among highly

active CDK2 ligands while

satisfying physical constraints

of observed bound

conformations: a the hypothesis

alignment of the top three most

active CDK2 ligands (1–3, atom

color) with crystal structure

bound pose of 5 (green);

b hypothesis alignment of

ligands 1–3 with bound pose of

structurally related analog 10
(PDB code: 1H1S, orange).

Compound 10 was not used

during the hypothesis

generation

A B

C

Fig. 4 Variations of alignment hypotheses: a the top-scoring result of

pure ligand-based hypothesis generation for molecules 1–3; b the five

top-scoring docked poses of the same three molecules; c the three

poses from among 100 docked poses selected based upon mutual

similarity, including the cognate ligands of structures used for

guidance

Fig. 5 The full probe set from the standard QMOD procedure, prior

to the filtering step used in the structure-guided approach

922 J Comput Aided Mol Des (2013) 27:917–934
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Comparing Fig. 1a with d, the filtered probe positions

correspond to the occupancy dictated by the aligned protein

structures, representing a logical ‘‘OR’’ among the different

conformations. The process yields a set of probes that

allow for variability beyond what is seen within the crystal

structures used, but the probes are constrained to have

some geometric support from those structures.

Results and discussion

The target case of CDK2 offers a particularly rich example,

with hundreds of protein structures available, bound to a

diverse complement of inhibitors. The available structures

covered significant conformational variation in the enzyme

binding site. For CDK2, it was possible to assess perfor-

mance of the SG-QMOD procedure on both affinity pre-

diction and pose prediction and to compare performance

with the standard QMOD procedure, direct molecular

docking, and to descriptor-based QSAR predictions. The

comparative performance of the methods varied consider-

ably on the test against inhibitors of diverse chemical

structures, and these results will be presented first.

Comparison of SG-QMOD to MM-PBSA was also

made, making use of a comprehensive study of three tar-

gets for which data were made available [18]. In these

cases, SG-QMOD performed similarly to the CDK2 case.

However, structural variety among the ligand sets was

more limited, reducing the power to discern comparative

differences.

CDK2: congeneric and diverse test ligands

A common situation in lead optimization efforts arises

where the precise bound configuration of a series under

active consideration may not be known, though there may

be significant structural information on other chemical

series. This situation is studied here using the congeneric

set of CDK2 inhibitors coupled with structural guidance.

The SG-QMOD procedure identified good initial poses for

training molecules 1–3, as discussed above, from which the

alignments for the remaining molecules were generated as

in the standard procedure. The SG-QMOD probe genera-

tion method made use of protein structure information to

influence the pool of probes for pocket construction

(Fig. 1d). From this point, the standard model induction

procedure was carried out.

Predictive performance: within-series and beyond-series

Figure 6 shows the final pocketmol, and Fig. 7 shows

prediction performance on the 50 CDK2 substituted

guanine inhibitors. The model was highly predictive within

this series, producing an average error of 0.61 log units and

a Kendall’s Tau rank correlation of 0.73 (p \ 0.01). The

final pocketmol with the predicted pose of molecule 12 is

shown. The QMOD procedure estimated confidence for a

new ligand based on the similarity of predicted bound pose

to that of a training molecule. Here, high confidence

stemmed from training molecule 11, and the predicted

activity of compound 12 (pKi = 7.7) was very close to

correct (a 0.5 log unit deviation). Performance on the entire

set is shown at right, highlighting the excellent correlation.

For the purposes of synthetic candidate prioritization, it

was notable that 7 out of the top 10 predicted test mole-

cules appeared among the top 10 bona fide most potent

molecules in the entire test set.

Another common situation requires transfer of SAR

from one series to other series, in the case where a change

of scaffold my be required. Figure 8 shows representative

examples of predictions made on the diverse test set with

Fig. 6 The final SG-QMOD CDK2 pocketmol is shown in thin sticks

and skin, with molecule 12 (atom-colored sticks) in its final predicted

pose. The high confidence reported for 12 derived from similarity to

training molecule 11 (cyan). The predicted activity of 12 was just a

0.5 log unit deviation of its actual pKi

J Comput Aided Mol Des (2013) 27:917–934 923
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the structure-guided model. Panel a contains a substituted

guanine whose bound pose was determined experimentally.

The predicted and experimental poses deviated only with

respect to the end of the flexible tail at the left-hand side,

which reaches toward a solvent-exposed area. High confi-

dence and low error were to be expected from a close

analog to those on which the model was trained. The

molecule in Panel b shares direct structural similarity with

respect to the left-hand-side of the training series, but the

central scaffold and lower substituent are quite different.

Again, though, all aspects of the prediction were accurate.

