
UC Irvine
UC Irvine Previously Published Works

Title
CellSpecks: A Software for Automated Detection and Analysis of Calcium Channels in Live 
Cells

Permalink
https://escholarship.org/uc/item/3326c73p

Journal
Biophysical Journal, 115(11)

ISSN
0006-3495

Authors
Shah, Syed Islamuddin
Smith, Martin
Swaminathan, Divya
et al.

Publication Date
2018-12-01

DOI
10.1016/j.bpj.2018.10.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3326c73p
https://escholarship.org/uc/item/3326c73p#author
https://escholarship.org
http://www.cdlib.org/


Article
CellSpecks: A Software for Automated Detection
and Analysis of Calcium Channels in Live Cells
Syed Islamuddin Shah,1 Martin Smith,2 Divya Swaminathan,3 Ian Parker,3,4 Ghanim Ullah,1,*

and Angelo Demuro3,*
1Department of Physics, University of South Florida, Tampa, Florida; 2Pacific Biosciences, Menlo Park, California; 3Department of
Neurobiology and Behavior, and 4Department of Physiology and Biophysics, University of California Irvine, Irvine, California
ABSTRACT To couple the fidelity of patch-clamp recording with a more high-throughput screening capability, we pioneered a,
to our knowledge, novel approach to single-channel recording that we named ‘‘optical patch clamp.’’ By using highly sensitive
fluorescent Ca2þ indicator dyes in conjunction with total internal fluorescence microscopy techniques, we monitor Ca2þ flux
through individual Ca2þ-permeable channels. This approach provides information about channel gating analogous to patch-
clamp recording at a time resolution of �2 ms with the additional advantage of being massively parallel, providing simultaneous
and independent recording from thousands of channels in the native environment. However, manual analysis of the data gener-
ated by this technique presents severe challenges because a video recording can include many thousands of frames. To over-
come this bottleneck, we developed an image processing and analysis framework called CellSpecks capable of detecting and
fully analyzing the kinetics of ion channels within a video sequence. By using randomly generated synthetic data, we tested the
ability of CellSpecks to rapidly and efficiently detect and analyze the activity of thousands of ion channels, including openings for
a few milliseconds. Here, we report the use of CellSpecks for the analysis of experimental data acquired by imaging muscle
nicotinic acetylcholine receptors and the Alzheimer’s disease-associated amyloid b pores with multiconductance levels in the
plasma membrane of Xenopus laevis oocytes. We show that CellSpecks can accurately and efficiently generate location
maps and create raw and processed fluorescence time traces; histograms of mean open times, mean close times, open prob-
abilities, durations, and maximal amplitudes; and a ‘‘channel chip’’ showing the activity of all channels as a function of time.
Although we specifically illustrate the application of CellSpecks for analyzing data from Ca2þ channels, it can be easily custom-
ized to analyze other spatially and temporally localized signals.
INTRODUCTION
Ca2þ is a highly specific universal second messenger that
regulates numerous cellular functions and plays a key role
in many diseases (1–8). In physiological conditions, Ca2þ

is tightly regulated by ion channels, pumps, and buffering
proteins (8–10). Thanks to the recent progress in imaging
technology and the development of more efficient Ca2þ-sen-
sitive dyes, it is now possible to image Ca2þ signals inside
intact cells with high spatiotemporal resolution, providing
the ability to monitor Ca2þ flow across single plasma
membrane Ca2þ-permeable channels including voltage-sen-
sitive N-type Ca2þ channels (11–14), L-type Ca2þ channels
in cardiac muscle, dihydropyridine-sensitive voltage-gated
CaV1.2 channels (15), ligand-gated muscle nicotinic acetyl-
choline receptors (nAChRs) (16), inositol 1,4,5-trisphos-
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phate (IP3) receptors (IP3Rs) (17), and membrane pores
formed by soluble amyloid b oligomers (Ab42) having mul-
tiple conductance levels (11–18). Surprisingly, a common
feature of all these channels is their lack of motility because
the fluorescent signal generated at a specific site can be
imaged for many tens of second, suggesting a stationary
feature during channel activity (12,13).

We have pioneered an imaging technique called ‘‘optical
patch clamp,’’ a massively parallel two-dimensional (2D)
optical approach, capable of simultaneously and inde-
pendently monitoring the functions of several thousand
Ca2þ-permeable channels at single-channel resolution
(19). Binding of Ca2þ to cytosolic fluorescent Ca2þ indica-
tors generates fluorescent signals (single-channel calcium
fluorescent transients; SCCaFTs) that closely track the
opening and closing of ion channels (14). The presence of
these bright spots on the 2D video sequence captured by to-
tal internal reflection fluorescence microscope (TIRFM) can
be identified manually by visual inspection to infer channel
Biophysical Journal 115, 2141–2151, December 4, 2018 2141
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location and activity. However, the manual detection of
these elementary events is extremely tedious and time
consuming and does not lend itself to a comprehensive anal-
ysis of the stacks because it is nearly impossible to accu-
rately determine the location of each of the hundreds or
sometimes thousands of channels present in the image field.
This is particularly difficult for channels with extremely low
open probability (PO) and short opening events in which the
few recorded events are several thousand frames apart. This
could result in an incomplete representation of the channel
population behavior.

