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Dynamic environments are commonplace in the natural world, from fluctuations

in nutrient sources that control metabolic rates, to radiative cycling that drives circadian

rhythms, to mechanical stresses that reform vasculature. So, intuitively one would assume

that the regulatory systems that control cellular behavior are acutely adapted to respond

to such variable conditions in a robust and appropriate fashion. Yet, despite their poten-

tial to provide increased quantitative detail and insight to the natural behavior of cells,

highly dynamic perturbations are rarely utilized in the analysis of cellular gene expression

and regulation. Part of this stems from the lack of technologies that enable such studies.

However, recent advances in microfluidic devices designed to address biologically relevant

questions promise to fill this void. Moreover, recently discovered knowledge that the galac-

tose metabolism in S. cerevisiae, and possibly similar pathways, are in fact rudimentary
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memory systems, strengthens the need for the ability to examine gene regulation under

complex and dynamic stimulation.

In this project, microfluidic technology was developed specifically for isolating,

observing, and dynamically probing colonies of model host microbes. The devices created

not only sustain cells under ideal growth conditions, but do so in a way that allows for

long duration acquisition of highly resolved time evolved gene expression within single cells.

Furthermore, these imaging capabilities were coupled to a novel microfluidic system that

was able to produce precise and continuous concentration waveforms. The microfluidic plat-

form was then utilized to explore the dynamic response profile of the galactose utilization

pathway in S. cerevisiae under fluctuating nutrient conditions. Using experimental data,

this study revealed that the pathway kinetics lead to low-pass information filtration. Fur-

ther experimental investigation coupled with computational model simulations uncovered

coupling to glucose metabolism that provides a globally robust response, despite galactose

utilization impairment. These results emphasize both the utility of microfluidic device plat-

forms in quantitative biological studies, and the importance of studies conducted in more

natural environments for gaining a more detailed understanding of how gene systems result

in complex behavior.

xix
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Introduction

1.1 Quantitative biology

As an undergraduate in biochemical engineering at UC Davis, I took the upper

division biochemistry and cell biology course series offered by the Biology department to

fulfill technical elective requirements. One of these courses, Biology 104, covered cellular

pathways and their role in cellular function. In almost every lecture of this class we would

learn about a new cellular pathway, and with equal frequency, the instructor would begin

the lecture with “. . . this pathway is, well, sort of complicated . . . ”. In hindsight, this

view of biology was understandable. It was the latter half of 1998, and at the time, only

a few microbial genomes (E. coli K12-MG1655 and S. cerevisiae S288C), along with a

few viruses, had published sequences[14, 20, 63]. In the same chord, assays using green

fluorescent protein (GFP) were relatively new, and gene expression microarrays had only

recently been commercialized a couple years prior. Much of the information in my course

text had been gathered by nearly half a century of meticulous experimental work, but the

components list needed for a systems view of biology was far from complete. It seemed that

1
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every new discovery in the biological fields added more nuance and intricacy to an already

complex foundation, pushing a fundamental understanding of “the way things worked”

further into the future and out of reach.

Since that time, there have been major advances in biotechnology such as the pro-

liferation of microarray technologies and the completion of genome sequences for all major

model organisms. Even so, the prediction of cellular behavior remains a significant chal-

lenge, despite a reasonably extensive knowledge of the underlying gene networks involved.

Our view of cellular signaling and regulatory pathways is no less complex than it was before.

The construction and analysis of synthetic systems has provided unique insights regarding

the function of their native counterparts[41, 30, 37]. Yet, even the most carefully designed

synthetic network is burdened with inherent stochastic fluctuations, both from external

sources and within the network itself, making accurate, deterministic prediction difficult.

Studies of simple, single gene systems, such as autoregulatory feedback loops,

demonstrate the power of stochastic fluctuations in determining the system state[9, 8, 49].

Results from these and similar studies have led several to focus on both characterizing and

isolating the sources of these perturbations[79, 31, 13, 109, 99, 82] as well has harness-

ing them for the development of robustly stable genetic circuits[117, 1, 88, 38, 75]. By

successively adding complexity to basic systems, complex networks can be probed, charac-

terized, and optimized in a controllable and iterative fashion[38]. Such an approach lays the

foundation for the future development of “designer cells” in which desired functionality is

preprogrammed into their genomes. At the root of this goal is the requirement of a funda-

mental set of predictive laws, much like those found in chemistry, physics, and engineering.

The achievement of these laws defines quantitative biology.
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Figure 1.1: Cartoon diagram of the galactose utilization pathway, abridged to the sensory, regulatory,
and committal step towards galactose metabolism.

1.2 Model systems

In the same way an artist draws inspiration from what he or she has experienced,

continued advances in quantitative and synthetic biology rely on the study of model genetic

systems. Moreover, the discrete analysis of gene regulatory networks often reveals novel

phenomena in “well understood” gene systems. For example, galactose utilization (Fig-

ure 1.1) is one of the best understood inducible metabolic pathways in S. cerevisiae[120].

In the same note, it is also an elegantly designed genetic switch[84] and for these reasons,

it is an ideal target for many studies in gene regulatory dynamics[47, 109].
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When a yeast cell encounters galactose in its environment (and in the absence of

catabolic repressors), the galactose is transported from the external environment into the

cell via Gal2p, a hexose transporter. Gal2p is known to have two modes of operation, active

under low concentrations of galactose, and passive or diffusive under high concentrations of

galactose[87]. Once inside the cell, galactose binds to and activates Gal3p, a complementary

protein to the galactokinase Gal1p without galactokinase activity, allowing it to bind to

cytosolic Gal80p, a transcriptional repressor of GAL genes which freely shuttles between

the cell nucleus and the cytosol. When in the nucleus, Gal80p is typically bound the Gal4p,

the pathway’s transcriptional activator, masking an RNA polymerase recruitment site found

on non-DNA binding domain of Gal4p. By binding to Gal3p, Gal80p is sequestered to the

cytosol, allowing for constitutively bound Gal4p to recruit RNA polymerase. This induces

production of Gal1p, the committal step to galactose metabolism, as well as increased

production of Gal2p, Gal3p, and Gal80p.

The core switching mechanism within the galactose pathway is the toggling of

Gal80p localization. While this binding affinity may in fact be quite weak, the state of

the system is reinforced by the positive feedback loop created by galactose, Gal4p, and

Gal3p[11]. The induced state is strengthened further by a parallel positive feedback loop

created by Gal4p and Gal2p[43]. The solitary negative feedback loop formed by Gal80p

serves to destabilize the main positive loop formed by Gal3p, allowing the system to return

to a non-induced state when removed from a galactose environment. Thus, the structure

of the galactose “switch” appears to create a rudimentary memory system for the yeast

cell. Work recently published by Acar and Van Oudenaarden[1] explores this memory

effect. In their findings, the positive feedback redundancy makes the pathway initially
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incredibly sensitive to galactose. However, once the cell has been fully induced, small

changes in the galactose concentration do not affect the system state. Thus the system in

its native form appears robust to small scale environmental changes. More interestingly, the

amount of persistence can be tuned by the intracellular concentration of Gal80p. Reduced

concentrations of Gal80p lead to increasingly persistent induced states to the point where

a monostable “always on” state is reached.

Natively the galactose pathway is tightly coupled to glucose repression, an equally

well studied system whose signalling pathway is also a multi-feedback information switch[54].

The glucose signalling response is controlled by several transcriptional repressors, Rgt1p,

Std1p/Mth1p, Mig1p, and Mig2p. Signaling begins with detection by glucose specific sen-

sors Snf3p and Rgt2p. Although structurally similar to hexose transporters, they do not

import glucose into the cell. Instead, they relay information of the glucose binding event

to a membrane bound kinase, YckIp, triggering it to phosphorylate transcriptional co-

regulators Mth1p and Std1p. Once phosphorylated, Mth1p and Std1p are targeted by the

ubiquitin-ligase SCFGrr1 for degradation. In the absence of glucose, Mth1p and Std1p are

recruited by Rgt1p. This regulatory complex inhibits the expression of glucose specific

hexose transporters (Hxt1-4) as well as Snf3p and Mig2p.

Unique to the glucose response is its ability to adapt to multiple concentrations of

external inducer. When freely expressed in a high glucose environment (2–10% w/v), Mig2p

represses the expression of Hxt2p and Hxt4p, which are high affinity glucose transporters.

Mig2p also represses expression of Snf3p and Mth1p, and has weak repressive control over

other carbon utilization genes (SUC, MAL, GAL). Yet, under low to moderate levels of

glucose (>0.1%), basal activity of Rgt1p inhibits Mig2p expression, allowing all four trans-
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porters to be expressed. Once glucose enters the cell, it mediates the dephosphorylation of

cytosolic Mig1p allowing it to shuttle into the nucleus where it inhibits expression of other

carbon utilization pathways via the Ssn6-Tup1 repressor complex[120, 26].

The control loop formed by glucose, Std1p/Mth1p+Rgt1p, and the Hxt’s are,

for the most part, a classic negative feedback scheme, while the loop formed by glucose,

Std1p/Mth1p, and Std1p/Mth1p degradation is an interestingly formulated positive feed-

back motif. The main switching mechanism for the glucose response and the resultant

catabolite repression is the rapid change in phosphorylation state of Mig1p. This is tightly

synchronized with upregulated expression and degradation of Std1p and Mth1p which re-

sults in a sequestration by degradation mechanism thought to allow for rapid silencing of

the signaling network when glucose has been depleted[55, 80, 81].

1.3 Dynamic environments and living cells

The intricate nature in which the glucose and galactose pathways in S. cerevisiae

are coupled could not have arisen in an organism conditioned to a steady environment.

Instead, it is known that biological systems in their natural environments are exposed to a

myriad of complex stimuli, such as changes in nutrients, growth factors, radiative cycling,

and mechanical forces[60]. However, under laboratory conditions, complex external forces

are either minimized or eliminated altogether, bringing one to question whether the behavior

of biological systems in the lab are representative of their true nature.

Up to this point, the experimental study of gene regulatory networks has primar-

ily relied on relatively simple means of system perturbation, such a single step or pulse

input within a timecourse[15, 90]. Yet, recent theoretical work has shown that more quan-
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titative analysis of a system’s dynamics is possible with perturbations that are sinusoidal

in nature[69]. For instance, in order to characterize dynamic processes, engineers turn to

a frequency response analysis. A process subjected to an oscillatory input perturbation

will subsequently produce an oscillatory response. This response will vary in amplitude

and phase-shift relative to the input in a way that is characteristic of the dynamics of the

underlying process. By successively probing the process with multiple input frequencies,

one can generate a dynamic profile, or frequency response, consisting of a trend of output

amplitudes and phase-shifts with respect to input frequency. This data can then be used

to optimize process gain and temporal sensitivity.

From a biological perspective, these same measures can be used to characterize a

gene expression response and determine how it is affected by other factors such as gene mu-

tations, deletions, and environmental variation. In addition, frequency responses can help

to highlight phenomena, such as systems resonances, which are unobservable by simple step

or pulse experiments, or even determine previously uncharacterized network topology[69].

In the context of the model systems described above, there has been much re-

search exploring the dynamics of the galactose pathway[15, 108, 66, 94, 47, 90]. The Acar

and Van Oudenaarden study, along with other computational work exploring the fate of

cellular populations growing under stochastic environments[98, 62, 61] highlights the fact

that dynamic perturbation of gene systems is required for advancing quantitative biological

research.
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1.4 Current techniques for monitoring gene expression

There are currently many windows into the secret workings of the cell, extending

from DNA, to RNA, and finally to proteins and their enzymic functions. The predominant

trend has been the use of fluorescent reporters, such as the green fluorescent protein and

its growing set of variants[17, 22, 93, 103], coupled to high throughput technologies such

as flow cytometry and gene microarrays. These and similar techniques offer the ability

to probe many cells and many expression states with incredible precision and in a time

efficient manner. Due to these attributes, they have become the workhorses of systems

biology research[57, 106, 111, 114, 33, 44].

However, despite their broad spectrum applications, and refined precision, these

techniques are merely snapshots of cellular expression states, and the limitations of these

technologies are exposed when more information regarding gene expression dynamics is

desired. For instance, analysis of an inducible expression system on a flow cytometer is

straightforward. The populations of cells are stimulated with varying amounts of inducer

and fluorescence readouts are generated. A similar mode of analysis can be done on a gene

or protein microarray if a complete cellular profile is required. In the case of a system

that exhibits bistability or inherent oscillations, the fluorescence readout would be either

bimodal, or have an extremely large variance. While informative of the fact that the sys-

tem being analyzed is different from one that has only one stable expression state, flow

cytometry lacks fine grained detail regarding how the two observed states exist and how

they might temporally behave. Finally, consider the case of gene expression under dynamic

perturbation using smooth waveforms. While conceptually possible, such an experiment of

this nature is at the limits of current technological capabilities. The flow cytometer typ-
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ically takes 1–5 minutes to extract data from individual samples. A statistically relevant

time point would therefore require a minimum of 5–15 minutes to retrieve. At this lim-

ited sampling rate, temporal characteristics occurring at timescales faster than this, such

as noise properties or feedback ringing, are effectively lost. Even mapping step and pulse

responses with sufficient temporal resolution poses a difficult technical challenge[15, 90].

1.5 Microfluidic devices

The emergence of microfluidic devices as quantitative analysis platforms has greatly

advanced research capabilities and productivity via miniaturization, technological integra-

tion, parallelized scalability, and cost effective sample efficiency[86, 101]. In their simplest

form, microfluidic devices are merely microscale channels with inlets and outlets for inter-

facing with the macroscopic world. Additional functionality is built into devices by adding

additional microchannels and/or microchambers for either parallelizing on-chip processes,

storing and processing reaction species, or controlling fluid flow[105].

Some of the most impressive developments have only recently been published

and include a set of microfluidic platforms for crystallizing proteins and determining their

structure[40], a fully integrated device for DNA extraction and purification[46], and several

microfluidic platforms for observing and quantifying microbial growth and gene expression[4,

36, 21].

Increasingly, microfluidic platforms are being used to investigate fundamental bi-

ological questions such as cellular migration[48, 91], responses to shear stress and other

mechanical stimuli[71, 52, 53], and the specifics of stem cell differentiation[102, 19]. Be-

cause they can easily isolate small reaction volumes and manipulate single cells, microflu-
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idic devices are an ideal platoform for studying phenomena such as the dynamics of protein

expression[16], long duration gene expression[6, 21, 100], and population dynamics[4, 5, 83],

since they can easily isolate small reaction volumes and manipulate single cells. More im-

portantly, they provide investigators the ability to precisely and dynamically manipulate the

local environment[68, 18, 50, 65] without sacrificing temporal resolution in reporter read-

outs. Thus, current developments in microfludic devices represent a convergence of fluid

dynamics, physics, and microscale integration with life science research[10, 67, 21, 59, 119].

1.5.1 Modeling on-chip pressures and flows

Microfluidic devices can be characterized using fluid flow simulations with relative

ease. This is useful in both the design and evaluation of device performance, allowing for

efficient development cycles, saving costly materials and time spent on fabrication work.

Starting with the Navier-Stokes equations for incompressible fluid flow,

∇ · v = 0 (1.1)

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + ρg + µ∇2v (1.2)

If one assumes the following dimensionless parameters,

U =
(

v

u0

)
(1.3)

Θ =
(

tu0

L

)
(1.4)

∇ = L∇ (1.5)

P =
(

p− p0

ρu2
0

)
+

φ

u2
0

(1.6)

NRe =
ρu0L

µ
(1.7)
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equations 1.1 and 1.2 become,

∇ ·U = 0 (1.8)

∂U
∂Θ

+ U · ∇U = −∇P +
1

NRe
∇2U (1.9)

Under steady state conditions, e.g. when there is no local acceleration of fluid particles,

equation 1.9 is further simplified to,

U · ∇U = −∇P +
1

NRe
∇2U (1.10)

It is important to now note that due to the length scales associated with microflu-

idic flows (on the order of 10–100µm), NRe� 1. Under these conditions, it is clear from

Eqn. 1.10 that the viscous term 1
NRe
∇2U dominates over the internal term U · ∇U. Thus

it is safe to assume that Eqn. 1.10 can be simplified one last time to,

∇P =
1

NRe
∇2U (1.11)

By solving Eqn. 1.11 for flow through a cylindrical pipe of radius r and length L, one arrives

at following solution,

∆P = Q ·
(

8µL

πr4

)
(1.12)

which is similar to Ohm’s law for analog electrical circuits,

V = I ·R (1.13)

A similar analysis done on a channel with a rectangular cross-section[10] yields,

∆P = Q ·
(

12µL

wd3

)
· α (1.14)

where,

α =

1− a

192
π5

∞∑
n=1,3,5

1
n5

tanh
(

nπ

2a

)−1

(1.15)
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Figure 1.2: Node/Segment schematic of a fluidic “t”-junction

and,

a =
d

w
(1.16)

Note for small values of a, i.e. w � d, α tends toward unity and the fluidic resistance

through such a rectangular channel is simply,

Rf =
12µL

wd3
(1.17)

While Eqns. 1.14 to 1.17 are adequate to describe flow through a single microfluidic

channel, the majority of microfluidic devices are comprised of complex networks of inter-

connecting channels. First, consider the simple flow system, a fluidic t-juction, depicted

in figure 1.2. Because the fluid flow through the system follows an analog of Ohm’s law,

analysis of the system is similar to that of an analog electrical circuit. The system contains

three external nodes (open circles) and one internal node (black circle). It is assumed that

all external nodes are specified, as would be the case for an actual microfluidic device where

the external nodes (fluidic access ports), are connected to external fluid and pressure sup-

plies. In order to fully characterize the flow pattern within the device one must determine
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the direction and magnitude of flow in each of the three segments, as well as the pressure of

the internal node (node 3). This can be done using an analysis similar to Kirchoff’s current

law where the electron flux through all circuit nodes must sum to zero. In the case of fluidic

systems, fluid flow, represented by Q, replaces electron flux. Thus,

n∑
i

Qi = 0 (1.18)

In this scenario, a positive value for Qi indicates fluid flowing into the node and a negative

value indicates fluid exiting the node. For the system depicted in Fig. 1.2, Eqn. 1.18

becomes,

Qa + Qb + Qc = 0 (1.19)

Substituting Eqn. 1.14 into Eqn. 1.19 gives,

Ga(P3 − P1) + Gb(P3 − P2) + Gc(P3 − P4) = 0 (1.20)

where,

Gi =
1
Ri

(1.21)

and represents the fluidic conductance of segment i. Solving for the internal node, P3 gives,

GabcP3 = GaP1 + GbP2 + GcP4 (1.22)

where,

Gabc = Ga + Gb + Gc (1.23)

Now consider the system depicted in Fig. 1.3, which is the same system shown in

Fig. 1.2 with the addition of an additional external node and connecting segment. Perform-

ing the same analysis given by Eqns. 1.19–1.22 yields,

GabcdP3 = GaP1 + GbP2 + GcP4 + GdP5 (1.24)
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Figure 1.3: Node/Segment schematic of a fluidic cross-junction

By comparing the solutions presented in Eqns. 1.24 and 1.22, several characteristics of the

analysis begin to emerge. First, the prefactor for the pressure of any internal node is merely

the sum of the conductances of all attached segments. Second, the RHS of the equation

that defines an internal node is simply the sum of the neighboring node pressures multiplied

by their respective segment conductances.

For more complex fluidic systems, e.g. those having multiple internal node points,

a system of equations must be solved to fully define on-chip flow. For example, take the

h-cross system shown in Fig. 1.4.

Performing a microfluidic open circuit analysis described above gives the following system

of equations,

 Gabc −Gc

−Gc Gcde


 P2

P5

 =

 Ga Gb 0 0

0 0 Gd Ge





P1

P3

P4

P6


(1.25)

pre-multiplying both sides of Eqn. 1.25 by the inverse of the LHS constant matrix gives the
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Figure 1.4: Node/Segment schematic of a fluidic h-cross

solution for the internal node pressures,

 P2

P5

 =

 Gabc −Gc

−Gc Gcde


−1  Ga Gb 0 0

0 0 Gd Ge





P1

P3

P4

P6


(1.26)

Now that all the node pressures are known, determining the segment flows simply

requires applying Eqn. 1.14 again. First, however, it is necessary to generalize it for a

system of equations,

Qi = GijCjkPk (1.27)

where Gij is a matrix with the segment condunctance values as elements and Cjk is a

constant matrix that specifies segment connections between the nodes Pk. In the case of
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the h-cross system described above, Eqn. 1.27 becomes,



Qa

Qb

Qc

Qd

Qe


=



Ga 0 0 0 0

0 Gb 0 0 0

0 0 Gc 0 0

0 0 0 Gd 0

0 0 0 0 Ge





1 −1 0 0 0 0

0 1 −1 0 0 0

0 1 0 0 −1 0

0 0 0 1 −1 0

0 0 0 0 1 −1





P1

P2

P3

P4

P5

P6



(1.28)

The process for determining on-chip pressures and flowrates is easily automated,

making the simulation of much more complex fluidic systems an efficient process. Fur-

thermore, the fluidic designer need only specify external pressures, segment geometry, and

segment connectivity, making it possible to achieve a feasible design without repeated device

fabrication and testing. To facilitate microfluidic development, I developed a small utility

for simulating microfluidic device designs which is described in more detail in Appendix A.

It is important to note that for the devices described in this work, such “macroscopic” flow

modeling of device designs was sufficient to achieve reliable real-world estimates of device

operational characteristics. In addition, the geometry of fluidic components was kept as

simple as possible, e.g. straight walled channels of rectangular cross-section. Thus, more

complicated flow modeling techniques, such as computational fluid dynamics methods, were

not required.

1.5.2 Device fabrication

Many of the early microfluidic devices were constructed by selective etching of glass

and silicon substrates. While state of the art for the time, this process was both dangerous

and time consuming, and limited the number and geometry of topographic features on
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the device. Moreover, these early glass devices were often thermally annealed to another

glass substrate at ≥400◦F to seal flow channels, making it difficult to pre-pattern biological

moieties to channel surfaces.

More recently, many have turned to rapid prototyping techniques that utilize

replica molding of polydimethylsiloxane (PDMS), a clear silicone elastomer, against a pho-

tolithographically manufactured master mold[113, 112, 116]. This method borrows well

established UV photolithography of positive or negative tone resist films on silicon sub-

strates, allowing device designers to utilize a broad range of channel geometries and topolo-

gies. Furthermore, PDMS is easily bonded to glass or silicon substrates via simple chemical

modification steps that can be carried out at room temperature, making it a more compat-

ible material for biological surface modification.

The fabrication of PDMS microfluidic devices from a concept drawing can take

as little as one day to complete under ideal conditions. More complex devices, such as

those incorporating pressure actuated valves, micropumps, and other three dimensional

structures[101, 105, 78, 2] can take anywhere from 2–3 days to manufacture. In addition,

other groups have started to move beyond the use of PDMS as a material for rapid pro-

totyping. New materials include mylar sheets “cut” with a low power carbon-dioxide laser

and assembled in a laminating process to form complete devices, precision milled and injec-

tion molded polymethylmethacrylate, and chemically etched polyimide. However, PDMS

remains the most versatile because of its transparency, mechanical properties, and biocom-

patibility.

This work utilized the well documented technique of PDMS rapid prototyping

via replica molding. Device fabrication by this method occured in three distinct phases:
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Figure 1.5: Microfluidic device fabrication process

photolithography, replica molding, and bonding/finishing (Fig. 1.5). Prior to fabrication,

device designs were drawn in standard vector graphics utilities (e.g. AutoCAD, Autodesk

Inc.) and printed as high resolution phototransparancies for use as photomasks in the pho-

tolithographic process. The overall fabrication process typically took 3–5 days to complete

given the specific equipment and laboratory conditions available and depending on the com-

plexity of the device being fabricated. More specific details of this procedure are given in

Chapter 2, Section 2.2.

1.5.3 Driving and controlling fluid flow

Methods for driving fluid flow on microfluidic devices vary greatly, requiring care-

ful consideration of the environment the device will be used in and the data it is intended



19

to generate. Because, fluid transfer volumes on microdevices range from picoliters to mi-

croliters per second they are much more susceptible to mechanical noise than macroscopic

flows on the order of milliliters per second or higher. The most commonly cited method

for driving on-chip flows is the use of mechanically driven pumps which apply a constant

linear force on the plunger of a fluid filled syringe. Output flow is controlled by the speed

at which a central driving screw turns, and pumps now exist that are capable of controlling

flows on the order of nanoliters per hour. However, such precise syringe pumps are quite

costly, ranging from $5–10K depending on available features, such as the ability to draw and

dispense simultaneously. Moreover, a typical syringe pump usually accommodates only 2

independently driven flows. Lower cost pumps exhibit a fair amount of mechanical noise at

the microscale, observed as persistant pulsatility in the flow, which is generally an undesired

characteristic.

More recent developments utilize the flux of ions in solution to effectively drag

the bulk fluid down an electric field[25]. This electrically driven flow, or EOF for Electro-

Osmotic Flow, requires the placement of electrodes at reservoir entry and exit ports which

are then electrified with 1–10KV to generate ion flux. While ideal for driving flow for

chemical reaction chips, it is unknown how the constant application of high potential electric

fields affects the viability of living cells. In addition, EOF device designers must take in

to careful consideration joule heating effects[32], to ensure that biological species are not

cooked in-situ. Lastly, since EO flows are dragged by moving ions near the channel walls,

their flow profile is plug-shaped and non-laminar[29, 85].

By adapting integrated microvalve technology, it is possible to incorporate mi-

croscale peristaltic pumps directly into microdevice. This not only provides exquisite con-
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trol over on-chip flows, but is subject to parallelization, and reduces external flow control

hardware to a simple regulated air supply and a bank of computer controlled solenoid air

valves. In most cases, the pulsatile nature of this micropump is negligible, and many ground

breaking microfluidic technologies have incorporated this form of flow driving. However,

there are several notable drawbacks. While, the pump discharges fluid smoothly at high

operating flowrates, at lower rates, the pulsatility of the pumping mechanism increases

dramatically, limiting the usable output range of the micropump on devices that require

smooth, continuous flow.

More exotic methods of driving microfluidic flow utilize capillary action[121] and

internal droplet pressure[110]. These methods require no external driving and control mech-

anisms, and instead rely on the physical properties of the fluid being transported. This

makes these methods more suitable for field use or point-of-care diagnostic microfluidic de-

vices, where it is unfeasible to transport an external driving system. In the same respect,

capillary action and internal droplet pressure are not completely suitable for use in long

duration and repeated use analysis platforms.

The absolute simplest method of driving on-chip flow is the use of hydrostatic

pressure heads on connected fluid reservoirs[72, 28, 76]. This method has no mechanical

pumping action, eliminating flow pulsatility. Instead, flow is driven either by a regulated

air or vacuum supply, or by simple gravity feeding. Under gravity feed, the net pressure

driving flow is the differential applied at inlet and outlet reservoirs, and can be precisely

controlled to within 1/100th of a psi using “gravity towers” that suspend fluid reservoirs at

calibrated heights. While these towers can be quite bulky, they offer the most flexibility in

controlling fluid flowrates, which is invaluable in the design and testing of novel microfluidic
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devices.

1.6 Goals

The development of mathematical principles, theory, and predictive models for

biological systems requires the ability to study such systems as they respond to highly

dynamic environments. The proper tools will provide experimental data that quantitatively

complements computational studies, possibly leading to the discovery of new phenomena

and behavioral structures in gene networks. In this work I describe how I set forth in

realizing both the experimental platform and the associated scientific benefits.

I began by building a microfluidic platform for monitoring gene expression over

long durations which also provided precise, yet dynamic control over the microenvironment.

There were many technical challenges, both engineering and biological, that were overcome

and are discussed in detail in Chapter 2 and in supplementals provided in the appendices.

The platform was then applied to the study of the galactose utilization system in Chapter 3.

This study differed from previously published work in that it used a truly dynamic mode of

perturbation — pure sinusoids of glucose concentration rather than solitary step or pulse

changes. Here I experimentally and computationally examined the differences between the

frequency response profiles of two phenotypically different strains of yeast. This not only

revealed that the galactose utilization system is a robust information filter, but is also

more tightly coupled to glucose repression than previously believed. Conclusions from the

platform development and dynamic response study are presented in Chapter 4. Lastly,

future outlook and insights on applications of my platform to other systems is provided

along with closing remarks.
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Platform Development and

Methodology

2.1 Cells, Constructs, and Culture Conditions

2.1.1 Parent and fluorescent variant strains

S. cerevisiae was chosen as the model organism because of the abundance of

knowledge regarding its galactose utilization pathway[120] and relatively straight forward

methods for modifying its genome[51]. More specifically, S. cerevisiae K699, YPH499 and

YPH500 (see Table 2.1 for genotypes) were used because they contained deletions of sev-

eral metabolic pathways allowing for the use of auxotrophic selection markers in genetic

transformations[95]. These strains were commonly utilized in the yeast literature and are

phenotypically different in several ways. Because of their descendence from the S288C

strain, the two YPH strains, 499 and 500 do not utilize galactose anaerobically[77]. More-

over, and possibly related, YPH cells were observed to grow approximately 50 percent slower

22
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Table 2.1: Yeast parent strains used for genetic transformations.

Designation Mating Type Genotype
YPH499 a ura3-52 lys2-801amber ade2-101ochre trp1-∆63

his1-∆200 leu2-∆1

YPH500 α ura3-52 lys2-801amber ade2-101ochre trp1-∆63
his1-∆200 leu2-∆1

K699 a ade2-1 trp1-1 leu2-3 leu2-112 his3-11 his3-15
ura3 can1-100

than K699 cells in equivalent, non-glucose media. The defining phenotypic manifestation

of this difference in galactose utilization was an experimentally observed 10-fold increase

in the amount of galactose required to induce the YPH cells to a level comparable to that

seen in the K699 strain[70]. While many attribute this to a deficiency in GAL2, the gene

coding for the galactose specific hexose transporter, sequencing work performed by our lab

show no mutations to this gene that could cause altered protein function[56]. Other studies

exploring this phenotypic difference point to a recessive mutation in IMP1 a gene thought

to be allelic to GAL2 [104]. Lastly, YPH cells contain a deletion in the adenine biosynthe-

sis pathway. Without this supplemented in the media, intracellular adenine biosynthesis

bottle-necks at a flavin precursor which accumulates causing a reddish pigmentation within

the cell[7, 35]. While this does not cause any noticeable deleterious affects on growth, it

does create a significantly large intracellular background when imaged using 558 nm light,

the excitation band used in DsRed and red fluorescent tracer illumination (about 10-fold

higher than non-cellular image background).

To monitor the response of the galactose pathway, several yeast variants express-

ing several combinations of yEGFP, yEVenus (YFP), and yCerulean (CFP) (Table 2.3)

were created using modified pRS shuttle vectors[109, 95], and pKT integrating vectors[93],
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Table 2.2: Excitation and emission spectral maxima of fluorescent proteins. ∗SR101 is sulforhodamine
101, a low molecular weight, hydrophillic, red fluorescent dye that is used to track on-chip concentrations
of inducing or repressing chemical species, or in microfluidic flow validation procedures.

Protein Excitation Emission
(nm) (nm)

yEGFP 488 507
yEVenus 515 530
yCerulean 434 477
DsRed 558 583
SR101∗ 586 605

pKT0090 and pKT0101a (Fig. 2.2), respectively. These vectors contained a flexible linker

sequence fused to fluorescent protein domain upstream of a histdine (HIS5) auxotrophic

marker gene. The two color variant, WLPY012, was created by splicing a URA3 coding

region in place of the histidine marker on the pKT0090 vector and performing sequential

transformation and selection steps.

Several pilot studies characterizing cellular growth in batch culture and in mi-

crofluidic devices were carried out using yEGFP and yEVenus fusions to the Gal1 protein,

however, later studies used yCerulean fusions. This substitution was made because of its

increased spectral separation from sulforhodamine 101 (a.k.a. SR101, Sigma), a red fluo-

rescent dye used to track inducer concentrations (Table 2.2). No deleterious effects from

this change were observed.

YPH Gal2p-yEVenus variants (WLPY008 and WPLY009) were created to verify

Gal2p deficiency in the YPH lineage. When microscopically imaged in media containing 2%

(w/v) galactose, these cells appeared to have a “mottled” appearance. On the other hand,

WLPY010 and WLPY012 cells, whose parent strain was K699, had a uniformly fluorescent

outer membrane under the same conditions.
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Figure 2.1: GAL2 expression in S. cerevisiae YPH499, YPH500, and K699. Deficiencies in GAL2
expression in YPH strains were verified using a yEVenus fusion. YPH cells exhibited a “mottled” appear-
ance compared to the nearly uniform membrane distribution observed in K699 cells. This indicates poor
localization of Gal2p to the cytosolic membrane and hence results in deficient utilization of galactose in
the YPH lineage.

Table 2.3: Yeast variants created for this work. A “-” between gene names signifies a fusion product,
where as a “:” indicates non-fused products that are coexpressed from the same promoter. Strains
WLPY001 and WLPY003 were used in an unrelated project.

ID Parent Modifications Marker
WLPY001 YPH500 GAL1:yEGFP-PEST (1x integrated) TRP
WLPY002 YPH500 GAL1-yEGFP HIS
WLPY003 YPH500 GAL1-yEGFP, gal80∆ HIS, URA
WLPY004 YPH500 GAL1-yCerulean (CFP) HIS
WLPY005 YPH500 GAL1-yEVenus (YFP) HIS
WLPY006 YPH499 GAL1-yCerulean (CFP) HIS
WLPY007 YPH499 GAL1-yEVenus (YFP) HIS
WLPY008 YPH499 GAL2-yEVenus (YFP) HIS
WLPY009 YPH500 GAL2-yEVenus (YFP) HIS
WLPY010 K699 GAL1-yEVenus (YFP) HIS
WLPY011 K699 GAL1-yCerulean (CFP) HIS
WLPY012 K699 GAL1-yCerulean, GAL2-yEVenus (CFP/YFP) HIS, URA
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Figure 2.2: Yeast transformation using pKT derived fluorescent fusion protein vectors. Primers contain-
ing 40bp of genomic homology flanking the insert site are used to amplify the fusion reporter + selection
marker from the plasmid vector. Introduction of the insert dna into the cell results in spontaneous homolo-
gous recombination targeted to the site specified by the initial primer sequences. Successful transformants
exhibit both fluorescence under appropriate induction and illumination as well as auxotrophy for either
histidine (HIS5), uracil (URA3), or both in the case of double transformants.
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2.1.2 Cellular transformations

Fluorescent yeast variants were created using a well documented transformation

protocol[51] which made use of S. cerevisiae’s inherent ability to merge homologous segments

of DNA into its genome (Fig. 2.2). Parent strain cells were revived from frozen stock and

grown on solid yeast-peptone/dextrose (YPD) + adenine (ade) media for two days at 30◦C.

A single colony was then selected and grown to saturation (OD600 4–6, approximately

1 × 109cells/mL) in liquid YPD + ade media and diluted into 10mL of fresh media to an

OD600 0.5 and further grown to late log (OD600 1–2). The culture was then washed in sterile

0.2µm filtered water and concentrated in 1mL of 0.1M Tris-EDTA buffered lithium acetate

solution (LiAc buffer) at pH 8.0. Transforming DNA was created by PCR amplification

from plasmids using primers that contained 40bp homologous recombination sites for the

3’ end of yeast genomic GAL1 and annealing sites that flanked the fluorescent protein

to be fused, the fusion linker segment, and the auxotrophic selection marker. The PCR

products were cleaned and purified using a PCR clean-up kit (Qiagen) and concentrated to

approximately 500–2000ng/mL (yields varied based on PCR product size and efficiency).

The transformation reaction mixture contained about 20–50ng of DNA, 1×107 cells (about

100µL of concentrated cell suspension), and 20µL of 10µg/mL single-stranded carrier DNA.

The mixture volume was then brought to about 1mL with LiAc buffer with 40% (w/v)

3350kDa polyethylene glycol (PEG) and incubated for 30min at 30◦C. To induce vector

uptake, cells were heat shocked in a bench-top heating block at 42◦C for 15min. The culture

was immediately washed using room temperature sterile filtered water, and resuspended

in approximately 150 µL of fluid. Resuspended cultures were then plated onto selective

synthetic-dropout (SD) media with appropriate selection supplements and incubated for
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2–4 days at 30◦C. Isolated colonies were picked, grown until saturation in selective media

with 2% (w/v) glucose, and stored in 15% (w/v) glycerol at -80◦C for later use.

While generally reliable, the above transformation protocol was surprisingly ineffi-

cient at transforming YPH cells, yielding at most 3–5 viable transformants per plate. After

discussing this with Mike Ferry, a colleague in the lab, this was attributed to the relatively

rare event of 40 bp of homologous sequence targeting the correct location within the genome.

Instead, since the homologous recombination anchors were reasonably short, it was more

likely that they targeted multiple undesired locations within the genome. Proof of this lay

in the results of several attempts which yielded hundreds of “abortive” transformants per

plate, noted by their exquisitely small colony size and inviability in selective liquid culture.

To increase the efficiency of the protocol, ∼400 bp segments of genomic DNA that flanked

the desired insertion site were amplified in a secondary round of PCR. These “homology

extenders” still incorporated the 40 bp homologous recombination anchors found on the

original PCR primers. When incorporated into the transformation mixture in an equal

ratio with vector amplified DNA, the homology extenders would combine with the vector

insert using the same cellular recombination machinery needed to incorporate the construct

into the genome. The new insert with longer homology targeting regions thus had a higher

likelihood of recombining with the desired location. Transformations performed using this

protocol where over 100 fold more efficient than using only 40 bp homologous sequences

alone.

The cells used in this work were grown on several media conditions. All cultures

used for experimental data collection were grown on SD medium. Not only did this media

provide, slower, more controllable growth, but it also had a lower fluorescence background
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than YP based medium. In total there where three basic media states that cells were grown

in: neutral, non-inducing/non-repressing; inducing; and repressing. The neutral media

condition was the simplest formulation, containing only SD (with appropriate auxotrophic

selection supplements) and 2% raffinose, a sugar known to not interfere with either the

galactose or glucose metabolic pathways[120]. Induction media contained varying concen-

trations of galactose with 2% raffinose. Here, raffinose was supplied as a growth supporting

sugar. Cultures grown at low concentrations of galactose (≤0.2%) without raffinose grew

nearly 2 fold slower than cultures with raffinose present. In addition, higher cellular via-

bility, and healthier morphology was observed in preliminary microfluidic studies of cells

grown in raffinose as opposed to cells grown in its absence. Repressing media contained

glucose, galactose, and 2% raffinose. Dynamic profiling of cellular expression primarily

utilized inducing and repressing media. Thus, in the transition between these two media

states, only the concentration of glucose varied, removing changes in gene expression due

to changes in galactose concentration.

2.1.3 Steady-state expression characterization

The steady state induction and repression response of the galactose pathway in

each strain was characterized using batch cultures and flow cytometry. This aided in the

determination of realistic and dynamically interesting concentrations of galactose and glu-

cose in subsequent experiments as well as the approximate growth rates of each strain under

each media condition.

To generate induction curves, S. cerevisiae YPH499 and K699 cells containing

yEVenus fusions to Gal1p, (WLPY007 and WLPY010, respectively) were grown overnight

in selective media containing only 2% (w/v) raffinose. Cells were then diluted in triplicate
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Figure 2.3: Steady-state galactose induction for S. cerevisiae YPH499 and K699. Note the dramatic
difference in sensitivity between K699 and YPH499. YPH499 requires almost a 10-fold more galactose
to reach the same induction level as K699.

to OD600 0.1 into fresh media containing a range of galactose concentrations from 0–2.0%

(w/v) (in addition to the original raffinose concentration) to initiate induction. Once each

culture reached OD600 0.6–0.7, they were analyzed for green/yellow fluorescence expression

using a FACS Calibur flow cytometer (Beckton Dickinson). This way each culture would

have the same number of generations prior to analysis, limiting possible cellular aging

effects[3, 74]. The primary mode of the fluorescence histogram from 100,000 events was

recorded as the expression level for each sample and values for fluorescence expression

were normalized relative to the 2% galactose samples (Figure 2.3). YPH cells exhibited

a fully induced state at approximately 1.0% (w/v) galactose, as noted by a plateau in

their population weighted mean fluorescence, which was consistent with induction curves

generated by Volfson et al.[109]. As expected the induction curve for K699 cells reached

maximal induction at approximately 0.2% galactose, nearly an order of magnitude lower

than YPH cells.

The generation of glucose repression curves for each yeast stain proceeded in a
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similar fashion as the generation of induction curves. Again, YPH499 and K699 cells con-

taining yEVenus fusions to Gal1p were grown to saturation overnight, however this time

the media contained 2% (w/v) raffinose and 0.2% (w/v) galactose, producing a steady ini-

tial fluorescence state prior to glucose repression. Cells were then diluted in triplicate to

OD600 0.1 into fresh media containing a range of glucose concentrations from 0–2.0% (w/v),

in addition to the aforementioned galactose and raffinose concentrations, to initiate repres-

sion. Cultures were again grown to OD600 0.6–0.7 prior to fluorescence analysis on the flow

cytometer. The data analysis was the same as the induction case and values for fluores-

cence expression were normalized relative to the 0% and 2% glucose samples (Figure 2.4).

Here, the responses of both strains were nearly identical, saturating at approximately 0.25%

glucose. The concentration of galactose was chosen for its dynamic significance and as a

compromise towards the dynamic profiling of two kinetically different strains discussed in

Chapter 3. At this level, YPH cells were only half induced while K699 cells were at the

threshold of induction saturation. In both cases, cells of either strain would be as responsive

as possible without incurring other unpredictable effects due to differing media states.

2.2 Microfluidic Devices

Several devices were created for this work starting with simple flow channels and

ending with a complex platform capable of dynamic microenvironmental control and long

duration growth and imaging of cellular populations with single-cell resolution. In doing

so, many technical challenges were addressed, the most important being the maintenance

of on-chip monolayer microcolonies of microbes.
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Figure 2.4: Steady-state glucose repression for S. cerevisiae YPH499 and K699. The repression response
rapidly decays between 0% and 0.25% (w/v) glucose in both cell strains. Above 0.25%, fluorescence
levels are negligible relative to the 2% glucose case, indicating full saturation of the response. Note that
the two responses are nearly identical as opposed to the galactose induction curve.

2.2.1 Device fabrication

As previously mentioned, this work relied on PDMS rapid prototyping via replica

molding for the creation of microfluidic devices. The techniques implemented here utilized

a well documented[113, 112, 116] three part fabrication process involving photolithography,

PDMS replica molding/soft-lithography, and chemical surface modification for bonding and

fluidic sealing. More specialized fabrication methods, such as surface patterning using

microcontact printing, were utilized on a device specific basis.

Devices were designed and prepared for photomask printing using AutoCAD 2005

(Autodesk Inc.). While other vector based illustration programs, such as Macromedia

Freehand, Adobe Illustrator, or Corel Draw could also be utilized, it was important that

drawings be output in AutoCAD DWG or DXF format, the standard used by all high

resolution photomask printing establishments. While device drawings could also be out-

put as encapsulated postscript (EPS) and converted using commercially available utilities
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like LinkCAD, this process was prone to conversion errors and incurred additional design

restraints making it more costly than using natively accepted formats.

Once finalized, designs were printed as patterns of clear and opaque regions at

20,000 DPI onto phototransparancy film (Output City, Bandon OR) to be used as pho-

tomasks in the photolithographic process. At this resolution, the smallest lateral feature

dimension was 7µm. Smaller features could be printed, but could not be reproduced re-

liably. In addition, during the photolithographic process, clear patterns would typically

expand by approximately 5µm, and opaque patterns would be reduced by an equivalent

amount due to the diffraction of light around masked regions. Thus, it was important to

consider these effects and provide ample spacing between features to avoid “cross-fading”

and merging when not desired. The absolute minimum spacing utilized for all devices in

this work was 15µm and was only utilized in extreme cases. Overall, a more feasible and

fault tolerant spacing was 30µm, which also corresponded to the worst case scenario for

photolithographic misalignment.

In the final printouts, patterned features printed as clear regions on a black opaque

background were suitable for negative-tone photoresists such as SU-8, (Microchem Corp.),

a photocurable epoxy that crosslinks when exposed to UV light. On the contrary, posi-

tive tone resists, such as SPR-1818 or AZ-100 (Shipley) required patterned features to be

protected from UV exposure, and thus their photomasks contained opaque features on a

clear background. The devices described here were fabricated using solely SU-8 patterned

masters.

Printed phototransparancies were trimmed into individual masks and mounted

onto clean 3”×3”×1/8” borosilicate glass plates (McMaster-Carr) by gluing only the cor-
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ners of the transparency section to the glass using Loctite formula 495 superbonder. This

bonding fluid was chosen over formula 490 because of its low viscosity, which allowed to

for little distortion of the mask’s “flatness” where the bonder was applied. In addition, the

lower viscosity of the 495 formulation allow for better control of the amount of bonder used,

and in all cases, as little as possible ( 10µL) was desired. The glass served as a rigid support

for the mask so that it could be mounted to alignment equipment. In addition, since the

photolithographic process required contacting of the photomask to the photopatternable

resist film, the printed (emulsion) side was oriented facing outward to ensure appropriate

pattern masking.

The most commonly used substrates for photolithography were glass or silicon

wafers. I used silicon wafers in this work because they were readily available via our campus

microfabrication facility and methods that utilized them were well established. Wafers were

prepared by solvent cleaning with acetone, ispropanol, methanol, followed by a deionized

water rinse, at 2000 rpm on a wafer spinner, and dehydrated for 5 min at 200◦C using a

contact hot-plate. These cleaning steps ensured that all manufacturing oils, moisture, and

debris were removed from the substrate surface, all of which could detrimentally impede SU-

8 surface adhesion. Adhesion promoting agents, such as hydroxymethyldisilazane (HDMS)

or AP-100 (Microchem Corp.), were not required.

Photoresist was deposited onto silicon substrates by spin coating at various speeds

to achieve a wide range of thicknesses (0.5–300 µm). This allowed for the integration of

multiple feature levels by repeatedly spin-coating, exposing to UV, and removing unex-

posed photoresist in SU-8 developer (Microchem Corp.) or propylene glycol methyl ether

acetate (PGMEA, Sigma). Unlike positive tone resists, once UV crosslinked and thermally
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cured, it was virtually impossible to overdevelop SU-8 patterns, thus previously patterned

and developed topology was unaffected by repeated development steps. This allowed for

stepwise fabrication of features with intermittent validation and adjustment of topology

depth. Moreover, one could additively build up topographic features by omitting the devel-

opment steps between layers, saving on costly photoresist material. Multilayer alignment

was possible since patterned and thermally cured SU-8 was readily distinguishable from

unpatterned resist films as long as the newly deposited film was less than five times thicker

than previously patterned layer. This additive procedure was critical in reproducibly fabri-

cating uniform film depths ≥300µm as opposed to using a single deposition of SU-8 100 or

SU-8 2100 at low spin speeds (≤1000rpm).

Once a master mold was complete it was treated with vapor phase organo-silane

(chlorotrimethylsilane, Sigma) for 2–5min. This formed a self-assembled methylsilane layer

on the mold surface which aided in the release of PDMS replicas. Only one organo-silane

treatment was necessary for each mold. Because organo-silane compounds are fairly corro-

sive, repeated treatment would result in degradation of SU-8 features. The most notable

side effect of this was the spontaneous delamination of SU-8 features from the substrate

surface due to degradation at the SU-8/silicon interface. Furthermore, excess silane from

overexposure would transfer to PDMS replicas, reducing the effectiveness of subsequent

bonding procedures and other PDMS surface modification steps.

Following silane deposition, degassed, liquid PDMS (Sylgard 184, Dow Corning),

mixed 10 parts base to 1 part curing agent, was cast against the master mold to a depth

of 5mm, and cured at 80◦C for 1.5 hours. The PDMS replica, which now contained a

negative image of the mold’s topology, was then carefully peeled away from the master mold.
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Fluidic access ports were bored through the replica using 20 gauge Luer stub adapters. The

resultant hole was actually conical in shape, which would form a pressure tight seal with 23

gauge hypodermic needle tubing at the unpatterned surface of the PDMS replica. Larger

ports, e.g. those required for channels that accommodated high flow (∼1 mL min−1), were

punched using a 16 gauge Luer stub, which sealed against 18 gauge hypodermic tubing.

The replica was then thoroughly cleansed using a sonic bath, Scotch brand office

tape, and a final isopropanol rinse to remove any debris prior to sectioning into individual

PDMS chips. The devices were sealed with #1-1/2 coverslips by treating contacting surfaces

to an oxygen plasma. This created an irreversibly bonded interface capable of withstanding

up to 25psi of pressure[92, 118]. Alternatively, devices could be reversibly bonded to glass

by first soaking the PDMS chips in dilute hydrochloric acid (0.01N) at 50◦C for 2 hrs and

annealing the chips to glass coverslips in a dry oven at 65–80◦C for 10 hrs. Reversible seals

could withstand only 10psi of pressure, however, this was typically sufficient for standard

chip priming and cell loading procedures which required pressures at or above 3psi.

2.2.2 Confining microbial biofilms and microcolonies

Much of my initial microfluidic design work centered around the development of

microdevices for use with bacterial cells. At the time, the bacteria E. coli was default host

organism in the lab and it made sense to apply my microfluidic development accordingly. Up

to this point in time, the only available tools for studying bacteria were simple microscopy,

spectrophotometry/fluorimetry, and flow cytometry. However, due to the dynamic nature

of the synthetic systems we were developing, we needed a method for studying time evolved

fluorescence at the single-cell level.

Some of my early microfluidic device designs were for monitoring of microbial
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Figure 2.5: Schematic diagram of the “Sticky-Pad” device. Red regions within the gray flow channel
are where poly-lysine “sticky-pads” are patterned using a micro-contact printing technique. Patterns are
made using a small PDMS stamping block that contain columns with the same geometry as the red and
green patterns shown. Cells are introduced into the device via port 3, and media via port 1. Port 2 is
used as a common waste port and is positioned so that the probability of fouling of the media line (port
1) by cells is reduced.

biofilms in simple single channel systems that used patterned regions of poly(L-lysine)

(PLL) on the sealing glass substrate. PLL, a relatively small polypeptide, exhibits a strong

net positive charge at and above physiologic pH (7.2–7.4). A glass surface, on the other

hand, has a net negative charge, as do the external surfaces of cells such as the bacteria E.

coli. When patterned onto glass, the PLL formed “sticky-pads” that would capture cells

allowed to settle over the patterned areas, retaining them electrostatically.

Using PLL to pattern E. coli had been used by several other studies investigating

microbial biofilm development[23, 6], and represented an improvement over established agar

pad technology[30] since the locations of biofilms could be precisely controlled. However,

despite being laterally immobilized, biofilm growth in the vertical direction remained unin-

hibited, limiting experimental observation to the amount of time it would take to completely

overgrow the region.

To overcome this, I utilized a 3µm deep microfluidic flow channel to subject the
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captured cells to high levels of fluid shear stress (Figure 2.5). The flow channel was carefully

aligned over 24×40 #1-1/2 coverslips patterned with PLL (70kDa) using a contact micro-

printing technique (Figure 2.6)[89, 116]. Prior to patterning, the glass substrate was cleaned

with solvent (acetone, isopropanol, and methanol) to remove any manufacturing process oils,

and treated to an O2 plasma making the surface more hydrophillic (as measured by an

advancing water contact angle). To pattern the PLL, a plasma treated 3×5×5mm PDMS

patterning stamp was wetted with 10µL of a 1mg/mL PLL solution and dried under a gentle

stream of nitrogen gas. The stamp was then aligned pattern side down to the center of the

cleaned coverslip using a stereo microscope and compressed with a small weight (approxi-

mately 20g per square centimeter). The PLL was allowed to adsorb to the glass substrate

for 1hr at room temperature before removing the PDMS stamp and aligning the microflu-

idic channel. PLL patterns were verified by conjugating 1mM fluorescein isothiocyanate

(FITC) in pH 9.0 sodium bicarbonate buffer and imaging using a epifluorescent microscope

(Fig. 2.6).

Using a simple gravity system I could precisely adjust the flowrate through the

device and linearly alter the fluid shear over the sticky-pads from 1.6-16dyn/cm2. To test

the device, it was loaded with E. coli cells that constitutively expressed GFP from a pZE21G

high copy plasmid[22]. The cells immediately adhered to the sticky-pads in the chip and

I was able to image their growth under 7.05dyn/cm2 fluid shear for approximately 7hrs

(Fig. 2.7b). The majority of the cells grew as desired, daughter cells that did not adhere

to the sticky-pad surface were immediately washed away by the impinging fluid, restricting

the colony to the attachment plane on the glass surface. Increasing the surrounding flow

increased the amount of cellular detachment from pad, hence, colony size was controlled
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Figure 2.6: (a) Method for patterning “Sticky-Pads” using microcontact printing. (b) Sticky-pads
visualized by FITC conjugation. Each large square in the corners of the pattern are approximately 1 mm
square.
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Figure 2.7: (a) The “Sticky-Pad” operational concept. Cells are adhered electrostatically to a glass
substrate by patterned macromolecules (poly-lysine, orange) of opposite charge. The flow channel height
is modified based on the nominal height of a cell adhered to a pad by a simple scaling factor n, which was
optimized to a value of 3. In the case of the bacteria E. coli, h = 1, giving a channel height 3 µmṪhe
shear stress experienced by cells at the surface, τc, is a function of the velocity profile which is controlled
primarily by channel height and bulk fluid flowrate. (b) Growth of E. coli cells constitutively expressing
GFP on a sticky pad under approximately 7 dyn cm−2 of shear. Time between the first frame (left) and
the last (right) is 8 hours. Fluid flows vertically, entering from the top of each frame.

via the superficial velocity of the fluid through the channel alone. Since nutrients were

supplied by the bulk flow, each sticky-pad became a virtual culture vessel that maintained

a static concentration of nutrients as well as a static population of cells, a microscale chemo-

turbidistat.

Although this was a promising initial result, subsequent testing revealed that inter-
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Figure 2.8: Colony comets on a “Sticky-Pad”. Growth of E. coli cells constitutively expressing GFP on
a sticky pad after 12hrs under 10 dyn cm−2. Flow is from right to left. Notice that cells in the “tails”
are still distinguishable from neighbors, but cells in the “heads” are not due to vertical overgrowth.

cellular adhesion was far stronger than any shear forces that could be feasibly applied over

the growing colony before disrupting electrostatic adhesion. Long duration growth under

shear resulted in colony “comets” where a large mass of cells formed at the upstream end of

a colony and gradually trailed to a few isolated cells at the downstream end (Fig. 2.8). In

addition, closer examination of the time-lapse images revealed that cellular retention time

within the colony was highly variable, ranging from completely static to almost immediate

disappearance after division. On average, cellular retention time on the pad was approxi-

mately 0.5hrs, which was not acceptable for a quantitative expression analysis intended to

last at least 12hrs, approximately 10-fold longer than the average bacterial cellular doubling

time.

I next turned to a design that completely enclosed cells within a microchamber
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similar to devices developed by Groisman et al.. These chambers were capable of trapping

microbial cells (bacteria and yeast) while at the same time, providing a means for diffusive

transport of nutrients within the microchamber. For my design, I modified the chemostatic

microchamber so that it was a mere 1µm in depth, approximately the diameter of an E.

coli cell, so that it would geometrically force the growing microcolony into a monolayer

(Figure 2.9).

Called the eXtremely Low Chamber or XLC for short, initial developments proved

problematic because of the selected chamber height and mechanical properties of PDMS.

General design guidelines required that PDMS channels have a 30:1 width to height aspect

ratio to withstand spontaneous feature collapse due to elastic stretching of the material.

Despite adding support columns to the center of the microchambers to account for this re-

striction, many chambers still irreparably collapsed under the weight of the PDMS monolith

above or due to normal chip handling. Attempts to harden the PDMS by baking unsealed

chips at 150◦C for 2hrs as reported by Groisman, resulted in only a slight improvement.

An appropriate solution was to reduce the aspect ratio to 20:1. The same E. coli cells

expressing high copy constitutive GFP were tested on-chip, and a microcolony after 5hrs of

growth is shown in Figure 2.9.

While the new microchamber design was successful in maintaining a flat micro-

colony as desired, it had several drawbacks. Due to the constraints on chamber dimension, it

would rapidly fill with cells growing at conditions comparable to batch culture (LB medium,

37◦C). Even with minimal chamber seeding (3–5 cells), imaging sessions would last at most

8hrs. Beyond this point, cells would begin to spill out of the chamber through the diffusive

feeding channels where they would foul adjacent nutrient delivery channels. Within the
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Figure 2.9: The XLC growth chamber array. (top) Device schematic. Chambers are arranged in banks of
7×4 to accommodate easy location of isolated chambers of interest. The chamber array sits downstream
of a simple binary fluidic switch and between two independent thermal channels to facilitate step/pulse
probing of cellular expression and thermal gradient studies, respectively. (bottom) Growth of E. coli
constitutively expressing GFP over the course of 5 hours isothermally at 37◦C in LB media supplemented
with kanamycin. Notice that cells remain in a monolayer and identifiable from neighbors until the very
last frame of the sequence when the chamber becomes confluent. Also notice that as the chamber
fills, cells begin to escape through the diffusive feeding channels and into the primary flow channels
immediately outside the chamber. The dark region in the center of the chamber is a support column and
is approximately 30µm square.
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chamber, cells would be so tightly packed that individual cell segmentation was difficult at

the magnification used (40x with a field of view of approximately 150×250µm).

Given both of these setbacks in the development of a bacterial growth and imaging

device, it was clear that the technical challenges of imaging individual bacteria in a microde-

vice were too great, and a more “simple” model organism, from a microfluidic standpoint,

was required. In addition, this would give me the opportunity to optimally design a growth

chamber that had the trapping and turbidistatic/chemostatic abilities of both a sticky-pad

device and a fully enclosed microchamber.

2.2.3 A quantitative, long-duration imaging platform

In collaboration with Scott Cookson, a colleague in the lab, we developed a mi-

crofluidic device specific to the analysis of the budding yeast S. cerevisiae[21]. We chose

yeast for several reasons. Aside from being the de-facto eukaryotic model organism, they

were much easier to handle in microfluidic systems. Unlike E. coli, S. cerevisiae were non-

motile and had a more spherical morphology, which allowed for the use of simpler image

segmentation algorithms. In addition, yeast cells were on the order of 4–5µm in diameter,

five times larger than E. coli, placing fewer structural constraints on the fabrication of mi-

crochambers. Moreover, the lab was slowly transitioning toward the use of S. cerevisiae as

the default model organism because of the increased interest in complex regulatory behavior

in eukaryotic gene expression.

