Reconstructive Urology

Pathophysiology, Clinical Manifestations, and Treatment of Lichen Sclerosus: A Systematic Review

Kirkpatrick B. Fergus, Austin W. Lee, Nima Baradaran, Andrew J Cohen, Bradley A. Stohr, Bradley A. Erickson, Nnenaya A. Mmonu, and Benjamin N. Breyer

or publications are assessed for abstract review
ere assessed for
abstract review
viewed herein.
cal mechanism
egulation, and
pporting each
may spur new
, including the
ical treatment
and sexual dys-
e effective and
0: 1-9, 2019.

Lichen sclerosus (LS) is a chronic inflammatory and scarring disease of the skin of unknown etiology. The most common site of involvement is the anogenital region. Male patients often present with white penile lesions or plaques, pruritis, painful erections and voiding, and bleeding or ulceration with intercourse.¹ In severe cases, the foreskin thickens and can become phimotic, with development of urethral strictures. In women, the most common anogenital symptoms include pain, vulvar pruritis, dysuria, and dyspareunia.² Although histologic descriptions and clinical diagnoses of LS date back to the mid-20th century, the pathophysiological

mechanism remains largely elusive. A formal review of LS presentation and management was last outlined over a decade ago.³ Over the past 10 years, laboratory research has sought to characterize aberrations in the dermal-epidermal junction of LS tissue samples, in addition to identifying candidate molecular targets of the immune system.⁴⁻¹²

EPIDEMIOLOGY

The exact prevalence of LS is unknown and generally considered underreported because of provider lack of familiarity and asymptomatic presentations or discomfiture.¹³ Early estimations based on referrals to dermatology practices suggest the prevalence is between 1:300 and 1:1000.¹⁴ The disease affects both women and men, though the ratio of women to men based on current estimates is approximately 3:1 to 10:1.¹⁵ A report from a general gynecology practice estimated the prevalence to be 1.7% among females.¹⁶ Though LS can occur at any age, the age of symptom onset is classically bimodal: in females, incidence of LS peaks in prepubertal and

Declaration of Interest: None.

From the Department of Urology, University of California, San Francisco, San Francisco, CA; the Department of Pathology, University of California, San Francisco, San Francisco, CA; the Department of Urology, University of Iowa, Iowa City, IA; and the Department of Biostatistics and Epidemiology, University of California, San Francisco, San Francisco, CA

Address correspondence to: Benjamin N. Breyer, M.D., M.A.S., F.A.C.S., University of California, San Francisco, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Suite 3A, San Francisco, CA 94110 E-mail: Benjamin.Brever@ucsf.edu

Submitted: August 1, 2019, accepted (with revisions): September 26, 2019

postmenopausal ages.^{2,17,18} In males, LS has also been referred to as Balanitis Xerotica Obliterans (BXO). Two large sample cross-sectional studies of male LS patients estimate the prevalence to be between 0.0014% and 0.07%.^{19,20} In males, onset peaks at a young age and then again in adulthood.^{2,17,18}

Clinical Features

LS can have a benign or insidious course that may be associated with significant urologic and sexual morbidities if untreated. The most common early clinical features on examination in men and women include white plaques, atrophic skin, erythema, erosions, and varying amounts of sclerosus in the anogenital region.^{1,2} Perianal involvement is not common in men.²¹ As the disease progresses, men present with complaints of increasing phimosis and pain associated with erections as LS usually affects the glans and foreskin.¹

Diagnosis and Treatment

In many cases, a clinical diagnosis is made if patients present with signs and symptoms of LS. A confirmatory biopsy with histologic inspection may be indicated if the case is complex or atypical, if there is pigmentation or suspicion of neoplastic change, if the patient does not respond to treatment, or if there is clinical doubt.² The differential diagnosis includes mucosal or erosive lichen planus, graft vs host disease, inverse psoriasis, eczema, vitiligo, morphea, plasma cell vulvitis/ balanitis, vulval/penile intraepithelial neoplasia, and squamous cell carcinomas (SCCs).¹⁵

First-line management for LS in both men and women is topical corticosteroids. Specifically, clobetasol propionate 0.05% (ointment or cream) 1-2 times daily for 1 month, with reduced application frequency for an additional 2 months, is beneficial.^{2,15} Depending on study design, overall response rates to clobetasol propionate 0.05% range from 73% to 90%.²²⁻²⁴ This treatment is safe and efficacious, and has a low likelihood of severe side effects.^{2,15} Early and aggressive treatment has been shown to be beneficial in halting progression and may even cause regression.²⁵ Thus, treatment is recommended for asymptomatic patients with clinically active LS.¹³ Some clinicians advocate for long-term topical corticosteroids. Off-label use of calcineurin inhibitors such as tacrolimus 0.1% (response rate: 63%)²⁶ and pimecrolimus (response rate: 53%)²⁷ have been shown to be a lesser but still effective treatment alternative to corticosteroids, but should be considered experimental as it is unknown if they are carcinogenic.^{15,28,29}

In male patients with altered structural anatomy due to scarring, circumcision (long-term cure rate: 92%)³⁰ and/ or meatotomy (success rate: 87%)³¹ are indicated. In more severe cases in which patients present with stricture, urethroplasty or perineal urethrostomy is recommended. Urethroplasty often involves the use of nongenital skin grafts (eg, buccal mucosa).³² Case series evaluating buccal mucosa graft urethroplasty has shown success rates

between 88% and 91% success rate over 32.5-month follow-up.^{33,34} Two-stage urethroplasty procedures may be necessary in severe cases. Surgical excision of vulvar tissue is not recommended in women with refractory disease. However, cryotherapy is useful in relieving severe itch in women. Seventy-five percent of patients in a series of 12 indicated symptom relief on cryotherapy. Photodynamic therapy (10/12 patients reported some improvement),³⁵ UVA1 therapy (5/7 patients reported some improvement),³⁶ and laser treatments (9/10 patients reported)some improvement)³⁷ have been used with some success in women but are not the recommended approaches.¹³ Other therapies with mixed evidence of effect include cyclosporine, methotrexate, and retinoids.¹³ Hormonal treatments are no longer recommended; however, if atrophy is present in postmenopausal women in addition to LS, then local estrogen treatment is recommended.

Given this clinical context, the focus of this systematic review is to describe current knowledge of the pathophysiology of LS.³ After a brief overview of the clinical and histologic characteristics of LS, we highlight proposed pathophysiological mechanisms contributing to LS etiology. We also outline 3 unifying hypotheses regarding the pathophysiology of LS: first, the theory that infections trigger and sustain an immune response; second, that primary immune dysregulation—or possibly autoimmunity are permissive or causal of the chronic inflammatory condition; and third, that occluded exposure to liquid irritants such as urine results in cutaneous trauma that triggers the disease. Finally, we discuss directions for future research.