Several automated detection packages are available for
analysis of similar data, such as GMimPro for single
fluorophores (20), ImageJ plugins for line-scan images
like SparkMaster (21) and xySpark (22), FLIKA for Ca2þ

puffs resulting from concerted gating of clustered IP3Rs
(23), and several algorithms for processing of Ca2þ sparks
generated by clustered ryanodine receptors (24–30) and hu-
man PIEZO1-channels (31). However, the existing software
packages are limited in their abilities to detect a large num-
ber of simultaneously active channels (sites) with multiple
conductance levels and generate huge data sets about the
location and gating kinetics of these channels. For example,
in our experiments, typical imaged data consist of a high-
temporal-resolution image stack recorded at �500 frames
per second in a 128 � 128 pixel multi-image (up to
15,000 frames) Metamorph (.stk) file. Automated detection
of channel locations and their gating kinetics would allow
for a thorough description of the behavior of every channel,
reliably pinpointing all event locations regardless of size,
frequency, and duration. Furthermore, statistical analysis
can be customized and automated, providing a powerful
tool for ion channels and single-molecule studies.

With these needs in mind, we developed an automatic
detection algorithm coupled with graphical user interface
and statistics modules. We named the resulting software
CellSpecks, which is implemented in the Java programming
language for speed, flexibility, and portability. CellSpecks is
capable of automatic detection of the location and gating
behavior of many ion channels in a Metamorph stack file
or image files in formats such as JPG and TIFF, with tremen-
dous efficiency over a manual approach, and is able to reli-
ably identify subtle events in which manual identification is
tedious if not impossible. As a result, analysis of imaging
data from TIRFM experiments now takes only a fraction
of the time needed for visual inspection (only a few minutes
instead of many hours and days), and events previously not
accessible manually or through other packages are made
available for statistical analysis.

Here, we first use CellSpecks to analyze synthetic images
sequences in which all events are known a priori to validate
its accuracy in challenging but anticipated situations. After
validating the performance and accuracy, we then illustrate
the use of CellSpecks to process TIRFM image sequences
of Ca2þ-permeable nAChR channels and individual pores
2142 Biophysical Journal 115, 2141–2151, December 4, 2018
formed by Ab42 oligomers in the plasma membrane of Xen-
opus laevis oocytes. CellSpecks can efficiently generate
location maps and create raw and processed fluorescence
time traces; histograms of maximal amplitudes of Ca2þ

release events, mean open times, mean close times, and
PO of all channels; and amplitudes and durations of all
events in the image sequence. All data can be exported in
ASCII file format for plotting and further analysis. In partic-
ular, time traces from all channels can be exported and
idealized using the open source software TraceSpecks
(32,33) for developing single-channel models. Thus,
CellSpecks, together with high-resolution fluorescence mi-
croscopy, provides a powerful tool for characterizing and
modeling ion channel behavior, using an unprecedented
amount of data sets simultaneously recorded from thousands
of channels in their native environment.
MATERIALS AND METHODS

The experimental data used to test CellSpecks derive from previously pub-

lished work imaging the activity of nAChRs (13) and pores formed by Ab42

oligomers (18). A brief description of these methods is given below.
Oocyte preparation and electrophysiology

Experiments were performed on defolliculated stage VI oocytes obtained

from X. laevis (34). For experiments with muscle nAChRs, in vitro-tran-

scribed complementary RNAs coding for a, b, g, and d subunits (in a molar

ratio 2:1:1:1) were mixed to a final concentration of 0.1–1 mg/mL and mi-

croinjected (50 nL) into oocytes (16). After 3–5 days, the expression of

nAChRs was monitored by recording currents evoked by bath application

of acetylcholine (16). Insertion of functional Ab42 pores into the oocyte’s

plasma membrane (18) was achieved by bath application of solution con-

taining soluble oligomers prepared from human recombinant Ab42 peptide.

The solutions containing Ab42 oligomers were delivered from a glass

pipette with tip diameter�30 mm positioned near the edge of the membrane

footprint of the oocyte membrane on the cover glass.

Oocytes were injected �1 h before imaging with fluo-4-dextran (MW

�10 kD; Ca2þ affinity �3 mM) to a final intracellular concentration of

�40 mM. For imaging, oocytes were placed animal-hemisphere down in

a chamber with its bottom made from a fresh-ethanol-washed microscope

cover glass (type-545-M; Thermo Fisher Scientific, Waltham, MA) and

were bathed in Ringer’s solution (110 mM NaCl, 1.8 mM CaCl2, 2 mM

KCl, and 5 mM Hepes (pH 7.2)) at room temperature (�23�C) continually
exchanged at a rate of �0.5 mL/min by a gravity-fed superfusion system.

