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a b s t r a c t

Linear time-invariant systems are very popular models in system theory and applications. A fundamen-
tal problem in system identification that remains rather unaddressed in extant literature is to leverage
commonalities amongst related systems to estimate their transition matrices more accurately. To
address this problem, we investigate methods for jointly estimating the transition matrices of multiple
systems. It is assumed that the transition matrices are unknown linear functions of some unknown
shared basis matrices. We establish finite-time estimation error rates that fully reflect the roles of
trajectory lengths, dimension, and number of systems under consideration. The presented results are
fairly general and show the significant gains that can be achieved by pooling data across systems, in
comparison to learning each system individually. Further, they are shown to be robust against moderate
model misspecifications. To obtain the results, we develop novel techniques that are of independent
interest and are applicable to similar problems. They include tightly bounding estimation errors in
terms of the eigen-structures of transition matrices, establishing sharp high probability bounds for
singular values of dependent random matrices, and capturing effects of misspecified transition matrices
as the systems evolve over time.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of identifying the transition matrices in linear
ime-invariant (LTI) systems has been extensively studied in the
iterature (Buchmann & Chan, 2007; Kailath, Sayed, & Hassibi,
000; Lai & Wei, 1983). Recent papers establish finite-time rates
or accurately learning the dynamics in various online and of-
line settings (Faradonbeh, Tewari, & Michailidis, 2018b; Sarkar
Rakhlin, 2019; Simchowitz, Mania, Tu, Jordan, & Recht, 2018).
otably, existing results are established when the goal is to
dentify the transition matrix of a single system.

However, in many application areas of LTI systems, one ob-
erves state trajectories of multiple dynamical systems. So, in
rder to be able to efficiently use the full data of all state trajecto-
ies and utilize the possible commonalities the systems share, we
eed to estimate the transition matrices of all systems jointly. The

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Mattia
Zorzi under the direction of Editor Alessandro Chiuso.

∗ Correspondence to: 1045 La Avenida St, Mountain View, CA 94043.
E-mail addresses: admodi@umich.edu (A. Modi), mkshiranyf@gmail.com

M.K.S. Faradonbeh), tewaria@umich.edu (A. Tewari), gmichail@ucla.edu
G. Michailidis).
ttps://doi.org/10.1016/j.automatica.2024.111635
005-1098/© 2024 Elsevier Ltd. All rights reserved.
range of applications is remarkably extensive, including dynamics
of economic indicators in US states (Pesaran, 2015; Skripnikov
& Michailidis, 2019a; Stock & Watson, 2016), flight dynamics of
airplanes at different altitudes (Bosworth, 1992), drivers of gene
expressions across related species (Basu, Shojaie, & Michailidis,
2015; Fujita et al., 2007), time series data of multiple subjects
that suffer from the same disease (Seth, Barrett, & Barnett, 2015;
Skripnikov & Michailidis, 2019b), and commonalities among mul-
tiple subsystems in control engineering (Sudhakara, Mahajan,
Nayyar, & Ouyang, 2022).

In all these settings, there are strong similarities in the dynam-
ics of the systems, which are unknown and need to be learned
from the data. Hence, it becomes of interest to develop a joint
learning strategy for the system parameters, by pooling the data
of the underlying systems together and learn the unknown sim-
ilarities in their dynamics. In particular, this strategy is of extra
importance in settings wherein the available data is limited, for
example when the state trajectories are short or the dimensions
are not small.

In general, joint learning (also referred to as multitask learn-
ing) approaches aim to study estimation methods subject to un-
known similarities across the data generation mechanisms. Joint
learning methods are studied in supervised learning and on-
line settings (Alquier, Tien, Pontil, et al., 2017; Ando & Zhang,

https://doi.org/10.1016/j.automatica.2024.111635
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.111635&domain=pdf
mailto:admodi@umich.edu
mailto:mkshiranyf@gmail.com
mailto:tewaria@umich.edu
mailto:gmichail@ucla.edu
https://doi.org/10.1016/j.automatica.2024.111635
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005; Caruana, 1997; Maurer, 2006; Maurer, Pontil, & Romera-
aredes, 2016). Their theoretical analyses obtained rely on a
umber of technical assumptions regarding the data, including
ndependence, identical distributions, boundedness, richness, and
sotropy.

However, for the problem of joint learning of dynamical sys-
ems, additional technical challenges are present. First, the
bservations are temporally dependent. Second, the number of
nknown parameters is the square of the dimension of the sys-
em, which impacts the learning accuracy. Third, since in many
pplications the dynamics matrices of the underlying LTI systems
ight possess eigenvalues of (almost) unit magnitude, conven-

ional approaches for dependent data (e.g., mixing) inapplica-
le (Faradonbeh et al., 2018b; Sarkar & Rakhlin, 2019; Simchowitz
t al., 2018). Fourth, the spectral properties of the transition
atrices play a critical role on the magnitude of the estimation
rrors. Technically, the state vectors of the systems can scale
xponentially with the multiplicities of the eigenvalues of the
ransition matrices (which can be as large as the dimension).
ccordingly, novel techniques are required for considering all
mportant factors and new analytical tools are needed for es-
ablishing useful rates for estimation error. Further details and
echnical discussions are provided in Section 3.