Still, if left to grow unconstrained, yeast would grow into three dimensional ag-

gregates, making quantification of single-cell fluorescence expression states difficult without

specialized techniques such as confocal or deconvolution microscopy. While impressively

precise, such techniques presented a major constraint on the temporal resolution of acqui-
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Figure 2.10: A schematic overview of the telsa microchemostat, or TµC, a microfluidic device optimized
for long-term growth of cells in a monolayer. (a) Overall view of the TµC. Three separate ports for loading
cells (C), media perfusion (M), and waste collection (W). On-chip temperature is controlled using heated
water running through large channels (T1 and T2) positioned near the growth chamber. (b) An enlarged
view of the growth chamber. The height of the chamber (dark grey) is customized based on cell type.
The flow channels (black) are 2–3 times higher than the trapping region, depending on the desired flow
difference between the main channel and the side-arm. Cells are loaded by flowing culture toward the
growth chamber from the cell inlet port. Once cells are trapped, flow is reversed within the adjacent
channel, perfusing fresh media from the media port through the device.

sition, especially for genetic processes with time scales on the order of minutes. Acquisition

speed could be improved, but at the sacrifice of spatial resolution, limiting analysis to small

fields of cells.

The microfluidic chamber Scott and I developed utilized a similar flat chamber

concept to the fully enclosed bacterial chambers I had developed earlier. This allowed for

the use of more temporally efficient, wide-field epifluorescent imaging for fluorescence quan-

tification. The immediate results of this technique were dramatic. As shown in Fig. 2.17, a

colony of yeast cells growing without constraint proliferate in multiple spatial dimensions,

making the extraction of single-cell fluorescence data difficult, while constrained cells are

distributed in a planar fashion with distinct boundaries between neighbors.

In addition to being 4µm deep, instead of the 1µm depth used for E. coli, the

growth chamber in this new device had a few other unique features. The chamber was
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actually a specialized loop structure resembling a subunit of Tesla’s valvular conduit[97]

which allowed for unidirectional flow[29] for the loading and trapping of cells. The entrance

to the “trapping loop” had a large (140µm×4µm) open structure which allowed for easy

cell entry and escape as well as unrestricted nutrient influx since it presented a large mass

transport area. The free escape of cells was actually advantageous to the use of the device

for extended observation sessions, since it allowed the chamber to passively maintain a

constant cell population within without overcrowding the imaging field. Once cells exited

the chamber they were immediately swept away to a waste reservoir by a fast moving

fluid stream, similar to the operation of the sticky-pad device. The free escape of cells,

coupled with rapid clearance of the nearby fluidic channel allowed the device to be operated

for durations on the order of 50–100 cell divisions without the fear of fouling by cellular

overgrowth. The chamber was named the TµC for Tesla micro-chemostat because of its

unique geometry and its ability to maintain a colony of cells under both chemostatic and

turbidistatic conditions.

Because of the size of the TµC growth chamber and its extended operation time, it

was critical to ensure that nutrients were adequately provided to cells in the portions of the

chamber farthest away from the entrance. To do this I analyzed the transport characteristics

of the TµC both theoretically and experimentally.

The key parameters involved were the diffusion coefficient of each nutrient species

and the advective velocity through the chamber. Most important was the determination

of the magnitude of the advective velocity since it profoundly affected the efficiency at

which the device was capable of establishing an optimal growth environment for cells. To

do so, the characteristics of the transport process were first analyzed by deriving a closed
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Figure 2.12: 1D representation of the TµC with diffusive and advective transport

form solution of the time dependent chemical concentration profile throughout the growth

chamber.

The chemical species mass balance for unsteady diffusion with advection is,

∂c

∂t
+ ~v · ~∇c = D∇2c (2.1)

Since geometric and physical parameters restrict on-chip flow to the laminar regime, analysis

was isolated to the central streamline of flow within the chamber, shown in Figure 2.11.

This assumed that components of velocity and spatial gradients in concentration normal to

this streamline were negligible relative to those tangential to the direction of flow, reducing

the physical process to the 1D system shown in Figure 2.12, simplifying Eqn. 2.1 to,
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∂c

∂t
+ V0

∂c

∂x
= D ∂2c

∂x2
(2.2)

with the following boundary and initial conditions,

c(0, t) = c0, t > 0 (2.3)

c(L, t) = c0, t > 0 (2.4)

c(x, 0) = 0, 0 < x < L (2.5)

Here, V0 is the average channel velocity, D is the molecular diffusivity of the nutrient

chemical species, and c0 is both the steady-state and boundary supported concentration.

Equations 2.2 to 2.5 can be further simplified by substituting the following dimen-

sionless parameters,

C =
c− c0

c0
ξ =

x

L
τ =

D
L2

t (2.6)

giving,

∂C

∂τ
+ NPe

∂C

∂ξ
=

∂2C

∂ξ2
(2.7)

C(0, τ) = 0, τ > 0 (2.8)

C(1, τ) = 0, τ > 0 (2.9)

C(ξ, 0) = −1, 0 < ξ < 1 (2.10)

where,
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NPe =
V0L

D
(2.11)

and the Peclet Number, a dimensionless ratio of advective transport versus diffusive trans-

port. Since the system is linear with respect to C with homogeneous boundary conditions,

it is easily solved using the method of separation of variables[39], yielding the closed form

solution,

C(ξ, τ) = exp
(

NPe

2
ξ

) ∞∑
n=1

An sin(nπ ξ) exp(−λn τ) (2.12)

or,

c(x, t) = c0

{
exp

(
NPe

2L
x

) ∞∑
n=1

An sin
(

nπ

L
x

)
exp

(
−λn

D
L2

t

)
+ 1

}
(2.13)

where,

λn =
1
4
[(2nπ)2 + N2

Pe] (2.14)

An = 4 exp
(
−NPe

2

) 2nπ cos(nπ) + NPe sin(nπ)− 2nπ exp
(

NPe
2

)
N2

Pe + (2nπ)2

 (2.15)

To complement the analytical solution, experiments testing the real world mass

transport within the chamber were performed using red fluorescent dyes of varying molecular

weight. To do this, the chamber was first wetted with water entering from the cell loading

port and imaged to provide a baseline condition. Water with fluorescent dye was then

introduced from the media port and the chamber was imaged every 5 seconds for 1.5 hours.

The image sequence was processed by removing background intensity and correct-

ing for non-uniform illumination using a flat-field frame. The sequence was then smoothed
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using a 5 pixel square gaussian kernel to remove remaining image noise. A quadratic inter-

polating spline was fit to 6-10 points manually chosen along the central streamline within

the trapping region and subdivided into 100 individual points. For each image in the se-

quence, path profiles were generated by recording the mean pixel intensity over a line 10µm

in length by 1 pixel wide normal to the spline as the fluorescence value at each path point.

Experimental concentration was assumed to be linearly proportional to fluorescence signal,

and was normalized by the steady-state value.

Initial experimental profiles used 10kDa dextran conjugated Rhodamine B isothio-

cyanate whose size was equivalent to small polypeptide signaling factors such as α1-mating

factor. The diffusion constant of the dye was estimated to be 7.99× 10−7cm2 s−1 using the

Stokes-Einstein equation for large diffusing particles[12],

DAB =
kbT

6πµBsA
(2.16)

where DAB is the diffusion coefficient of solute A in solvent B, kb is Boltzman’s constant,

T is the ambient temperature, µB is the dynamic viscosity of solvent B, and sA is the

molecular stokes radius of solute A. For dextrans, the value of sA is determined using a

previously reported correlation[107] based on molecular weight

sA = 0.488 (MW )0.437 (2.17)

The estimated diffusion coefficient value, along with a value of 1µm/s for the

advection velocity V0, and a path length, L, of 570µm (approx. the path length analyzed in

the experimental data), was used to generate the analytical simulation shown in Figure 2.13,

providing a NPe = 7.125. Analytical simulation data is plotted as C ′(ξ, t) = C(ξ, t) + 1
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Experiment Analytical

Figure 2.13: Comparison of experimental data collected using 10kDa Dextran conjugated Rhodamine
B isothiocyanate along the central streamline within the trapping region to the analytical solution of 1D
diffusion with advection for large molecule transport. The inset in the experimental data shows the path
analyzed (blue line) starting from the green circle, and ending at the red square.

calculated from a 100 term fourier series. The analytical results were in good agreement

with the experimental data, supporting the existence of creeping flow on the order of 1µms−1

within the trapping region of the device under nominal operational conditions.

Asymmetry in the concentration profile over ξ was primarily attributed to ad-

vective transport. Closer inspection of the analytical solution revealed that as NPe → 0,

Eqns. 2.12-2.15 degenerate to the solution for simple 1D unsteady diffusion, causing the

physical process to become spatially symmetric about ξ = 0.5. Moreover, the speed of the

transport process was determined to be highly dependant on the value of NPe, as seen in

Figure 2.14.

To further test the validity of the model, a similar experiment was performed using

a smaller molecular weight dye, Sulforhodamine 101, which is approximately the same size

as the nutrient components of growth media. For these smaller, polar, molecular species, a

different form of the Stokes-Einstein equation must be used,
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NPe = 0 NPe = 1.425 NPe = 36.625

Figure 2.14: (Left to Right) Analytical analysis of the time evolution of 1D concentration profiles for
advective velocities of 0µm/s, 0.2µm/s, and 5µm/s.

Experiment Analytical

Figure 2.15: Comparison of experimental data using Sulforhodamine 101 to an analytical solution of
small molecular transport by 1D diffusion with advection. The inset in the experimental data shows the
path analyzed (blue line) starting from the green circle, and ending at the red square.

DAB =
kbT

4πµBsA
(2.18)

which accounts for fluid slip at the molecular surface. Estimates of the stokes radius for

these species is typically made by analysis of the bond lengths between constituent atoms,

however, for generalized order of magnitude estimates, the diffusion constant for small

chemical species is assumed to be on the order of 6× 10−6cm2 s−1. Using this value for D

resulted in a NPe = 1.615. Experimental and simulation data analyzed as before was still

in good agreement (Figure 2.15).
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As a final case, it was important to understand how the presence of cells affected the

chamber transport processes. Once a cell population filled the chamber, the fluidic resistance

through the chamber would reach its maximum value due to the increased fluidic tortuosity

and decreased hydraulic flow radius. Under these circumstances, the transport process

becomes similar to fluid flow and mass transport through a tightly packed bed. Within the

governing transport equations, this manifests itself as scale factors for the advective and

diffusive terms.

Changes to the advective component of transport are made by estimating the

superficial velocity using the Blake-Kozeny equation[12],

V0 =
∆P

L

d2
P

150µ

ε3

(1− ε)2
(2.19)

where, ∆P is the pressure drop over the channel, dP is the diameter of the packing particle,

µ is the fluid dynamic viscocity, and ε is the channel void volume fraction. Because diffusive

transport is dependent upon the available mass transfer area, the diffusive term in eqn. 2.7

must be scaled accordingly. Thus, an open area fraction,

φ =
areaopen

areatotal
(2.20)

is used such that,

Deff = φD (2.21)

Assuming that cells are perfect spheres with tight hexagonal packing, the value of

V0 ≈ 10× 10−6µm/s and φ = 1− π
4 reducing the value of NPe to ≈ 4× 10−5. Under these

conditions, the transport process is considered purely diffusive. To verify this, a Sulforho-
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Experiment Analytical

Figure 2.16: Comparison of experimental data collected from a full chamber using Sulforhodamine 101
to an analytical solution of small molecular transport by 1D diffusion with advection though a packed
bed. The inset in the experimental data shows the path analyzed (blue line) starting from the green
circle, and ending at the red square.

damine 101 was again used used to visualize nutrient transport into a chamber completely

packed with cells (Figure 2.16). Again, the analytical simulation was in good agreement with

experimental data, confirming primarily diffusive transport (negligible advective velocity)

through a completely full chamber.

From the above analysis, the characteristic transport times to the furthest interior

regions of the chamber for the primarily diffusive case were found to be on the order of

5–10min (Fig. 2.16). This was assumed to be negligible compared to the nutrient uptake

rate of cells and was verified experimentally by measuring the cellular growth rate at various

distances from the chamber entrance.

2.2.4 Controllable dynamic microenvironments

In work that I did upon first joining Dr. Hasty’s group at UCSD, I designed

and tested a chemo-thermo gradient intended to explore the dynamics of the co-repressive

toggle, an extension of studies performed by Gardner et al.[34] and Kobayshi et al.[58]. The
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8 µm height

4 µm height

Figure 2.17: Cells growing within the TµC. The chamber height is 4µm while the neighboring channel
is 8µm high. Cells that grew outside of the chamber are difficult to individually distinguish, in contrast
to cells within the chamber where cell-cell boundaries are clearly defined

device design featured a static gradient mixer described in previously published work by

Dertinger et al.[27]. Later, it became apparent that a more dynamic control of the gradient

profile would yield more information from the gene expression system such as kinetic rates

of induction and repression leading to the distinct states of the toggle. This led to the idea

of a dynamic gradient generator which coupled a laminar flow focusing module to the input

of a chemical gradient mixer.

In this dynamic gradient device (Fig. 2.18; see Appendix D, Section D.4), a high

concentration stream was focused by laminar flow using low concentration streams and

directed to one side of an output channel. The output channel flow was then split and

fed as inputs to a gradient mixer with one half acting as the “low” concentration input

and the other as the “high” concentration input. Controlling which side of the output

channel the high concentration stream was directed toward ultimately controlled both the

magnitude and direction of the resultant gradient profile. Thus, the output profile from
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the device could exist in one of four states: hi-hi, hi-lo, lo-hi, and lo-lo. In addition, the

profiles were not restricted to discrete states, but could be continuously varied by gradual

movement of the focused high concentration stream across the output channel. Observing

cells as the surround media changed according to these profile changes would have provided

valuable information regarding how the concentration of inducers affected both the rates of

gene expression and magnitude of expression noise that governed the stable states of the

regulatory network. While the project was eventually abandoned due to numerous technical

challenges and the publication of a similar device[68], the idea that a simple fluidic switch

based on laminar fluid focusing could produce continuously varying chemical profiles was

not.

While the TµC was useful for passive monitoring of cell growth and native, un-

perturbed, gene expression, it was limited by its inability to monitor systems that required

external stimuli to reveal gene expression dynamics. Moreover, the study of the dynamics of

many native and de novo gene regulatory networks can only be done with external stimuli

that either initialize the system, or continually drive its dynamics. For example, the genetic

toggle presented by Gardner et al. required both chemical and thermal external stimuli to

actuate system changes. Similarly, the repressillator, a synthetic oscillator presented by

Elowitz and Leibler[30], required a pulse of the chemical inducer IPTG to initialize the

system.

To accommodate these needs, I designed a device which allowed for controllable,

yet highly dynamic, microenvironments within the growth and imaging chamber. The

creation of these microenvironments required the generation of concentration waveforms of

chemical stimulants (e.g. inducer or repressor molecules) and their uniform transmission
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Figure 2.18: A dynamically controlled gradient profile device. The device (a) features a linear gradient
mixer downstream of a fluidic input switch (b). As shown in (c), the switch allows for the generation of
four distinct gradient profiles: lo-lo, hi-lo, lo-hi, and hi-hi at time scales on the order of 1 minute.

throughout the growth chamber. This new device used three flow networks for loading cells,

generating microenvironmental waveforms, and controlling on-chip temperature.

To drive concentration waveforms, the device incorporated a fluidic media switch,

developed using my prior experience with the dynamic gradient device and published

literature[36, 65], (Fig. 2.19c) and a series of four chaotic advection mixing units[96]. Down-
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Figure 2.19: The microfluidic device utilized in this study. (a) Overall device schematic. The device
uses three flow networks for loading cells (middle, black), generating microenvironmental waveforms
(bottom, green), and controlling on-chip temperature (top, orange). The monolayer imaging chamber
(center, red boxed region) is shown in more detail in panel (b). The fluidic switch (bottom, black boxed
region) is shown in more detail in panel (c). (b) Magnified view of the imaging chamber (grey). The
chamber is coupled to the switch output channel via multiple 1 µm tall channels. These “feeding”
channels also aid in loading cells by acting as a filtration barrier. The boxed region indicates a typical
field of view. (c) Magnified view of the fluidic switch. Parallel guide channels (green) aid in producing
a linear range of mixing ratios between two impinging input flows. Bypass channels (blue) collect and
redirect excess flow to a waste reservoir. (d) Representative images of cells growing within the imaging
chamber. From left to right, brightfield, green fluorescence, and red fluorescence. Scale bar is 25 µm
in length. Large circular regions are support posts in the chamber. (e) Sample waveforms generated by
the fluidic switching/mixing system. From left to right, normalized fluorescence of tracer dye for sine,
triangle, and sawtooth waves measured within the imaging chamber.
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stream of the waveform generator, was the monolayer growth chamber, similar to that used

in the TµC device design[21] (Fig. 2.19b).

The fluidic switch, the primary element of the waveform generator, was operated

by laminar interface guidance, a method similar to laminar flow focusing. For example,

to “switch” a flow stream, the laminar interface between input flows was guided across an

output channel by carefully adjusting the ratio of flow rates between the inputs (Fig. 2.20).

Previously published fluidic switches were designed to operate in a binary fashion, either

fully “ON” or fully “OFF”. The switch on my device was specifically designed to generate

the intermediate mixing ratios required for accurate waveform production. To do this the

device included flow guide channels in the output stream. These channels utilized the

Coanda effect[45] which caused fluid flow to stick to the channel surfaces. This significantly

improved the precision and accuracy of the output mixing ratios by improving control of

the location of the laminar interface in the output channel. With these channels in place,

the position of the interface could be linearly positioned by the relative pressure difference

between the two reservoirs, with a difference of zero resulting in 50% output mixture. The

result was a continuous linear range of output mixtures from 100% input 1 to 100% input

2 (Fig. 2.21).

Downstream of the waveform generator, a series of microchannels was used to

couple the growth chamber to waveform output, allowing for the rapid transport of media

throughout the observation area. These channels also provided a filtration barrier between

the growth chamber and the waveform system, limiting overgrowth of cells into the waveform

output channel. Lastly, the geometry and distribution of the feeding channels was designed

to uniformly convect nutrients throughout the chamber. This allowed for the exchange of
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a b

Input 1 Input 2 Input 1 Input 2

Figure 2.20: Cartoon depiction of laminar interface guidance

Figure 2.21: Images of graded mixing output from the on-chip switch with output flow guide channels.
Input streams are water with and without a red fluorescent tracer dye (sulforhodamine 101).
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Figure 2.22: Data from various tests used to characterize on-chip waveform generation. (a) Concen-
tration distribution (profile uniformity) at various sections of the device measured as regional coefficient
of variation. (b) Output response curves for each device. Curve A (−◦−) shows the response of a switch
without output flow guides. The response has 20% deviations at the extremes of the output range, in
contrast to a device with flow guides, curve B (−−−), which exhibits an ideal linear response. (c) Various
waveforms generated by the system using devices without (top row) and with (bottom row) flow guides
at a nominal frequency of 8.3 mHz. Shown here are sinusoidal, triangle, and sawtooth waves created
by the system, measured using a red fluorescent tracer at the exit of the mixer train. Arrows highlight
noticeable differences in waveform quality. (d) Frequency response analysis of the system showing am-
plitude ratio for frequencies ranging from 0.05 Hz to 0.4 Hz. The operational threshold is indicated
by the sharp drop in the amplitude ratio at 0.2 Hz. (e) Map of 15×15µm2 regions of interest (ROIs)
within a 40× field of view in the growth chamber (black box in Figure 1a) used to measure concentration
uniformity. (f) Spatio-temporal profile of fluorescent tracer concentration within the growth chamber
with environmental changes driven at a nominal frequency of ∼3 mHz. Deviations between regions are
relatively small (∼5–10%) and are deemed negligible. Temporal uniformity is ideal.

chamber contents to occur on the order of 0.5–1min, an order of magnitude faster than the

diffusive transport method used by the TµC.

Operational performance of the waveform generator was evaluated by tracking the
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distribution of a red fluorescent dye (sulforhodamine 101, Sigma) at several points with in

the device. These locations included the switch output channel and several points along

the mixing train with 75×75µm2 regions analyzed at each location. Measurements within

the mixing train were taken at the entrance, middle (after two mixing units), and exit

regions. Measurement of dye distribution was separated into two parameters: concentration

and uniformity, measured as regional mean fluorescence and coefficient of variation (CV ),

respectively. Ideally, uniform regions should exhibit a CV of zero. Under experimental

conditions, this value was approximately 0.05–0.06, due primarily to image acquisition noise.

As desired, The chaotic mixers smoothed the channel concentration profile from a sharp

step function to a uniform distribution across the output channel. This was indicated by

an approximate 4-fold drop in region CV between switch and mixer outlets (Fig. 2.22a).

The linear range of output mixtures was tested by collecting images from the mixer

exit for a rising/falling stair-step routine with 10-second holds at each step for system

equilibration. Results of this test (Fig. 2.22b) show a nearly ideal linear response for a

device with flow guide channels (curve B). A device fabricated without these guide channels

(curve A) suffered from 20% deviations at the upper and lower extremes of the output

range. Fig. 2.22c shows sinusoidal, triangle, and sawtooth waveforms generated by each

device. Output deviations in the device without flow guides were especially noticeable

in the triangle and sawtooth waveforms, resulting in a rounding of what should be sharp

transitions in measured dye concentration. Under appropriate operating conditions, the

device was capable of attaining a maximum output frequency of 0.2 Hz. This was determined

using a frequency response analysis from 0.05 Hz to 0.4 Hz, which indicated a sharp drop

in the output amplitude ratio at the maximal frequency (Fig. 2.22d).
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Transport speed and uniformity within the growth chamber was tested by pulsing

sulforhodamine at 3 mHz and observing the concentration at 12 separate locations within

a 40× field (Figs. 2.22e and 2.22f). Results of this test show that although deviations

exist, they are relatively small, ∼5–10% of the maximum measured value. In addition, the

temporal uniformity within the chamber was as desired, e.g. changes in local concentrations

at different subregions occurred practically simultaneously. The speed of the system was

important for precise temporal control of the microenvironment, presenting a useful means

for studying environmental noise effects on gene network dynamics. This could be done by

incorporating additional noise components into the output waveforms, or by replicating a

purely “noisy” environment by generating a random-step waveform.

As in the case of the TµC, it was important to verify that nutrients were adequately

reaching cells throughout all portions of the chamber when full confluence was reached.

More importantly in the case of this new device, nutrients needed to be transported at a

rate many times faster than the nominal cellular growth rate so that it could be assumed that

all cells were experiencing external perturbations simultaneously. To do this the chamber

was allowed to fill with yeast cells via overnight on-chip growth. Sulforhodamine 101 was

then pulsed through the chamber and images were acquired at 5 minute intervals. The

results (Fig. 2.23) show adequate (> 90%) perfusion of a fully confluent chamber within

10min, which is approximately one tenth the nominal doubling time for yeast.

This new device was named the T2µC for Temporal Tesla micro-Chemostat, owing

to its resemblance to the original TµC, and its ability to generate temporally variable growth

environments within the imaging chamber. In addition, there were several significant design

improvements in the T2µC over the original TµC.
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Figure 2.23: Nutrient transport in a confluent T2µC growth chamber. Mean intensity of a red fluorescent
tracer traced through a series of images as it convects through a T2µC growth chamber full of yeast cells.
Images are spaced 5 minutes apart and the driving signal is a simple square wave. Full transitions, A-F
and E-H are twenty minutes in length, however 90% of the desired fluorescence state is reached within
10 minutes, approximately one tenth the nominal doubling time of yeast.

Figure 2.24: Loading of the T2µC. Cells are first primed into the loading segment immediately outside
of the imaging chamber and then directly injected inward using applied pressure. Because the height of
the filter/feeding channels are only 1–2µm in depth, cells are retained at the wall of the chamber that
is coupled to the dynamic media delivery channel. Once a satisfactory seeding population is achieved,
flow within the chamber is reversed, supplying media from the dynamic media delivery channel, and also
redistributing cells clustered at the coupled chamber wall.

First, the cell handling fluidic network was designed with an “h-cross” network

rather than the “t-junction” used by the TµC. This provided a far more robust method of

limiting device fouling by providing dedicated waste streams for both the cell suspension and

loading media inlet. Flow between these reservoirs and their corresponding waste outlets

would never cease, allowing no opportunity for cells to settle into the laminar flow boundary

layer at the floors fluidic channels where they would be nearly impossible to remove. The

design also provided a cell loading segment that could be primed with a defined number of

cells and subsequently injected into the imaging chamber.

Second, because the growth chamber of the T2µC specifically allowed for convective
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transport, loading the device relied on direct filtration of cells from the loading media

(Fig. 2.24), a more controllable method than the passive capture procedure utilized by the

TµC. Upon priming the loading segment with cells, on-chip pressure was modified so that

flow from the loading segment was directly injected into the imaging chamber. Cells would

then be retained by the feeding channels, fabricated to 1–2µmin depth, while fluid was

allowed to pass through to the coupled media switching channel. Lastly, on-chip pressure

was readjusted so that fluid from the switching channel was redirected back through the

chamber and out toward the cell loading segment. In most cases, the filtration step would

cluster cells at the wall of the imaging chamber occupied by feeding channels. This reversal

of flow helped to redistribute cells through out the growth chamber, aiding in subsequent

image processing and object extraction and quantification.

2.3 Microscopy

2.3.1 System description

All imaging was performed on a Nikon Diaphot TMD advanced research grade in-

verted epifluorescence microscope outfitted with a Hamamatsu Orca-ER coold CCD firewire

camera. To control light exposure, the system was fitted with Uniblitz VS35 high speed

shutters (Vincent Associates) on both the fluorescence and transmitted light sources. Mul-

tiple fluorescence channels were acquired using a “Sedat” illumination configuration which

utilized individual excitation and emission filter pairs (Chroma Inc.) mounted on filter

wheels in the acquisition light path. An EXFO X-Cite 120 with a power attenuation iris

was used as a fluorescent light source and a standard Nikon HMX-4 halogen lamp was

used as a transmission light source. To reduce photobleaching and phototoxicity during
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fluorescence exposure, lamp power was reduced to 12.5% using the built-in attenuation iris.

This allowed for ≥ 1 second exposures without detrimentally affecting cellular viability and

fluorescence reporter brightness.

All image acquisition hardware was controlled by a graphical user interface devel-

oped in LabVIEW (National Instruments, Inc) and designed solely for multichannel imaging

and area/pattern scanning. Image acquisition was controlled via NI-IMAQ for IEEE 1394

camera drivers. For each image, the camera was externally triggered using a 10V TTL

signal generated by a NI PCI-6021 multifunction digital and analog input/output board.

Shutters were controlled via the control output bits on a standard PC parallel port and

timed accordingly to the camera acquisition. All other automated system elements (XYZ

motion and filter wheel positioning) was controlled via RS-232 command sequences sent to

the Proscan-II controller.

2.3.2 Vibration isolation

Special care was taken to isolate the specimen stage from vibrations, as it dra-

matically affected on-chip flow control and acquired image quality. The entire microscope

system was assembled on top of a vibration dampening table (Newark) to isolate it from

common vibration sources such as user entry and exit from the imaging room. Even with

this precaution, the light source shutters remained a major source of system vibration, the

worst being that used for transmitted light illumination. Through trial and error testing it

was determined that a shutter open delay of 60ms was required for fluorescence imaging, to

allow for vibrations to dampen through the microscope body to undetectable levels. The

vibrations due to the transmitted shutter required significantly longer to quell, about 3s,

when solidly coupled to the transmitted light boom, which was an unfeasible amount of de-
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lay time for high-speed imaging applications. Thus the solution was to completely decouple

the shutter from the system, and instead mount it on an independent stand with the light

path aligned by hand.

2.3.3 Reduction of thermally induced drift in focal plane

Images were acquired using an Olympus 40×magnification, 1.00NA oil immersion

objective. Because this objective thermally coupled the microfluidic device to the micro-

scope body, the surrounding air was maintained at 25±0.1◦C. To further control on chip

temperature, heated water was circulated through channels, 1mm×300µm in cross section.

These channels were placed within 250µm of the observed growth regions of the device and

on-chip temperature was assumed to be the average of the input and output flow tempera-

ture within 1◦C accuracy.

2.3.4 Autofocus method

Due to the extended duration of the imaging runs, an active and automated routine

was used to maintain the imaged focal plane, to account for z-drift in the specimen due to

remaining thermal fluctuations in the room. A dedicated camera system was mounted onto

one of the binocular eyepiece ports of the microscope. Video signal from this camera was

sent to a Prior Scientific Proscan-II AF enabled XYZ stage controller for processing and

focal plane adjustment and autofocus routines were run prior to the acquisition transmitted

imaging channels. These routines typically took only 1–2 seconds to complete, scanning

over a range of approximately 10µm. There were no AF routines run during subsequent

fluorescence channels. Instead, calibrated z-offsets required for sharp fluorescence images

were used. This minimized the amount of time required to acquire a channel “stack” and
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exposure to the light source used for autofocus illumination.

During initial system development, attempts were made to use the contrast signal

from cells in view for autofocus plane acquisition. Unfortunately, this was not adequate

under brightfield imaging conditions, and compatible phase contrast optics were not avail-

able for our optical train. Non-fluorescent latex beads were used as a second attempt, and

while they provided a crisp contrast signal, a trace of the focus scores through the desired

scan range displayed two local maxima. Since the automated focusing system was hard-

ware based, there was no method to programmatically select the more appropriate maxima

without drastically reducing temporal efficiency of the imaging system. While, the use of

fluorescent beads provided a more ideal focal score trace, controllably distributing the beads

into the imaging field in a repeatable manner proved to be a significant challenge. To pro-

vide a constant and consistent object for the autofocus system to scan, a repeating pattern

of air filled chambers 25×50×4µm in dimension was placed along the length of the growth

chamber. Although intended for brightfield/phase-contrast imaging, the most reliable aut-

ofocus signal was achieved using fluorescent illumination using the DsRed excitation filter

(558 nm) and no emission filter (Fig. 2.25). When scanning through the focal planes, the

optimal plane consistently fell at the level where the PDMS came into contact with the

coverglass, which conveniently coincided with the optimal focal plane for cellular imaging.

In addition, the location of the autofocus scan pattern, approximately 100–150µm away

from the imaging field, further reduced unintended fluorescence exposure which could lead

to photobleaching and phototoxicity.
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Figure 2.25: An reliable autofocus pattern using dry air chambers and fluorescent illumination. Images
shown were acquired using 558 nm illumination with no emission filtration, imaged at 40× magnification.
Each of the isolated dry chambers is 25×50µm in dimension. The top image is in focus while the bottom
image is not, observed as a “haze” around feature edges.



70

2.3.5 Image processing and analysis

Images were analyzed using a variety of software tools. Simple image processing

and analysis methods were performed using the free software utility ImageJ (NIH). More

complex routines, such as single cell segmentation and trajectory analysis, were performed

using routines written in Matlab. To generate single cell trajectory data, individual cells

were located by segmenting brightfield images. This was done using a sequence of grey scale

reconstructive morphological operations to remove random image noise, remove spurious

markings that could interfere with later processing steps, and enhance cell-cell boundaries.

The image was then binarized using a basic threshold for objects statistically “brighter”

than the image background. The binary image was further cleaned to fill holes in objects

and remove isolated pixels. To identify individual objects, the binary image was processed

using a distance transform followed by a watershed algorithm. The resultant watershed

lines were then used to enhance existing object borders, and separate touching objects.

Each individual object was then labeled with a unique ID and the intensity statistics for

corresponding pixel regions were measured in the red and green/yellow fluorescence images.

Object data was stored in human readable text files for each time point within the image

sequence. To track objects through the sequence, the object data was recompiled into

a large data array and fed into a tracking algorithm previously used in colloidal particle

studies[24]. Running fully autonomously the above method was capable of segmenting and

tracking individual cells with a 75–80% accuracy rate. Manual editing of the segmentation

mask used for object labeling and validation/linking of object trajectories increased this

rate to 90–95%. On average, it took 30min of computer processing and up to 8–10hrs

of manual correction and validation to generate high quality trajectories for 100–200 cells
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from an image set with 300 image time points. For studies that did not require single-cell

resolution, individual object tracking steps were omitted. Similarly, quantified fluorescence

was averaged over all identified objects in the viewable field to create a single “blob” particle

that was traced through time.
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Metabolic gene regulation in a

dynamically changing environment

3.1 Introduction

Natural selection dictates that cells constantly adapt to dynamically changing envi-

ronments in a context-dependent manner. For example, a sensitive response may be optimal

when environmental changes are gradual, while a slow response may enable cells to save

energy by ignoring rapid, transient environmental fluctuations. Gene-regulatory networks

typically mediate the cellular response to perturbation[47, 9, 42], and an understanding

of cellular adaptation will require experimental approaches aimed at subjecting cells to

a dynamic environment that mimics their natural habitat[98, 69, 62, 60]. In this work,

we monitored the response of S. cerevisiae metabolic gene regulation to periodic changes

in the external carbon source by utilizing a microfluidic platform that allows precise, dy-

namic control over environmental conditions. We found that the metabolic system acts as

72
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a low-pass filter that reliably responds to a slowly changing environment, while effectively

ignoring fluctuations that are too fast for the cell to mount an efficient response. Using

computational modeling calibrated with experimental data, we determined that frequency

selection in the system is controlled by the interaction of coupled positive feedback net-

works governing the signal transduction of alternative carbon sources. More importantly,

computational simulations suggested that the feedback loops may confer a robustness to

environmental fluctuations on cells regardless of deficiencies in network components and we

tested this prediction with an experimental comparison of two S. cerevisiae strains bearing

significant phenotypic differences. In doing so, we found that the two exhibit the same fil-

tering properties despite having markedly different induction and repression characteristics.

These equivalent responses suggest that while the individual components of a complex reg-

ulatory network may differ when probed in a static batch-culture environment, the system

as a whole has been optimized for a robust response to a dynamically changing environ-

ment. In the broader context of systems and quantitative biology, our findings establish an

experimentally feasible framework for dynamically probing organisms in order to reveal the

mechanisms that have evolved to mediate cellular responses to unpredictable environments.

In order to probe the response of individual cells to a fluctuating environment,

we utilized the T2µC described in Chapter 2, a novel microfluidic platform capable of sub-

jecting a population of cells to a continuously varying media supply (Figure 2.19). Briefly,

the device was designed to generate a fluctuating media signal by dynamically combining

two media reservoirs according to a user specifed time-dependent function. Mixing of the

source media streams was actuated by a fluidic input switch[36, 64] (Figure 2.19c) spe-

cially designed with an ideal, linear output response (Figure 2.19e). The resultant media
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stream was then delivered downstream to a customizable monolayer growth chamber (Fig-

ure 2.19d), which for this study was constructed specifically for yeast cells, and allowed

for long-term single-cell data acquisition[21]. The growth chamber received a continuous

supply of fresh media via a series of “feeding” channels that coupled the chamber to the

fluidic switch output. Placement of these feeding channels allowed for the rapid distribution

of media throughout the growth chamber such that changes in the upstream supply would

be transmitted practically instantaneously to the entire cellular population.

As a quantifiable reporter of the cellular response to environmental fluctuations,

we fused genomic GAL1 protein of S. cerevisiae to a yeast-optimized cyan fluorescent

protein (yECFP). The enzymes for galactose utilization, including GAL1p, are among the

most tightly regulated proteins in yeast. Because glucose requires much less energy to

metabolize, cells will only consume galactose if glucose is not available [120]. Therefore,

S. cerevisiae has evolved a highly complex regulatory network to ensure that the galactose

enzymes will be strongly activated when they are needed, but tightly repressed if glucose

is present in the environment. Because the network is well studied and involves regulatory

motifs common to many higher organisms, galactose utilization has become a paradigm for

the study of eukaryotic gene regulation. In order to build on the current understanding

of its robust regulatory mechanisms, we employed our microfluidic platform to monitor

the dynamics of network activation and repression in response to alternating galactose and

glucose carbon sources.
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3.2 Materials and methods

3.2.1 Microfluidic device fabrication

Microfluidic devices were fabricated using PDMS replica molding from silicon and

photoresist masters as discussed in Chapter 2. Device designs were drawn using AutoCAD

2005 (Autodesk Inc.) and validated by a linear flow modeling program (see Appendix A)

written in Matlab (The Mathworks). Photomasks were printed at 20,000 DPI onto photo-

transparancy film (Output City, Bandon OR) and used to pattern SU-8 (Microchem Corp.)

onto clean silicon wafers. SU-8 photoresist was spun to appropriate depths and processed

according to manufacturers specifications excluding development until the last layer was

deposited and photo-patterned.

Primary fluidic channels (black and green in Fig. 2.19a) were fabricated to a depth

of 10 µm. Grooves for the chaotic mixer were patterned at a total depth of 12 µm.

Remaining geometric parameters for the mixing units were the same as those used by

Stroock et al.[96]. and scaled accordingly to accommodate the designed channel depth.

The chamber was fabricated to a depth of 4 µm to accommodate monolayer imaging of S.

cerevisiae. Channels for on-chip temperature control (orange, Figure 2.19a) were patterned

to a depth of at least 200 µm.

Poly-dimethylsiloxane (Sylgard 184, 2 part silicone encapsulant, Dow Corning) was

mixed 1:10 (catalyst:base), degassed, and cast against the SU-8/silicon master mold, curing

at 80◦C for 1.5 hrs in a dry gravity oven (Fisher Scientific). Prior to casting the PDMS,

chlorotrimethylsilane (Sigma) was vapor deposited for 2 min onto the master molds to aid in

the release of cured PDMS monolith. Following release, the PDMS monolith was rinsed in

100% ethanol followed by deionized water. Fluidic ports for media and cell suspension were



76

punched using 20 ga luer stub adapters (McMaster-Carr). Ports for temperature control

channels were punched using 16 ga stub adapters. These ports accommodated 23 ga and

18 ga, respectively, hypodermic steel tubing (Small Parts Inc) connection tips for fluidic

lines leading to external fluid reservoirs. To remove debris from the port punching process,

port holes were flushed with isopropanol and deionized water, and dried with high velocity

stream of 0.2 µm filtered air. Any remaining debris on pattern surfaces was removed using

a double application of office grade Scotch Tape (3M).

One day prior to use, the PDMS chips and 24×40 mm, #1-1/2 coverslips were

cleaned using a solvent rinse (acetone, isopropanol, methanol) and exposed to O2 plasma

for 1 min at 50 W in a Technics PEB-II plasma etcher. Treated surfaces were then brought

into intimate contact to form an irreversible bond. Sealed chips were allowed to anneal

overnight at 80◦C to ensure maximum bond strength.[115]

All fluids used for microfluidic devices were 0.2 µm filtered to reduce channel occlu-

sion by random debris and bacterial contamination. Similarly, all reservoirs and connecting

lines were thoroughly cleaned by flushing with deionized water and isopropanol and auto-

clave sterilized prior to use. Devices were wetted using sterile water injected simultaneously

at all waste outlet ports under 1–3 psi before attaching media and cell suspension reservoirs.

3.2.2 Cell preparation and culture

Transforming DNA was prepared by PCR amplification of linker + FP sequences

+ marker sequences found on the pKT0101a (Cerulean CFP) plasmid[93]. PCR primers

were designed with approximately 40 bp of homologous sequences so that the FP sequences

would be targeted to the carboxy-terminus of Gal1p, for pKT0090 and pKT0101a, re-

spectively. To aid in transformation efficiency, 400 bp homology extension sequences that
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flanked the insertion site and were anchored with the original 40 bp homologous sequence

were cloned from genomic dna. Cells were transformed with the products from both fusion

protein and genomic homology PCRs using heat shock and successful transformations were

selected using histidine auxotrophy on synthetic dropout plates. Isolates that exhibited

adequate fluorescence levels and growth on raffinose, galactose, and glucose, individually,

were preserved as frozen stock for later use.

For subsequent experiments, frozen isolates were revived by streaking on to solid

media plates. Plated cultures were at 30◦C for 1–2 days and stored at 4◦C for no longer

than two weeks. One day prior to each experiment, an isolated colony was selected and

grown in liquid medium containing 2% (w/v) raffinose at 30◦C at 300 rpm overnight. On

the experiment day, the overnight culture was diluted to an OD600 0.1 (if necessary) and

grown to OD600 0.3–0.6 to ensure log phase growth.

3.2.3 Experimental conditions

Each experiment utilized three growth conditions: loading media, 2% raffinose;

inducing media, 2% raffinose + 0.2% galactose; and repressing media, 2% raffinose + 0.2%

galactose + 0.25% glucose. All media conditions were synthetic dropout based with appro-

priate supplements for auxotrophic selection. Prior to loading cells onto the microfluidic

device, the cell suspension was synchronized by spiking the culture with 10 nM α1-mating

factor and incubated for an additional hour. To maintain growth arrest during microflu-

idic device initialization, the loading media was also spiked with 10nM α1-mating factor.

The repressing media also contained 0.01 mg/mL of sulforhodamine 101, a hydrophillic red

fluorescent dye, to track the on-chip glucose concentration and location.

Microfluidic devices were primed with water followed by media using a specialized
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pressurization system. Approximately 10–20 cells were loaded into the imaging field of the

device. Once loaded, the device was set to perfuse only loading media through the growth

chamber until the chip had reached thermal equilibrium at 30±1◦C(approx. 30 min). The

device flows were then changed so that only repressing media flowed through the chamber.

The chip was imaged under these conditions for 10 min to establish a non-fluorescent (non-

induced) baseline. Finally, the oscillatory drive was initiated and the chamber was imaged

every 5 min for 24–48 hrs in red, and cyan fluorescence, and transmitted light.

3.2.4 Data analysis

Cells were segmented from the transmitted image sequence using a contrast en-

hancement algorithm. Cell occupied regions of each image were quantified for mean fluores-

cence in the cyan channel. Mean fluorescence of the background regions (non-cell occupied

areas) in the red channel were measured as the glucose concentration state. Pixel area of

the cell occupied regions were used to monitor on-chip growth. Population averaged tra-

jectories of cyan fluorescence was normalized and detrended relative to the running trend

average using an RLOWESS smoothing filter. Detrending utilized filter windows that var-

ied based on the period of the oscillatory input. Detrended trajectory data was the result of

subtracting data smoothed by a large window (containing the number of points equivalent

to 2× a period cycle) from data smoothed by a small window (points equivalent to half a

period cycle). The value at each point of the detrended trajectory data was normalized by

the corresponding value in the large window smoothed result.

No detrending was performed on glucose trajectory data (mean red fluorescence).

Instead it was merely normalized relative to the range of intensity values and reported as 1-

Normalized FL so the highest trajectory values would correspond to full galactose induction
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conditions while the lowest trajectory values would correspond to full glucose repression.

Data trajectories were truncated before the second cycle and after the maximum measured

pixel area due to data processing artifacts and reduced segementation efficiency, respectively.

Amplitudes were calculated as the average vertical shift over all cycles from local maxima

to local minima in the cyan fluorescence trajectory. Phase shifts were calculated as the

average temporal delay between corresponding extrema in the reported “induction” signal

and the detrended yellow and cyan fluorescence responses, scaled by a factor of 2πω where

ω is the perturbation frequency in hr−1.

3.3 Results and Discussion

3.3.1 Dynamic profiling

We setup our device to subject a population of yeast cells to sinusoidal glucose

waves over a 0.2% (w/v) galactose background, varying the glucose concentration from

0.0% (no repression of GAL1 transcription) to 0.25% (full repression; Figure 2.4). For each

run we changed the frequency of the glucose signal, varying the period from 0.75–6 hrs,

and imaged the population for a minimum of four full cycles (Figure 3.1). Time-lapse

fluorescence imaging of the cell population in the growth chamber was used to calculate

the amplitude ratio and phase shift of the cellar response relative to the glucose signal.

The results show a maximum response frequency of about 5.58 rads hr−1 (1.125 hr period).

Above this frequency, the response trace was indistinguishable from a step response, whereas

at the lower frequencies the temporal fluorescence trajectories clearly oscillated in response

to the fluctuating input signal. In this sense, the galactose network appears to function as

a low-pass filter, which enables the cells to ignore environmental fluctuations that are too
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Figure 3.1: Simulated and experimental expression trajectories in response to sinusoidal perturbation at
varying frequencies. (a) The induction drive signal used for both experimental and simulated responses.
Glucose concentration is calculated from the mean fluorescence of a red tracer dye, normalized and
subtracted from unity to represent the “induction” signal. Drive signal oscillation periods (left to right)
are 6.0, 4.5, 3.0, 2.25, 1.5, 1.125, and 0.75 hrs. (b) Normalized and detrended fluorescence response
for S. cerevisiae YPH499 cells under experimental (top) and simulated (bottom) conditions. Expression
responses correspond to the oscillatory signals shown in (a).

frequent to mount an efficient response. The oscillation frequency at which this occurred

was also interesting. The measured growth rate for these cells in the glucose based repression

media was approximately 85–90 minutes, or 1.5 hours. The observed threshold fluctuation

period was approximately 75% of this timescale. This may indicate that the cell cycle

dynamics have ultimate control over global response timing, especially in the case of sugar

metabolism.

3.3.2 Computational model

Since the sinusoidal driving of the galactose utilization network leads to complex

cellular behavior, we used computational modeling to simulate the response and elucidate

key aspects of the network architecture that give rise to the observed behavior. In particular,

we were interested in how the interplay of the galactose and glucose utilization networks
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gives rise to the low-pass filter characteristic and confers a robustness in cellular responses

to carbon source fluctuations. Combined, the two pathways represent competing positive

feedback networks that are coupled in two ways. First, detailed analysis of the galactose

permease, Gal2p, has demonstrated that it not only actively transports galactose across

the cell membrane, but glucose as well[73]. Second, internalized glucose activates MIG1

expression, a transcription factor that strongly represses the galactose network. In the

absence of glucose, Gal2p actively imports galactose from the extracellular environment,

subsequently inducing its own expression via positive feedback. However, Gal2p is also

capable of importing glucose, turning off GAL2 transcription and turning on production

of the machinery for glucose transport and metabolism, coupling the glucose response to

galactose metabolism via negative feedback.

In order to simulate the effects of galactose activation and glucose repression on

our experimental data, we incorporated the coupled feedback loops into a simple compu-

tational model of the cellular response to fluctuating carbon source (Fig. 3.2). Both the

galactose and the glucose utilization networks of S. cerevisiae are complex gene networks

incorporating many genes and proteins that tightly regulate the transport and metabolism

of their respective sugar, and while the details of each differs greatly from the other, they

both contain certain aspects that make them very similar. For instance, both networks

are primarily designed to do equivalent tasks - i.e. metabolize their respective sugar when

it is available. One design principle common to both networks is the positive feedback

loop. For example, once a small amount of galactose has been internalized by the cell, it

triggers a signalling cascade which ultimately increases the transcription rates of the genes

responsible for its transport and metabolism. This, in turn, increases the internal galactose
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Figure 3.2: A network schematic of the computational model used. Reaction pathways governed by
the galactose network are shown in blue, while those governed by the glucose network are drawn in red.
Both networks contain positive feedback, in that their respective internalized sugars induce transcription
of the transporters. Additionally, the two modules are coupled in two ways. First, the galactose permease
can also transport glucose into the cell. Second, transcription factors of the glucose network repress the
galactose module.

concentration, which further increases the gene activity.

Our computational model consisted of a system of ODEs that incorporated the

main aspects of the coupled feedback loops described above. The model tracked the con-

centrations of the internal sugar, mRNA and proteins of each network. Instead of tracking

every protein and reaction in the networks, our model is heuristic in that we assume that

the activity of a network is representative of every protein produced by that network. In

other words, we assume that the transcription factors of each network are proportional to

one, representative protein. In this way, we were able to simplify our model to include just

two proteins, representing the products of the two networks. We obtained parameters for

both the galactose and glucose responses by (1) fitting steady state induction and repression

curves acquired using flow cytometry and (2) modifying production and degradation rates

to match the observed dynamic responses.

The coupling of the feedback modules was simulated as a two-part process. First,
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the protein products of the glucose network globally repressed transcription of galactose

network components. Second, the hexose transporter galactose network facilitated the

internalization of glucose as well as galactose.

This led to the following governing equations,

ṁ1 =

{
α1 + ε1g

β1
1

κβ1
1 + gβ1

1

} {
λq

λq + xq
2

}
− γ1m1 (3.1)

ẋ1 = σ1m1 − δ1x1 (3.2)

ġ1 = ktrx1

{
[gal]− g1

kmtr + [gal] + g1 + a
kmtr

g1[gal]

}
(3.3)

ṁ2 =

{
α2 + ε2g

β2
2

κβ2
2 + gβ2

2

}
− γ2m2 (3.4)

ẋ2 = σ2m2 − δ2x2 (3.5)

ġ2 = ktr (x1 + x2)

{
[glu]− g2

kmtr + [glu] + g2 + a
kmtr

g2[glu]

}
, (3.6)

where i = 1 is the galactose network and i = 2 is the glucose network, and,

mi, xi, gi ⇒ mRNA, protein, and internal sugar concentra-
tions, respectively

αi, εi ⇒ basal and activated transcription rates, respec-
tively

σi ⇒ global translation rate

γi, δi ⇒ degradation rates of the mRNA and proteins,
respectively

βi, q ⇒ Hill coefficients for activated and repressed tran-
scription, respectively

κi, λ ⇒ concentrations for half-maximal induction and
repression, respectively

ktr, kmtr, a ⇒ constants describing the facilitated diffusion
process

[gal], [glu] ⇒ external concentrations of galactose and glucose
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which was easily solved deterministically using built-in ODE solver routines in Matlab (The

Mathworks).

We obtained model parameters for both the galactose and glucose responses by

fitting steady state induction and repression curves acquired using flow cytometry and mod-

ifying production and degradation rates to match the observed step responses (Figure 3.3).

The result is a model that accurately reproduces the dynamic response of a population of

cells to sinusoidal repression over a large range of frequencies (Figure 3.1b).

3.3.3 Computational and experimental analysis of response robustness

Exploration with the model led to an interesting hypothesis regarding the need for

such a tightly controlled coupling of the glucose and galactose networks: given this inter-

play, slight deficiencies in one of the networks might not hinder a cell’s ability to adapt and

thrive in a changing environment. In other words, a deficiency in one network would have

the reverse effect in the other, leveling out the net response from the cell. The yeast strain

used to collect this data, YPH499, is known to have a slight deficiency in the galactose

utilization network, which causes it to require more galactose than “normal” to induce pro-

duction of the galactose enzymes[104]. This deficiency is clear when comparing steady state

induction data to that of another strain, K699, which is considered to have a more “wild-

type” response to induction. Our flow cytometry population data (Fig. 2.3) demonstrates

that YPH499 cells require about ten times more galactose to reach full induction than do

K699 cells. Yet, despite this difference in steady state induction sensitivity, our model

predicts that this deficiency need not translate into a less robust response to a fluctuating

environment. Moreover, overcoming this insensitivity is achieved by merely changing the

time it takes the glucose network to achieve full repression. When we changed the timing
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of the glucose network in “wildtype” cellular simulations to be roughly four times faster

than in YPH499, we found that this compensated for differences in steady state induction

sensitivity suggesting that the complex pairing of the glucose and galactose networks con-

fers robustness to the global response even when faced with seemingly detrimental network

deficiencies.

To test this hypothesis, we turned our focus to the aforementioned K699 strain

for experimental validation. We repeated the microfluidic runs at each frequency, this time

using the K699 strain with an equivalent GAL1-yECFP fusion. Again, we chose parameters

for the glucose and galactose responses based on fits to the steady state induction and

repression population data (Figs. 2.3 & 2.4). As predicted, the amplitude responses of

the two strains were strikingly similar (Figure 3.4), especially considering the significant

difference in their galactose sensitivity.

To further validate our theory, we tested the glucose repression response times

of each strain by loading them into a microfluidic device and subjecting them to a 10 hr

induction pulse of galactose followed by a 10 hr repression pulse of glucose. Cellular flu-

orescence corresponding to Gal1p-CFP expression was measured and plotted versus time

(Fig. 3.3 left). Where these trajectories peaked was determined as the onset of the glu-

cose repression response. To aid in peak detection, the raw fluorescence trajectories were

smoothed using a 5 point 1D averaging filter. The time value of the peak point for each tra-

jectory was then subtracted from the time value when glucose was introduced to determine

the response delay time for each strain (Fig. 3.3 right). YPH499 cells had a delay time of

0.583 hrs while K699 cells had a delay of 0.167 hrs, a 3.5 fold increase in response speed.

The quantitative similarity between the computational model and experimental



86

Figure 3.3: (left) Fluorescence trajectories of Gal1p-CFP expression in S. cerevisiae YPH499 (blue) and
K699 (red) cells under a induction/repression double pulse experiment. The vertical black line represents
the time at which the media state was switched from induction (galactose) to repression (glucose).
(right) Glucose response delay times for S. cerevisiae YPH499 and K699 cells.

dynamic profiling results was truly impressive (Fig. 3.4), confirming both the existence

of an informational filter as well as specific kinetic differences between the test strains. In

addition to the amplitude and phase lag profiles, our model was able to predict several other

experimentally observed differences between the strains. First, the average fluorescence was

observed to be much higher in the K699 strain than in YPH499, a fact that suggests wild-

type cells produce more GAL1p. Numerical simulations of our model corroborate this

hypothesis and further suggest that it can explain the growth rate differences observed

between the two strains during the trials. During the periodic stimulation, the K699 cells

grew significantly faster than YPH499, with average on-chip doubling times of 6 hrs and

8 hrs, respectively. Our model suggests that while the amount of glucose metabolized by

K699 is lower than that of YPH499, the increased level of GAl1p allows K699 to metabolize

so much more galactose than YPH499 such that the total amount of both sugars metabolized
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Figure 3.4: Frequency response profiles generated from experimental and computer simulated data.
YPH499 data is shown as blue lines with circles. K699 data is shown as red lines with squares. Error
bars for experimental data are calculated as standard error of the mean. Error bars for the first two K699
data points (corresponding to the lowest two frequencies) are omitted due to small sample population.
Error bars for the last two data points (corresponding to the highest two frequencies) are omitted because
fluctuations in gene expression responses at these frequencies were indistinguishable from noise.

is much greater in K699.
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3.4 Conclusions

We have demonstrated the utility of a novel approach to studying biological sys-

tems, which combines computational analysis and dynamic expression data in a fluctuating

environment to reveal defining network properties. Our results highlight the importance

of studying organisms in more natural, dynamic environments, and its role in developing

a deeper understanding of the complex networks that have evolved to ensure survival in

non-static conditions. In addition, our model suggests an important interplay of the galac-

tose and glucose utilization networks that optimizes cellular viability in such environment

and there is increasing interest in further probing each network by investigating how other

regulatory components contribute to the cellular response. Moreover, given the flexibility

of our platform, focus is now placed on analyzing network responses to other types of fluc-

tuating signals should they uncover additional network properties previously masked by

steady-state analysis methods. Thus, using our approach, it is now possible to probe the

networks of many model organisms, obtaining insight into the dynamic behavior of biolog-

ical systems in their native habitats, uncovering previously unknown, yet information rich

diversity of cellular regulatory phenomena.
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Summary and Future Directions

4.1 Review

In this work I built foundational tools for complementing computational studies of

single-cell dynamics. Toward this end, I developed and tested several microfluidic platforms

capable of imaging isolated cellular populations under varying environmental conditions

with high temporal resolution. Although not specifically used for the focus of this work,

much of the technology survives and is being applied to other studies conducted by other

members of my research group.

Most importantly, I developed a fluidic platform that is the first of many to repli-

cate the dynamic environments that are commonplace throughout the natural world. Utiliz-

ing this unique platform, I discovered that the galactose utilization system, when perturbed

by oscillations in external glucose concentration, functions as a rudimentary information fil-

ter whose response bandwidth may be controlled by the temporal constancy of the cell cycle.

In addition, by applying a common engineering practice to the analysis of gene regulation,

my colleagues and I have revealed that the coupling between the primary metabolic path-
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ways in yeast, glucose and galactose metabolism, run far deeper than the simple boolean

logic commonly associated with catabolite repression. Instead, the two pathways serve to

complement each other in a dynamic environment, accounting for any kinetic deficiencies,

and optimizing the viability of the cellular system as a whole.

4.2 Significance

Continued advancement in systems and quantitative biology relies on the devel-

opment of experimental technologies that both complement and validate computational

models. Many prior studies up until now have either utilized static (steady-state) measures

of gene expression, or relied upon snap-shots of similar, but nonidentical populations of

cells. In a similar thread, the existing literature tends to focus only on simple dynamic

inputs and responses to those inputs, when in fact biological systems may experience wildly

complex and dynamic stimuli in their natural environments. In order to proceed, the ability

to track time evolved gene expression in single-cells in response to dynamic perturbation is

paramount. The work performed here signifies a major step towards this.

4.3 Future directions

While the T2µC and the data collected with S. cerevisiae is a major advancement

towards the quantitative analysis of biological systems, several questions remain unan-

swered. For instance, the galactose system of S. cerevisiae was perturbed with a purely

sinusoidal waveform of glucose. Discussions with colleagues of mine indicate that similar, if

not more, data could be extracted from high frequency pulses to the system. Moreover, it

would be equivalently interesting to study cellular responses to pure environmental “noise”,
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or hybrid waveforms with both sinusoidal components followed by random fluctuations. An

even more interesting test would be to see if prolonged exposure to oscillatory nutrient

perturbation could entrain the cell cycle or even bias a population towards a subgroup that

bares a specific phenotype.

While the above proposed work serves to further test the responsiveness of the

galactose system as a whole, and to what perturbation it is best adapted to respond to,

one could equally head in the opposite direction and analyze components of the network

in isolation. This would allow researchers to gain better insight into how simple dynamic

processes lead to globally complex ones, helping to improve predictive models of the system.

Lastly, other reasonably well known pathways such as glucose repression, oxidative stress,

alpha mating, filamentation, and more could be studied in the like, to the point where

S. cerevisiae would become the first organism to be fully characterized from a dynamic

standpoint.