The membrane potential was clamped at a holding potential of 0 mV using

a two-electrode voltage clamp (Gene Clamp 500; Molecular Devices, San

Jose, CA) and was stepped to more negative potentials up to �100 mV

when imaging Ca2þ flux through the gating channels to increase the driving

force for Ca2þ entry into the cytosol (16,18).
TIRFM imaging

Imaging was accomplished by using a custom-built TIRF microscope

system based around an Olympus IX 71 microscope (Olympus, Tokyo,

Japan) equipped with an Olympus 60� TIRFM objective (NA ¼ 1.45)

(16,18). Fluorescence excited by a 488 nm laser was imaged using an elec-

tron-multiplied charged coupled device camera (Cascade 128þ; Roper

Scientific, Vianen, the Netherlands) at full resolution (128 � 128 pixel:

1 pixel ¼ 0.33 mm at the specimen) at a rate of 500 s�1. Image data were
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acquired using the MetaMorph software package (Universal Imaging,

Westchester, PA).
Event detection algorithm and automated
analysis

CellSpecks has a menu-driven interface for reading and processing video

stacks and individual images, as well as the ability to illustrate various steps

and results of the algorithm, allowing the experimenter to confirm the effec-

tiveness of the algorithm for their particular data set. Third-party libraries

capable of returning pixel byte arrays for these video/image stacks are

used to feed image data into the program that convert an image stack

from its native format to a stack data structure. The stack is then cloned

(copied) and modified a number of times along the way to preserve pro-

cessed data that will later help the experimenter understand how the algo-

rithm produced the results.

Fig. 1 summarizes the steps, including noise detection, signal isolation

from noise, event attribution, and analysis from time trace of a given chan-

nel. After cloning the initial input movie frames or TIFF images, the pro-

gram takes each pixel in the image over time and assigns it to an

individual thread to generate blurred signal, noise, and signal stacks from

the Original stack. Flowchart 1 in the Supporting Materials and Methods

lists various steps involved in computing the Noise stack from the Original

stack. These steps are explained below.

First, the Original stack is copied to a temporary stack called Temp. Each

pixel in the Temp stack is then replaced by the average of the intensities of

the same pixel over time (51 frames) by the application of a one-dimen-

sional flat kernel of length 51 (a moving box filter with a window size of

51 frames), with the center of the kernel being the intensity value to be

modified. Appropriate boundary conditions are applied at the boundary

(both in time and space) pixels. As a result, a modified stack (Blur) is gener-

ated for each pixel. Next, a mode value for each pixel over time in the Blur

stack is determined. This is followed by computing the SD of the points in

the Original signal that are below the mode of this pixel. A noise threshold

is set at 2.5 � standard deviation þ mode. All intensity values over time of

this pixel in the Original stack that are greater than the noise threshold are

replaced with the mode value to get what is called the Noise stack. Subtract-

ing the Noise stack from the Original image stack generates a Signal stack.

The Signal stack is then used to identify all Ca2þ channels along with their

location, open and close events, PO, and maximal amplitudes. Various steps
FIGURE 1 Illustration of CellSpecks algorithm processing steps: separation of

from a single pixel (gray) and the final signal trace (black) calculated by CellSpec

trace to the signal (black) trace. First, temporal smoothing creates a blur (blue) tr

SD, s, is calculated for all fluorescence points from the original trace that are b

mode (red dotted line) and a noise trace generated (green). Subtracting noise (gre

In this figure, all time-varying quantities (original trace, blur, noise, signal) are

threshold) are plotted with dotted lines.
involved in event detection, channel locations, and assigning events to

different channels are listed in Flowchart 2 in the Supporting Materials

and Methods and described below.

First, a three-dimensional array of size X � Y � Time (where X and Y

are the dimensions (number of pixels along the x and y axes) of the

image and Time is the number of images (frames) in the data) called

EventPartStack is created to hold each pixel’s data (intensity) over time.

Each element of this array also contains variables to link each nonzero in-

tensity pixel (a pixel with no signal is represented by a value of zero) to four

neighboring pixels in the current frame (at time t) and two neighbors in the

frames before (time t � 1) and after (time t þ 1) the current frame. Each

nonzero element of the EventPartStack array is linked to all of its nonzero

six neighbors. Now, for each nonzero value of EventPartStack, events con-

taining links to the nonzero neighbors of the current pixel are recursively

generated unless a zero-valued pixel is reached and are added to the prob-

able event list (probEventlist) array. The size of the probEventlist array now

contains all probable events for all the channels in the given data set. This

probEventlist is further screened for events whose duration is<10 frames or

whose cumulative intensity is<50 (intensity units), and a final list of events

called Eventlist is generated.

To accurately place these channels, a weight array is generated as a 2D

array (of image size) containing the sum of pixel values in the Signal

over time for that pixel. The weight array is then normalized by the highest

pixel value in the weight array. Nonzero values in weight array are inter-

preted as likely channel locations and added to a list of channels with no

events.