METHODS

The following search query was entered into Medline/PubMed and Embase: ["physiopathology" OR "etiology" OR "pathophysiology" OR "pathogenesis" OR "etiology" OR "physiopathology" OR "aetiology" OR "gene"] AND ["lichen sclerosus et atrophicus" OR "vulvar lichen sclerosus" OR "balanitis xerotica obliterans"]. This query yielded 1143 articles. We excluded non-English articles and nonhuman studies. We included only original research and articles published in 1970 or later. Two independent reviewers (AL, KF) applied initial exclusion and inclusion criteria with 96.5% agreement. Differences were adjudicated via consensus, and 360 articles remained. Two independent reviewers (AL, KF) then assessed relevance of each article to the pathophysiology and etiology of LS by title and abstract review resulting in the final 186 articles for this review (Supplemental Fig. 1). The protocol for this review has been reviewed and approved by the PROSPERO network (registration number: CRD42019139432).

RESULTS

LS in Men

Meatal stenosis and urethral stricture are also seen in men with LS and can result in significant morbidity for those affected with recurrence rates between 20% and 50%.^{38,39} If untreated, an inflexible phimotic foreskin may constrict the glans, which can manifest as a scrotalized appearance of penile shaft skin.

Involvement of the meatus (Supplemental Fig. 2) and urethra in men can lead to urinary morbidity including changes in urinary stream and dysuria, or in severe cases urinary retention and subsequent renal failure.^{1,2} In these cases, LS can progress proximally from the glans skin to involve the fossa navicularis and at times a significant portion of the urethra causing pan-urethral stricture (Supplemental Fig. 3).² Even in the absence of distal to proximal urethral disease progression, LS has been found to be associated with isolated bulbar urethral strictures.⁴⁰ LS may account for as much as 10% of urethral stricture disease among men.³⁸ Another association of LS in men is to concealed-buried penis, though at present, current research does not suggest a directionality in this relationship.⁴¹

LS in Women

Complaint of vulvar pruritus is a typical presentation in women, which can worsen at night and affect sleep.² A characteristic figure of 8 pattern of skin changes is often seen around the vulva and anus in patches or plaques with fragile, thinned, and atrophic skin.¹ Dyspareunia can occur as a result of a narrowed vaginal introitus, as well as the presence of erosions and fissures in the atrophic skin.² Voiding complaints can occur but are much less common in women than in men. In severe, rare cases, women present with meatal stenosis (Supplemental Fig. 4).⁴²

Malignant Transformation

Though estimates vary, the risk of progression to SCC is approximately 3%-6% in females, and 2%-8% in males.^{30,43-46} Retrospective cohort studies of female SCC patients revealed 61%-65% had LS in the background of SCC.47,48 Though uncommon, case reports exist of LS patients developing vertucous carcinoma, basal cell carcinoma, and malignant melanoma.⁴⁹⁻⁵¹

Histology and Electron Microscopy

LS has a characteristic histologic appearance that includes lichenoid interphase dermatitis, epidermal atrophy, and hyperkeratosis, with or without vacuolar degeneration of the basal cell layer of the epidermis. These classic histologic features are shown in Supplemental Figs. 5 and 6. Typical findings on electron microscopy (EM) and histology are summarized in Table 1; dermopathologic review of suspected cases is highly recommended.

ETIOLOGY

Clinical Risk Factors

LS may be associated with environmental factors and nonautoimmune comorbidities. The most commonly

Thickening of the basement membrane with collagen IV and VII

Table 1	. Key features	of LS on histology and electron	n microscopy (EM)
---------	----------------	---------------------------------	-------------------

noted an age-adjusted odds ratio of 53.55 (95% confidence interval [CI]: 7.24-395.88) in association to uncircumcised male patients.⁵³ Injury to genital skin can increase the risk of LS as can friction, genital piercings for jewelry, and surgery.^{54,55} An investigation into LS and medical comorbidities demonstrated an association between LS and higher mean body mass index (BMI) (31.0 vs 28.1, P = .001), diabetes mellitus (odds ratio [OR] = 2.04, P = .03), and a weaker association with coronary artery disease (OR = 1.88, P = .05).⁵⁶ This finding is corroborated by additional studies, which have demonstrated an association between LS and BMI (OR = 1.089, 95% CI: 1.050-1.130), diabetes mellitus (OR = 2.71, 95% CI: 1.79-4.11), tobacco usage (OR = 2.0, 95% CI: 1.36-3.40), hyperlipidemia (OR = 3.1, 95% CI: 1.1-8.2), and hypertension (OR = 2.028, 95% CI: 1.21-3.41).^{38,55,57} Evidence from case reports suggests certain exposuressuch as sunburns or radiation treatment-may increase the risk of LS.58,59 Little evidence of drug-induced LS exists, though Baldo et al found in their comparison of 200 women with vulval LS to 974 controls that LS patients were less likely to be on ACE inhibitors (3% vs 12%, P = .001) or beta-blockers (4% vs 10%, P < .01).⁶⁰ Patients with postmicturition microincontinence may have increased risk, particularly in the uncircumcised male as indicated by several case series.⁶¹⁻⁶³

cited risk in men is lack of circumcision.^{52,53} Mallon et al

Genetic Risk Factors

A variety of studies investigated the genetic basis of LS. The fact that female LS can run in families is well established.⁶⁴⁻⁶⁷ Salim et al interviewed 400 individuals with LS and found that 15% had a family history of the disease.⁶⁴ By contrast, genetics may play a considerably smaller role in male genital LS.⁶⁸⁻⁷⁰ Investigators have predominantly evaluated human leukocyte antigen (HLA) genotypes, which are hypothesized to play a role in the pathogenesis of LS. The most common association is with HLA-DQ7.68,71,72 A summary of previous research findings on the association between HLA genotype and LS can be found in Table 2. This large body of research identifies numerous possible genetic susceptibilities to LS disease, but does not indicate a specific immunogenetic profile that universally confers susceptibility to disease.

Common Histologic Findings ⁸⁹⁻⁹³	Electron Microscopy Findings ^{89-91,94}
Lichenoid interphase dermatitis	Holes in basal lamina
Epidermal atrophy	Collagen fibrils in intracellular spaces
Hyperkeratosis	Absent capillary loop networks
Pale-staining, pauci-cellular zone within the upper dermis	Dilated blood vessels, lymphocyte infiltrate or vasculitis
Deep band-like infiltrate of mononuclear inflammatory cells.	Perineural inflammation
	Disorganized collagen in dermis
	Mast cells / eosinophils variable
Less Common Histologic findings ^{89,90,95-97}	
Hypertrophic epidermis	

Subepidermal clefting

Table 2. Literature report	ing huma	an leukocyte :	antigen associations i	n lichen sclerosus patients	
Authors	Year	#Patients	Correction	Increased in LS	Decreased in LS
Harrington & Gelsthorpe ⁹⁸	1981	50	Bonferroni	-B40	-
Holt & Darke ⁹⁹	1983	26	Yates	-Aw31* -B40	-
Meyrick Thomas et al ¹⁰⁰	1984	120	Yates	No association in class I antigens	-
Friedrich & MacLaren ⁶⁶	1984	6	N/A	-B44 -DRW6	-
Sideri et al ¹⁰¹	1988	68	Bonferroni	-B21* -DR5	-
Purcell et al ⁶⁹	1990	35	N/C	-DR7 -A29* -B44* -B8	-
Marren et al ⁷¹	1995	84	Yates & Bonferroni	-DR3 -DQ7 * -DQ8	-DQ2 -DQ5
Azurdia et al ⁶⁸	1999	58	Yates	-DQ9 -DQ7* -DR11* -DR12*	-DQ6 -DQ6*
Powell et al ⁷² Senturk et al ⁷⁰	2000 2004	30 4	Yates N/A	-DQ7* -B*08 ^a	-DR17*
Gao et al ¹⁰²	2005	187	Bonferroni	-B*18 -DRB1*12*	-DRB1*0301/04*
Aslanian et al ¹⁰³	2006	8	N/A	DRB1*12/DQ B1*0301/04/ 09/010* -B*15 -B*57 -CW*03 -CW*07 CW*18	DRB1*03/DQB1*0 2DRB1*0301/ DQB1*0201/02/03*
Liu et al ¹⁰⁴	2015	76	N/C	-CW*18 -DRB1*04 -DRB1*07 -DRB4* -A*11* -B*13* -B*15* -DRB1*12*	-A*31* -DRB1*01* -DRB1*03*
Farrell et al ¹⁰⁵	2000	9	N/A	-DQ7	

Table 2. Literature reporting human leukocyte antigen associations in lichen sclerosus patients

N/A, not applicable; N/C, not corrected.