Finally, a noted limitation of the current platform is that it is only capable of

observing one microcolony of cells under one specific perturbation. To this end, it is neces-

sary to parallelize the platform to allow for either the simultaneous screening of genetically

different microcolonies, parallel perturbation probes, or both. While the XLC and dynamic

gradient devices I presented can be easily adapted to account for the former two scenar-

ios, complete parallelization would require surmounting current limitations in microfluidic

device fabrication and flow control methods.
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4.4 Closing

As a whole, this work integrates mathematical and engineering theory, as well as

advanced microtechnology, to address scientific questions. The tools developed here will

serve to collect previously unreachable answers and help to ask new and more insightful

questions. Lastly, the knowledge contributed by this work and related studies will signifi-

cantly augment our knowledge of biological processes and how they result in a complex and

dynamic behavior.



A

MOCA: Microfluidic Open Circuit

Analyzer

A.1 Basic description, requirements, and concepts

The name is pronounced like the chocolate flavored espresso drink, but it is not

as tasty. MOCA stands for Microfluidic Open Circuit Analyzer and is a Matlab routine

for simulating flows in microfluidic channel networks that do not possess digital control

elements such as on-chip valves.

The core of the code is the solution of the linear system of equations that represent

the on-chip pressures and flowrates on an interconnected network of microchannels. This

only constitutes about 50 lines of code. The remaining amount is devoted to making the

algorithm general enough to use for nearly any microfluidic network and producing human

readable textual and graphical displays of simulation results.
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A.1.1 Requirements

The primary routine uses only core Matlab functions and should be able to run

on Matlab version 6 and higher. The graphical display uses some gui elements available

through Matlab’s GUIDE utility and may only run on platform versions 7 and higher. At

the time of this writing the user interface requires that network model specification be

entered by hand. A graphical interface for defining network connectivity and geometry is

planned and will be made available once complete.

A.1.2 Concepts

When developing “analog” microfluidic devices, a microfluidic designer often reaches

the following solution for the Navier-Stokes equations of fluid motion,

∆P = Q ·
(

8µL

πr4

)
(A.1)

where r and L are the radius and length or a cylindrical pipe, respectively. This is remark-

ably similar to Ohm’s law for analog electrical circuits,

V = I ·R (A.2)

where pressure, P , flow rate, Q, and the lumped material and geometric constants fall into

the roles of potential, current, and resistance, respectively. A similar analysis done on a

channel with a rectangular cross-section[10] yields,

∆P = Q ·
(

12µL

wd3

)
· α (A.3)

where,

α =

1− a

192
π5

∞∑
n=1,3,5

1
n5

tanh
(

nπ

2a

)−1

(A.4)
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and,

a =
d

w
(A.5)

Note for small values of a, i.e. w � d, α tends toward unity and the fluidic resistance

through such a rectangular channel is simply,

Rf =
12µL

wd3
(A.6)

While Eqns. A.3 to A.6 are adequate to describe flow through a single microfluidic

channel, the majority of microfluidic devices are comprised of complex networks of inter-

connected channels. Solving the system of equations derived from these complex networks

by hand can be very time consuming endeavor. This is where the MOCA aids the designer.

2

6
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5
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d

3

1

b

a

Figure A.1: Node/Segment schematic of a fluidic h-cross

For example, the fluidic network shown in figure A.1, an h-cross, is the simplest

network that best demonstrates the MOCA’s usefulness.Performing a microfluidic open

circuit analysis as described above gives the following equation for the internal nodes 2 and
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5,

 P2

P5

 =

 Gabc −Gc

−Gc Gcde


−1  Ga Gb 0 0

0 0 Gd Ge





P1

P3

P4

P6


(A.7)

or,

Pinternal = G−1
internalGexternalPexternal (A.8)

where,

Gi =
1
Ri

(A.9)

and,

Gabc = Ga + Gb + Gc (A.10)

Once the internal node pressures Pinternal are known, all the segment flows in the device

are determined using the following equation.



Qa

Qb

Qc

Qd

Qe


=



Ga 0 0 0 0

0 Gb 0 0 0

0 0 Gc 0 0

0 0 0 Gd 0

0 0 0 0 Ge





1 −1 0 0 0 0

0 1 −1 0 0 0

0 1 0 0 −1 0

0 0 0 1 −1 0

0 0 0 0 1 −1





P1

P2

P3

P4

P5

P6



(A.11)

or,

Qi = GijCjkPk (A.12)

where Gij is a matrix with the segment condunctance values as elements and Cjk is a

constant matrix that specifies segment connections between the nodes Pk.
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Note there are several major assumptions made by the MOCA. First, all channels

simulated have simple cross sectional geometry; rectangular with smooth walls. Complex

topologies, such as curved channels or channels with corrugated walls cannot be simulated

and approximations for the changes in flow characteristics must be made by the user.

Second, materials compressibility is assumed negligible. Under typical operating pressures

(0–20 inH2O), PDMS, a silicone rubber used for rapid prototyping of devices, behaves as

if it were as solid as glass. Lastly, the interaction of other transport forces, such as forced

convection by thermal transfer, are not accounted for.

A.2 Simulating a device

To simulate flow for any microfluidic system, the user must supply the MOCA the

following,

• pressure values at external node points,

• node linkages that form flow segments,

• and geometric specifications for each segment.

This is done by specifying two Matlab cell arrays, press which defines the pressure nodes,

and conn which specifies both node/segment connectivity, and segment geometry. For the

h-cross system described above this would look like,

press = {
[0 0], 15, ’inh2o’, ’node 1’;
[0 1], nan, ’’, ’node 2’;
[0 2], 10, ’inh2o’, ’node 3’;

5 [1 0], 15, ’inh2o’, ’node 4’;
[1 1], nan, ’’, ’node 5’;
[1 2], 12, ’inh2o’, ’node 6’;

};
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10 conn = {
[1 2], 1.000, 0.075, 0.025, ’a’, ’segment a’;
[2 3], 1.000, 0.075, 0.025, ’b’, ’segment b’;
[2 5], 3.000, 0.075, 0.025, ’c’, ’segment c’;
[4 5], 1.000, 0.075, 0.025, ’d’, ’segment d’;

15 [5 6], 1.000, 0.075, 0.025, ’e’, ’segment e’;
};

The rows of the press cell array represent unique nodes within the fluidic system,

and are listed in the order the nodes are assigned – e.g. the first row is for node id 1. Each

row contains five columns: a vector of xy coordinates (for display purposes), the pressure

value at the node, the pressure units, and a brief description of the node point – e.g. “cell

inlet port”.

The rows of the conn cell array represent unique segments within the fluidic system.

Each row contains six columns. The first column specifies which two nodes the segment

connects. Note the numbers in this vector represent node ids and not spatial coordinates.

The next three columns define the geometry of the segment, length, width, and depth,

respectively, in units of millimeters. The fifth column is a segment is an alphanumeric

segment id used for graphical display. The last column is used for a brief description of the

segment – e.g. “switch output channel”.

Simulating flow is done by typing moca(conn, press) at the Matlab command

prompt. This will generate the following output,

>> moca(conn, press)
segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)
a:segment a 0.0456 45.6329 24.3376 0.0411 1.000 0.075 0.025
b:segment b 0.0504 50.4364 26.8994 0.0372 1.000 0.075 0.025

5 c:segment c -0.0048 -4.8035 -2.5618 1.1710 3.000 0.075 0.025
d:segment d 0.0312 31.2225 16.6520 0.0601 1.000 0.075 0.025
e:segment e 0.0264 26.4191 14.0902 0.0710 1.000 0.075 0.025
node Pa inh2o psi
1 3735.9900 15.0000 0.5417

10 2 3144.4583 12.6250 0.4559
3 2490.6600 10.0000 0.3611
4 3735.9900 15.0000 0.5417
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5 3331.2578 13.3750 0.4830
6 2988.7920 12.0000 0.4334

along with the following figure,

Figure A.2: Graphical output of a MOCA simulation of an h-cross microfluidic system. The tooltip is
displayed when hovering the mouse pointer over the node label. Similar tooltips are available for the
segment labels.

Note, the reason that segment “c” has a negative flowrate in the textual output

is due to it’s direction in the graphical display. The segment was defined with a positive

direction as leaving node 2 and entering node 5. However, with the pressures specified,

simulated flow runs in the reverse direction, hence the negative value. If the segment were

specified going the other way, e.g. from node 5 to node 2, the flow rate value would be
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positive.

In the graphical display of the simulation results, the magnitudes and directions of

flow are indicated by the width and direction of arrows connecting node points, respectively.

For convenience the maximum and minimum flow rate values are displayed in the upper

left hand corner of the figure window. In addition, when the mouse cursor is hovered over a

node or segment id label, information about that element is displayed in a tooltip bubble.

This currently is restricted to the element label provided in the last columns of press and

conn and the node pressure, or segment flowrate.

A.3 Common approximations

A.3.1 Channels in parallel

At times it may be necessary to simplify the conceptual fluidic network to reduce

display complexity. This generally happens when there are multiple channels in parallel

such as the feeding channels for the T2µC, or in linear gradient mixers. Reducing parallel

channels is done in much the same way parallel resistances are reduced in electric circuits.

For instance, the flow through a parallel bed of channels is equivalent to the sum

of flow through all its constituent channels,

Qtot =
∑
i=1

Qi =
∑
i=1

Pi

Ri
(A.13)

Assuming that the pressure drop over all the channels is contant,

Qtot = P
∑
i=1

1
Ri

= P
∑
i=1

Gi (A.14)

where for rectangular channels,

∑
i=1

Gi = Geff =
weffd3

eff

12µLeff
(A.15)
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In the case of identical parallel channels, it is easier to keep deff and Leff the same as the

original depth and length. Thus,

Geff =
d3

12µL

∑
i=1

wi (A.16)

where the value of
∑

i=1 wi is the width specified for the “effective” channel segment in

conn.

A.3.2 Channels in series

Multiple channels with varying geometry placed in series can also be reduced to a

single “effective” channel. In this case the pressure drop over the entire series is,

Ptot =
∑
i=1

QiRi (A.17)

As before, flow though the effective unit should be conserved such that,

Ptot = Qtot

∑
i=1

Ri = Qtot

∑
i=1

12µLi

wid3
i

(A.18)

where,

Reff =
∑
i=1

12µLi

wid3
i

(A.19)

Under these circumstances it is easier to convert the geometry of all channels to be equivalent

in width and depth, thus varying only in length to maintain the channel resistance. Thus,

Reff =
12µ

wd3

∑
i=1

Li (A.20)

A.3.3 Valved channels

Although not specifically designed to handle “digital” control of fluid flow, the

net affects of having integrated flow valves in microfluidic devices can be simulated. This
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can be done by either setting the channel depth to zero, or the channel length to infinity

(Inf). Under these circumstances the MOCA will display a dashed line for the channel in

the graphical output indicating no flow through the segement.

A.4 MOCA models for devices used in this work

A.4.1 TµC

Model parameters and states

% loading conditions
pressld = { [0 2], 25.00, ’inh2o’, ’cells’;

[1 2], nan, ’’, ’’;
[2 1], nan, ’’, ’’;

5 [2 2], nan, ’’, ’’;
[3 0], 12.50, ’inh2o’, ’waste’;
[3 2], nan, ’’, ’’;
[3 4], 17.50, ’inh2o’, ’media’;

};
10 % operating conditions

pressop = { [0 2], 17.50, ’inh2o’, ’cells’;
[1 2], nan, ’’, ’’;
[2 1], nan, ’’, ’’;
[2 2], nan, ’’, ’’;

15 [3 0], 12.50, ’inh2o’, ’waste’;
[3 2], nan, ’’, ’’;
[3 4], 25.00, ’inh2o’, ’media’;

};
conn = { [1 2], 9.500, 0.150, 0.012, ’a’, ’cell load’;

20 [2 3], 0.320, 0.120, 0.004, ’b’, ’diode entrance’;
[2 4], 0.165, 0.044, 0.012, ’c’, ’’;
[3 4], 0.176, 0.040, 0.004, ’d’, ’diode exit’;
[4 6], 9.500, 0.040, 0.012, ’e’, ’’;
[5 6], 3.500, 0.040, 0.012, ’f’, ’waste’;

25 [6 7], 3.500, 0.040, 0.012, ’g’, ’media’;
};

Simulation Output

>> moca(conn, pressld)
segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)
a:cell load 0.0009 0.8581 0.4767 19.9269 9.500 0.150 0.012
b:diode entrance 0.0000 0.0190 0.0395 8.0977 0.320 0.120 0.004

5 c: 0.0008 0.8392 1.5893 0.1038 0.165 0.044 0.012
d:diode exit 0.0000 0.0190 0.1186 1.4846 0.176 0.040 0.004
e: 0.0009 0.8581 1.7878 5.3138 9.500 0.040 0.012
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Figure A.3: Graphical results for MOCA simulation of the TµC microfluidic device

f:waste -0.0013 -1.2601 -2.6251 1.3333 3.500 0.040 0.012
g:media -0.0004 -0.4019 -0.8373 4.1799 3.500 0.040 0.012

10 node Pa inh2o psi
1 6226.6501 25.0000 0.9029
2 5829.1885 23.4042 0.8452
3 5819.5008 23.3653 0.8438
4 5802.7992 23.2982 0.8414

15 5 3113.3250 12.5000 0.4514
6 4057.4937 16.2908 0.5883
7 4358.6550 17.5000 0.6320

20 >> moca(conn, pressop)
segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)
a:cell load -0.0001 -0.1073 -0.0596 159.4150 9.500 0.150 0.012
b:diode entrance -0.0000 -0.0024 -0.0049 64.7816 0.320 0.120 0.004
c: -0.0001 -0.1049 -0.1987 0.8305 0.165 0.044 0.012

25 d:diode exit -0.0000 -0.0024 -0.0148 11.8766 0.176 0.040 0.004
e: -0.0001 -0.1073 -0.2235 42.5107 9.500 0.040 0.012
f:waste -0.0020 -2.0238 -4.2163 0.8301 3.500 0.040 0.012
g:media -0.0021 -2.1311 -4.4398 0.7883 3.500 0.040 0.012
node Pa inh2o psi

30 1 4358.6550 17.5000 0.6320
2 4408.3377 17.6995 0.6392
3 4409.5487 17.7043 0.6394
4 4411.6364 17.7127 0.6397
5 3113.3250 12.5000 0.4514

35 6 4629.7996 18.5886 0.6713
7 6226.6501 25.0000 0.9029
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A.4.2 T2µC

Model parameters and states

% simulation of d0041 (ttmc with optimized daw switch)
press_base = { ...

[0 2], 20.00, ’inh2o’, ’input 1’;
[0 4], 10.00, ’inh2o’, ’waste s’;

5 [0 5], 8.00, ’inh2o’, ’waste c’;
[0 6], nan, ’’, ’’;
[0 7], 3.00, ’inh2o’, ’cells’;
[1 2], nan, ’’, ’’;
[2 0], 19.50, ’inh2o’, ’shunt’;

10 [2 1], nan, ’’, ’’;
[2 2], nan, ’’, ’switch interface’;
[2 3], nan, ’’, ’switch output’;
[2 4], nan, ’’, ’filter barrier channel side’;
[2 5], nan, ’’, ’filter barrier chamber side’;

15 [2 6], nan, ’’, ’chamber entrance’;
[3 2], nan, ’’, ’’;
[4 2], 20.00, ’inh2o’, ’input 2’;
[4 5], 8.00, ’inh2o’, ’waste m’;
[4 6], nan, ’’, ’’;

20 [4 7], 14.50, ’inh2o’, ’media’;
};

% defines differences between states. mostly just changes in
% applied pressures to external nodes.

25 press_load = press_base;
press_load( 5, 2:3) = { 6, ’psi’};
press_load(18, 2:3) = { 6, ’psi’};

press_op_1 = press_base;
30 press_op_1( 1, 2:3) = {25, ’inh2o’};

press_op_2 = press_base;
press_op_2(15, 2:3) = {25, ’inh2o’};

35

% geometry as l, w, d, in mm
conn = { ...

[ 3 4], 1.500, 0.100, 0.015, ’a’, ’waste c’;
[ 4 5], 1.500, 0.100, 0.015, ’b’, ’cells’;

40 [ 1 6], 3.000, 0.075, 0.015, ’c’, ’input 1’;
[ 2 11], 5.215, 0.150, 0.015, ’d’, ’waste s’;
[ 4 13], 7.875, 0.100, 0.015, ’e’, ’’;
[ 6 8], 0.500, 0.050, 0.015, ’f’, ’bypass input 1’;
[ 6 9], 0.150, 0.075, 0.015, ’g’, ’’;

45 [ 7 8], 2.000, 0.150, 0.015, ’h’, ’shunt’;
[ 8 9], 0.150, 0.120, 0.015, ’i’, ’guide channels to shunt’;

% parallel approximation.
[ 9 10], 0.200, 0.120, 0.015, ’j’, ’guide channels to chamber’;

% parallel approximation.
50 [10 11],13.500, 0.150, 0.015, ’k’, ’switch output’;

% accounts for mixing banks not explicitly modeled
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[11 12], 0.050, 0.210, 0.001, ’l’, ’feeding/filter channels’;
% parallel approximation.

[12 13], 0.600, 0.100, 0.004, ’m’, ’chamber’;
55 % only long arm modeled

[ 8 14], 0.500, 0.050, 0.015, ’n’, ’bypass input 2’;
[ 9 14], 0.150, 0.075, 0.015, ’o’, ’’;
[14 15], 3.000, 0.075, 0.015, ’p’, ’input 2’;
[13 17], 8.510, 0.100, 0.015, ’q’, ’’;

60 [16 17], 1.500, 0.100, 0.015, ’r’, ’waste m’;
[17 18], 1.500, 0.100, 0.015, ’s’, ’loading media’;

};

Simulation Output

Figure A.4: Graphical results for MOCA simulation of the T2µC microfluidic device
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>> moca(conn, press_base, ’figsize’, [500 500], ’nodesize’, 0.025)
segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)
a:waste c 0.0095 9.4883 6.3255 0.2371 1.500 0.100 0.015
b:cells 0.0117 11.6542 7.7695 0.1931 1.500 0.100 0.015

5 c:input 1 0.0014 1.3813 1.2278 2.4434 3.000 0.075 0.015
d:waste s -0.0045 -4.5213 -2.0095 2.5952 5.215 0.150 0.015
e: -0.0022 -2.1659 -1.4439 5.4539 7.875 0.100 0.015
f:bypass input 1 0.0000 0.0255 0.0340 14.6895 0.500 0.050 0.015
g: 0.0014 1.3557 1.2051 0.1245 0.150 0.075 0.015

10 h:shunt 0.0020 2.0034 0.8904 2.2461 2.000 0.150 0.015
i:guide channels 0.0021 2.0545 1.1414 0.1314 0.150 0.120 0.015

to shunt
j:guide channels 0.0048 4.7660 2.6478 0.0755 0.200 0.120 0.015

to chamber
15 k:switch output 0.0048 4.7660 2.1182 6.3733 13.500 0.150 0.015

l:feeding/filter 0.0002 0.2447 1.1653 0.0429 0.050 0.210 0.001
channels

m:chamber 0.0002 0.2447 0.6118 0.9807 0.600 0.100 0.004
n:bypass input 2 -0.0000 -0.0255 -0.0340 14.6895 0.500 0.050 0.015

20 o: -0.0014 -1.3557 -1.2051 0.1245 0.150 0.075 0.015
p:input 2 -0.0014 -1.3813 -1.2278 2.4434 3.000 0.075 0.015
q: -0.0019 -1.9212 -1.2808 6.6444 8.510 0.100 0.015
r:waste m -0.0128 -12.7820 -8.5214 0.1760 1.500 0.100 0.015
s:loading media -0.0147 -14.7032 -9.8021 0.1530 1.500 0.100 0.015

25 node Pa inh2o psi
1 4981.3200 20.0000 0.7223
2 2490.6600 10.0000 0.3611
3 1992.5280 8.0000 0.2889
4 1433.6503 5.7561 0.2079

30 5 747.1980 3.0000 0.1083
6 4756.5394 19.0975 0.6897
7 4856.7870 19.5000 0.7042
8 4755.4201 19.0930 0.6895
9 4745.5081 19.0532 0.6881

35 10 4714.8500 18.9301 0.6837
11 3087.1491 12.3949 0.4476
12 2385.8462 9.5792 0.3459
13 2103.4169 8.4452 0.3050
14 4756.5394 19.0975 0.6897

40 15 4981.3200 20.0000 0.7223
16 1992.5280 8.0000 0.2889
17 2745.4124 11.0228 0.3981
18 3611.4570 14.5000 0.5237

45 >> moca(conn, press_load, ’figsize’, [500 500], ’nodesize’, 0.025)
segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)
a:waste c -0.3332 -333.2230 -222.1487 0.0068 1.500 0.100 0.015
b:cells -0.3355 -335.4631 -223.6421 0.0067 1.500 0.100 0.015
c:input 1 0.0012 1.1518 1.0238 2.9301 3.000 0.075 0.015

50 d:waste s -0.0079 -7.9179 -3.5191 1.4819 5.215 0.150 0.015
e: 0.0022 2.2401 1.4934 5.2733 7.875 0.100 0.015
f:bypass input 1 0.0001 0.0513 0.0683 7.3156 0.500 0.050 0.015
g: 0.0011 1.1006 0.9783 0.1533 0.150 0.075 0.015
h:shunt 0.0013 1.2878 0.5723 3.4944 2.000 0.150 0.015

55 i:guide channels 0.0014 1.3903 0.7724 0.1942 0.150 0.120 0.015
to shunt
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j:guide channels 0.0036 3.5914 1.9952 0.1002 0.200 0.120 0.015
to chamber

k:switch output 0.0036 3.5914 1.5962 8.4577 13.500 0.150 0.015
60 l:feeding/filter -0.0043 -4.3265 -20.6025 0.0024 0.050 0.210 0.001

channels
m:chamber -0.0043 -4.3265 -10.8163 0.0555 0.600 0.100 0.004
n:bypass input 2 -0.0001 -0.0513 -0.0683 7.3156 0.500 0.050 0.015
o: -0.0011 -1.1006 -0.9783 0.1533 0.150 0.075 0.015

65 p:input 2 -0.0012 -1.1518 -1.0238 2.9301 3.000 0.075 0.015
q: -0.0021 -2.0865 -1.3910 6.1180 8.510 0.100 0.015
r:waste m -0.3333 -333.2998 -222.1999 0.0068 1.500 0.100 0.015
s:loading media -0.3354 -335.3863 -223.5909 0.0067 1.500 0.100 0.015
node Pa inh2o psi

70 1 4981.3200 20.0000 0.7223
2 2490.6600 10.0000 0.3611
3 1992.5280 8.0000 0.2889
4 21619.9471 86.8041 3.1349
5 41379.3103 166.1379 6.0000

75 6 4793.8788 19.2474 0.6951
7 4856.7870 19.5000 0.7042
8 4791.6313 19.2384 0.6948
9 4784.9238 19.2115 0.6938
10 4761.8214 19.1187 0.6905

80 11 3535.2704 14.1941 0.5126
12 15934.0091 63.9750 2.3104
13 20927.2398 84.0229 3.0344
14 4793.8788 19.2474 0.6951
15 4981.3200 20.0000 0.7223

85 16 1992.5280 8.0000 0.2889
17 21624.4711 86.8223 3.1355
18 41379.3103 166.1379 6.0000

>> moca(conn, press_op_1, ’figsize’, [500 500], ’nodesize’, 0.025)
90 segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)

a:waste c 0.0095 9.4845 6.3230 0.2372 1.500 0.100 0.015
b:cells 0.0117 11.6580 7.7720 0.1930 1.500 0.100 0.015
c:input 1 0.0074 7.3973 6.5753 0.4562 3.000 0.075 0.015
d:waste s -0.0050 -4.9842 -2.2152 2.3542 5.215 0.150 0.015

95 e: -0.0022 -2.1734 -1.4490 5.4350 7.875 0.100 0.015
f:bypass input 1 0.0012 1.2394 1.6526 0.3026 0.500 0.050 0.015
g: 0.0062 6.1578 5.4736 0.0274 0.150 0.075 0.015
h:shunt -0.0022 -2.2082 -0.9814 2.0379 2.000 0.150 0.015
i:guide channels -0.0009 -0.8787 -0.4881 0.3073 0.150 0.120 0.015

100 to shunt
j:guide channels 0.0052 5.2435 2.9131 0.0687 0.200 0.120 0.015

to chamber
k:switch output 0.0052 5.2435 2.3305 5.7929 13.500 0.150 0.015
l:feeding/filter 0.0003 0.2593 1.2347 0.0405 0.050 0.210 0.001

105 channels
m:chamber 0.0003 0.2593 0.6482 0.9256 0.600 0.100 0.004
n:bypass input 2 -0.0001 -0.0901 -0.1201 4.1634 0.500 0.050 0.015
o: 0.0000 0.0356 0.0317 4.7353 0.150 0.075 0.015
p:input 2 -0.0001 -0.0544 -0.0484 62.0015 3.000 0.075 0.015

110 q: -0.0019 -1.9141 -1.2761 6.6688 8.510 0.100 0.015
r:waste m -0.0128 -12.7855 -8.5237 0.1760 1.500 0.100 0.015
s:loading media -0.0147 -14.6997 -9.7998 0.1531 1.500 0.100 0.015
node Pa inh2o psi
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1 6226.6501 25.0000 0.9029
115 2 2490.6600 10.0000 0.3611

3 1992.5280 8.0000 0.2889
4 1433.8723 5.7570 0.2079
5 747.1980 3.0000 0.1083
6 5022.8563 20.1668 0.7283

120 7 4856.7870 19.5000 0.7042
8 4968.5126 19.9486 0.7204
9 4972.7517 19.9656 0.7210
10 4939.0217 19.8302 0.7162
11 3148.2297 12.6401 0.4565

125 12 2405.2026 9.6569 0.3488
13 2105.9700 8.4555 0.3054
14 4972.4617 19.9644 0.7210
15 4981.3200 20.0000 0.7223
16 1992.5280 8.0000 0.2889

130 17 2745.6192 11.0237 0.3981
18 3611.4570 14.5000 0.5237

>> moca(conn, press_op_2, ’figsize’, [500 500], ’nodesize’, 0.025)
segment ul sˆ-1 nl sˆ-1 mm sˆ-1 tau (s) l (mm) w (mm) d (mm)

135 a:waste c 0.0095 9.4845 6.3230 0.2372 1.500 0.100 0.015
b:cells 0.0117 11.6580 7.7720 0.1930 1.500 0.100 0.015
c:input 1 0.0001 0.0544 0.0484 62.0015 3.000 0.075 0.015
d:waste s -0.0050 -4.9842 -2.2152 2.3542 5.215 0.150 0.015
e: -0.0022 -2.1734 -1.4490 5.4350 7.875 0.100 0.015

140 f:bypass input 1 0.0001 0.0901 0.1201 4.1634 0.500 0.050 0.015
g: -0.0000 -0.0356 -0.0317 4.7353 0.150 0.075 0.015
h:shunt -0.0022 -2.2082 -0.9814 2.0379 2.000 0.150 0.015
i:guide channels -0.0009 -0.8787 -0.4881 0.3073 0.150 0.120 0.015

to shunt
145 j:guide channels 0.0052 5.2435 2.9131 0.0687 0.200 0.120 0.015

to chamber
k:switch output 0.0052 5.2435 2.3305 5.7929 13.500 0.150 0.015
l:feeding/filter 0.0003 0.2593 1.2347 0.0405 0.050 0.210 0.001

channels
150 m:chamber 0.0003 0.2593 0.6482 0.9256 0.600 0.100 0.004

n:bypass input 2 -0.0012 -1.2394 -1.6526 0.3026 0.500 0.050 0.015
o: -0.0062 -6.1578 -5.4736 0.0274 0.150 0.075 0.015
p:input 2 -0.0074 -7.3973 -6.5753 0.4562 3.000 0.075 0.015
q: -0.0019 -1.9141 -1.2761 6.6688 8.510 0.100 0.015

155 r:waste m -0.0128 -12.7855 -8.5237 0.1760 1.500 0.100 0.015
s:loading media -0.0147 -14.6997 -9.7998 0.1531 1.500 0.100 0.015
node Pa inh2o psi
1 4981.3200 20.0000 0.7223
2 2490.6600 10.0000 0.3611

160 3 1992.5280 8.0000 0.2889
4 1433.8723 5.7570 0.2079
5 747.1980 3.0000 0.1083
6 4972.4617 19.9644 0.7210
7 4856.7870 19.5000 0.7042

165 8 4968.5126 19.9486 0.7204
9 4972.7517 19.9656 0.7210
10 4939.0217 19.8302 0.7162
11 3148.2297 12.6401 0.4565
12 2405.2026 9.6569 0.3488

170 13 2105.9700 8.4555 0.3054
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14 5022.8563 20.1668 0.7283
15 6226.6501 25.0000 0.9029
16 1992.5280 8.0000 0.2889
17 2745.6192 11.0237 0.3981

175 18 3611.4570 14.5000 0.5237

A.5 Complete source code for moca.m

function [varargout] = moca(conn, press, varargin)
% Microfluidic Open Circuit Analyzer
% moca(conn, press, ...)
% P = moca(conn, press, ...)

5 % [P, Q] = moca(conn, press, ...)
%
% moca(conn, press) runs the routine with the segment connection data in
% conn and the node pressure data in press. Each input is a cell array
% with each row consisting of data for each segment and node for conn and

10 % press respectively.
%
% When called without output arguments, moca will default to both verbose
% (data output to the command window) and graphical results display.
% These can be overridden by setting the optional parameters ’verbose’

15 % and ’graphic’ to false.
%
% When called with output arguments, moca returns P, a vector of node
% pressures in Pa and/or Q a vector of segment flows in uL sˆ-1.
%

20 % Connectivity Data:
% conn = {[<node id 1> <node id 2>], length, width, depth, id, label}
% node id # corresponds to the row number of the specific node in
% press.
%

25 % channel dimensions (length, width, depth) should be in millimeters
%
% id should be a single character, e.g. a, b, c ..., and is used to
% label the segment in the graphical display.
%

30 % label is a brief description of the channel segment, e.g. ’media
% line’.
%
% All elements of conn must be defined (e.g. not Inf or NaN).
%

35 % Node Pressure Data:
% press = {coord (x, y), pressure value, pressure unit, label}
% coord (x, y) is a 1 x 2 integer vector containing the cartesian
% coordinates of each node. This is used for graphical results
% display.

40 %
% pressure value must be set for all ’external’ nodes, e.g. nodes
% having only one immediate neighbor for the algorithm to work
% appropriately. For ’internal’ nodes, e.g. nodes where the pressure
% is not explicitly known, the value should be set to NaN. The

45 % algorithm will solve for these values.
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%
% pressure unit can be ’inh2o’, ’psi’, or ’pa’. internally, all
% pressures are converted to ’pa’. For internal nodes, set the
% pressure unit to an empty string (’’);

50 %
% label is a brief description of the node, e.g. waste port.
%
% Optional Parameters:
% mu default: 0.001

55 % fluid viscocity value with units of Pa-s.
%
% verbose default: depends on number of output arguments
% set to true if textual simulation results are desired
%

60 % graphic default: depends on number of output arguments
% set to true if graphical simulation results are desired.
% If false, the paramters specified by ’figsize’ and
% ’nodesize’ are ignored.
%

65 % figsize default: [300 300]
% figure dimensions in pixels for graphical results display.
% this parameter is ignored if ’graphic’ is set to false.
%
% nodesize default: 0.04

70 % size of graphical labels (n x n) in normalized figure
% units. Ignored if ’graphic’ is set to false.
%
% Tip:
% if graphical display is specified, hover the mouse pointer over node

75 % and segment labels to view the pressure or flow rate for that
% particular node or segment, respectively.
%
% See moca_examples.m for conn and press specification and general usage
% examples.

80

% History:
% 2006/03/30 WLP: Created.
% 2006/03/31 WLP: Made the generation of the external and internal
% conductance matrices (GE, GI) more generic --

85 % supports external nodes with multiple connected
% segments.
% Graphic display now displays flows at or near zero
% as a dotted line without an arrow head.
% 2006/04/12 WLP: Included the full analytical solution for channel

90 % resistance from Beebe DJ, Mensing GA, and Walker
% GM. Annu Rev Biomed Eng Vol 4, p261 (2002).
% Accounts for large aspect ratio channels (e.g. when
% the hieght is >> than the width)
% 2006/07/19 WLP: Added/Fixed segment display to allow for

95 % multicharacter ids.
% 2006/09/02 WLP: Manually wrapped long lines of code so that they
% are more readable. Updated some of the comments.

% =========================================================================
100 % NO USER EDITING BEYOND THIS POINT!

opts = getopts(varargin);
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mu = parseopts(’mu’, opts, 0.001); % Pa s, fluid viscosity
iFigSz = parseopts(’figsize’, opts, [300 300]);

105 iFigWd = iFigSz(1);
iFigHt = iFigSz(2);
nNodeSz = parseopts(’nodesize’, opts, 0.04);

bVerbose= parseopts(’verbose’, opts, nargout == 0);
110 bGraphic= parseopts(’graphic’, opts, nargout == 0);

bDebug = parseopts(’debug’, opts, false);
bExpt = parseopts(’experimental’, opts, false);

% determine node connectivity and node type. External nodes are nodes that
115 % have a constrained (user set) pressure and may have any number of

% connections. Internal nodes should be undefined and set to ’nan’.

S = reshape([conn{:, 1}]’, 2, [])’; % node-segment matrix
n = unique(S); % node vector

120

ne = sort(find(˜isnan([press{:, 2}]))); % external nodes
ni = sort(find( isnan([press{:, 2}]))); % internal nodes

if bDebug, ni, ne, end;
125

% determine node segment connections and neighbor nodes
% nconn = {node, connected segments, neighbor nodes}
nconn = {};
NN = fliplr(S);

130 for i = 1:length(n),
idx = find(S == n(i));
[rw cl] = ind2sub(size(S), idx);
nconn(i, :) = {n(i), rw, NN(idx)};

end;
135 if bDebug, nconn, end;

% channel geometry
l = [conn{:, 2}]; % mm, length
w = [conn{:, 3}]; % mm, width

140 d = [conn{:, 4}]; % mm, depth
s = [conn(:, 5)]; % segment id, use cell indexing since ids can be strings

% determine which is smaller between w and d since this affects aspect
% ratio and resistance calculations

145 wold = w; dold = d;
idx = find(w < d);
tmp = w;
w(idx) = d(idx);
d(idx) = tmp(idx);

150

a = d./w; % channel aspect ratio

R = 12* l * mu./(w. * d.ˆ3); % Pa-s mmˆ-3, channel resistances
R = R.* rfact(a); % full analytical solution for resistance

155

G = 1./R; % mmˆ3 (Pa-s)ˆ-1 channel conductances

% restore the w and d vector’s to user specified values to avoid confusion
% in the verbose display
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160 w = wold; d = dold;

% build the external and internal conductance matrices.
% GI will always be diagonally symmetric and square nxn where n is the
% number of internal nodes. GE will be nxm where m is the number of

165 % external nodes driving the system.

% initialize the conductance matrices
GI = zeros(length(ni), length(ni));
GE = zeros(length(ni), length(ne));

170

% loop through the list of nodes
for i = 1:size(press, 1),

% process only the internal nodes (these are what we need to solve
% for). External nodes that are only connected to other external nodes

175 % do not affect the solution.

% if the node is internal (pressure unspecified)
if isnan(press{i, 2}),

irow = find(ni == i);
180 GI(irow, irow) = -sum(G(nconn{i, 2}));

% loop over neighbors
for j = 1:length(nconn{i, 3}),

nn = nconn{i, 3}(j); % neighbor node id
185 ns = nconn{i, 2}(j); % neighbor seg id

% add entries to the GI matix for each internal neighbor
if ismember(nn, ni),

icol = find(ni == nn);
190 GI(irow, icol) = G(ns);

GI(icol, irow) = GI(irow, icol); % symmetry of GI matrix
end;

% add entries to the GE matrix for each external neighbor
195 if ismember(nn, ne),

ecol = find(ne == nn);
GE(irow, ecol) = -G(ns);

end;

200 end; % neighbor loop
end; % internal node?

end; % node loop

P = [press{:, 2}]’;
205

% convert all pressures values to Pa
for i = 1:size(press, 1),

switch lower(press{i, 3}),
case ’inh2o’,

210 P(i) = P(i) * 1000/4.015;
case ’psi’,

P(i) = P(i) * 1000/0.145;
case ’pa’,

% do nothing
215 case ’’,

% assume internal node or units are already Pa
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% do nothing
otherwise,

error(’Unrecognized pressure unit!’);
220 end;

end;

if bDebug,
GI, GE

225 printf(’%s: %d x %d’, ’GI’, size(GI));
printf(’%s: %d x %d’, ’PI’, size(P(isnan(P))));
printf(’%s: %d x %d’, ’GE’, size(GE));
printf(’%s: %d x %d’, ’PE’, size(P(˜isnan(P))));

end;
230

% solve for unknown or unset pressures
P(isnan(P)) = inv(GI) * GE* P(˜isnan(P));

% determine segment flowrates
235 % build connectivity matrix

C = zeros(length(G), length(P));
for i = 1:size(conn, 1),

C(i, conn{i, 1}(1)) = 1;
C(i, conn{i, 1}(2)) = -1;

240 end;

% calculate flows:
Q = diag(G) * C* P; % ul sˆ-1

245

% =========================================================================
% RESULTS AND GRAPHIC DISPLAY
if nargout > 0,

if nargout == 1,
250 varargout{1} = P;

elseif nargout == 2,
varargout{1} = P;
varargout{2} = Q;

end;
255 end;

if bVerbose,
printf(’%-22s%10s%10s%10s%10s%10s%10s%10s’, ...

’segment’, ’ul sˆ-1’, ’nl sˆ-1’, ’mm sˆ-1’, ...
260 ’tau (s)’, ’l (mm)’, ’w (mm)’, ’d (mm)’);

for i = 1:size(conn, 1),
printf(’%s:%-20s%10.4f%10.4f%10.4f%10.4f%10.3f%10.3f%10.3f’, ...

conn{i, 5:6}, Q(i), Q(i) * 1000, Q(i)/w(i)/d(i), ...
abs(l(i)/(Q(i)/w(i)/d(i))), l(i), w(i), d(i));

265 end;
printf(’%-22s%10s%10s%10s’, ’node’, ’Pa’, ’inh2o’, ’psi’);
for i = 1:length(P),

printf(’%-22s%10.4f%10.4f%10.4f’, ...
num2str(i), P(i), P(i) * 4.015/1000, P(i) * 0.145/1000);

270 end;
end;

if bGraphic,
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% display the flows in a figure
275 hfig = figure;

pos = get(gcf, ’position’);
set(hfig, ’position’, [25 50 iFigWd iFigHt])

nodes = [[1:size(press, 1)]’ reshape([press{:, 1}]’, 2, [])’];
280 % segs = reshape([conn{:,2}], 4, [])’;

% build the segment coord matrix from the node-segment matrix and the
% node coords supplied in press.
segs = zeros(size(S, 1), 4);

285 for i = 1:size(press, 1),
[rw cl] = find(S == i);
for j = 1:length(rw),

offset = (cl(j)-1) * 2;
segs(rw(j), 1+offset:2+offset) = press{i, 1};

290 end;
end;

% draw the segment arrows, pointing in the direction of flow. positive
% is up and right, and is indicated by the order of the segment

295 % endpoint coordinates
x = [segs(:, 1) segs(:, 3)]; x = (x + 1)/(max(x(:)) + 2);
y = [segs(:, 2) segs(:, 4)]; y = (y + 1)/(max(y(:)) + 2);

% arrow width normalized by the max abs flow value
300 iMaxWidth = 8; % max point width for arrows

p = abs(Q); p = p/max(p) * iMaxWidth;
p(find(p < 0.5)) = 0.5;
for i = 1:length(p),

ax = x(i, :);
305 ay = y(i, :);

if Q(i) < 0,
ax = fliplr(ax);
ay = fliplr(ay);

end;
310

ahead = iMaxWidth;
if p(i) * 3 > iMaxWidth, ahead = p(i) * 3;, end;
if abs(Q(i) * 1000) > 0.0001,

annotation(hfig, ’arrow’, ax, ay, ...
315 ’headwidth’, ahead, ...

’headlength’, 12, ...
’linewidth’, p(i));

else,
annotation(hfig, ’line’, ax, ay, ...

320 ’linewidth’, p(i), ...
’linestyle’, ’:’);

end;

% display the segment label at the midpoint of the segment
325 % use a uicontrol instead of an annotation object since the tooltip

% property can be used to display the object information
if isempty(conn{i, 6}),

lbl = ’unlabeled’;
else,

330 lbl = conn{i, 6};
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end;
uicontrol(hfig, ’style’, ’text’, ...

’units’, ’normalized’, ...
’position’, [mean(ax)-nNodeSz/2, mean(ay)-nNodeSz/2, ...

335 nNodeSz, nNodeSz], ...
’string’, s(i), ...
’fontsize’, 8, ...
’fontname’, ’monotype’, ...
’fontweight’, ’bold’, ...

340 ’foregroundcolor’, [0.8 0 0], ...
’backgroundcolor’, ’k’, ...
’horizontalalignment’, ’center’, ...
’tooltipstring’, sprintf(’%s: %.3f nL sˆ-1’, ...
lbl, abs(Q(i)) * 1000) );

345 end;

% draw the node points
% convert abs coords to normalized figure units with at least one node
% spacing around the margin of the figure

350 x = nodes(:, 2); x = (x + 1)/(max(x) + 2);
y = nodes(:, 3); y = (y + 1)/(max(y) + 2);
wd = nNodeSz; ht = nNodeSz; % size of the nodes
for i = 1:size(nodes, 1);

if isempty(press{i, 4}),
355 lbl = ’unlabeled’;

else,
lbl = press{i, 4};

end;
uicontrol(hfig, ’style’, ’text’, ...

360 ’units’, ’normalized’, ...
’position’, [x(i)-wd/2, y(i)-ht/2, wd, ht], ...
’string’, num2str(nodes(i, 1)), ...
’fontsize’, 8, ...
’fontname’, ’monotype’, ...

365 ’fontweight’, ’bold’, ...
’foregroundcolor’, [0.8 0.8 0], ...
’backgroundcolor’, [0 0 0.5], ...
’horizontalalignment’, ’center’, ...
’tooltipstring’, sprintf(’%s: %.3f inh2o’, ...

370 lbl, P(i) * 4.015/1000) );
end;

% display max flow and min flow
sFlows = sprintf(...

375 ’Flow (nl sˆ{-1}):\nMax:%10.4f in %s\nMin:%10.4f in %s’, ...
max(abs(Q)) * 1000, s{find(abs(Q) == max(abs(Q)), 1)}, ...
min(abs(Q)) * 1000, s{find(abs(Q) == min(abs(Q)), 1)});

annotation(hfig, ’textbox’, [0.01, 0.51, 0.48, 0.48], ...
’string’, sFlows, ...

380 ’fitheighttotext’, ’on’, ...
’fontname’, ’courier’, ...
’linestyle’, ’none’);

end;

385 % The nested function below calculates the multiplicative factor used in
% determining the fluidic resistance in a channel with rectangular cross
% section. See Beebe DJ, Mensing GA, and Walker GM. Annu Rev Biomed Eng
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% Vol 4, p261 (2002) for more details.
function C = rfact(a, varargin)

390 if nargin == 2,
nmax = abs(varargin{2});
if ˜mod(nmax, 2)

if nmax > 2,
nmax = nmax - 1;

395 else,
nmax = nmax + 1;

end;
end;

else,
400 nmax = 99;

end;
n = [1:2:nmax];

C = [];
405 for i = 1:length(a)

C(i) = (1 - a(i) * 192/piˆ5 * sum((1./n.ˆ5). * tanh(n. * pi/2/a(i))))ˆ-1;
end;



B

IMSQT: IMage Segmentor,

Quantifier, Tracker

B.1 Overview

The work described in this dissertation required specialized multichannel imaging

for data collection and quantification. In all cases, images were taken using transmitted light

and one or more fluorescence channels. Because fluorescent reporter proteins were linked to

dynamically expressed host proteins, and fluorescently traced expression stimuli was equally

dynamic, fluorescent images could not be used for image segmentation. Instead, transmitted

light images where used, and because the microscopy system lacked phase contrast optics,

special contrast enhancement algorithms were required to separate object features from

image backgrounds. In various test cases, image objects were also tracked through time

using their object centroids. A crucially important requirement was the ability to manually

validate and correct every major step in the data analysis to ensure the utmost accuracy of

117
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the extracted data.

While commercial applications were available at the time of this writing with

similar capabilities, they lacked the ability to be fully customized and automated to suit

the needs of this work. In the end, it was more feasible to create a custom architecture for

extracting data from long time-series image sets with multiple tracked objects and multiple

quantification channels.

The IMSQT is actually a small suite of graphical subprograms written in Matlab.

The main application window, accessible by typing imsqt at the Matlab command prompt,

is the portal to each individual subprogram, as well as the location for defining analysis

parameters and saving analysis sessions for future use. The other main programs within

the suite include:

segedit A graphical segmentation editor. Displays algorithm generated object segmenta-

tion boundaries over the image(s) used for segmentation. Provides the ability to edit

segmentation masks either manually or using morphological filters and binary mask

operations.

trackedit A graphical object tracking validation tool. Displays segmented objects with

tracking identification numbers. Used to determine and account for algorithm errors,

which generally include mislabeled or lost objects.

trackview A command line tool for displaying quantified object trajectory data. Generates

multipanel figures of the data if specified, as well as outputs requested figure data for

subsequent analysis.

Internal to the application are three operating scripts that produce the desired

segmentation, quantification, and tracked object data. These are:
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imsegauto A segmentation controller.

imsegcollect An image/object data collector.

imsegtrack An object tracking routine.

B.2 Main Window

Figure B.1: The IMSQT main window
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Prior to performing any image segmentation, quantification, or tracking details of

the imaging session must be specified.

B.2.1 Experiment Path

The root directory for the imaging session. This is where subdirectories containing

individual imaging channels.

B.2.2 Correction Path

The root directory for correction image channels. This may be either an indepen-

dent directory or a subdirectory within the experiment path. The imaging channels housed

in this directory must correspond to the correction image channels specified in the channel

table.

B.2.3 Location ID

This is the location identifier for the image set being analyzed. This must be a

numeric value, and for fixed location image sets this is 0. For imaging sessions that have

multiple locations, this number must be incremented by hand. Subsequent analysis steps

(segmentation, quantification, and tracking) are designed to operate on a single location at

a time.

B.2.4 Indices

A numeric listing, that specifies the image indices to include in the analysis. Note,

the program recognizes the last 4 characters in an image file name (prior to the extension)

as the image index. For instance, an image ending in ..._0150.tiff would be interpreted
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as having index 150. Internally, the indices listing is interpreted as a Matlab vector. Thus,

indices listings “1, 2, 3, 4, 5” and “1:1:5” are equivalent. Mixed notation may also be used

— e.g. “1:1:5, 20:1:50” skips over images 6–19.

B.2.5 Regions of Interest

Figure B.2: Regions of interest definition panel in the IMSQT main window.

These are user specified areas within an image that the subsequent processing and

analysis will be performed on. These regions are global to the image set and are used on

a per channel basis, that is, each channel must specify the region of interest (ROI) that is

desired.

An ROI is defined as a rectangular area within the image using coordinates xmin,

ymin, width, and height. Coordinates must be positive and > 0. The default values for

these coordinates are “auto”, which specifies that the entire image will be used. The user

may graphically select a region of interest by specifying the channel and image ID (next to

“From”) to be used and clicking the “Select” button. ROI sets may be saved by clicking the

“Save” button. Similarly, a previously saved ROI set may be retrieved using the “Load”

button.
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B.2.6 Channels

Figure B.3: Channels definition panel in the IMSQT main window.

User specified channel settings. The details for each channel are listed by row.

Channel names must correspond to the channels acquired (image subdirectories in the

Experiment Path). If a channel line is not used, the channel name must be either blank or

“none”.

Correction Channels

Each channel has two correction image channels, “Bias” and “Flatfield”. Bias

correction images correct for acquired image noise as well as impart some background cor-

rection. Flatfield images correct for non-uniform illumination of the imaging field. The

correction channels specified for each imaging channel must exist as image subdirectories

in “Correction Path”. Correction frames are generated by averaging the available stack of

correction images. If no correction images are available, or channel correction is not needed,

the correction channel name may be set to blank or “none”.

Binning

Binning is a pixel neighborhood operation that increases the dynamic range of an

image at the cost of reducing image resolution. The value specified in the binning column of
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a channel row is the number of pixels that occupy an edge of a square neighborhood. This

neighborhood is then averaged to form a new “superpixel” in an output image. For example,

a binning value of 2 will average pixels in 2×2 neighborhoods throughout the source image

and output an image that is 1/4th the size of the source. This binning operation is in

addition to any binning that was carried out during image acquisition. The default binning

value is 1, resulting in no change to the source image. Binning is performed before the

application of correction frames.

Shift

The shift value the amount (in pixels) to translate an image so that it may be

accurately overlayed (registered) with another (typically a segmentation image). This is

typically required to compensate for optical shifts incurred when using multiple imaging

filters or xy mechanical translation with inherent hysteresis. The value is specified as a

vector of x and y pixel values. Image shifting is performed after application of correction

frames and software binning.

Role

Specifies the functions that the channel image will perform. Each channel may

only have one role.

seg A value of “seg” indicates that a channel will be used for image segmentation. There

may be only one channel in the list that has this role.

qnt A value of “qnt” indicates that a channel will be used for segmented object quantifi-

cation. Multiple channels in the list may have this role (except for the channel defined as
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the segmentation channel). If there are multiple channels listed as quantification channels,

output data is listed in the order that quantification channels are listed. For instance, if

there are two quantification channels, red and yellow, these would correspond to quantified

output channels 1 and 2, respectively.

cal A value of “cal” specifies that a channel is to be used for intensity calibration. This

feature is not fully implemented and channels labeled with this role are treated as unused

channels.

If a particular channel needs to be used for both segmentation and quantification,

it may be listed in the channel list twice with different roles for each listing. If a channel

is unused it’s role may be left blank. Unused channel data is not included in output data

tables.

ROI

Specifies, by name, the ROI that is to be processed by the segmentation and/or

quantification subroutines. Each channel may have only one specified ROI. ROIs named

must exist in the ROI list.

B.2.7 Saving and Loading IMSQT sessions

Once experiment details have been entered, it is recommended that it be saved for

later retrieval. To do this, go to File→ Save. It is best to save the file as “imsqtdata.mat” in

the directory specified in “Experiment Path” to avoid confusion with other analysis sessions

or other Matlab data files. All data entered into the main window is saved, including data

specified in the segmentation, quantification, and tracking panels.
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To retrieve a previously saved session, go to File→Open and select the appropriate

data file. Upon loading, all fields will be populated with saved values.

B.3 Image segmentation

B.3.1 Automated segmentation

Figure B.4: Segmentation panel in IMSQT main window

Output Path

This specifies the name of the directory in which all segmentation data will be

written. This path is relative to the directory specified by “Experiment Path”.

Segmentor

To maintain as much flexibility in the platform, the image segmentation controller

was designed to use segmenter modules. The dropdown list to the right of the output path

entry field contains a list of available segmentation modules. Modules are stored in,

<imsqtroot>/bin/segmentors

and new ones written by the user are automatically added to the dropdown list. Each

module is a self contained Matlab function script with the following input and output

arguments,
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function [seg, L, B, W] = segmentor_module(I, seg, ...)
% Segments objects the image I. SEG is a structure that contains
% information regarding the image being segmented with the following
% fields:

5 %
% imgid image id (frame number)
% locid scan location id
% channel channel name
% roi region of interest vector (see IMCROP)

10 % imsize size of the (cropped) image to be segmented
%
% When the algorithm returns, the following fields will be appended to
% SEG:
%

15 % objqntidx indices of object borders to quantify
% objallidx indices of all object borders
%
% The algorithm returns:
%

20 % L label matrix of segmented objects
% B binary object mask of ALL objects (incl. objs on img edge)
% W watershed region label matrix
% seg segmentation data
%

25 % Optional Arguments are dependent on the specifics of the module and are
% supplied as parameter name / value pairs in a cell array --- e.g.
% segmentor_module(I, seg, ’parameter’, value, ...).
% See VARARGIN.
... SEGMENTATION CODE HERE ...

In addition to the module script, a graphical options panel, accessible by clicking the “Op-

tions” button to the right of the segmentor list must be supplied for each segmentor. Note,

this feature may be changed to a text field for increased option specification flexibility in

upcoming versions. Currently there are five segmenter modules available,

imsegbf4

Brightfield image segmentation for yeast. Utilizes a hybrid approach that combines

the best aspects of imsegbf2 and imsegbf3.

imsegbf3

Brightfield image segmentation for yeast. Utilizes grayscale morphological reconstruc-

tion to define objects.
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imsegbf2

Brightfield image segmentation for yeast. Utilizes image contrast enhancement to

extract object boundaries.

imsegred

Fluorescent image segmentation. Segments small dark objects against a bright back-

ground, which is how yeast appear when the local environment is flooded with red

fluorescent tracer dye.

imsegbact

Brightfield / phase contrast image segmentation for bacteria. Utilizes simple intensity

thresholding for extracting connected pixel regions.

Refer to each module’s source code for algorithm details and available input options.

Each segmentor generates a segmentation file for each image in the segmentation channel.

These segmentation files are Matlab binary data files (*.mat) stored in the directory specified

by the “Output Path”. Each file is named according to the stack index it represents.

Segmentation output options

Automated segmentation results may be viewed as they are generated by checking

the box next to “Display Results”. In addition, the type of display may be chosen as

“border” or “filled area” depending on user preferences. Note, displaying segmentation

results consumes large amounts of computational overhead and will dramatically slow down

the segmentation process. Live display is only recommended for testing purposes on small

image sets. Previously generated segmentation results may be overwritten by selecting the

checking the box next to “Overwrite”. Note, once data has been overwritten, it cannot be
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reverted back to it’s original state.

Running

Automated image segmentation is started by clicking the “Segment” button. A

graphical progress meter will appear indicating the estimated amount of time remaining

before the segmentation process is complete. Once the segmentation process has been

started, it may be canceled by hitting Control-C in the Matlab command window. A more

elegant process cancelation method is planned for a future version.

B.3.2 Manual segmentation using SEGEDIT

Figure B.5: SEGEDIT manual segmentation editor



129

No automated segmentation algorithm is 100% accurate. The segmentors provided

by IMSQT are at best 95% accurate under ideal imaging conditions. When circumstances

require greater accuracy, nothing matches the power of the human eye. SEGEDIT provides

the ability to edit the automatically generated segmentation files to suit user specific appli-

cations. The editor window consist of a viewing pane, a stack slider, and display, editing,

and filtering utilities.

Viewing pane

This is the largest region of the SEGEDIT window. Here it displays the channel

image previously designated as the segmentation image along with lines that indicate the

borders of segmented objects. Existing objects are displayed using thin red lines. User

added objects appear in different colors and line thicknesses. The mask display can be

toggled on an off using the mask display button in the upper right hand corner of the

window.

Stack slider

This is the scroll bar at the bottom of the SEGEDIT window. Moving the slider

cursor allows the user to quickly jump between images in the stack. The user may also

specify which image to move to by typing it’s index in the text field between the “Prev”

and “Next” buttons. Below the stack slider are status indicators which show details of

the currently displayed image and whether or not a user requested segmentation process is

currently in progress.
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Displaying, Editing, and filtering

a b c

Figure B.6: SEGEDIT subpanels: (a) morphological operations panel, (b) object editing, and (c)
morphological filtering.

Along the right hand side of the SEGEDIT window are individual panels that

allow the user to control the segmentation display, add/modify segmented objects, and

filter objects based on simple morphological properties (Figure B.6). In each panel, if the

“Apply to All” checkbox is checked, changes made using each panel will be made to all

images in the stack.

Morphological Operations

The basic morphological operations: erode, dilate, open, and close; are available.

These are applied to the current image or whole image stack with a disk, square, or

diamond structuring element. The dimension of the structuring element, specified in

the text field next to the element dropdown list, is in pixels, and modifies the element

size in the same way that the strel Matlab command generates a structuring element

object.

Pressing the “Preview” button will overlay the results of the morphological operation

on the currently defined objects in yellow border lines. Pressing “Clear” removes the

Preview.

Pressing the “Morph” button applies the operation to the objects in the image. All
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applied morphological operations are immediately saved to disk. It is highly recom-

mended that any operation to be performed is previewed to ensure that the desired

results will be achieved.

Object Editing

ADDING Object areas may be added to the current image by clicking the “Add”

button. This switches the cursor to polygon drawing mode. An object region is added

by single clicking at vertices of a polygon and double clicking at the last vertex. The

resultant polygon will be displayed in a green outline. To finalize the added object

click the “Update” or “Update & Save” buttons. Clicking the “Update” button writes

the current object set to memory but not to file. The “Update & Save” button writes

the data to file, this step cannot be undone.

SUBTRACTING Object areas may be split or reduced by clicking the “Subtract”

button. There are two types of subtractive modes, the default “Line” subtraction,

and “Area” (polygon) subtraction. “Line” subtraction is most commonly used to

split touching objects. Subtraction lines are drawn in the same way as polygons are

(by selecting vertex points) except that the resultant object is not closed. In addition,

subtraction lines are drawn as thick blue lines.

“Area” subtraction is similar to adding objects, except that any objects that are

in contact (overlapping) as well as objects enclosed by the subtractive polygon are

removed on update. This is useful if “Apply All” is selected for removing persistent

unwanted objects from the image. Subtractive polygons are drawn in thin blue lines.

Global subtractive areas are drawn in thin light blue lines.

DELETING Any object may be selected when not in polygon or line drawing mode.
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Once highlighted, objects may be removed by simply hitting the DELETE key. The

change is not permanent until the image is updated and saved.

Filtering

The objects may be filtered based on several morphological parameters and property

values: area, perimeter, intensity, and variance. Clicking on the “histogram” button

will display a distribution of the parameter selected in the drop down box over the

objects in the currently displayed image. To filter objects, specify the range of values

in the text fields next to “From” and “To”. The values entered are inclusive. Select

“Include” to keep, or “Exclude” to remove, objects that fall within the parameter

range. As with morphological operations, the filtering process can be “Previewed”.