The events are then added to channels one by one, either to the closest

known channel if there exists one with which it overlaps or to a new channel

if no current channel overlaps. Channels are allowed to have floating point

coordinates, somewhat complicating the concept of overlapping, especially

when each event covers an area often no more than two pixels across. The

nearest neighboring channel of each event is determined either by matching

the coordinates of the event and channel or by calculating the overlap likeli-

hood in case the coordinates do not have a one-to-one match (see Channel

Locations in the Supporting Materials and Methods). The value of overlap

likelihood is a combination of the inverse of the distance and the relative

intensity of the event at the location of the nearest-neighbor channel.

Thus, if the center of the channel does not overlap the event at all, the over-

lap likelihood is zero, and any positive overlap value decreases to zero as

the distance increases. Finally, channels containing no events are removed.

At the end of this process, channel locations are adjusted for the actual
noise from signal of nAChRs channel activity. (A) shows fluorescence trace

ks. (B) illustrates the processing steps required to go from the original (gray)

ace. A mode value is calculated for the entire blur trace (purple dotted line).

elow the mode value (dark blue dotted line). Noise threshold is set as 2s þ
en trace) from the original trace (gray), the signal trace (black) is obtained.

plotted with solid lines, whereas time-invariant variables (mode, s, noise
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events they contain, and any channels found to be within the same pixel are

combined. Further details about assigning events to channels and identi-

fying channel locations are given in the Channel Locations section of the

Supporting Materials and Methods.

By the end of the detection and association process, a list of channel lo-

cations has been produced; within each channel is a list of known events,

and in each event is a list of known event parts (start and end of an event)

as shown in Fig. 2. The times between these events are averaged to give a

mean close time, and the durations of these events averaged to give a mean

open time. The total open time divided by the total sample time gives the

PO. Maximal amplitude is the highest peak in the channel after a one-

dimensional smoothing kernel of length three (moving box average with

a window size 3) is applied to the intensities over time to filter high-fre-

quency noise. The program also saves the durations and amplitude of all

events of all channels in the stack or image sequence. Descriptive statistics

as well as intermediate stack, baseline, signal, and noise information can be

viewed in the CellSpecks graphical user interface (Fig. 2). Channel loca-

tions are visually reported for one-click, intensity versus time graph confir-

mation, and the sampling for these traces can be modified to select an

average or maximum of pixel values over a user-specified channel. These

channel locations may also be threshold by maximal intensity. Statistical in-

formation, time-trace data (as modified by user-selected sampling parame-

ters), location maps, and channel chips (a surface (raster) plot showing the

gating of all channels over time) may then be exported using the interface as

well.

The resulting program has been tested on Mac operating system X,

Ubuntu Linux, and Windows XP-7 and using the Sun Java 1.6 Jave run

time environment (JRE), Apple Java 1.5 and 1.6 JRE, SoyLatte Java 1.6

JRE, and the OpenJDK Java 1.6 JRE. The precompiled JAR file, User

Manual, sample stack file, and sample images are included with this article

as Data S1. Avideo explaining different steps of using the software the soft-

ware is also provided as Video S1. The source code for the software is avail-

able upon request from the authors. In trial runs against previously

examined stacks, CellSpecks is capable of processing a 43 � 43 pixel �
15,000 image stack in �43 s on a 1.73 GHz Intel Core i7-820QM with

8 gigabytes DDR3 random-access memory. The peak random-access mem-
FIGURE 2 CellSpecks graphical user interface. The CellSpecks interface incl

accuracy. The map of detected channels is shown in the Algorithm Output Imag

imaging a 40 � 40 mm2 region of an oocyte plasma membrane expressing musc

mined location. The brightness of a pixel corresponds to the maximal amplitud

window (right), displaying the time traces such as raw (red), baseline or noise (g

Results of any modification are displayed in the Algorithm Output Images. Info

and amplitudes of all events for all channels, channel chip showing the activity of

channels can be exported as ASCII files for publication-quality plots and furthe
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ory usage during the detection process is �7.5 GB on Windows 7. This in-

cludes opening the images, feeding them into integer arrays, and executing

the detection algorithms. Fig. 2 shows typical confirmation images pro-

duced by the program.
RESULTS

In the first part of this section, we use the time traces, loca-
tions, and various statistics from all channels in the image
sequence to verify that the output from the algorithm
matches the ground truth of synthetic data.
Synthetic data validation

To test the accuracy of the algorithm, we generated a syn-
thetic data set of 50 channels randomly distributed on a
grid of 128 � 128 pixels for a total duration of 2 s in a
sequence of 1000 TIFF images. We deliberately randomized
the opening and closing of these channels as well as their
open and close times to mimic experimental conditions.
To keep channel flux tractable, an amplitude of zero (inten-
sity units) represents a closed channel, whereas an open
channel was assigned an amplitude of 200 (intensity units)
in line with the frequently observed intensity values when
the channel is open. To make the channel signal realistic,
noise derived from normal distribution with a mean of 5
and SD of 2 was superimposed on each channel’s time trace
as well as all other pixels in the image frame. The observed
spread of Ca2þ from the channel to the surrounding area
is mimicked by allowing the fluorescence from an open
udes the capacity to audit the detection and analysis process for quality and

es windows (left). Map is generated from a 5000 frames stack captured by

le (abgd) nAChRs. Channels are represented by bright pixels at their deter-

e event generated by the channel. Clicking on any pixel brings up the trace

reen), and processed or signal traces (black) of the channel at that location.

rmation such as mean open and close times, PO, peak amplitudes, lifetimes

all channels detected as a function of time, and channel location maps for all

r analysis.
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channel’s location to spread to the nearest neighbor pixels.
Code used to generate synthetic data is available on request
from the authors. Further details about the algorithm gener-
ating the synthetic data are given in the Supporting Mate-
rials and Methods.