* Statistically significant finding after correction.

Hypothesized Pathophysiology

There are 3 competing theories as to the possible cause of LS: infectious, autoimmune, and chronic irritation. The primary infectious processes previously investigated include Borrelia burgdorferi (B. burgdorferi), Epstein Barr Virus (EBV), Hepatitis C Virus (HCV), and Human Papilloma Virus (HPV), as summarized in Table 3. In summary, these infections have been found to be associated with LS in about 0%-75% of cases. At present, there is insufficient evidence to conclude infections are a causative agent in the development of LS.

The autoimmunity hypothesis suggests that a localized loss of immune self-tolerance allows for humoral or cellmediated response to LS-specific antigens. The best estimates of any autoimmune disorder co-occurring with LS are among women range from 18.9% to 28.4%.^{73,74} Autoimmune thyroid disease or the presence of thyroid autoantibodies ranges from 0% to 39% among women with LS, with the largest study (n = 396) reporting 15.2%.^{57,74,75} Cooper et al investigated 190 women with LS and reported 10.5% had vitiligo and 2.6% had alopecia areata in their sample.⁷³ These findings are indicative —though not conclusive—that the prevalence of autoimmune disease is higher among women with LS than in the general population.⁷⁶

The association with autoimmune disease among male patients with LS is notably weaker. One of the larger studies (n = 532) found that 18.9% of women and 5.1% of men had at least one co-occurring autoimmune disorder (P <.0001).⁷⁴ A study of 329 male patients found autoimmune disease in only 7% of men and women with LS, and numerous studies found little association at all among men.^{17,21,68,77} The autoimmune diseases uncovered in these studies among men varied, but included autoimmune

Table 3. Infection and lichen sclerosus									
Authors	Year	Sex	#Patients*	Infection Detection Method	Results (pos./tot)	%			
Borrelia Burdorferi									
Ross et al ¹⁰⁶	1990	nr	21	Microscopic sections w/ modified Steiner stain	10/21	48			
Dillon et al ¹⁰⁷	1995	nr	10	PCR & electrophoresis, Southern blot	0/10	0			
Fujiwara et al ¹⁰⁸	1997	nr	34	PCR & electrophoresis	0/34	0			
Colome-Grimmer et al ¹⁰⁹	1997	nr	10	PCR & electrophoresis	0/10	0			
Aberer et al ¹¹⁰	1999	M/F	19	PCR & electrophoresis †	13/19	68			
Ozkan et al ¹¹¹	2000	nr	12	PCR & electrophoresis	6/12	50			
Eisendle et al ¹¹²	2008	M/F	52	PCR & electrophoresis, FFM	FFM: 33/52 PCR: 0/5	63 0			
Edmonds et al ¹¹³	2009	Μ	30	ELISA, IgG Western blot	ELISA: 0/30 Western: 0/30	0 0			
				Epstein Barr Virus	,				
Aide et al ¹¹⁴	2010	F	34	PCR & electrophoresis	9/34	26			
Zhang et al ¹¹⁵	2016	М	47	Real-time PCR	18/47	38			
8				Hepatitis C Virus	- /				
Shim et al ¹¹⁶	2012	М	61	ELISA, ECLIA	0/61	0			
			H	uman Papilloma Virus					
Kiene et al ¹¹⁷	1991	F	18	PCR & electrophoresis, ISH	4/18	22			
Lau et al ¹¹⁸	1995	М	10	PCR & electrophoresis	0/10	0			
Drut et al ¹¹⁹	1998	М	23	PCR & electrophoresis, ISH	16/23	70			
Lerma et al ¹²⁰	1999	F	21	PCR & electrophoresis	0/21	0			
Regauer et al ⁸⁰	2002	F	22	PCR & electrophoresis	8/22	36			
Powell et al ¹²¹	2003	F	32	PCR & electrophoresis	8/32	25			
Nasca et al ¹²²	2006	М	46	PCR & electrophoresis	8/46	17			
van der Avoort et al ¹²³	2006	F	10	PCR & reverse hybridization line probe assay	0/10	0			
Prowse et al ¹²⁴	2008	Μ	18	PCR & reverse hybridization line probe assay	6/18	33			
Aide et al ¹¹⁴	2010	F	34	PCR & electrophoresis	0/34	0			
Guerrero et al ¹²⁵	2011	F	21	PCR & electrophoresis, reverse line blot hybridization	5/21	24			
Edmonds et al ²¹	2012	М	120	Histological section	6/120	5			
Guerrero-Setas et al ¹²⁶	2012	M	27	PCR & electrophoresis, reverse line	1/27	4			
Zhang et al ¹¹⁵	2010	M	47	blotting Real-time PCR	0/47	0			
Zhang et al	2010	IVI	41		0/41	0			

ECLIA, electrochemiluminescence immunoassay; ELISA, enzyme-linked immunosorbent assay; F, female; FFM, focus-floating microscopy; IgG, immunoglobulin G; ISH, in situ hybridization; M, male; nr, not reported; PCR, polymerase chain reaction.

* Only patients with LS alone included.

 † Investigators used a urine sample instead of a tissue biopsy.

vitiligo (8%-12.3%),^{55,78} thyroid disease (3.8%-12.5%),⁷⁴ and alopecia areata (1.5%-12.3%)^{21,55} among others.