Panel c shows a test ligand that deviated further still,

sharing very little in common with any training molecules,

which was reflected in the low confidence value, but pre-

diction errors were still small. Panel d shows a structural

elaboration of that shown in c, where the predicted

improvement in pKi was 1.6, but the actual was 1.3,

resulting in an over-prediction of activity by 0.9 log units.

However, the indication of substantial improvement was

correct, as was the predicted bound configuration of the

inhibitor.

Predictive performance for activity and pose is sum-

marized for the diverse inhibitor set in Table 1 (top).

Overall, SG-QMOD yielded an average activity prediction

error of 1.1 (units of pKi) and an average RMSD 1.8 Å,

with a Kendall’s Tau rank correlation of 0.27 (p = 0.01). As

expected, the model performed systematically better on

ligands for which confidence was higher. At confidence

levels of 0.7 and above, average RMSD was 1.2 Å, and the

ranking was nearly perfect (Tau = 0.85, p \ 0.01).

Given that experimentally determined protein structures

are being used in the SG-QMOD procedure, it is natural to

wonder how direct use of the structures for affinity and

pose prediction performs. It is particularly apt here,

because QMOD makes use of the same scoring function as

Surflex-Dock in quantifying the intermolecular interactions

between ligand and either pocketmol (for QMOD) or

protein binding site (for Surflex-Dock). Beginning with

similar conditions used for the SG-QMOD approach (i.e.

the same five protein crystal structures with bound ligands),

we docked the set of 52 diverse inhibitors to assess the

performance of naı̈ve and direct use of structural infor-

mation. Table 1 (bottom) summarizes the results, broken

down by groups of molecules as defined by the SG-QMOD

confidence levels. In all cases, SG-QMOD produced much

lower absolute errors.

Two aspects were somewhat surprising. First, the

docking approach produced better than expected results,

with statistically non-random rankings of affinity in the two

larger molecule subsets despite high absolute errors. SG-

QMOD performance was still more robust, with the quality

of the rankings increasing among the more confidently

predicted molecules, even producing statistically signifi-

cant ranking results within the smallest group. Second, and

perhaps more surprisingly, the pose prediction perfor-

mance of SG-QMOD was better than the pure docking

approach as well. We speculate that the process of identi-

fying parsimonious structural explanations for ligand

affinity helped identify key features for ligand binding,

which in turn led to improvements in pose identification

and ranking.

Relationship of the induced pocket model to the CDK2

binding site

In the foregoing, we have discussed the effects of inte-

grating protein structural information on accurate predic-

tion of ligand activity and bioactive pose within the protein

pocket. Another important attribute is the physical rela-

tionship of the induced model with the protein binding

pocket. The pocketmol is not a literal re-representation of a

binding pocket, being instead generally more sparse,

reflecting the physical characteristics that best explain the

activities of known ligands. Pocket flexibility can be rep-

resented in the pocketmol structure with multiple alterna-

tive probes, and complex electrostatic fields can be

represented by the combination of multiple probes, even of

multiple types.

 3
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Fig. 7 SG-QMOD produced accurate predictions within the CDK2

substituted guanine series. Activity prediction performance on the

entire guanine series test set is plotted. The overall prediction error

was 0.61, with a Kendall’s Tau rank correlation of 0.73 (p\0.01, by

permutation analysis), and an r2 of 0.71. Note that while, in this case,

overprediction was more common than underprediction, this is not a

general trend
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To the extent that a pocketmol accurately reflects true

binding pocket geometries, there will be broader compat-

ibility with diverse ligands exhibiting significant structural

novelty. Figure 9 highlights the physical relationship

between the model (probes shown in thick sticks) and the

crystallographically determined binding site of 2G9X (thin

sticks) with a bound ligand (green). Key interaction points

on the hinge binding region are well represented by the

induced pocketmol. Electrostatic interactions provided by

Asp86 are modeled by an acceptor probe, and two hydro-

phobic probes flanking the right and left sides of compound

13 closely match physical constraints provided by Asp86

and ILe10 (Fig. 9a). The backbone carbonyl of Glu81 is

modeled by an acceptor probe and the NH of Leu83 is

represented by donor probes (Fig. 9b). Panel c shows an

outward view of the buried portion of the pocket high-

lighting structural concordance between a series of

hydrophobic probes and the arc-like shape of the pocket

defined by ILe10, Ala31, Val64 and hinge binding residues

80–83. The electrostatic interaction between Lys89 and the

sulfone group is modeled by a donor probe (Fig. 9d).

In addition, the pocketmol provided a highly concordant

physical shape of the binding pocket, accurately charac-

terizing the overall structural configuration. Figure 10

illustrates these shared characteristics. The front view

highlights congruence between the pocketmol (yellow) and

O
S
O

H2N NH

N
N

N

N

A B

C D

Fig. 8 The structure-guided modeling procedure produced accurate

pose and activity predictions on the diverse set of 52 CDK2 inhibitors.