We tested our algorithm for signal/noise ratios (SNRs) in
the range of 5–40. CellSpecks was able to correctly identify
channel locations, number of channels, and all opening
events along with their open and close times as well as
mean open and close times and PO for all SNRs > 5.
Fig. 3 compares the results generated by CellSpecks for
the synthetic data set with the actual statistics of the data.
As is evident from Fig. 3, A and B, the distributions for
mean open and close times predicted by CellSpecks (second
row) are in close agreement with the true distributions
(top row). Similarly, the open probabilities estimated by
CellSpecks (bottom) are in close agreement with the true
values (top) (Fig. 3 C). The slight discrepancy in PO distri-
bution is due to the fact that CellSpecks excludes partial
open or close events toward the end of the recording,
whereas such events were included in the true statistics.
The gating state of all channels at a given time step (frame
number) given by CellSpecks is saved as a channel-chip
representation (Fig. 3 D). The kinetics of all 50 channels
given by CellSpecks is remarkably close to the true values.
An example of synthetic channel trace generated with an
FIGURE 3 CellSpecks closely reproduces the channel locations and gating k

kinetics. Distributions of mean open times (A), mean closed times (B), and mean

row) for all channels are shown. (D) Channel-chip (image exported directly from

and the vertical axis is the channel number (1–50)—i.e., each horizontal line repr

the channel, respectively. (E) The actual noisy (SNR ¼ 5) time trace for a sing

number of channels (left panel) and number of events (right panel) identified b

of SNR. (H) Channel location maps from CellSpecks (green circles for SNR

SNR ¼ 5 and red circles for SNR ¼ 10).
SNR of 5 is shown in Fig. 3 E, whereas the time trace iden-
tified by CellSpecks is shown in Fig. 3 F. A comparison of
the two traces shows that CellSpecks is capable of identi-
fying highly noisy channels along with open/close events
precisely.

Although CellSpecks can accurately identify channels
and their associated events for SNRs > 5, for data with an
SNR % 5, we found that it misses some channels as well
as associated events. Fig. 3 G shows a comparison of the
number of channels (left) and all events (right) identified
by CellSpecks (green bars) with the actual values (red
bars) as a function of SNR in the records. CellSpecks
missed two channels for SNR ¼ 5 but was able to identify
all channels for SNR > 5. Similarly, CellSpecks missed
28 events for SNR¼ 5 while identifying all events in images
with a higher SNR. Fig. 3 H shows a comparison between
channel locations identified by CellSpecks (green circles
for SNR ¼ 5 and blue cross for SNR ¼ 10) and actual loca-
tions (yellow circles for SNR ¼ 5 and red circles for SNR ¼
10). As is evident, the channel location map identified by
CellSpecks for SNR ¼ 10 matches exactly with the actual
locations. The same is the case for SNR ¼ 5 except that
CellSpecks missed two channels. It is worth mentioning
that the SNR in TIRFM using fluorescence dye Fluo-4 is
close to 8 and higher for Cal-520 (35). CellSpecks did not
detect any events in control stacks with no events.
inetics of simulated functional channels with random location and gating

PO (C) of true values (first row) and values estimated by CellSpecks (second

CellSpecks) representation in which the horizontal axis is time (2 s total)

esents one channel. The red and black represent the open and closed states of

le channel and (F) the trace identified by CellSpecks are shown. (G) The

y CellSpecks (green bars) versus the actual values (red bars) as functions

¼ 5 and blue � for SNR ¼ 10) and true locations (yellow circles for

Biophysical Journal 115, 2141–2151, December 4, 2018 2145
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We remark that event identification is accurate for all but
extremely long events lasting more than 50% of the total
duration of the recording. In cases in which event duration
approaches half of the total duration of the experiment,
the amplitude of the event can be mistakenly considered
to be the baseline. Note that the intensity during the event
will have to be almost constant for this failure to happen.
Although unlikely for data without potentially compro-
mising flaws, it could be an issue in data sets that have
been cropped to represent a very short total duration.