Objects that will remain will be highlighted with yellow border lines. The “Clear”

button turns off the preview display. The “Filter” button starts the filtration process.

Use the “Apply All” check box to specify if the filtering operation is to be applied to

the entire image set.

Shortcut Keys

Key(s) Function
Delete, or
Numpad-
Decimal

Deletes the currently selected object

→, Space, or
Numpad-6

Advances the stack one image

←, Backspace,
or Numpad-4

Reverses the stack one image

+ Enters object addition mode
- Enters object subtraction mode using current subtractive ob-

ject type
F12 or
Numpad-Enter

Updates the current image mask and saves it to file

m or Numpad-
*

Toggles mask display
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B.4 Object Quantification

Figure B.7: Object quantification panel in IMSQT main window

Output Path

This specifies where the object data will be written. The path specified is relative

to the path specified in “Experiment Path”. Object data is written in plain ASCII formatted

files and named according to image index. Each object data file contains the position and

channel quantification data for each segmented object in the image. Each object is assigned

a unique identification number on a per image basis and has the following data associated

with it,
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Column Description
CENTX x position of the object centroid
CENTY y position of the object centroid
BBOXX x position of the lower left corner of the object

bounding box
BBOXY y position of the lower left corner of the object

bounding box
BBOXW width of the object bounding box
BBOXH height of the object bounding box
AREA euclidian area of the object
PERIMNATIVE euclidian perimeter of the object (includes ob-

ject holes)
PERIMFILLED perimeter of the filled object (excludes object

holes)
PERIMCONVEX perimeter of the object’s convex hull
MEAN1 channel 1 mean intensity within the object
STD1 channel 1 pixel intensity standard deviation

within the object
MIN1 channel 1 minimum intensity value within the

object
MAX1 channel 1 maximum intensity value within the

object
BGLVL1 channel 1 background level (measured in non-

object regions)
. . . . . .
MEANn channel n mean intensity within the object
STDn channel n pixel intensity standard deviation

within the object
MINn channel n minimum intensity value within the

object
MAXn channel n maximum intensity value within the

object
BGLVLn channel n background level (measured in non-

object regions)

Output Options

Verbose

If this option is selected, data that will be saved to image object data files will also be

output to the Matlab command window. It is recommended that this be used only for

debugging purposes or on small image sets since this significantly increases processing

overhead, increasing the amount of time the procedure will take.
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Output Blob

If this option is selected, channel quantification parameters will be averaged over all

objects on a per image basis and output to a file named <locid>.blob.dat. Note,

object position and bounding box data is omitted from this data file.

Overwrite

If this option is selected, previously existing object data will be overwritten. This

cannot be undone.

Running

Image object quantification is started by clicking the “Quantify” button. A graph-

ical progress meter will appear indicating the estimated amount of time remaining before

the quantification process is complete. Once the quantification process has been started,

it may be canceled by hitting Control-C in the Matlab command window. A more elegant

process cancelation method is planned for a future version. Note, blob output will not be

generated if the quantification process is not completed.

B.5 Object Tracking

Figure B.8: Object tracking panel in IMSQT main window
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The tracking algorithm used by this application is a Matlab port of the algorithm

developed by Crocker and Grier[24]. I have made minor modifications to the source code

improving parameter specification and using native Matlab functions where possible. The

original port may be found at:

http://www.deas.harvard.edu/projects/weitzlab/matlab/

The tracking algorithm is capable of locating and descrambling objects based on

multiple parameters. For this application, only the centroid location is utilized. Future

versions will provide the option to include channel intensity and object area as descrambling

parameters.

Output Path

This specifies where the individual object data will be written. The path specified

is relative to the path specified in “Experiment Path”. Object data is written in plain

ASCII formatted files and is organized into two directories: byobj and byimg. Files stored

in the byobj directory are named according to unique object identifiers and contain data

over all images for only the object id specified. Files stored in the byimg directory are

named according to image index and contain data for all objects in each image.

Note, the tracking algorithm reassigns object identifiers and persists them for the

lifetime of the object. In addition, data columns are truncated to object position (centroid

location), area, and image intensity properties (mean intensity, standard deviation, and

background level).
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Input Options

Min Len

Specifies the minimum length of valid output trajectories. If this value is > 0 and

< 1 it is interpreted as a percentage of the longest possible trajectory (the length of

the image set). If this value is ≥ 1 it is interpreted as an absolute point length —

e.g. the trajectory must have N specified points in it’s trajectory to be valid. Invalid

trajectories are discarded.

Max Disp

Specifies the maximum displacement in pixels that an object may move between im-

ages. Note, this parameter is very sensitive. If this is set too high, the algorithm will

encounter “difficult combinatorics” and exit with an error.

Memory

Specifies the number of images that an object may be “lost” and subsequently reac-

quired. Note this may result in object mislabeling if there are frequent losses and

object relocations, increasing the work needed for trajectory validation.

Output Options

Verbose

Displays tracking algorithm progress in the Matlab command window. It is recom-

mended that this option be selected since the program has not been fully integrated

with IMSQT’s graphical progress indicators.

Overwrite

Overwrites existing tracking data.
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Running

Image object tracking is started by clicking the “Track” button. If verbose output

is selected, tracking progress will appear in the Matlab command window. Otherwise, the

system will maintain a “Busy” status until the algorithm finishes or exits with an error.

Once the tracking process has been started, it may be canceled by hitting Control-C in

the Matlab command window. Note, tracking output will not be generated if the process

is canceled or exits with an error. In addition, changing input options may change output

object identifiers. If data exists from a previous tracking run, it is recommended that it be

deleted manually before tracking objects again.

B.5.1 Tracking Validation with TRACKEDIT

Figure B.9: TRACKEDIT object tracking validation viewer
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The TRACKEDIT (pronounced TRACK-EDIT) utility allows users to validate

automatically generated trajectories. Like the SEGEDIT utility, it has a main viewing

window which displays an image with a segmentation overlay and a stack slider that allows

the user to move freely through the image set.

Starting a TRACKEDIT session

TRACKEDIT is started by typing trackedit at the Matlab command prompt.

TRACKEDIT requires two sets of data,

• segmentation data generated by automated and/or manual means

• tracked object data on a per image basis, generated by the automated tracking algo-

rithm

This information is stored within the session data file create by the main IMSQT window

(e.g. imsqtdata.mat) and should be loaded accordingly for a tracking dataset that requires

validation.

Object display

While similar to SEGEDIT, the display method is geared more toward identifying

mislabeled and “lost” objects. As in SEGEDIT, the primary segmentation masks are shown

as red outlines around cells.
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Figure B.10: A sample of TRACKEDIT object display.

If an object satisfies the trajectory length criteria, it’s unique identification number

will be displayed in green at it’s centroid location. If an object has disappeared relative to

the previous frame, a yellow outline where the object was expected to be will be shown.

If the missing object satisfies the trajectory length criteria and is still in “memory”, it’s

unique identifier will be shown in orange. Every aspect of the display can be toggled on or

off using the display control panel.

Figure B.11: The TRACKEDIT display control panel.
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Shortcut Keys

Key(s) Function
→, Space, or
Numpad-6

Advances the stack one image

←, Backspace,
or Numpad-4

Reverses the stack one image

Validating trajectories

To validate a trajectory, a user must visually inspect that the object maintains

its unique identification number throughout its lifetime in the image stack (from object

appearance to disappearance). Often objects will change ID numbers part way through a

stack either due to a gross shift in object positions, “lost” frames greater than the number

of frames allowed by the “memory” setting, or both. Under these circumstances it is

necessary to generate an object trajectory link table that associates new object IDs with

the originating object ID. This table is generated by hand, and is used by TRACKVIEW

via the subalgorithm TRACKLINK to produce extended single-cell trajectories.

The format of the trajectory link table is shown below.

IMGID OBJID
0 <objid>
: :
<ending_imgid> <ending_objid>

Note, the column headers must be included in the table. The table is formatted in plain

ASCII and is tab delimited. The linking behavior depends on the value of OBJID,

<int> The object was reassigned a new object id <int> at the specified image id.

-1 The tracking algorithm lost the object at the specified image id. The next row in the

link table specifies when the object returns and the object’s new object id (if reas-

signed). Data between the specified image id values is skipped. This functionality is
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Table B.1: A sample trajectory link table.

IMGID OBJID
48 1308
263 -1
265 2461
288 #

somewhat redundant with specifying a “memory” value when running the automated

tracking algorithm. However this provides more flexibility by allowing for variable

length “lost” frame intervals, and more accurate object recovery upon reappearance.

# The object was completely lost at the specified image id. This effectively terminates

the objects trajectory. If the object persists to the last image in the stack the last

row of the link table should list the last image id with a “#” as the object id value.

A sample link table is shown below.

Here, the object first appeared at frame 48 as object 1308. It maintained this ID until frame

263 when it was lost until frame 265 where it was recovered as object 2461. The object was

completely lost at frame 288.

Link tables should be stored in <img root>/trjdata/<locid>/byobj/lnk. This

is the default location recognized by the TRACKVIEW utility. Each file should be named

<original obj id>_<ending obj id>.txt with object IDs padded to four places with

zeros. Thus the link table file for the data above would be named 0048_2461.txt. The

first number in the name is what associates the link table to the correct object when called

from within TRACKVIEW. While not currently directly used by any trajectory utilities, it

is recommended that the terminating id and file extension of a trajectory link table file be

formatted accordingly to maintain readability.
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B.5.2 Trajectory Viewing with TRACKVIEW

Once trajectories are validated and appropriately linked, they can be viewed using

the TRACKVIEW command line utility. From within Matlab, navigate to the directory

where the imsqtdata.mat file for the imaging session is located.

Options

link

A boolean value that determines if the algorithm should apply a link table to the

object trajectory requested. The default value is false. Note, this option may be

replaced with an auto-detection method in future versions.

trjpath

A string value that specifies the location of the object tracking data relative to the

current directory. The default value is “/trjdata”.

plots

A cell array specifying the plots to display. The default value is

{’fl2’,’area’,’var2’}. Available plots are:

fln fluorescence (mean intensity) for channel n versus time.

stdn pixel standard deviation for channel n versus time.

bgn background level for channel n versus time.

varn pixel variance for channel n versus time.

area object area versus time.

perim object perimeter versus time.
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xy object centroid pixel position (x versus y).

Note, in graphic mode (see below) only the first 4 plots requested will be displayed,

however, an unlimited number of plot data sets may be requested.

smoothing

A cell array specifying if and how data should be smoothed using the RLOWESS

smoothing method. Smoothing definitions are:

lg large window smoothing.

sm small window smoothing.

dt detrended output (small window smoothing - large window smoothing)

” (matlab empty string) no smoothing for displayed data.

Smoothing requires that the smival and imival be defined. The base window size

is the value specified by smival divided by the value specified by imival. Large

smoothing windows are 2× the base window size. Small smoothing windows are 1/2

the base window size.

smival

The nominal smoothing interval in data time units — e.g. if the data is recorded in

minutes and an hour long smoothing interval is desired, this value should be set to

60.

imival

The nominal time interval between data points in data time units. The default interval

is 5 minutes.
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color

A Matlab color specification vector defining what color displayed lineseries will be.

Default is blue ([0 0 1]).

graphic

A boolean value specifying if plots should be generated. The default value is true.

Note, TRACKVIEW also outputs the data requested in a cell array if more specialized

plotting is required.

Examples

Here is the default plots for the trajectory shown in Table B.1.

>> trackview(0, 1308);

Figure B.12: Default graphical output using TRACKVIEW.

Here are the plotting results using defined plot output and smoothing.

>> trackview(0, 1308, ’plots’, {’fl2’,’fl2’,’fl2’,’fl2’}, ...
’smoothing’, {’’, ’sm’, ’lg’, ’dt’}, ’smival’, 60);
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Figure B.13: Data smoothing using TRACKVIEW.

An example of non-graphical output.

>> [f data] = trackview(0, 1308, ’graphic’, false);
>> data

data =
5

[211x1 double] [211x1 double] ’Time’ ’FL-2 (AU)’
[211x1 double] [211x1 double] ’Time’ ’Area (Pixels)’
[211x1 double] [211x1 double] ’Time’ ’C_V-2 (AU)’

10 >>

The columns of the output cell array are “x-values”, “y-values”, “x-label”, “y-label”, re-

spectively.
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B.6 Complete source code for IMSQT main window

function varargout = imsqt(varargin)
% IMSQT M-file for imsqt.fig
% IMSQT, by itself, creates a new IMSQT or raises the existing
% singleton * .

5 %
% H = IMSQT returns the handle to a new IMSQT or the handle to the
% existing singleton * .
%
% IMSQT(’CALLBACK’,hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in IMSQT.M with the given input arguments.
%
% IMSQT(’Property’,’Value’,...) creates a new IMSQT or raises the
% existing singleton * . Starting from the left, property value pairs
% are applied to the GUI before imsqt_OpeningFunction gets called. An

15 % unrecognized property name or invalid value makes property
% application stop. All inputs are passed to imsqt_OpeningFcn via
% varargin.
%
% * See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

20 % instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help imsqt
25

% Last Modified by GUIDE v2.5 14-Apr-2006 13:15:54

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

30 gui_State = struct(’gui_Name’, mfilename, ...
’gui_Singleton’, gui_Singleton, ...
’gui_OpeningFcn’, @imsqt_OpeningFcn, ...
’gui_OutputFcn’, @imsqt_OutputFcn, ...
’gui_LayoutFcn’, [] , ...

35 ’gui_Callback’, []);
if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

40 if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
45 % End initialization code - DO NOT EDIT

% --- Executes just before imsqt is made visible.
function imsqt_OpeningFcn(hObject, eventdata, handles, varargin)

50 % This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to imsqt (see VARARGIN)
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55

% Choose default command line output for imsqt
handles.output = hObject;

% set application defaults
60 handles.info = struct( ...

’path’, ’’, ...
’corrpath’, ’’, ...
’prefix’, ’’, ...
’id’, ’’, ...

65 ’locid’, 0, ...
’indices’, [0:1:0], ...
’indicesstr’, ’0:1:0’ ...

);

70

handles.channelgrid = handles.activex3;
% initialize the channels editor;
% default channels:
roi = []; roiafc = [];

75 csColName = {
’Channel’, ’Bias’, ’Flatfield’, ’Binning’, ’Shift’, ’Role’, ’ROI’;
};

csColType = {
’string’, ’string’, ’string’, ’numeric’, ’numeric’, ’string’, ’string’;

80 };
handles.channelgridcols = csColName;
handles.channelgridcoltypes = csColType;
cvChannels = {

’brite’, ’bias-g’, ’flat-bf’, 1, [0, 0], ’seg’, ’roi’;
85 ’fluor-red’, ’bias-r’, ’flat-flr’, 1, [0, 0], ’qnt’, ’roi’;

’fluor-green’, ’bias-g’, ’flat-flg’, 1, [0, 0], ’qnt’, ’roi’;
’fluor-cyan’, ’bias-b’, ’flat-flb’, 1, [0, 0], ’’, ’roi’;
’af-calib’, ’none’, ’none’, 1, [0, 0], ’cal’, ’roiafc’;
};

90 imsqt_fillgrid(handles.channelgrid, csColName, cvChannels)
handles.channels = imsqt_parsechannelgrid(handles);

handles.roigrid = handles.activex4;
% initialize the roi editor

95 csColName = {
’Name’, ’xmin’, ’ymin’, ’width’, ’height’;
};

csColType = {
’string’, ’numeric’, ’numeric’, ’numeric’, ’numeric’;

100 };
handles.roigridcols = csColName;
handles.roigridcoltypes = csColType;
cvROIs = {

’roi’ , ’auto’, ’auto’, ’auto’, ’auto’;
105 ’roiafc’, ’auto’, ’auto’, ’auto’, ’auto’;

};
imsqt_fillgrid(handles.roigrid, csColName, cvROIs)
handles.rois = imsqt_parseroigrid(handles.roigrid);

110 % segmentation panel defaults
handles.segment.path = ’/segdata’;
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handles.segment.algorithm = ’imsegbf2’;
% initialize segmenter options to nothing ... this will be populated with
% defaults if the user does not specify anything using the segopts gui.

115 handles.segment.opts = {};
handles.segment.optsdef = {...

’thresh’, 0.4, ...
’smoothkernels’, [2 15], ...
’objradius’, [2 15], ...

120 ’area’, [0 inf], ...
’eccentricity’, [0 inf], ...
’solidity’, [0 1], ...
’intensity’, [], ...
};

125

handles.segment.display = false;
handles.segment.displaymethod = ’border’;
handles.segment.overwrite = false;

130 % quantification panel defaults
handles.quant.path = ’/objdata’;
handles.quant.verbose = false;
handles.quant.blobout = false;
handles.quant.overwrite = false;

135

% tracking panel defaults
handles.track.path = ’/trjdata’;
handles.track.minlength = 0.5;
handles.track.maxdisp = 5;

140 handles.track.mem = 10;
handles.track.verbose = false;
handles.track.overwrite = false;

% data for doing file loading and saving
145 handles.uidata.appname = get(handles.figure1, ’name’);

handles.uidata.file = ’’;
handles.uidata.cwd = cd;

% populate the segmentors list
150 p = mfilename(’fullpath’);

p = fileparts(p);
stSegmentors = dir([p filesep ’bin’ filesep ’segmentors’ filesep ’ * .m’]);
sSegmentors = cell(length(stSegmentors), 1);
for i = 1:length(stSegmentors),

155 [fpath, fname, fext] = fileparts(stSegmentors(i).name);
sSegmentors{i} = fname;

end;
set(handles.pmnSegSegmenter, ’String’, sSegmentors);

160 % Update handles structure
guidata(hObject, handles);

% UIWAIT makes imsqt wait for user response (see UIRESUME)
% uiwait(handles.figure1);

165

% --- Outputs from this function are returned to the command line.
function varargout = imsqt_OutputFcn(hObject, eventdata, handles)
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% varargout cell array for returning output args (see VARARGOUT);
170 % hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
175 varargout{1} = handles.output;

function edtExptPath_Callback(hObject, eventdata, handles)
180 % hObject handle to edtExptPath (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtExptPath as text
185 % str2double(get(hObject,’String’)) returns contents of edtExptPath

% as a double
handles.info.path = get(hObject, ’string’);
guidata(hObject, handles);

190 % --- Executes during object creation, after setting all properties.
function edtExptPath_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtExptPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

195

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
200 set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in pbExptPathBrowse.
205 function pbExptPathBrowse_Callback(hObject, eventdata, handles)

% hObject handle to pbExptPathBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sDir = uigetdir;

210 if sDir ˜= 0,
set(handles.edtExptPath, ’string’, sDir);

end;

215 function edtSegDataPath_Callback(hObject, eventdata, handles)
% hObject handle to edtSegDataPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

220 % Hints: get(hObject,’String’) returns contents of edtSegDataPath as text
% str2double(get(hObject,’String’)) returns contents of
% edtSegDataPath as a double
handles.segment.path = get(hObject, ’string’);
guidata(hObject, handles);

225
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% --- Executes during object creation, after setting all properties.
function edtSegDataPath_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtSegDataPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

230 % handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

235 get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);

end

240

function edtObjDataPath_Callback(hObject, eventdata, handles)
% hObject handle to edtObjDataPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

245

% Hints: get(hObject,’String’) returns contents of edtObjDataPath as text
% str2double(get(hObject,’String’)) returns contents of
% edtObjDataPath as a double
handles.quant.path = get(hObject, ’String’);

250 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function edtObjDataPath_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtObjDataPath (see GCBO)

255 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

260 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

265

function edtTrjDataPath_Callback(hObject, eventdata, handles)
% hObject handle to edtTrjDataPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

270 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtTrjDataPath as text
% str2double(get(hObject,’String’)) returns contents of
% edtTrjDataPath as a double

275

% --- Executes during object creation, after setting all properties.
function edtTrjDataPath_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtTrjDataPath (see GCBO)

280 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
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% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

285 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

290

function edtExptID_Callback(hObject, eventdata, handles)
% hObject handle to edtExptID (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

295 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtExptID as text
% str2double(get(hObject,’String’)) returns contents of edtExptID as
% a double

300

% --- Executes during object creation, after setting all properties.
function edtExptID_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtExptID (see GCBO)

305 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

310 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

315

function edtExptPrefix_Callback(hObject, eventdata, handles)
% hObject handle to edtExptPrefix (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

320 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtExptPrefix as text
% str2double(get(hObject,’String’)) returns contents of
% edtExptPrefix as a double

325

% --- Executes during object creation, after setting all properties.
function edtExptPrefix_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtExptPrefix (see GCBO)

330 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

335 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
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340

function edtLocID_Callback(hObject, eventdata, handles)
% hObject handle to edtLocID (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

345 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtLocID as text
% str2double(get(hObject,’String’)) returns contents of edtLocID as
% a double

350

% --- Executes during object creation, after setting all properties.
function edtLocID_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtLocID (see GCBO)

355 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

360 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

365

function edtIdxStart_Callback(hObject, eventdata, handles)
% hObject handle to edtIdxStart (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

370 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtIdxStart as text
% str2double(get(hObject,’String’)) returns contents of edtIdxStart
% as a double

375

% --- Executes during object creation, after setting all properties.
function edtIdxStart_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtIdxStart (see GCBO)

380 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

385 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

390

function edtIdxStep_Callback(hObject, eventdata, handles)
% hObject handle to edtIdxStep (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

395 % handles structure with handles and user data (see GUIDATA)
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% Hints: get(hObject,’String’) returns contents of edtIdxStep as text
% str2double(get(hObject,’String’)) returns contents of edtIdxStep
% as a double

400

% --- Executes during object creation, after setting all properties.
function edtIdxStep_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtIdxStep (see GCBO)

405 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

410 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

415

function edtIdxStop_Callback(hObject, eventdata, handles)
% hObject handle to edtIdxStop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

420 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtIdxStop as text
% str2double(get(hObject,’String’)) returns contents of edtIdxStop
% as a double

425

% --- Executes during object creation, after setting all properties.
function edtIdxStop_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtIdxStop (see GCBO)

430 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

435 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

440

% --- Executes on button press in pbSegment.
function pbSegment_Callback(hObject, eventdata, handles)
% hObject handle to pbSegment (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

445 % handles structure with handles and user data (see GUIDATA)

if ˜isempty(imsqt_getexptpath(handles)),
handles = imsqt_collectinfo(handles);
if isempty(handles.segment.opts) || ˜iscell(handles.segment.opts),

450 handles.segment.opts = handles.segment.optsdef;
end;

handles.channels = imsqt_parsechannelgrid(handles);
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handles.rois = imsqt_parseroigrid(handles.roigrid);
455

bProceed = true;
% set(hObject, ’enable’, ’off’); drawnow;

if handles.segment.overwrite,
btn = questdlg(...

460 [’The settings you have chosen will replace any existing data.’...
’ Do you wish to proceed?’], ...
’Overwrite Data?’, ’Yes’, ’No’, ’No’);

bProceed = strcmpi(btn, ’Yes’);
end;

465 if bProceed,
imsegauto(handles.info, ...

handles.segment, ...
handles.channels, ...
handles.rois)

470 end;
% set(hObject, ’enable’, ’on’); drawnow;

guidata(hObject, handles);
else

475 errordlg(’Experiment path information not specified!’, ’Error’);
end;

% --- Executes on button press in pbQuantify.
function pbQuantify_Callback(hObject, eventdata, handles)

480 % hObject handle to pbQuantify (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if ˜isempty(imsqt_getexptpath(handles)),

handles = imsqt_collectinfo(handles);
485 if isempty(handles.segment.opts),

handles.segment.opts = handles.segment.optsdef;
end;

handles.channels = imsqt_parsechannelgrid(handles);
490 handles.rois = imsqt_parseroigrid(handles.roigrid);

bProceed = true;
% set(hObject, ’enable’, ’off’); drawnow;

if handles.quant.overwrite,
495 btn = questdlg(...

[’The settings you have chosen will replace any existing data.’...
’ Do you wish to proceed?’], ...
’Overwrite Data?’, ’Yes’, ’No’, ’No’);

bProceed = strcmpi(btn, ’Yes’);
500 end;

if bProceed,
imsegcollect(handles.info, ...

handles.segment, ...
handles.quant, ...

505 handles.channels, ...
handles.rois);

end;
% set(hObject, ’enable’, ’on’); drawnow;

510 guidata(hObject, handles);
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else
errordlg(’Experiment path information not specified!’, ’Error’);

end;

515

function edtTrjDatapath_Callback(hObject, eventdata, handles)
% hObject handle to edtTrjDatapath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

520

% Hints: get(hObject,’String’) returns contents of edtTrjDatapath as text
% str2double(get(hObject,’String’)) returns contents of
% edtTrjDatapath as a double
handles.track.path = get(hObject, ’string’);

525 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function edtTrjDatapath_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtTrjDatapath (see GCBO)

530 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

535 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

540

% --- Executes on button press in pbTrack.
function pbTrack_Callback(hObject, eventdata, handles)
% hObject handle to pbTrack (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

545 % handles structure with handles and user data (see GUIDATA)
if ˜isempty(imsqt_getexptpath(handles)),

handles = imsqt_collectinfo(handles);

handles.channels = imsqt_parsechannelgrid(handles);
550

bProceed = true;
% set(hObject, ’enable’, ’off’); drawnow;

if handles.track.overwrite,
btn = questdlg(...

555 [’The settings you have chosen will replace any existing data.’...
’ Do you wish to proceed?’], ...
’Overwrite Data?’, ’Yes’, ’No’, ’No’);

bProceed = strcmpi(btn, ’Yes’);
end;

560 if bProceed,
imsegtrack(handles.info, ...

handles.quant, ...
handles.track, ...
handles.channels);

565 end;
% set(hObject, ’enable’, ’on’); drawnow;
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guidata(hObject, handles);
else

570 errordlg(’Experiment path information not specified!’, ’Error’);
end;

% --- Executes on selection change in pmnSegSegmenter.
function pmnSegSegmenter_Callback(hObject, eventdata, handles)

575 % hObject handle to pmnSegSegmenter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns pmnSegSegmenter contents
580 % as cell array contents{get(hObject,’Value’)} returns selected item

% from pmnSegSegmenter

contents = get(hObject, ’string’);
handles.segment.algorithm = contents{get(hObject, ’value’)};

585 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function pmnSegSegmenter_CreateFcn(hObject, eventdata, handles)
% hObject handle to pmnSegSegmenter (see GCBO)

590 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.

595 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

600

% --- Executes on button press in pbSegOpts.
function pbSegOpts_Callback(hObject, eventdata, handles)
% hObject handle to pbSegOpts (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

605 % handles structure with handles and user data (see GUIDATA)

handles.segment.opts = imsqt_segopts(’segmenter’, ...
handles.segment.algorithm);

guidata(hObject, handles);
610

% --- Executes on button press in chkQntVerbose.
function chkQntVerbose_Callback(hObject, eventdata, handles)
% hObject handle to chkQntVerbose (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

615 % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkQntVerbose
handles.quant.verbose = get(hObject, ’value’);
guidata(hObject, handles);

620

% --- Executes on button press in chkDispSeg.
function chkDispSeg_Callback(hObject, eventdata, handles)
% hObject handle to chkDispSeg (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
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625 % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkDispSeg

630 % --- Executes on selection change in pmnDispMethod.
function pmnDispMethod_Callback(hObject, eventdata, handles)
% hObject handle to pmnDispMethod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

635

% Hints: contents = get(hObject,’String’) returns pmnDispMethod contents as
% cell array contents{get(hObject,’Value’)} returns selected item
% from pmnDispMethod

640

% --- Executes during object creation, after setting all properties.
function pmnDispMethod_CreateFcn(hObject, eventdata, handles)
% hObject handle to pmnDispMethod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

645 % handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

650 get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);

end

655

function edtMinTrajLen_Callback(hObject, eventdata, handles)
% hObject handle to edtMinTrajLen (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

660

% Hints: get(hObject,’String’) returns contents of edtMinTrajLen as text
% str2double(get(hObject,’String’)) returns contents of
% edtMinTrajLen as a double

665

% --- Executes during object creation, after setting all properties.
function edtMinTrajLen_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtMinTrajLen (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

670 % handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

675 get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);

end

680
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% --- Executes on button press in pbSelectROI.
function pbSelectROI_Callback(hObject, eventdata, handles)
% hObject handle to pbSelectROI (see GCBO)

685 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% select the roi from the imaging channel specified. user supplies name of
% roi after selection is complete.

690

sExptPath = imsqt_getexptpath(handles);
if ˜isempty(sExptPath),

sChName = get(handles.edtROIDefCh, ’string’);
iChImgID = str2num(get(handles.edtROIDefIdx, ’string’));

695 iLocID = str2num(get(handles.edtLocID, ’string’));
I = getimg(sChName, iLocID, iChImgID, ’basepath’, sExptPath);

hFigCrop = figure;
[I, roidata] = imcrop(imadjust(I));

700 close(hFigCrop);
clear I hFigCrop;

roiname = inputdlg(’ROI name:’, ’Specify ROI’, 1, {’roi’});

705 handles.rois = imsqt_roiaddreplace(handles.rois, ...
{roiname{1}, roidata});

imsqt_roigridupdate(handles);
guidata(hObject, handles);

else,
710 errordlg(’All experiment path fields must be specified!’, ’Error’);

end;

% -------------------------------------------------------------------------
715 function sExptPath = imsqt_getexptpath(handles)

% sExptPath = [];
% csStrings = get([handles.edtExptPath, ...
% handles.edtExptPrefix, ...
% handles.edtExptID], ’string’);

720 %
% % only assign the path if all the fields have been set
% if isempty(strmatch(’’, csStrings, ’exact’)),
% sExptPath = sprintf(’%s%s%s%s’, csStrings{1}, filesep, csStrings{2:3});
% end;

725 sExptPath = get(handles.edtExptPath, ’string’);
if isempty(sExptPath),

sExptPath = [];
end;

730

function edtROIDefCh_Callback(hObject, eventdata, handles)
% hObject handle to edtROIDefCh (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

735 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtROIDefCh as text
% str2double(get(hObject,’String’)) returns contents of edtROIDefCh
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% as a double
740

% --- Executes during object creation, after setting all properties.
function edtROIDefCh_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtROIDefCh (see GCBO)

745 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

750 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

755

function edtROIDefIdx_Callback(hObject, eventdata, handles)
% hObject handle to edtROIDefIdx (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

760 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtROIDefIdx as text
% str2double(get(hObject,’String’)) returns contents of edtROIDefIdx
% as a double

765

% --- Executes during object creation, after setting all properties.
function edtROIDefIdx_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtROIDefIdx (see GCBO)

770 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

775 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

780

% -------------------------------------------------------------------------
785 function imsqt_fillgrid(hGrid, csCols, cvValues)

for c = 1:size(cvValues, 2),
for r = 0:size(cvValues, 1),

set(hGrid, ’row’, r, ’col’, c-1);
if r == 0,

790 % set column headers
set(hGrid, ’text’, csCols{c});

else
val = cvValues{r, c};
if isstr(val)

795 set(hGrid, ’text’, val);
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else
set(hGrid, ’text’, num2str(val));

end;
end;

800 end;
end;
set(hGrid, ’row’, 1, ’col’, 0);

805 % -------------------------------------------------------------------------
function cvChannels = imsqt_parsechannelgrid(handles)
hGrid = handles.channelgrid;
csColType = handles.channelgridcoltypes;

810 R = get(hGrid, ’Rows’);
C = get(hGrid, ’Cols’);
cvChannels = cell(R-1, C);

for r = 1:R-1,
815 for c = 0:C-1,

set(hGrid, ’row’, r, ’col’, c);
sTxt = get(hGrid, ’text’);

% printf(’%12s%3d%3d’, sTxt, bIsStr, bIsNum)
820 switch csColType{c+1},

case ’string’
vVal = sTxt;

case ’numeric’
vVal = str2num(sTxt);

825 otherwise,
% hopefully it’s impossible to get here.
vVal = [];

end;
cvChannels{r, c+1} = vVal;

830 end;
end;
set(hGrid, ’row’, 1, ’col’, 0);

835 % -------------------------------------------------------------------------
function cvROIs = imsqt_parseroigrid(hGrid)
R = get(hGrid, ’Rows’);
C = get(hGrid, ’Cols’);

840 % The ROI array should only have names and vectors of numeric values
% describing the rectangular cropping regions.
cvROIs = cell(R-1, 2);

for r = 1:R-1,
845 for c = 0:C-1,

set(hGrid, ’row’, r, ’col’, c);
sTxt = get(hGrid, ’text’);

% if the text is digit, wspace, or punct evaluate as numeric
850 bIsWsPunct = isstrprop(sTxt, ’wspace’) | isstrprop(sTxt, ’punct’);

bIsNum = all(isstrprop(sTxt, ’digit’) | bIsWsPunct);
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% printf(’%12s%3d’, sTxt, bIsNum)

855 if c == 0,
% the only strings to return are the ROI names
vVal = sTxt;
cvROIs{r, c+1} = vVal;

else
860 if bIsNum,

vVal = str2num(sTxt);
else

% hopefully it’s impossible to get here.
vVal = [];

865 end;
cvROIs{r, 2} = [cvROIs{r, 2}, vVal];

end;
end;

end;
870 set(hGrid, ’row’, 1, ’col’, 0);

% --- Executes on button press in pbLoadROI.
function pbLoadROI_Callback(hObject, eventdata, handles)
% hObject handle to pbLoadROI (see GCBO)

875 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% User selection of ROI defining file.
[fname, fpath] = uigetfile(’ * .mat’, ’Select ROI File’);

880 if fname ˜= 0,
sFullFilePath = [fpath, filesep, fname];
csNewNames = who(’-file’, sFullFilePath);
stNewROIs = load(sFullFilePath, csNewNames{:});

885 cvNewROIs = cell(length(stNewROIs), 2);
for i = 1:length(stNewROIs),

cvNewROIs(i, :) = {csNewNames{i}, stNewROIs.(csNewNames{i})};
end;

890 handles.rois = imsqt_roiaddreplace(handles.rois, cvNewROIs);
imsqt_roigridupdate(handles)

end;

guidata(hObject, handles);
895

% -------------------------------------------------------------------------
function imsqt_roigridupdate(handles)
cvROIs = handles.rois;

900 cvROIGrid = cell(size(cvROIs, 1), 5);
cvROIGrid(:, 1) = cvROIs(:, 1);
for i = 1:size(cvROIGrid, 1),

roicell = num2cell(cvROIs{i, 2});
if isempty(roicell),

905 roicell = {’auto’, ’auto’, ’auto’, ’auto’};
end;
cvROIGrid(i, 2:end) = roicell;

end;
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910 imsqt_fillgrid(handles.roigrid, handles.roigridcols, cvROIGrid);

% -------------------------------------------------------------------------
function cvCurROIs = imsqt_roiaddreplace(cvCurROIs, cvNewROIs)

915 csNewNames = cvNewROIs(:, 1);
csCurNames = cvCurROIs(:, 1);

% search for new names that match cur names, replace corresponding data
idx = find(ismember(csNewNames, csCurNames));

920 for i = 1:length(idx),
cvCurROIs{...

strmatch(csNewNames{idx(i)}, csCurNames, ’exact’), ...
2} = cvNewROIs{idx(i), 2};

end;
925

% search for new names that don’t match cur names and append to list
idx = find(˜ismember(csNewNames, csCurNames));
for i = 1:length(idx),

cvCurROIs(end+1, :) = cvNewROIs(idx(i), :);
930 end;

function edtMaxDisp_Callback(hObject, eventdata, handles)
935 % hObject handle to edtMaxDisp (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtMaxDisp as text
940 % str2double(get(hObject,’String’)) returns contents of edtMaxDisp

% as a double

% --- Executes during object creation, after setting all properties.
945 function edtMaxDisp_CreateFcn(hObject, eventdata, handles)

% hObject handle to edtMaxDisp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

950 % Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);

955 end

% --- Executes on button press in chkVerboseTrk.
function chkVerboseTrk_Callback(hObject, eventdata, handles)

960 % hObject handle to chkVerboseTrk (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkVerboseTrk
965
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function edtTrkMem_Callback(hObject, eventdata, handles)
% hObject handle to edtTrkMem (see GCBO)

970 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtTrkMem as text
% str2double(get(hObject,’String’)) returns contents of edtTrkMem as

975 % a double
handles.track.mem = str2double(get(hObject, ’string’));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
980 function edtTrkMem_CreateFcn(hObject, eventdata, handles)

% hObject handle to edtTrkMem (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

985 % Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);

990 end

% --- Executes on button press in chkQntBlob.
function chkQntBlob_Callback(hObject, eventdata, handles)

995 % hObject handle to chkQntBlob (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkQntBlob
1000 handles.quant.blobout = get(hObject, ’value’);

guidata(hObject, handles);

1005 % --- Executes on button press in chkSegDisp.
function chkSegDisp_Callback(hObject, eventdata, handles)
% hObject handle to chkSegDisp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1010

% Hint: get(hObject,’Value’) returns toggle state of chkSegDisp
handles.segment.display = get(hObject, ’value’);
guidata(hObject, handles);

1015

% --- Executes on selection change in pmnSegDispMethod.
function pmnSegDispMethod_Callback(hObject, eventdata, handles)
% hObject handle to pmnSegDispMethod (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1020 % handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns pmnSegDispMethod contents
% as cell array contents{get(hObject,’Value’)} returns selected item
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% from pmnSegDispMethod
1025

contents = get(hObject, ’string’);
handles.segment.displaymethod = contents{get(hObject, ’value’)};
guidata(hObject, handles);

1030

function edtTrkMinTrajLen_Callback(hObject, eventdata, handles)
% hObject handle to edtTrkMinTrajLen (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1035 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtTrkMinTrajLen as text
% str2double(get(hObject,’String’)) returns contents of
% edtTrkMinTrajLen as a double

1040 handles.track.minlength = str2double(get(hObject, ’string’));
guidata(hObject, handles);

1045

function edtTrkMaxDisp_Callback(hObject, eventdata, handles)
% hObject handle to edtTrkMaxDisp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1050

% Hints: get(hObject,’String’) returns contents of edtTrkMaxDisp as text
% str2double(get(hObject,’String’)) returns contents of
% edtTrkMaxDisp as a double
handles.track.maxdisp = str2double(get(hObject, ’string’));

1055 guidata(hObject, handles);

% --- Executes on button press in chkTrkVerbose.
1060 function chkTrkVerbose_Callback(hObject, eventdata, handles)

% hObject handle to chkTrkVerbose (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1065 % Hint: get(hObject,’Value’) returns toggle state of chkTrkVerbose
handles.track.verbose = get(hObject, ’value’);
guidata(hObject, handles);

% -------------------------------------------------------------------------
1070 function handles = imsqt_collectinfo(handles)

handles.info.path = get(handles.edtExptPath, ’string’);
handles.info.corrpath = get(handles.edtCorrPath, ’string’);
% handles.info.prefix = get(handles.edtExptPrefix, ’string’);
% handles.info.id = get(handles.edtExptID, ’string’);

1075 handles.info.locid = str2double(get(handles.edtLocID, ’string’));

% iIdxStart = str2num(get(handles.edtIdxStart, ’string’));
% iIdxStep = str2num(get(handles.edtIdxStep, ’string’));
% iIdxStop = str2num(get(handles.edtIdxStop, ’string’));

1080 % handles.info.indices = [iIdxStart:iIdxStep:iIdxStop];
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handles.info.indices = get(handles.edtIndices, ’value’);
handles.info.indicesstr = get(handles.edtIndices, ’string’);

1085 % --- Executes on button press in pbSaveROI.
function pbSaveROI_Callback(hObject, eventdata, handles)
% hObject handle to pbSaveROI (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1090

sExptPath = imsqt_getexptpath(handles);
if ˜isempty(sExptPath),

cvROIs = imsqt_parseroigrid(handles.roigrid);
for i = 1:size(cvROIs, 1),

1095 sROI = cvROIs{i, 1};
nROI = cvROIs{i, 2};
eval([sROI ’ = [’ num2str(nROI) ’];’]);
sFileName = sprintf(’%s%s%s.%03d.mat’, sExptPath, ...

filesep, ...
1100 sROI, ...

handles.info.locid);
save(sFileName, sROI);

end;

1105 else
errordlg(’Experiment path information not specified!’, ’Error’);

end;

% --- Executes on button press in chkSegOverwrite.
1110 function chkSegOverwrite_Callback(hObject, eventdata, handles)

% hObject handle to chkSegOverwrite (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1115 % Hint: get(hObject,’Value’) returns toggle state of chkSegOverwrite
handles.segment.overwrite = get(hObject, ’value’);
guidata(hObject, handles);

1120

% --- Executes on button press in chkQntOverwrite.
function chkQntOverwrite_Callback(hObject, eventdata, handles)
% hObject handle to chkQntOverwrite (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1125 % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkQntOverwrite
handles.quant.overwrite = get(hObject, ’value’);
guidata(hObject, handles);

1130

% --- Executes on button press in chkTrkOverwrite.
function chkTrkOverwrite_Callback(hObject, eventdata, handles)

1135 % hObject handle to chkTrkOverwrite (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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% Hint: get(hObject,’Value’) returns toggle state of chkTrkOverwrite
1140 handles.track.overwrite = get(hObject, ’value’);

guidata(hObject, handles);

1145 % --------------------------------------------------------------------
function MenuFile_Callback(hObject, eventdata, handles)
% hObject handle to MenuFile (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1150

% -------------------------------------------------------------------------
function imsqt_updateinfo(handles)
set(handles.edtExptPath, ’string’, handles.info.path);

1155 set(handles.edtCorrPath, ’string’, handles.info.corrpath);
set(handles.edtLocID, ’string’, num2str(handles.info.locid));

if ˜isfield(handles.info, ’indicesstr’),
1160 iIdxStep = unique(diff(handles.info.indices));

if isempty(iIdxStep), iIdxStep = 1;, end;
if length(iIdxStep) == 1,

iIdxStart = min(handles.info.indices);
iIdxStop = max(handles.info.indices);

1165 handles.info.indicesstr = sprintf(’%d:%d:%d’, iIdxStart, ...
iIdxStep, ...
iIdxStop);

else
handles.info.indicesstr = num2str(handles.info.indices);

1170 end;
end;

set(handles.edtIndices, ’string’, handles.info.indicesstr);
set(handles.edtIndices, ’value’, handles.info.indices);

1175

% set(handles.edtIdxStart, ’string’, num2str(iIdxStart));
% set(handles.edtIdxStep, ’string’, num2str(iIdxStep));
% set(handles.edtIdxStop, ’string’, num2str(iIdxStop));

1180

% -------------------------------------------------------------------------
function imsqt_updatesegment(handles)
set(handles.edtSegDataPath, ’string’, handles.segment.path);
imsqt_setpmnvalbystr(handles.pmnSegSegmenter, handles.segment.algorithm);

1185 set(handles.chkSegDisp, ’value’, handles.segment.display);
imsqt_setpmnvalbystr(handles.pmnSegDispMethod, ...

handles.segment.displaymethod);
set(handles.chkSegOverwrite, ’value’, handles.segment.overwrite);

1190 % -------------------------------------------------------------------------
function imsqt_updatequant(handles)
set(handles.edtObjDataPath, ’string’, handles.quant.path);
set(handles.chkQntVerbose, ’value’, handles.quant.verbose);
set(handles.chkQntBlob, ’value’, handles.quant.blobout);
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1195 set(handles.chkQntOverwrite, ’value’, handles.quant.overwrite);

% -------------------------------------------------------------------------
function imsqt_updatetrack(handles)

1200 set(handles.edtTrjDatapath, ’string’, handles.track.path);
set(handles.edtTrkMinTrajLen, ’string’, num2str(handles.track.minlength));
set(handles.edtTrkMaxDisp, ’string’, num2str(handles.track.maxdisp));
set(handles.edtTrkMem, ’string’, num2str(handles.track.mem));
set(handles.chkTrkVerbose, ’value’, handles.track.verbose);

1205 set(handles.chkTrkOverwrite, ’value’, handles.track.overwrite);

% -------------------------------------------------------------------------
function imsqt_setpmnvalbystr(hpmn, strval)

1210 set(hpmn, ’value’, strmatch(strval, get(hpmn, ’string’), ’exact’));

% --------------------------------------------------------------------
function MenuFileLoad_Callback(hObject, eventdata, handles)

1215 % hObject handle to MenuFileLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[fname fpath] = uigetfile(’ * .mat’, ’Retrieve Run-Time Data’, ...

[handles.uidata.appname ’data.mat’]);
1220 if fname ˜= 0,

set(handles.figure1, ’name’, [handles.uidata.appname ’ - ’ fname]);
handles.uidata.cwd = fpath;
handles.uidata.file = [fpath filesep fname];
cd(fpath);

1225

load(handles.uidata.file, ’data’);

handles.info = data.info;
imsqt_updateinfo(handles);

1230

handles.channels = data.channels;
imsqt_fillgrid(handles.channelgrid, ...

handles.channelgridcols, ...
handles.channels);

1235

handles.rois = data.rois;
imsqt_roigridupdate(handles);

% segmentation panel defaults
1240 handles.segment = data.segment;

imsqt_updatesegment(handles);

% quantification panel defaults
handles.quant = data.quant;

1245 imsqt_updatequant(handles);

% tracking panel defaults
handles.track = data.track;
imsqt_updatetrack(handles);

1250 end;
guidata(hObject, handles);
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% --------------------------------------------------------------------
function MenuFileSave_Callback(hObject, eventdata, handles)

1255 % hObject handle to MenuFileSave (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% update fields that may have changed that do not have callbacks.
1260 handles = imsqt_collectinfo(handles);

handles.rois = imsqt_parseroigrid(handles.roigrid);
handles.channels = imsqt_parsechannelgrid(handles);

data.info = handles.info;
1265 data.rois = handles.rois;

data.channels = handles.channels;
data.segment = handles.segment;
data.quant = handles.quant;
data.track = handles.track;

1270

if isempty(handles.uidata.file),
[fname fpath] = uiputfile(’ * .mat’, ’Save Run-Time Data’, ...

[handles.uidata.appname ’data.mat’]);
if fname ˜= 0,

1275 set(handles.figure1, ’name’, [handles.uidata.appname ’ - ’ fname]);
handles.uidata.cwd = fpath;
handles.uidata.file = [fpath filesep fname];
cd(fpath);
save(handles.uidata.file, ’data’);

1280 end;
else

save(handles.uidata.file, ’data’);
end;
guidata(hObject, handles);

1285

% --------------------------------------------------------------------
function MenuFileSaveAs_Callback(hObject, eventdata, handles)
% hObject handle to MenuFileSaveAs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1290 % handles structure with handles and user data (see GUIDATA)

% update fields that may have changed that do not have callbacks.
handles = imsqt_collectinfo(handles);
handles.rois = imsqt_parseroigrid(handles.roigrid);

1295 handles.channels = imsqt_parsechannelgrid(handles);

data.info = handles.info;
data.rois = handles.rois;
data.channels = handles.channels;

1300 data.segment = handles.segment;
data.quant = handles.quant;
data.track = handles.track;

[fname fpath] = uiputfile(’ * .mat’, ’Save Run-Time Data’, ...
1305 [handles.uidata.appname ’data.mat’]);

if fname ˜= 0,
set(handles.figure1, ’name’, [handles.uidata.appname ’ - ’ fname]);
handles.uidata.cwd = fpath;
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handles.uidata.file = [fpath filesep fname];
1310 cd(fpath);

save(handles.uidata.file, ’data’);
end;
guidata(hObject, handles);

1315 % --------------------------------------------------------------------
function MenuFileQuit_Callback(hObject, eventdata, handles)
% hObject handle to MenuFileQuit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1320

closereq

function edtCorrPath_Callback(hObject, eventdata, handles)
1325 % hObject handle to edtCorrPath (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtCorrPath as text
1330 % str2double(get(hObject,’String’)) returns contents of edtCorrPath

% as a double
handles.info.corrpath = get(hObject, ’string’);
guidata(hObject, handles);

1335 % --- Executes during object creation, after setting all properties.
function edtCorrPath_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtCorrPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

1340

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
1345 set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in pbCorrPathBrowse.
1350 function pbCorrPathBrowse_Callback(hObject, eventdata, handles)

% hObject handle to pbCorrPathBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sDir = uigetdir;

1355 if sDir ˜= 0,
set(handles.edtCorrPath, ’string’, sDir);

end;

1360

% --------------------------------------------------------------------
function MenuTools_Callback(hObject, eventdata, handles)
% hObject handle to MenuTools (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1365 % handles structure with handles and user data (see GUIDATA)
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% --------------------------------------------------------------------
function MenuToolsSegEdit_Callback(hObject, eventdata, handles)

1370 % hObject handle to MenuToolsSegEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
segedit(’file’, [handles.info.path, ...

handles.segment.path, ...
1375 filesep, ...

sprintf(’%03d%c%04d.mat’, handles.info.locid, ...
filesep, ...
handles.info.indices(1))...

]);
1380

function edtIndices_Callback(hObject, eventdata, handles)
1385 % hObject handle to edtIndices (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtIndices as text
1390 % str2double(get(hObject,’String’)) returns contents of edtIndices

% as a double

set(hObject, ’Value’, sort(str2num(get(hObject, ’String’))));

1395 % --- Executes during object creation, after setting all properties.
function edtIndices_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtIndices (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

1400

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
1405 set(hObject,’BackgroundColor’,’white’);

end

1410

% --------------------------------------------------------------------
function MenuToolsTrackEdit_Callback(hObject, eventdata, handles)
% hObject handle to MenuToolsTrackEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1415 % handles structure with handles and user data (see GUIDATA)
if ˜isempty(handles.uidata.file)

if exist([handles.info.path, handles.track.path], ’dir’),
trackedit(’file’, [handles.info.path, ...

filesep, ...
1420 handles.uidata.file]);

else
errordlg(’Cannot find tracking data’, ’Tracking Data Not Found’);
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end;
else

1425 errordlg([...
’Cannot find IMSQT info file.’ ...
’ Make sure that it is saved in the path specified by ’...
’’’Experiment Path’’’], ’File Not Found’);

end;
1430
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B.7 Complete source code for SEGEDIT

function varargout = segedit(varargin)
% SEGEDIT M-file for segedit.fig
% SEGEDIT, by itself, creates a new SEGEDIT or raises the existing
% singleton * .

5 %
% H = SEGEDIT returns the handle to a new SEGEDIT or the handle to
% the existing singleton * .
%
% SEGEDIT(’CALLBACK’,hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in SEGEDIT.M with the given input arguments.
%
% SEGEDIT(’Property’,’Value’,...) creates a new SEGEDIT or raises the
% existing singleton * . Starting from the left, property value pairs
% are applied to the GUI before segedit_OpeningFunction gets called.

15 % An unrecognized property name or invalid value makes property
% application stop. All inputs are passed to segedit_OpeningFcn via
% varargin.
%
% * See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

20 % instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
25

% Edit the above text to modify the response to help segedit

% Last Modified by GUIDE v2.5 04-Apr-2006 15:15:57

30 % Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...
’gui_OpeningFcn’, @segedit_OpeningFcn, ...

35 ’gui_OutputFcn’, @segedit_OutputFcn, ...
’gui_LayoutFcn’, [] , ...
’gui_Callback’, []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

40 end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
45 gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT

50 % --- Executes just before segedit is made visible.
function segedit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
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55 % handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to segedit (see VARARGIN)

% Choose default command line output for segedit
handles.output = hObject;

60

% set default property values
pos = get(handles.figure1, ’position’);
handles.uiprops.minfigsize = pos(3:4);

65 handles.uiprops.appname = get(hObject, ’name’);
handles.uiprops.color.cur = [1 0 0];
handles.uiprops.color.preview = [1 1 0];
handles.uiprops.color.add = [0 1 0];
handles.uiprops.color.addglobal = [1 0 1];

70 handles.uiprops.color.erase = [0 0 1];
handles.uiprops.color.eraseglobal = [0 1 1];
handles.uiprops.linewidth.area = 1;
handles.uiprops.linewidth.line = 3;
handles.issaved = false;

75

set(handles.tbDisp, ’String’, ’Mask On’);
set(handles.figure1, ’keypressfcn’, @segedit_keypress);

handles.maskglobal.add = [];
80 handles.maskglobal.erase = [];

% collect original object positions for application resize
hUI = findobj(handles.figure1, ...

’-depth’, 1, ...
85 ’type’, ’uicontrol’, ...

’-or’, ’type’, ’uipanel’, ...
’-or’, ’type’, ’axes’);

hUI = [handles.figure1; hUI];
set(hUI, ’units’, ’pixels’);

90 handles.uisize = get(handles.figure1, ’position’);

% set the default state of the application. This is how the app will start
% if run by itself with no command line arguments

95 % process command line options
opts = getopts(varargin);

handles.file = parseopts(’file’, opts, []);
handles.cwd = cd;

100 %setWindowState(handles.figure1, parseopts(’windowstate’, opts, ’restore’));

if ˜isempty(handles.file),
[fpath, fname, fext, fver] = fileparts(handles.file);

105 if isempty(fpath), fpath = cd; end;
fname = [fname fext];

cd(fpath);
handles = segedit_loadfile(handles, fpath, fname);

110 segedit_load(handles); % enable the gui for user input
segedit_disp(handles); % display the segmentation image and mask
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segedit_browseinit(handles); % initialize the browsing slider
else,

handles.seg = [];
115 handles.image = [];

handles.maskall.orig = [];
handles.maskall.curr = handles.maskall.orig;
handles.maskqnt = handles.maskall;

120 set(handles.axes1, ’Visible’, ’off’);
segedit_enable(handles, ’off’);

end;

125 % Update handles structure
guidata(hObject, handles);

% UIWAIT makes segedit wait for user response (see UIRESUME)
% uiwait(handles.figure1);

130

% --- Outputs from this function are returned to the command line.
function varargout = segedit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

135 % hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
140 varargout{1} = handles.output;

% varargout{1} = handles.seg;

% delete(handles.figure1);

145

% --- Executes on button press in pbAdd.
function pbAdd_Callback(hObject, eventdata, handles)
% hObject handle to pbAdd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

150 % handles structure with handles and user data (see GUIDATA)
statmsg = ’Add Poly Region’;
updatestatus(handles, statmsg);

hax = handles.axes1;
155 axes(hax);

bnd = bwboundaries(roipoly);
if ˜ishold(hax), hold on, end;
hroi = plot(bnd{1}(:, 2), bnd{1}(:, 1), ...

’linestyle’, ’-’, ...
160 ’color’, handles.uiprops.color.add, ...

’linewidth’, handles.uiprops.linewidth.area);
set(hroi, ’hittest’, ’on’, ’buttondownfcn’, @segedit_onclick);

updatestatus(handles, ’’);
165 drawnow

guidata(hObject, handles);
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% --- Executes on button press in pbErase.
170 function pbErase_Callback(hObject, eventdata, handles)

% hObject handle to pbErase (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sEraseType = get(handles.pmnEraseType, ’String’);

175 sEraseType = sEraseType{get(handles.pmnEraseType, ’Value’)};
bGlobal = get(handles.chkMaskApplyAll, ’Value’);

hax = handles.axes1;
axes(hax);

180

if strcmpi(sEraseType, ’area’),
statmsg = ’Draw Erasing Region’;
iColor = handles.uiprops.color.erase;
if bGlobal,

185 statmsg = ’Draw Global Erasing Region’;
iColor = handles.uiprops.color.eraseglobal;

end;
updatestatus(handles, statmsg);

190 msk = roipoly;
bnd = bwboundaries(msk);
if ˜ishold(hax), hold on, end;
heroi = plot(bnd{1}(:, 2), bnd{1}(:, 1), ...

’linestyle’, ’-’, ...
195 ’color’, iColor, ...

’linewidth’, handles.uiprops.linewidth.area);
set(heroi, ’hittest’, ’on’, ’buttondownfcn’, @segedit_onclick);

if bGlobal,
200 if isempty(handles.maskglobal.erase),

handles.maskglobal.erase = msk;
else,

handles.maskglobal.erase = handles.maskglobal.erase | msk;
end;

205 end;

else,
% default to erasing lines
statmsg = ’Draw Erasing Line’;

210 updatestatus(handles, statmsg);

[x, y] = getline(hax);
if ˜ishold(hax), hold on, end;
heline = plot(x, y, ...

215 ’color’, handles.uiprops.color.erase, ...
’linewidth’, handles.uiprops.linewidth.line);

set(heline, ’hittest’, ’on’, ’buttondownfcn’, @segedit_onclick);

end;
220

updatestatus(handles, ’’);
drawnow

guidata(hObject, handles);
225
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% --- Executes on button press in pbUpdate.
function pbUpdate_Callback(hObject, eventdata, handles)
% hObject handle to pbUpdate (see GCBO)

230 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject, ’Enable’, ’Off’);
handles = segedit_update(handles);
set(hObject, ’Enable’, ’on’);

235 drawnow
guidata(hObject, handles);

% --------------------------------------------------------------------
240 function MenuItemOpen_Callback(hObject, eventdata, handles)

% hObject handle to MenuItemOpen (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[fname fpath]= uigetfile(’ * .mat’);

245 if ˜isequal(fname, 0)
cd(fpath);
handles = segedit_loadfile(handles, fpath, fname);
segedit_load(handles); % enable the gui for user input
segedit_disp(handles); % display the segmentation image and mask

250 segedit_browseinit(handles); % initialize the browsing slider
end
guidata(hObject, handles);

255 % --------------------------------------------------------------------
function MenuItemQuit_Callback(hObject, eventdata, handles)
% hObject handle to MenuItemQuit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

260 guidata(hObject, handles);

delete(handles.figure1)
% uiresume(handles.figure1);

265 % --------------------------------------------------------------------
function MenuFile_Callback(hObject, eventdata, handles)
% hObject handle to MenuFile (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

270

275 function edtChSeg_Callback(hObject, eventdata, handles)
% hObject handle to edtChSeg (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

280 % Hints: get(hObject,’String’) returns contents of edtChSeg as text
% str2double(get(hObject,’String’)) returns contents of edtChSeg as
% a double
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285 % --- Executes during object creation, after setting all properties.
function edtChSeg_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtChSeg (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

290

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

set(hObject,’BackgroundColor’,’white’);
295 else

set(hObject,’BackgroundColor’,...
get(0,’defaultUicontrolBackgroundColor’));

end

300

% --------------------------------------------------------------------
function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

305 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edit2 as text
% str2double(get(hObject,’String’)) returns contents of edit2 as a
% double

310

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)

315 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

320 if ispc
set(hObject,’BackgroundColor’,’white’);

else
set(hObject,’BackgroundColor’,...

get(0,’defaultUicontrolBackgroundColor’));
325 end

330 % --- Executes during object creation, after setting all properties.
function edtStatus_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtStatus (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

335

% --------------------------------------------------------------------
function edtStatus_Callback(hObject, eventdata, handles)
% hObject handle to edtStatus (see GCBO)
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340 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtStatus as text
% str2double(get(hObject,’String’)) returns contents of edtStatus as

345 % a double

% --------------------------------------------------------------------
function segedit_enable(handles, sState)

350 hObjs = findobj(’type’, ’uicontrol’, ’-and’, {...
’style’, ’pushbutton’, ...
’-or’, ’style’, ’pushbutton’, ...
’-or’, ’style’, ’togglebutton’, ...
’-or’, ’style’, ’popupmenu’, ...

