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Timecourse of neural signatures of object recognition 

Jeffrey S. Johnson Center For Neuroscience, UC Davis, Davis, CA, USA  

Bruno A. Olshausen 
Center For Neuroscience, UC Davis, Davis, CA, USA and 

Redwood Neuroscience Institute, Menlo Park, CA, USA   

How long does it take for the human visual system to recognize objects? This issue is important for understanding visual 
cortical function as it places constraints on models of the information processing underlying recognition. We designed a 
series of event-related potential (ERP) experiments to measure the timecourse of electrophysiological correlates of object 
recognition. We find two distinct types of components in the ERP recorded during categorization of natural images. One is 
an early presentation-locked signal arising around 135 ms that is present when there are low-level feature differences 
between images. The other is a later, recognition-related component arising between 150-300 ms. Unlike the early 
component, the latency of the later component covaries with the subsequent reaction time. In contrast to previous studies 
suggesting that the early, presentation-locked component of neural activity is correlated to recognition, these results imply 
that the neural signatures of recognition have a substantially later and variable time of onset. 

Keywords: object recognition, visual cortex, electrophysiology, ERP, ERPimage 

 Introduction 
In the real world, survival is contingent upon the 

rapid, accurate recognition of objects. Despite extensive 
research in both neuroscience and computer science, how 
this task is accomplished remains a mystery.  

One view is that object recognition constitutes a 
chicken-egg type problem between lower and higher levels 
of image analysis. The low-level shape features that are 
useful for identifying an object - edges, contours, surface 
curvature and the like - are typically ambiguous in natural 
scenes, so they cannot be computed directly based on a 
local analysis of the image. Rather, they must be inferred 
based on global context and higher-level knowledge. 
However, the global context itself will not be clear until 
there is some degree of certainty about the presence of 
low-level shape features. A number of theorists have thus 
argued that recognition depends on information 
circulating through cortico-cortical feedback loops in 
order to disambiguate representations at both lower and 
higher levels in parallel (Mumford, 1994; Ullman, 1996; 
Lewicki & Sejnowski, 1997; Rao & Ballard, 1999; Lee & 
Mumford, In Press). 

However, a large body of both neurophysiological and 
psychophysical data suggests that recognition is 
performed so rapidly that it must be accomplished in one 
feedforward sweep of activity propagated through the 
visual system (Fukushima, 1980; Mel, 1997; Riesenhuber 
& Poggio, 1999; VanRullen & Thorpe, 2001a; 
VanRullen & Thorpe, 2002). For example, rapid serial 
visual presentation (RSVP) techniques (Intraub, 1999) 
and other masking paradigms (Breitmeyer, 1984) reveal 
behavioral selectivity to images presented for 100 ms or 
less. Single unit recordings in macaque superior temporal 

sulcus show that face-selective activity can be elicited by 
masked images presented for as little as 14 ms (Keysers, 
Xiao, Földiák & Perrett, 2001) and human functional 
magnetic resonance imaging (fMRI) studies have shown 
activations in object recognition areas to be correlated 
with masked image presentations as brief as 40 ms (Grill-
Spector, Kushnir, Hendler & Malach, 2000). This sort of 
result is difficult to reconcile with models requiring 
feedback because the original image should be replaced by 
a subsequent one by the time signals from higher level 
areas are fed back to lower levels. 

Further, it has been argued based on known 
biophysical and anatomical constraints (e.g. speed of 
spike propagation, number of cortical processing stages) 
that the earliest responses in macaque higher-level, object 
recognition areas must be based on one or at most two 
spikes per neuron in the pathways leading up to them 

(Thorpe & Imbert, 1989). This hypothesis is supported by 
latencies of about 100 ms reported for neurons in 
macaque inferotemporal cortex (IT) (Nowak & Bullier, 
1997). Response latencies and reaction times in 
recognition tasks are a bit later in humans than macaques 

(Fabre-Thorpe, Richard & Thorpe, 1998), so that in 
humans, intracranial EEG studies show the earliest 
response latencies in the facial recognition areas of the 
fusiform gyrus to be 130-140 ms (Allison, Puce, Spencer 
& McCarthy, 1999). This 30-40 ms delay is presumably 
due to the increased conduction times associated with 
larger head size.  

A study of the timecourse of object recognition in 
humans has revealed a component in the 
electroencephalogram (EEG) arising approximately 150 
ms after image presentation that is related to the 
detection of objects in complex natural scenes (Thorpe, 
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Fize & Marlot, 1996). Importantly, this signal is 
presentation-locked, meaning that the timing of its onset 
is constant across trials and is not correlated with the 
subsequent reaction time. The latency of this component 
is also constant for both novel and previously learned 
images (Fabre-Thorpe, Delorme, Marlot & Thorpe, 2001). 
Thus, EEG differences seen in object recognition tasks 
are nearly as fast as the earliest known responses in 
higher-level areas. These results seem to leave little or no 
opportunity for recurrent activity in cortical feedback 
loops to have an effect on the earliest responses in IT, and 
suggest that object recognition is performed in a rapid, 
feedforward manner without regard to the particular 
object present, the context, or familiarity. 