CellSpecks works equally well on images and stacks in
which the noise in the signal is not uniform. We tested it
on images corrupted with noise in which the power spectral
density varies inversely with frequency (often called flicker
or ‘‘pink’’ noise) (36) generated using a power-law noise-
generation algorithm (37). The software detects the channel
locations and open/close events with the same accuracy as it
gives for images with white noise (data not shown).
Detection of muscle nAChR channel activity in
Xenopus oocytes

Next, we used CellSpecks to detect channels from
experimental data obtained by imaging nAChR activity
in Xenopus oocytes. As previously shown, TIRFM of
Ca2þ imaging of membrane regions in oocytes express-
ing nAChRs revealed numerous transient fluorescence
‘‘flashes’’ (SCCaFTs) in the presence of nicotinic agonists
when the membrane is hyperpolarized to increase the
driving force for Ca2þ influx (14,19,38). Manual analysis
of these data revealed a sparse distribution of nAChRs
throughout the image field (14). When we used CellSpecks
to detect channels and their events in the same data set, the
number of active sites detected was �3 times larger than the
number detected manually. Moreover, CellSpecks required
only a few minutes to detect �850 channels (5178 total
FIGURE 4 Detection of hundreds of individual nAChR channels by CellSpeck

a 40� 40 mm2membrane patch is shown. The map was generated automatically b

imaging period, during which the oocyte was polarized to �150 mV in the pres

(SCCaFTs) resulting from Ca2þ influx during channel opening when the memb

fluorescence from regions of interest (one pixel, corresponding to a 0.33� 0.33 m

in (A).
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events), substantially less than the many hours normally
needed for manual inspection. The location map of all the
channels and examples of processed fluorescence time
traces from three channels given by CellSpecks are shown
in Fig. 4, A and B, respectively. We would like to point
out that the ability of CellSpecks to segregate the two nearby
channels can be limited in situations in which two channels
overlap at two adjacent pixels with both channels displaying
a long opening time. We have previously estimated that the
spatial spread of an SCCaFT generated by the opening of
nAChRs measured as the full width at half-maximal ampli-
tude has a spatial spread of �500 nm (13). In our experi-
ments, controlled level of expression can easily overcome
this problem because the channels imaged so far do not
display tendencies to cluster but a clear random distribu-
tion that is normally achieved in relatively low channel
overexpression.

The 850 channels detected by CellSpecks included 100%
of those detected by hand in experimental data sets. The re-
maining channels were checked manually in experimental
stacks and found to contain at least one centroid uniquely
centered at that location without overlapping nearby chan-
nels (occasionally in neighboring pixels) at all. As seen in
Fig. 5 C, the PO distribution indicates that the vast majority
of channels detected by CellSpecks are those that have small
PO with infrequent and short open events separated by long
close events, affirming the ability of CellSpecks to detect
channels with low PO and events with extremely short
lifetimes.
Automated analysis of channel properties

Analysis of the large amount of information provided by
simultaneously analyzing the behavior of a few thousands
ion channels is extremely challenging using available data
analysis software such as R (GNU), Origin (OriginLab), or
s. (A) A channel map showing the locations of 850 nAChRs channels within

y CellSpecks after identifying coordinates of all channel sites through a 25 s

ence of 1 mM acetylcholine. (B) An example of single-channel recordings

rane was hyperpolarized to �150 mV. Traces are obtained by monitoring

m2 of plasma membrane) centered on three of the channel locations shown



FIGURE 5 Automated analysis of channel parameters. After locating the active sites (850) in the image field (Fig. 4 A), CellSpecks can automatically

generate analyses of the fluorescence events (5187) measured during the record, calculating the open times, close times, amplitudes for all events, and

mean PO for each corresponding region of interest. These data sets are then used to statistically analyze channel populations. (A) Distribution of the events

duration for all of the detected nAChR channels shown in Fig. 4 A. Data are fitted by single exponential decay (solid line) with the time constant 8.6 ms.

(B) Distribution of the corresponding closed times (intervals between events) fitted by a double exponential decay function (solid line) with time constants

of 123.8 and 1191.3 ms. (C) Distribution of the mean open probabilities calculated for the corresponding channels. Data are fitted by a double exponent

decay function with PO1 of 0.00041 and PO2 of 0.0047. (D) Plot displays the maximal events amplitude distribution obtained measuring the peak fluorescence

for each detected event. Distribution are fitted by a Gaussian function with a peak amplitude of 73 DF/Fo � 100 (solid line). To see this figure in color,

go online.

CellSpecks
software designed for analysis of electrophysiological sin-
gle-channel data. As described in theMaterials andMethods,
the statistical analysis module contained in CellSpecks is
capable of generating statistical records of the parameters
characterizing ion channel behavior. For example, in Fig. 5,
we show the distributions of open durations (Fig. 5 A), close
durations (Fig. 5B), and themaximal amplitudes (Fig. 5D) of
the SCCaFTs detected in Fig. 4 A. The distribution of mean
PO of all channels is shown in Fig. 5 C. The ability of
CellSpecks to store the lifetimes and amplitudes of all events
for all channels detected (Fig. 5) makes the more complex
analysis such as cross correlation studies between any of
the measurable channel parameters a lot easier (18).
Detection of Ab42 pore activity