355 ’-or’, ’style’, ’edit’, ...
}, ...
’-and’, ’-not’, ’tag’, ’edtStatus’ ...
);

set(hObjs, ’enable’, sState);
360

% --------------------------------------------------------------------
function segedit_disp(handles)
hold off;
segedit_disp_image(handles);

365 hold on;
segedit_disp_mask(handles);

% --------------------------------------------------------------------
function segedit_disp_image(handles)

370 axes(handles.axes1);
him = imshow(handles.image, [], ’InitialMagnification’, ’fit’);
set(him, ’hittest’, ’off’);

% --------------------------------------------------------------------
375 function segedit_disp_mask(handles)

axes(handles.axes1);
BND = bwboundaries(handles.maskqnt.curr, ’noholes’);
for i = 1:length(BND),

plot(BND{i}(:, 2), BND{i}(:,1), ...
380 ’color’, handles.uiprops.color.cur, ...

’linestyle’, ’-’, ...
’linewidth’, handles.uiprops.linewidth.area)

hold on
end;

385

if ˜isempty(handles.maskglobal.erase) && sum(sum(handles.maskglobal.erase)) > 0,
BND = bwboundaries(handles.maskglobal.erase, ’noholes’);
for i = 1:length(BND),

plot(BND{i}(:, 2), BND{i}(:,1), ...
390 ’color’, handles.uiprops.color.eraseglobal, ...

’linestyle’, ’-’, ...
’linewidth’, handles.uiprops.linewidth.area)

hold on
end;

395 end;
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if ˜isempty(handles.maskglobal.add) && sum(sum(handles.maskglobal.add)) > 0,
BND = bwboundaries(handles.maskglobal.add, ’noholes’);
for i = 1:length(BND),

400 plot(BND{i}(:, 2), BND{i}(:,1), ...
’color’, handles.uiprops.color.addglobal, ...
’linestyle’, ’-’, ...
’linewidth’, handles.uiprops.linewidth.area)

hold on
405 end;

end;

BND = bwboundaries(handles.maskall.curr & ˜handles.maskqnt.curr, ’noholes’);
for i = 1:length(BND),

410 plot(BND{i}(:, 2), BND{i}(:,1), ...
’color’, handles.uiprops.color.cur, ...
’linestyle’, ’:’, ...
’linewidth’, handles.uiprops.linewidth.area)

hold on
415 end;

hold off
axis off ij, axis([0 handles.seg.imsize(2) 0 handles.seg.imsize(1)])
set(findobj(’type’, ’line’), ...

’hittest’, ’on’, ...
420 ’buttondownfcn’, @segedit_onclick);

% --------------------------------------------------------------------
function updatestatus(handles, statusmsg)
set(handles.edtStatus, ’String’, statusmsg);

425

% --------------------------------------------------------------------
function I = segedit_getimg(handles, varargin)
I = getimg( ...

handles.seg.channel, ...
430 handles.seg.locid, ...

handles.seg.imgid, ...
’basepath’, [handles.cwd, ’\..\..’]) - 2ˆ15;

I = imcrop(I, handles.seg.roi);

435

% --------------------------------------------------------------------
function MenuItemSave_Callback(hObject, eventdata, handles)
% hObject handle to MenuItemSave (see GCBO)

440 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% write out seg data to a .mat file pull in values that were not edited by
% this application, overwrite those that were.

445

seg = handles.seg;

seg.objqntidx = find(bwperim(handles.maskqnt.curr));
seg.objallidx = find(bwperim(handles.maskall.curr));

450

handles.seg = seg;
save(sprintf(’%s%s%s’, handles.cwd, filesep, handles.file), ’seg’);
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handles.maskall.orig = handles.maskall.curr;
455 handles.maskqnt.orig = handles.maskqnt.curr;

checkSaved(handles);

guidata(hObject, handles);
460

% --------------------------------------------------------------------
function MenuItemSaveAs_Callback(hObject, eventdata, handles)

465 % hObject handle to MenuItemSaveAs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% write out seg data to a .mat file that the user specifies
470 seg = handles.seg;

seg.objqntidx = find(bwperim(handles.maskqnt.curr));
seg.objallidx = find(bwperim(handles.maskall.curr));

475 [fname fpath] = uiputfile(’ * .mat’, ’Save As’, handles.file);
if ˜isequal(fname, 0),

handles.seg = seg;
save(sprintf(’%s/%s’, fpath, fname), ’seg’);
set(gcbf, ’name’, sprintf(’%s - %s’, handles.uiprops.appname, fname));

480

handles.maskall.orig = handles.maskall.curr;
handles.maskqnt.orig = handles.maskqnt.curr;

handles.issaved = true;
485 end;

guidata(hObject, handles);

function checkSaved(handles)
490 % determine if the segmentation needs to be saved by comparing

% the original mask to the current mask
handles.issaved = ...

(length(find(handles.maskall.curr ˜= handles.maskall.orig)) == 0);

495 if ˜handles.issaved,
set(gcbf, ’name’, sprintf(’%s - %s * ’, handles.uiprops.appname, ...

handles.file));
else,

set(gcbf, ’name’, sprintf(’%s - %s’, handles.uiprops.appname, ...
500 handles.file));

end;

guidata(gcbf, handles);

505

function edit4_Callback(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

510
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% Hints: get(hObject,’String’) returns contents of edit4 as text
% str2double(get(hObject,’String’)) returns contents of edit4 as a
% double

515

% --- Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

520 % handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc

525 set(hObject,’BackgroundColor’,’white’);
else

set(hObject,’BackgroundColor’,...
get(0,’defaultUicontrolBackgroundColor’));

end
530

% --------------------------------------------------------------------
function segedit_load(handles);
set(handles.MenuItemSave, ’Enable’, ’on’);
set(handles.MenuItemSaveAs, ’Enable’, ’on’);

535

set(handles.edtChSeg, ’String’, handles.seg.channel);
set(handles.edit2, ’String’, handles.seg.locid);
set(handles.edit4, ’String’, handles.seg.imgid);
segedit_enable(handles, ’on’);

540

% --------------------------------------------------------------------
function MenuItemReturn_Callback(hObject, eventdata, handles)
% hObject handle to MenuItemReturn (see GCBO)

545 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% get the current segmentation masks into the returned variable handles.seg
% and exit.

550 seg = handles.seg;

seg.objqntidx = find(bwperim(handles.maskqnt.curr));
seg.objallidx = find(bwperim(handles.maskall.curr));

555 handles.seg = seg;

guidata(hObject, handles);
uiresume(handles.figure1);

560

% --------------------------------------------------------------------
function MenuEdit_Callback(hObject, eventdata, handles)
% hObject handle to MenuEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

565 % handles structure with handles and user data (see GUIDATA)
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% --------------------------------------------------------------------
function MenuItemAdd_Callback(hObject, eventdata, handles)

570 % hObject handle to MenuItemAdd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

575 % --------------------------------------------------------------------
function MenuItemErase_Callback(hObject, eventdata, handles)
% hObject handle to MenuItemErase (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

580

% --------------------------------------------------------------------
function MenuItemUpdate_Callback(hObject, eventdata, handles)
% hObject handle to MenuItemUpdate (see GCBO)

585 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --------------------------------------------------------------------
590 function MenuItemDelete_Callback(hObject, eventdata, handles)

% hObject handle to MenuItemDelete (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

595

% --- Executes on selection change in pmnMorphOp.
function pmnMorphOp_Callback(hObject, eventdata, handles)

600 % hObject handle to pmnMorphOp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns pmnMorphOp contents as
605 % cell array contents{get(hObject,’Value’)} returns selected item

% from pmnMorphOp

contents = get(hObject, ’String’);
handles.morph.op = lower(contents{get(hObject, ’Value’)});

610

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
615 function pmnMorphOp_CreateFcn(hObject, eventdata, handles)

% hObject handle to pmnMorphOp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

620 % Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);
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625 end

handles.morph.op = ’dilate’;
guidata(hObject, handles);

630 % --- Executes on selection change in pmnStrelType.
function pmnStrelType_Callback(hObject, eventdata, handles)
% hObject handle to pmnStrelType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

635

% Hints: contents = get(hObject,’String’) returns pmnStrelType contents as
% cell array contents{get(hObject,’Value’)} returns selected item
% from pmnStrelType

640 contents = get(hObject, ’String’);
handles.morph.strel.type = lower(contents{get(hObject, ’Value’)});

guidata(hObject, handles);

645 % --- Executes during object creation, after setting all properties.
function pmnStrelType_CreateFcn(hObject, eventdata, handles)
% hObject handle to pmnStrelType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

650

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
655 set(hObject,’BackgroundColor’,’white’);

end

handles.morph.strel.type = ’disk’;
guidata(hObject, handles);

660

function edtStrelSize_Callback(hObject, eventdata, handles)
% hObject handle to edtStrelSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

665 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtStrelSize as text
% str2double(get(hObject,’String’)) returns contents of edtStrelSize
% as a double

670

handles.morph.strel.size = str2num(get(hObject, ’String’));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
675 function edtStrelSize_CreateFcn(hObject, eventdata, handles)

% hObject handle to edtStrelSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

680 % Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
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if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
685 end

handles.morph.strel.size = 3;
guidata(hObject, handles);

690 % --- Executes on button press in pbMorph.
function pbMorph_Callback(hObject, eventdata, handles)
% hObject handle to pbMorph (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

695

bApplyAll = get(handles.chkMorphApplyAll, ’value’);

if bApplyAll,
% Display a warning notifying the user that this operation updates all

700 % files in the current working directory without an undo
button = questdlg([...

’This will irreversibly modify all files in the current’ ...
’working directory. Do you wish to continue?’],...
’Morph All’,’Yes’,’No’,’No’);

705 if strcmpi(button, ’yes’),
% this could take a while. display a waitbar to update progress
hProg = waitbar(0, ’Processing Global Morphological Operation’);
nFiles = length(handles.files);
tLoopElaps = [];

710

for i = 1:nFiles,
tLoopInit = clock;
updateprogress(hProg, i, nFiles, tLoopElaps);

715 waitbar(i/nFiles, hProg, ...
’Processing Global Morphological Operation’);

fpath = [handles.cwd filesep handles.files{i}];

load(fpath, ’seg’);
720 msk = bndidx2mask(seg.imsize, seg.objallidx);

msk = segedit_morphobjs(handles, msk);

seg.objallidx = find(bwperim(msk));
seg.objqntidx = find(bwperim(imclearborder(msk)));

725

save(fpath, ’seg’);

tLoopElaps = [tLoopElaps etime(clock, tLoopInit)];
end;

730 close(hProg);

% refresh the currently displayed file
handles= segedit_loadfile(handles, handles.cwd, handles.file);
segedit_load(handles);

735 segedit_disp(handles);
segedit_browseinit(handles);

end;
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else,
740 handles.maskall.curr = segedit_morphobjs(handles, ...

handles.maskall.curr);
handles.maskqnt.curr = imclearborder(handles.maskall.curr);
segedit_disp(handles);

745 checkSaved(handles);
drawnow

end;

guidata(hObject, handles);
750

% -------------------------------------------------------------------------
function msk = segedit_morphobjs(handles, msk)
switch handles.morph.strel.type

755 case ’disk’,
se = strel(’disk’, handles.morph.strel.size);

case ’square’,
se = strel(’square’, handles.morph.strel.size);

otherwise,
760 se = strel(’square’, 3);

end;
switch handles.morph.op

case ’dilate’,
msk = imdilate(msk, se);

765 case ’erode’,
msk = imerode(msk, se);

case ’close’,
msk = imclose(msk, se);

case ’open’,
770 msk = imopen(msk, se);

otherwise,
end;

775 % --- Executes on slider movement.
function sldBrowse_Callback(hObject, eventdata, handles)
% hObject handle to sldBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

780

% Hints: get(hObject,’Value’) returns position of slider
% get(hObject,’Min’) and get(hObject,’Max’) to determine range of
% slider
nValue = round(get(hObject, ’Value’));

785 sValue = num2str(nValue);

handles= segedit_loadfile(handles, handles.cwd, handles.files{nValue});
segedit_load(handles);
segedit_disp(handles);

790 segedit_browseinit(handles);

guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
795 function sldBrowse_CreateFcn(hObject, eventdata, handles)
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% hObject handle to sldBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

800 % Hint: slider controls usually have a light gray background.
if isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,[.9 .9 .9]);

end
805

function edtBrowse_Callback(hObject, eventdata, handles)
% hObject handle to edtBrowse (see GCBO)

810 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtBrowse as text
% str2double(get(hObject,’String’)) returns contents of edtBrowse as

815 % a double
nFileID = str2num(get(hObject, ’String’));
fname = sprintf(’%04d.mat’, nFileID);
handles = segedit_loadfile(handles, handles.cwd, fname);
segedit_load(handles);

820 segedit_disp(handles);
segedit_browseinit(handles);
guidata(hObject, handles);

825 % --- Executes during object creation, after setting all properties.
function edtBrowse_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

830

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
835 set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in pbBrowsePrev.
840 function pbBrowsePrev_Callback(hObject, eventdata, handles)

% hObject handle to pbBrowsePrev (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
nValue = round(get(handles.sldBrowse, ’Value’)) - 1;

845

if nValue >= 1,
sValue = num2str(nValue);

handles= segedit_loadfile(handles, handles.cwd, handles.files{nValue});
850 segedit_load(handles);

segedit_disp(handles);
segedit_browseinit(handles);
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guidata(hObject, handles);
855 end;

% --- Executes on button press in pbBrowseNext.
function pbBrowseNext_Callback(hObject, eventdata, handles)
% hObject handle to pbBrowseNext (see GCBO)

860 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
nValue = round(get(handles.sldBrowse, ’Value’)) + 1;

if nValue <= length(handles.files),
865 sValue = num2str(nValue);

handles= segedit_loadfile(handles, handles.cwd, handles.files{nValue});
segedit_load(handles);
segedit_disp(handles);

870 segedit_browseinit(handles);

guidata(hObject, handles);
end;

875

function files = segedit_getfiles(handles)
files = dir([handles.cwd, ’\ * .mat’]);
files = files(find(˜[files.isdir]));
files = {files.name};

880

function segedit_browseinit(handles);
nfiles = length(handles.files);
[pathstr, fname, fext] = fileparts(handles.file);

885 set(handles.sldBrowse, ...
’Value’, strmatch([fname fext], handles.files, ’exact’), ...
’Min’, 1, ...
’Max’, nfiles, ...
’SliderStep’, [1/(nfiles - 1), 10/(nfiles - 1)] ...

890 );

set(handles.edtBrowse, ’String’, str2num(fname));

895 function handles = segedit_loadfile(handles, fpath, fname)
load([fpath, ’\’, fname]);

set(gcbf, ’name’, sprintf(’%s - %s’, handles.uiprops.appname, fname));
handles.seg = seg;

900 handles.cwd = fpath;
handles.file = fname;
% get the list of files in the working directory
handles.files = segedit_getfiles(handles);
handles.issaved = true;

905 handles.image = segedit_getimg(handles);

% create the masks for display from the data in the selected file
msk = bndidx2mask(handles.seg.imsize, handles.seg.objqntidx);
handles.maskqnt.orig = msk;
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910 handles.maskqnt.curr = msk;

msk = bndidx2mask(handles.seg.imsize, handles.seg.objallidx);
handles.maskall.orig = msk;
handles.maskall.curr = msk;

915

% --- Executes on button press in pbUpdateSave.
function pbUpdateSave_Callback(hObject, eventdata, handles)
% hObject handle to pbUpdateSave (see GCBO)

920 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject, ’Enable’, ’Off’);
handles = segedit_update(handles);
set(hObject, ’Enable’, ’on’);

925 drawnow
segedit(’MenuItemSave_Callback’, hObject, eventdata, handles);
guidata(hObject, handles);

% guidata(hObject, handles);
930

function handles = segedit_update(handles)
plotedit off
updatestatus(handles, ’Updating mask’);

935

drawnow

im = handles.image;
sz = handles.seg.imsize;

940 nColorCur = handles.uiprops.color.cur;
nColorAdd = handles.uiprops.color.add;
nColorAddGlobal = handles.uiprops.color.addglobal;
nColorErase = handles.uiprops.color.erase;
nColorEraseGlobal = handles.uiprops.color.eraseglobal;

945 nObjLineLnWidth = handles.uiprops.linewidth.line;
nObjAreaLnWidth = handles.uiprops.linewidth.area;

BCur = zeros(sz);
BAdd = BCur;

950 BErs = BCur;

BAddGbl = handles.maskglobal.add;
BErsGbl = handles.maskglobal.erase;

955 % pull in the line object handles
hObjs = get(handles.axes1, ’children’);

hLines = findobj(hObjs, ’flat’, ’type’, ’line’);
hLinesCur = findobj(hLines, ’flat’, ’color’, nColorCur);

960 hLinesAdd = findobj(hLines, ’flat’, ’color’, nColorAdd);

hLinesErsArea = findobj(hLines, ’flat’, ...
’color’, nColorErase, ...
’-and’, ’linewidth’, nObjAreaLnWidth);

965 hLinesErsLine = findobj(hLines, ’flat’, ...
’color’, nColorErase, ...
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’-and’, ’linewidth’, nObjLineLnWidth);

% process added regions
970 Bon = zeros(sz);

xy = get([hLinesCur; hLinesAdd], {’xdata’, ’ydata’});
Bon(sub2ind(sz, round([xy{:, 2}]), round([xy{:, 1}]))) = 1;
Bon = imfill(Bon, ’holes’);

975 % process erased regions
Boffa = zeros(sz);
xy = get(hLinesErsArea, {’xdata’, ’ydata’});
Boffa(sub2ind(sz, round([xy{:, 2}]), round([xy{:, 1}]))) = 1;
Boffa = imfill(Boffa, ’holes’);

980

% process erased lines
Boffl = zeros(sz);
xy = get(hLinesErsLine, {’xdata’, ’ydata’});

985 for i = 1:size(xy, 1),
Boffl = Boffl | line2mask(sz, [xy{i, 1}], [xy{i, 2}]);

end;
% Boffl(sub2ind(sz, round([xy{:, 2}]), round([xy{:, 1}]))) = 1;
Boffl = imdilate(Boffl, strel(’square’, 2));

990

BE = Bon & ˜(Boffa | Boffl);

% process any global region edits
if (˜isempty(BAddGbl) ...

995 || ˜isempty(BErsGbl)) ...
&& (sum(BAddGbl(:)) > 0 ...
|| sum(BErsGbl(:)) > 0),

button = questdlg([...
’There are global regions to process.’...

1000 ’ How do you wish to proceed?’],...
’Edit All’,’Process All’,...
’Process Current Only’,...
’Process Current Only’);

if strcmpi(button, ’Process All’),
1005 % this could take a while. display a waitbar to update progress

hProg = waitbar(0, ’Processing Global Edit Operation’);
nFiles = length(handles.files);
tLoopElaps = [];

1010 for i = 1:nFiles,
tLoopInit = clock;
updateprogress(hProg, i, nFiles, tLoopElaps);

waitbar(i/nFiles, hProg, ’Processing Global Edit Operation’);
1015 fpath = [handles.cwd filesep handles.files{i}];

load(fpath, ’seg’);
handles.seg = seg;
msk = bndidx2mask(seg.imsize, seg.objallidx);

1020

% process global adds if there are any
if sum(BAddGbl(:)) > 0,

msk = msk | BAddGbl;
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end;
1025

% process global erases ... note regions that touch the global
% erase mask are also removed to keep the resultant mask
% ’clean’
if sum(BErsGbl(:)) > 0,

1030 L = bwlabeln(msk);
oid = unique(immultiply(L, BErsGbl));
for j = 2:length(oid),

msk(find(L == oid(j))) = 0;
end;

1035 end;

seg.objallidx = find(bwperim(msk));
seg.objqntidx = find(bwperim(imclearborder(msk)));

1040 save(fpath, ’seg’);

tLoopElaps = [tLoopElaps etime(clock, tLoopInit)];
end;
close(hProg);

1045

% refresh the currently displayed file
handles= segedit_loadfile(handles, handles.cwd, handles.file);
segedit_load(handles);

1050 % defer image update to after all
% procesing is finished
% segedit_disp(handles);

segedit_browseinit(handles);
1055 else,

% just work on the current image
if sum(BAddGbl(:)) > 0,

BE = BE | BAddGbl;
1060 end;

if sum(BErsGbl(:)) > 0,
L = bwlabeln(BE);
oid = unique(immultiply(L, BErsGbl));
for j = 2:length(oid),

1065 BE(find(L == oid(j))) = 0;
end;

end;

end;
1070 end;

handles.maskall.curr = BE;
handles.maskqnt.curr = imclearborder(BE);

1075 delete(hLines);

axes(handles.axes1);
hold on
segedit_disp_mask(handles);

1080
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updatestatus(handles, ’’);
checkSaved(handles);
figure(handles.figure1);

1085

% -------------------------------------------------------------------------
function segedit_deleteobj(hObj, handles)
im = handles.image;
sz = handles.seg.imsize;

1090

% process deleted region
Bd = zeros(sz);
xy = get(hObj, {’xdata’, ’ydata’});
Bd(sub2ind(sz, round([xy{:, 2}]), round([xy{:, 1}]))) = 1;

1095 Bd = imfill(Bd, ’holes’);

% check to see what object the user is deleting
sColor = num2str(get(hObj, ’color’));
switch sColor,

1100 case num2str(handles.uiprops.color.cur),
% the object exists in the data file, the mask should be saved for
% changes to be preserved.

handles.maskall.curr = handles.maskall.curr & ˜Bd;
1105 handles.maskqnt.curr = imclearborder(handles.maskall.curr);

delete(hObj);

case {num2str(handles.uiprops.color.add), ...
1110 num2str(handles.uiprops.color.erase)},

% the object is a newly added editing region that the user is
% removing. this does not affect the change state of the mask so
% do nothing special.

1115 delete(hObj);

case {num2str(handles.uiprops.color.addglobal), ...
num2str(handles.uiprops.color.eraseglobal)},

% the user is removing an object on the global mask layer. this
1120 % should not affect the saved state of the mask, but the global

% editing mask needs to be updated.

switch sColor,
case num2str(handles.uiprops.color.addglobal),

1125 handles.maskglobal.add = handles.maskglobal.add & ˜Bd;
case num2str(handles.uiprops.color.eraseglobal),

handles.maskglobal.erase = handles.maskglobal.erase & ˜Bd;
end;

1130 delete(hObj);

end;
checkSaved(handles);
guidata(handles.figure1, handles);

1135

% --- Executes on button press in tbDisp.
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function tbDisp_Callback(hObject, eventdata, handles)
% hObject handle to tbDisp (see GCBO)

1140 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of tbDisp
state = get(hObject, ’Value’);

1145 strs = get(hObject, ’UserData’);
set(hObject, ’String’, strs(state+1));

if state == 0,
% Mask on, the default

1150 set(findobj(’type’, ’line’), ’visible’, ’on’);
elseif state == 1,

% Mask off
set(findobj(’type’, ’line’), ’visible’, ’off’);

end;
1155

% handles key press events
function segedit_keypress(src, event, varargin)
handles = guidata(gcf);

1160 sMod = event.Modifier;
sKey = event.Key;

switch sKey,
case {’delete’, ’decimal’},

1165 if strcmpi(get(gco, ’type’), ’line’),
% delete(gco);

segedit_deleteobj(gco, handles);
end;

case {’rightarrow’, ’space’, ’numpad6’},
1170 pbBrowseNext_Callback(handles.pbBrowseNext, [], handles);

case {’leftarrow’, ’backspace’, ’numpad4’},
pbBrowsePrev_Callback(handles.pbBrowsePrev, [], handles);

case ’add’,
pbAdd_Callback(handles.pbErase, [], handles);

1175 case ’subtract’,
pbErase_Callback(handles.pbErase, [], handles);

case {’f12’, ’return’},
pbUpdateSave_Callback(handles.pbUpdateSave, [], handles);

case {’multiply’, ’m’},
1180 set(handles.tbDisp, ’value’, ...

˜logical(get(handles.tbDisp, ’value’)));
tbDisp_Callback(handles.tbDisp, [], handles);

otherwise,
end;

1185

function segedit_onclick(hObject, varargin)
sCurSelState = get(hObject, ’selected’);
set(findobj(’selected’, ’on’), ’selected’, ’off’);

1190 if strcmpi(sCurSelState, ’off’),
set(hObject, ’selected’, ’on’, ’selectionhighlight’, ’on’);

end;

function segedit_showargs(varargin)
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1195 for i=1:length(varargin),
varargin{i}

end;

1200 % --------------------------------------------------------------------
function MenuFileUpdateSave_Callback(hObject, eventdata, handles)
% hObject handle to MenuFileUpdateSave (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1205

% --- Executes on selection change in pmnEraseType.
1210 function pmnEraseType_Callback(hObject, eventdata, handles)

% hObject handle to pmnEraseType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1215 % Hints: contents = get(hObject,’String’) returns pmnEraseType contents as
% cell array contents{get(hObject,’Value’)} returns selected item
% from pmnEraseType

1220 % --- Executes during object creation, after setting all properties.
function pmnEraseType_CreateFcn(hObject, eventdata, handles)
% hObject handle to pmnEraseType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

1225

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
1230 set(hObject,’BackgroundColor’,’white’);

end

1235

% --- Executes on selection change in pmnFilterType.
function pmnFilterType_Callback(hObject, eventdata, handles)
% hObject handle to pmnFilterType (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1240 % handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns pmnFilterType contents as
% cell array contents{get(hObject,’Value’)} returns selected item
% from pmnFilterType

1245

% --- Executes during object creation, after setting all properties.
function pmnFilterType_CreateFcn(hObject, eventdata, handles)
% hObject handle to pmnFilterType (see GCBO)

1250 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
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% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.

1255 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

1260

function edtFilterMin_Callback(hObject, eventdata, handles)
% hObject handle to edtFilterMin (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1265 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtFilterMin as text
% str2double(get(hObject,’String’)) returns contents of edtFilterMin
% as a double

1270

% --- Executes during object creation, after setting all properties.
function edtFilterMin_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtFilterMin (see GCBO)

1275 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

1280 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

1285

function edtFilterMax_Callback(hObject, eventdata, handles)
% hObject handle to edtFilterMax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1290 % handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of edtFilterMax as text
% str2double(get(hObject,’String’)) returns contents of edtFilterMax
% as a double

1295

% --- Executes during object creation, after setting all properties.
function edtFilterMax_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtFilterMax (see GCBO)

1300 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

1305 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
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1310

% --- Executes on button press in pbFilterHistogram.
function pbFilterHistogram_Callback(hObject, eventdata, handles)
% hObject handle to pbFilterHistogram (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1315 % handles structure with handles and user data (see GUIDATA)

% display a histogram for the filter value specified in pmnFilterType
sFilterType = get(handles.pmnFilterType, ’String’);
sFilterType = sFilterType{get(handles.pmnFilterType, ’Value’)};

1320

data = segedit_getfilterdata(handles, handles.maskall.curr, sFilterType);
figure,
[n, x] = hist(data, sqrt(length(data)));
bar(x, n);

1325 xlabel(sFilterType);
ylabel(’Counts’);

% -------------------------------------------------------------------------
function [data, L] = segedit_getfilterdata(handles, B, sFilterType)

1330 L = bwlabeln(B);
I = handles.image;

iNumObjs = length(unique(L)) - 1;

1335 switch lower(sFilterType),
case {’area’, ’perimeter’},

S = regionprops(L, sFilterType);
data = [S(:).(sFilterType)];

case {’intensity’, ’variance’},
1340 data = [];

for i = 1:iNumObjs,
switch lower(sFilterType),

case ’intensity’,
data = [data, mean2(I(find(L == i)))];

1345 case ’variance’,
data = [data, std2(I(find(L == i)))];

end;
end;

otherwise,
1350 end;

% --- Executes on button press in pbFilter.
function pbFilter_Callback(hObject, eventdata, handles)

1355 % hObject handle to pbFilter (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

bApplyAll = get(handles.chkFilterApplyAll, ’value’);
1360

if bApplyAll,
% Display a warning notifying the user that this operation updates all
% files in the current working directory without an undo
button = questdlg([...

1365 ’This will irreversibly modify all files in the current ’...
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’working directory. Do you wish to continue?’],...
’Morph All’,’Yes’,’No’,’No’);

if strcmpi(button, ’yes’),
% this could take a while. display a waitbar to update progress

1370 hProg = waitbar(0, ’Processing Global Filter Operation’);
nFiles = length(handles.files);
tLoopElaps = [];

for i = 1:nFiles,
1375 tLoopInit = clock;

updateprogress(hProg, i, nFiles, tLoopElaps);

waitbar(i/nFiles, hProg, ’Processing Global Filter Operation’);
fpath = [handles.cwd filesep handles.files{i}];

1380

load(fpath, ’seg’);
handles.seg = seg;
handles.image = segedit_getimg(handles);

1385 msk = bndidx2mask(seg.imsize, seg.objallidx);
msk = segedit_filterobjs(handles, msk);

seg.objallidx = find(bwperim(msk));
seg.objqntidx = find(bwperim(imclearborder(msk)));

1390

save(fpath, ’seg’);

tLoopElaps = [tLoopElaps etime(clock, tLoopInit)];
end;

1395 close(hProg);

% refresh the currently displayed file
handles= segedit_loadfile(handles, handles.cwd, handles.file);
segedit_load(handles);

1400 segedit_disp(handles);
segedit_browseinit(handles);

end;

else,
1405 handles.maskall.curr = segedit_filterobjs(handles, ...

handles.maskall.curr);
handles.maskqnt.curr = imclearborder(handles.maskall.curr);

hObjs = get(handles.axes1, ’children’);
1410 hLines = findobj(hObjs, ’flat’, ’type’, ’line’);

delete(hLines);

axes(handles.axes1);
hold on

1415 segedit_disp_mask(handles);

checkSaved(handles);
guidata(hObject, handles);

end;
1420

% -------------------------------------------------------------------------
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function B = segedit_filterobjs(handles, msk)
% get the filter type

1425 sFilterType = get(handles.pmnFilterType, ’String’);
sFilterType = sFilterType{get(handles.pmnFilterType, ’Value’)};

% get the filter range
nMax = str2double(get(handles.edtFilterMax,’String’));

1430 nMin = str2double(get(handles.edtFilterMin,’String’));

% get the filter method
bInclude = get(handles.radFilterInclude, ’Value’);
bExclude = get(handles.radFilterExclude, ’Value’);

1435

[data, L] = segedit_getfilterdata(handles, msk, sFilterType);

B = zeros(size(L));
vObjs = find(data >= nMin & data <= nMax);

1440 for i = 1:length(vObjs),
B(find(L == vObjs(i))) = 1;

end;

if bInclude,
1445 % keep the objects that match the filter range

B = msk & B;

elseif bExclude,
% remove the objects that match the filter range

1450 B = msk & ˜B;

end;

1455 % --- Executes on button press in radFilterInclude.
function radFilterInclude_Callback(hObject, eventdata, handles)
% hObject handle to radFilterInclude (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1460

% Hint: get(hObject,’Value’) returns toggle state of radFilterInclude

% --- Executes on button press in radFilterExclude.
1465 function radFilterExclude_Callback(hObject, eventdata, handles)

% hObject handle to radFilterExclude (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1470 % Hint: get(hObject,’Value’) returns toggle state of radFilterExclude

1475 % --- Executes on button press in pbFilterPreview.
function pbFilterPreview_Callback(hObject, eventdata, handles)
% hObject handle to pbFilterPreview (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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1480

B = segedit_filterobjs(handles, handles.maskall.curr);

hObjs = get(handles.axes1, ’children’);
hLines = findobj(hObjs, ’flat’, ’type’, ’line’);

1485 hLines = findobj(hLines, ’flat’, ’color’, handles.uiprops.color.preview);
delete(hLines);

axes(handles.axes1);
hold on

1490 BND = bwboundaries(B, ’noholes’);
for i = 1:length(BND),

plot(BND{i}(:, 2), BND{i}(:,1), ...
’color’, handles.uiprops.color.preview, ...
’linestyle’, ’-’, ...

1495 ’linewidth’, handles.uiprops.linewidth.area)
hold on

end;

1500 % --- Executes on button press in pbFilterPreviewClear.
function pbFilterPreviewClear_Callback(hObject, eventdata, handles)
% hObject handle to pbFilterPreviewClear (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1505 segedit_clearpreview(handles);

% -------------------------------------------------------------------------
function segedit_clearpreview(handles)

1510 hObjs = get(handles.axes1, ’children’);
hLines = findobj(hObjs, ’flat’, ’type’, ’line’);
hLines = findobj(hLines, ’flat’, ’color’, handles.uiprops.color.preview);
delete(hLines);

1515

% --- Executes on button press in pbMorphPreviewClear.
function pbMorphPreviewClear_Callback(hObject, eventdata, handles)
% hObject handle to pbMorphPreviewClear (see GCBO)

1520 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
segedit_clearpreview(handles);

1525 % --- Executes on button press in pbMorphPreview.
function pbMorphPreview_Callback(hObject, eventdata, handles)
% hObject handle to pbMorphPreview (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1530

B = segedit_morphobjs(handles, handles.maskall.curr);

hObjs = get(handles.axes1, ’children’);
hLines = findobj(hObjs, ’flat’, ’type’, ’line’);

1535 hLines = findobj(hLines, ’flat’, ’color’, handles.uiprops.color.preview);
delete(hLines);
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axes(handles.axes1);
hold on

1540 BND = bwboundaries(B, ’noholes’);
for i = 1:length(BND),

plot(BND{i}(:, 2), BND{i}(:,1), ...
’color’, handles.uiprops.color.preview, ...
’linestyle’, ’-’, ...

1545 ’linewidth’, handles.uiprops.linewidth.area)
hold on

end;

% --- Executes on button press in chkFilterApplyAll.
1550 function chkFilterApplyAll_Callback(hObject, eventdata, handles)

% hObject handle to chkFilterApplyAll (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1555 % Hint: get(hObject,’Value’) returns toggle state of chkFilterApplyAll

1560 % --- Executes on button press in chkMorphApplyAll.
function chkMorphApplyAll_Callback(hObject, eventdata, handles)
% hObject handle to chkMorphApplyAll (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

1565

% Hint: get(hObject,’Value’) returns toggle state of chkMorphApplyAll

1570

% --- Executes when figure1 is resized.
function figure1_ResizeFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

1575 % handles structure with handles and user data (see GUIDATA)

if isfield(handles, ’figure1’),
% objects that stretch:
% axes1, the main display axis, vertical, horizontal

1580 % sldBrowse, the browsing slider, horizontal
% edtStatus, the status message field, horizontal
% panel8, the blank spacer panel, vertical

% all other objects dimensions should remain fixed
1585 % aside from stretched positions, all other coordinates should remain fixed

% relative to the figure window edge

% position all objects lower left corners to where they should be relative
% to the figure lower left

1590

% get the current figure position
cfpos = get(handles.figure1, ’position’);
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% objects to move to upper left corner
1595 % calculate distance offsets to move lower right corners by measuring how

% much the figure has grown
offset = cfpos - handles.uisize;
offset = [offset(3:4), 0, 0];

1600 h = [ handles.tbDisp;
handles.uipanel9;
handles.uipanel2;
handles.uipanel7;
];

1605 for i = 1:length(h),
set(h(i), ’position’, get(h(i), ’position’) + offset);

end;

% stretch objects that need h/v stretch
1610 stretch = circshift(offset, [0 2]);

h = [ handles.axes1;
];

for i = 1:length(h),
set(h(i), ’position’, get(h(i), ’position’) + stretch);

1615 end;

% stretch objects that need v stretch
stretchv = stretch;
stretchv(3) = 0;

1620 h = [ handles.uipanel8;
];

for i = 1:length(h),
set(h(i), ’position’, get(h(i), ’position’) + stretchv);

end;
1625

% stretch objects that need h stretch
stretchh = stretch;
stretchh(4) = 0;
h = [ handles.sldBrowse;

1630 handles.edtStatus;
];

for i = 1:length(h),
set(h(i), ’position’, get(h(i), ’position’) + stretchh);

end;
1635

% objects to move left only
offset(2) = 0;
h = [ handles.uipanel8;

handles.uipanel3;
1640 handles.pbBrowsePrev;

handles.edtBrowse;
handles.pbBrowseNext;
];

for i = 1:length(h),
1645 set(h(i), ’position’, get(h(i), ’position’) + offset);

end;

handles.uisize = cfpos;
guidata(hObject, handles);

1650 end; % if figure is drawn
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% --- Executes on button press in chkMaskApplyAll.
function chkMaskApplyAll_Callback(hObject, eventdata, handles)

1655 % hObject handle to chkMaskApplyAll (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkMaskApplyAll
1660
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B.8 Complete source code for TRACKEDIT

function varargout = trackedit(varargin)
% TRACKEDIT M-file for trackedit.fig
% TRACKEDIT, by itself, creates a new TRACKEDIT or raises the existing
% singleton * .

5 %
% H = TRACKEDIT returns the handle to a new TRACKEDIT or the handle to
% the existing singleton * .
%
% TRACKEDIT(’CALLBACK’,hObject,eventData,handles,...) calls the local

10 % function named CALLBACK in TRACKEDIT.M with the given input
% arguments.
%
% TRACKEDIT(’Property’,’Value’,...) creates a new TRACKEDIT or raises
% the existing singleton * . Starting from the left, property value

15 % pairs are applied to the GUI before trackedit_OpeningFunction gets
% called. An unrecognized property name or invalid value makes
% property application stop. All inputs are passed to
% trackedit_OpeningFcn via varargin.
%

20 % * See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

25 % Edit the above text to modify the response to help trackedit

% Last Modified by GUIDE v2.5 11-Jul-2006 00:32:09

% Begin initialization code - DO NOT EDIT
30 gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...
’gui_Singleton’, gui_Singleton, ...
’gui_OpeningFcn’, @trackedit_OpeningFcn, ...
’gui_OutputFcn’, @trackedit_OutputFcn, ...

35 ’gui_LayoutFcn’, [] , ...
’gui_Callback’, []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end
40

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

45 end
% End initialization code - DO NOT EDIT

% --- Executes just before trackedit is made visible.
50 function trackedit_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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55 % varargin command line arguments to trackedit (see VARARGIN)

% Choose default command line output for trackedit
handles.output = hObject;

60 hUI = findobj(handles.figure1, ...
’-depth’, 1, ...
’type’, ’uicontrol’, ...
’-or’, ’type’, ’uipanel’, ...
’-or’, ’type’, ’axes’);

65 hUI = [handles.figure1; hUI];
set(hUI, ’units’, ’pixels’);
handles.uisize = get(handles.figure1, ’position’);

% Application defaults
70 opts = getopts(varargin);

handles.uidata.infofile = parseopts(’file’, opts, ’’);
handles.uidata.cwd = cd;
handles.uidata.overlay = ’’;

75 handles.uidata.image = [];

% default colors
handles.uidata.colors = struct(...

’segmask’, [1 0 0], ...
80 ’objids’, [0.5 1 0.5], ...

’missingmask’, [1 1 0], ...
’missingobjids’, [1 0.5 0] ...

);

85 % display everything
handles.uidata.display = struct(...

’image’, 1, ...
’seg’, 1, ...
’objid’, 1, ...

90 ’missseg’, 1, ...
’missobjid’,1 ...

);
set([ ...

handles.chkDispImage;
95 handles.chkDispSegMask;

handles.chkDispObjIds;
handles.chkDispMissingObjMask;
handles.chkDispMissingObjIds;
] ...

100 , ’value’, 1);

handles.rundata = [];

set(handles.figure1, ’keypressfcn’, @trackedit_keypress);
105

% Update handles structure
guidata(hObject, handles);

if ˜isempty(handles.uidata.infofile),
110 [fpath, fname, fext, fver] = fileparts(handles.uidata.infofile);
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if isempty(fpath), fpath = cd; end;
fname = [fname fext];

115 MenuFileOpen_Callback(hObject, eventdata, handles, ...
’fpath’, fpath, ’fname’, fname);

end;
set(handles.axes1, ’visible’, ’off’);

120

% UIWAIT makes trackedit wait for user response (see UIRESUME)
% uiwait(handles.figure1);

125

% --- Outputs from this function are returned to the command line.
function varargout = trackedit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

130 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

135

% --- Executes on slider movement.
function sldBrowse_Callback(hObject, eventdata, handles)
% hObject handle to sldBrowse (see GCBO)

140 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’Value’) returns position of slider
% get(hObject,’Min’) and get(hObject,’Max’) to determine range of slider

145

handles.uidata.imgid = floor(get(hObject, ’value’));
set(handles.txtBrowse, ...

’string’, sprintf(’%d of %d’, ...
handles.uidata.imgid, ...

150 length(handles.rundata.info.indices)));
set(handles.edtBrowse, ’string’, num2str(handles.uidata.imgid));
trackedit_disp(handles);

guidata(hObject, handles);
155

% --- Executes during object creation, after setting all properties.
function sldBrowse_CreateFcn(hObject, eventdata, handles)

160 % hObject handle to sldBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
165 if isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,[.9 .9 .9]);

end
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170

% --- Executes on button press in pbBrowsePrev.
function pbBrowsePrev_Callback(hObject, eventdata, handles)
% hObject handle to pbBrowsePrev (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

175 % handles structure with handles and user data (see GUIDATA)

currid = get(handles.sldBrowse, ’value’);
if currid > get(handles.sldBrowse, ’min’),

set(handles.sldBrowse, ’value’, currid - 1);
180 sldBrowse_Callback(handles.sldBrowse, eventdata, handles);

end;

% --- Executes on button press in pbBrowseNext.
function pbBrowseNext_Callback(hObject, eventdata, handles)

185 % hObject handle to pbBrowseNext (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

currid = get(handles.sldBrowse, ’value’);
190 if currid < get(handles.sldBrowse, ’max’),

set(handles.sldBrowse, ’value’, currid + 1);
sldBrowse_Callback(handles.sldBrowse, eventdata, handles);

end;

195

function edtBrowse_Callback(hObject, eventdata, handles)
% hObject handle to edtBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

200

% Hints: get(hObject,’String’) returns contents of edtBrowse as text
% str2double(get(hObject,’String’)) returns contents of edtBrowse as
% a double
handles.uidata.imgid = floor(str2num(get(hObject, ’string’)));

205 set(handles.txtBrowse, ...
’string’, sprintf(’%d of %d’, ...

handles.uidata.imgid, ...
length(handles.rundata.info.indices)));

set(handles.sldBrowse, ’value’, handles.uidata.imgid);
210 trackedit_disp(handles);

% --- Executes during object creation, after setting all properties.
function edtBrowse_CreateFcn(hObject, eventdata, handles)
% hObject handle to edtBrowse (see GCBO)

215 % eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

220 if ispc && isequal(get(hObject,’BackgroundColor’), ...
get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end

225
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% --------------------------------------------------------------------
function MenuFileOpen_Callback(hObject, eventdata, handles, varargin)
% hObject handle to MenuFileOpen (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

230 % handles structure with handles and user data (see GUIDATA)
opts = getopts(varargin);
fname = parseopts(’fname’, opts, ’’);
fpath = parseopts(’fpath’, opts, ’’);

235 if isempty(fname) & isempty(fpath),
[fname fpath] = uigetfile(’ * .mat’, ’Select Run-time Info File’, ...

’imsqt’);
end;
if fname ˜= 0,

240 handles.uidata.infofile = [fpath filesep fname];
handles.uidata.cwd = fpath;
cd(fpath);

load(handles.uidata.infofile, ’data’);
245

handles.rundata = data;

% determine the segmentation channel to overlay
cvChannels = handles.rundata.channels;

250 [i j] = ind2sub(size(cvChannels), find(strcmpi(cvChannels, ’seg’)));
handles.uidata.overlay = cvChannels{i, 1};

% determine how many images there are to browse through
vIdx = handles.rundata.info.indices;

255 nTotImgs = length(vIdx);
handles.uidata.imgid = vIdx(1);
set(handles.sldBrowse, ’min’, vIdx(1));
set(handles.sldBrowse, ’max’, vIdx(end));
set(handles.sldBrowse, ’sliderstep’, [1/nTotImgs 10/nTotImgs]);

260 set(handles.sldBrowse, ’value’, vIdx(1));
set(handles.txtBrowse, ’string’, sprintf(’%d of %d’, 1, nTotImgs));
set(handles.edtBrowse, ’string’, num2str(vIdx(1)));

% get the current image and object ids and display
265 trackedit_disp(handles);

%set(handles.axes1, ’visible’, ’on’);

guidata(hObject, handles);
end;

270

% --------------------------------------------------------------------
function MenuFileSave_Callback(hObject, eventdata, handles)
% hObject handle to MenuFileSave (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

275 % handles structure with handles and user data (see GUIDATA)

% --------------------------------------------------------------------
function MenuFileSaveAs_Callback(hObject, eventdata, handles)

280 % hObject handle to MenuFileSaveAs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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285 % --------------------------------------------------------------------
function MenuFileQuit_Callback(hObject, eventdata, handles)
% hObject handle to MenuFileQuit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

290 guidata(hObject, handles);

delete(handles.figure1)

% --------------------------------------------------------------------
295 function MenuFile_Callback(hObject, eventdata, handles)

% hObject handle to MenuFile (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

300 % -------------------------------------------------------------------------
function I = trackedit_getimg(handles, varargin)
iROI = hashval(handles.rundata.channels, handles.uidata.overlay);
iROI = hashval(handles.rundata.rois, iROI{6});
iROI = iROI{1};

305

I = getimg( ...
handles.uidata.overlay, ...
handles.rundata.info.locid, ...
handles.uidata.imgid, ...

310 ’basepath’, trackedit_getexptpath(handles));
if ˜isempty(iROI),

I = imcrop(I, iROI);
end;

315 % -------------------------------------------------------------------------
function sExptPath = trackedit_getexptpath(handles)
sExptPath = [];
csStrings = {handles.rundata.info.path, ...

handles.rundata.info.prefix, handles.rundata.info.id};
320

% only assign the path if all the fields have been set
if isempty(strmatch(’’, csStrings, ’exact’)),

sExptPath = sprintf(’%s%s%s%s’, csStrings{1}, filesep, csStrings{2:3});
end;

325 sExptPath = handles.rundata.info.path;

% -------------------------------------------------------------------------
function trackedit_disp(handles)
axes(handles.axes1);

330 hold off
trackedit_disp_image(handles);
hold on
trackedit_disp_mask(handles);
trackedit_disp_objids(handles);

335 set(handles.axes1, ’xtick’, [], ’ytick’, [], ’box’, ’on’, ’color’, [0 0 0]);

% -------------------------------------------------------------------------
function trackedit_disp_image(handles)
hold off
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340 axes(handles.axes1);
img = trackedit_getimg(handles);
imshow(img, [], ’InitialMagnification’, ’fit’);
chkDispImage_Callback(handles.chkDispImage, [], handles);
axis on

345 set(handles.axes1, ’xtick’, [], ’ytick’, [], ’box’, ’on’, ’color’, [0 0 0]);

% -------------------------------------------------------------------------
function trackedit_disp_mask(handles)
axes(handles.axes1);

350 sFileName = [ trackedit_getexptpath(handles), ...
filesep, handles.rundata.segment.path, ...
filesep, sprintf(’%03d’, handles.rundata.info.locid), ...
filesep, sprintf(’%04d.mat’, handles.uidata.imgid) ...

];
355

sFileNamePrev = [ trackedit_getexptpath(handles), ...
filesep, handles.rundata.segment.path, ...
filesep, sprintf(’%03d’, handles.rundata.info.locid), ...
filesep, sprintf(’%04d.mat’, handles.uidata.imgid-1) ...

360 ];

seg = load(sFileName, ’seg’);
seg = seg.seg;

365 clr.segmask = handles.uidata.colors.segmask;
clr.missingmask = handles.uidata.colors.missingmask;

msk = bndidx2mask(seg.imsize, seg.objqntidx);
BND = bwboundaries(msk, ’noholes’);

370 for i = 1:length(BND),
plot(BND{i}(:, 2), BND{i}(:,1), ’color’, clr.segmask, ...

’linestyle’, ’-’, ’linewidth’, 1)
hold on

end;
375 chkDispSegMask_Callback(handles.chkDispSegMask, [], handles);

% marks changes in object locations
if handles.uidata.imgid > 0 && exist(sFileNamePrev, ’file’),

seg = load(sFileNamePrev, ’seg’);
380 seg = seg.seg;

mskprev = bndidx2mask(seg.imsize, seg.objqntidx);

mskdiff = imopen(xor(msk, mskprev), strel(’disk’, 5));
BND = bwboundaries(mskdiff, ’noholes’);

385 for i = 1:length(BND),
plot(BND{i}(:, 2), BND{i}(:,1), ’color’, clr.missingmask, ...

’linestyle’, ’-’, ’linewidth’, 2)
hold on

end;
390 chkDispMissingObjMask_Callback(handles.chkDispMissingObjMask, [], ...

handles);

end;

395 hold off
axis([0 seg.imsize(2) 0 seg.imsize(1)])
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% -------------------------------------------------------------------------
400 function trackedit_disp_objids(handles)

% get the object id and location data from the tracking data by image
sFileName = [ trackedit_getexptpath(handles), ...

filesep, handles.rundata.track.path, ...
filesep, sprintf(’%03d’, handles.rundata.info.locid), ...

405 filesep, ’byimg’, ...
filesep, sprintf(’%04d.img.dat’, handles.uidata.imgid) ...

];

sFileNamePrev = [ trackedit_getexptpath(handles), ...
410 filesep, handles.rundata.track.path, ...

filesep, sprintf(’%03d’, handles.rundata.info.locid), ...
filesep, ’byimg’, ...
filesep, sprintf(’%04d.img.dat’, handles.uidata.imgid-1)...

];
415 objects = importdata(sFileName);

data = objects.data;
cols = objects.colheaders;

handles.uidata.objects = objects.data;
420 handles.uidata.objectcols = objects.colheaders;

xpos = getdatacol(’centx’, data, cols);
ypos = getdatacol(’centy’, data, cols);
objid = getdatacol(’newobjid’, data, cols);

425

tmp = cell(size(objid));
for i = 1:length(objid),

tmp{i} = num2str(objid(i));
end;

430 objidstr = tmp;

clr.objids = handles.uidata.colors.objids;
clr.missingobjids = handles.uidata.colors.missingobjids;

435 axes(handles.axes1);
handles.uidata.objecthandles = text(xpos, ypos, objidstr, ...

’color’, clr.objids, ...
’fontname’, ’monotype’, ...
’fontsize’, 8, ...

440 ’verticalalign’, ’middle’, ...
’horizontalalign’, ’center’ ...

);
chkDispObjIds_Callback(handles.chkDispObjIds, [], handles);

445 % marks changes in object locations
if handles.uidata.imgid > 0 && exist(sFileNamePrev, ’file’),

objectsprev = importdata(sFileNamePrev);
objidprev = getdatacol(’newobjid’, objectsprev);

450 objsdiff = ˜ismember(objidprev, objid);

xpos = getdatacol(’centx’, objectsprev);
ypos = getdatacol(’centy’, objectsprev);
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455 objid = objidprev(objsdiff);
xpos = xpos(objsdiff);
ypos = ypos(objsdiff);

tmp = cell(size(objid));
460 for i = 1:length(objid),

tmp{i} = num2str(objid(i));
end;
objidstr = tmp;

465 axes(handles.axes1);
handles.uidata.objecthandles = text(xpos, ypos, objidstr, ...

’color’, clr.missingobjids, ...
’fontname’, ’monotype’, ...
’fontsize’, 8, ...

470 ’verticalalign’, ’middle’, ...
’horizontalalign’, ’center’ ...

);
chkDispMissingObjIds_Callback(handles.chkDispMissingObjIds, [], ...

handles);
475

end;

% --- Executes when figure1 is resized.
480 function figure1_ResizeFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

485 if isfield(handles, ’figure1’),
% objects that stretch:
% axes1, the main display axis, vertical, horizontal
% sldBrowse, the browsing slider, horizontal
% edtStatus, the status message field, horizontal

490 % panel8, the blank spacer panel, vertical

% all other objects dimensions should remain fixed
% aside from stretched positions, all other coordinates should remain fixed
% relative to the figure window edge

495

% position all objects lower left corners to where they should be relative
% to the figure lower left

% get the current figure position
500 cfpos = get(handles.figure1, ’position’);

% objects to move to upper left corner
% calculate distance offsets to move lower right corners by measuring how
% much the figure has grown

505 offset = cfpos - handles.uisize;
offset = [offset(3:4), 0, 0];

h = [handles.pnlDisplay;];
for i = 1:length(h),

510 set(h(i), ’position’, get(h(i), ’position’) + offset);
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end;

% stretch objects that need h/v stretch
stretch = circshift(offset, [0 2]);

515 h = [ handles.axes1;
];

for i = 1:length(h),
set(h(i), ’position’, get(h(i), ’position’) + stretch);

end;
520

% stretch objects that need v stretch
stretchv = stretch;
stretchv(3) = 0;
h = [ handles.pnlEdit;

525 ];
for i = 1:length(h),

set(h(i), ’position’, get(h(i), ’position’) + stretchv);
end;

530 % stretch objects that need h stretch
stretchh = stretch;
stretchh(4) = 0;
h = [ handles.sldBrowse;

];
535 for i = 1:length(h),

set(h(i), ’position’, get(h(i), ’position’) + stretchh);
end;

% objects to move left only
540 offset(2) = 0;

h = [ handles.pnlUpdate;
handles.txtBrowse;
handles.pbBrowsePrev;
handles.edtBrowse;

545 handles.pbBrowseNext;
handles.pnlEdit;
];

for i = 1:length(h),
set(h(i), ’position’, get(h(i), ’position’) + offset);

550 end;

handles.uisize = cfpos;
guidata(hObject, handles);
end;

555

% handles key press events
function trackedit_keypress(src, event, varargin)
handles = guidata(gcf);

560 sMod = event.Modifier;
sKey = event.Key;

switch sKey,
case {’delete’, ’decimal’},

565 % nothing yet
case {’rightarrow’, ’space’, ’numpad6’},

pbBrowseNext_Callback(handles.pbBrowseNext, [], handles);
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case {’leftarrow’, ’backspace’, ’numpad4’},
pbBrowsePrev_Callback(handles.pbBrowsePrev, [], handles);

570 case ’add’,
% nothing yet

case ’subtract’,
% nothing yet

case {’f12’, ’return’},
575 % nothing yet

case {’multiply’, ’m’},
% nothing yet

otherwise,
end;

580

% --- Executes on button press in chkDispImage.
function chkDispImage_Callback(hObject, eventdata, handles)
% hObject handle to chkDispImage (see GCBO)

585 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkDispImage
himg = findobj(get(handles.axes1, ’children’), ’type’, ’image’);

590

val = get(hObject, ’value’);
handles.uidata.display.image = val;
if val,

set(himg, ’visible’, ’on’);
595 else

set(himg, ’visible’, ’off’);
end;

guidata(hObject, handles);
600

% --- Executes on button press in chkDispSegMask.
function chkDispSegMask_Callback(hObject, eventdata, handles)
% hObject handle to chkDispSegMask (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

605 % handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkDispSegMask
hmsk = findobj(get(handles.axes1, ’children’), ...

’type’, ’line’, ...
610 ’-and’, ’color’, handles.uidata.colors.segmask);

val = get(hObject, ’value’);
handles.uidata.display.seg = val;
if val,

615 set(hmsk, ’visible’, ’on’);
else

set(hmsk, ’visible’, ’off’);
end;

620 guidata(hObject, handles);

% --- Executes on button press in chkDispMissingObjMask.
function chkDispMissingObjMask_Callback(hObject, eventdata, handles)
% hObject handle to chkDispMissingObjMask (see GCBO)
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625 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkDispMissingObjMask
hmsk = findobj(get(handles.axes1, ’children’), ...

630 ’type’, ’line’, ...
’-and’, ’color’, handles.uidata.colors.missingmask);

val = get(hObject, ’value’);
handles.uidata.display.missseg = val;

635 if val,
set(hmsk, ’visible’, ’on’);

else
set(hmsk, ’visible’, ’off’);

end;
640 guidata(hObject, handles);

% --- Executes on button press in chkDispObjIds.
function chkDispObjIds_Callback(hObject, eventdata, handles)
% hObject handle to chkDispObjIds (see GCBO)

645 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkDispObjIds
hobj = findobj(get(handles.axes1, ’children’), ...

650 ’type’, ’text’, ...
’-and’, ’color’, handles.uidata.colors.objids);

val = get(hObject, ’value’);
handles.uidata.display.objid = val;

655 if val,
set(hobj, ’visible’, ’on’);

else
set(hobj, ’visible’, ’off’);

end;
660 guidata(hObject, handles);

% --- Executes on button press in chkDispMissingObjIds.
function chkDispMissingObjIds_Callback(hObject, eventdata, handles)
% hObject handle to chkDispMissingObjIds (see GCBO)

665 % eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of chkDispMissingObjIds
hobj = findobj(get(handles.axes1, ’children’), ...