Panels a shows an example of a substituted guanine compound

closely related to the training molecules, and b–d show representative

examples of diverse CDK2 ligands in their predicted poses (atom-

colored) superimposed with their crystal structure bound pose (green)

Table 1 SG-QMOD and docking results for 52 structurally diverse CDK2 inhibitors

Confidence NMols pKi range Average error (pKi) Kendall’s Tau p value RMSD (Å)

SG-QMOD

0.7 9 5.0–8.5 0.7 0.85 \0.01 1.2

0.5 39 4.5–9.9 1.0 0.30 \0.01 1.6

All 52 3.5–9.9 1.1 0.27 0.01 1.8

Direct docking

0.7 9 5.0–8.5 2.2 0.43 0.11 2.5

0.5 39 4.5–9.9 2.0 0.26 0.02 2.4

All 52 3.5–9.9 1.8 0.24 0.01 2.4
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the binding pocket (blue), with coverage of the perimeter

of the binding cavity. The side-view shows a rotated and

clipped view of the pocketmol and protein, highlighting

similarity in overall volume between the pocketmol and

binding pocket. Note that the flexible ‘‘tail’’ of 13, where a

deviation exists between the predicted and bound poses,

protrudes into solvent. The charged secondary amine,

however, interacts with the pocketmol probe that correctly

represents the contribution of Asp86 (see Fig. 10a). In

cases such as in CDK2, where a lysine sidechain is in a

solvent-exposed position, the degree of importance for

binding affinity can be difficult to assess. The SG-QMOD

approach allows the ligand activity data to help make that

determination in a fashion that is compatible with the

known structural information.

To further quantify the degree of concordance between

the pocketmol and the CDK2 binding pocket, we examined

the relationship between CDK2 pocket atoms that were

particularly important for ligand binding and the closeness

of matching SG-QMOD pocketmol probes. Recall that the

probe generation procedure produces several thousand

probes, which in the SG-QMOD procedure are filtered to

retain those that are close to matching protein atoms. The

filtered probe set, from which the learning process begins,

contained a matching probe for essentially every protein

atom that was proximal to the binding pocket. So, the

extent to which the final composition and fine positioning

of the pocketmol probes corresponded to important protein

pocket atoms was driven by finding a configuration that fit

the activity data. All intermolecular atomic contacts of the

diverse 52 ligand set (in their crystallographic poses) and

the aligned set of five CDK2 protein structures were

identified. The CDK2 binding pocket atoms were parti-

tioned into two groups: (1) pocket atoms with close contact

(surface distance of \ 0.5 Å) to 90 % or more of the

ligands; and (2) those with at least one close contact but not

more than with 10 % of the ligands.

For each of the two groups, for each protein pocket

atom, the distance to the nearest pocketmol atom of

matching type was computed. This resulted in two

Fig. 9 The induced pocketmol from the structure-guided procedure

matches key physical characteristics of the binding pocket. The

predicted pose of compound 13 (gray) is shown with the bound pose

(green) to provide a frame of reference. Panels a–d provide detailed

snapshots of key regions of the binding pocket that are well

represented by the pocket model. a Polar aspects of Asp86 are

captured by an acceptor probe and two hydrophobic probes provide

matching physical constraints on the right and left-side of the pocket.

b The backbone carbonyl of Glu81 is modeled by an acceptor probe

and the NH group of Leu83 is captured by two donor probes.

c Hydrophobic probes (shown with a transparent surface) model the

physical shape of the buried pocket region defined by ILe10, Ala31,

Val64, and hinge residues 80–83. d Lys89 is represented by a donor

probe at the opening of the pocket
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distributions of distances: one corresponding to those

pocket atoms that participated in close contacts with the 52

test ligands very frequently (e.g. the hinge-binding atoms)

and the other corresponding to the pocket atoms in infre-

quent contact with the ligands. The two distributions of

pocketmol probe distances were statistically very different

(p � 1 9 10-6 by Kolmogorov–Smirnov). In particular,

the protein atoms with high-participation had a matching

pocketmol probe within 2.0 Å 70 % of the time. The low-

participation atoms had a matching pocketmol probe less

than 30 % of the time.

The pocketmol induction process made use of 30 guanine

analogs and the six non-guanine compounds from Fig. 2

along with corresponding activity data. The 52 compounds

used to partition the protein atoms for this analysis were

from the blind test set of diverse compounds. The rela-

tionship between a protein atom having frequent interaction

with these molecules and being more likely to have a

matching pocketmol probe arose from the model induction

process. It seems likely that part of the reason for improved

performance in pose prediction for SG-QMOD compared

with direct docking stemmed from the enrichment within

the pocketmol for atoms that are important for binding.