We focus on a commonly used setting for joint learning that
nvolves two layers of uncertainties. It lets all systems share a com-
on basis, while coefficients of the linear combinations are id-

osyncratic for each system. Such settings are adopted in multitask
egression, linear bandits, and Markov decision processes (Du,
u, Kakade, Lee, & Lei, 2020; Hu, Chen, Jin, Li, & Wang, 2021;
u, Huang, & Du, 2021; Tripuraneni, Jin, & Jordan, 2021). From
nother point of view, this assumption that the system transi-
ion matrices are unknown linear combinations of unknown basis
atrices can be considered as a first-order approximation for un-
nown non-linear dynamical systems (Kang, 1993; Li & Todorov,
004). Further, these compound layers of uncertainties subsume
recently studied case for mixtures of LTI systems where under
dditional assumptions such as exponential stability and distin-
uishable transition matrices, joint learning from unlabeled state
rajectories outperforms individual system identification (Chen &
oor, 2022).
The main contributions of this work can be summarized as

ollows. We provide novel finite-time estimation error bounds for
ointly learning multiple systems, and establish that pooling the
ata of state trajectories can drastically decrease the estimation
rror. Our analysis also presents effects of different parameters on
stimation accuracy, including dimension, spectral radius, eigen-
alues multiplicity, tail properties of the noise processes, and
eterogeneity among the systems. Further, we study learning
ccuracy in the presence of model misspecifications and show
hat the developed joint estimator can robustly handle moderate
iolations of the shared structure in the dynamics matrices.
In order to obtain the results, we employ advanced techniques

rom random matrix theory and prove sharp concentration re-
ults for sums of multiple dependent random matrices. Then,
e establish tight and simultaneous high-probability confidence
ounds for the sample covariance matrices of the systems under
tudy. The analyses precisely characterize the dependence of
he presented bounds on the spectral properties of the transi-
ion matrices, condition numbers, and block-sizes in the Jordan
ecomposition. Further, to address the issue of temporal depen-
ence, we extend self-normalized martingale bounds to multiple
atrix-valued martingales, subject to shared structures across

he systems. We also present a robustness result by showing that
he error due to misspecifications can be effectively controlled.

The remainder of the paper is organized as follows. The prob-

em is formulated in Section 2. In Section 3, we describe the w

2

joint-learning procedure, study the per-system estimation error,
and provide the roles of various key quantities. Then, investi-
gation of robustness to model misspecification and the impact
of violating the shared structure are discussed in Section 4. We
provide numerical illustrations for joint learning in Section 5
and present the proofs of our results in the subsequent sections.
Finally, the paper is concluded in Section 10.

Notation. For a matrix A, A′ denotes the transpose of A. For
quare matrices, we use the following order of eigenvalues in
erms of their magnitudes: |λmax(A)| = |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥

λd(A)| = |λmin(A)|. For singular values, we employ σmin(A) and
max(A). For any vector v ∈ Cd, let ∥v∥p denote its ℓp norm. We
se |||·|||γ→β to denote the matrix operator-norm for β, γ ∈ [1, ∞]

nd A ∈ Cd1×d2 : |||A|||γ→β = supv ̸=0 ∥Av∥β/∥v∥γ . When γ = β , we
imply write |||A|||β . For functions f , g : X → R, we write f ≲ g ,
f f (x) ≤ cg(x) for a universal constant c > 0. Similarly, we use
f = O(g) and f = Ω(h), if 0 ≤ f (n) ≤ c1g(n) for all n ≥ n1, and
0 ≤ c2h(n) ≤ f (n) for all n ≥ n2, respectively, where c1, c2, n1, n2
re large enough constants. For any two matrices of the same
imensions, we define the inner product ⟨A, B⟩ = tr

(
A′B
)
. Then,

he Frobenius norm becomes ∥A∥F =
√

⟨A, A⟩. The sigma-field
generated by X1, X2, . . . , Xn is denoted by σ (X1, X2, . . . , Xn). We
denote the ith component of the vector x ∈ Rd by x[i]. Finally, for
n ∈ N, the shorthand [n] is the set {1, 2, . . . , n}.

2. Problem formulation

Our main goal is to study the rates of jointly learning dynamics
of multiple LTI systems. Data consists of state trajectories of
length T from M different systems. Specifically, for m ∈ [M]

and t = 0, 1, . . . , T , let xm(t) ∈ Rd denote the state of the
mth system, that evolves according to the Vector Auto-Regressive
(VAR) process

xm(t + 1) = Amxm(t) + ηm(t + 1). (1)

Above, Am ∈ Rd×d denotes the true unknown transition matrix
of the mth system and ηm(t + 1) is a mean zero noise. For
succinctness, we use Θ∗ to denote the set of all M transition
matrices {Am}

M
m=1. The transition matrices are related as will be

specified in Assumption 3.
Note that the above setting includes systems with longer

memories. Indeed, if the states x̃m(t) ∈ Rd̃ obey

x̃m(t) = Bm,1x̃m(t − 1) + · · · + Bm,qx̃m(t − q) + ηm(t),

then, by concatenating x̃m(t − 1), . . . , x̃m(t − q) in one larger
ector xm(t − 1), the new state dynamics is (1), for d = qd̃ and

m =

[
Bm,1 · · · Bm,q−1 Bm,q

I(q−1)d̃ 0

]
.