One difficulty in using methods such as EEG or 
other physiological signals to measure the timecourse of 
object recognition arises from the fact that various visual 
features are not equally probable across image categories. 
For example, certain spatial frequencies, textures, colors, 
and simple spatial patterns may be associated with a given 
category of images without necessarily being diagnostic for 
the objects themselves. Low-level features such as these 
could be detected in parallel and might give rise to a 
purely stimulus-related pre-recognition EEG signal that 
varies across categories of images. This sort of signal could 
be easily confused with target-related signals that depend 
upon the completion of object recognition. As such, 
when comparing the average EEG waveforms obtained 
from different categories of images, any differences could 
be due to non-specific visual processing as well as the task 
relevance of the stimuli. Interestingly, experiments that 
control for featural differences by mixing together images 
from different categories (VanRullen & Thorpe, 2001b) 
also show differences in the EEG which rise to 
significance around 150 ms, but the topographical 
distribution and overall timecourse of these difference 
signals are not the same as those obtained when different 
categories are compared. This raises the question as to 
whether there are different underlying neural processes at 
work in the two cases. 

Here we address this question by examining the 
nature of the EEG signals obtained in two types of 
categorization tasks. In the first task, subjects categorize 
stimuli into animal and nonanimal categories, so that 
there are potential low-level feature differences between 
target and nontarget images, similar to previous 
experiments (Thorpe, Fize & Marlot, 1996; Fabre-Thorpe 
et al., 1998; Fabre-Thorpe et al., 2001). In the second 
task, the target categories change from trial to trial and 
the images assigned to these categories are arranged so as 
to ensure that the pool of target and nontarget images is 
identical across subjects. Thus, any EEG differences 
between targets and nontargets in the second task must 
be contingent upon recognition rather than due to image 
features. We show that the earliest differences reliably 
contingent upon recognition appear between 152 and 
300 ms after presentation and have an onset which 

covaries with the subsequent reaction time. Earlier 
differences, which appear by 137 ms and are presentation-
locked, only occur when comparing signals evoked by 
images with featural differences, suggesting that they are 
due to differences in early visual processing rather than 
the result of recognition. These results suggest that the 
timecourse of object recognition, while still quite rapid, is 
not as fast as previously thought. We discuss the 
implications of these results for models of recognition. 

Methods 

Participants 
A total of thirty-nine adult subjects (10 males and 29 

females, aged 18 to 41 years) participated in the four 
experiments reported in this study. Seven subjects 
participated in Experiment 1, twelve in Experiment 2, 
twelve in Experiment 3, and eight in Experiment 4. All 
participants had normal or corrected to normal vision. 
All participants gave informed consent and the UC Davis 
Human Subjects IRB approved all studies. 

Stimuli 
Sample images used in the four experiments 

described here are shown below (Figure 1). Images used in 
Experiment 1 were taken from a commercially available 
collection (Corel Photo CDs, out of production) and 
included images of animals, flowers, and other outdoor 
scenes. The images used in Experiments 2 and 4 were 
created by digitally centering a cutout image of an object 
(Hemera Photo-Objects) against one of thirty artificially 
created backgrounds. The backgrounds were created to 
match the images from Experiment 1 in terms of both 
their spatial and color second order statistics (pairwise 
correlations) by generating 1/f noise for each of the 
principal components in color space and scaling each by 
the square root of the variance along each component. 
Experiment 2 also used these background images without 
a superimposed object (“Background-Only”). Images from 
Experiment 3 were collected from the internet. The 
following links provide additional, full-sized examples of 
the images used in Experiment 1, Experiments 2 and 4, 
and Experiment 3. 

Experimental Procedures 
Two types of experiments were used in this study, a 

“single-category” experiment and three “cued-target” 
experiments.  

In the single-category case, subjects were given one 
category (“animal”) which served as the target for the 
duration of the experiment. Images were presented for 40 
ms and were not masked. There was a delay of 3300-3700 
ms between images (Figure 2). The timing of the image 
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remained on the screen until the subject was ready to go 
and performed a button press to initiate the trial. After an 
additional 500-700 ms delay, the image was presented for 
40 ms, not masked. The next target cue appeared 1700 
ms after the previous image (Figure 2). Subjects were 
asked to make button-press responses as quickly as 
possible and to delay their blinks after each image until 
the subsequent target cue appeared. 

All images were centrally presented on a CRT 
monitor. Image presentation was controlled by a PC 
running the software Presentation (NeuroBehavioral 
Systems). Viewing distance was 75 cm except for 
Experiment 3 where the viewing distance was 65 cm. 

Experiment 1: Single-category experiment. This 
experiment had two conditions: “forced choice”, where 
subjects pressed one button if the image contained a 
target and another button if the image contained no 
target, and “go/no-go”, where subjects pressed one button 
if the image contained a target and did nothing if the 
image contained no target. Counterbalances were made 
across subjects for button presses and for given image 
appearance in the forced choice or go/no-go condition. 
Six subjects viewed 500 images in the forced choice 
condition and 500 images in the go/no-go condition. 
One subject viewed 1000 images in the forced choice 
condition only. Targets and nontargets appeared equally 
in both forced choice and go/no-go conditions. Results 
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from nontarget images containing flowers were analyzed 
separately and are not included in this study. 