Comparison to standard QMOD

The particular substituted guanine chemical series was the

subject of a previous QMOD study, where no structural

guidance was used [15]. Here, a direct comparison to the

structure-guided model was made by constructing a stan-

dard QMOD model for CDK2 using only the substituted

guanine series (i.e. not including compounds 4–9 in train-

ing). Figure 4a depicts the corresponding alignment

hypothesis. The standard model yielded numerical predic-

tive performance that was statistically equivalent to what

was observed for the structure-guided procedure on the 50

compound guanine-based inhibitor test set (mean predic-

tion error of 0.5 with a Kendall’s Tau rank score of 0.73).

This is not especially surprising, as many QSAR approa-

ches can perform well within a chemical series, especially

if the separation of training and testing is done through

random selection.

However, when we considered performance on the 52

chemically diverse CDK2 inhibitors with known bound

configurations, we observed much improved performance

using the structure-guided approach than using the control

procedure (results summarized for SG-QMOD in Table 1).

The standard ligand-based QMOD model yielded rank

correlation performance indistinguishable from random on

the full set of 52 inhibitors, with average RMSD [ 3.7Å,

but the SG-QMOD model yielded significant rank corre-

lation and mean RMSD of 1.2 Å. For the control QMOD

model, only when the confidence threshold was raised

sufficiently to exclude all but 6 test compounds did rank

correlation become significant (Tau = 0.82, mean error =

1.2), but the mean RMSD was unchanged. Overall, the

Fig. 10 The structure-guided QMOD procedure produces a pocket-

mol that captures the overall shape and electrostatic elements of the

CDK2 binding pocket. The 2G9X binding pocket is shown with a

blue surface and with the final pocketmol as a surface. The predicted

pose of compound 13 (atom-colored sticks) is shown with its bound

pose (green sticks)
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structure-guided model predicted 46 % of inhibitors with

errors \ 0.75 log units, 61 % with errors \ 1.0, and 78 %

\ 1.5. The standard ligand-based procedure, yielded,

respectively: 10, 16, and 30 %.

Comparison to descriptor-based QSAR

Given that the QSAR problem itself can be addressed by a

range of methods, it is interesting to ask how well simpler

approaches perform. As in our previous study involving

gyrase [17], here we applied descriptor-based QSAR using

the random forest learning (RF) algorithm (see ‘‘Experi-

mental section’’ for details).

RF as a general QSAR control

In the previous study, which focused on iterative temporal

model refinement, there were two interesting observations

regarding the RF versus QMOD approaches. First, the RF

approach performed quite well in a purely numerical sense

with respect to prediction accuracy, identifying comparable

numbers of active compounds to the QMOD approach. Our

expectation had been that because the QMOD model

exhibited strong concordance to the structure of the bio-

logical target, i.e. that it was making predictions for the

right reasons, that it would yield notably better perfor-

mance in identifying active ligands over the iterative

experiment. The second surprise had to do with the char-

acteristics of the potent compounds uncovered by the two

methods. The primary difference between the QMOD

‘‘winners’’ and those of the RF approach was not in number

but in kind. Those for the QMOD approach had much

greater structural diversity, representing quite different

ways to effectively inhibit the gyrase target. The RF

approach, by contrast, identified a collection of highly self-

similar winners.

In the report that introduced QMOD [7], a similar test

procedure was employed as we have here, restricting

training to a single chemical series of amino-tetralin 5HT1a

ligands, but tests were carried out on diverse ligands, many

of which had been discovered much later. At the time of

that study, we did not employ the RF descriptor-based

approach as a standard control. However, to better under-

stand the value of this type of control, we applied RF on the

5HT1a set, training on 20 ligands and testing on two sets.

The first set contained 35 compounds structurally related to

the training set, and the RF approach produced statistically

indistinguishable rank performance to the QMOD results

(Kendall’s Tau of 0.39 for the former and 0.38 for the

latter, both having p values \ 0.01). The second set con-

tained 32 diverse compounds, of which the activities of 17

were supported by multiple independent assays. For the

diverse set, the RF approach yielded performance no better

than random on the full set (n = 32, Tau = 0.17, p = 0.17) or

on the subset (n = 17, Tau = 0.28, p = 0.09). QMOD

yielded statistically significant rank performance on both

sets, respectively producing Tau of 0.29 and 0.51 (p = 0.03

and p \ 0.01). The RF approach can be surprisingly

accurate and robust, and the cases in which it yields poor

performance represent interesting challenges for predictive

activity modeling.

RF applied to CDK2

The RF approach was applied here, training on the 30

guanine analogs and testing on the diverse 52 inhibitor set.