We assume that the system states do not explode in the
ense that the spectral radius of the transition matrix Am can be
lightly larger than one. This is required for the systems to be able
o operate for a reasonable time length (Faradonbeh, Tewari, &
ichailidis, 2018a; Juselius & Mladenovic, 2002). Note that this
ssumption still lets the state vectors grow with time, as shown
n Fig. 1.

ssumption 1. For all m ∈ [M], we have |λ1(Am)| ≤ 1 + ρ/T ,
here ρ > 0 is a fixed constant.

In addition to the magnitudes of the eigenvalues, further prop-
rties of the transition matrices heavily determine the temporal
volution of the systems. A very important one is the size of the
argest block in the Jordan decomposition of Am, which will be
igorously defined shortly. This quantity is denoted by l in (4).
he impact of l on the state trajectories is illustrated in Fig. 1,
herein we plot the logarithm of the magnitude of state vectors
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Fig. 1. Logarithm of the magnitude of the state vectors vs. time, for different
block-sizes in the Jordan forms of the transition matrices, which is denoted by
l in (4). The exponential scaling of the state vectors with l can be seen in both
lots.

or linear systems of dimension d = 32. The upper plot depicts
tate magnitude for stable systems and for blocks of the size l =
, 4, 8, 16 in the Jordan decomposition of the transition matrices.
t illustrates that the state vector scales exponentially with l. Note
hat l can be as large as the system dimension d.

Moreover, the case of transition matrices with eigenvalues
lose to (or exactly on) the unit circle is provided in the lower
anel in Fig. 1. It illustrates that the state vectors grow poly-
omially with time, whereas the scaling with the block-size l is

exponential. Therefore, in design and analysis of joint learning
methods, one needs to carefully consider the effects of l and
λ1(Am)|.

Next, we express the probabilistic properties of the stochastic
processes driving the dynamical systems. Let Ft = σ (x1:M (0),
η1:M (1), . . . , η1:M (t)) denote the filtration generated by the ini-
tial state and the sequence of noise vectors. Based on this, we
adopt the following ubiquitous setting that lets the noise pro-
cess {ηm(t)}∞t=1 be a sub-Gaussian martingale difference sequence.
Note that by definition, ηm(t) is Ft-measurable.

Assumption 2. For all systems m ∈ [M], we have E [ηm(t)|Ft−1]
= 0 and E

[
ηm(t)ηm(t)′|Ft−1

]
= C . Further, ηm(t) is sub-Gaussian;

for all λ ∈ Rd:

E [exp ⟨λ, ηm(t)⟩ |Ft−1] ≤ exp
(
∥λ∥

2 σ 2/2
)
.

Henceforth, we denote c2 = max(σ 2, λmax(C)).

The above assumption is widely-used in the finite-sample
nalysis of statistical learning methods (Abbasi-Yadkori, Pál, &
zepesvári, 2011; Faradonbeh, Tewari, & Michailidis, 2020a). It
ncludes normally distributed martingale difference sequences,
or which Assumption 2 is satisfied with σ 2

= λmax(C). Moreover,
if the coordinates of ηm(t) are (conditionally) independent and
have sub-Gaussian distributions with constant σi, it suffices to
let σ 2

=
∑d

i=1 σ 2
i . We let a common noise covariance matrix for

the ease of expression. However, the results simply generalize to
covariance matrices that vary with time and across the systems,
by appropriately replacing upper- and lower-bounds of the matri-
ces (Faradonbeh et al., 2018b; Sarkar & Rakhlin, 2019; Simchowitz
et al., 2018).

For a single system m ∈ [M], its underlying transition matrices
Am can be individually learned from its own state trajectory data
by using the least squares estimator (Faradonbeh et al., 2018b;
Sarkar & Rakhlin, 2019). We are interested in jointly learning the
transition matrices of all M systems under the assumption that
they share the following common structure.

Assumption 3 (Shared Basis). Each transition matrix Am can be
expressed as

Am =

k∑
β∗

m[i]W ∗

i , (2)

i=1 o

3

where {W ∗

i }
k
i=1 are common d × d matrices and β∗

m ∈ Rk contains
the idiosyncratic coefficients for system m.

This assumption is commonly-used in the literature of jointly
learning multiple parameters (Du et al., 2020; Tripuraneni et al.,
2021). Intuitively, it states that each system evolves by combining
the effects of k systems. These k unknown systems behind the
scene are shared by all systems m ∈ [M], the weight of each
of which is reflected by the idiosyncratic coefficients that are
collected in β∗

m for system m. Thereby, the model allows for a rich
eterogeneity across systems.
The main goal is to estimate Θ∗

= {Am}
M
m=1 by observing xm(t)

or 1 ≤ m ≤ M and 0 ≤ t ≤ T . To that end, we need a reliable
oint estimator that can leverage the unknown shared structure to
earn from the state trajectories more accurately than individual
stimations of the dynamics. Importantly, to theoretically analyze
ffects of all quantities on the estimation error, we encounter
ome challenges for joint learning of multiple systems that do not
ppear in single-system identification.
Technically, the least-squares estimate of the transition matrix

f a single system admits a closed form that lets the main chal-
enge of the analysis be concentration of the sample covariance
atrix of the state vectors. However, since closed forms are
ot achievable for joint-estimators, learning accuracy cannot be
irectly analyzed. To address this, we first bound the prediction
rror and then use that for bounding the estimation error. To
stablish the former, after appropriately decomposing the joint
rediction error, we study its scaling with the trajectory-length
nd dimension, as well as the trade-offs between the number of
ystems, number of basis matrices, and magnitudes of the state
ectors. Then, we deconvolve the prediction error to the estima-
ion error and the sample covariance matrices, and show useful
ounds that can tightly relate the largest and smallest eigenvalues
f the sample covariance matrices across all systems. Notably, this
tep that is not required in single-system identification is based
n novel probabilistic analysis for dependent random matrices.
In the sequel, we introduce a joint estimator for utilizing

he structure in Assumption 3 and analyze its accuracy. Then,
n Section 4 we consider violations of the structure in (2) and
stablish robustness guarantees.