Experiment 2: Cued-target, 1/f Backgrounds 
experiment. Target cues were all formulated for entry 
level classification (Rosch, Mervis, Gray, Johnson & 
Boyes-Braem, 1976; Jolicoeur, Gluck & Kosslyn, 1984). 
Subjects viewed 990 images and made a forced choice 
response. Target objects, nontarget objects, and 
background-only images (which required a ‘nontarget’ 
response) appeared equally frequently. Counterbalances 
were made across subjects for button presses and target 
status of individual images (except background-only 
images). Results from background-only images were 
analyzed separately and are not included in this study.  

Experiment 3: Cued-target, Natural Backgrounds 
experiment. Target cues were presented at two levels of 
abstraction, entry level and superordinate level. Cues of 
both levels of abstraction were randomly interleaved. 
Subjects viewed a total of 1000 images. Superordinate 
level targets, superordinate level nontargets, entry level 
targets, and entry level nontargets appeared equally 
frequently. Because some superordinate categories were 
less intuitive than others, subjects were briefed on the 
superordinate categories before the experiment. 
Counterbalances were made across subjects for target 
status and required level of classification of individual 
images. 

Experiment 4: Cued-target, Motor Related Control 
experiment. 1/f background images used in Experiment 4 
all contained objects; no background-only images were 
used. This experiment had two conditions, Respond-
Target and Respond-Nontarget. Both conditions were 
go/no-go and consisted of 500 images. Targets and 
nontargets appeared equally frequently. The Respond-
Target condition was run in its entirety before the 
Respond-Nontarget condition. Subjects were not 
informed of the upcoming change in condition until it 
occurred. Counterbalances were made across subjects for 
target status and response mode condition (forced choice 
or go/no-go) of individual images. 

The following links provide full lists of the target cues 
used in Experiment 2 (entry level) and Experiment 3 
(entry level and superordinate level), along with some 
associated data including number of times used, and 
average reaction time. The target cues used in Experiment 
4 were identical to those in Experiment 2, and are not 
included. 

EEG Recording and Data Analysis 
Subjects were fitted with a 19-channel electrode cap 

(Electro-Cap International, Eaton, Ohio) and were 
prepared for EEG recording according to standard 
techniques. Recorded channels (FP1, FP2, F7, F3, FZ, F4, 
F8, T7, C3, CZ, C4, T8, P7, P3, PZ, P4, P8, O1, O2) were 
selected from the International 10-20 set of electrode 
positions (American Electroencephalographic Society, 

1994). In addition to the cap electrodes, facial electrodes 
were attached to record horizontal and vertical 
electrooculogram (EOG). All recordings were referenced 
to the right mastoid. Subjects performed the experiment 
in a darkened, sound-dampened, electrically shielded 
booth. EEG signals were amplified (SA Instrumentation, 
San Diego) with a high-pass cutoff of 100 Hz and a low-
pass cutoff of 0.01 Hz, then sent through an analog-to-
digital converter before being recorded at 256 
samples/sec on a PC running Digitize (Arthur Jones, 
LBNL). 

Raw data were normalized, artifact rejected, and 
analyzed using Matlab software developed in-house. 
Software for the display of scalp topographies was 
developed by Scott Makeig (Salk Institute, San Diego). 
Data were artifact rejected on a trial-by-trial basis for 
eyeblink and on a channel-by-channel basis for drift, 
blocking and excessive alpha wave. 

To create the ERPimages, individual correct-response 
EEG trials were assigned to 3.9 ms (one sample) wide bins 
on the basis of reaction time (RT) and an average was 
calculated for each bin. Bins with RTs between 300 and 
600 ms were sorted by RT. Each averaged bin was then 
vertically expanded, with an expansion factor 
proportional to the number of EEG trials underlying the 
average. In the case of the difference ERPimages, the 
averaged nontarget bin was subtracted from the averaged 
target bin to create one difference wave at each RT. These 
difference waves were then sorted by RT and expanded, 
with an expansion factor proportional to the lesser of the 
number of EEG trials, target or nontarget, underlying the 
original RT bins before subtraction. All ERPimages were 
then smoothed vertically with a Gaussian filter having a 
standard deviation of 1/50 the height (number of 
expanded trials) of the plot.  

To perform the spatial frequency image analysis, the 
center 512x512 pixel region of each image was extracted 
and windowed with a 1-cycle cosine function (to remove 
boundary artifacts). The power spectrum of each 
windowed image was calculated by the discrete Fourier 
transform, and then averaged over all images for a 
particular class. The average power spectrum was then 
bandpass filtered into 9 one-octave bands spaced by 1/2 
octave, at 8 orientations each. This resulted in an 8x9 
element array containing the power in each band, which 
was then interpolated in 2D with a cubic spline.  

Results 

Image Statistics 
In the "single-category" paradigm, target and 

nontarget categories were composed of different sets of 
images – “animal” images and “nature” images. These two 
sets of images could potentially differ in terms of low-level 
image statistics. For instance, textures or shapes associated 

 

http://eveleth.arc.nasa.gov/3/7/4/entry_list_2.html
http://eveleth.arc.nasa.gov/3/7/4/entry_list_3.html
http://eveleth.arc.nasa.gov/3/7/4/super_list_3.html
http://www.electro-cap.com/
http://www.sainstruments.com/products.htm
http://www.sainstruments.com/products.htm
http://deimos.lbl.gov/~arthur/html/digitize.html
http://deimos.lbl.gov/~arthur/html/digitize.html
http://www.sccn.ucsd.edu/eeglab/
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Target Minus Nontarget Signals with fur, eyes and other animal parts, the horizon, sky, 
trees, land terrain, water and other image features are 
likely to be unevenly distributed across the animal and 
nature categories. This could potentially give rise to 
measurable neural processing differences unrelated to 
object recognition in striate or early extrastriate cortex.  