The results here largely paralleled what we found in the

previous gyrase study. However, given the increased

structural diversity of the test set, the overall predictive

performance for the RF method was lower than for QMOD

(results summarized in Table 2). Overall, for the 52

inhibitors, the RF approach yielded Kendall’s Tau of 0.21

(p = 0.05), with average error of 1.2 pKi units (comparable

values for QMOD were Tau of 0.27 (p \ 0.01) and mean

error of 1.1). The differences were more substantial as the

relative confidence of each method was considered. For

QMOD, its standard confidence measure was applied

(described earlier). For the RF approach, the analogous

computation was made, equating confidence for each test

ligand to the most similar training ligand by Tanimoto

similarity of the descriptor fingerprint used. For the least

confident half of the test set, the RF method produced

random rankings: Tau = 0.12 (p = 0.26) and mean error =

1.4. But for the QMOD method, overall set performance

was nearly matched by performance on the bottom half:

Tau = 0.34 (p = 0.03) and mean error = 1.0. Conversely, for

the top quintile of confidence, the RF method produced

marginal performance: Tau = 0.38 (p = 0.13) and mean

error = 1.1. But QMOD performed well, yielding Tau =

0.87 (p \ 0.01) and mean error of 0.65.

Table 2 Comparison of QMOD to RF on 52 diverse CDK2 ligands

Method and subset N Kendall’s

Tau

p value Error

(pKi)

RMSD

(Å)

SG-QMOD

Top confidence quintile 10 0.87 \0.01 0.65 1.3

Top half 26 0.30 0.03 1.1 1.5

Bottom half 26 0.34 0.03 1.0 2.2

All 52 0.27 \0.01 1.1 1.8

Random forest

Top confidence quintile 10 0.38 0.13 1.1 NA

Top half 26 0.35 0.02 1.1 NA

Bottom half 26 0.12 0.27 1.4 NA

All 52 0.21 0.05 1.2 NA
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Structural diversity of identified winners

Of the top five compounds predicted to be most active,

QMOD correctly identified five with pKi C 7.1, and the RF

approach identified just three such compounds. More

importantly, as seen in Fig. 11, the relatively potent com-

pounds identified by the QMOD approach were of much

more varied chemical structure than seen for the RF

approach. None of the five SG-QMOD ‘‘winners’’ were of

the substituted guanine class that dominated the training

set. For the RF winners, two of the three were variations on

this scaffold. Generally, for the RF approach to make a

prediction at the extremum of activity, the structure in

question must share significant topology with training

compounds. The QMOD approach, by contrast, is agnostic

to topology, and is sensitive only to the degree that the new

molecule fits into and complements the pocketmol. Here,

we see that the RF predictions dramatically underpredict

activity for the SG-QMOD winners (by about 2.0 log

units). In contrast, the SG-QMOD predictions were more

accurate than those made by RF on all of the RF winners.

It is also worth noting that, while numerical prediction

of affinity has utility, accurate prediction of binding modes

for novel ligands during lead optimization also has sub-

stantial value in guiding the design process. For the three

RF winners, SG-QMOD produced an average RMSD of

1.5 Å. For its own five winners, the SG-QMOD approach

produced a mean RMSD of 1.7 Å, establishing to some

degree that the predictions were being made for the ‘‘right’’

reasons. The relative value of pose prediction compared

with affinity prediction is both subjective and project-

dependent. However, as compounds must be contemplated

with divergent scaffolds from those with available activity

data, methods such as the SG-QMOD approach, which

reach toward causal inference rather than simple correla-

tive inference, can produce better results across multiple

criteria.

Comparison to simulation-based affinity prediction

The foregoing comparisons to direct molecule docking and

to descriptor-based QSAR addressed the question of how

well widely-used and easily applied structure-based and

ligand-based methods would fare in comparison to the SG-

QMOD approach. In the case of straightforward docking,

the results were not altogether surprising, given the known

limitations of docking approaches for binding affinity

estimation. In the case of descriptor-based QSAR, the

results paralleled our previous observations [17]. Direct

comparison to more complex simulation-based approaches

were not explored on the CDK2 data set. These represent

an entirely different level of computational complexity,

and such approaches also require deep methodological

expertise. Highly experienced practitioners of such meth-

ods report that, while accurate for some systems, they can

produce poor results for others without obvious explana-

tions. Apart from methodological and computational

complexity, each of which can be overcome, the inability

to know, a priori, which systems will be amenable to

simulation-based approaches remains a serious practical

challenge. Chodera et al. [29], Gilson and Zhou [30], and

Blaney [31] provide excellent reviews of the state-of-the-

art, theoretical basis, and limitations for such methods.