. Joint learning of LTI systems

In this section, we propose an estimator for jointly learning the
transition matrices. Then, we establish that the estimation er-

or decays at a significantly faster rate than competing procedures
hat learn each transition matrix Am separately by using only the
ata trajectory of system m.
Based on the parameterization in (2), we solve for Ŵ =

Ŵi}
k
i=1 and B̂ =

[
β̂1|β̂2| · · · β̂M

]
∈ Rk×M , as follows:

Ŵ, B̂ := argmin
W,B

L(Θ∗,W, B), (3)

where L(Θ∗,W, B) is the averaged squared loss across all M
systems:

1
MT

M∑
m=1

T∑
t=0

xm(t + 1) −

(
k∑

i=1

βm[i]Wi

)
xm(t)


2

2

.

In the analysis, we assume that one can approximately find
he minimizer in (3). Although the loss function in (3) is non-
onvex, thanks to its structure, computationally fast methods for
ccurately finding the minimizer are applicable. Specifically, the
oss function in (3) is quadratic and the non-convexity is the bilin-
ar dependence on (W, B). The optimization in (3) is of the form

f explicit rank-constrained representations (Burer & Monteiro,
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003). For such problems, it has been shown under mild condi-
ions that gradient descent converges to a low-rank minimizer at
linear rate (Wang, Zhang, & Gu, 2017). Moreover, it is known

hat methods such as stochastic gradient descent have global
onvergence, and these bilinear non-convexities do not lead to
ny spurious local minima (Ge, Jin, & Zheng, 2017). In addition,
ince the loss function is biconvex in W and B, alternating mini-
ization techniques converge to global optima, under standard
ssumptions (Jain & Kar, 2017). Nonetheless, note that a near-
ptimal minimum for the objective function is sufficient, and
e only need to estimate the product WB accurately instead of
ecovering both W and B. More specifically, the error of the joint
stimator in (3) degrades gracefully in the presence of moderate
ptimization errors. For instance, suppose that the optimization
roblem is solved up to an error of ϵ from a global optimum. It

can be shown that an additional term of magnitude O (ϵ/λmin(C))
arises in the estimation error, due to this optimization error.
Numerical experiments in Section 5 illustrate the implementation
of (3).

In the sequel, we provide key results for the joint estimator in
(3) and establish the high probability decay rates of∑M

m=1

Am − Âm

2
F
.

The analysis leverages high probability bounds on the sample
covariance matrices of all systems, denoted by

Σm =

T−1∑
t=0

xm(t)xm(t)′.

For that purpose, we utilize the Jordan forms of matrices, as fol-
lows. For matrix Am, its Jordan decomposition is Am = P−1

m ΛmPm,
where Λm is a block diagonal matrix; Λm = diag(Λm,1, . . . Λm,qm ),
and for i = 1, . . . , qm, each block Λm,i ∈ Clm,i×lm,i is a Jordan
matrix of the eigenvalue λm,i. A Jordan matrix of size l for λ ∈ C
is ⎡⎢⎢⎣

λ 1 0 . . . 0 0
0 λ 1 0 . . . 0
...

...
...

...
...

...

0 0 0 . . . 0 λ

⎤⎥⎥⎦ ∈ Cl×l. (4)

Henceforth, we denote the size of each Jordan block by lm,i, for
i = 1, . . . , qm, and the size of the largest Jordan block for system
m by l∗m. Note that for diagonalizable matrices Am, since Λm is
diagonal, we have l∗m = 1. Now, using this notation, we define

α(Am) =

{⏐⏐⏐⏐⏐⏐P−1
m

⏐⏐⏐⏐⏐⏐
∞→2 |||Pm|||∞ f (Λm)

⏐⏐λm,1
⏐⏐ < 1 −

ρ

T⏐⏐⏐⏐⏐⏐P−1
m

⏐⏐⏐⏐⏐⏐
∞→2 |||Pm|||∞ eρ+1

⏐⏐⏐⏐λm,1
⏐⏐− 1

⏐⏐ ≤
ρ

T ,
(5)

where λm,1 = λ1 (Am) and

f (Λm) = e1/|λm,1|

[
l∗m − 1

− log |λm,1|
+

(l∗m − 1)!
(− log |λm,1|)l

∗
m

]
.