The first version of CellSpecks was developed and used to
investigate gating properties of Ab42 pores in X. laevis
oocytes (18), allowing the discovery of a large population
of Ab42 pores with very low PO otherwise overlooked
and underestimated by visual inspection. Moreover,
CellSpecks is not only capable of correctly and effi-
ciently characterizing the behavior of channels with single
permeability level but can also characterize channels with
multiple Ca2þ permeability levels. As an example, we
applied CellSpecks to TIRFM imaging data of Ca2þ-
permeable plasma membrane pores formed by Ab42 olig-
omers. In this case, CellSpecks identified 830 active sites
(Fig. 6). Distributions for mean open times, mean close
times, mean PO, and peak amplitudes for all channels de-
tected are shown in Fig. 6, A–D. Notice that the distribu-
tions shown in Fig. 6, A and B are the mean values for all
channels (one value per channel), which are different than
those in Fig. 5, A and B representing the open and close
times for all events (multiple values per channel). Simi-
larly, the amplitude distribution in Fig. 6 D represents
Biophysical Journal 115, 2141–2151, December 4, 2018 2147



FIGURE 6 Characterizing the activity of Ca2þ-permeable ion pores formed by Ab42 oligomers in a 40 � 40 mm2 plasma membrane patch of an X. laevis

oocyte imaged through TIRFM. The stack has 5000 frames recorded at 400 frames/s. In this example, 1 mg/mL of Ab42 oligomers was applied to the bathing

solution, and Ca2þ influx to the cytoplasm was enhanced by applying a hyperpolarizing potential of �80 mV. (A) Distribution of the channels’ mean events

duration (channels mean open time) for 930 active sites. Double exponential fit (solid curve) yields decay constants of 7.2 and 20.1 ms. (B) Distribution of the

mean closed times (times at which events were not present) fitted by a double exponential decay with constants values of 0.473 and 6034 s, respectively.

The plot in (C) shows the corresponding distribution of channels PO fitted by a double exponential decay function (solid line), with the curve yielding

values of PO1 ¼ 0.0084 and PO2 ¼ 0.012. (D) The corresponding distribution of maximal amplitude per channel in which variations in amplitude among

different channels are evident. (E) A sample fluorescence trace representing the Ca2þ influx through a single Ab42 pore. Multiple conductance levels during

individual events are indicated in the fluorescence trace and clearly shown in the idealized trace (F). (G) shows a single event in which the pore opens up to

four conductance levels. Channel-chip representation of the gating of all channels detected in the stack (H) with progressively zoomed-in versions are

shown in (I) and (J).
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the largest amplitude observed for a given channel,
whereas that in Fig. 5 D represents the amplitudes of all
events detected.

Some of these channels have multiple conductance
levels. A representative time trace of such a channel is
shown in Fig. 6 E. An idealized version of the trace using
the idealization software TraceSpecks (32) is shown in
Fig. 6, F and G. CellSpecks is also capable of providing
‘‘channel chips,’’ an efficient way of plotting the behavior
of a large population of ion channels over time (18).
The channel-chip representation can also provide a way
of viewing selected regions to reveal gating characteristics
at a finer resolution. Channel-chip representation for all
830 Ab42 pores in a 40 � 40 mm plasma membrane patch
of X. laevis oocyte is shown in Fig. 6 H, with zoomed-in
versions in Fig. 6, I and J. As clear from Fig. 6 C, majority
of these pores have extremely low PO with mixed mean
open durations less than 20 ms (Fig. 6 A) separated by
close events that are a few thousand milliseconds long
(Fig. 6 B). The low PO of Ab42 pores is also confirmed
by the channel-chip representation, showing significantly
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longer dark stripes (close events) as compared to brighter
dots (open events) (Fig. 6, H–J).
DISCUSSION

We developed a method, CellSpecks, that allows rapid and
accurate detection, localization, and analysis of thousands
of functional Ca2þ-permeable ion channels imaged by
TIRFM in intact cells. Although the program is currently be-
ing staged for use in experiments primarily for the detection
and analysis of functional Ca2þ-permeable channels, we
believe CellSpecks is equally applicable to the detection
and analysis of other channels and molecules studied
through fluorescence microscopy (39). Nevertheless, the
development of the software will be ongoing, and new fea-
tures and capabilities will be incorporated as the need arises.
Furthermore, although many find the speed of Java to be
limiting in such calculation-heavy programs, Java is ap-
proaching the speed of Cþþ for many applications. Im-
provements to the Java Virtual Machine and compilers
will continue the trend toward Cþþ and Java speed parity



CellSpecks
(40). We currently do not see any issue with the performance
or platform specificity; however, if needed for speed, inter-
face, or other technical reasons (such as experimentation
with CUDA or OpenCL), porting parts or the entirety of
the program to another language will be considered in the
future.