Protein targets support the idea of an autoimmune phenotype of disease, the classic example is extracellular matrix protein 1 (ECM1).^{5,79} Autoantibodies to ECM1 were found in 74% of a LS patient population of women (n = 86). Other potential markers include T-cell clones, which are found in overabundance in LS patients' tissue.⁸⁰ LS patients also have a redundant Th1 response with greater expression of pro-inflammatory cytokines involved in autoimmunity; LS patients have upregulated levels of microRNA-155, which is hypothesized to reduce the regulatory T-cell suppression of CD4+ T-cells and possibly promote fibroblast cell proliferation.^{81,82} Cytokines, chiefly interleukin-1 (IL-1) as well as IL-12, IL-2, IL-5, IL-10, tumor necrosis factor-alpha (TNF- α), interferon-gamma (IFN- γ), and type I IFN are potentially upregulated in LS.83

Finally, occluded exposure of urine to susceptible epithelium may play a central role in the pathogenesis of the onset of a new skin disorder at the locus of cutaneous trauma.⁸⁴ Urine, feces, and other nonspecific⁸⁵ liquid irritants in occluded spaces may play an important role in the etiology of LS in both men and women.⁸⁶ Anatomically, LS has an unambiguous predilection for genitalia. The rarity of disease in circumcised males,^{52,53} the absence of perianal disease in men but the preponderance of perianal disease in women,²¹ and the localization of disease to occluded epithelium^{62,87} even at the site of perineal urethrostomy all support this hypothesis.⁸⁸

LS. The skin may have an isotraumatopic response, or

gest that men and women diagnosed with LS endorse postmicturition dribbling or exposure to urine (Table 4).^{25,61} The isotraumatopic response due to occluded urine also potentially explains the association between LS and higher BMI, as excess adipose tissue and skin can act as a pseudoforeskin in obese patients, regardless of circumcision status.²⁵ Though a viable component cause, trauma has not

Table 4. Studies of lichen sclerosus examining occlusion and liquid irritants*

Authors	Year	Sex	#Patients	Circumcised (n) †	Site of Involvement	Method of Assessing Irritant Exposure	Irritant (n)	% [‡]
Owen & Yell ¹²⁷	2002	F	7	N/A	Genitals [§]	Patient report	Urine (7); feces (3)	
Al-Niaimi & Lyon ⁸⁸	2013	M/F	12	N/A	Peri-abdominal stoma	Patient report	Urine (12)	
Bunker ⁶¹	2013	Μ	56	Yes (56)	NR	Patient report	Urine (53)	94.6
Doiron ²⁵	2017	Μ	19	Yes (2); No (17)	Genitals & pseudoforeskin	Patient report	Urine (16)	84.2

F, female; M, male; N/A, not applicable; NR, not reported.

* Only studies specifying a liquid irritant reported by or observed in the patient are included.

[†]Only male circumcision is reported.

[‡] If sample is cross-sectional tested for postmicturition dribbling, % reporting.

[§] No specific site of genital skin is reported.

been demonstrated to be necessary or sufficient in the etiology of LS. 61

CONCLUSION

Although the etiology of LS remains unknown, infectious, anti-immune, or chronic irritation may all play a role in its presentation. Future research should explore the intersection of infections, skin microtrauma, and immune dysregulation leading to this disease state. Clinically, LS has the potential to progress to malignancy or cause debilitating changes to normal tissues. Topical corticosteroids are the current mainstay of medical treatment. Surgical therapy should avoid use of genital skin due to the high likelihood of local recurrence. As primary providers of patients with genital LS, urologists must contribute to advancing medical knowledge of this condition and be involved in future research on the topic.

SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found in the online version at https://doi.org/10.1016/j.urology.2019.09.034.

References

- Fitzpatrick TB, Wolff K, Goldsmith LA, et al. Fitzpatrick's Dermatology in General Medicine [Electronic Resource]. 2008.
- Lewis FM, Tatnall FM, Velangi SS, et al. British Association of Dermatologists guidelines for the management of lichen sclerosus, 2018. Br J Dermatol. 2018;178:839–853. https://doi.org/10.1111/ bjd.16241.
- Pugliese JM, Morey AF, Peterson AC. Lichen sclerosus: review of the literature and current recommendations for management. J Urol. 2007;178:2268–2276. https://www.ncbi.nlm.nih. gov/pubmed/17936829.
- Terlou A, Santegoets LAM, Van Der Meijden WI, et al. An autoimmune phenotype in vulvar lichen sclerosus and lichen planus: a Th1 response and high levels of microRNA-155. J Invest Dermatol. 2012. https://doi.org/10.1038/jid.2011.369.
- Gambichler T, Skrygan M, Czempiel V, et al. Differential expression of connective tissue growth factor and extracellular matrix proteins in lichen sclerosus. J Eur Acad Dermatol Venereol. 2012;26:207–212. https://www.ncbi.nlm.nih.gov/pubmed/22280508.

- de Oliveira GAP, de Almeida MP, Soares FA, et al. Metalloproteinases 2 and 9 and their tissue inhibitors 1 and 2 are increased in vulvar lichen sclerosus. *Eur J Obstet Gynecol Reprod Biol.* 2012;161:96–101. https://www.ncbi.nlm.nih.gov/ pubmed/22200256.
- Baldo M, Bailey A, Bhogal B, Groves RW, Ogg G, Wojnarowska F. T cells reactive with the NC16A domain of BP180 are present in vulval lichen sclerosus and lichen planus. J Eur Acad Dermatol Venereol. 2010;24:186–190. https://www.ncbi. nlm.nih.gov/pubmed/19686329.
- Oyama N, Chan I, Neill SM, et al. Autoantibodies to extracellular matrix protein 1 in lichen sclerosus. *Lancet (London, England)*. 2003;362:118–123. https://www.ncbi.nlm.nih.gov/ pubmed/12867112.
- Wenzel J, Wiechert A, Merkel C, Bieber T, Tüting T. IP10/ CXCL10 - CXCR3 interaction: a potential self-recruiting mechanism for cytotoxic lymphocytes in lichen sclerosus et atrophicus. *Acta Derm Venereol.* 2007;87:112–117. https://www.ncbi.nlm.nih. gov/pubmed/17340016.
- Farrell AM, Dean D, Millard PR, Charnock FM, Wojnarowska F. Cytokine alterations in lichen sclerosus: an immunohistochemical study. Br J Dermatol. 2006;155:931–940. https://www.ncbi.nlm. nih.gov/pubmed/17034521.
- Clay FE, Cork MJ, Tarlow JK, et al. Interleukin 1 receptor antagonist gene polymorphism association with lichen sclerosus. *Hum Genet.* 1994. https://doi.org/10.1007/BF00201602.
- Russo T, Currò M, Barbera A, et al. Expression of transglutaminase in foreskin of children with balanitis xerotica obliterans. *Int J Mol Sci.* 2016. https://doi.org/10.3390/ijms17091551.
- Neill SM, Lewis FM, Tatnall FM, Cox NH. British Association of Dermatologists [Collective Name]. British Association of Dermatologists' guidelines for the management of lichen sclerosus 2010. Br J Dermatol. 2010;163:672–682. https://www.ncbi.nlm.nih.gov/ pubmed/20854400.
- Tasker GL, Wojnarowska F. Lichen sclerosus. Clin Exp Dermatol. 2003;28:128–133. https://www.ncbi.nlm.nih.gov/pubmed/12653695.
- Kirtschig G, Becker K, Günthert A, et al. Evidence-based (S3) guideline on (anogenital) lichen sclerosus. J Eur Acad Dermatol Venereol. 2015. https://doi.org/10.1111/jdv.13136.
- **16.** Goldstein AT, Marinoff SC, Christopher K, Srodon M. Prevalence of vulvar lichen sclerosus in a general gynecology practice. *J Reprod Med.* 2005.
- Lipscombe TK, Wayte J, Wojnarowska F, Marren P, Luzzi G. A study of clinical and aetiological factors and possible associations of lichen sclerosus in males. *Australas J Dermatol.* 1997. https://doi. org/10.1111/j.1440-0960.1997.tb01129.x.
- Wallace HJ. Lichen sclerosus et atrophicus. Trans St Johns Hosp Dermatol Soc. 1971;57:9–30. http://www.ncbi.nlm.nih. gov/pubmed/5570266. Accessed 11 July 2019.