he quantities in the definition of α (Am) can be interpreted as
ollows. The term

⏐⏐⏐⏐⏐⏐P−1
m

⏐⏐⏐⏐⏐⏐
∞→2 |||Pm|||∞ is similar to the condition

umber of the similarity matrix Pm in the Jordan decomposition
hat is used to block-diagonalize the matrix. Moreover, f (Λm) for
table matrices, and eρ+1 for transition matrices with (almost)
nit eigenvalues, capture the long term influences of the eigen-
alues. In other words, f (Λm) indicates the amount that ηm(t)
ontributes to the growth of ∥xm(s)∥, for s ≫ t and

⏐⏐λm,1
⏐⏐ <

− ρ/T . When |λ| ≈ 1, ∥xm(s)∥ scales polynomially with the
rajectory length T , since influences of the noise vectors ηm(t) do
ot decay as s − t grows, because of the accumulations caused
y the unit eigenvalues. The exact expressions are in Theorem 1
elow. Note that while f (Λm) is used to obtain an analytical upper
ound for the whole range

⏐⏐λ ⏐⏐ < 1 − ρ/T , it is not tight for
m,1

4

mall values of λm,1 and tighter expressions can be obtained using
he analysis in the proof of Theorem 1.

To introduce the following result, we define b̄m next. First, for
ome δC > 0 that will be determined later, for system m, define
¯m = bT (δC/3) + ∥xm(0)∥∞, where bT (δ) =

√
2σ 2 log

(
2dMTδ−1

)
.

hen, we establish high probability bounds on the sample covari-
nce matrices Σm with the detailed proof provided in Section 6.

heorem 1 (Covariance Matrices). Under Assumptions 1 and 2,
or each system m, let Σm = λmI and Σ̄m = λ̄mI , where λm :=

4−1λmin(C)T , and

λ̄m :=

{
α(Am)2b̄2mT , if

⏐⏐λm,1
⏐⏐ < 1 −

ρ

T ,

α(Am)2b̄2mT
2l∗m+1, if

⏐⏐⏐⏐λm,1
⏐⏐− 1

⏐⏐ ≤
ρ

T .

Then, there is T0, such that for m ∈ [M] and T ≥ T0:

P
[
0 ≺ Σm ⪯ Σm ⪯ Σ̄m

]
≥ 1 − δC . (6)

The above two expressions for λ̄m show that for
⏐⏐λm,1

⏐⏐ <

− ρ/T , the largest eigenvalue of the covariance matrix grows
inearly in T , whereas for

⏐⏐⏐⏐λm,1
⏐⏐− 1

⏐⏐ ≤ ρ/T , the bounds scale
xponentially with the multiplicities of the eigenvalues. Note
hat the bounds in Theorem 1 and the estimation error results
tated hereafter require the trajectories for each system to be
onger than T0. The precise definition for T0 can be found in the
tatement of Lemma 2 in Section 6.
For establishing the above, we extend existing tools for learn-

ng linear systems (Abbasi-Yadkori et al., 2011; Faradonbeh et al.,
018b; Sarkar & Rakhlin, 2019; Vershynin, 2018). Specifically, we
everage truncation-based arguments and introduce the quantity
(Am) that captures the effect of the spectral properties of the
ransition matrices on the magnitudes of the state trajectories.
urther, we develop strategies for finding high probability bounds
or largest and smallest singular values of random matrices and
or studying self-normalized matrix-valued martingales.

Importantly, Theorem 1 provides a tight characterization of
he sample covariance matrix for each system, in terms of the
agnitudes of eigenvalues of Am, as well as the largest block-size

n the Jordan decomposition of Am. The upper bounds show that
¯m grows exponentially with the dimension d, whenever l∗m =

(d). Further, if Am has eigenvalues with magnitudes close to 1,
hen scaling with time T can be as large as T 2d+1. The bounds in
heorem 1 are more general than tr

(∑T
t=0 A

t
mA

′
m
t
)
that appears

n some analyses (Sarkar & Rakhlin, 2019; Simchowitz et al.,
018), and can be used to calculate the latter term. Finally,
heorem 1 indicates that the classical framework of persistent
xcitation (Boyd & Sastry, 1986; Green & Moore, 1986; Jenkins,
nnaswamy, Lavretsky, & Gibson, 2018) is not applicable, since
he lower and upper bounds of eigenvalues grow at drastically
ifferent rates.
Next, we express the joint estimation error rates.

efinition 1. Denote EC =
{
0 ≺ Σm ⪯ Σm ⪯ Σ̄m

}
, and let

λ̄ = maxm λ̄m, λ = minm λm, κm = λ̄m/λm, κ = maxm κm, and
κ∞ = λ̄/λ. Note that κ∞ > κ.

Theorem 2. Under Assumption 1, 2, and 3, and for T ≥ T0, the
estimator in (3) returns Âm for each system m ∈ [M], such that with
probability at least 1 − δ, the following holds:

1
M

M∑Âm − Am

2
F
≲

c2

λ

(
k log κ∞ +

d2k
M

log
κdT
δ

)
.

m=1
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The proof is provided in Section 7. By putting Theorems 1 and
2 together, the estimation error per-system1 is

O

(
c2k log κ∞

λmin(C)T
+

c2d2k log κdT
δ

Mλmin(C)T

)
. (7)

The above expression demonstrates the effects of learning the
systems in a joint manner. The first term in (7) can be interpreted
as the error in estimating the idiosyncratic components βm for
each system. The convergence rate is O (k/T ), as each βm is a k-
imensional parameter and for each system, we have a trajectory
f length T . More importantly, the second term in (7) indicates
hat the joint estimator in (3) effectively increases the sample
ize for the shared components {Wi}

k
i=1, by pooling the data of

ll systems. So, the error decays as O(d2k/MT ), showing that the
ffective sample size for {Wi}

k
i=1 is MT .