CellSpecks’ limitations are mostly the result of being
built to operate on a particular type of input data. The pro-
gram only works with signals that deviate from the baseline
in a positive direction. However, this can be easily fixed in
the source code (available from the authors upon request)
if needed by the experiment. The one known confounding
scenario for CellSpecks’ detection algorithm is in differen-
tiating two large nearby events whose fluorescence overlaps
both spatially and temporally. Although for ion channels
with low PO, encountering such a scenario is rare, in cases
where the PO is high, such situations may arise. The solution
to this problem will likely come as an event filter that splits
into discrete events any event with two or more distinct
centroid peaks. Resolving this issue will be coupled with
incorporating a feature for tracking the movement of chan-
nels (or fluorescence molecules) in the future.

Although the specificities discussed above are limitations
to the flexibility of the program, they are in many ways what
makes this program useful. Using a line-scan detection soft-
ware like SparkMaster would be ineffective for analyzing
2D image stacks (21). Similarly, 2D image stack detection
software such as GMimPro, developed for Windows oper-
ating system, does a very good job at tracking single mole-
cules but is inefficient when a comprehensive statistical
analysis for thousands of channels in a single stack is sought
because of the significant postprocessing required to extract
these statistics (20). Furthermore, the detection of multiple
conductance levels and channels with extremely small PO
is beyond the scope of GMimPro because it excludes real
events when short-lived false events are excluded.

CellSpecks is also advantageous over FLIKA (23) when it
comes to the detection of individual channels. CellSpecks
focuses on detecting the activity of many simultaneously
active single channels in a cell, whereas FLIKA is written
for analysis of Ca2þ puffs resulting from the concentrated
gating of clustered IP3R channels. Apart from differences
in the temporal and spatial properties of single-channel
events and Ca2þ puffs these programs were written to detect,
there are a few notable differences between the two detec-
tion paradigms. CellSpecks computes noise threshold pixel
by pixel, thus eliminating the need for the user-specified
baseline level. FLIKA, on the other hand, has several thresh-
olds (subtraction of baseline intensity, width of Gaussian fil-
ter, frequency thresholds for temporal bandpass filtering,
etc.) that the user must employ before initializing puff
detection. Selection of meaningful thresholds can be a trial
and error process. Because the choice of thresholds is user-
dependent, it introduces some arbitrariness in predetection
processing of the stack and can be time consuming. FLIKA,
on the other hand, is better equipped to deal with changing
baselines.

Developing flexible tools for biological discovery drives
the need for a very specific set of features. This lends itself
to actively developing a piece of software simultaneously to
meet these needs. In this case, we had two primary require-
ments for any single piece of software. The first requirement
is the ability to accurately detect and localize every channel
in the image field. This could not be done manually or by
existing packages, especially when the channels have
extremely low PO as mentioned above. The second require-
ment—the ability to export and measure any number of
behavioral characteristics—is only solved by being able to
design and extract novel measurements from the detection
data within the program, a feature not available in any multi-
frame analysis software that meets our detection require-
ments. An additional advantage to home-built software is
the ability to easily incorporate statistical routines into the
exported material, including parameter correlation and the
ability to export extremely large sets of data in virtually
any format. CellSpecks allows us to meet both of these re-
quirements and with a public release provides a tool for re-
searchers solving similar problems.

Although manual analysis was clearly missing some
small or infrequent events that became apparent on a second
close inspection, the sheer number of these legitimate chan-
nels, for example, as depicted in Fig. 4, expounds the impor-
tance of automatic detection and analysis. Without these
channels, an analysis of Ca2þ flow would be incomplete
at best. With this data, we can confidently analyze the pop-
ulation PO and maximal amplitudes. Parameters such as
PO—the distribution of which is shown, for example, in
Fig. 5 C—prove meaningful when compared to the same
channel population after the addition of, for instance, an
nAChR antagonist. Other parameters—such as the mean
open time, mean closed time, maximal amplitude distribu-
tions for each channel (e.g., Fig. 6, A, B, and D), and
lifetimes and amplitudes of all events detected in the
recording (e.g., Fig. 6, A, B, and D) that CellSpecks
stores—can be used in much the same manner to infer
meaningful relationships. Our ability to determine temporal
relationships from the channel-chip representation (for
example, Fig. 6 H) and spatial relationships from channel
location maps (for example, Fig. 2, left panel) hold endless
potential as a beneficiary of CellSpecks’ ability to retain and
reuse detection information in memory. Importantly, all this
information can be accessed with a few clicks without se-
lecting or adjusting any parameters in the software.

Though the need for yet another data or image analysis
program is not the first conclusion when confronted with
a new type of experimental data, the scarcity of signal-
detection software capable of accepting video data sets
and accounting for variable experimental parameters such
as spot size, duration and intensity drove the desire to
have a flexible framework within which current and future
Biophysical Journal 115, 2141–2151, December 4, 2018 2149
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experimenters could design and execute sophisticated algo-
rithms and statistical analysis. CellSpecks, the program
developed for the purpose of automating localized cell
membrane Ca2þ event detection, is in the short term an
effective tool but more importantly a good basis for future
development.
SUPPORTING MATERIAL

Supporting Materials and Methods, one video, and one data file are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)

31163-9.
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