- Kizer WS, Prarie T, Morey AF. Balanitis xerotica obliterans: epidemiologic distribution in an equal access health care system. South Med J. 2003.
- Nelson DM, Peterson AC. Lichen sclerosus: epidemiological distribution in an equal access health care system. J Urol. 2011;185:522–525. https://doi.org/10.1016/j.juro.2010.09.107.
- Edmonds EVJ, Hunt S, Hawkins D, Dinneen M, Francis N, Bunker CB. Clinical parameters in male genital lichen sclerosus: a case series of 329 patients. J Eur Acad Dermatol Venereol. 2012. https:// doi.org/10.1111/j.1468-3083.2011.04155.x.
- Murina F, Rehman S, Di Francesco S, Mantegazza V, Felice R, Bianco V. Vulvar lichen sclerosus. J Low Genit Tract Dis. 2015;19:149–151. https://doi.org/10.1097/LGT.00000000000 065.
- Virgili A, Borghi A, Toni G, Minghetti S, Corazza M. First randomized trial on clobetasol propionate and mometasone furoate in the treatment of vulvar lichen sclerosus: results of efficacy and tolerability. Br J Dermatol. 2014;171:388–396. https://doi.org/ 10.1111/bjd.12910.
- 24. Kyriakou A, Patsialas C, Patsatsi A, Sotiriadis D. Treatment of male genital lichen sclerosus with clobetasol propionate and maintenance with either methylprednisolone aceponate or tacrolimus: a retrospective study. J Dermatol Treat. 2013;24:431–434. https:// www.ncbi.nlm.nih.gov/pubmed/23472631.
- Doiron PR, Bunker CB. Obesity-related male genital lichen sclerosus. J Eur Acad Dermatol Venereol. 2017;31:876–879. https://www. ncbi.nlm.nih.gov/pubmed/27891728.
- Kim G-W, Park H-J, Kim H-S, et al. Topical tacrolimus ointment for the treatment of lichen sclerosus, comparing genital and extragenital involvement. J Dermatol. 2012;39:145–150. https://doi.org/ 10.1111/j.1346-8138.2011.01384.x.
- Goldstein AT, Creasey A, Pfau R, Phillips D, Burrows LJ. A double-blind, randomized controlled trial of clobetasol versus pimecrolimus in patients with vulvar lichen sclerosus. J Am Acad Dermatol. 2011;64:e99–e104. https://doi.org/10.1016/J.JAAD.2010.06.011.
- Chi CC, Kirtschig G, Baldo M, Lewis F, Wang SH, Wojnarowska F. Systematic review and meta-analysis of randomized controlled trials on topical interventions for genital lichen sclerosus. J Am Acad Dermatol. 2012. https://doi.org/10.1016/j.jaad.2012.02.044.
- Berger TG, Duvic M, Van Voorhees AS, Frieden IJ. The use of topical calcineurin inhibitors in dermatology: safety concerns. Report of the American Academy of Dermatology Association Task Force. J Am Acad Dermatol. 2006. https://doi.org/10.1016/j. jaad.2006.01.054.
- Depasquale I, Park AJ, Bracka A. The treatment of balanitis xerotica obliterans. BJU Int. 2000. https://doi.org/10.1046/j.1464-410x.2000.00772.x.
- Morey AF, Lin HC, DeRosa CA, Griffith BC. Fossa navicularis reconstruction: impact of stricture length on outcomes and assessment of extended meatotomy (first stage Johanson) maneuver. J Urol. 2007;177:184–187. https://doi.org/10.1016/j.juro.2006.08. 062.
- Belsante MJ, Selph JP, Peterson AC. The contemporary management of urethral strictures in men resulting from lichen sclerosus. *Transl Androl Urol.* 2015. https://doi.org/10.3978/j.issn.2223-4683.2015.01.08.
- 33. Dubey D, Sehgal A, Srivastava A, Mandhani A, Kapoor R, Kumar A. Buccal mucosal urethroplasty for balanitis xerotica obliterans related urethral strictures: the outcome of 1 and 2-stage techniques. J Urol. 2005;173:463–466. https://doi.org/10.1097/01.ju.0000149 740.02408.19.
- Kulkarni S, Barbagli G, Kirpekar D, Mirri F, Lazzeri M. Lichen sclerosus of the male genitalia and urethra: surgical options and results in a multicenter international experience with 215 patients. *Eur Urol.* 2009;55:945–956. https://doi.org/10.1016/j.eururo.2008.07. 046.
- Hillemanns P. Photodynamic therapy of vulvar lichen sclerosus with 5-aminolevulinic acid. Obstet Gynecol. 1999;93:71–74. https://doi.org/10.1016/S0029-7844(98)00321-4.