In contrast, for individual learning of LTI systems, the rate is
nown (Faradonbeh et al., 2018b; Faradonbeh, Tewari, & Michai-
idis, 2020b; Sarkar & Rakhlin, 2019; Simchowitz et al., 2018) to
e Âm − Am

2
F
≲

c2d2

λmin(C)T
log

α(Am)T
δ

.

hus, the estimation error rate in (7) recovers the rate for a single
ystem (k = 1), and it significantly improves for joint learning,
specially when

k < d2 and k < M. (8)

ote that the above conditions are as expected. First, when k ≈
2, the structure in Assumption 3 does not provide any common-
lity among the systems. That is, for k = d2, the LTI systems
an be totally arbitrary and Assumption 3 is automatically satis-
ied. This prevents reductions in the effective dimension of the
nknown transition matrices, and also prevents joint learning
rom being any different than individual learning. Similarly, k ≈

precludes all commonalities and indicates that {Am}
M
m=1 are

oo heterogeneous to allow for any improved learning via joint
stimation.
Importantly, when the largest block-size l∗m varies significantly

cross the M systems, a higher degree of shared structure is
eeded to improve the joint estimation error for all systems. Since
and κ∞ depend exponentially on l∗m (as shown in Fig. 1 and
heorem 1) and l∗m can be as large as d, we can have log κ∞ =

og κ = Ω(d). Hence, in this situation we incur an additional di-
ension dependence in the error of the joint estimator. Note that
uch effects of l∗m are unavoidable (regardless of the employed
stimator). Moreover, in this case, joint learning rates improve
f k ≤ d and kd ≤ M . Therefore, our analysis highlights the
mportant effects of the large blocks in the Jordan form of the
ransition matrices.

The above is an inherent difference between estimating dy-
amics of LTI systems and learning from independent obser-
ations. In fact, the analysis established in this work includes
tochastic matrix regressions that the data of system m consists
f

ym(t) = Amxm(t) + ηm(t), (9)
wherein the regressors xm(t) are drawn from some distribution
Dm, and ym(t) is the response. Assume that (xm(t), ym(t)) are
independent as m, t vary. Now, the sample covariance matrix Σm
for each system does not depend on Am. Hence, the error for the
joint estimator is not affected by the block-sizes in the Jordan
decomposition of Am. Therefore, in this setting, joint learning
always leads to improved per-system error rates, as long as the
necessary conditions k < d2 and k < M hold.

1 In order to obtain a guarantee for the maximum error over all systems,
dditional assumptions on the matrix

[
β∗

1 . . . β∗

M

]
are required. This problem

alls beyond the scope of this paper and we leave it to a future work.
5

4. Robustness to misspecifications

In Theorem 2, we showed that Assumption 3 can be utilized
for obtaining an improved estimation error, by jointly learning
the M systems. Next, we consider the impacts of misspecified
models on the estimation error and study robustness of the
proposed joint estimator against violations of the structure in
Assumption 3.

Let us first consider the deviation of the dynamics of each
system m ∈ [M] from the shared structure. Specifically, by
employing the matrix Dm to denote the deviation of system m
from Assumption 3, suppose that

Am =

(
k∑

i=1

β∗

m[i]W ∗

i

)
+ Dm. (10)

Then, denote the total misspecification by ζ̄ 2
=
∑M

m=1 ∥Dm∥
2
F . We

study the consequences of the above deviations, assuming that
the same joint learning method as before is used for estimating
the transition matrices.

Theorem 3. Under Assumption 1, 2, (10), and for T ≥ T0, the
estimator in (3) returns Âm for each system m ∈ [M], such that with
probability at least 1 − δ, we have:

1
M

M∑
m=1

Âm − Am

2
F
≲

c2

λ

(
k log κ∞ +

d2k
M

log
κdT
δ

)
+

(κ∞ + 1) ζ̄ 2

M
. (11)

The proof of Theorem 3 is provided in Section 8. In (11), we
bserve that the total misspecification ζ̄ 2 imposes an additional
rror of (κ∞ + 1)ζ̄ 2 for jointly learning all M system. Hence, to
btain accurate estimates, we need the total misspecification ζ̄ 2

to be smaller than the number of systems M , as one can expect.
The discussion following Theorem 2 is still applicable in the
misspecified setting and indicates that in order to have accurate
estimates, the number of the shared bases k must be smaller
than M as well. In addition, compared to individual learning,
the joint estimation error improves despite the unknown model
misspecifications, as long as

κ∞ζ̄ 2

M
≲

d2

T
.

This shows that when the total misspecification is proportional
to the number of systems; ζ̄ ∗

= Ω(M), we pay a constant factor
proportional to κ∞ on the per-system estimation error. Note that
in case all systems are stable, according to Theorem 1, the max-
imum condition number κ∞ does not grow with T , but it scales
exponentially with l∗m. The latter again indicates an important
consequence of the largest block-sizes in Jordan decomposition
that this work introduces.