The trial-averaged EEG waveform – known as the 
event-related potential (ERP) – was computed separately 
for target and nontarget stimuli. These two ERPs were 
directly compared by subtracting the nontarget ERP from 
the target ERP. For both single-category and cued-target 
tasks, the resulting difference waveform shows an early 
positive divergence centered around frontal and central 
electrodes.  

While there are a host of potential differences in low-
level features and textures between the two sets of images, 
differences in the power spectrum are the easiest to 
demonstrate. A spatial-frequency analysis of the animal 
and nature images (excluding images containing flowers) 
used in our single-category experiment reveals substantial 
differences in the power spectrum – namely, scenes 
containing animals have approximately equal power in all 
directions whereas those without animals have much 
more power in the vertical spatial frequencies (Figure 3). 
Similar differences in the average power spectra between 
major categories of images have been shown previously 
(Oliva & Torralba, 2001). 

The grand average ERP waveforms for the forced 
choice, single-category task at electrode FZ are plotted in 
Figure 4a. The first differences between targets and 
nontargets arise in the first positive deflection, which 
begins about 100 ms after image onset. The ERP 
difference waveform for this task (Figure 4f, black) has 
two separate peaks, an early peak rising before 150 ms 
and a late peak starting around 300 ms. Both peaks have 
a maximum amplitude of about 4 µV. To determine 
when the ERPs recorded for targets and nontargets first 
significantly differ, we used a two-sample t-test for 
difference of means. In order to avoid counting spurious 
deflections from baseline, we considered the onset of 
difference to be the first sample point for which the 
calculated p-value was less than 0.01 and for which the 
following 9 samples (10 consecutive points) also reached 
the same criterion. By this definition, targets and 
nontargets differed as early as 137 ms after presentation. 
The timecourse of this difference signal is similar, but 
slightly earlier than that reported in previous single-
category studies (Thorpe, Fize & Marlot, 1996).  

The design of the "cued-target" paradigm ensured that 
each image appeared equally in both the target and 
nontarget conditions, across subjects. Since the set of 
target images and the set of nontarget images were 
identical, there were no differences in low-level features, 
spatial frequency or otherwise, between the images. The 
only difference between target and nontarget images was 
in their conceptual status, not in their featural content. 
Two types of images were used in the cued-target 
experiments, one with cutout photos of objects digitally 
placed atop an artificial 1/f background (“1/f BG”), and 
another with objects in their natural context (Figure 1). 
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 3.  Power spectrum of animal and nature images.  Each plot shows the average power spectrum (in log-polar coordinates) for 
ndomly selected images from each class (see methods).  The animal images have a more even distribution of power among 
nt orientations.  The strong anisotropy in the nature images is most likely due to the presence of the horizon, which produces 
 power at 90 degrees orientation in the spatial-frequency domain.  Both plots are normalized to the same scale.
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Because previous single-category studies were done 
with go/no-go responses instead of forced choice 
responses, we also ran the single-category experiment in a 
go/no-go response mode. The waveforms for the go/no-
go experiment are shown in Figure 4b and the 
corresponding difference between targets and nontargets 
in Figure 4f, dark blue. The ERPs and difference 
waveforms are quite similar, especially in the first 300 ms, 
to those from the forced choice version of the single-
category task. Here, targets and nontargets first differed 
148 ms after presentation. 

The ERPs for the cued-target task using 1/f 
backgrounds (Figure 4c) show that the first positive 
deflection has a much lower amplitude than in the single-
category condition. Moreover, while targets and 
nontargets are clearly different by the peak of the first 
positivity in the single-category task, they are only 
beginning to differ at the corresponding time in the cued-
target task. The difference waveform obtained in this task 
(Figure 4f, red trace) rises much more slowly (first 
significance 187 ms) than those in the single-category 
task, and has only one clear peak with a much higher late 
maximal amplitude of 10 µV. This positive, posterior 
signal during target detection is similar in latency, though 
not in amplitude, to previous reports of target-related 
signals (VanRullen & Thorpe, 2001b), and bears 
similarity to those found in many other target detection 
studies (Sutton, Braren, Zubin & John, 1965; Picton, 
1992). 

Aside from the fundamental change in task, there 
were two other changes between the single-category 
experiment and the 1/f BG cued-target experiment which 
might have affected the nature of the difference 
waveforms. The first was that in the 1/f background cued-
target experiment, pictures of cutout objects appeared 
against artificial backgrounds rather than in their natural 
context. To determine if this caused the changes in the 

difference waveforms, a subsequent cued-target 
experiment was run with objects in their natural context 
(see Figure 1). In this case, both the ERPs (Figure 4d) and 
the difference waveforms (Figure 4f, green) resemble the 
1/f BG cued-target task. They feature a single peak with a 
maximal amplitude of 7.75 µV and the difference is first 
statistically significant 172 ms after presentation. Despite 
the disparity of the image backgrounds in the two 
versions of the cued-target task no qualitative differences 
are evident between the two, suggesting that the signals 
that we are recording are relatively insensitive to the 
nature of the image background.  