- Beattie PE, Dawe RS, Ferguson J, Ibbotson SH. UVA1 phototherapy for genital lichen sclerosus. *Clin Exp Dermatol.* 2006;31:343– 347. https://doi.org/10.1111/j.1365-2230.2006.02082.x.
- Kartamaa M, Reitamo S. Treatment of lichen sclerosus with carbon dioxide laser vaporization. Br J Dermatol. 1997;136:356–359. http://www.ncbi.nlm.nih.gov/pubmed/9115915. Accessed 14 September 2019.
- Erickson BA, Elliott SP, Myers JB, et al. Understanding the relationship between chronic systemic disease and lichen sclerosus urethral strictures. J Urol. 2016. https://doi.org/10.1016/j. juro.2015.08.096.
- Venn SN, Mundy AR. Urethroplasty for balanitis xerotica obliterans. Br J Urol. 1998. https://doi.org/10.1046/j.1464-410X.1998. 00634.x.
- Liu JS, Walker K, Stein D, et al. Lichen sclerosus and isolated bulbar urethral stricture disease. J Urol. 2014. https://doi.org/10.1016/ j.juro.2014.03.090.
- Liaw A, Rickborn L, McClung C. Incidence of urethral stricture in patients with adult acquired buried penis. Adv Urol. 2017;2017:1– 3. https://doi.org/10.1155/2017/7056173.
- Christmann-Schmid C, Hediger M, Gröger S, Krebs J, Günthert AR. Vulvar lichen sclerosus in women is associated with lower urinary tract symptoms. *Int Urogynecol J.* 2018. https://doi.org/ 10.1007/s00192-017-3358-8.
- **43.** Hart WR, Norris HJ, Helwig EB. Relation of lichen sclerosus et atrophicus of the vulva to development of carcinoma. *Obstet Gynecol.* 1975.
- Nasca MR, Innocenzi D, Micali G. Penile cancer among patients with genital lichen sclerosus. J Am Acad Dermatol. 1999;41:911– 914. https://www.ncbi.nlm.nih.gov/pubmed/10570372.
- Paolino G, Panetta C, Cota C, Muscardin L, Donati P, Di Carlo A. Lichen sclerosus and the risk of malignant progression: a case series of 159 patients. G Ital Dermatol Venereol. 2013;148:673–678. https://www.ncbi.nlm.nih.gov/pubmed/24442050.
- Barbagli G, Palminteri E, Mirri F, Guazzoni G, Turini D, Lazzeri M. Penile carcinoma in patients with genital lichen sclerosus: a multicenter survey. J Urol. 2006;175:1359–1363. https://www.ncbi.nlm. nih.gov/pubmed/16515998.
- 47. Carlson JA, Ambros R, Malfetano J, et al. Vulvar lichen sclerosus and squamous cell carcinoma: a cohort, case control, and investigational study with historical perspective; implications for chronic inflammation and sclerosis in the development of neoplasia. *Hum Pathol.* 1998;29:932–948. https://www.ncbi.nlm.nih.gov/pubmed/ 9744309.
- Leibowttch M, Neill S, Pelisse M, Moyal–Baracco M. The epithelial changes associated with squamous cell carcinoma of the vulva: a review of the clinical, histological and viral findings in 78 women. BJOG An Int J Obstet Gynaecol. 1990. https://doi.org/ 10.1111/j.1471-0528.1990.tb02502.x.
- Turnbull N, Shim T, Patel N, Mazzon S, Bunker C. Primary melanoma of the penis in 3 patients with lichen sclerosus. JAMA Dermatol. 2016. https://doi.org/10.1001/jamadermatol.2015.3404.
- Wang S-H, Chi C-C, Wong YW, Salim A, Manek S, Wojnarowska F. Genital vertucous carcinoma is associated with lichen sclerosus: a retrospective study and review of the literature. *J Eur Acad Dermatol Venereol.* 2010;24:815–819. https://www.ncbi.nlm.nih. gov/pubmed/20015174.
- Thomas RH, McGibbon DH, Munro DD. Basal cell carcinoma of the vulva in association with vulval lichen sclerosus et atrophicus. *J R Soc Med.* 1985;78(Suppl 11):16–18. http://www.ncbi.nlm.nih. gov/pubmed/4093944. Accessed 12 July 2019.
- Morris BJ, Krieger JN. Penile inflammatory skin disorders and the preventive role of circumcision. Int J Prev Med. 2017. https://doi. org/10.4103/ijpvm.IJPVM_377_16.
- Mallon E, Hawkins D, Dinneen M, et al. Circumcision and genital dermatoses. Arch Dermatol. 2000. https://doi.org/10.1001/archderm.136.3.350.
- Bunker CB. Atopy, the barrier, urine and genital lichen sclerosus. Br J Dermatol. 2013. https://doi.org/10.1111/bjd.12553.

- Bjekić M, Šipetić S, Marinković J. Risk factors for genital lichen sclerosus in men. Br J Dermatol. 2011. https://doi.org/10.1111/ j.1365-2133.2010.10091.x.
- Hofer MD, Meeks JJ, Mehdiratta N, Granieri MA, Cashy J, Gonzalez CM. Lichen sclerosus in men is associated with elevated body mass index, diabetes mellitus, coronary artery disease and smoking. *World J Urol.* 2014. https://doi.org/10.1007/s00345-013-1090-7.
- Blaschko SD, Gaither TW, Alwaal A, et al. Lichen sclerosus comorbidities and complications from a national sample of patients treated with urethroplasty. *Urol Pract.* 2015;2:329–334. https://doi. org/10.1016/j.urpr.2015.02.006.
- Milligan A, Graham-Brown RA, Burns DA. Lichen sclerosus et atrophicus following sunburn. *Clin Exp Dermatol.* 1988;13:36–37. http://www.ncbi.nlm.nih.gov/pubmed/3208439. Accessed 11 July 2019.
- Yates VM, King CM, Dave VK. Lichen sclerosus et atrophicus following radiation therapy. Arch Dermatol. 1985. https://doi.org/ 10.1001/archderm.1985.01660080098024.
- Baldo M, Ali I, Wojnarowska F. The contribution of drugs to lichen sclerosus. Clin Exp Dermatol. 2014. https://doi.org/10.1111/ ced.12264.
- Bunker CB, Patel N, Shim TN. Urinary voiding symptomatology (micro-incontinence) in male genital lichen sclerosus. Acta Derm Venereol. 2013;93:246–248. https://www.ncbi.nlm.nih. gov/pubmed/23093304.
- Gupta S, Malhotra A, Ajith C. Lichen sclerosus: role of occlusion of the genital skin in the pathogenesis. *Indian J Dermatol Venereol Leprol.* 2010. https://doi.org/10.4103/0378-6323.58681.
- 63. Bunker C, Shim T. Male genital lichen sclerosus. *Indian J Dermatol.* 2015;60:111. https://doi.org/10.4103/0019-5154.152501.
- Salim A, Powell J, Gao X, Wojnarowska F. Familial lichen sclerosus. Br J Dermato, Suppl. 2002;147:33.
- 65. Aslanian FMNP, Marques MTQ, Matos HJ, et al. HLA markers in familial Lichen sclerosus. *J Dtsch Dermatol Ges.* 2006;4:842–847. https://www.ncbi.nlm.nih.gov/pubmed/17010173.
- Friedrich EG, MacLaren NK. Genetic aspects of vulvar lichen sclerosus. Am J Obstet Gynecol. 1984;150:161–166. https://doi.org/ 10.1016/s0002-9378(84)80008-3.
- Sherman V, McPherson T, Baldo M, Salim A, Gao X, Wojnarowska F. The high rate of familial lichen sclerosus suggests a genetic contribution: an observational cohort study. J Eur Acad Dermatol Venereol. 2010. https://doi.org/10.1111/j.1468-3083.2010.03572.x.
- Azurdia RM, Luzzi GA, Byren I, et al. Lichen sclerosus in adult men: a study of HLA associations and susceptibility to autoimmune disease. Br J Dermatol. 1999;140:79–83. https://www.ncbi.nlm.nih. gov/pubmed/10215772.
- Purcell KG, Spencer LV, Simpson PM, Helman SW, Oldfather JW, Fowler JF. HLA antigens in lichen sclerosus et atrophicus. Arch Dermatol. 1990. https://doi.org/10.1001/archderm.1990. 01670320067010.
- Sentürk N, Aydin F, Birinci A, et al. Coexistence of HLA-B*08 and HLA-B*18 in four siblings with Lichen sclerosus. *Derma*tology. 2004;208:64–66. https://www.ncbi.nlm.nih.gov/pubmed/ 14730240.
- Marren P, Jell J, Charnock FM, Bunce M, Welsh K, Wojnarowska F. The association between lichen sclerosus and antigens of the HLA system. Br J Dermatol. 1995. https://doi.org/10.1111/j.1365-2133.1995.tb05013.x.
- Powell J, Wojnarowska F, Winsey S, Marren P, Welsh K. Lichen sclerosus premenarche: autoimmunity and immunogenetics. Br J Dermatol. 2000. https://doi.org/10.1046/j.1365-2133.2000.03360.x.
- Cooper SM, Ali I, Baldo M, Wojnarowska F. The association of lichen sclerosus and erosive lichen planus of the vulva with autoimmune disease: a case-control study. Arch Dermatol. 2008. https:// doi.org/10.1001/archderm.144.11.1432.
- Kreuter A, Kryvosheyeva Y, Teras S, et al. Association of autoimmune diseases with lichen sclerosus in 532 male and female patients. Acta Derm Venereol. 2013. https://doi.org/10.2340/ 00015555-1512.