670 ’type’, ’text’, ...
’-and’, ’color’, handles.uidata.colors.missingobjids);

val = get(hObject, ’value’);
handles.uidata.display.missobjid = val;

675 if val,
set(hobj, ’visible’, ’on’);

else
set(hobj, ’visible’, ’off’);

end;
680 guidata(hObject, handles);
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% --- Executes during object creation, after setting all properties.
function chkDispImage_CreateFcn(hObject, eventdata, handles)

685 % hObject handle to chkDispImage (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
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B.9 Complete source code for TRACKVIEW

function [hFig plotdata] = trackview(locid, objid, varargin)
opts = getopts(varargin);
inpperiod = parseopts(’period’, opts, 60);
smival = parseopts(’smival’, opts, 60);

5 imival = parseopts(’imival’, opts, 5);

bLink = parseopts(’link’, opts, false);
trjpath = parseopts(’trjpath’, opts, ’/trjdata’);
% qntpath = parseopts(’qntpath’, opts, ’/objdata’);

10 splots = lower(parseopts(’plots’, opts, {’fl2’, ’area’, ’var2’}));
splotset= {’fl[0-9] * ’, ’std[0-9] * ’, ’bg[0-9] * ’, ’var[0-9] * ’, ...

’area’, ’perim’, ’xy’};

splotsm = parseopts(’smoothing’, opts, cell(size(splots)));
15

clr = parseopts(’color’, opts, ’b’);

bGraphic = parseopts(’graphic’, opts, true);

20 % initialize
% glcmax = 2.0;

if bGraphic,
hFig = figure;

25 set(hFig, ’name’, sprintf(’Location: %03d, Object: %04d’, ...
locid, objid));

else
hFig = [];

end;
30

if bLink,
data = tracklink(locid, objid, ’trjpath’, trjpath);

else
data = importdata(sprintf(’.%s%c%03d%cbyobj%c%04d.obj.dat’, ...

35 trjpath, filesep, locid, filesep, filesep, objid));
end;

data.smival = smival;
data.period = inpperiod;

40 data.imival = imival;

t = getdatacol(’imgid’, data) * data.imival;

% hView = figure;
45 plotdata = cell(size(splots, 2), 2);

for i = 1:length(splots),
if bGraphic,

figure(hFig),
subplot(2,2,i);

50 end;

for j = 1:length(splotset),
if regexpi(splots{i}, splotset{j}),

break;
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55 end;
end;

switch splotset{j},
case {’fl[0-9] * ’, ’std[0-9] * ’, ’bg[0-9] * ’, ’var[0-9] * ’},

60

switch splotset{j},
case {’fl[0-9] * ’, ’bg[0-9] * ’},

[fn ch] = strread(splots{i}, ’%2s%d’);
case {’std[0-9] * ’, ’var[0-9] * ’},

65 [fn ch] = strread(splots{i}, ’%3s%d’);
end;

% special calculation if variance is requested
if ˜strcmpi(fn, ’var’),

70 col = sprintf(’%s%d’, fn{1}, ch);
ydata = getdatacol(col, data);
ylbl = sprintf(’%s-%d (AU)’, upper(fn{1}), ch);

else
col = sprintf(’std%d’, ch);

75 ydata = getdatacol(col, data);
col = sprintf(’fl%d’, ch);
ydata = ydata ./ getdatacol(col, data);
ylbl = sprintf(’C_V-%d (AU)’, ch);

end;
80

xdata = t;
xlbl = ’Time’;

case {’area’, ’perim’},
85

switch splotset{j},
case ’area’,

ydata = getdatacol(’area’, data);
ylbl = ’Area (Pixels)’;

90 case ’perim’,
ydata = getdatacol(’perimnative’, data);
ylbl = ’Perim. (Pixels)’;

end;

95 xdata = t;
xlbl = ’Time’;

case ’xy’,
xdata = getdatacol(’centx’, data);

100 ydata = getdatacol(’centy’, data);
xlbl = ’x’;
ylbl = ’y’;

end;

105 if ˜isempty(splotsm{i}) && ischar(splotsm{i})
if ismember(lower(splotsm{i}), {’dt’, ’sm’, ’lg’})

win = data.smival / data.imival;
[dt lg sm] = detrend(ydata, win * 2, win/2, ’rlowess’);

110 switch lower(splotsm{i}),
case ’dt’,
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ydata = dt;
case ’sm’,

ydata = sm;
115 case ’lg’,

ydata = lg;
end;

end;
end;

120

if bGraphic,
plot(xdata, ydata, ’marker’, ’none’, ...

’linestyle’, ’-’, ’color’, clr)
xlabel(xlbl)

125 ylabel(ylbl)
drawnow

end;

plotdata{i, 1} = xdata;
130 plotdata{i, 2} = ydata;

plotdata{i, 3} = xlbl;
plotdata{i, 4} = ylbl;

end;

135 % figure(hFig)
%
% f = getdatacol(’fl2’, data);
% s = getdatacol(’std2’, data);
% v = s./f;

140 % b = getdatacol(’bg2’, data);
% a = getdatacol(’area’, data);
% x = getdatacol(’centx’, data);
% y = getdatacol(’centy’, data);
%

145 %
% win = data.smival / data.imival;
%
% [fdt flg fsm] = detrend(f, win * 2, win/2, ’rlowess’);
% [vdt vlg vsm] = detrend(v, win * 2, win/2, ’rlowess’);

150 % [adt alg asm] = detrend(a, win * 2, win/2, ’rlowess’);
%
%
% subplot(221), plot(t, fsm, ’marker’,’none’, ’linestyle’,’-’, ’color’,clr);
% subplot(222), plot(t, alg, ’marker’,’none’, ’linestyle’,’-’, ’color’,clr);

155 % subplot(223), plot(t, vsm, ’marker’,’none’, ’linestyle’,’-’, ’color’,clr);
%
%
% r = importdata(sprintf(’.%s%c%03d.blob.dat’, qntpath, filesep, locid));
% t = getdatacol(’imgid’, r) * data.imival;

160 % r = normrange(getdatacol(’bglvl1’, r)) * glcmax;

% subplot(224), plot(t, r, ’marker’,’none’, ’linestyle’,’-’, ’color’,clr);
% ax = axis;

165 % subplot(224), plot(x, y, ’marker’,’.’, ’linestyle’,’-’, ’color’,clr);
% hold on
% plot(x(1), y(1), ’marker’, ’o’, ’color’, [0 0.5 0]);
% plot(x(end), y(end), ’marker’, ’s’, ’color’, [0.5 0 0]);
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170 % hold off
% subplot(221),ylabel(’FL (AU)’), set(gca, ’box’,’on’, ’xlim’,ax(1:2))
% subplot(222),ylabel(’Area (Pixels)’), set(gca, ’box’,’on’, ’xlim’,ax(1:2))
% subplot(223),ylabel(’C_V (AU)’), set(gca, ’box’,’on’, ’xlim’,ax(1:2))
% subplot(224),ylabel(’[GLC] (%w/v)’), set(gca, ’box’,’on’)
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B.10 Complete source code for segmentor modules

imsegbact.m
function [seg, L, LW, J, K, H] = imsegbact(I, seg, varargin)
opts = getopts(varargin);

nThresh = parseopts(’thresh’, opts, 0.4);
5 iSmooth = parseopts(’smoothkernels’, opts, [3, 15]);

nEccFlt = parseopts(’eccentricity’, opts, [0 inf]);
nAreaFlt = parseopts(’area’, opts, [0 inf]);
nSolidFlt = parseopts(’solidity’, opts, [0 1]);
nIntsFlt = parseopts(’intensity’, opts, [0 mean(I(:)) * 1.1]);

10

segprev = parseopts(’mergeprev’, opts, []);

J = imfilter(imcomplement(I), fspecial(’average’, iSmooth(1)), ’replicate’);
K = imfilter(imcomplement(I), fspecial(’average’, iSmooth(2)), ’replicate’);

15 H = double(imclearborder(imadjust(J-K)));

B = H >= max(H(:)) * nThresh;

% first pass watershed to help define separable objects
20 D = bwdist(B);

LW = watershed(D);

% use look-up tables to find edges of objects
lut = makelut(’std(x(:)) >= 0.5’, 3);

25 C = ˜bwmorph(applylut(B, lut), ’skel’);
B = B & C;

B = imdilate(B, strel(’square’, 2));
B(find(LW == 0)) = 0;

30

L = bwlabeln(B);

seg.objallidx = find(bwperim(B));
seg.objqntidx = find(bwperim(imclearborder(B)));

35

% merge the previous segmentation mask with the current on to make editing
% easier and possibly more accurate. shrink the previous mask a little so
% that the new object boundaries are more likely to prevail.
if ˜isempty(segprev) & isstruct(segprev),

40 seg.objallidx = find(bwperim(B | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objallidx), ’erode’)));

seg.objqntidx = find(bwperim(B | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objqntidx), ’erode’)));

end;

imsegbf2.m
function [seg, L, C, LW] = imsegbf2(I, seg, varargin);
% IMSEGBF
% [seg, L, B, LW] = imsegbf(I, seg, ...)
%

5 % Segments objects in brightfield the brightfield image I. Objects must
% appear bright with dark borders for this algorithm to work accurately.
% SEG is a structure that contains information regarding the image being
% segmented with the following fields:
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%
10 % imgid image id (frame number)

% locid scan location id
% channel channel name
% roi region of interest vector (see IMCROP)
% imsize size of the (cropped) image to be segmented

15 %
% When the algorithm returns, the following fields will be appended to
% SEG:
%
% objqntidx indices of object borders to quantify

20 % objallidx indices of all object borders
%
% The algorithm returns:
%
% L label matrix of segmented objects

25 % B binary object mask of ALL objects (incl. objs on img edge)
% LW watershed region label matrix
% seg segmentation data
%
% Allows for manual correction of segmentation if ’autoonly’ parameter is

30 % set to FALSE.
%
% Optional Arguments
% maplev default: 9000
% intensity level in first pass marker set to threshold for

35 % object border definition.
%
% threshlev default: 0.7 * 2ˆ16
% intensity level in second pass marker processing to threshold
% for object border definition.

40 %
% areacutoff default: [0 Inf]
% 1x2 vector specifying the size filtration limits (number of
% pixels) that define desired objects. The range is inclusive at
% both ends -- e.g if the value is set to [25 500], only objects

45 % with pixel areas from 25 to 500 are retained.
%
% autoonly default: true
% specifies that the algorithm operate completely automatically.
% Set to FALSE if you wish to view and manually correct

50 % segmentation. If set to FALSE you must also provide ’SEGDATA’.

% History
% 2006/02/20, WLP: Created.
% 2006/03/01, WLP: Incorporated SEGEDIT gui as the primary means

55 % of editing segmentation masks.
% 2006/03/10, WLP: Changed primary segmentation algorithm to
% closing by reconstruction. Old image contrast
% enhancement method kept for reference.
% 2006/03/20, WLP: Removed manual segmentation portion. More

60 % efficient for users must edit after auto
% segmentation is complete. Command line
% arguments and output for SEGEDIT removed
% removed as well
%

65
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opts = getopts(varargin);

% these were options for the older segmentation code using image intensity
% and variance

70 iAreaFilter = parseopts(’areacutoff’, opts, [0 Inf]);
iAreaLo = iAreaFilter(1);
iAreaHi = iAreaFilter(2);
nThreshLev = parseopts(’threshlev’, opts, 0.01);
nBlackLev = parseopts(’blacklev’, opts, 3.5);

75 % -------------------------------------------------------------------------

% new/only option for the new segmentation code using morph reconstruction
iObjRadius = parseopts(’objradius’, opts, [2, 15]);
% -------------------------------------------------------------------------

80

bAutoOnly = parseopts(’autoonly’, opts, true);
segprev = parseopts(’mergeprev’, opts, []);

% emphasize the dark borders that appear on the outer edges of cells
85 cl = class(I);

switch cl,
case {’uint8’, ’uint16’},

MAX = intmax(cl);
case ’double’,

90 MAX = max(I(:));
case ’logical’,

MAX = 1;
otherwise,

end;
95

mn = double(min(I(:)))/MAX;
st = double(std(I(:)))/MAX;
mx = double(max(I(:)))/MAX;

100 Iori = I; % save the original image for manual segmentation editing

bExpt = true;
if bExpt,

% create morphological reconstructions of the source image to remove
105 % high frequency noise ’objects’. Use two reconstruction kernels, one

% to smooth out internal cell features, the other (larger) to smooth
% out the image in general.
Ie = imerode(I, strel(’disk’, min(iObjRadius) * 2));

% originally square, 9
110 Iers = imreconstruct(Ie, I);

Ie = imerode(I, strel(’disk’, max(iObjRadius) * 2));
% originally square, 25

Ierl = imreconstruct(Ie, I);
115

% enhance the edges of objects by removing internal features from
% objects. find these edges by image variance and enhance using
% simple morphological closing and median filtering
J = imadjust(imsubtract(imcomplement(Iers), Ierl));

120 S = imadjust(uint16(normrange(stdfilt(J)) * 2ˆ15 * 1.5));
S = imclose(S, strel(’square’, 3));
S = medfilt2(S, [3 3]);
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% thicken edges using a 4-con averaging filter
125 C = imfilter(S, [0 1 0;1 1 1; 0 1 0], ’corr’, ’replicate’);

% segment object borders
B = im2bw(C, graythresh(C));
% reduce borders to thin segments

130 B = bwmorph(B, ’thin’, 5);
% remove dangling segments
B = bwmorph(B, ’spur’, 5);
% remove isolated pixels
B = bwmorph(B, ’clean’);

135 % thicken borders
B = imdilate(B, strel(’disk’, 1));
% create object seeds
B = imclearborder(˜B);
% remove large objects (max obj radius is 15)

140 B = imtophat(B, strel(’disk’, max(iObjRadius)));
% remove small objects (min obj radius is 2) and smooth object edges
% last two steps function as an area filter
B = imopen(B, strel(’disk’, min(iObjRadius)));

145 else,
% before any processing get the image variance. this will help to
% remove spurious objects
V = imfill(uint16(image_variance(I, 3)), ’holes’);
VD = imdilate(V, strel(’disk’, 3));

150 VCR = imreconstruct(V, VD);
BV = im2bw(VCR, graythresh(VCR));

I = imadjust(I, [mn * nBlackLev mx], [], 1);

155 I1 = imadjust(medfilt2(imfilter(imcomplement(I), ...
fspecial(’disk’, 3), ’replicate’), [3 3]));

I2 = imadjust(medfilt2(imfilter(I, ...
fspecial(’disk’, 3), ’replicate’), [3 3]));

I2 = imfill(I2, ’holes’);
160

I = normrange(double(imsubtract(I1, I2)));
I = imadjust(I, [0.3 0.7], []);

J = I;
165

% create an initial outline mask by thresholding to create white pixels
% at the edges of objects
B = J > nThreshLev;

170 % find initial object boundaries, this will help to keep valid objects
% that would be removed in the later segmentation steps
C = imclose(B, strel(’disk’, 8));
BND = bwboundaries(C);
BC = zeros(size(B));

175 for i = 1:length(BND),
BC(sub2ind(size(B), BND{i}(:, 1), BND{i}(:, 2))) = 1;

end;
B = B | BC;
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180 % remove large dark regions and regions that touch the image boundary
B = ˜imclearborder(˜B);

% bridge some of the gaps in the object boundaries
% flip the intensity to get the initial seed mask

185 B = ˜imclose(B, strel(’disk’, 3));

% area filter, remove small objects above and below threshold range
B = bwareaopen(B, iAreaLo) & ˜bwareaopen(B, iAreaHi);

190 % variance filter, remove objects that are not in the object map
% generated by the image variance
B = B & BV;

end; % if ˜bExpt
195

% create object markers using a distance transform and segment with
% watershed to generate initial dividing borders
D = bwdist(B);

200 C = imerode(imregionalmin(D), strel(’disk’, 3));
E = bwdist(C);

LW = watershed(E);
damidx = find(LW == 0);

205

% thicken object markers to ensure complete segmentation
B = bwmorph(B, ’thicken’, 3);

% enforce object boundaries using watershed lines
210 B(damidx) = 0;

% All objects
C = B;

215 seg.objallidx = find(bwperim(C));
seg.objqntidx = find(bwperim(imclearborder(C)));

% merge the previous segmentation mask with the current on to make editing
% easier and possibly more accurate. shrink the previous mask a little so

220 % that the new object boundaries are more likely to prevail.
if ˜isempty(segprev) & isstruct(segprev),

seg.objallidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objallidx), ’erode’)));

seg.objqntidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
225 segprev.objqntidx), ’erode’)));

end;

B = imclearborder(B);
L = bwlabeln(B);

imsegbf3.m
function [seg, L, C, W] = imsegbf3(I, seg, varargin)
opts = getopts(varargin);
segprev = parseopts(’mergeprev’, opts, []);
pctSat = parseopts(’pctsat’, opts, 0.05);

5
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bDebug = parseopts(’debug’, opts, false);
bGraphic = parseopts(’graphic’, opts, false);

% test images:
10 % I = imread(’H:\05112006\expt-01\brite\brite_000_0799’,’tiff’) - 2ˆ15;

% I = imread(’H:\05112006\expt-01\brite\brite_000_0000’,’tiff’) - 2ˆ15;
% I = imread(’H:\05112006\expt-01\brite\brite_000_0411’,’tiff’) - 2ˆ15;
% I = imread(’H:\01132006\expt-01\brite\brite_000_0311’,’tiff’) - 2ˆ15;
% I = imread(’H:\02272006\expt-01\brite\brite_000_0234’,’tiff’) - 2ˆ15;

15

% =========================================================================
% CODE BEGINS HERE
%
Z = false(size(I));

20

% contrast enhance the image by saturation
if bGraphic,

figure, imshow(I, []), set(gcf, ’name’, ’Original Image’);
set(gcf, ’units’, ’pixels’, ’position’, [50 50 fliplr(size(I))]);

25 set(gca, ’position’, [0 0 1 1]);
end;

I = imsaturate(I, pctSat, varargin);

30 if bGraphic,
figure, imshow(I, []), set(gcf, ’name’, ’Contrast Enhanced Image’);
set(gcf, ’units’, ’pixels’, ’position’, [50 50 fliplr(size(I))]);
set(gca, ’position’, [0 0 1 1]);

end;
35

% threshold
iStats = [mean(double(I(2:end-1))) std(double(I(2:end-1)))];
B = I < (iStats(1) - iStats(2)/2);

40 % morph ops to remove vacuolar objects
B = bwmorph(B, ’skel’, inf);
B = bwmorph(B, ’spur’, 10);
B = bwmorph(B, ’clean’);

45 % segment the objects
B = bwmorph(B, ’dilate’);
B = imcomplement(B);
B = imclearborder(B);
B = imfill(B, ’holes’);

50

% round out the edges and remove some of the smaller objects
B = imopen(B, strel(’square’, 5)); % initial object markers

if bGraphic,
55 figure, imshow(B), set(gcf, ’name’, ’Initial Markers’)

set(gcf, ’units’, ’pixels’, ’position’, [50 50 fliplr(size(I))]);
set(gca, ’position’, [0 0 1 1]);

end;

60 % to aid in the separation of closely spaced objects find the distance
% transform peaks and mark.
C = imregionalmax(bwdist(˜B));
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B2 = imdilate(bwmorph(B & ˜imdilate(C, true(3)), ’thin’, inf), true(2));
B2 = imclearborder(˜B2, 4);

65

% perform watershed using new marker set and split blob objects in original
% marker set using segmented watershed dams
B2 = imclearborder(˜bwmorph(xor(B, B2), ’thin’, 5), 4);
D = bwdist(B2, ’euclid’);

70

if bGraphic,
figure, imshow(B2), set(gcf, ’name’, ’Centroid Enforced Markers’)
set(gcf, ’units’, ’pixels’, ’position’, [50 50 fliplr(size(I))]);
set(gca, ’position’, [0 0 1 1]);

75 end;

L = watershed(D, 4);

% get the watershed dams
80 W = Z;

W(L == 0) = 1;
W = bwmorph(W, ’thin’, inf);
BDR = imdilate(W, strel(’square’, 2));

85 if bGraphic,
figure, imshow(I), hold on
Lrgb = label2rgb(bwlabeln(B & ˜BDR), ’jet’, ’k’, ’shuffle’);
hMkr = imshow(Lrgb);
hold on

90 Wrgb = double(cat(3, BDR, BDR, Z));
hBdr = imshow(Wrgb);

AMkr = double((B & ˜BDR)) * 0.5;% + double(˜(B & ˜BDR));
ABdr = double(BDR);

95

set(hMkr, ’AlphaData’, AMkr);
set(hBdr, ’AlphaData’, ABdr);
set(gcf, ’name’, ’Segmentation Overlay’)
set(gcf, ’units’, ’pixels’, ’position’, [50 50 fliplr(size(I))]);

100 set(gca, ’position’, [0 0 1 1]);
end;

L = bwlabeln(B & ˜BDR);
C = L > 0;

105

seg.objallidx = find(bwperim(C));
seg.objqntidx = find(bwperim(imclearborder(C)));

% merge the previous segmentation mask with the current on to make editing
110 % easier and possibly more accurate. shrink the previous mask a little so

% that the new object boundaries are more likely to prevail.
if ˜isempty(segprev) && isstruct(segprev),

seg.objallidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objallidx), ’erode’)));

115 seg.objqntidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objqntidx), ’erode’)));

end;

% if bGraphic,
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120 % figure, imshow(I, []), hold on
% hImDams = imshow(double(cat(3, W, W, Z)));
% set(hImDams, ’AlphaData’, 0.3);
% hImLabels = imshow(label2rgb(L, ’jet’, ’k’, ’shuffle’));
% set(hImLabels, ’AlphaData’, 0.3);

125 % end;

imsegbf4.m
function [seg, L, C, W] = imsegbf4(I, seg, varargin)
% segmentation combining the best of bf2 and bf3 algorithms

opts = getopts(varargin);
5 segprev = parseopts(’mergeprev’, opts, []);

bDebug = parseopts(’debug’, opts, false);
bGraphic = parseopts(’graphic’, opts, false);
nGraphicPos = parseopts(’position’, opts, [50 50 fliplr(size(I))]);

10

% new/only option for the new segmentation code using morph reconstruction
iObjRadius = parseopts(’objradius’, opts, [2, 15]);

% saturation level for contrast enhancement
15 pctSat = parseopts(’pctsat’, opts, 0.05);

% option to use convex hulls of objects, helps to reduce oversegmentation
% but might produce under segmented results
bConvexObjs = parseopts(’convexobjs’, opts, false);

20

Z = false(size(I));

% contrast enhance the image by saturation
if bGraphic,

25 figure, imshow(I, []), set(gcf, ’name’, ’Original Image’);
set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);
set(gca, ’position’, [0 0 1 1]);

end;

30 I = imsaturate(I, pctSat, varargin);

if bGraphic,
figure, imshow(I, []), set(gcf, ’name’, ’Contrast Enhanced Image’);
set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);

35 set(gca, ’position’, [0 0 1 1]);
end;

% create morphological reconstructions of the source image to remove
% high frequency noise ’objects’. Use two reconstruction kernels, one

40 % to smooth out internal cell features, the other (larger) to smooth
% out the image in general.
Ie = imerode(I, strel(’disk’, min(iObjRadius) * 2)); % originally square, 9
Iers = imreconstruct(Ie, I);

45 Ie = imerode(I, strel(’disk’, max(iObjRadius) * 2)); % originally square, 25
Ierl = imreconstruct(Ie, I);

% if bGraphic,
% figure,imshow(Iers,[]),set(gcf, ’name’,’Small Open by Reconstruction’);
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50 % set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);
% set(gca, ’position’, [0 0 1 1]);
%
% figure,imshow(Ierl,[]),set(gcf, ’name’,’Large Open by Reconstruction’);
% set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);

55 % set(gca, ’position’, [0 0 1 1]);
% end;

% enhance the edges of objects by removing internal features from
% objects. find these edges by image variance and enhance using

60 % simple morphological closing and median filtering
J = imadjust(imsubtract(imcomplement(Iers), Ierl));
S = imadjust(uint16(normrange(stdfilt(J)) * 2ˆ15 * 1.5));
S = imclose(S, strel(’square’, 3));
S = medfilt2(S, [3 3]);

65

% thicken edges using a 4-con averaging filter
% C = imfilter(S, [0 1 0;1 1 1; 0 1 0], ’corr’, ’replicate’);

if bGraphic,
70 figure, imshow(J, []), set(gcf, ’name’, ’Object Edge Detection’);

set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);
set(gca, ’position’, [0 0 1 1]);

figure, imshow(S, []), set(gcf, ’name’, ’Object Edge Enhancement’);
75 set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);

set(gca, ’position’, [0 0 1 1]);
end;

iStats = [mean(double(I(2:end-1))) std(double(I(2:end-1)))];
80

% threshold high contrast borders and edges detected by local variance
B = (I < (iStats(1) - iStats(2)/2));
% B = bwmorph(B, ’thin’, 10);
% B = bwmorph(B, ’spur’, max(iObjRadius) * 2);

85 % B = bwmorph(B, ’clean’);
% B = bwmorph(B, ’dilate’);
% B = imclearborder(˜B);
% B = imfill(B, ’holes’);
% B1 = B;

90

B = B | im2bw(S, graythresh(S));
% reduce borders to thin segments
B = bwmorph(B, ’thin’, 10);
% remove dangling segments

95 B = bwmorph(B, ’spur’, max(iObjRadius) * 2);
% remove isolated pixels
B = bwmorph(B, ’clean’);
% thicken borders
B = imdilate(B, strel(’disk’, 1));

100 % create object seeds
B = imclearborder(˜B);

B = imfill(B, ’holes’);
% B2 = B;

105 %
% B = B1 | B2;
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% remove large objects (max obj radius is 15)
B = imtophat(B, strel(’disk’, max(iObjRadius)));
% remove small objects (min obj radius is 2) and smooth object edges

110 % last two steps function as an area filter
B = imopen(B, strel(’disk’, min(iObjRadius)));

if bConvexObjs,
B2 = Z;

115 % use convex hull to ’close’ remaining u-bended objects ... might be
% inefficient. Rebuild the mask using convex hull images, one object
% at a time.
for i = 1:2,

L = bwlabeln(B);
120 stObj = regionprops(L, ’conveximage’, ’pixellist’);

for iCurrObj = 1:length(stObj),
pxlst = stObj(iCurrObj).PixelList;
bbmin = min(pxlst);
bbmax = max(pxlst);

125

cim = stObj(iCurrObj).ConvexImage;

ii = bbmin(2);
ij = bbmax(2);

130 ji = bbmin(1);
jj = bbmax(1);

B2(ii:ij, ji:jj) = B2(ii:ij, ji:jj) | cim;
end;

135 B = B | B2;
end;

end;

if bGraphic,
140 figure, imshow(B), set(gcf, ’name’, ’Initial Markers’);

set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);
set(gca, ’position’, [0 0 1 1]);

end;

145 % to aid in the separation of closely spaced objects find the distance
% transform peaks and mark.
C = imregionalmax(bwdist(˜B));
B2 = imdilate(bwmorph(B & ˜imdilate(C, true(min(iObjRadius) * 2)), ...

’thin’, inf), true(2));
150 B2 = imclearborder(˜B2, 4);

% perform watershed using new marker set and split blob objects in original
% marker set using segmented watershed dams
B2 = imclearborder(˜bwmorph(xor(B, B2), ’thin’, min(iObjRadius)), 4);

155 D = bwdist(B2, ’euclid’);

if bGraphic,
figure, imshow(B2), set(gcf, ’name’, ’Centroid Enforced Markers’)
set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);

160 set(gca, ’position’, [0 0 1 1]);
end;

L = watershed(D, 4);
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165 % get the watershed dams
W = Z;
W(L == 0) = 1;
W = bwmorph(W, ’thin’, inf);
BDR = imdilate(W, strel(’square’, 2));

170

if bGraphic,
figure, imshow(I), hold on
Lrgb = label2rgb(bwlabeln(B & ˜BDR), ’jet’, ’k’, ’shuffle’);
hMkr = imshow(Lrgb);

175 hold on
Wrgb = double(cat(3, BDR, BDR, Z));
hBdr = imshow(Wrgb);

AMkr = double((B & ˜BDR)) * 0.5;
180 ABdr = double(BDR);

set(hMkr, ’AlphaData’, AMkr);
set(hBdr, ’AlphaData’, ABdr);
set(gcf, ’name’, ’Segmentation Overlay’)

185 set(gcf, ’units’, ’pixels’, ’position’, nGraphicPos);
set(gca, ’position’, [0 0 1 1]);

end;

L = bwlabeln(B & ˜BDR);
190 C = L > 0;

seg.objallidx = find(bwperim(C));
seg.objqntidx = find(bwperim(imclearborder(C)));

195 % merge the previous segmentation mask with the current on to make editing
% easier and possibly more accurate. shrink the previous mask a little so
% that the new object boundaries are more likely to prevail.
if ˜isempty(segprev) && isstruct(segprev),

seg.objallidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
200 segprev.objallidx), ’erode’)));

seg.objqntidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objqntidx), ’erode’)));

end;

imsegred.m
function [seg, L, LW, cfiltervals] = imsegred(I, seg, varargin)
% IMSEGRED
% [seg, L, LW, cfiltervals] = imsegred(I, seg, ...)
%

5 % Description
% Segments circular/elliptical objects that appear dark against a light
% background. Designed to find yeast cells imaged in a monolayer, backlit
% by red fluorescence, but may work on images containing similar features.
%

10 % Returns the label matrices L and LW for segmented objects and watershed
% regions respectively, and updates the segmentation data the structure
% seg. To generate a generic binary mask use,
%
% B = (L > 0);

15 %
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% To extract watershed catchment basin boundaries, use,
%
% W = (LW == 0);
%

20 % If no additional filtration constraints are specified, defaults are used,
% which will include all segmented objects. Filterable values for each
% object is returned in the cell array cfiltervals containing vectors for:
%
% {perimeter, area, shape factor (circularity), eccentricity, solidity}

25 %
% Optional parameters and filtration constraints are specified in
% (’parameter’, value) pairs and are as follows:
%
% thresh default: 0.4

30 % Percent of contrast enhanced range to segment initial seeds.
% Should be greater than 0 and no larger than 1.
%
% smoothkernels default: [3, 15]
% Small and large gaussian smoothing kernel size used to extract

35 % local maxima from the image for object marking.
%
% area default: [0, inf]
% Object area threshold range, inclusive. Objects whose pixel area
% fall out side of this range are removed from the returned label

40 % matrices.
%
% eccentricity default: [0, inf]
% Inclusive range. Object regrion property (See REGIONPROPS). A
% perfect circle will have an eccentricity of 0, where a line segment

45 % will have a value of 1.
%
% solidity default: [0, 1]
% Inclusive range. Object region property (See REGIONPROPS).
% Proportion of the pixels in the region’s convex hull that also

50 % exist in the region area. A highly contorted region will have a
% solidity that tends toward 0, where a convex object (e.g. a circle
% or an ellipse) will a solidity value at or near 1.
%
% intensity default: [0 <10% of image mean>]

55 % Inclusive range. Removes objects whos mean image intensity do not
% fall within the specified range.
%
% Example:
% Return objects having eccentricity values >= 0.9 and intensity values

60 % one standard deviation below the image maximum:
%
% [L, LW] = imsegred(I, seg, ’eccentricity’, [0.9 inf], ...
% ’intensity’, [0 max(I(:))-std(I(:))])
%

65

% History:
% 2006/02/06, WLP: Created by Wyming Lee Pang, SBL, UCSD.
% 2006/03/08, WLP: Descriptive header added. Removed binary mask
% return since it can easily be regenerated from the

70 % label matix L.
% 2006/03/10, WLP: Added compatibility with new segmentation data
% storage method.
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opts = getopts(varargin);
75

nThresh = parseopts(’thresh’, opts, 0.4);
iSmooth = parseopts(’smoothkernels’, opts, [3, 15]);
nEccFlt = parseopts(’eccentricity’, opts, [0 inf]);
nAreaFlt = parseopts(’area’, opts, [0 inf]);

80 nSolidFlt = parseopts(’solidity’, opts, [0 1]);
nIntsFlt = parseopts(’intensity’, opts, [0 mean(I(:)) * 1.1]);

segprev = parseopts(’mergeprev’, opts, []);

85 % identify local regional maxima
J = imfilter(imcomplement(I), ...

fspecial(’gaussian’, iSmooth(1), iSmooth(1)), ’replicate’);
K = imfilter(imcomplement(I), ...

fspecial(’gaussian’, iSmooth(2), iSmooth(2)), ’replicate’);
90 H = double(imclearborder(imadjust(J-K)));

% threshold and fill holes to generate initial marker seeds
B = H >= max(H(:)) * nThresh;
B = imfill(B, ’holes’);

95

% first pass watershed to help define separable objects
D = bwdist(B);
LW = watershed(D);

100 B = imdilate(B, strel(’square’, 2));
B(find(LW == 0)) = 0;

L = bwlabeln(B);

105 % get object properties and filter based on eccentricity, area, and
% solidity and rebuild the mask accordingly
C = zeros(size(L));
S = regionprops(L, ’image’, ’pixelidxlist’, ’eccentricity’, ’solidity’);
for i=1:length(S),

110 oCurrObj = S(i);

v(i) = mean(mean(I(oCurrObj.PixelIdxList)));% object intensity
p(i) = sum(sum(bwperim(oCurrObj.Image))); % object perimeter
a(i) = sum(sum(oCurrObj.Image)); % object area

115 f(i) = p(i)ˆ2/4/pi/a(i); % shape factor 1 -> circle
e(i) = oCurrObj.Eccentricity;
s(i) = oCurrObj.Solidity;

120 bIsValidEcc = (e(i) >= nEccFlt(1) & e(i) <= nEccFlt(2));
bIsValidArea = (a(i) >= nAreaFlt(1) & a(i) <= nAreaFlt(2));
bIsValidSolid = (s(i) >= nSolidFlt(1) & s(i) <= nSolidFlt(2));
bIsValidInts = (v(i) >= nIntsFlt(1) & v(i) <= nIntsFlt(2));

125 bIsValid = bIsValidEcc & bIsValidArea ...
& bIsValidSolid & bIsValidInts;

C(oCurrObj.PixelIdxList) = bIsValid;
end;
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130

% reperform the watershed segmentation on the filtered mask
D = bwdist(C);
LW = watershed(D);
C(find(LW == 0)) = 0;

135 B = C;
L = bwlabeln(B);

cfiltervals = {p, a, f, e, s};

140 % output segmentation data.
seg.objallidx = find(bwperim(C));
seg.objqntidx = find(bwperim(imclearborder(C)));

% merge the previous segmentation mask with the current on to make editing
145 % easier and possibly more accurate. shrink the previous mask a little so

% that the new object boundaries are more likely to prevail.
if ˜isempty(segprev) & isstruct(segprev),

seg.objallidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objallidx), ’erode’)));

150 seg.objqntidx = find(bwperim(C | bwmorph(bndidx2mask(segprev.imsize,...
segprev.objqntidx), ’erode’)));

end;
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B.11 Complete source code for library functions

bndidx2mask.m
function msk = bndidx2mask(sz, idx)
% converts boundary pixels indices to a binary mask for object segmentation

msk = zeros(sz);
5 msk(idx) = 1;

msk = imfill(msk, ’holes’);

caf.m
closeallfigs

closeallfigs.m
% closeallfigs.m
close(get(0,’children’))

createcorrimgs.m
function [N, F] = createcorrimgs(sCorrPath, iCorrImgs, ...

csCorrNoise, csCorrFlat)
% CREATECORRIMGS
% [N, F] = createcorrimgs(sCorrPath, iCorrImgs, csCorrNoise, csCorrFlat)

5 %
% Creates a set of correction images for use in quantitative fluorescence
% analysis.
%
% sCorrPath Location of correction image channel directories

10 %
% iCorrImgs Vector of image indices to use, e.g. [0:9]. This vector is
% used for all correction images created.
%
% csCorrNoise Qx1 Cell array of noise correction channels to process.

15 % Processed noise correction frames are output to N which is
% a Qx2 cell array, where the first column contains the
% channel name and the second contains the correction frame.
%
% csCorrFlat Qx1 Cell array of flatfield correction channels to process.

20 % Processed flatfield correction frames are output to F which
% is a Qx2 cell array, where the first column contains the
% channel name and the second contains the correction frame.
%

25 % HISTORY
% 2006/02/23, WLP: Created.
% 2006/10/01, WLP: Channel names that are ’none’ or blank are
% skipped. Before they would crash the program.
% 2006/10/01, WLP: Added function documentation header.

30 %
for i = 1:length(csCorrNoise),

N{i, 1} = csCorrNoise{i};
N{i, 2} = [];

for j = iCorrImgs,
35 % camera bias

if exist([sCorrPath ’/’ csCorrNoise{i}], ’dir’) ...
&& (˜strcmpi(csCorrNoise{i}, ’none’) ...
|| ˜isempty(strtrim(csCorrNoise{i}))),

% printf(’Reading: %s, %04d’, csCorrNoise{i}, j);



235

40 N{i, 2} = cat(3, N{i, 2}, ...
getimg(csCorrNoise{i}, 0, j, ’basepath’, sCorrPath) - 2ˆ15);

end;
end;

45 if ˜isempty(N{i, 2}),
N{i, 2} = mean(double(N{i, 2}), 3);

else
N{i, 2} = 0;

end;
50 end;

for i = 1:length(csCorrFlat),
F{i, 1} = csCorrFlat{i};
F{i, 2} = [];

55 for j = iCorrImgs,
% image flatfields
if exist([sCorrPath ’/’ csCorrFlat{i}], ’dir’) ...

&& (˜strcmpi(csCorrFlat{i}, ’none’) ...
|| ˜isempty(strtrim(csCorrFlat{i}))),

60 % printf(’Reading: %s, %04d’, csCorrFlat{i}, j);
F{i, 2} = cat(3, F{i, 2}, ...

getimg(csCorrFlat{i}, 0, j, ’basepath’, sCorrPath) - 2ˆ15);
end;

end;
65

if ˜isempty(F{i, 2}),
F{i, 2} = mean(double(F{i, 2}), 3);
F{i, 2} = F{i, 2}./max(F{i, 2}(:));

else
70 F{i, 2} = 1;

end;
end;

getchimg.m
function I = getchimg(sChannel, cIall)
I = [cIall{strmatch(sChannel, {cIall{:, 1}}, ’exact’), 2}];

getdatacol.m
function [datavec] = getdatacol(sCol, Data, varargin)
%GETDATACOL
% [datavec] = getdatacol(sCol, Data, cols)
%

5 % Gets data from a column in a data set
if nargin == 3,

cols = varargin{1};
elseif nargin == 2,

if isstruct(Data),
10 cols = Data.colheaders;

Data = Data.data;
else,

error([’invalid input: ’...
’Data must be a structure or column ’...

15 ’headers must be defined’]);
end;

end;

datavec = Data(:, strmatch(upper(sCol), strtrim(upper(cols)), ’exact’));
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getimg.m
function [I Iimf] = getimg(sChannel, iLocID, iImgID, varargin)
%GETIMG
% [I Iimf] = getimg(sChannel, iLocID, iImgID, [options])
%

5 % Retrieves image pixel and file information data.
%
% Options include ’basepath’ and ’imgfmt’.
%
% Values of ’imgfmt’ are the same as the format specifier for imread()

10 % and imfinfo(). Default format is TIF.
%
% For ’basepath’, usage order is user specified path, the global variable
% g_sBasePath, and current directory ’.’ as base path.
%

15 % Assumes images are organized:
% <base path>/<channel>/<channel>_<locid:03>_<imgid:04>.<fmt>

global g_sBasePath

20 opts = getopts(varargin);
sFileFmt = parseopts(’imgfmt’, opts, ’tif’);
sCurrBasePath = parseopts(’basepath’, opts, ’’);

if ˜isempty(g_sBasePath) & strcmp(sCurrBasePath, ’’),
25 sCurrBasePath = g_sBasePath;

end;

if strcmp(sCurrBasePath, ’’),
sCurrBasePath = ’.’;

30 end;

sImgFile = sprintf(’%s/%s/%s_%03d_%04d’, sCurrBasePath, sChannel, ...
35 sChannel, iLocID, iImgID);

I = imread(sImgFile, sFileFmt);

if nargout > 1,
40 Iimf = imfinfo(sImgFile, sFileFmt);

end;

getopts.m
function opts = getopts(varargin)
% GETOPTS
% opts = getopts(...);
%

5 % Gets options as param, value pairs from a varargin cell array.
% Intended use for custom functions.
% Output ’opts’ is a cell array where opts(:,1) is a list of all the
% options names provided and opts(:,2) are their corresponding values.
%

10 % If no options are specified, returns and empty array.
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opts = [];
args = varargin{:};
if ˜isempty(args),

15 % there are options
if mod(length(args),2) == 0,

optn = 0;
for iOpt = 1:2:length(args),

optn = optn + 1;
20 param = lower(args{iOpt});

value = args{iOpt+1};
opts{optn, 1} = param;
opts{optn, 2} = value;

end;
25 end;

end;

hashval.m
function val = hashval(cvHash, sKey)
val = cvHash(strmatch(sKey, cvHash(:, 1), ’exact’), 2:end);

imdispseg.m
function imdispseg(Iseg, L, varargin)
opts = getopts(varargin);
sMethod = upper(parseopts(’method’, opts, ’alpha’));

5 switch sMethod,
case ’ALPHA’,

% displays segmented object labels as a semi-transparant overlay
% over the image used for segmentation

10 Lrgb = label2rgb(L, ’jet’, ’w’, ’shuffle’);
imshow(Iseg, []), hold on
hImsk = imshow(Lrgb);
set(hImsk, ’AlphaData’, 0.3);
hold off

15

case ’BORDER’,
% this creates a border around segmented objects rather than an
% alpha transparancy overlay. use this if operating via remote
% desktop. this also might be faster.

20

Imsk = zeros(size(L));
Imsk(find(L)) = 1;
Imsk = bwperim(Imsk);
Lrgb = double(label2rgb(bwlabeln(Imsk), ’jet’, ’k’, ’shuffle’))/255;

25

Idsp = double(Iseg);
Idsp = (Idsp-min(Idsp(:)))./(max(Idsp(:)) - min(Idsp(:)));

Ir = Idsp;
30 Ig = Idsp;

Ig(find(Imsk)) = 1;
Ib = Idsp;

RGB = cat(3, Ir, Ig, Ib) + Lrgb;
35

%imshow(label2rgb(L), []), colormap prism
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imshow(RGB)

otherwise,
40 % nothing

end;

imsaturate.m
function [I] = imsaturate(I, pctSat, varargin)
opts = getopts(varargin);
bDebug = parseopts(’debug’, opts, false);

5 iClsRange = getrangefromclass(I);

nPixels = numel(I);
nMinInt = min(double(I(:)));
nMaxInt = max(double(I(:)));

10

% rough estimate of saturation levels
nIntLev = linspace(nMinInt, nMaxInt, 10);
nSatLev = zeros(10,2);
for i = 1:length(nIntLev),

15 nSatLev(i, 1) = sum(I(:) <= round(nIntLev(i)))/nPixels;
nSatLev(i, 2) = sum(I(:) >= round(nIntLev(i)))/nPixels;

end;

nLoSatRange = [find(nSatLev(:, 1) < pctSat, 1, ’last’), ...
20 find(nSatLev(:, 1) > pctSat, 1, ’first’)];

nLoSatRange = round(nIntLev(nLoSatRange));

nHiSatRange = [find(nSatLev(:, 2) > pctSat, 1, ’last’), ...
find(nSatLev(:, 2) < pctSat, 1, ’first’)];

25 nHiSatRange = round(nIntLev(nHiSatRange));

% refine saturation search ranges
% low range
nIntLev = linspace(nLoSatRange(1), nLoSatRange(2), 10);

30 nSatLev = zeros(10, 1);
for i = 1:length(nIntLev),

nSatLev(i, 1) = sum(I(:) <= round(nIntLev(i)))/nPixels;
end;

35 nLoSatRange = [find(nSatLev(:, 1) < pctSat, 1, ’last’), ...
find(nSatLev(:, 1) > pctSat, 1, ’first’)];

nLoSatRange = round(nIntLev(nLoSatRange));

% high range
40 nIntLev = linspace(nHiSatRange(1), nHiSatRange(2), 10);

nSatLev = zeros(10, 1);
for i = 1:length(nIntLev),

nSatLev(i, 1) = sum(I(:) >= round(nIntLev(i)))/nPixels;
end;

45

nHiSatRange = [find(nSatLev(:, 1) > pctSat, 1, ’last’), ...
find(nSatLev(:, 1) < pctSat, 1, ’first’)];

nHiSatRange = round(nIntLev(nHiSatRange));

50 if bDebug,
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printf(’Saturation Ranges:’);
printf(’%d\t’, nLoSatRange);
printf(’%d\t’, nHiSatRange);

end;
55

% Adjust the image level according to the lo/hi ranges found
for i = nLoSatRange(1):1:nLoSatRange(2),

pctSatCurr = sum(I(:) <= i)/nPixels;
if pctSatCurr >= pctSat,

60 break;
end;

end;
LoRng = i/max(iClsRange);

65 for i = nHiSatRange(2):-1:nHiSatRange(1),
pctSatCurr = sum(I(:) >= i)/nPixels;
if pctSatCurr >= pctSat,

break;
end;

70 end;
HiRng = i/max(iClsRange);

I = imadjust(I, [LoRng HiRng], []);

imseg getobjdata.m
function [nObjData, cols] = imseg_getobjdata(csIqnt, seg, varargin)
opts = getopts(varargin);

% csIqnt is a cell array {channel name, <imagedata>} for each channel to
5 % quantify on each row.

% seg is the segmentation data in a structure with the following fields
% imgid, locid, channel, roi, imsize, objqntidx, objallidx

10 % B is the mask for all objects, including those that lie on the image
% borders. L is the label matrix for objects that should be quantified. B
% is used to determine the image background level.
B = bndidx2mask(seg.imsize, seg.objallidx);
L = bwlabeln(imclearborder(B));

15

iImgID = seg.imgid;
iLocID = seg.locid;

csObjProps = {’area’, ’centroid’, ’pixelidxlist’, ’boundingbox’, ...
20 ’conveximage’, ’filledimage’, ’image’};

stObjData = regionprops(L, csObjProps);

% seg.imsize
% csIqnt

25 %
% nBGLevel = [];
nChannels = size(csIqnt, 1);
for i = 1:nChannels,

30 % resize the quantification image to match the segmentation image
Iqnt = csIqnt{i,2};
m = mean(size(Iqnt)./seg.imsize);
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if m ˜= 1,
Iqnt = imresize(Iqnt, m);

35 end;

nBGLevel(i) = mean2(Iqnt(˜B));
end;

40 % loop over each object in the and log values into an array
nObjData = [];
for iObjID=1:length(stObjData),

stCurrObj = stObjData(iObjID);

45 % get subimage pixels for calculation
nFL = [];
for i = 1:nChannels,

% resize the quantification image to match the segmentation image
50 Iqnt = csIqnt{i,2};

m = mean(size(Iqnt)./seg.imsize);
if m ˜= 1,

Iqnt = imresize(Iqnt, m);
end;

55

% subimage pixels for calculations
imCurrObj{i} = Iqnt(stCurrObj.PixelIdxList);
vCurrObj{i} = double(imCurrObj{i}(:));

60 nFL = [nFL, mean(vCurrObj{i}), std(vCurrObj{i}), ...
min(vCurrObj{i}), max(vCurrObj{i}), nBGLevel(i)];

end;

% calculate the object perimeter
65 % there are three types: native, filled, and convex, based on the

% supplied binary region
iarPerim = [];
cimBinReg = {stCurrObj.Image, stCurrObj.FilledImage, ...

stCurrObj.ConvexImage};
70 for iBinRegType = 1:length(cimBinReg),

iarPerim = [iarPerim, sum(sum(bwperim(cimBinReg{iBinRegType})))];
end;

datarow = [...
75 iLocID,...

iImgID,...
iObjID,...
stCurrObj.Centroid,...
stCurrObj.BoundingBox,...

80 stCurrObj.Area,...
iarPerim, ...
nFL ...
];

85 nObjData = [nObjData; datarow];
end;

cols = {’LOCID’,’IMGID’,’OBJID’,’CENTX’,’CENTY’,’BBOXX’,’BBOXY’,...
’BBOXW’,’BBOXH’,’AREA’,’PERIMNATIVE’,’PERIMFILLED’,’PERIMCONVEX’};
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90 for i = 1:nChannels,
cols = {cols{:}, ...

sprintf(’MEAN%d’, i), ...
sprintf(’STD%d’, i), ...
sprintf(’MIN%d’, i), ...

95 sprintf(’MAX%d’, i), ...
sprintf(’BGLVL%d’, i) ...
};

end;

imsegauto.m
function imsegauto(runinfo, seginfo, cvChannels, cvROIs)
% stand-alone segmentation code
% uses full auto segmentation routine(s) and stores segmentation data to
% the data directory specifed by the user named by img id.

5

% sExptBase = runinfo.path;
% sExptPrefix = runinfo.prefix;
% sExptID = runinfo.id;
% sExptPath = sprintf(’%s%s%s%s’, sExptBase, filesep, ...

10 % sExptPrefix, sExptID);

sExptPath = runinfo.path;
sCorrPath = runinfo.corrpath;

15 iLocID = runinfo.locid;
viIdx = runinfo.indices;
nTotImgs = length(viIdx);

sSegDataPath = [sExptPath, filesep, seginfo.path];
20 bSegOverwrite = seginfo.overwrite;

sSegAlgo = seginfo.algorithm;
csSegOptions = seginfo.opts;
bDispSeg = seginfo.display;
sDispSegMeth = seginfo.displaymethod;

25

% read in correction images
[N, F] = createcorrimgs(sCorrPath, [0:9], ...

unique(cvChannels(:, 2)), unique(cvChannels(:, 3)));

30 % create data output directories if needed
if ˜exist(sSegDataPath, ’dir’),

mkdir(sSegDataPath);
end;
if ˜exist(sprintf(’%s/%03d’, sSegDataPath, iLocID), ’dir’),

35 mkdir(sprintf(’%s/%03d’, sSegDataPath, iLocID));
end;

% preparation complete, start the segmentation process.
hProg = waitbar(0, ’’);

40 % iProgPos = get(hProg, ’position’);
% set(hProg, ’position’, [1, 25, iProgPos(3:4)]);

iCurrImg = 0;
tLoopElaps = [];

45 segprev = [];
sFilePath = sprintf(’%s%s%03d’, sSegDataPath, filesep, iLocID);
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for iCurrIdx = viIdx,
iCurrImg = iCurrImg + 1;
nProgress = iCurrImg/nTotImgs;

50

tLoopInit = clock;
updateprogress(hProg, iCurrImg, nTotImgs, tLoopElaps);

% =====================================================================
55 % SEGMENTATION CODE

%

% check if there is already a segmentation file. skip the segmentation
% process if there is.

60

% get the segmentation data directory listing
sFileName = sprintf(’%04d.mat’, iCurrIdx);
sFileFullPath = sprintf(’%s%s%s’, sFilePath, filesep, sFileName);

65 stFiles = dir(sFilePath);
csFiles = {stFiles(˜[stFiles.isdir]).name};

if ismember(sFileName, csFiles) && ˜bSegOverwrite,
waitbar(nProgress, hProg, ’Reading Existing Segmentation Data’);

70 load(sFileFullPath);
segprev = seg;

if bDispSeg,
B = zeros(seg.imsize);

75 B(seg.objallidx) = 1;
Bbg = B;
B = imclearborder(B);
L = bwlabeln(B);

end;
80 else

% images only need to be read if new segmentation is to be
% performed. this boosts performance.
waitbar(nProgress, hProg, ’Reading Image Set’);
[cIall, cIseg, cIqnt] = readimgset(iLocID, iCurrIdx, sExptPath, ...

85 cvChannels, cvROIs, N, F);

waitbar(nProgress, hProg, ’Segmenting Objects’);

% initialize the segmentation data structure
90 seg.imgid = iCurrIdx;

seg.locid = iLocID;
seg.channel = cIseg{1};

roi = hashval(cvChannels, seg.channel);
95 roi = hashval(cvROIs, roi{6});

roi = cell2mat(roi);
if ˜isempty(roi),

seg.roi = roi;
else,

100 seg.roi = [0 0 fliplr(size(cIseg{2}))];
end

seg.imsize = size(cIseg{2});
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seg.objqntidx = [];
105 seg.objallidx = [];

if isempty(cIseg{2}),
printf(’ERROR: Segmentation Image is Empty!’);

end;
110 [seg, L] = feval(sSegAlgo, cIseg{2}, seg, ...

{csSegOptions{:}, ...
’autoonly’, true, ’mergeprev’, segprev});

segprev = seg;
115

% output segmentation mask data to the specified data directory.
save(sFileFullPath, ’seg’);

end;

120 if bDispSeg,
if ˜exist(’hFigSeg’), hFigSeg = figure; end;
imdispseg(cIseg{2}, L, ’method’, sDispSegMeth);

end;

125 % ---------------------------------------------------------------------
% application specific segmentation code here:

% ---------------------------------------------------------------------
130

%
% END SEGMENTATION CODE
% =====================================================================

135 tLoopElaps = [tLoopElaps etime(clock, tLoopInit)];
end;

if bDispSeg,
close(hFigSeg);

140 clear hFigSeg
end;

close(hProg);
clear hProg;

imsegcollect.m
function imsegcollect(runinfo, seginfo, quantinfo, cvChannels, cvROIs)
% stand alone script to quantitate image intensity

% Experiment info:
5 % sExptBase = runinfo.path;

% sExptPrefix = runinfo.prefix;
% sExptID = runinfo.id;
% sExptPath = sprintf(’%s%s%s%s’, sExptBase, filesep, ...
% sExptPrefix, sExptID);

10

sExptPath = runinfo.path;
sCorrPath = runinfo.corrpath;

iLocID = runinfo.locid;
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15 viIdx = runinfo.indices;
nTotImgs = length(viIdx);

sSegDataPath = [sExptPath, filesep, seginfo.path];

20 sObjDataPath = [sExptPath, filesep, quantinfo.path];
bVerbose = quantinfo.verbose;
bBlobOut = quantinfo.blobout;
bOverwrite = quantinfo.overwrite;

25 % read in correction images
[N, F] = createcorrimgs(sCorrPath, [0:9], ...

unique(cvChannels(:, 2)), unique(cvChannels(:, 3)));

% create data output directories if needed
30 if ˜exist(sObjDataPath, ’dir’),

mkdir(sObjDataPath);
end;
if ˜exist(sprintf(’%s/%03d’, sObjDataPath, iLocID), ’dir’),

mkdir(sprintf(’%s/%03d’, sObjDataPath, iLocID));
35 end;

% preparation complete, start the collection process.
hProg = waitbar(0, ’’);
% iProgPos = get(hProg, ’position’);

40 % set(hProg, ’position’, [1, 25, iProgPos(3:4)]);

iCurrImg = 0;
tLoopElaps = [];
segprev = [];

45 for iCurrIdx = viIdx,
iCurrImg = iCurrImg + 1;
nProgress = iCurrImg/nTotImgs;

tLoopInit = clock;
50 updateprogress(hProg, iCurrImg, nTotImgs, tLoopElaps);

waitbar(nProgress, hProg, ’Reading Image Set’);
[cIall, cIseg, cIqnt] = readimgset(iLocID, iCurrIdx, sExptPath, ...

cvChannels, cvROIs, N, F);
55

waitbar(nProgress, hProg, ’Reading Segmentation Data’);
load(sprintf(’%s%s%03d%s%04d.mat’, sSegDataPath, filesep, iLocID, ...

filesep, iCurrIdx));

60 % =====================================================================
% DATA COLLECTION CODE:
%
waitbar(nProgress, hProg, ’Gathering Object Data’);

65 [nObjData colsscfl] = imseg_getobjdata(cIqnt, seg);
sCols = sprintf(’%13s’, colsscfl{:});
sData = [];
for iDataRow = 1:size(nObjData, 1),

sData = [sData, ’\n’, sprintf(’%13.2f’, nObjData(iDataRow, :))];
70 end;
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if bVerbose,
if iCurrImg == 1, printf(sCols);, end;
printf(sData);

75 end;

% output numeric segmentation data to file
sFileName = sprintf(’%s%s%03d%s%04d.dat’, sObjDataPath, filesep, ...

iLocID, filesep, iCurrIdx);
80 if ˜exist(sFileName) | bOverwrite,

if ˜exist(’fid’), fid = fopen(sFileName, ’w+’);, end;
fprintf(fid, sCols);
fprintf(fid, sData);
fclose(fid);

85 clear fid;
end;

if bBlobOut,
% all analysis types degenerate from single cell quantification.

90 % collect numeric data for blob analysis by averaging each
% quantification channel over all valid segmented objects
if iCurrImg == 1, datablb = [];, end;

% locid, imgid, area, (mean, std, min ,max, bglvl) ...
95 csColBlb = {’LOCID’, ’IMGID’, ’AREA’};

cFL = {};
nFL = [];
for i = 1:size(cIqnt, 1),

cFL = {cFL{:}, ...
100 sprintf(’MEAN%d’, i), ...

sprintf(’STD%d’, i), ...
sprintf(’MIN%d’, i), ...
sprintf(’MAX%d’, i), ...
sprintf(’BGLVL%d’, i) ...

105 };
nFL = [nFL, ...
mean(getdatacol(sprintf(’MEAN%d’, i), nObjData, colsscfl)), ...
mean(getdatacol(sprintf(’STD%d’, i), nObjData, colsscfl)), ...
min(getdatacol(sprintf(’MIN%d’, i), nObjData, colsscfl)), ...

110 max(getdatacol(sprintf(’MAX%d’, i), nObjData, colsscfl)), ...
mean(getdatacol(sprintf(’BGLVL%d’, i), nObjData, colsscfl)) ...
];

end;
csColBlb = {csColBlb{:}, cFL{:}};

115 datarow = [iLocID, iCurrIdx, ...
sum(getdatacol(’AREA’, nObjData, colsscfl)), ...
nFL ...