A second change between the single-category and 1/f 
BG cued-target experiments was the level of abstraction of 
the requested categorization. In the single-category 
experiment, the target category was at a superordinate 
level of abstraction (“animal”), whereas in the 1/f BG 
cued-target experiment, the target categories were at a 
lower, entry level of abstraction (e.g. “cat”, “chair”) 
(Rosch, et al. 1976, Jolicoeur, Gluck & Kosslyn, 1984). In 
the natural image cued-target experiment, participants 
also categorized some images at the superordinate level 
(e.g. “animal”, “furniture”) to match the categorizations 
made in the single-category task. Again, the ERPs for 
these trials resembled those in the 1/f BG cued-target 
condition (Figure 4e). The difference waveforms (Figure 
4f, light blue) maintain the single peak typical of cued-
target tasks, and have an even slower onset (first 
significance 207 ms). However, the maximal amplitude of 
the difference drops to 3.5 µV, similar to that of the 
single-category difference. 

Scalp topographies reveal dramatic differences 
between the distribution of these potentials across both 
space and time. The scalp topography of the single-
category (forced choice) difference captures the two peaks 
seen in the ERP difference waveform (Figure 5a). The first 
peak consists of a frontal positivity coupled with a strong 
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igure 5.  Earliest differences in Single-category Task and Cued-target task differ in ERP scalp topography.  Time series of topography 
lots from 117-398 ms.  (a) Single-category task, target minus nontarget.  The early difference peak shows a frontal positivity and 
ccipito-temporal negativity.  The late difference peak shows central positivity with little occipito-temporal negativity.  (b) Cued-target 
ask, 1/f BGs, target minus nontarget.  One peak, with a timecourse similar to the late peak in (a) shows central positivity with little 
ccipito-temporal negativity. 
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bilateral occipito-temporal negativity, while the second 
peak is a central positivity and lacks the negative occipito-
temporal component. The single peak of the 1/f BG 
cued-target experiment (Figure 5b) has a time course and 
scalp distribution which closely resemble those of the 
second peak of the single-category experiment, and lacks 
the bilateral occipito-temporal negativity characteristic of 
the first peak. 

Presentation-Locked and Reaction-
Time Dependent Signals 

To further investigate the differences between the 
single-category and cued-target conditions, we utilized a 
modified version of the ERPimage (Jung, Makeig, 
Westerfield, Townsend, Courchesne & Sejnowski, 1999; 
Makeig, Westerfield, Jung, Enghoff, Townsend, 
Courchesne & Sejnowski, 2002). The ERPimage shows 
the EEG waveforms from all trials sorted by reaction 
time, and thus clearly reveals the presentation-locked and 
reaction-time related components contributing to the 
ERP. Individual EEG trials were separated by target 
status, and each group was sorted and binned by reaction 
time to create an ERPimage. We then compared the 
binned ERPimages for targets and nontargets by 
subtracting the latter from the former. This difference 
ERPimage reveals the trial-by-trial differences in the EEG 
for trials having the same reaction time (see methods for 
more detail on ERPimage creation). ERPimages were 
created for both the single-category (forced choice) 
experiment and the 1/f BG cued-target experiment. 

The target and nontarget ERPimages at electrode FZ 
(Figures 6a, 6b) show presentation-locked activity as 
vertical structure. Activity that is correlated with the 
reaction time has a diagonal structure, often closely 
following the displayed reaction time (RT) curve (solid 
black line). 

The difference ERPimage for the single-category task 
(Figure 6c, left) shows that the earliest differences arise 
from presentation-locked components. The dashed 
vertical line indicates the onset of statistical significance 
for these trials (see Figure 4) and the target minus 
nontarget positivity is evident at the onset of statistical 
significance regardless of reaction time. Difference ERPs 
(Figure 6d, left) created for fast-RT trials (300-400 ms 
response) and slow-RT trials (400-500 ms response) do 
not differ greatly in amplitude or onset time in the single-
category task. 

The difference ERPimage for the 1/f BG cued-target 
task (Figure 6c, right) shows that the earliest differences 
are not only slower but are also dependent on the 
reaction time for a given trial rather than presentation-
locked. The target minus nontarget differences on fast-RT 
trials rise more quickly than on slow-RT trials. In contrast 
to the single-category task where all trials appeared to 
contribute equally to the statistical significance, in the 

cued-target task only the fastest trials appear to be 
responsible for the earliest statistically significant 
differences. In fact, in the slowest trials shown in Figure 
6c (right), the difference does not appear to arise before 
300 ms. Difference ERPs for fast- and slow-RT trials 
(Figure 6d, right) also reflect the RT-dependent 
component of this difference. 