- Guarneri F, Giuffrida R, Di Bari F, Cannavò SP, Benvenga S. Thyroid autoimmunity and lichen. Front Endocrinol (Lausanne). 2017. https://doi.org/10.3389/fendo.2017.00146.
- Harrington CI, Dunsmore IR. An investigation into the incidence of auto-immune disorders in patients with lichen sclerosus and atrophicus. Br J Dermatol. 1981. https://doi.org/10.1111/j.1365-2133.1981.tb08172.x.
- 77. Kantere D, Alvergren G, Gillstedt M, Pujol-Calderon F, Tunbäck P. Clinical features, complications and autoimmunity in male lichen sclerosus. Acta Derm Venereol. 2017;97:365–369. https:// www.ncbi.nlm.nih.gov/pubmed/27671756.
- Kantere D, Alvergren G, Gillstedt M, Pujol-Calderón F, Tunbäck P. Clinical features, complications and autoimmunity in male lichen sclerosus. Acta Derm Venereol. 2017. https://doi.org/ 10.2340/00015555-2537.
- Oyama N, Chan I, Neill SM, et al. Autoantibodies to extracellular matrix protein 1 in lichen sclerosus. *Lancet.* 2003. https://doi.org/ 10.1016/S0140-6736(03)13863-9.
- Regauer S, Reich O, Beham-Schmid C. Monoclonal γ-T-cell receptor rearrangement in vulvar lichen sclerosus and squamous cell carcinomas. *Am J Pathol.* 2002. https://doi.org/10.1016/S0002-9440(10)64924-3.
- Ren L, Zhao Y, Huo X, Wu X. MiR-155-5p promotes fibroblast cell proliferation and inhibits FOXO signaling pathway in vulvar lichen sclerosis by targeting FOXO3 and CDKN1B. Gene. 2018. https://doi.org/10.1016/j.gene.2018.01.049.
- Divekar AA, Dubey S, Gangalum PR, Singh RR. Dicer insufficiency and MicroRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. *J Immunol.* 2011. https://doi.org/10.4049/jimmunol.1002218.
- Clay FE, Cork MJ, Tarlow JK, et al. Interleukin 1 receptor antagonist gene polymorphism association with lichen sclerosus. *Hum Genet.* 1994;94:407–410. https://www.ncbi.nlm.nih.gov/pubmed/ 7927338.
- Ruocco V, Ruocco E, Piccolo V, Brunetti G, Guerrera LP, Wolf R. The immunocompromised district in dermatology: a unifying pathogenic view of the regional immune dysregulation. *Clin Dermatol.* 2014. https://doi.org/10.1016/j.clindermatol.2014.04.004.
- Edmonds EVJ, Bunker CB. Nuclear magnetic resonance spectroscopy of urine in male genital lichen sclerosus. Br J Dermatol. 2010. https://doi.org/10.1111/j.1365-2133.2010.09980.x.
- Bunker CB, Edmonds E, Hawkins D, Francis N, Dinneen M. Re: lichen sclerosus: review of the literature and current recommendations for management. J. M. Pugliese, A. F. Morey and A. C. Peterson J Urol 2007; 178: 2268-2276. J Urol.. 2009. https://doi.org/ 10.1016/j.juro.2008.11.037.
- Gupta V, Gupta S. Genital lichen sclerosus developing around 'ectopic' urethral orifices supports the role of occlusion and urine in its pathogenesis. *Int J STD AIDS*. 2017. https://doi.org/10.1177/ 0956462416688159.
- Al-Niaimi F, Lyon C. Peristomal lichen sclerosus: the role of occlusion and urine exposure? Br J Dermatol. 2013;168:643–646. https://www.ncbi.nlm.nih.gov/pubmed/22913573.
- Knio Z, Kurban M, Abbas O. Lichen sclerosis: clinicopathological study of 60 cases from Lebanon. Int J Dermatol. 2016. https://doi. org/10.1111/ijd.13336.
- Powell JJ, Wojnarowska F. Lichen sclerosus. Lancet (London, England). 1999;353:1777–1783. https://doi.org/10.1016/s0140-6736 (98)08228-2.
- Keith PJ, Wolz MM, Peters MS. Eosinophils in lichen sclerosus et atrophicus. J Cutan Pathol. 2015;42:693–698. https://doi.org/ 10.1111/cup.12556.
- Meffert JJ, Davis BM, Grimwood RE. Lichen sclerosus. J Am Acad Dermatol. 1995;32:393–398. https://www.ncbi.nlm.nih.gov/ pubmed/7868709.
- Mihara Y, Mihara M, Hagari Y, Shimao S. Lichen sclerosus et atrophicus. A histological, immunohistochemical and electron microscopic study. Arch Dermatol Res. 1994. https://doi.org/10.1007/ BF00371568.