Moreover, when a transition matrix Am has eigenvalues close
to or on the unit circle in the complex plane, by Theorem 1, the
factor κ∞ grows polynomially with T . Thus, for systems with
infinite memories or accumulative behaviors, misspecifications
can significantly deteriorate the benefits of joint learning. Intu-
itively, the reason is that effects of notably small misspecifications
can accumulate over time and contaminate the whole data of
state trajectories, because of the unit eigenvalues of the transition
matrices Am. Therefore, the above strong sensitivity to deviations
from the shared model for systems with unit eigenvalues seems
to be unavoidable.

For example, if for the total misspecification we have ζ̄ 2
=

O(M1−a), for some a > 0, joint estimation improves over the
a 2
individual estimators, as long as Tκ∞ ≲ M d . Hence, when
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Fig. 2. Per-system estimation errors vs. the number of systems M , for the
roposed joint learning method and individual least-squares estimates of the
inear dynamical systems.

ll systems are stable, the joint estimation error rate improves
hen the number of systems satisfies T 1/a ≲ M . Otherwise,

diosyncrasies in system dynamics dominate the commonalities.
ote that larger values of a correspond to smaller misspecifica-
ions. On the other hand, Theorem 3 implies that in systems with
almost) unit eigenvalues, the impact of ζ̄ 2 is amplified. Indeed,
y Theorem 1, for unit-root systems, joint learning improves over
ndividual estimators when d2Ma

≫ T 2l∗m+2. That is, for benefiting
rom the shared structure and utilizing pooled data, the number
f systems M needs to be as large as T (2l∗m+2)/a/d2/a.
In contrast, if ζ̄ 2

= O(M1−a) for some a > 0, the joint estima-
ion error for the regression problem in (9) incurs only an additive
actor of O(1/Ma), regardless of the largest block-sizes in the Jor-
an decompositions and unit-root eigenvalues. Thus, Theorem 3
urther highlights the stark difference between joint learning
rom independent, bounded, and stationary observations, and
rom state trajectories of LTI systems.

. Numerical illustrations

We complement our theoretical analyses with a set of nu-
erical experiments which demonstrate the benefit of jointly

earning the systems. We investigate two main aspects of our
heoretical results: (i) benefits of joint learning when the M
ystems share a common linear basis, for different values of M ,
nd (ii) interplay of the spectral radii of the system matrices
ith the joint-estimation error. To that end, we compare the
stimation error for the joint estimator in (3) against the ordinary
east-squares (OLS) estimates of the transition matrices for each
ystem individually. For solving (3), we use a minibatch gradient-
escent-based implementation with Adam as the optimization
lgorithm (Kingma & Ba, 2015). Due to the bilinear form of the
ptimization objective, gradient descent methods can lead to
onvergence and computational issues for Ŵ and B̂. Although
rior studies utilize regularization penalties to address this issue
n some cases (Tripuraneni et al., 2021), we do not use any
uch regularization in our objective function in (3). Notably, our
nregularized minimization exposes no convergence issue in the
imulations we performed.
For generating the systems, we consider settings with the

umber of bases k = 10, dimension d = 25, trajectory length T =

00, and the number of systems M ∈ {1, 10, 20, 50, 100, 200}.
e simulate two cases:
(i) the spectral radii are in the range [0.7, 0.9], and
(ii) all systems have an eigenvalue of magnitude 1.
The matrices {Wi}

10
i=1 are generated randomly, such that each

ntry of Wi is sampled independently from the standard normal
istribution N(0, 1). Using these matrices, we generateM systems
y randomly generating the idiosyncratic components βm from
standard normal distribution. For generating the state trajec-

ories, noise vectors are isotropic Gaussian with variance 4. Ad-
itional numerical simulations using Bernoulli random matrices
6

Fig. 3. Per-system estimation errors are reported vs. the number of systems M ,
for varying proportions of misspecified systems; M−a , for a ∈ {0, 0.25, 0.5}.

re provided in the full version of the paper (Modi, Faradonbeh,
ewari, & Michailidis, 2021).
We simulate the joint learning problem both with and with-

ut model misspecifications. For the latter, deviations from the
hared structure are simulated by the components Dm, which are
dded randomly with probability 1/Ma for a ∈ {0, 0.25, 0.5}. The
atrices Dm are generated with independent Gaussian entries of
ariance 0.01, leading to ∥Dm∥

2
F ≈ 6.25 and ζ̄ 2

≈ 6.25 M1−a,
ccording to the dimension d = 25.
To report the results, for each value of M in Fig. 2 (resp.

ig. 3), we average the errors from 10 (resp. 20) random replicates
nd plot the standard deviation as the error bar. Fig. 2 depicts
he estimation errors for both stable and unit-root transition
atrices, versus M . It can be seen that the joint estimator exhibits

he expected improvement against the individual one.
More interestingly, in Fig. 3(a), we observe that for stable

ystems, the joint estimator performs worse than the individual
ne, when significant violations from the shared structure occur
n all systems (i.e., a = 0). Note that it corroborates Theorem 3,
ince in this case the total misspecification ζ̄ 2 scales linearly with
. However, if the proportion of systems which violate the shared

tructure in Assumption 3 decreases, the joint estimation error
mproves as expected (a = 0.25, 0.5).