];
datablb = [datablb; datarow];

120

if bVerbose,
printf(’Blob Summary:’);
printf(’%13s’, csColBlb{:});
sDataBlb = [’\n’, sprintf(’%13.2f’, datarow)];

125 printf(sDataBlb);
end;

end;
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% ---------------------------------------------------------------------
130 % application specific data collection code

% ---------------------------------------------------------------------

%
135 % END DATA COLLECTION CODE

% =====================================================================

tLoopElaps = [tLoopElaps etime(clock, tLoopInit)];
end;

140

if bBlobOut,
% write the blob data to the output directory. unecessary to
% organize by location id here since all image data is one file
sFileName = sprintf(’%s%s%03d.blob.dat’, sObjDataPath, filesep, iLocID);

145 if ˜exist(sFileName) | bOverwrite,
% initialize the blob data file for writing
fidblb = fopen(sFileName, ’w+’);

% write out the column headers
150 fprintf(fidblb, ’%13s’, csColBlb{:});

for iDataRow = 1:size(datablb, 1);
fprintf(fidblb, ’\n’);
fprintf(fidblb, ’%13.2f’, datablb(iDataRow, :));

155 end;

fclose(fidblb);
clear fidblb;

end;
160 end;

close(hProg);
clear hProg;

imsegtrack.m
function imsegtrack(runinfo, quantinfo, trackinfo, cvChannels)
% stand alone tracking prep and execution script

% Experiment info:
5 % sExptBase = runinfo.path;

% sExptPrefix = runinfo.prefix;
% sExptID = runinfo.id;
% sExptPath = sprintf(’%s%s%s%s’, sExptBase, filesep, ...
% sExptPrefix, sExptID);

10

sExptPath = runinfo.path;

iLocID = runinfo.locid;
viIdx = runinfo.indices;

15 nTotImgs = length(viIdx);

sObjDataPath = [sExptPath, filesep, quantinfo.path];

sTrjDataPath = [sExptPath, filesep, trackinfo.path];
20
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nMinTrajLength = trackinfo.minlength;
if nMinTrajLength <= 1,

% Evaluate the trajectory length spec as a percent of longest possible
% trajectory

25 nMinTrajLength = nTotImgs * trackinfo.minlength;

% otherwise, consider it to be an absolute value for the trajectory
% length in points

end;
30

nMaxDisp = trackinfo.maxdisp;
nMem = trackinfo.mem;
bVerbose = trackinfo.verbose;
bOverwrite = trackinfo.overwrite;

35

% create data output directories if needed
if ˜exist(sTrjDataPath, ’dir’),

mkdir(sTrjDataPath);
end;

40 if ˜exist(sprintf(’%s/%03d’, sTrjDataPath, iLocID), ’dir’),
mkdir(sprintf(’%s/%03d’, sTrjDataPath, iLocID));

end;
if ˜exist(sprintf(’%s/%03d/byobj’, sTrjDataPath, iLocID), ’dir’),

mkdir(sprintf(’%s/%03d/byobj’, sTrjDataPath, iLocID));
45 end;

if ˜exist(sprintf(’%s/%03d/byimg’, sTrjDataPath, iLocID), ’dir’),
mkdir(sprintf(’%s/%03d/byimg’, sTrjDataPath, iLocID));

end;

50 % preparation complete, start the collection process.
% collect the data from data files into a single array for import into the
% tracking algorithm
hProg = waitbar(0, ’’);
% iProgPos = get(hProg, ’position’);

55 % set(hProg, ’position’, [1, 25, iProgPos(3:4)]);

iCurrImg = 0;
tLoopElaps = [];
nTrjData = [];

60 for iCurrIdx = viIdx,
iCurrImg = iCurrImg + 1;
nProgress = iCurrImg/nTotImgs;

tLoopInit = clock;
65 updateprogress(hProg, iCurrImg, nTotImgs, tLoopElaps);

waitbar(nProgress, hProg, ’Reading Image Object Data Set’);
data = importdata(sprintf(’%s/%03d/%04d.dat’, sObjDataPath, ...

iLocID, iCurrIdx));
70

nTrjData = [nTrjData; data.data];

tLoopElaps = [tLoopElaps etime(clock, tLoopInit)];
end;

75

cols = data.colheaders;
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waitbar(nProgress, hProg, ’Preparing for Object Tracking’);

80 % prepare the data for object tracking
oid = getdatacol(’objid’, nTrjData, cols);
x = getdatacol(’centx’, nTrjData, cols);
y = getdatacol(’centy’, nTrjData, cols);
t = getdatacol(’imgid’, nTrjData, cols);

85 a = getdatacol(’area’, nTrjData, cols);
pmn = getdatacol(’perimnative’, nTrjData, cols);

FL = [];
csFL = {};

90 for i = 1:length(strmatch(’qnt’, {cvChannels{:, 6}}, ’exact’)),
fl = getdatacol([’mean’ num2str(i)], nTrjData, cols);
st = getdatacol([’std’ num2str(i)], nTrjData, cols);
bg = getdatacol([’bglvl’ num2str(i)], nTrjData, cols);
% FL = [FL, fl./bg-1, st./bg, bg];

95 FL = [FL, fl, st, bg];
csFL = {csFL{:}, [’FL’ num2str(i)], ...

[’STD’ num2str(i)], ...
[’BG’ num2str(i)]};

end;
100

nPreTrackData = [x, y, FL, a, pmn, oid, t];
colspretrack = {’CENTX’, ’CENTY’, csFL{:}, ’AREA’, ’PERIMNATIVE’, ...

’OLDOBJID’, ’IMGID’};
colsposttrack = {colspretrack{:}, ’NEWOBJID’};

105

waitbar(nProgress, hProg, ’Tracking Objects ...’);
nPostTrackData = track(nPreTrackData, nMaxDisp, ...

’dim’, 2, ...
’mem’, nMem, ...

110 ’quiet’, ˜bVerbose);
csObjData = splitdata(nPostTrackData, colsposttrack, ’newobjid’);

waitbar(nProgress, hProg, ’Finding Valid Trajectories’);
trjlen = [];

115 for i=1:length(csObjData),
trjlen = [trjlen; size(csObjData{i}, 1)];

end;
csValTrj = {csObjData{find(trjlen >= nMinTrajLength)}};
printf(’Found %d ’’Good’’ Trajectories’, length(csValTrj));

120

% output valid object trajectory data to files
objids = [];
for iTrj = 1:length(csValTrj),

nProgress = iTrj/length(csValTrj);
125

waitbar(nProgress, hProg, ’Writing Trajectory Data’);
iObjID = unique(getdatacol(’newobjid’, csValTrj{iTrj}, colsposttrack));
objids = [objids; iObjID];

130 sData = [];
for iDataRow = 1:size(csValTrj{iTrj}, 1),

sData = [sData, ’\n’, sprintf(’%13.2f’, ...
csValTrj{iTrj}(iDataRow, :))];

end;
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135

% output numeric trajectory data to file
sFileName = sprintf(’%s%s%03d%sbyobj%s%04d.obj.dat’, ...

sTrjDataPath, filesep, iLocID, ...
filesep, filesep, iObjID);

140 if ˜exist(’fid’), fid = fopen(sFileName, ’w+’);, end;
fprintf(fid, ’%13s’, colsposttrack{:});
fprintf(fid, sData);
fclose(fid);
clear fid;

145 end;

% output trajectory data on a per image basis for trajectory validation
% filter the each image’s data to objects that have valid trajectories
waitbar(nProgress, hProg, ’Generating Image Sequence Data’);

150

% ismember(getdatacol(’newobjid’, nPostTrackData, colsposttrack), objids)

nValidPostTrackData = nPostTrackData(...
ismember(...

155 getdatacol(’newobjid’, nPostTrackData, colsposttrack), objids), :);
csImgData = splitdata(...

sortrows(nValidPostTrackData, ...
strmatch(’IMGID’, colsposttrack, ’exact’)), colsposttrack, ’imgid’);

160 for iImg = 1:length(csImgData),
nProgress = iImg/length(csImgData);

waitbar(nProgress, hProg, ’Generating Image Sequence Data’);
iImgID = unique(getdatacol(’imgid’, csImgData{iImg}, colsposttrack));

165

% output segmentation channel? ... probably better to have user pick
% the overlay to use during validation.
sData = [];
for iDataRow = 1:size(csImgData{iImg}, 1),

170 sData = [sData, ’\n’, sprintf(’%13.2f’, ...
csImgData{iImg}(iDataRow, :))];

end;

% output numeric trajectory data to file
175 sFileName = sprintf(’%s%s%03d%sbyimg%s%04d.img.dat’, ...

sTrjDataPath, filesep, iLocID, filesep, filesep, iImgID);
if ˜exist(sFileName) | bOverwrite,

if ˜exist(’fid’), fid = fopen(sFileName, ’w+’);, end;
fprintf(fid, ’%13s’, colsposttrack{:});

180 fprintf(fid, sData);
fclose(fid);
clear fid;

end;
end;

185

close(hProg);
clear hProg;

line2mask.m
function B = line2mask(sz, X, Y)
% converts points that define linesegments into a binary mask where lines
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% are set to ON and the rest of the image is OFF

5 % read in point pairs the demarcate line segments
% calculate the slope and intercept of the segment
% redraw the line on the binary pixel by pixel

B = zeros(sz);
10 for i = 1:length(X)-1,

x = X(i:i+1);
y = Y(i:i+1);

xs = 1; if x(2) < x(1), xs = -1; end;
15 ys = 1; if y(2) < y(1), ys = -1; end;

if diff(x) == 0,
% vertical lines
v = [y(1):ys:y(2)];

20 u = ones(size(v)) * x(1);
sType = ’VERT’;

elseif diff(y) == 0,
% horizontal lines

25 u = [x(1):xs:x(2)];
v = ones(size(u)) * y(1);
sType = ’HORZ’;

else,
30 % all other angles

m = (y(2) - y(1))/(x(2) - x(1));
b = y(1) - m * x(1);

if abs(diff(y)) > abs(diff(x)),
35 u = linspace(x(1), x(2), abs(diff(y)));

v = m* u + b;
elseif abs(diff(y)) < abs(diff(x)),

v = linspace(y(1), y(2), abs(diff(x)));
u = (v - b)/m;

40 else,
u = [x(1):xs:x(2)];
v = m* u + b;

end;
sType = ’ANGL’;

45

end;
u = round(u);
v = round(v);

%printf(’%s: (%.2f, %.2f) -> (%.2f, %.2f)’, sType, u(1), v(1), u(2), v(2));
50

B(sub2ind(sz, v, u)) = 1;
end;

B = bwmorph(B, ’close’);
55 B = bwmorph(B, ’skel’, inf);

mergedata.m
function [ndata] = mergedata(cdata, dim)
%MERGEDATA
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% [ndata] = mergedata(cdata, dim)
%

5 % Merges cell array data into a numeric array along dimension dim
ndata = cat(dim, cdata{:});

normrange.m
function ndata=normrange(data)
ndata = (data - min(data(:)))./(max(data(:)) - min(data(:)));

parseopts.m
function [value] = parseopts(optname, opts, defaultvalue)
% PARSEOPTS
% [value] = parseopts(optname, opts, defaultvalue)
%

5 % Gets the value for ’optname’ from options data provided in ’opts’. If
% ’optname’ is not found or ’opts’ is empty, returns ’defaultvalue’.

value = defaultvalue;
if ˜isempty(opts),

10 iOpt = strmatch(lower(optname), opts(:,1), ’exact’);
if ˜isempty(iOpt),

value = opts{iOpt, 2};
end;

end;

printf.m
function printf(sFormatString, varargin)
disp(sprintf(sFormatString, varargin{:}));

processimg.m
function I = processimg(I, N, F, varargin)
opts = getopts(varargin);
iOffset = parseopts(’offset’, opts, 2ˆ15);
iChBin = parseopts(’binning’, opts, 1);

5 iChShift = parseopts(’shift’, opts, [0 0]);
iROI = parseopts(’roi’, opts, []);

I = imsubtract(I, iOffset);
if iChBin > 1, I = imbin(I, iChBin);, end;

10

% subtract off the bias offset ... this should also partially remove the
% background level of the image.
I = imsubtract(I, mean(N(:)));

15 % make the flatfield image the same size as I, just in case the image is
% not the same size as the correction field.
F = imresize(F, mean(size(I)./size(F)));
I = double(I)./F;

20 if find(iChShift), I = circshift(I, iChShift);, end;

if ˜isempty(iROI),
I = imcrop(I, iROI);

end;
25

I = uint16(I);
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readimgset.m
function [cIall, cIseg, cIqnt] = readimgset(iLocID, imgid, sExptPath, ...

cvChannels, cvROIs, N, F)
% READIMGSET
% [cIall, cIseg, cIqnt] = readimgset(iLocID, imgid, sExptPath, ...

5 % cvChannels, cvROIs, N, F)
%
% Reads in images from an acquisition set comprised of multiple imaging
% channels defined by the cell array cvChannels and stores them in hash
% tables:

10 %
% cIall Qx3 cell array of all channels read, where Q is the number of
% channels. Columns are channel name, image data, and channel
% role - e.g. ’seg’ for segmentation.
%

15 % cIseg Px2 cell array of channels used for segmentation. Columns are
% channel name and image data.
%
% cIqnt Nx2 cell array of channels used quantification. Columns are
% channel name and image data.

20 %
% cIseg and cIqnt can be regenerated from cIall by returning the first
% two columns of a search on the third column for ’seg’ and ’qnt’,
% respectively.
%

25 % cvChannels is a table of channel information with the following
% structure:
%
% NAME NOISE FLAT BIN SHIFT ROLE ROI
% String String String <1x1 int> <1x2 int> String String

30 %
% The ROI column of cvChannels contains a string that corresponds to a
% string key in the cvROI table:
%
% NAME ROISpec

35 % String <1x4 double>
%
% ROISpec is the same as RECT used/ouput by IMCROP.
%
% See Also:

40 % processimg(), createcorrimg(), imbin(), circshift(), imcrop()

% HISTORY
% 2006/02/23, WLP: Created.
% 2006/03/13, WLP: Added ROI cell array input for better ROI

45 % selection and management.
% 2006/10/01, WLP: Channel names that are ’none’ or blank are
% skipped. Before they would crash the program.
%

50 cIall = {}; cIseg = {}; cIqnt = {};
csCorrNoise = N(:, 1);
csCorrFlat = F(:, 1);
csROIs = cvROIs(:, 1);
for j = 1:size(cvChannels, 1),

55 cIall{j, 1} = cvChannels{j, 1};
cIall{j, 2} = [];
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cIall{j, 3} = cvChannels{j, 6};
if exist([sExptPath ’/’ cvChannels{j, 1}], ’dir’) ...

&& (˜strcmpi(cvChannels{j, 1}, ’none’) ...
60 || ˜isempty(strtrim(cvChannels{j, 1}))),

cIall{j, 2} = getimg(cvChannels{j, 1}, iLocID, imgid, ...
’basepath’, sExptPath);

In = N{strmatch(cvChannels{j, 2}, csCorrNoise, ’exact’), 2};
If = F{strmatch(cvChannels{j, 3}, csCorrFlat, ’exact’), 2};

65 bin = cvChannels{j, 4};
shft = cvChannels{j, 5};
roi = cvROIs{strmatch(cvChannels{j, 7}, csROIs, ’exact’), 2};

cIall{j, 2} = processimg(cIall{j, 2}, In, If, ...
70 ’binning’, bin, ’shift’, shft, ’roi’, roi);

end;
end;
cIseg = cIall(strmatch(’seg’, cIall(:, 3), ’exact’), 1:2);
cIqnt = cIall(strmatch(’qnt’, cIall(:, 3), ’exact’), 1:2);

splitdata.m
function [cdata]=splitdata(data, columns, sSplitColumn)
%SPLITDATA
% [cdata]=splitdata(data, columns, sSplitColumn)
%

5 % splits a data list by unique values in a specified column. split data
% is returned as a cell array.

iObjList = data(:,strmatch(upper(sSplitColumn), upper(columns)));
iObjID = unique(iObjList);

10 cdata = {};
for i=1:length(iObjID),

iFirstIdx = find(iObjList == iObjID(i), 1, ’first’);
iLastIdx = find(iObjList == iObjID(i), 1, ’last’);

15 cdata{i} = data(iFirstIdx:iLastIdx, :);
end;

track.m
function tracks = track(xyzs,maxdisp,varargin)
% TRACK
% result = track(positionlist, maxdisp)
% result = track(positionlist, maxdisp, ...)

5 %
% Constructs n-dimensional trajectories from a scrambled list of
% particle coordinates determined at discrete times (e.g. in
% consecutive video frames).
%

10 % see http://glinda.lrsm.upenn.edu/˜weeks/idl for more information
%
% CATEGORY:
% Image Processing
%

15 % INPUTS:
% positionlist
% an array listing the scrambled coordinates and data of the
% different particles at different times, such that:
%
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20 % positionlist(:,1:d)
% contains the d coordinates and data for all the particles,
% at the different times. must be positve
% positionlist(:,end)
% contains the time t that the position was determined, must

25 % be integers (e.g. frame number. These values must be
% monotonically increasing and uniformly gridded in time.
%
% simply put, the data array must have positional coordinates in the
% first columns and a time vector in the last column.

30 %
% maxdisp
% an estimate of the maximum distance that a particle would move in a
% single time interval.(see Restrictions)
%

35 % OPTIONAL INPUTS:
% Optional inputs are passed to the function as (parameter, value) pairs -
% e.g.:
%
% result = track(posdata, maxdisp, ’mem’, 5, ’dim’, 3)

40 %
% If an optional argument is not specified then it’s default value is
% used. In the example above, the ’mem’ parameter is set to 5 and the
% ’dim’ parameter is set to 3. The other options - ’goodenough’ and
% ’quiet’ - will have default values of 0, and false.

45 %
% mem integer default = 0
% this is the number of time steps that a particle can be ’lost’ and
% then recovered again. If the particle reappears after this number
% of frames has elapsed, it will be tracked as a new particle. This

50 % is useful if particles occasionally ’drop out’ of the data.
%
% dim integer default = 2
% if the user would like to unscramble non-coordinate data for the
% particles (e.g. apparent radius of gyration for the particle

55 % images), then positionlist should contain the position data in
% positionlist(0:param.dim-1, * ) and the extra data in
% positionlist(param.dim:d-1, * ). It is then necessary to set dim
% equal to the dimensionality of the coordinate data to so that the
% track knows to ignore the non-coordinate data in the construction

60 % of the trajectories.
%
% goodenough integer default = 0
% set this keyword to eliminate all trajectories with fewer than
% ’goodenough’ valid positions. This is useful for eliminating very

65 % short, mostly ’lost’ trajectories due to blinking ’noise’ particles
% in the data stream.
%
% quiet logical default = false
% set this ’true’ if you don’t want any text

70 %
%
% OUTPUTS:
% result
% A list containing the original data rows sorted into a series of

75 % trajectories. An additional column containing a unique id number
% for each identified particle trajectory is appended to the original
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% input data. The result array is sorted so rows with corresponding
% id numbers are in contiguous blocks sorted by increasing time.
%

80 % For example:
%
% For the input data structure (positionlist):
% (x) (y) (t)
% pos = 3.60000 5.00000 0.00000

85 % 15.1000 22.6000 0.00000
% 4.10000 5.50000 1.00000
% 15.9000 20.7000 2.00000
% 6.20000 4.30000 2.00000
%

90 % >> res = track(pos, 5, ’mem’, 2)
%
% track will return the result ’res’
% (x) (y) (t) (id)
% res = 3.60000 5.00000 0.00000 0.00000

95 % 4.10000 5.50000 1.00000 0.00000
% 6.20000 4.30000 2.00000 0.00000
% 15.1000 22.6000 0.00000 1.00000
% 15.9000 20.7000 2.00000 1.00000
%

100 % for t=1 in the example above, one particle temporarily vanished. As
% a result, the trajectory id=1 has one time missing, i.e. particle
% loss can cause time gaps to occur in the corresponding trajectory
% list. In contrast:
%

105 % >> res = track(pos,5)
%
% track will return the result ’res’
% (x) (y) (t) (id)
% res = 15.1000 22.6000 0.00000 0.00000

110 % 3.60000 5.00000 0.00000 1.00000
% 4.10000 5.50000 1.00000 1.00000
% 6.20000 4.30000 2.00000 1.00000
% 15.9000 20.7000 2.00000 2.00000
%

115 % where the reappeared ’particle’ will be labelled as new rather than
% as a continuation of an old particle since mem=0. It is up to the
% user to decide what setting of ’mem’ will yeild the highest
% fidelity.
%

120 % SIDE EFFECTS:
% Produces informational messages. Can be memory intensive for
% extremely large data sets.
%
% RESTRICTIONS:

125 % maxdisp should be set to a value somewhat less than the mean spacing
% between the particles. As maxdisp approaches the mean spacing the
% runtime will increase significantly. The function will produce an
% error message: "Excessive Combinatorics!" if the run time would be
% too long, and the user should respond by re-executing the function

130 % with a smaller value of maxdisp. Obviously, if the particles being
% tracked are frequently moving as much as their mean separation in a
% single time step, this function will not return acceptable
% trajectories.
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%
135 % PROCEDURE:

% Given the positions for n particles at time t(i), and m possible
% new positions at time t(i+1), this function considers all possible
% identifications of the n old positions with the m new positions,
% and chooses that identification which results in the minimal total

140 % squared displacement. Those identifications which don’t associate a
% new position within maxdisp of an old position (particle loss)
% penalize the total squared displacement by maxdispˆ2. For non-
% interacting Brownian particles with the same diffusivity, this
% algorithm will produce the most probable set of identifications

145 % (provided maxdisp >> RMS displacement between frames).
%
% In practice it works reasonably well for systems with oscillatory,
% ballistic, correlated and random hopping motion, so long as single
% time step displacements are reasonably small.

150 %
% Multidimensional functionality is intended to facilitate tracking
% when additional information regarding target identity is available
% (e.g. size or color). At present, this information should be
% rescaled by the user to have a comparable or smaller (measurement)

155 % variance than the spatial displacements.

% MODIFICATION HISTORY:
% 2/93 Written by John C. Crocker, University of Chicago (JFI).
% 7/93 JCC fixed bug causing particle loss and improved performance

160 % for large numbers of (>100) particles.
% 11/93 JCC improved speed and memory performance for large
% numbers of (>1000) particles (added subnetwork code).
% 3/94 JCC optimized run time for trivial bonds and d<7. (Added
% d-dimensional raster metric code.)

165 % 8/94 JCC added functionality to unscramble non-position data
% along with position data.
% 9/94 JCC rewrote subnetwork code and wrote new, more efficient
% permutation code.
% 5/95 JCC debugged subnetwork and excessive combinatorics code.

170 % 12/95 JCC added memory keyword, and enabled the tracking of
% newly appeared particles.
% 3/96 JCC made inipos a keyword, and disabled the adding of ’new’
% particles when inipos was set.
% 3/97 JCC added ’add’ keyword, since Chicago users didn’t like

175 % having particle addition be the default.
% 9/97 JCC added ’goodenough’ keyword to improve memory efficiency
% when using the ’add’ keyword and to filter out bad tracks.
% 10/97 JCC streamlined data structure to speed runtime for >200
% timesteps. Changed ’quiet’ keyword to ’verbose’. Made

180 % time labelling more flexible (uniform and sorted is ok).
% 9/98 JCC switched trajectory data structure to a ’list’ form,
% resolving memory issue for large, noisy datasets.
% 2/99 JCC added Eric Weeks’s ’uberize’ code to post-facto
% rationalize the particle id numbers, removed ’add’ keyword.

185 %
% 1/05 Transmuted to MATLAB by D. Blair
% 5/05 ERD Added the param structure to simplify calling.
% 6/05 ERD Added quiet to param structure
% 7/05 DLB Fixed slight bug in trivial bond code

190 %
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% 11/05 Studied by W. L. Pang University of California, San Diego
% 11/05 WLP Changed the way optional parameters are specified. It now
% uses the ’varargin’ cell array and (param,value) pairs instead
% of a param structure.

195 % 11/05 WLP Cleaned up the header comments to be more MATLAB-like and more
% readable.
% 12/01 WLP Changed the validation of the time vector. If it is not in
% order the algorithm sorts the positionlist data by row so that
% the time vector is in monotonically increasing order.

200 % 12/01 WLP Replaced directly implanted UNQ code with the built-in Matlab
% function ’unique()’.
%
% This code ’track.pro’ is copyright 1999, by John C. Crocker.
% It should be considered ’freeware’- and may be distributed freely

205 % (outside of the military-industrial complex) in its original form
% when properly attributed.

% dd = length(xyzs(1,:));
dd = size(xyzs, 2);

210

% get user options if there are any
% use default parameters if none given
opts = getopts(varargin);

215 % if mem is not needed set to zero
memory_b = parseopts(’mem’, opts, 0);

% if goodenough is not wanted set to zero
goodenough = parseopts(’goodenough’, opts, 0);

220

dim = parseopts(’dim’, opts, dd - 1);
quiet = parseopts(’quiet’, opts, false);
inipos = parseopts(’inipos’, opts, []);

225 % % checking the input time vector
% t = xyzs(:,dd);
% st = circshift(t,1);
% st = t(2:end) - st(2:end);
% if sum(st(find(st < 0))) ˜= 0

230 % disp(’The time vector is not in order’)
%
% return
% end
% info = 1;

235

% WLP
% why not sort the array if the time vector is not in order rather than
% just giving up? The algorithm already assumes a randomly scrambled
% set of positions. Using native matlab functions would be easier:

240 if ˜issorted(xyzs(:, end)),
xyzs = sortrows(xyzs, dd);

end;
t = xyzs(:, end);
st = circshift(t, 1);

245 st = t(2:end) - st(2:end);

w = find(st > 0);
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z = length(w) + 1;
if isempty(w)

250 disp(’All positions are at the same time... go back!’)
return

end

% partitioning the data with unique times
255 % %res = unq(t);

% % implanting unq directly
% indices = find(t ˜= circshift(t,-1));
% count = length(indices);
% if count > 0

260 % res = indices;
% else
% res = length(t) -1;
% end
% %%%%%%%%%%%%%%%%%%%%%%%

265 [uniquevals, res] = unique(t); clear uniquevals;
res = [1,res’,length(t)];

% get initial positions
ngood = res(2) - res(1) + 1;

270 eyes = 1:ngood;

% if keyword_set( inipos ) then begin
% pos = inipos(0:dim-1, * )
% istart = 0L

275 % n = n_elements(pos(0, * ))
% endif else begin
% pos = xyzs(0:dim-1,eyes)
% istart = 1L ;we don’t need to track t=0.
% n = ngood

280 % endelse

if ˜isempty(inipos),
pos = inipos(:, 1:dim);
istart = 1;

285 n = size(pos, 1);
else,

pos = xyzs(eyes,1:dim);
istart = 2; % we don’t need to track t=0
n = ngood;

290 end;

% how long are the ’working’ copies of the data?
zspan = 50;
if n > 200

295 zspan = 20;
end
if n > 500

zspan = 10;
end

300 resx = zeros(zspan,n) - 1;

bigresx = zeros(z,n) - 1;
mem = zeros(n,1);
% whos resx
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305 % whos bigresx
uniqid = 1:n;
maxid = n;
olist = [0.,0.];

310 if goodenough > 0
dumphash = zeros(n,1);
nvalid = ones(n,1);

end

315 % whos eyes;
resx(1,:) = eyes;
% setting up constants
maxdisq = maxdispˆ2;

320 % John calls this the setup for "fancy code" ???
notnsqrd = (sqrt(n * ngood) > 200) & (dim < 7);
notnsqrd = notnsqrd(1);

if notnsqrd
325 %; construct the vertices of a 3x3x3... d-dimensional hypercube

cube = zeros(3ˆdim,dim);

330 for d=0:dim-1,
numb = 0;
for j=0:(3ˆd):(3ˆdim)-1,

cube(j+1:j+(3ˆ(d)),d+1) = numb;
numb = mod(numb+1,3);

335 end
end

% calculate a blocksize which may be greater than maxdisp, but which
% keeps nblocks reasonably small.

340

volume = 1;
for d = 0:dim-1

minn = min(xyzs(w,d+1));
maxx = max(xyzs(w,d+1));

345 volume = volume * (maxx-minn);
end
volume;
blocksize = max( [maxdisp,((volume)/(20 * ngood))ˆ(1.0/dim)] );

end
350 % Start the main loop over the frames.

for i=istart:z
ispan = mod(i-1,zspan)+1;
%disp(ispan)
% get new particle positions

355 m = res(i+1) - res(i);
res(i);
eyes = 1:m;
eyes = eyes + res(i);

360 if m > 0
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xyi = xyzs(eyes,1:dim);
found = zeros(m,1);

365 % THE TRIVIAL BOND CODE BEGINS
% if ˜quiet, printf(’Entering trivial bond code ...’); end;

if notnsqrd
%Use the raster metric code to do trivial bonds

370

% construct "s", a one dimensional parameterization of the space
% which consists of the d-dimensional raster scan of the volume.)

abi = fix(xyi./blocksize);
375 abpos = fix(pos./blocksize);

si = zeros(m,1);
spos = zeros(n,1);
dimm = zeros(dim,1);
coff = 1.;

380

for j=1:dim
minn = min([abi(:,j);abpos(:,j)]);
maxx = max([abi(:,j);abpos(:,j)]);
abi(:,j) = abi(:,j) - minn;

385 abpos(:,j) = abpos(:,j) - minn;
dimm(j) = maxx-minn + 1;
si = si + abi(:,j). * coff;
spos = spos + abpos(:,j). * coff;
coff = dimm(j). * coff;

390 end
nblocks = coff;
% trim down (intersect) the hypercube if its too big to fit in
% the particle volume. (i.e. if dimm(j) lt 3)

395 cub = cube;
deg = find( dimm < 3);
if ˜isempty(deg)

for j = 0:length(deg)-1
cub = cub(find(cub(:,deg(j+1)) < dimm(deg(j+1))));

400 end
end

% calculate the "s" coordinates of hypercube (with a corner @
% the origin)

405 scube = zeros(length(cub(:,1)),1);
coff = 1;
for j=1:dim

scube = scube + cub(:,j). * coff;
coff = coff * dimm(j);

410 end

% shift the hypercube "s" coordinates to be centered around the
% origin

415 coff = 1;
for j=1:dim

if dimm(j) > 3
scube = scube - coff;



261

end
420 coff = dimm(j). * coff;

end
scube = mod((scube + nblocks),nblocks);
% get the sorting for the particles by their "s" positions.
[ed,isort] = sort(si);

425

% make a hash table which will allow us to know which new
% particles are at a given si.
strt = zeros(nblocks,1) -1;
fnsh = zeros(nblocks,1);

430 h = find(si == 0);
lh = length(h);
if lh > 0

si(h) = 1;
435 end

for j=1:m
if strt(si(isort(j))) == -1

strt(si(isort(j))) = j;
440 fnsh(si(isort(j))) = j;

else
fnsh(si(isort(j))) = j;

end
end

445 if lh > 0
si(h) = 0;
end
coltot = zeros(m,1);
rowtot = zeros(n,1);

450 which1 = zeros(n,1);
for j=1:n

map = fix(-1);
455

scub_spos = scube + spos(j);
s = mod(scub_spos,nblocks);
whzero = find(s == 0 );
if ˜isempty(whzero)

460 nfk = find(s ˜=0);
s = s(nfk);

end

w = find(strt(s) ˜= -1);
465

ngood = length(w);
ltmax=0;
if ngood ˜= 0

470 s = s(w);
for k=1:ngood

map = [map;isort( strt(s(k)):fnsh(s(k)))];
end
map = map(2:end);

475 % if length(map) == 2
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% if (map(1) - map(2)) == 0
% map = unique(map);
% end
% end

480 % map = map(umap);
%end
% find those trival bonds
distq = zeros(length(map),1);
for d=1:dim

485 distq = distq + (xyi(map,d) - pos(j,d)).ˆ2;
end
ltmax = distq < maxdisq;

rowtot(j) = sum(ltmax);
490

if rowtot(j) >= 1
w = find(ltmax == 1);
coltot( map(w) ) = coltot( map(w)) +1;
which1(j) = map( w(1) );

495 end
end

end

500

ntrk = fix(n - sum(rowtot == 0));

w = find( rowtot == 1);
ngood = length(w);

505

if ngood ˜= 0
ww = find(coltot( which1(w) ) == 1);
ngood = length(ww);

510 if ngood ˜= 0
%disp(size(w(ww)))

resx(ispan,w(ww)) = eyes( which1(w(ww)));
found( which1( w(ww))) = 1;
rowtot( w(ww)) = 0;

515 coltot( which1(w(ww))) = 0;
end

end

labely = find( rowtot > 0);
520 ngood = length(labely);

if ngood ˜= 0
labelx = find( coltot > 0);

nontrivial = 1;
525 else

nontrivial = 0;
end

else
530

% or: Use simple Nˆ2 time routine to calculate trivial bonds
% if ˜quiet, printf(’Using simple Nˆ2 routine ...’); end;
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% let’s try a nice, loopless way!
% don’t bother tracking perm. lost guys.

535 wh = find( pos(:,1) >= 0);
ntrack = length(wh);
if ntrack == 0

printf(’WARNING: No valid particles to track!’);
break

540 end
xmat = zeros(ntrack,m);
count = 0;
for kk=1:ntrack

for ll=1:m
545 xmat(kk,ll) = count;

count = count+1;
end

end
count = 0;

550 for kk=1:m
for ll=1:ntrack

ymat(kk,ll) = count;
count = count+1;

end
555 end

xmat = (mod(xmat,m) + 1);
ymat = (mod(ymat,ntrack) +1)’;
[lenxn,lenxm] = size(xmat);

560 % whos ymat
% whos xmat
% disp(m)

for d=1:dim
565 x = xyi(:,d);

y = pos(wh,d);
xm = x(xmat);
ym = y(ymat(1:lenxn,1:lenxm));
if size(xm) ˜= size(ym)

570 xm = xm’;
end

if d == 1
dq = (xm -ym).ˆ2;

575 %dq = (x(xmat)-y(ymat(1:lenxn,1:lenxm))).ˆ2;
else

dq = dq + (xm-ym).ˆ2;
%dq = dq + (x(xmat)-y(ymat(1:lenxn,1:lenxm)) ).ˆ2;

end
580 end

ltmax = dq < maxdisq;

% figure out which trivial bonds go with which
585

rowtot = zeros(n,1);
rowtot(wh) = sum(ltmax,2);



264

590 if ntrack > 1
coltot = sum(ltmax,1);

else
coltot = ltmax;

end
595 which1 = zeros(n,1);

for j=1:ntrack
[mx, w] = max(ltmax(j,:));
which1(wh(j)) = w;

end
600

ntrk = fix( n - sum(rowtot == 0));
w= find( rowtot == 1) ;
ngood = length(w);
if ngood ˜= 0

605 ww = find(coltot(which1(w)) == 1);
ngood = length(ww);
if ngood ˜= 0

resx( ispan, w(ww) ) = eyes( which1( w(ww)));
found(which1( w(ww))) = 1;

610 rowtot(w(ww)) = 0;
coltot(which1(w(ww))) = 0;

end
end

615 labely = find( rowtot > 0);
ngood = length(labely);

if ngood ˜= 0
labelx = find( coltot > 0);

620 nontrivial = 1;
else

nontrivial = 0;
end

end
625

%THE TRIVIAL BOND CODE ENDS

if nontrivial
% if ˜quiet, printf(’Entering non-trivial bond code ...’); end;

630

xdim = length(labelx);
ydim = length(labely);

% make a list of the non-trivial bonds
635

bonds = zeros(1,2);
bondlen = 0;

for j=1:ydim
640 distq = zeros(xdim,1);

for d=1:dim
%distq
distq = distq + (xyi(labelx,d) - pos(labely(j),d)).ˆ2;

645 %distq
end
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w= find(distq < maxdisq)’ - 1;
ngood = length(w);

650 newb = [w;(zeros(1,ngood)+j)];

bonds = [bonds;newb’];

655 bondlen = [ bondlen;distq( w + 1) ];

end
bonds = bonds(2:end,:);

660 bondlen = bondlen(2:end);
numbonds = length(bonds(:,1));
mbonds = bonds;
max([xdim,ydim]);

665

if max([xdim,ydim]) < 4
nclust = 1;
maxsz = 0;
mxsz = xdim;

670 mysz = ydim;
bmap = zeros(length(bonds(:,1)+1),1) - 1;

else

675

% THE SUBNETWORK CODE BEGINS
% if ˜quiet, printf(’Entering subnetwork code ...’); end;

lista = zeros(numbonds,1);
listb = zeros(numbonds,1);

680 nclust = 0;
maxsz = 0;
thru = xdim;

while thru ˜= 0
685 % the following code extracts connected

% sub-networks of the non-trivial
% bonds. NB: lista/b can have redundant entries due
% to multiple-connected subnetworks

690

w = find(bonds(:,2) >= 0);
% size(w)

lista(1) = bonds(w(1),2);
695 listb(1) = bonds(w(1),1);

bonds(w(1),:) = -(nclust+1);
bonds;
adda = 1;
addb = 1;

700 donea = 0;
doneb = 0;
if (donea ˜= adda) | (doneb ˜= addb)

true = 0;
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else
705 true = 1;

end

while ˜true

710 if (donea ˜= adda)
w = find(bonds(:,2) == lista(donea+1));
ngood = length(w);
if ngood ˜= 0

listb(addb+1:addb+ngood,1) = bonds(w,1);
715 bonds(w,:) = -(nclust+1);

addb = addb+ngood;
end
donea = donea+1;

end
720 if (doneb ˜= addb)

w = find(bonds(:,1) == listb(doneb+1));
ngood = length(w);
if ngood ˜= 0

lista(adda+1:adda+ngood,1) = bonds(w,2);
725 bonds(w,:) = -(nclust+1);

adda = adda+ngood;
end
doneb = doneb+1;

end
730 if (donea ˜= adda) | (doneb ˜= addb)

true = 0;
else

true = 1;
end

735 end

[pp,pqx] = sort(listb(1:doneb));
%unx = unq(listb(1:doneb),pqx);
%b

740 arr = listb(1:doneb);
q = arr(pqx);
indices = find(q ˜= circshift(q,-1));
count = length(indices);
if count > 0

745 unx = pqx(indices);
else

unx = length(q) -1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
750

xsz = length(unx);
% xsz = n_elements( unq( listb( 0:doneb-1 ), sort( listb( 0:doneb-1 ) ) ) )
%

755 [pp,pqy] = sort(lista(1:donea));
%uny = unq(lista(1:donea),pqy);
%implanting unq directly

arr = lista(1:donea);
q = arr(pqy);

760 indices = find(q ˜= circshift(q,-1));
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count = length(indices);
if count > 0

uny = pqy(indices);
else

765 uny = length(q) -1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

770

ysz = length(uny);
if xsz * ysz > maxsz

maxsz = xsz * ysz;
775 mxsz = xsz;

mysz = ysz;
end

780 thru = thru -xsz;
nclust = nclust + 1;

end
bmap = bonds(:,2);

end
785 % THE SUBNETWORK CODE ENDS

% put verbose in for Jaci
if ˜quiet,

sFmtStr = ’%d: Permuting %d network’;
if nclust > 1, sFmtStr = [sFmtStr ’s’]; end;

790 printf(sFmtStr, i, nclust);
printf(’\tMax. network %d x %d’, mxsz, mysz);

end;

% THE PERMUTATION CODE BEGINS
795 % if ˜quiet, printf(’Entering permutation code ...’); end;

for nc =1:nclust
w = find( bmap == -1 * (nc));

nbonds = length(w);
800 bonds = mbonds(w,:);

lensq = bondlen(w);
[pq,st] = sort( bonds(:,1));
%un = unq(bonds(:,1),st);

%implanting unq directly
805 arr = bonds(:,1);

q = arr(st);
indices = find(q ˜= circshift(q,-1));
count = length(indices);
if count > 0

810 un = st(indices);
else

un = length(q) -1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
815

uold = bonds(un,1);
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nold = length(uold);
820

%un = unq(bonds(:,2));

%implanting unq directly
indices = find(bonds(:,2) ˜= circshift(bonds(:,2),-1));

825 count = length(indices);
if count > 0

un = indices;
else

un = length(bonds(:,2)) -1;
830 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

unew = bonds(un,2);
nnew = length(unew);

835

if nnew > 5
rnsteps = 1;
for ii =1:nnew

rnsteps = rnsteps * length( find(bonds(:,2) == ...
840 unew(ii)));

if rnsteps > 5.e+4
disp([’Warning: ’...

’difficult combinatorics encountered.’])
end

845 if rnsteps > 2.e+5
disp([’Excessive Combinitorics you ’...

’FOOL LOOK WHAT YOU HAVE’ ...
’ DONE TO ME!!!’])

return
850 end

end
end
st = zeros(nnew,1);
fi = zeros(nnew,1);

855 h = zeros(nbonds,1);
ok = ones(nold,1);
nlost = (nnew - nold) > 0;

860 for ii=1:nold
h(find(bonds(:,1) == uold(ii))) = ii;

end
st(1) = 1 ;
fi(nnew) = nbonds; % check this later

865 if nnew > 1
sb = bonds(:,2);
sbr = circshift(sb,1);
sbl = circshift(sb,-1);
st(2:end) = find( sb(2:end) ˜= sbr(2:end)) + 1;

870 fi(1:nnew-1) = find( sb(1:nbonds-1) ˜= sbl(1:nbonds-1));
end

% if i-1 == 13
% hi
% end
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875 checkflag = 0;
while checkflag ˜= 2

pt = st -1;
lost = zeros(nnew,1);

880 who = 0;
losttot = 0;
mndisq = nnew * maxdisq;

885 while who ˜= -1

if pt(who+1) ˜= fi(who+1)

890 w = find(ok(h(pt(who+1)+1:fi(who+1))));
% check this -1

ngood = length(w);
if ngood > 0

if pt(who+1) ˜= st(who+1)-1
895 ok(h(pt(who+1))) = 1;

end
pt(who+1) = pt(who+1) + w(1);
ok(h(pt(who+1))) = 0;
if who == nnew -1

900 ww = find( lost == 0);
dsq = sum(lensq(pt(ww))) ...

+ losttot * maxdisq;

if dsq < mndisq
905 minbonds = pt(ww);

mndisq = dsq;
end

else
who = who+1;

910 end
else

if ˜lost(who+1) & (losttot ˜= nlost)
lost(who+1) = 1;
losttot = losttot + 1;

915 if pt(who+1) ˜= st(who+1) -1;
ok(h(pt(who+1))) = 1;

end
if who == nnew-1

ww = find( lost == 0);
920 dsq = sum(lensq(pt(ww))) ...

+ losttot * maxdisq;
if dsq < mndisq

minbonds = pt(ww);
mndisq = dsq;

925 end
else

who = who + 1;
end

930 else
if pt(who+1) ˜= (st(who+1) -1)
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ok(h(pt(who+1))) = 1;
end
pt(who+1) = st(who+1) -1;

935 if lost(who+1)
lost(who+1) = 0;
losttot = losttot -1;

end
who = who -1;

940 end
end

else
if ˜lost(who+1) & (losttot ˜= nlost)

lost(who+1) = 1;
945 losttot = losttot + 1;

if pt(who+1) ˜= st(who+1)-1
ok(h(pt(who+1))) = 1;

end
if who == nnew -1

950 ww = find( lost == 0);
dsq = sum(lensq(pt(ww))) ...

+ losttot * maxdisq;

if dsq < mndisq
955 minbonds = pt(ww);

mndisq = dsq;
end

else
who = who + 1;

960 end
else

if pt(who+1) ˜= st(who+1) -1
ok(h(pt(who+1))) = 1;

end
965 pt(who+1) = st(who+1) -1;

if lost(who+1)
lost(who+1) = 0;
losttot = losttot -1;

end
970 who = who -1;

end
end

end

975 checkflag = checkflag + 1;
if checkflag == 1

plost = min([fix(mndisq/maxdisq) , (nnew -1)]);
if plost > nlost

nlost = plost;
980 else

checkflag = 2;
end

end

985 end
% update resx using the minimum bond configuration

resx(ispan,labely(bonds(minbonds,2))) = ...
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eyes(labelx(bonds(minbonds,1)+1));
990 found(labelx(bonds(minbonds,1)+1)) = 1;

end

% THE PERMUTATION CODE ENDS
995 end

sMsgNetType = ’only trivial networks’;

w = find(resx(ispan,:) >= 0);
1000 nww = length(w);

if nww > 0
pos(w,:) = xyzs( resx(ispan,w) , 1:dim);
if goodenough > 0

1005 nvalid(w) = nvalid(w) + 1;
end

end %go back and add goodenough keyword thing
newguys = find(found == 0);

1010 nnew = length(newguys);

if (nnew > 0) % & another keyword to workout inipos
newarr = zeros(zspan,nnew) -1;
resx = [resx,newarr];

1015

resx(ispan,n+1:end) = eyes(newguys);
pos = [[pos];[xyzs(eyes(newguys),1:dim)]];
nmem = zeros(nnew,1);
mem = [mem;nmem];

1020 nun = 1:nnew;
uniqid = [uniqid,((nun) + maxid)];
maxid = maxid + nnew;
if goodenough > 0

dumphash = [dumphash;zeros(1,nnew)’];
1025 nvalid = [nvalid;zeros(1,nnew)’+1];

end
% put in goodenough
n = n + nnew;

1030 end

else
’ Warning- No positions found for t=’

end
1035 w = find( resx(ispan,:) ˜= -1);

nok = length(w);
if nok ˜= 0

mem(w) =0;
end

1040

mem = mem + (resx(ispan,:)’ == -1);
wlost = find(mem == memory_b+1);
nlost =length(wlost);

1045 if nlost > 0
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pos(wlost,:) = -maxdisp;
if goodenough > 0

wdump = find(nvalid(wlost) < goodenough);
ndump = length(wdump);

1050 if ndump > 0
dumphash(wlost(wdump)) = 1;

end
end
% put in goodenough keyword stuff if

1055 end
if (ispan == zspan) | (i == z)

nold = length(bigresx(1,:));
nnew = n-nold;
if nnew > 0

1060 newarr = zeros(z,nnew) -1;
bigresx = [bigresx,newarr];

end
if goodenough > 0

if (sum(dumphash)) > 0
1065 wkeep = find(dumphash == 0);

nkeep = length(wkeep);
resx = resx(:,wkeep);
bigresx = bigresx(:,wkeep);
pos = pos(wkeep,:);

1070 mem = mem(wkeep);
uniqid = uniqid(wkeep);
nvalid = nvalid(wkeep);
n = nkeep;
dumphash = zeros(nkeep,1);

1075 end
end

% again goodenough keyword
if quiet˜=1

1080 if ntrk == 1, sPPlural = ’, ’; else sPPlural = ’s,’; end;
if n == 1, sTPlural = ’’; else sTPlural = ’s’; end;
printf(’%4d of %d:\t%4d particle%s %4d track%s. %s’,...

i, z, ntrk, sPPlural, n, sTPlural, sMsgNetType...
);

1085 end
bigresx(i-(ispan)+1:i,:) = resx(1:ispan,:);
resx = zeros(zspan,n) - 1;

1090 wpull = find(pos(:,1) == -maxdisp);
npull = length(wpull);

if npull > 0
lillist = zeros(1,2);

1095 for ipull=1:npull
wpull2 = find(bigresx(:,wpull(ipull)) ˜= -1);
npull2 = length(wpull2);
thing = [bigresx(wpull2,wpull(ipull)),...

zeros(npull2,1)+uniqid(wpull(ipull))];
1100 lillist = [lillist;thing];

end
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olist = [[olist];[lillist(2:end,:)]];

1105 end

wkeep = find(pos(:,1) >= 0);
1110 nkeep = length(wkeep);

if nkeep == 0
disp(’Were going to crash now, no particles....’);

end
resx = resx(:,wkeep);

1115 bigresx = bigresx(:,wkeep);
pos = pos(wkeep,:);
mem = mem(wkeep);
uniqid = uniqid(wkeep);
n = nkeep;

1120 dumphash = zeros(nkeep,1);
if goodenough > 0

nvalid = nvalid(wkeep);
end

end
1125

end

if goodenough > 0
nvalid = sum(bigresx >= 0 ,1);

1130 wkeep = find(nvalid >= goodenough);
nkeep = length(nkeep);
if nkeep < n

bigresx = bigresx(:,wkeep);
n = nkeep;

1135 uniqid = uniqid(wkeep);
pos = pos(wkeep,:);

end
end

1140

wpull = find( pos(:,1) ˜= -2 * maxdisp);
npull = length(wpull);
if npull > 0

lillist = zeros(1,2);
1145 for ipull=1:npull

wpull2 = find(bigresx(:,wpull(ipull)) ˜= -1);
npull2 = length(wpull2);
thing = [bigresx(wpull2,wpull(ipull)),...

zeros(npull2,1)+uniqid(wpull(ipull))];
1150 lillist = [lillist;thing];

end
olist = [olist;lillist(2:end,:)];

end

1155 olist = olist(2:end,:);
%bigresx = 0;
%resx = 0;

nolist = length(olist(:,1));
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1160 res = zeros(nolist,dd+1);
for j=1:dd

res(:,j) = xyzs(olist(:,1),j);
end
res(:,dd+1) = olist(:,2);

1165

% this is uberize included for simplicity of a single monolithic code

ndat=length(res(1,:));
newtracks=res;

1170

%u=unq(newtracks(:,ndat));

% inserting unq
1175 indices = find(newtracks(:,ndat) ˜= circshift(newtracks(:,ndat),-1));

count = length(indices);
if count > 0

u = indices;
else

1180 u = length(newtracks(:,ndat)) -1;
end

ntracks=length(u);
1185 u=[0;u];

for i=2:ntracks+1
newtracks(u(i-1)+1:u(i),ndat) = i-1;

end

1190 % end of uberize code

tracks = newtracks;

tracklink.m
function [dataout]=tracklink(locid, objid, varargin)
% TRACKLINK
% [dataout] = tracklink(locid, objid, ...)
%

5 % Links object trajectory data using a link table. Trajectories start with
% object <objid>. The link table format is:
%
% IMGID OBJID
% 0 <objid>

10 % : :
% <ending_imgid> <ending_objid>
%
% Linking behavior depends on the value of OBJID:
%

15 % <int> The object was reassigned a new objid <int> at <imgid>.
%
% -1 Tracking lost the object at <imgid>. The next row in the link
% table specifies when the object returns and the object’s new
% objid. Data between the <imgid> values is skipped.

20 %
% # The object was completely lost at <imgid>. A value of # is
% specified with the last imgid of the sequence if the object is
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% retained until the end of the sequence.

25 % DOCUMENT HISTORY
% 2005/??/?? WLP Created.
% 2006/09/06 WLP Changed linking behavior to include a trajectory
% terminator character (#, which is read as NaN).

30 opts = getopts(varargin);
trjpath = parseopts(’trjpath’, opts, ’/trjdata’);

% ’./trjdata/000/byobj/lnk/####_ * ’

35 lnkpath = sprintf(’.%s%c%03d%cbyobj%clnk’, trjpath, filesep, ...
locid, filesep, filesep);

lnkfile = dir(sprintf(’%s%c%04d_ * ’, lnkpath, filesep, objid));
lnkfile = lnkfile(1);
lnkfile = [lnkpath filesep lnkfile.name];

40

lnkdata = importdata(lnkfile);
imgid = getdatacol(’imgid’, lnkdata);
objid = getdatacol(’objid’, lnkdata);

45 objpath = sprintf(’.%s%c%03d%cbyobj’, trjpath, filesep, locid, filesep);

dataout = [];
for i = 1:length(imgid)-1,

curimgid = imgid(i);
50 nxtimgid = imgid(i+1);

% an objid of -1 indicates a "lost" segment of tracking. skip any
% object data during this period

55 % an objid of NaN indicates a completely lost object. skip any
% remaining object data.
if objid(i) ˜= -1 && ˜isnan(objid(i)),

objfile = sprintf(’%s%c%04d.obj.dat’, objpath, filesep, objid(i));
curdata = importdata(objfile);

60

objimgid = getdatacol(’imgid’, curdata);

rnginit = find(objimgid >= curimgid, 1, ’first’);
rngstop = find(objimgid <= nxtimgid, 1, ’last’) - 1;

65 dataout = [dataout; curdata.data(rnginit:rngstop, :)];
elseif isnan(objid(i)),

break;
end;

70 end;

% % load the last segment of data before the object is lost or the run
% % terminates
% curimgid = imgid(end);

75 % objfile = sprintf(’%s%c%04d.obj.dat’, objpath, filesep, objid(end-1));
% curdata = importdata(objfile);
% objimgid = getdatacol(’imgid’, curdata);
%
% rnginit = find(objimgid >= curimgid, 1, ’first’);
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80 % dataout = [dataout; curdata.data(rnginit:end, :)];

tmp.data = dataout;
tmp.textdata = curdata.textdata;
tmp.colheaders = curdata.colheaders;

85

dataout = tmp;

updateprogress.m
function [] = updateprogress(hProg, iCurrImg, nTotImgs, tLoopElaps, varargin)
opts = getopts(varargin);
iMinPtAvg = parseopts(’points’, opts, [3 10]);
iMaxPtAvg = iMinPtAvg(2);

5 iMinPtAvg = iMinPtAvg(1);

if iCurrImg < iMinPtAvg,
set(hProg, ’name’, ...

sprintf(’(%d/%d) Calculating Time Remaining ...’, ...
10 iCurrImg, nTotImgs));

elseif iCurrImg < iMaxPtAvg && iCurrImg > iMinPtAvg,
nTimeRemain = ...

mean(tLoopElaps(end-iCurrImg+2:end)) * (nTotImgs - iCurrImg)/60;
set(hProg, ’name’, ...

15 sprintf(’(%d/%d) Time Remaining: %.2f min’, ...
iCurrImg, nTotImgs, nTimeRemain));

elseif iCurrImg > iMaxPtAvg,
nTimeRemain = ...

mean(tLoopElaps(end-iMaxPtAvg+1:end)) * (nTotImgs - iCurrImg)/60;
20 set(hProg, ’name’, sprintf(’(%d/%d) Time Remaining: %.2f min’, ...

iCurrImg, nTotImgs, nTimeRemain));
end;
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Hardware Platforms

C.1 Automated microscopy platform

C.1.1 Hardware configuration

The imaging base was a Nikon Diaphot TMD advanced research grade inverted

epifluorescence microscope. The microscope had a five position nosepiece configured with

4x 0.1NA Dry, 10x 0.25NA Dry, 20x 0.45NA Dry Ph2, 40x 1.00NA Oil, and 100x 1.40NA Oil

imaging objectives and 10x eyepieces. The transmitted light path utilized a 100W HMX-4

halogen lamp, a neutral color balance filter, a green bandpass filter, and a 0.3NA ELWD

condenser. The fluorescence light path utilized an EXFO X-Cite 120 mercury halide light

source with an attenuation iris, a IR hot mirror and a Cyan/Yellow/Red-fluorescent protein

Sedat spectral excitation filter set (Chroma) mounted in motorized filter wheels (Prior

Scientific). Both illumination light paths were shuttered at the source with Uniblitz VS35

high speed shutters (Vincent Associates) controlled by a DMM-V4 four channel shutter

driver. Image acquisition was performed using a Hamamatsu Orca-ER cooled CCD camera
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with an IEEE-1394 firewire interface. The camera was coupled to the microscope via a

1.0x c-mount photocoupler (Diagnostic instruments). Stage translation and fine focus was

motorized using a Prior Scientific Proscan-II XY motorized stage and a Standard fine focus

drive, respectively. Filter wheels, XY translation, and Z motion were all controlled using a

Proscan-II four axis with autofocus controller.

C.1.2 Generalized light paths

Figure C.1: Imaging optical train and light paths
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C.1.3 Imaging algorithm

The imaging system used in this work was controlled using a custom interface

developed in National Instruments LabVIEW. To maintain efficiency, the user interface it

is solely an image collection platform and in this respect its functionality is equivalent to

commercially available imaging platforms such as ImagePro (Media Cybernetics), MetaVue

(Universal Imaging), or IPLab (Becton Dickinson). The sole purpose of using LabVIEW

was the reduction in overall system cost as well as the maintenance of fine tuned system

configurability. However, due to the graphical nature of the LabVIEW programming lan-

guage and the complexity of the interface, only abstract algorithms could be presented here.

Complete source code is available online at http://biodynamics.ucsd.edu.

http://biodynamics.ucsd.edu
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Algorithm 1: Microscope operation algorithm
Initialize channel stack;
Initialize locations (set pattern);
repeat

Query acquisition state;
Check channel indices for remaining images;
if Acquisition is active and images remain then

for Each Location do
Get XYZ coordinates;
Adjust for rotation;
Adjust for flatness;
Goto adjusted XYZ;
for Each Channel do

Query acquisition type;
Check elapsed times for each channel;
if Acquiring single images
OR (
Acquiring an image sequence
AND the current channel. index is < max channel index
AND the channel interval has elapsed

) then
Retrieve channel settings;
Configure hardware for focus;
Run focus algorithm;
Retrieve focus results;
Configure hardware for acquisition;
Acquire image;
Log focus results;
Log acquisition details;
Increment channel index by 1;
Reset channel elapsed time to 0;

endif
endfor

endfor
endif

until USER-STOP ;
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C.2 Waveform generation platform

C.2.1 Hardware configuration

The core of the waveform generation system was a pair of card mounted voltage

to pressure servo regulators (Bellofram) which operated on a 0–10V signal, and controlled

output pressure between 0–1psi accordingly. Voltage signals were generated using a Lab-

VIEW program interfaced with the analog output channels of a PCI-6021 multifunction

digital/analog input/output board. The pressure regulators were powered by a common

12VDC source and input pressure supply was regulated to 10psi from house air. Controlled

pressure output was passed through a 23ga restriction segment to drop the pressure to

within a 0–12inH2O range and fed to fluid reservoirs. A 20ga bleed orifice was placed in

parallel with the reservoir to compensate for the lack of pressure relieving on the servo

regulators upstream.

Figure C.2: Waveform generation system configuration
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C.2.2 Source documentation

Front Panel

Controls and Indicators

stop

Log Press Interval (sec) Interval between data points in pres-
sure state data log.

Log Press Data? Select this field to start/continue pressure
data logging.

Log Press File Location of pressure state log file

freq (Hz) frequency is the frequency of the waveform in units
of hertz. The default is 10.

duty cycle (%) square wave duty cycle is the percentage
of time a square wave remains high versus low over one period.
The VI uses this parameter only if the signal type is a square
wave. The default is 50%.

std. dev (s) standard deviation is the standard deviation of
the generated noise. The default is 1.0.

mean interval (s) average length of time for intervals used by
the random step function.
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width (s) width for the pulse function.

delay (s) square wave duty cycle is the percentage of time
a square wave remains high versus low over one period. The VI
uses this parameter only if the signal type is a square wave.
The default is 50%.