We calculated the time of first statistical significance 
for fast- and slow-RT trials for both the single-category 
and cued-target tasks shown in Figure 6d. Using the same 
statistical criterion as before (p < 0.01, ten consecutive 
samples) we see a time lag for first significance in the 
cued-target task, with fast-RT trials first differing at 187 
ms and the slow-RT trials first differing at 219 ms, a delay 
of 32 ms. If we adopt a stricter statistical criterion (p < 10–

4, five consecutive samples), this delay extends to 63 ms 
(fast-RT = 195 ms, slow-RT = 258 ms). There was a small 
11 ms delay in the single-category results under the 
original criterion (fast-RT = 137 ms, slow-RT = 148 ms) 
that disappeared using the stricter criterion (fast-RT = 
slow-RT = 152 ms).  

The onsets of the earliest differences seen in the cued-
target case are correlated with the subsequent reaction 
time, while the onsets of those in the single-category case 
are, if anything, only marginally correlated with RT. The 
development of RT-dependence, taken together with 
changes in overall latency, number of peaks, peak 
amplitude, and scalp topography, very strongly suggest 
that the earliest ERP differences in the cued-target case 
are not simply a delayed form of the same signal seen in 
the single-category case. Since the fast, presentation-
locked differences are seen only in the single-category case 
- where the images contain demonstrable low-level feature 
differences - but not in the balanced cued-target case, it 
seems likely that they are due to differences in early visual 
processing rather than the completion of object 
recognition.  

Motor-Related Control 
In order to determine if the target-related signal we 

found could be due to motor effects (motor planning, 
motor execution, motor countermand) rather than target 
awareness, we performed a task swapping experiment. 
Subjects were given a cued-target task with 1/f BG images, 
but asked to respond in a go/no-go fashion only to targets 
for the first half of the experiment, then only to 
nontargets for the second half. Subjects were not 
informed of the impending reversal in response mode 
until the time came to change. The target minus 
nontarget difference in the first half of the experiment 
corresponded to a response minus no-response condition. 
In the second half of the experiment, the target minus 
nontarget difference corresponded to the reverse case: a 
no-response minus response condition. If the signals we 
see are due to differences in motor preparation or output 
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Figure 6.  ERP Images show presentation-locked and RT-dependent activity in target minus nontarget comparisons.  Black curve 
indicates reaction time on each trial. All plots are at electrode FZ.   (a) Target ERP Images.  Early activity is presentation-locked, later 
activity has some correlation with RT. (b) Nontarget ERP Images.  (c)  Target minus Nontarget differences.  Vertical dashed line shows 
first time of significance (see Figure 3).  Vertical solid lines (blue = 300-400 ms, red = 400-500 ms) identify trials used in fast-RT and 
slow-RT ERPs in (d) below.  The first difference in the single-category condition is presentation-locked.  The first difference in the cued-
target condition rises more quickly on fast-RT trials than slow-RT trials.  (d)  Difference ERPs, split by RT.  Blue traces, RT = 300 – 400 
ms.  Red traces, RT = 400 – 500 ms.  The first differences for fast-RT and slow-RT trials are identical for the single-category condition.  
In the cued-target condition, the fast-RT differences rise more quickly than slow-RT differences. 
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between target and nontarget responses, we should expect 
them to reverse in sign and follow the motor response 
rather than the target status of the image in the second 
half of the experiment. The ERP waveforms and 
difference waveforms (Figure 7) are similar to those for 
cued-target conditions in duration, amplitude, and scalp 
topography. They clearly do not reverse sign as would be 
expected for a motor-related signal suggesting that they 
are not due to motor effects but rather to the conceptual 
status of the image as target or nontarget. 

In the respond-target condition, the difference 
becomes significant 152 ms after presentation. This is the 
earliest difference seen in any cued-target task in this 
study. The difference waveforms rise somewhat later 
during the more difficult respond-nontarget condition, 
becoming significant at 176 ms.  

Reaction Times and Accuracy 
One possible concern in comparing results from the 

single-category and cued-target tasks is that the cued-target 
task, with its switching targets, may be inherently more 
difficult that the single-category task. A comparison of the 
reaction times and accuracy for targets in the single-
category task (Table 1, 427 ms, 94.1%) and the 
corresponding superordinate categorizations in the cued-
target task (520 ms, 86.9%) might suggest that the cued-
target response mode is more difficult than the single-
category response mode. While this could be due to the 
switching of target category, another possibility is that the 
required categorizations are more difficult in the cued-
target case. However, if we look only at cued-target trials 
for which the target cue was “animal”, target responses 
(438 ms, 95.8%) are slightly more accurate and only 11 
ms slower than those seen in the single-category 

experiment. This suggests that the cued-target paradigm 
per se is not significantly more difficult than the single-
category paradigm, but rather that the single-category 
target of “animal”, though nominally superordinate, is 
easier than the other superordinate categorizations it was 
grouped with in Experiment 3. In addition, when the 
same images are categorized at both superordinate and 
entry levels, we find a 56 ms delay for superordinate 
categorization, similar to reports of a 50 ms delay in a 
similar task using line drawings (Rosch, et al., 1976). This 
suggests that the superordinate categories we chose were 
not unusually difficult ones. 
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able 1. Accuracy and Reaction Time. 