One nicely done study applying MM-PBSA by Brown

and Muchmore [18] demonstrated results of sufficient

quality to be potentially useful for guiding lead

Fig. 11 The structure-guided QMOD procedure top five predictions

included five molecules with pKi C 7.1 (top row). The RF proce-

dure’s top five predictions included three such potent compounds

(bottom row). The PDB codes and experimental pKi are shown in the

labels, along with the magnitude and sign of the prediction error by

the two procedures
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optimization. Figure 12 shows representative examples of

the ligands for urokinase, Chk1, and PTP1b. There are a

number of considerations that make direct comparison of

the SG-QMOD and MM-PBSA results complicated. First,

the latter method does not require any training, being

instead a simulation-based approach that had been auto-

matically applied. For this comparison, the molecular data

was partitioned randomly into 50/50 sets for training and

testing of SG-QMOD. We avoided leave-one-out cross-

validation in order to make a more realistic test. None-

theless, training on a proportion of data offered an

advantage to the QMOD method. Second, results from the

MM-PBSA approach represent best-case performance in

two respects. The experimentally determined bound con-

figuration for each ligand was used in the simulations, thus

obviating any dependence on uncertainty in ligand pose. To

varying extents, but particularly in the case of PTP1b, with

very large and flexible ligands, this represents a significant

advantage for the simulation approach. Also, in reporting

standard errors, the authors linearly re-scaled the actual

prediction values in order to minimize RMSE, owing to the

sharp difference in slope and intercept for predicted versus

experimental pKi values.

The SG-QMOD procedure described for the CDK2

example above was applied to the three targets (see

‘‘Experimental section’’ for details). Figure 13 shows the

resulting urokinase pocketmol aligned with the urokinase

protein structure, depicting the predicted pose of the

inhibitor from Fig. 12. The pocketmol accurately repre-

sents the shape and polar characteristics of the binding

pocket while making an accurate prediction of binding

activity and pose of a test molecule. The primary aspect of

pose uncertainty for this relatively rigid compound was the

orientation of the amide substituent. The prediction arising

from fitting to the pocketmol was close to correct, driven

by a favorable interaction with an acceptor probe (top left

of panel b) that corresponds well with one from the protein

(see panel a). The RMSD for this compound was 1.3 Å.

The learned representation of the deep P1 pocket structure

(panel c) shows direct correspondence between the

acceptor probes of the SG-QMOD model and analogous

functionality within the protein. The probe placement and

orientation is driven by the requirement to produce an

energetic field, which, given the functional form and

parameterization of the intermolecular scoring function,

produces the correct activity values at the extremum of

molecular score with respect to pose. This physical

abstraction allows better reproduction and prediction of

activities across a wide range of new molecules than can be

achieved through direct use of docking.

Automated application of the MM-PBSA method and

the SG-QMOD method gave rise to the results summarized

in Table 3 (numbers in parentheses are 95 % confidence

intervals for the statistics). With the caveat that the QMOD

approach makes use of training data and that the applica-

tion of MM-PBSA benefited from having no uncertainty in

the poses of any molecules, the comparison based on the

correlation metric shows very similar performance. For

urokinase, QMOD performed slightly better, and for

PTP1b the MM-PBSA approach performed slightly better.

However, the differences were marginal. Comparison of

the RMSE values is less informative, because the values for

MM-PBSA were linearly re-scaled to minimize the resid-

ual squared errors. Without such a correction, the QMOD

error magnitudes were much lower. Overall, given that the

MM-PBSA results represent a best-case scenario for a

simulation-based technique, it is encouraging that the

realistic application of SG-QMOD produced comparable

results that could be beneficial in a real-world lead-opti-

mization application.

Conclusions

The core Surflex-QMOD methodology has been validated

in prior studies [7, 15–17]. The significance here relates to

Fig. 12 Examples of potent compounds from the three targets of the

Brown/Muchmore [18] MM-PBSA study
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the integration of information from protein structures

within the QMOD model induction process. Within the

congeneric chemical series studied here, the SG-QMOD

procedure performed similarly to the purely ligand-based

QMOD approach with respect to prediction error magni-

tude and activity ranking. As we have observed before,

such models were unable to correctly identify absolute

bound configurations given data from a single chemical

series. By contrast, the structure-guided procedure offered

substantial advantages, producing models that reliably

mimicked the true protein binding sites. For structurally

diverse test molecules, such models provided much more

accurate ligand activity ranking and pose prediction. The

structure-guided models identified key characteristics

important for ligand binding and yielded excellent pose

predictions, better even than those produced by docking

Fig. 13 SG-QMOD model for

urokinase: a predicted pose

(atom-colored sticks) compared

with the crystal bound pose

(green sticks) of ligand 497 in

the context of the protein

binding pocket (PDB ID:

1OWD, blue skin with thin

sticks); b the same ligand poses

within the QMOD pocket model

(yellow skin with sticks);

c detail of the pocket model

acceptor probes interacting with

the amidine portion of the

molecule; d 2D schematic of

test molecule 497

Table 3 Comparison of SG-QMOD to MM-PBSA on three targets

Method and target N Tau p value RMSE R

SG-QMOD

Urokinase 38 0.79 \0.001 0.66 (0.51–0.81) 0.86 (0.79–0.92)

Chk1 57 0.50 \0.001 1.09 (0.88–1.27) 0.70 (0.55–0.81)

PTP1b 55 0.48 \0.001 0.99 (0.79–1.22) 0.66 (0.44–0.80)

MM-PBSA

Urokinase 75 – - 0.69 0.78

Chk1 123 – – 0.89 0.72

PTP1b 110 – – 0.66 0.83
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methods. It is important to note that the advantages

observed were often only detectable when the model test-

ing procedure followed real-world application scenarios.

Construction of the diverse CDK2 testing set was done

temporally, with the molecules on which predictions were

to be made having been reported in the future compared

with training molecules. The advantages for SG-QMOD

were most strongly observed in this test scenario, without a

guarantee that a highly similar near neighbor would exist

within the training set used for model induction. We

believe that assessment of QSAR methods using techniques

such as leave-one-out cross-validation on data sets of sin-

gle congeneric series is of limited value. In our previous

report, exploring iterative QMOD model refinement over

time, we observed strong effects on the trajectories of

discovered molecules [17]. Application of random forest

learning with molecular descriptors was accurate in a

numerical sense, but yielded pools of active compounds

with shallow structural diversity compared with those

produced by application of QMOD. Here, we observed a

similar effect, but also saw an advantage in terms of pure

predictive performance of SG-QMOD over RF on the

diverse CDK2 test set.

The QMOD method is clearly quite dependent on the

degree to which the initial ligand alignments match the true

relative configurations of the training ligands, especially

regarding generalization to compounds with divergent

scaffolds. Inclusion of diverse ligands in training or aug-

mentation with bound ligand information, as done here,

improves performance. The method is also highly dependent

on the degree of variation within the available training data.

The models cannot know what they have not seen, though

this is an issue in common across all QSAR methods. Given

protein structure information, it is possible to constrain the

search space of possible models to ones that do not deviate

very far from physical expectations. However, the search

space is still very large, and multiple pocketmol solutions

still exist. Arbitration among them is done empirically. The

most reliable method has been to select the model with the

property that the optimal training poses of molecule pairs

close in activity exhibit high 3D molecular similarity (this is

a quantitative measurement of model parsimony).

Still another area for exploration is the degree to which,

given molecules with low to mid-range potency for training,

that the method is able to help ‘‘climb the hill’’ toward more

potent molecules. Given the strong dependence on molecular

alignment, this may prove to be challenging, though active

selection of structurally novel compounds (irrespective of

their predicted potency) offers a strategy that was beneficial

in the case of bacterial gyrase [17]. With large and diverse

data sets that span long time periods becoming increasingly

available, we believe that it will be possible to systematically

investigate this question.

Apart from conclusions about the methods reported

here, there are four features that we would hope to see

become a standard part of future assessments of QSAR

methodology. First, questions should be asked about pre-

dictive performance over time, including characterization

of the structural diversity of identified active compounds.

Second, test molecules should be included that have sig-

nificant structural distance from training molecules (this is

often a natural consequence of temporal segregation).

Third, because the problem of relative alignment between

chemically different series is challenging in real-world

lead-optimization, assessment of pose prediction should

become a part of 3D-QSAR investigations. Last, robust and

easy-to-apply methods such as random forest learning

using fingerprint-based molecular descriptors should be

employed as a standard control. We believe that this

combination will help reveal the degree to which any

method will be shown to be useful in the wild, where

chemical structural novelty is often an absolute require-

ment in molecular design.

With respect to the methods reported here, experimen-

tally determined protein structural information can clearly

be profitably exploited to augment ligand structures and

associated activities. In this work, we have shown how to

construct QMOD pocketmols in a manner that is con-

strained to make use of direct structural information. The

clear extension to the method is to dispense with the

pocketmol formalism and instead to refine the structures of

an ensemble of aligned protein binding pockets. The goal

would be to use the refined ensemble directly, with a

simple docking-based scoring scheme, for affinity predic-

tion. This requires a simple extension to the multiple-

instance learning formalism, where in addition to the

ligands having the potential for variation, the binding site

itself would also be represented as variants. The score for a

ligand given an ensemble of protein pocket variants would

simply be the one resulting from the optimal fit to any of

the variants. Such an approach fits in the gap between the

approach described here and the purely physics-based

simulation-oriented methods.

In any event, the results reported here encourage the

development and use of hybrid methods that maximize

information gleaned from different sources, including both

biophysical information on protein structure and informa-

tion from experimental determination of ligand activities.