Global State (Frac) Global output state. Controls any linked
channels.

amplitude (%) square wave duty cycle is the percentage
of time a square wave remains high versus low over one period.
The VI uses this parameter only if the signal type is a square
wave. The default is 50%.

AP 2 Configures output for analog pressure channel 2.

Ch Channel selector for output pressure

Hi Hi voltage value for output pressure control

Lo Lo voltage value for output pressure control

State Output state slider

Linked Output link to global state slider. If selected the channel
is controlled by the global state slider. Correspondance to the
global state depends on the linkage type.

LinkType Method for linking channel to global state. Direct
linkage means that the channel state exactly replicates the global
state. Inverted means the channel state is the mirror opposite
of the global state.

Direct

Inverted

signal type signal type is the type of waveform to generate.

AP 1 Configures output for analog pressure channel 1.

Ch Channel selector for output pressure
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Hi Hi voltage value for output pressure control

Lo Lo voltage value for output pressure control

State Output state slider

Linked Output link to global state slider. If selected the channel
is controlled by the global state slider. Correspondance to the
global state depends on the linkage type.

LinkType Method for linking channel to global state. Direct
linkage means that the channel state exactly replicates the global
state. Inverted means the channel state is the mirror opposite
of the global state.

Direct

Inverted

RandStepConstHigh

Const. High interval (s) Value for constant ’hi’ state interval
length for random step function

AP 2 String

AP 1 String

Analog Pressure Monitor Graphical display of pressure state
for all active channels.
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Block Diagram
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Hierarchical states
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D

Microfluidic Devices

D.1 TµC: Tesla micro-Chemostat

D.1.1 Fabrication

Table D.1: Master mold feature height specifications. †Photoresists are SU-8 unless otherwise specified.
‡These layers were patterned additively (e.g. no development step between this and the prior layer)

Layer Thickness Photoresist† Spin Speed
(µm) (rpm)

bead trap 2 2002 3000
chamber 4 2002 2000
flow channels 12 2010 2500
access port 38 2015 1000
thermal channel 260 2100 1000
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D.1.2 Device Schematic and Port Assignments

Figure D.1: Device schematic for TµC. Inset displays a magnified view of the growth chamber.

Table D.2: Port assignments for T2µC.

Port Abbr Usage
1 C input, cell suspension
2 Bin input, af/calibration bead loading
3 Bout input, af/calibration bead outflow
4 M input, growth media
5 W output, common waste
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D.2 T2µC: Temporal Tesla micro-Chemostat

D.2.1 Fabrication

Table D.3: Master mold feature height specifications. †Photoresists are SU-8 unless otherwise specified.
‡These layers were patterned additively (e.g. no development step between this and the prior layer)

Layer Thickness Photoresist† Spin Speed
(µm) (rpm)

feeding channels 1 2001 3000
chamber 4 2002 2000
af pattern 4 2002 2000
flow network 10 2010 3000
chaotic mixer grooves‡ 2 2002 3000
thermal channel (1) 50 2050 3000
thermal channel (2)‡ 260 2100 1000
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D.2.2 Device Schematic and Port Assignments

Figure D.2: Device schematic for T2µC. Insets display magnified views of the growth chamber and
on-chip media switch.

Table D.4: Port assignments for T2µC.

Port Abbr Usage
1 Wc output, cell suspension waste
2 Wm output, loading media waste
3 C input, cell suspension
4 M input, loading media (media 0)
5 Ws output, switching channel waste
6 I input, media 1 (inducer)
7 S output, aux. waste for switch
8 B input, media 2 (blank)
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D.2.3 Operation Protocol

Required Materials

• bonded microfluidic device

• microfluidic lines, 8 total

• fluid reservoirs, 8 total

• reservoir pressure top, 8 total

• multichannel pressure controller, 4 channels required, 8 channels recommended

• inverted microscope with imaging camera, shuttered light sources (transmitted and

fluorescence), and appropriate acquisition software

optional thermal control fluid lines

optional heated/chilled water circulator

Naming and Media Conventions

There are eight fluidic ports on the device and eight corresponding fluid reservoirs.

There are 4 “waste” reservoirs, e.g. where fluid flow exits the device, and 4 “media/input”

reservoirs where fluid enters the device. Waste reservoirs are denoted by a “W” label, except

for the auxilliary waste port used by the integrated media switch. This port is labeled “S”

which stands for “shunt” for historic reasons. The other waste ports are labeled: Ws, Wm,

and Wc, for switch waste, loading media waste, and cell suspension waste, respectively.

All output reservoirs should contain only sterile filtered water. All input media should be
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sterile filtered if possible. This reduces the amount of particulate debris that could block

microfluidic channels, rendering a device useless.

The input reservoirs are labeled: M, I, and B, for loading media, “induction”

media, and blank media. The “M” reservoir contains unaltered growth medium and un-

der most circumstances should be the same media used to prepare the cell suspension for

overnight (normal batch) culture. The “I” reservoir contains growth media with any chem-

ical agents that will elicit a cellular response such as inducers, activators, or repressors.

The “B” reservior should be the same as the media in the “I” reservoir WITHOUT the

aforementioned chemical agents, and in most cases is exactly the same as the media in the

“M” reservoir. Reservoirs “I” or “B” should also include flow tracing dye (e.g. 0.01 mg/mL

sulforhodamine 101, Sigma S7563) which is used to prepare the integrated media switch for

operation. For most cases, the “I” reservoir has the additional tracer dye.

The remaining input reservoir is unlabeled and is used for the cell suspension. This

is the only reservoir that is not recycled for subsequent experiments. During operation, this

reservoir is converted to an output (waste) reservoir to reduce cellular fouling of the device.

This will be explained in more detail below.

Protocol

Line Attachment and Device Wetting

1. Secure the device to the microscope stage insert place the device on the microscope

(4x or 10x magnification). If available, do not secure rotational movement of the stage

insert at this point in time. Inspect the device for any defects that could impair its

performance — i.e. channel leakage due to poor bonding, or channel blockage due to
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dust particles. Discard defective devices.

2. Place all reservoirs on the gravity towers and ensure that all the fluid connection lines

are sufficiently primed and absent of bubbles. Attach the pressure control lines to the

tops of the syringes and set the source pressure on the pressure controller to 5 psi.

3. Set the heights of the reservoirs to their operational positions. These positions are

specific to each experimental setup, but generally they should be (inH2O): 8, 8, 10,

19.5, 14.5, 20, 20, and 3, for Wm, Wc, Ws, S, M, I, B, Cells, which are the heights

specified used in MOCA simulations.

4. Connect the Ws, Wm, S reservoirs to ports 5, 2, and 7 on the device, respectively,

and activate pressure to the reservoirs.

5. Depending on slight variations in chip manufacturing and chip age, the following may

happen in any order. This is normal and does not impair the function of the device.

(a) When fluid appears at port 4, attach the M reservoir to it.

(b) When fluid appears at port 6, attach the I reservoir to it.

(c) When fluid appears at port 8, attach the B reservoir to it.

6. After a few seconds, fluid should appear at either port 1 or port 3. These two ports

are interchangeable as either the entrance for cell suspension (C) or exit for cell waste

(Wc) If fluid does not appear at these ports within 5 minutes, pressurize the both the

M and Wm reservoirs to aid flow through the device. Once a fluid bead appears attach

the Wc reservoir to the corresponding port and turn off any additional pressure. DO

NOT attach the cell suspension reservoir at this time.
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7. Place the device on the microscope. Inspect all channels for pockets of air. Check to

see if the chamber and microchannels that connect it to the integrated media switch

are appropriately wetted. If there are air pockets anywhere in the chip, remove them

by supplying 5 psi of pressure to ALL attached reservoirs. Once all air pockets have

been removed from the device, turn off the external supply pressure.

Media Switch Setup and Operation

1. Move the field of view (4x or 10x magnification) to the media switching region (see

device schematic), and illuminate using appropriate fluorescence settings for the tracer

dye used. If possible, rotationally square and lock down the device at this point in

time.

2. Set the source pressure on the controller to 5 psi.

3. Purge the fluid that may have back flowed into ports 6 and 8 by pressurizing reservoirs

I and B, simultaneously. You should see an interface form between the dyed and

undyed media midway across the output channel.

4. Monitor the field histogram and note the value of the maximum field intensity. When

the maximum stops increasing and the profile remains sufficiently constant, the ports

are adequately purged and pressure may be removed.

5. Manually adjust the height of the I and B reservoirs so that the interface between the

input streams occurs exactly in the middle of the output stream.

6. If a computer controlled concentration waveform generator is installed skip to step 11.
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7. Close all pressure valves and reduce the source pressure to 0 psi. Open the pressure

valve to the B reservoir and gradually increase the source pressure until the fluid in-

terface moves from the output channel to one of the flanking overflow bypass channels.

Note this pressure as the operational pressure for the switch.

8. Repeat the previous step, but this time pressurizing the I reservoir, to ensure that the

switch operation pressure is consistent for both states.

9. Close all pressure valves.

10. Proceed to the cell loading procedures.

11. Replace the pressure connections to the I and B reservoirs with the output lines from

the waveform generation system.

12. In the LabVIEW control panel, set the “LO” and “HI” voltages for both analog output

channels to 0 volts and 5 volts, respectively.

13. Link both channels to the global control and select one channel to be linked “inverted”.

It is recommended that the reservoir without dye (B) be linked in this fashion, thus

a 100% output state corresponds to the maximum dye concentration and vice versa.

The steps that follow assume this configuration.

14. Set the global state to 0% and adjust the LO value on the I reservoir and the HI Value

on the B reservoir so that the flow interface is in the center of the left-hand switch

bypass channel.

15. Set the global state to 100% and adjust the HI value on the I reservoir and the LO

Value on the B reservoir so that the flow interface is in the center of the right-hand
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switch bypass channel.

16. Verify switch operation at 0, 10, 50, 90, and 100% global output states, and make

volatage adjustments as necessary. The voltage difference between HI and LO states

should NOT be below 1 volt.

17. Once switch operation is verified, set the global output to the desired initial conditions

and proceed to the cell loading procedures.

Cell Loading

1. Attach the cell suspension reservoir to the remaining port on the device. Make sure

that there is a bead of water at the port before attaching the reservoir. If not, briefly

pressurize the Wc reservoir until one appears.

2. Illuminate the device with transmitted light and move to a field of view that displays

the chamber entrance closest to the feeding channels.

3. Set the source pressure to 3 psi and pressurize both the cell suspension (C) and loading

media (M) reservoirs. This will inject cells into the loading segment of the chip. Note,

if you observe the field using the fluorescent settings for your tracer dye, you should

be able to see laminar interface between fluorescent fluid and non-fluorescent fluid

within the region. Increase the supply pressure so that this interface is positioned at

the entrance to the chamber.

4. Cells should now start to flow into the trapping loop/growth chamber. If cells are

retained at the entrance, you may increase the pressure up to 10 psi and also gently

flick the fluidic lines to help push cells in.
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5. Once a satisfactory number of cells have entered the chamber, TURN OFF pressure to

the cell suspension ONLY. This converts cell suspension reservoir to a waste reservoir

because of its base height relative to all the other reservoirs. Loading media will now

purge the loading segment to reduce device fouling. If cells remain at the entrance

to the growth chamber, gently flick the microfluidic lines to dislodge them. This will

also help to cluster the cells within the chamber.

6. TURN OFF pressure to the M reservoir. Cells should now begin to distribute through-

out the chamber. If cells do not distribute you can gently flick the microfluidic lines

to get them moving. If you accidentally purge the chamber of cells, you can repeat

the above 3 steps.

7. If a computer controlled concentration waveform generator is installed you may skip

the next step.

8. Once cells are loaded and satisfactorily distributed, set the source pressure to the

operational value for the switch and TURN ON pressure to the either the B or I

reservoir, which ever media you wish to initialize the experiment with.

Data Acquisition

1. Secure the microfluidic lines to the stage. Be sure to provide enough slack for any

required stage movements.

2. Change to the desired magnification (typically 40x) and move to the desired field of

view. If a motorized stage is installed, prepare the operating software appropriately.

Typically this requires setting the stage origin and/or defining a scan pattern.
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3. Acquire using your desired acquisition settings. When appropriate, change the state

of the media using the pressure valves for reservoirs I and B or a computer controlled

concentration waveform generator.

Cleanup

1. Turn off all pressure valves.

2. Remove the device from the stage insert.

3. Remove the fluidic lines from the device by holding the device by the PDMS portion

and pulling firmly on the lines.

4. Collect the lines together with a binder clip and place them so that all flow is collected

in a large waste collection beaker.

5. Dump the contents of each reservoir into the waste collection beaker and fill each one

with 0.22 um filtered water, replacing the pressure tops when done.

6. Set the pressure source to 15 psi and open all pressure valves. This will flush the lines

with fluid.

7. Repeat the previous two steps and additional three times, once more with water,

followed with 50% isopropanol/water, followed by water once again. Do not drain the

lines completely on the last flush.

8. With the lines still primed with fluid, place them in a glass beaker in an ultrasonic

bath for 10–15 minutes. During this time, rinse out the reservoirs and pressure tops

with de-ionized water.
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9. Reattach the lines to the reservoirs and flush once more with filtered water. Allow

the reservoirs to fully drain and air to purge remaining fluid from the lines.

10. Let the lines dry under forced air flow for about 10–15 minutes.

11. Detach the lines from the reservoirs and remove the pressure tops. Place all items

in sterilization pouches, one for lines, one for reservoirs, and one for pressur tops.

Autoclave on a short wrapped dry cycle (15 minute sterilzation time) and store in a

dry location for future use.
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D.3 Glial Network Stimulator

D.3.1 Fabrication

Table D.5: Master mold feature height specifications. †Photoresists are SU-8 unless otherwise specified.

Layer Thickness Photoresist† Spin Speed
(µm) (rpm)

filter channels 1 2001 3000
perfusion channels 10 2010 3000
stimulant channels
chamber squeeze-thru barrier
chamber/loading channels 50 2050 3000

D.3.2 Device Schematic and Port Assignments

Figure D.3: Device schematic for glial network stimulation device. Insets display magnified views of the
growth chamber and on-chip media switch.
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Table D.6: Port assignments for the glial network stimulation device.

Port Abbr Usage
1 C input, cell suspension
2 I input, media 1 (inducer)
3 S output, aux. waste for switch
4 B input, media 2 (blank)
5 M input, primary perfusion media
6 Ws output, chamber + stimulant outflow waste
7 Wc output, cell suspension + overflow perfusion

waste
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D.4 DynaGrad: Dynamic Chemical Gradient Device

D.4.1 Fabrication

Table D.7: Master mold feature height specifications. †Photoresists are SU-8 unless otherwise specified.
‡ Bacterial and yeast devices require patterning the gradient outflow channel with adhesion molecules
such as polylysine (bacterial) or Conavalin-A (yeast).

Layer Thickness Photoresist† Spin Speed
(µm) (rpm)

bacterial device‡ 6 2005 2500
yeast device‡ 10 2010 3000
mammalian device 50 2050 3000

D.4.2 Device Schematic and Port Assignments

Figure D.4: Device schematic for dynamic gradient device. Inset displays magnified views of the on-chip
media switch.

Table D.8: Port assignments for the dynamic gradient device.

Port Abbr Usage
1 S output, aux. waste for switch
2 M3 input, low concentration media (blank)
3 M2 input, high concentration media (inducer)
4 M1 input, low concentration media (blank)
5 W output, common waste port
6 C input, cell suspension loading port
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Computational code for T2µC data

simulations and analysis

E.1 Data analysis

The experimental analysis quantifies blob fluorescence trajectories. A blob is the

combination of all identified objects within the field of view and analysis. Blob area is the

sum of all subobject areas, while measured mean fluorescence is the average of all subobject

values. All fluorescence trajectories are detrended prior to extracting amplitude and phase

information. Analysis of simulation data proceeds in a similar fashion.

chartime.m
function t = chartime(k, n)
t = log(n)./k;

detrend.m
function [dataout, datalg, datasm] = detrend(datain, winlg, winsm, method)
datalg = smooth(datain, floor(winlg), method);
datasm = smooth(datain, floor(winsm), method);
dataout = datasm - datalg;

exportfig.m
function exportfig(h, name, fmts)
% EXPORTFIG(h, name, fmts)

306
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%
% Saves figure specified by handle ’h’ with name ’name’ in formats

5 % specified in the 1D cell array of strings ’fmts’.
%
% See Also:
% saveas
if iscell(fmts),

10 for i=1:length(fmts),
saveas(h, name, fmts{i});

end;
end;

getdatacol.m
function [datavec] = getdatacol(sCol, Data, varargin)
%GETDATACOL
% [datavec] = getdatacol(sCol, Data, cols)
%

5 % Gets data from a column in a data set
if nargin == 3,

cols = varargin{1};
elseif nargin == 2,

if isstruct(Data),
10 cols = Data.colheaders;

Data = Data.data;
else,

error([’invalid input: ’...
’Data must be a structure or column ’...

15 ’headers must be defined’]);
end;

end;

datavec = Data(:, strmatch(upper(sCol), strtrim(upper(cols)), ’exact’));

normrange.m
function ndata=normrange(data)
ndata = (data - min(data(:)))./(max(data(:)) - min(data(:)));

ttmcblob.m
% blob data analysis of frequency runs
% runs with 2/0.2/(0.25)% r/g/(d):
clear, caf%, clc

5 % script to define experiments
ttmc_expts
expts =expts(strmatch(’k699’,{expts{:,5}}), :);
%expts = expts(find([expts{:,1}] == 2.25),:);

10 bDisplayRaw = true; % display the raw data
bDisplayRawDT = true; % display the detrended raw data

bDisplayPfAmp = true; % display amplitude analysis process figures
bDisplayPfPhi = true; % display phase analysis process figures

15 cDisplayPf = {};
if bDisplayPfAmp, cDisplayPf = {cDisplayPf{:}, ’amp’}; end;
if bDisplayPfPhi, cDisplayPf = {cDisplayPf{:}, ’phi’}; end;

bSummarize = true; % display summary plots e.g. amp vs frq
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20 bVerbose = false; % generate detailed text output in command window
bVerboseShort = true; % generate short text output in command window

bPrint = false; % print all generated figures
bSave = true; % save all generated figures

25 cFormats = {’fig’, ’png’}; % output formats for the ’save’ option
cOutput = {};
if bPrint, cOutput = {cOutput{:}, ’print’}; end;
if bSave, cOutput = {cOutput{:}, ’save’}; end;

30 tdoub = [];
rsq = [];
per = [];
frq = [];
amp = [];

35 phi = [];

for iExpt = 1:size(expts, 1),
stExpt = struct(...

’id’, expts{iExpt, 3}(4:end), ...
40 ’path’, expts{iExpt, 3}, ...

’strain’, expts{iExpt, 5}, ...
’channel’, expts{iExpt, 6}, ...
’period’, expts{iExpt, 1}, ...
’interval’, expts{iExpt, 2} ...

45 );
stExpt.figname = sprintf(’%s_%5.3f_%s’, ...

stExpt.strain, stExpt.period, stExpt.id);
stExpt.figname = strrep(stExpt.figname, ’.’, ’p’);
stExpt.figname = strrep(stExpt.figname, ’/’, ’-’);

50

sExptID = expts{iExpt, 3}(4:end);
sStrain = expts{iExpt, 5};
iQntCh = expts{iExpt, 6};
nPeriod = expts{iExpt, 1}; % hrs

55 nInterval = expts{iExpt, 2}; % min

sFigName = sprintf(’%s_%5.3f_%s’, sStrain, nPeriod, sExptID);
sFigName = strrep(sFigName, ’.’, ’p’);
sFigName = strrep(sFigName, ’/’, ’-’);

60

if bVerbose, fprintf(’Period:\t\t%5.2f\n’, stExpt.period); end;

per(iExpt) = stExpt.period; % hr
frq(iExpt) = 2 * pi/stExpt.period; % rads/hr

65

% retrieve the data from the blob output file
sBlobDataFile = sprintf(’%s/%s/%s’, ...

stExpt.path, ’objdata’, ’000.blob.dat’);
data = importdata(sBlobDataFile);

70 t = getdatacol(’imgid’, data) * stExpt.interval/60;
f = getdatacol([’mean’ num2str(stExpt.channel)], data); % blob fluor
b = getdatacol([’bglvl’ num2str(stExpt.channel)], data); % blob bg lvl
r = getdatacol(’bglvl1’, data); % input signal
a = getdatacol(’area’, data); % blob area

75

% detrend/smooth the data
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nPtsPerPeriod = stExpt.period * 60/stExpt.interval; % num pts in a period

winlg = stExpt.period * 60/stExpt.interval * 3; % num data pts, lg interval
80 %winsm = nPeriod * 60/nInterval/3; % num data points, small interval

winxsm = 3; % num data points, extra small interval
winsm = 12; % num data points, small interval
winlgarea = 48; % this is constant for area traces

85 if winsm > nPtsPerPeriod, winsm = winxsm; end;

[asdt, aslg, assm] = detrend(a, winlgarea, winsm, ’rlowess’);
[fsdt, fslg, fssm] = detrend(f, winlg, winsm, ’rlowess’);
[rsdt, rslg, rssm] = detrend(r, winlg, winsm, ’rlowess’);

90 [bsdt, bslg, bssm] = detrend(b, winlg, winsm, ’rlowess’);

if bDisplayRaw,
figRawRaw = figure;

95 figure(figRawRaw),
subplot(311), plot(t, f, ’b.’,...

t, fssm, ’g’,...
t, fslg, ’r:’)

ylabel(’<FL>’)
100 title(sprintf(’%s Period (Frequency):%5.2fhr (%5.4fhrˆ-1)’, ...

stExpt.id, stExpt.period, 1/stExpt.period));
figure(figRawRaw),
subplot(312), plot(t, assm, ’b’, t, aslg, ’r:’), ylabel(’Area’)
figure(figRawRaw),

105 subplot(313), plot(t, rssm, ’b’), ylabel(’glc (<FL>)’)
xlabel(’time (hr)’);
set(figRawRaw, ’name’, sprintf(’RAW: %5.3f (%s)’, ...

stExpt.period, stExpt.id));
if bPrint,

110 drawnow;
print(figRawRaw);

end;
if bSave,

drawnow;
115 exportfig(figRawRaw, [stExpt.figname ’__raw’], {’fig’, ’png’});

end;
end;

% use the area trace to determine when the data becomes invalid due to
120 % increased segmentation error (coincides with chamber confluence)

% truncate data beyond this point

%idxend = find(diff(aslg)./diff(t) <= 0, 1)+1; % by derivative (buggy)
idxend = find(assm >= 0.99 * max(assm), 1); % by abs max value

125

if isempty(idxend), idxend = length(a); end;

t = t(1:idxend);
asdt = asdt(1:idxend); aslg = aslg(1:idxend); assm = assm(1:idxend);

130 fsdt = fsdt(1:idxend); fslg = fslg(1:idxend); fssm = fssm(1:idxend);
rsdt = rsdt(1:idxend); rslg = rslg(1:idxend); rssm = rssm(1:idxend);
bsdt = bsdt(1:idxend); bslg = bslg(1:idxend); bssm = bssm(1:idxend);
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% fit the area growth and get the growth rate for scaling
135 [res, gof, out] = fit(t, aslg, ’exp1’);

tdoub(iExpt) = chartime(res.b, 2);
rsq(iExpt) = gof.rsquare;

% normalize and flip the input signal (since glucose is traced but
140 % response is ’produced’ by galactose

sigout = 1-normrange(rssm)-0.5;

% compensate for the background in the detrended response
rspout = (fsdt - bsdt)./fslg;% * res.b;

145

% ---------------------------------------------------------------------
% from here on, the only variables needed are t, rspout, sigout, and
% expt details
% ---------------------------------------------------------------------

150

% exclude the first period in the data ... which contains artifacts of
% the detrending process
rng = excludedata(t, sigout, ’domain’, [0 stExpt.period]);

155 t = t(rng);
sigout = sigout(rng);
rspout = rspout(rng);

if bDisplayRawDT,
160 figRawDT = figure;

figure(figRawDT),
subplot(211), plot(t, rspout, ’b’),%, t, rspoutsm, ’r:’),
ylabel(’Detrended <FL>’)

165 title(sprintf(’%s Period (Frequency):%5.2fhr (%5.4fhrˆ-1)’, ...
stExpt.id, stExpt.period, 1/stExpt.period));

figure(figRawDT),
subplot(212), plot(t, sigout), ylabel(’1 - n.glc’)
xlabel(’time (hr)’);

170 set(figRawDT, ’name’, sprintf(’RAW DT: %5.3f (%s)’, ...
stExpt.period, stExpt.id));

if bPrint,
drawnow;
print(figRawDT);

175 end;
if bSave,

drawnow;
exportfig(figRawDT, [stExpt.figname ’__detrend’], {’fig’, ’png’});

end;
180 end;

[pfamp, pfphi] = ttmc_analysis_peakfind(...
stExpt, t, sigout, rspout, ...

185 ’verbose’, bVerbose, ...
’display’, cDisplayPf, ...
’output’, cOutput);

amp(iExpt) = mean(pfamp);
190 amperr(iExpt) = sqrt(var(pfamp));
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phi(iExpt) = mean(pfphi);
phierr(iExpt) = sqrt(var(pfphi));

if bVerboseShort && iExpt == 1,
195 fprintf(’%15s%10s%10s%10s%10s%10s\n’, ...

’ExptID’, ’Period’, ’tdoub’, ’rsq’, ’amp’, ’phi’);
end;
if bVerboseShort,

fprintf(’%15s%10.4f%10.4f%10.4f%10.4f%10.4f\n’, ...
200 stExpt.id, stExpt.period, tdoub(iExpt), rsq(iExpt), ...

amp(iExpt), phi(iExpt));
end;

if bVerbose, fprintf(’\n’); end;
205 end;

if bSummarize,
% The results:
% sort the amps and phis by their corresponding frequency value

210 [frq, ixsrt] = sort(frq);

amp = amp(ixsrt);
if exist(’amperr’, ’var’),

amperr = amperr(ixsrt);
215 else

amperr = [];
end;

phi = phi(ixsrt);
if exist(’phierr’, ’var’),

220 phierr = phierr(ixsrt);
else

phierr = [];
end;

225 % generate the summary plots
ttmc_analysis_summarize(...

stExpt.strain, frq, amp, amperr, phi, phierr, ...
’output’, cOutput, ...
’formats’, cFormats);

230

end; % if bSummarize

% save variables for later analysis/plotting
235 save([stExpt.strain ’__cfp__amp-pkf_phi-pkf.mat’], ...

’frq’, ’amp’, ’amperr’, ’phi’, ’phierr’, ’tdoub’, ’rsq’)
close all hidden

ttmcsim.m
function ttmcsim(sStrain, nTDoub)
% ttmcsim
% clear, caf%, clc

5 % options
bDisplayRaw = true; % display the raw data
bDisplayRawDT = true; % display the detrended raw data
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bDisplayPfAmp = true; % display amplitude analysis process figures
10 bDisplayPfPhi = true; % display phase analysis process figures

cDisplayPf = {};
if bDisplayPfAmp, cDisplayPf = {cDisplayPf{:}, ’amp’}; end;
if bDisplayPfPhi, cDisplayPf = {cDisplayPf{:}, ’phi’}; end;

15 bSummarize = true; % display summary plots e.g. amp vs frq
bVerbose = false; % generate detailed text output in command window
bVerboseShort = true; % generate short text output in command window

bPrint = false; % print all generated figures
20 bSave = true; % save all generated figures

cFormats = {’fig’, ’png’}; % output formats for the ’save’ option
cOutput = {};
if bPrint, cOutput = {cOutput{:}, ’print’}; end;
if bSave, cOutput = {cOutput{:}, ’save’}; end;

25

% load the data
% nTDoub = 4; % hrs

% get the files to load:
30 sFileNameTpl = sprintf(’TD%.2f_P * ’, nTDoub);

sFileNameTpl = strrep(sFileNameTpl, ’.’, ’p’);
stFiles = dir([’./’ sFileNameTpl ’.mat’]);
csFiles = {stFiles.name}’;

35 for iExpt = 1:length(csFiles),
% get response data
data = load(csFiles{iExpt}, ...

’T’, ’gal1out’, ’gal2out’, ...
’gluout’, ’sSimID’, ’nPeriod’, ’nInterval’);

40

stExpt = struct(...
’id’, data.sSimID, ...
’path’, ’’, ...
’strain’, sStrain, ...

45 ’channel’, 1, ... % left over from expt script, for compat
’period’, data.nPeriod, ...
’interval’, data.nInterval ...

);

50 % process the textual expt identification data to a string that can be
% used for figures titles and file names.
stExpt.figname = sprintf(’%s_%5.3f_%s’, stExpt.strain, ...

stExpt.period, stExpt.id);
stExpt.figname = strrep(stExpt.figname, ’.’, ’p’);

55 stExpt.figname = strrep(stExpt.figname, ’/’, ’-’);

per(iExpt) = stExpt.period; % hr
frq(iExpt) = 2 * pi/stExpt.period; % rads/hr

60 % get response data in units of hours
t = data.T/60;

% truncate the data to anything that occurs within 36hrs
validx = (t <= 36);

65 t = t(validx);
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f = data.gal1out(validx);
r = data.gluout(validx);
b = zeros(size(f)); % placeholder for background fluor

70

% detrend/smooth the data
nPtsPerPeriod = stExpt.period * 60/stExpt.interval; % num pts in a period

winlg = stExpt.period * 60/stExpt.interval * 3; % num data pts, lg interval
75

% small smoothing intervals are set to 1 for simulation data since it
% is already smooth.
winxsm = 1; % num data points, extra small interval
winsm = 1; % num data points, small interval

80

if winsm > nPtsPerPeriod, winsm = winxsm; end;

[fsdt, fslg, fssm] = detrend(f, winlg, winsm, ’rlowess’);
[rsdt, rslg, rssm] = detrend(r, winlg, winsm, ’rlowess’);

85

if bDisplayRaw,
figRawRaw = figure;

figure(figRawRaw),
90 subplot(211),

plot(t, f, ’b.’, ...
t, fssm, ’g’, ...
t, fslg, ’r:’),

ylabel(’<FL>’)
95 title( ...

sprintf(’%s Period (Frequency):%5.2fhr (%5.4fhrˆ-1)’,...
stExpt.id, ...
stExpt.period, ...
1/stExpt.period), ...

100 ’interpreter’, ’none’);
figure(figRawRaw),
subplot(212),

plot(t, rssm, ’b’), ylabel(’glc (<FL>)’)
xlabel(’time (hr)’);

105 set(figRawRaw, ’name’, ...
sprintf(’RAW: %5.3f (%s)’, stExpt.period, stExpt.id));

if bPrint,
drawnow;
print(figRawRaw);

110 end;
if bSave,

drawnow;
exportfig(figRawRaw, [stExpt.figname ’__raw’], {’fig’, ’png’});

end;
115 end;

% normalize and flip the input signal (since glucose is traced but
% response is ’produced’ by galactose
sigout = 1-normrange(rssm)-0.5;

120

% compensate for the background in the detrended response
rspout = (fsdt - b)./fslg;% * res.b;
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% run analysis
125 % exclude the first period in the data ... which contains artifacts of

% the detrending process
rng = excludedata(t, sigout, ’domain’, [0 stExpt.period]);

t = t(rng);
130 sigout = sigout(rng);

rspout = rspout(rng);

if bDisplayRawDT,
figRawDT = figure;

135

figure(figRawDT),
subplot(211), plot(t, rspout, ’b’), ylabel(’Detrended <FL>’)
title(sprintf(’%s Period (Frequency):%5.2fhr (%5.4fhrˆ-1)’, ...

stExpt.id, stExpt.period, 1/stExpt.period), ...
140 ’interpreter’, ’none’);

figure(figRawDT), subplot(212),
plot(t, sigout), ylabel(’1 - n.glc’)
xlabel(’time (hr)’);
set(figRawDT, ’name’, sprintf(’RAW DT: %5.3f (%s)’, ...

145 stExpt.period, stExpt.id));
if bPrint,

drawnow;
print(figRawDT);

end;
150 if bSave,

drawnow;
exportfig(figRawDT, [stExpt.figname ’__detrend’], {’fig’, ’png’});

end;
end;

155

[pfamp, pfphi] = ttmc_analysis_peakfind(...
stExpt, t, sigout, rspout, ...
’verbose’, bVerbose, ...
’display’, cDisplayPf, ...

160 ’output’, cOutput, ...
’formats’, cFormats);

amp(iExpt) = mean(pfamp);
amperr(iExpt) = sqrt(var(pfamp));

165 phi(iExpt) = mean(pfphi);
phierr(iExpt) = sqrt(var(pfphi));

if bVerboseShort && iExpt == 1,
fprintf(’%20s%10s%10s%10s%10s\n’, ...

170 ’ExptID’, ’Period’, ’tdoub’, ’amp’, ’phi’);
end;
if bVerboseShort,

fprintf(’%20s%10.4f%10.4f%10.4f%10.4f\n’, ...
stExpt.id, stExpt.period, nTDoub, amp(iExpt), phi(iExpt));

175 end;

end;

if bSummarize,
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180 % The results:
% sort the amps and phis by their corresponding frequency value
[frq, ixsrt] = sort(frq);

amp = amp(ixsrt);
185 if exist(’amperr’, ’var’),

amperr = amperr(ixsrt);
else

amperr = [];
end;

190 phi = phi(ixsrt);
if exist(’phierr’, ’var’),

phierr = phierr(ixsrt);
else

phierr = [];
195 end;

% generate the summary plots
ttmc_analysis_summarize(...

stExpt.strain, frq, amp, amperr, phi, phierr, ...
200 ’output’, cOutput, ...

’formats’, cFormats);

end; % if bSummarize

205 % set(get(0, ’children’), ’windowstyle’, ’docked’);
save([stExpt.strain ’__gal1p__amp-pkf_phi-pkf.mat’], ...

’frq’, ’amp’, ’amperr’, ’phi’, ’phierr’, ’nTDoub’)
close all hidden

ttmc analysis peakfind.m
function [amppf, phipf]=ttmc_analysis_peakfind(stExpt, ...

t, sigout, rspout, ...
varargin)

opts = getopts(varargin);
5 bVerbose = parseopts(’verbose’, opts, false);

cDisp = parseopts(’display’, opts, {});
if iscell(cDisp) && ˜isempty(cDisp),

bDisplayPfAmp = ˜isempty(strmatch(’amp’, lower(cDisp), ’exact’));
10 bDisplayPfPhi = ˜isempty(strmatch(’phi’, lower(cDisp), ’exact’));

cOutput = parseopts(’output’, opts, {});
if iscell(cOutput) && ˜isempty(cOutput),

bPrint = ˜isempty(strmatch(’print’, lower(cOutput), ’exact’));
15 bSave = ˜isempty(strmatch(’save’, lower(cOutput), ’exact’));

else
bPrint = false;
bSave = false;

end;
20

if bSave,
% only process the formats option if ’save’ is specified. no
% initialization is ok to do since everything is behind the bSave
% boolean

25 cFormats = parseopts(’formats’, opts, {’fig’, ’png’});
if ˜iscell(cFormats) || isempty(cFormats),
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% just in case users specify something weird resort to defaults
cFormats = {’fig’, ’png’};

end;
30 end;

else
bDisplayPfAmp = false;
bDisplayPfPhi = false;

35 end;

% ---------------------------------------------------------------------
% PEAK FINDING CODE
% ---------------------------------------------------------------------

40

% determine the sensitivity needed for finding local extrema. do this
% by gradually decreasing the sensitivity until there are at least
% three peaks to analyze in both the maximums and minimums. this is
% only needed for the response data since the signal input data is

45 % generally much cleaner.

sens = 0.1;

% find the local extrema in the response data
50 [rspmax rspmin] = peakdet(rspout, (max(rspout) - min(rspout)) * sens);

while min([length(rspmax) length(rspmin)]) < 3 && sens >= 0.001,
sens = sens - 0.001;
[rspmax rspmin] = peakdet(rspout, (max(rspout) - min(rspout)) * sens);

end;
55

% find the local extrema in the input signal data
[sigmax sigmin] = peakdet(sigout, (max(sigout) - min(sigout)) * 0.01);

60 % AMPLITUDE DETERMINATION
% generate nearest neighbor interpolations. this surrounds each
% extrema with equivalent constant values, generating a step like
% trace.
rspmaxitp = interp1(t(rspmax(:,1)), rspmax(:,2), t, ’nearest’);

65 rspminitp = interp1(t(rspmin(:,1)), rspmin(:,2), t, ’nearest’);

% each trace is bordered by NaN’s extend the numeric values at the ends
rspmaxitpidx = find(˜isnan(rspmaxitp));
rspminitpidx = find(˜isnan(rspminitp));

70

rspmaxitp(1:rspmaxitpidx(1)) = rspmaxitp(rspmaxitpidx(1));
rspmaxitp(rspmaxitpidx(end):end) = rspmaxitp(rspmaxitpidx(end));

rspminitp(1:rspminitpidx(1)) = rspminitp(rspminitpidx(1));
75 rspminitp(rspminitpidx(end):end) = rspminitp(rspminitpidx(end));

% subtracting the mins from the maxs gives a set of amplitudes
rspamp = rspmaxitp - rspminitp;
uvals = [find(diff(rspamp)˜=0); length(rspamp)];

80 rspampu = rspamp(uvals);

if bDisplayPfAmp,
figPfAmp = figure;
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subplot(211),
85 plot(t, rspamp, ’b’, ...

t(uvals), rspampu, ’bo’, ...
t, rspmaxitp, ’r:’, ...
t, rspminitp, ’g:’,...

t, rspout, ’k’, ...
90 t(rspmax(:,1)), rspmax(:,2), ’rs’, ...

t(rspmin(:,1)), rspmin(:,2), ’go’)
xlabel(’Time (hr)’)
ylabel(’N.<FL> (Arb)’);

95 subplot(212),
hist(rspampu(˜isnan(rspampu)))
xlabel(’Amplitude (Arb)’)
ylabel(’Counts’)

100 subplot(211),
title(sprintf(’%s Period (Frequency):%5.2fhr (%5.4fhrˆ-1)’, ...

stExpt.id, stExpt.period, 1/stExpt.period), ...
’interpreter’, ’none’);

105 set(figPfAmp, ’name’, sprintf(’PF AMP: %5.3f (%s)’, ...
stExpt.period, stExpt.id));

if bPrint,
drawnow;
print(figPfAmp);

110 end;
if bSave,

drawnow;
exportfig(figPfAmp, [stExpt.figname, ’__pf_amp’], cFormats);

end;
115 end;

% Way of determining phase-shift recommended by Mike Ferry:
% Loop through the response peaks and find the ’latest’ signal peak
% that occurred before the response peak. measure the time difference

120 % as the phase-shift

shift = [];
sigpktimes = t(sigmax(:, 1));
for iRspPk = 1:size(rspmax,1),

125 rsppktime = t(rspmax(iRspPk, 1));
sigpktime = sigpktimes(find(sigpktimes <= rsppktime, 1, ’last’));

shift = [shift; rsppktime - sigpktime];

130 % theres a chance that there isn’t a corresponsding signal peak for
% the response peak. this will produce an empty shift, but since
% values are just appended to the end of the array, this shouldn’t
% have an effect on the results.

135 end;

% repeat for the rsp/sig minima
sigpktimes = t(sigmin(:, 1));
for iRspPk = 1:size(rspmin,1),

140 rsppktime = t(rspmin(iRspPk, 1));
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sigpktime = sigpktimes(find(sigpktimes <= rsppktime, 1, ’last’));

shift = [shift; rsppktime - sigpktime];

145 end;

if bDisplayPfPhi,
figPfPhi = figure;
x = normrange(sigout);

150 y = normrange(rspout);

% plot the overlay of the renormalized signal and response
subplot(311)
plot( t, x, ’r’, ...

155 t(sigmax(:,1)), x(sigmax(:,1)), ’g.’, ...
t(sigmin(:,1)), x(sigmin(:,1)), ’g * ’, ...
t, y, ’b’, ...
t(rspmax(:,1)), y(rspmax(:,1)), ’rs’, ...
t(rspmin(:,1)), y(rspmin(:,1)), ’rd’ ...

160 );
xlabel(’Time (hr)’);
ylabel(’’);

% plot the shift trace
165 subplot(312)

plot(shift, ’b’);
xlabel(’Index’);
ylabel(’Value (hr)’);

170 % plot the histogram of shifts
subplot(313)
hist(shift);
xlabel(’Value (hr)’);
ylabel(’Counts’);

175

subplot(311)
title(sprintf(’%s Period (Frequency):%5.2fhr (%5.4fhrˆ-1)’, ...

stExpt.id, stExpt.period, 1/stExpt.period), ...
’interpreter’, ’none’);

180

%set(figPfPhi, ’windowstyle’, ’docked’);
set(figPfPhi, ’name’, sprintf(’PF PHI: %5.3f (%s)’, ...

stExpt.period, stExpt.id));

185 if bPrint,
drawnow;
print(figPfPhi);

end;
if bSave,

190 drawnow;
exportfig(figPfPhi, [stExpt.figname, ’__pf_phi’], cFormats);

end;
end;

195 phipf = shift * 1/stExpt.period;
amppf = rspampu(˜isnan(rspampu));
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ttmc analysis sumarize.m
function hFigs = ttmc_analysis_summarize(sStrain, frq, amp, amperr, ...

phi, phierr, varargin);
% generates the summary plots of phase and amplitude data for the ttmc
% frequency scan study. requires at least three vectors: frq, amp, and

5 % phi.

opts = getopts(varargin);
bVerbose = parseopts(’verbose’, opts, false);

10 cOutput = parseopts(’output’, opts, {});
if iscell(cOutput) && ˜isempty(cOutput),

bPrint = ˜isempty(strmatch(’print’, lower(cOutput), ’exact’));
bSave = ˜isempty(strmatch(’save’, lower(cOutput), ’exact’));

else
15 bPrint = false;

bSave = false;
end;

if bSave,
20 % only process the formats option if ’save’ is specified. no

% initialization is ok to do since everything is behind the bSave
% boolean
cFormats = parseopts(’formats’, opts, {’fig’, ’png’});
if ˜iscell(cFormats) || isempty(cFormats),

25 % just in case users specify something weird resort to defaults
cFormats = {’fig’, ’png’};

end;
end;

30 % assume everything is sorted as it should be

% =================================
% plot the amplitude data
figFrqVsAmp = figure;

35 if ˜isempty(amperr),
errorbar(frq, amp, amperr, ’bo-’)

else
plot(frq, amp, ’bo-’)

end;
40 title(’Amplitude Ratio vs. Frequency’);

xlabel(’Frequency (rads/hr)’);
ylabel(’Amplitude Ratio (Arb.)’);
set(figFrqVsAmp, ’name’, ’Amplitude Ratio vs. Frequency’)
if bPrint,

45 drawnow;
print(figFrqVsAmp);

end;
if bSave,

drawnow;
50 exportfig(figFrqVsAmp, [sStrain ’_summary__freq_vs_amp’], cFormats);

end;

figPerVsAmp = figure;
if ˜isempty(amperr),

55 errorbar(2 * pi./frq, amp, amperr, ’bo-’)
else
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plot(2 * pi./frq, amp, ’bo-’)
end;
title(’Amplitude Ratio vs. Period’);

60 xlabel(’Period (hr)’);
ylabel(’Amplitude Ratio (Arb.)’);
set(figPerVsAmp, ’name’, ’Amplitude Ratio vs. Period’)
if bPrint,

drawnow;
65 print(figPerVsAmp);

end;
if bSave,

drawnow;
exportfig(figPerVsAmp, [sStrain ’_summary__per_vs_amp’], cFormats);

70 end;

% =================================
% plot the phase data
figFrqVsPhi = figure;

75 if ˜isempty(phierr),
errorbar(frq, phi, phierr, ’bo-’)

else
plot(frq, phi, ’bo-’)

end;
80 title(’Phase Shift vs. Frequency’);

xlabel(’Frequency (rads/hr)’);
ylabel(’Phase Shift (Rads)’);
set(figFrqVsPhi, ’name’, ’Phase Shift vs. Frequency’)
if bPrint,

85 drawnow;
print(figFrqVsPhi);

end;
if bSave,

drawnow;
90 exportfig(figFrqVsPhi, [sStrain ’_summary__freq_vs_phi’], cFormats);

end;

figPerVsPhi = figure;
if ˜isempty(phierr),

95 errorbar(2 * pi./frq, phi, phierr, ’bo-’)
else

plot(2 * pi./frq, phi, ’bo-’)
end;
title(’Phase Shift vs. Period’);

100 xlabel(’Period (hr)’);
ylabel(’Phase Shift (Rads)’);
set(figPerVsPhi, ’name’, ’Phase Shift vs. Period’)
if bPrint,

drawnow;
105 print(figPerVsPhi);

end;
if bSave,

drawnow;
exportfig(figPerVsPhi, [sStrain ’_summary__per_vs_phi’], cFormats);

110 end;

hFigs = [figFrqVsAmp, figPerVsAmp, figFrqVsPhi, figPerVsPhi];

ttmc expts.m
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% blob data analysis of frequency runs
% runs with 2,0.2,0.25pct r,g,d:
% period imival dir clr strain cfpch yfpch
% (hrs) (min)

5 expts = {
6.00 5.0 ’g:/09132006/03’, ’b’, ’yph499’, 2, -1;
4.50 5.0 ’g:/09302006/02’, ’y’, ’yph499’, 2, -1;
3.00 5.0 ’g:/09092006/03’, ’r’, ’yph499’, 2, -1;
2.25 5.0 ’g:/09302006/03’, ’m’, ’yph499’, 2, -1;

10 1.50 5.0 ’g:/09132006/01’, ’g’, ’yph499’, 2, -1;
1.125 5.0 ’g:/10052006/01’, ’c’, ’yph499’, 2, -1;
0.75 2.5 ’g:/09132006/02’, ’k’, ’yph499’, 2, -1;
6.00 5.0 ’g:/10082006/01’, ’b’, ’k699’, 3, 2;
4.50 5.0 ’g:/10082006/02’, ’b’, ’k699’, 3, 2;

15 3.00 5.0 ’g:/09262006/05’, ’b’, ’k699’, 3, 2;
2.25 5.0 ’g:/10082006/03’, ’b’, ’k699’, 3, 2;
1.50 5.0 ’g:/09262006/04’, ’b’, ’k699’, 3, 2;
1.125 5.0 ’g:/10082006/04’, ’b’, ’k699’, 3, 2;
0.75 5.0 ’g:/10152006/01’, ’b’, ’k699’, 3, 2;

20 };

E.2 Model simulation code

ttmc gengludata.m
% generate glucose trace from experiment data
curdir = pwd;

exptdirs = { ...
5 ’.\experiment\cfp\k699’;

’.\experiment\cfp\yph499’;
};

for j = 1:length(exptdirs),
10 cd(exptdirs{j});

csFiles = dir(’ * __raw.fig’);
csFiles = {csFiles(:).name}’;
csFiles = flipud(csFiles);

15 cd(curdir);
for i = 1:length(csFiles),

nTokenLoc = strmatch(’_’, csFiles{i}’);
sExptID = csFiles{i}(1:nTokenLoc(2)-1);
[x y] = getfigdata([exptdirs{j} filesep csFiles{i}], ...

20 313, {’color’, ’b’});

save(sExptID, ’x’, ’y’);
end

end

yph499 trial runner2.m
if ˜exist(’bIsFunction’, ’var’),

clear;
nPeriod = 6; % hours
tdoub=8; % in hours
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5

tStart = clock;
sSimID = sprintf(’TD%.2f_P%.3f’, tdoub, nPeriod);
fprintf(’%s : ’,sSimID);
sSimID = strrep(sSimID, ’.’, ’p’);

10

end;

mpath = mfilename(’fullpath’);
mpath = fileparts(mpath);

15

glufile = [mpath, filesep, ’gludata’, filesep, ...
strrep(sprintf(’yph499_%.3f’, nPeriod), ’.’, ’p’), ’.mat’];

fprintf(’loading: %s\n’, glufile);

20 load(glufile);
trialt=x;
trialglu=y;

dt=mean(diff(trialt)) * 60;
25 nInterval = dt;

period=nPeriod * 60;
tmax=max(trialt) * 60;
ttrans=10000;
galtime=0.001;

30 tdouble=tdoub;
ge=11; %( 11=0.2% gal)
glue=0;
glucosemax=.25 * 11/.2;
w=2* pi/period;

35

trialt=trialt * 60;
trialglu=trialglu/(max(trialglu));

gtf=9;
40 galtf=1.5;

b=2;
eps=.23 * galtf;
a=0.001 * galtf;

45 s=.75 * galtf;
g=0.16 * galtf;
d=log(2)/(tdouble * 60) * galtf;
ktr=4350;
kmtr=1; %/molectomM;

50 atr=30; %1;
galx=8;
a2=0.001 * gtf;
g2=.16 * gtf;
eps2=.4 * gtf;

55 s2=.75 * gtf;
d2=gtf * log(2)/(tdouble * 60);
ktr2=4350;
kmtr2=1;
atr2=30;

60 rc=6;
q=1.6;
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b2=1.2;
glux=14;

65 x0=0;
m0=0;
gi0=0;
x20=0;
m20=0;

70 glui0=0;

ics=[m0 x0 gi0 m20 x20 glui0];
abstol=(1e-6) * ones(1,length(ics));
options = odeset(’RelTol’,1e-6,’AbsTol’,abstol);

75

fprintf(’Simulating Steady State : ’);

ge=0;
80 glue=0;

gA=0;
tspan=[0 ttrans];
params=[a g b eps s d ktr kmtr atr ge galx a2 g2 b2 ...

eps2 s2 d2 ktr2 kmtr2 atr2 glue rc q glux gA w];
85 [T,Y]=ode15s(@(t,y) simp_gg_trial_ode2(t,y,params,trialt,trialglu),...

tspan, ics, options);

tSS = clock;
fprintf(’%6.3f : ’,etime(tSS, tStart));

90 fprintf(’Simulating Perturbation Run : ’);

dd=size(Y);
ics=Y(dd(1),:);
ge=11;

95 gA=0;
params=[a g b eps s d ktr kmtr atr ge galx a2 g2 b2 ...

eps2 s2 d2 ktr2 kmtr2 atr2 glue rc q glux gA w];
tspan=[0 galtime];
[T,Y]=ode15s(@(t,y) simp_gg_trial_ode2(t,y,params,trialt,trialglu),...

100 tspan, ics, options);

dd=size(Y);
ics=Y(dd(1),:);

105 ge=11;
gA=glucosemax;
params=[a g b eps s d ktr kmtr atr ge galx a2 g2 b2 ...

eps2 s2 d2 ktr2 kmtr2 atr2 glue rc q glux gA w];
tspan=[0:dt:tmax];

110 [T2,Y2]=ode15s(@(t,y) simp_gg_trial_ode2(t,y,params,trialt,trialglu),...
tspan, ics, options);

tPR = clock;
fprintf(’%6.3f : ’,etime(tPR, tSS));

115 fprintf(’%6.3f ;\n’,etime(tPR, tStart));

T=T2;
Y=Y2;
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gal1out=Y(:,2);
120

lmin=0;
lmax=55; % 6hr=65; %4.5hr=55;
mmin=min(gal1out);
mmax=max(gal1out);

125 % sf=(lmax-lmin)/(mmax-mmin);
sf=lmax/mmax;

gal1out=gal1out * sf;
%gal1out=gal1out-gal1out(1)+lmin;

130

gal2out=gal1out;

% hold on
% plot(T/60,gal1out,’k’)

135

gluout = trialglu;
% gluout=(gA/2 * (1+sin(w * T)));
% plot(T/60,gA-gluout,’k’)

k699 trial runner2.m
if ˜exist(’bIsFunction’, ’var’),

clear;
nPeriod = 6; % hours
tdoub=8; % in hours

5

tStart = clock;
sSimID = sprintf(’TD%.2f_P%.3f’, tdoub, nPeriod);
fprintf(’%s : ’,sSimID);
sSimID = strrep(sSimID, ’.’, ’p’);

10

end;

mpath = mfilename(’fullpath’);
mpath = fileparts(mpath);

15

glufile = [mpath, filesep, ’gludata’, filesep, ...
strrep(sprintf(’k699_%.3f’, nPeriod), ’.’, ’p’), ’.mat’];

fprintf(’loading: %s\n’, glufile);

20 load(glufile);
trialt=x;
trialglu=y;

dt=mean(diff(trialt)) * 60;
25 nInterval = dt;

period=nPeriod * 60;
tmax=max(trialt) * 60;
ttrans=10000;
galtime=0.001;

30 tdouble=tdoub;
ge=11; %( 11=0.2% gal)
glue=0;
glucosemax=.25 * 11/.2;
w=2* pi/period;

35



325

trialt=trialt * 60;
trialglu=trialglu/(max(trialglu));

gtf=80;
40 galtf=1;

b=1.5;
eps=.23 * galtf;
a=0.001 * galtf;

45 s=.75 * galtf;
g=0.16 * galtf;
d=log(2)/(tdouble * 60) * galtf;
ktr=4350;
kmtr=1; %/molectomM;

50 atr=30; %1;
galx=.6;
a2=0.001 * gtf;
g2=.16 * gtf;
eps2=.4 * gtf;

55 s2=.75 * gtf;
d2=gtf * log(2)/(tdouble * 60);
ktr2=4350;
kmtr2=1;
atr2=30;

60 rc=6;
q=1.6;
b2=1.2;
glux=72;

65 x0=0;
m0=0;
gi0=0;
x20=0;
m20=0;

70 glui0=0;

ics=[m0 x0 gi0 m20 x20 glui0];
abstol=(1e-6) * ones(1,length(ics));
options = odeset(’RelTol’,1e-6,’AbsTol’,abstol);

75

fprintf(’Simulating Steady State : ’);

ge=0;
80 glue=0;

gA=0;
tspan=[0 ttrans];
params=[a g b eps s d ktr kmtr atr ge galx a2 g2 b2 ...

eps2 s2 d2 ktr2 kmtr2 atr2 glue rc q glux gA w];
85 [T,Y]=ode15s(@(t,y) simp_gg_trial_ode(t,y,params,trialt,trialglu),...

tspan, ics, options);

tSS = clock;
fprintf(’%6.3f : ’,etime(tSS, tStart));

90 fprintf(’Simulating Perturbation Run : ’);

dd=size(Y);
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ics=Y(dd(1),:);
ge=11;

95 gA=0;
params=[a g b eps s d ktr kmtr atr ge galx a2 g2 b2 ...

eps2 s2 d2 ktr2 kmtr2 atr2 glue rc q glux gA w];
tspan=[0 galtime];
[T,Y]=ode15s(@(t,y) simp_gg_trial_ode(t,y,params,trialt,trialglu),...

100 tspan, ics, options);

dd=size(Y);
ics=Y(dd(1),:);

105 ge=11;
gA=glucosemax;
params=[a g b eps s d ktr kmtr atr ge galx a2 g2 b2 ...

eps2 s2 d2 ktr2 kmtr2 atr2 glue rc q glux gA w];
tspan=[0:dt:tmax];

110 [T2,Y2]=ode15s(@(t,y) simp_gg_trial_ode(t,y,params,trialt,trialglu),...
tspan, ics, options);

tPR = clock;
fprintf(’%6.3f : ’,etime(tPR, tSS));

115 fprintf(’%6.3f ;\n’,etime(tPR, tStart));

T=T2;
Y=Y2;
gal1out=Y(:,2);

120

lmin=0;
lmax=400; % 6hr=65; %50.34;
mmin=min(gal1out);
mmax=max(gal1out);

125 % sf=(lmax-lmin)/(mmax-mmin);
sf=lmax/mmax;

gal1out=gal1out * sf;
%gal1out=gal1out-gal1out(1)+lmin;

130

gal2out=gal1out;

% hold on
% plot(T/60,gal1out,’g’)

135

gluout = trialglu;
% gluout=(gA/2 * (1+sin(w * T)));
% plot(T/60,gA-gluout,’g’)

simp gg trial ode2.m
function dy=simp_glu_gal_ode(t,y,params,ttime,tglu)

dy=zeros(6,1);

a=params(1);
5 g=params(2);

b=params(3);
eps=params(4);
s=params(5);
d=params(6);
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10 ktr=params(7);
kmtr=params(8);
atr=params(9);
ge=params(10);
galx=params(11);

15 a2=params(12);
g2=params(13);
b2=params(14);
eps2=params(15);
s2=params(16);

20 d2=params(17);
ktr2=params(18);
kmtr2=params(19);
atr2=params(20);
glue=params(21);

25 rc=params(22);
q=params(23);
glux=params(24);
gA=params(25);
w=params(26);

30

m=y(1);
x=y(2);
gi=y(3);
m2=y(4);

35 x2=y(5);
glui=y(6);

[ttt ind]=max(t<ttime);
glut=tglu(ind);

40

%glue=gA/2 * (1+sin(w * t));
glue=gA * glut;

dy(1)=(a+eps * giˆb)/(galxˆb+giˆb) * (rcˆq/(rcˆq+x2ˆq))-g * m;
45 dy(2)=s * m-d* x;

dy(3)=ktr * x* ((ge-gi)/(kmtr+ge+gi+atr/kmtr * ge* gi));

dy(4)=(a2+eps2 * gluiˆb2)/(gluxˆb+gluiˆb2)-g2 * m2;
dy(5)=s2 * m2-d2 * x2;

50 dy(6)=ktr * x* ((glue-glui)/(kmtr+glue+glui+atr/kmtr * glue * glui)) ...
+ktr2 * x2 * ((glue-glui)/(kmtr2+glue+glui+atr2/kmtr2 * glue * glui));

getfigdata.m
function [x y] = getfigdata(sFigFileName, iSubplotID, cSearchSpec)

if ischar(sFigFileName),
open(sFigFileName)

5 elseif ishandle(sFigFileName),
figure(sFigFileName)

end;

subplot(iSubplotID);
10 xy = get( ...

findobj( ...
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get(gca, ’children’), ...
’type’, ’line’, ’-and’, cSearchSpec ...
), ...

15 {’xdata’, ’ydata’} ...
);

if ischar(sFigFileName),
close(gcf);

end;
20

x = xy{1};
y = xy{2};

end
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