- **94.** Carlson JA, Lamb P, Malfetano J, Ambros RA, Mihm MC. Clinicopathologic comparison of vulvar and extragenital lichen sclerosus: histologic variants, evolving lesions, and etiology of 141 cases. *Mod Pathol.* 1998.
- 95. Kowalewski C, Kozłowska A, Chan I, et al. Three-dimensional imaging reveals major changes in skin microvasculature in lipoid proteinosis and lichen sclerosus. J Dermatol Sci. 2005;38:215–224. https://www.ncbi.nlm.nih.gov/pubmed/15927815.
- Marren P, Dean D, Charnock M, Wojnarowska F. The basement membrane zone in lichen sclerosus: an immunohistochemical study. Br J Dermatol. 1997. https://doi.org/10.1111/j.1365-2133. 1997.tb02132.x.
- Steigleder GK, Raab, Lichen Sclerosus WP, et al. Atrophicus. Arch Dermatol. 1961;84:219. https://doi.org/10.1001/archderm.1961.01 580140045005.
- Harrington CI, Gelsthorpe K. The association between lichen sclerosus et atrophicus and HLA–B40. Br J Dermatol. 1981. https:// doi.org/10.1111/j.1365-2133.1981.tb08171.x.
- Holt PJA, Darke C. HLA antigens and Bf allotypes in lichen sclerosus et atrophicus. *Tissue Antigens*. 1983. https://doi.org/10.1111/ j.1399-0039.1983.tb01172.x.
- 100. Thomas RHM, Ridley CM, Sherwood F, Black MM. The lack of association of lichen sclerosus et atrophicus with HLA–A and B tissue antigens. *Clin Exp Dermatol.* 1984. https://doi.org/10.1111/ j.1365-2230.1984.tb00799.x.
- 101. Sideri M, Rognoni M, Rizzolo L, et al. Antigens of the HLA system in women with vulvar lichen sclerosus. Association with HLA-B21. J Reprod Med. 1988;33:551–554.
- 102. Gao XH, Barnardo MCMN, Winsey S, et al. The association between HLA DR, DQ antigens, and vulval lichen sclerosus in the UK: HLA DRB1*12 and its associated DRB1*12/DQB1*0301/04/ 09/010 haplotype confers susceptibility to vulval lichen sclerosus, and HLA DRB1*0301/04 and its associated DRB1*0301/. J Invest Dermatol. 2005. https://doi.org/10.1111/j.0022-202X.2005.23905.x.
- Aslanian FMNP, Marques MTQ, Matos HJ, et al. HLA markers in familial lichen sclerosus | HLA-marker bei familiärem lichen sclerosus. JDDG J Ger Soc Dermatol. 2006. https://doi.org/10.1111/ j.1610-0387.2006.06087.x.
- 104. Liu GL, Cao FL, Zhao MY, Shi J, Liu SH. Associations between HLA-A\B\DRB1 polymorphisms and risks of vulvar lichen sclerosus or squamous cell hyperplasia of the vulva. Genet Mol Res. 2015. https://doi.org/10.4238/2015.December.7.8.
- 105. Farrell AM, Marren PM, Wojnarowska F. Genital lichen sclerosus associated with morphoea or systemic sclerosis: clinical and HLA characteristics. Br J Dermatol. 2000;143:598–603. https://www. ncbi.nlm.nih.gov/pubmed/10971336.
- Ross SA, Sanchez JL, Taboas JO. Spirochetal forms in the dermal lesions of morphea and lichen sclerosus et atrophicus. *Am J Dermatopathol.* 1990. https://doi.org/10.1097/00000372-199008000-00005.
- 107. Dillon WI, Saed GM, Fivenson DP. Borrelia burgdorferi DNA is undetectable by polymerase chain reaction in skin lesions of morphea, scleroderma, or lichen sclerosus et atrophicus of patients from North America. J Am Acad Dermatol. 1995;33:617–620. https://www.ncbi.nlm.nih.gov/pubmed/7673495.
- 108. Fujiwara H, Fujiwara K, Hashimoto K, et al. Detection of Borrelia burgdorferi DNA (B garinii or B afzelii) in morphea and lichen sclerosus et atrophicus tissues of German and Japanese but not of US patients. Arch Dermatol. 1997;133:41–44. https://www.ncbi. nlm.nih.gov/pubmed/9006371.
- 109. Colomé-Grimmer MI, Payne DA, Tyring SK, Sánchez RL. Borrelia burgdorferi DNA and Borrelia hermsii DNA are not associated with morphea or lichen sclerosus et atrophicus in the southwestern United States. Arch Dermatol. 1997;133:1174. https://www.ncbi. nlm.nih.gov/pubmed/9301604.
- 110. Aberer E, Schmidt BL, Breier F, Kinaciyan T, Luger A. Amplification of DNA of Borrelia burgdorferi in urine samples of patients with granuloma annulare and lichen sclerosus et atrophicus.

Arch Dermatol. 1999;135:210–212. https://www.ncbi.nlm.nih.gov/pubmed/10052416.

- 111. Özkan Ş, Atabey N, Fetil E, Erkizan V, Güneş AT. Evidence for Borrelia burgdorferi in morphea and lichen sclerosus. Int J Dermatol. 2000. https://doi.org/10.1046/j.1365-4362.2000.00912.x.
- Eisendle K, Grabner T, Kutzner H, Zelger B. Possible role of Borrelia burgdorferi sensu lato infection in lichen sclerosus. Arch Dermatol. 2008. https://doi.org/10.1001/archderm.144.5.591.
- 113. Edmonds E, Mavin S, Francis N, Ho-Yen D, Bvunker C. Borrelia burgdorferi is not associated with genital lichen sclerosus in men. Br J Dermatol. 2009. https://doi.org/10.1111/j.1365-2133.2008.08969.x.
- 114. Aidé S, Lattario FR, Almeida G, Do Val IC, Da Costa Carvalho M. Epstein-Barr virus and human papillomavirus infection in vulvar lichen sclerosus. J Low Genit Tract Dis. 2010. https://doi.org/ 10.1097/LGT.0b013e3181d734f1.
- 115. Zhang Y, Fu Q, Zhang X. The presence of human papillomavirus and Epstein-Barr virus in male Chinese lichen sclerosus patients: a single center study. Asian J Androl. 2016;18:650. https://doi.org/ 10.4103/1008-682X.160261.
- Shim TN, Bunker CB. Male genital lichen sclerosus and hepatitis C. Br J Dermatol. 2012;167:1398–1399. https://www.ncbi.nlm.nih. gov/pubmed/22612734.
- 117. Kiene P, Milde-Langosch K, Löning T. Human papillomavirus infection in vulvar lesions of lichen sclerosus et atrophicus. Arch Dermatol Res. 1991. https://doi.org/10.1007/BF00371780.
- Lau PW, Cook N, Andrews H, Bracka A, Myint SH. Detection of human papillomavirus types in balanitis xerotica obliterans and other penile conditions. Sex Transm Infect. 1995;71:228–230. https://doi.org/10.1136/sti.71.4.228.
- Drut RM, Gómez MA, Drut R, Lojo MM. Human papillomavirus is present in some cases of childhood penile lichen sclerosus: an in situ hybridization and SP-PCR study. *Pediatr Dermatol.* 1998;15:85–90. https://www.ncbi.nlm.nih.gov/pubmed/9572688.
- 120. Lerma E, Matias-Guiu X, Lee SJ, Prat J. Squamous cell carcinoma of the vulva: study of ploidy, HPV, p53, and pRb. Int J Gynecol Pathol. 1999;18:191–197. http://www.ncbi.nlm.nih.gov/pubmed/ 12090585. Accessed 12 July 2019.
- 121. Powell J, Strauss S, Gray J, Wojnarowska F. Genital carriage of human papilloma virus (HPV) DNA in prepubertal girls with and without vulval disease. *Pediatr Dermatol.* 2003;20:191–194. https:// www.ncbi.nlm.nih.gov/pubmed/12787264.
- Nasca MR, Innocenzi D, Micali G. Association of penile lichen sclerosus and oncogenic human papillomavirus infection. *Int J Dermatol.* 2006. https://doi.org/10.1111/j.1365-4632.2005.02608.x.
- 123. van der Avoort IAM, Shirango H, Hoevenaars BM, et al. Vulvar squamous cell carcinoma is a multifactorial disease following two separate and independent pathways. *Int J Gynecol Pathol.* 2006;25:22–29. https://www.ncbi.nlm.nih.gov/pubmed/ 16306780.
- 124. Prowse DM, Ktori EN, Chandrasekaran D, Prapa A, Baithun S. Human papillomavirus-associated increase in p16INK4A expression in penile lichen sclerosus and squamous cell carcinoma. Br J Dermatol. 2008. https://doi.org/10.1111/j.1365-2133.2007.08305.x.
- 125. Guerrero D, Guarch R, Ojer A, et al. Differential hypermethylation of genes in vulvar cancer and lichen sclerosus coexisting or not with vulvar cancer. *Int J Cancer*. 2011. https://doi.org/10.1002/ ijc.25629.
- 126. Guerrero-Setas D, Pérez-Janices N, Ojer A, Blanco-Fernandez L, Guarch-Troyas C, Guarch R. Differential gene hypermethylation in genital lichen sclerosus and cancer: a comparative study. *Histopathology*. 2013;63:659–669. https://www.ncbi.nlm.nih.gov/ pubmed/23998425.
- Owen CM, Yell JA. Genital lichen sclerosus associated with incontinence. J Obstet Gynaecol (Lahore). 2002;22:209–210. https://doi. org/10.1080/01443610120113454.