Experimental section

Ligand preparation

Ligand molecular data sets were described within the

‘‘Methods and data’’ section. All assay values were
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converted into molar pKi units (9.0 being equivalent to a Ki

of 1 nM). The standard Surflex procedure was used to

protonate, ring-search, and minimize the ligands. This

resulted in up to five conformations per inhibitor, with

protonation as expected at physiological pH. These pre-

pared structures were used for all subsequent procedures.

Computational procedures

The QMOD procedure is automatic, requiring no human

choice points. For this work, default parameters were used,

employing Surflex-QMOD version 1.5. There were two

significant algorithmic variations investigated here, com-

pared with that reported in the most recent study [17]. First,

an initialization protocol was added that incorporates multi-

structure docking and data integration that uses bound ligand

poses to guide the generation of an alignment hypothesis.

Second, a procedure was added that filters an initial probe

pool using guidance from multiple aligned protein structures

(see Fig. 1, panels a, d). All protein structures used in this

study were pre-processed using standard procedures for

structure preparation and mutual alignment [32, 33].

In the CDK2 study, five representative structures were

chosen by k-means clustering from a pool of 26 protein

structures. The top 3 most active CDK2 training ligands

(see Fig. 2 molecules 1–3) were docked against these five

structures using the standard Surflex-Dock multi-structure

docking protocol [26, 34–36]. Multi-structure docking was

carried out using Surflex-Dock v2.7, with an option to

retain up to 100 docked poses per ligand. The particular

pose used in QMOD model construction for each of these

three docked ligands was chosen to maximize the pairwise

similarity among the docked poses and the 6 co-crystal

ligands (see Fig. 2 ligands 4–9). Molecular similarity cal-

culations were carried out using Surflex-Sim v2.7.

For the MM-PBSA comparison an analogous approach

was carried out. For each data set 5 representative co-crystal

structures were chosen from their respective selection pools

using k-means clustering. These representative co-crystal

structures were used for model guidance. For the PTP1b

study the top 2 most active training ligands were docked, and

poses were generated and selected as described above. In the

urokinase and Chk1 cases the training ligands were well

represented by the selected co-crystallized ligands used for

model guidance, and so the co-crystal bound poses were

chosen for subsequent model setup.

The compounds with poses chosen as described above

were used as the alignment target in the standard QMOD

procedure to produce initial alignments for all training

molecules in all cases. The probe pool was initiated using

the standard tessellation procedure which has been

described in our earlier work [7]. This large set of

molecular probes surrounds the initial alignments of the

training ligands, where each probe makes a near-optimal

interaction with at least one active ligands pose. Initial

probe pools were then filtered using the representative

protein structures chosen for model guidance. Every probe

was evaluated against similar atom types (e.g. donors,

acceptors, hydrophobic) on the protein structures. Probes

that were within a predefined minimal distance (i.e. 2.0 Å

polar, 1.0 Å hydrophobic) to similar type atoms comprised

the filtered probe pool used for model induction.

The procedure for producing a de novo pocketmol requires

a single command from a simple setup file that produces a

script. The script runs a sequence of QMOD commands that

generate initial alignment hypotheses, full alignments of

training ligands, and final pocketmols. The setup file contains

information on path names to training ligands and their

activities, which ligands to use for hypothesis generation, and

modifications to default parameters for model building if

desired. For the generation of pure ligand-based models with

no structural guidance, the standard procedure was employed.

For the structure-guided models, the augmentations just

described replaced the normal alignment hypothesis genera-

tion step and filtered the initial probe pool. All other steps

remained as in the standard protocol. By default, three models

are generated, each using different probe densities. In all

cases, the model with the highest reported parsimony was

selected for blind testing and structure evaluation.

Surflex-Dock v2.7 was also employed as a control pro-

cedure for comparing rank ordering and pose prediction

accuracy of the 52 diverse CDK2 ligands. For these com-

putations, multi-structure docking was carried out as

described above, using the same five protein crystal

structures used for the SG-QMOD approach.

Random forest learning was applied as previously

described. The random forest technique is an ensemble

classification approach that constructs multiple decision

trees using a random sampling approach to minimize

generalization errors [3, 37, 38]. We used the random forest

method implemented in version 4.6-2 of the randomForest

package for the R software environment (version 2.12.2).

Unity 988-bit fingerprints were generated using SYBYL-X

2.1 (both programs from: Certara, L.P., 9666 Olive Blvd.

Suite 425, St. Louis, MO 63132 USA). The model training

and molecule testing procedure paralleled that used for

QMOD, making use of default parameters for the RF

learning procedure. To mimic the confidence procedure,

we calculated Tanimoto similarity scores between testing

and training molecules using the Unity fingerprints. This

provided an analogous metric for measuring confidence

using features employed by the classifier.
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