xperiment Target 
% 

Target 
RT 

Nontarget 
% 

Nontarget 
RT 

1, Forced Choice 94.1 427 96.3 467 
1, Go/No-Go 93.7 399 92.3 n/a 
2 90.1 432 96.2 450 
3, Entry 93.9 464 96.9 507 
3, Superordinate 86.9 520 92.5 563 
3, “Animal” 95.8 438 97.4 516 
4, Go Target 97.3 423 96.5 n/a 
4, Go Nontarget 92.4 n/a 98.9 520 

Separated by target and nontarget.  Experiment 1 separated 
into forced choice and go/no-go conditions.  Experiment 3 
separated into entry-level and superordinate-level 
categorizations.  Trials from Experiment 3 where the 
superordinate category was “animal”, most similar to 
Experiment 1, are included in Experiment 3, superordinate but 
lso shown separately.  Experiment 4 separated into go-on-
arget and go-on-nontarget conditions.   
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Two other observations merit comment. First, go/no-
go categorizations appear to be easier than forced choice 
categorizations, as we would expect from the easier 
mapping of task to motor output. This change in 
difficulty seems to be manifested mostly in reaction time 
in the single-category case (399 ms vs. 427 ms) and in 
accuracy in the cued-target case (97.3% vs. 90.1%). 
Second, there is a difference between performance in the 
entry level cued-target task for natural images (464 ms, 
93.9%) and images with artificial backgrounds (432 ms, 
90.1%). This might be accounted for by a speed/accuracy 
tradeoff, but certain characteristics of the natural images 
(potential ‘distractor’ objects, object not always centered 
at fixation, etc.) may also play a part in the slower reaction 
times in this case. 

Discussion 
We have shown that the earliest components in the 

EEG that are correlated with recognition have an onset 
that varies between 150 and 300 ms and is correlated 
with the subsequent reaction time. These results stand in 
stark contrast to previous EEG studies showing early, 
fixed latency components correlated with object 
recognition arising around 150 ms (Thorpe, Fize & 
Marlot, 1996; Fabre-Thorpe et al., 1998; Fabre-Thorpe et 
al., 2001). These previous studies are equivalent to our 
"single-category" paradigm, in which we show that the 
early, fixed-latency components (in our case, arising ~135 
ms) are most likely due to low-level feature differences in 
the images. We therefore conclude that the early 135-150 
ms onset, fixed-latency component in the EEG 
corresponds to differences in early visual processing 
among images, and that the neural signatures actually 
corresponding to object recognition occur later and with 
variable latency. 

These studies also demonstrate that a population-
wide p-value of the ERP is not necessarily representative 
of the average signal latency. While the population-wide 
p-value is useful for determining the latency of a stimulus-
locked signal, as seen in the single-category experiment, it 
appears from our data to be highly biased by the fastest 
reaction time trials when estimating the latency of an RT-
dependent signal. As such, it is difficult to draw 
conclusions about the correspondence of ERP differences 
across experiments on the basis of p -value latencies alone. 
The ERPimage (Jung, et al., 1999) has the advantage of 
showing both stimulus-locked and RT-dependent 
components simultaneously, making it more valuable 
than a simple global p-value for the analysis and 
interpretation of EEG components that may not have a 
constant latency. 

It should be noted that although we have attributed 
the earliest differences in neural activity in the single-
category case to low-level feature differences, this does not 
preclude these features playing a role in recognition. For 

instance, Ullman has argued (Ullman, Vidal-Naquet, & 
Sali, 2002) that pictorial image features of “intermediate 
complexity” are the most useful features for the 
discrimination of objects. In addition, it has been shown 
that natural images can be classified into animal and 
nonanimal categories at a success rate of 80% using 
nothing but measures of global image statistics such as the 
power spectrum (Torralba & Oliva, In Press), suggesting 
that some low-level features are fairly consistent within 
categories of images. Thus, the visual system might be 
able to build a good template of the features associated 
with a category and use this template to make preemptive 
categorizations with reasonable accuracy. This sort of 
template could range from a simple list of features which 
are expected to be present to a complex mental image of 
the object in question. If such a template is created, the 
early differences we ascribe to low-level visual processing 
may in fact represent an interaction between the bottom-
up processing of the image and a top-down target 
template. 

The results from this study can be interpreted to 
support a top-down template model if it is assumed that 
in the cued-target case, subjects were not able to 
adequately create the necessary template. The subjects 
were forced to change their target for every image in the 
cued-target experiments, but had only one target for the 
duration of the single-category experiment. Although the 
cued-target trials were self-paced (i.e., the subjects were 
not rushed into a subsequent image presentation before 
they deemed themselves ready), it is possible that top-
down template priming requires a longer time - on the 
order of tens to hundreds of seconds - to establish. 
Alternatively, in the single-category case the visual system 
might learn, over the course of many animal and nature 
scenes, its own template of features which are commonly 
associated with each category. This sort of learning would 
be difficult in the cued-target case because of the large 
number of different target categories and the low number 
and non-consecutive presentations of each. If either of 
these scenarios holds, it is possible that the earliest target 
minus nontarget differences in single-category tasks 
represent a special form of recognition based on low-level 
features of the images rather than simply processing of 
the image features themselves. However, this sort of 
feature-based recognition would require a long-term 
preparatory strategy (as evidenced by the lack of 
differences in the cued-target case) that is unlikely to be of 
use in everyday object recognition. 

The experiments reported here also provide new 
insights into the neural signatures of superordinate level 
categorization. We find that the amplitude of target-
related differences in the cued-target, natural images 
experiment depends greatly on the requested level of 
categorization, with the amplitude of entry level 
differences on the order of twice as great as that of 
superordinate level differences. The amplitudes of these 
differences compare well with those seen at the same 
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levels of categorization in Experiments 1 and 2 (Figure 
4f), and may reflect a greater level of certainty of 
categorization. Another possibility is that the entry level 
cues allow a more precise target template to be created, 
leading to a better match (as discussed above, albeit this 
time applying to the later, RT-dependent signal, not the 
earlier stimulus-locked signal). Previous 
electrophysiological studies (Tanaka, Luu, Weisbrod & 
Kiefer, 1999) have suggested that superordinate level 
categorization occurs as late as 340 ms after image 
presentation. Given that entry level categorization appears 
to occur in as little as 152 ms, this would imply that the 
additional processing required for superordinate 
categorization might take as much as 200 ms. However, 
we have found evidence of target/nontarget differences at 
the superordinate level arising as early as 207 ms, which 
suggests that superordinate processing takes much less 
time than previously reported. 

While is it not possible to discern whether the 
recognition-related component we observe in the EEG 
reflects the act of object recognition, the target decision 
or yet another process, it seems clear that this component 
can arise only after the target status of the image is 
known. Since the knowledge of target status is dependent 
on successful recognition, our measurements serve as an 
upper bound for the time of recognition itself. Thus, 
there is a variable 20-170 ms delay between the 
hypothetical physiological lower bound of 130 ms in a 
purely feedforward scheme (Thorpe & Imbert, 1989; 
Allison, et al., 1999) and our measured upper bound of 
150-300 ms.  

One hypothesis for this delay is that it reflects the 
extra time needed for recurrent activity to circulate in 
cortico-cortical feedback loops. A number of theorists 
have argued that recurrent processing between higher and 
lower levels of visual cortex is a necessary aspect of 
perception. Some have emphasized the role of binding of 
features (Grossberg, 2001; Knoblauch & Palm, 2001), 
while others have proposed that it sends the predictions 
of higher levels to lower levels to “explain away” (Rao & 
Ballard, 1999), or disambiguate (Lewicki & Sejnowski, 
1997; Lee & Mumford, 2003) representations at lower 
levels. There are numerous examples from 
neurophysiological studies in animals (Hupe, James, 
Girard, Lomber, Payne & Bullier 2001; Supèr, Spekreijse 
& Lamme, 2001), human event related potentials 

(Murray, Wylie, Higgins, Javitt, Schroeder & Foxe 2002; 
Noesselt, Hillyard, Woldorff, Schoenfeld, Hagner, Jancke, 
Tempelmann, Hinrichs & Heinze, 2002) and fMRI 

(Murray, Kersten, Olshausen, Schrater & Woods, 2002) 
suggesting that cortico-cortical feedback loops play an 
active role in perception. Our results, while not a direct 
demonstration of feedback processes at work, imply that 
there is at least enough time for considerable recurrent 
activity to occur prior to recognition. The fact that target-
related differences are correlated with the subsequent 
reaction time suggests that the first feedforward wave of 

activity through cortex may not always be sufficient to 
perform reliable recognition and that the routine use of 
feedback information could be a fundamental component 
of everyday visual processing. 

Yet another possibility is that the delay reflects the 
extra time required to simply integrate weak or 
ambiguous signals at various stages along the feedforward 
pathway. For example, evidence has been shown for 
neural signals that ramp up during the decision process 
with a rate that depends on the strength of the stimulus 
(Gold & Shadlen, 2000), suggesting a neural mechanism 
for integrating evidence. Although such integration would 
involve recurrent activity, it is typically hypothesized to 
occur only within each level of cortical hierarchy, not 
between them.  

One problem for both of these temporal-integration 
hypotheses, however, is the fact that behavioral 
performance remains good under strictly masked 
conditions (Breitmeyer, 1984; Intraub, 1999; Grill-
Spector, et al., 2000; Keysers, et al., 2001). A mask that 
wipes clean the cortical or LGN image should disrupt any 
obligatory feedback or integrative processes. However, if 
representations are sufficiently sparse (Olshausen & Field, 
1996; Vinje & Gallant, 2000), it may be possible for the 
representation of the mask or subsequent image to co-
exist with the previous activity pattern without destructive 
interference. This idea is supported by the fact that masks 
must be individually tailored to different types of images 
for maximum effectiveness. Thus, it is possible that 
feedback processes could still operate on persistent, sparse 
activity left untouched by subsequent visual information. 

Despite the somewhat slower timecourse for 
recognition measured in our experiments, it should be 
emphasized that the speed with which recognition occurs 
is still quite impressive. If cortico-cortical feedback 
processes are indeed a necessary prerequisite to 
recognition, then the number of iterations in these loops 
must be fairly small. The real challenge, however, is to 
understand what exactly is happening in these feedback 
loops at the level of neuronal representation and how 
they operate in more realistic, dynamic situations where 
both the eye and objects in the world are moving. In 
order to properly design experiments to investigate this, it 
will be necessary to develop more detailed, 
neurobiologically-based models of feedback and its role in 
scene analysis. 
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