Fig. 3(b) depicts the estimation error for the joint estimator
nder misspecification for systems that have an eigenvalue on the
nit circle in the complex plane. Our theoretical results suggest
hat the number of systems needs to be significantly larger in this
ase to circumvent the cost of misspecification in joint learning.
he figure corroborates this result, wherein we observe that the
oint estimation error is larger than the individual one, if all
ystems are misspecified (i.e., a = 0). Decreases in the total
isspecification (i.e., a = 0.25, 0.5) improves the error rate for

joint learning, but requires larger number of systems than the
stable case.

Finally, we discuss the choice of the number of bases k for
pplying the joint estimator to real data. It can be handled by
odel selection methods such as elbow criterion and information
riteria (Akaike, 1974; Schwarz, 1978), as well as robust estima-
ion methods in panel data and factor models (Chudik, Mohaddes,
esaran, & Raissi, 2013; Ciccone, Ferrante, & Zorzi, 2018). In fact,
or all k′

≥ k, the structural assumption is satisfied and leads to
imilar learning rates, while k′ < k can lead to larger estimation
rrors. In Fig. 4, we provide a simulation (with T = 250,M =

0) and report the per-system estimation error, as well as the
rediction error on a validation data (which is a subset of size
0). Across all 10 runs in the experiment, we observed that if the
yperparameter k′ is chosen according to the elbow criteria, the
esulting number of basis models is either equal to the true value
= 10, or slightly larger. For misspecified models, the optimal

hoice of k′ can vary, in the sense that large misspecifications can
e added to the shared basis (i.e., k′ > k).
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Fig. 4. Estimation and validation prediction errors versus the hyperparameter
k′ , for the true value k = 10.

6. Proof of Theorem 1

In this and the following sections, we provide the detailed
proofs for our results. We start by analyzing the sample co-
variance matrix for each system which is then used to derive
the estimation error rates in Theorems 2 and 3. Due to space
constraints, some details of the proofs are delegated to the full
version of this paper which is available online (Modi et al., 2021).
In Section 9, we provide the general probabilistic inequalities that
are used throughout the proofs. Now, we prove high probability
bounds for covariance matrices Σm = Σm(T ) =

∑T
t=0 xm(t)xm(t)

′

in Theorem 1.

6.1. Upper bounds on covariance matrices

To prove an upper bound on each system covariance matrix,
we use an approach for LTI systems that relies on bounding norms
of exponents of matrices (Faradonbeh et al., 2018b). Using l∗m and
(Am) in (5) and ξm =

⏐⏐⏐⏐⏐⏐P−1
m

⏐⏐⏐⏐⏐⏐
∞→2 |||Pm|||∞, the first step is to

ound the sizes of all state vectors under the event Ebdd(δ) in
roposition 7.

roposition 1 (Bounding ∥xm(t)∥). For all t ∈ [T ],m ∈ [M], under
the event Ebdd(δ), we have:

∥xm(t)∥ ≤

{
α(Am)b̄m(δ), if |λm,1| < 1 −

ρ

T ,

α(Am)b̄m(δ)t l
∗
m , if |λm,1 − 1| ≤

ρ

T .

here b̄m(δ) = (bT (δ) + ∥xm(0)∥∞).

roof. As before, each transition matrix Am admits a Jordan
ormal form as follows: Am = P−1

m ΛmPm, where Λm is a block-
diagonal matrix Λm = diag

(
Λm,q, . . . , Λm,q

)
. Each Jordan block

Λm,i is of size lm,i. Note that for each system, the state vector
satisfies:

xm(t) =

t∑
s=1

At−s
m ηm(s) + At

mxm(0)

=

t∑
s=1

P−1
m Λt−s

m Pmηm(s) + P−1
m Λt

mPxm(0).

Now, letting bT (δ) be the same as in Proposition 7, we can bound
the ℓ2-norm of the state vector as follows:

∥xm(t)∥ ≤
⏐⏐⏐⏐⏐⏐P−1

m

⏐⏐⏐⏐⏐⏐
∞→2

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐

t∑
s=1

Λt−s
m

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
∞

|||Pm|||∞ bT (λ)

+
⏐⏐⏐⏐⏐⏐P−1

m

⏐⏐⏐⏐⏐⏐
∞→2

⏐⏐⏐⏐⏐⏐Λt
m

⏐⏐⏐⏐⏐⏐
∞

|||Pm|||∞ ∥xm(0)∥∞

≤ ξm

(
t∑⏐⏐⏐⏐⏐⏐Λt−s

m

⏐⏐⏐⏐⏐⏐
∞

)(
bT (δ) + ∥xm(0)∥∞

)
.

s=0

7

For any matrix, the ℓ∞ norm is equal to the maximum row sum.
Since the powers of a Jordan matrix will follow the same block
structure as the original one, we can bound the operator norm⏐⏐⏐⏐⏐⏐At−s

m

⏐⏐⏐⏐⏐⏐
∞

by the norm of each block. The maximum row sum for
the sth power of a Jordan block is:

∑l−1
j=0

(s
j

)
λs−j. Using this, we

will bound the size of each state vector for the case when

(I) the spectral radius of Am satisfies |λ1(Am)| < 1 −
ρ

T ,
(II) or, when |λ1(Am) − 1| ≤

ρ

T , for a constant ρ > 0.

Case I When the Jordan block for a system matrix has eigenvalues
strictly less than 1, we have:

t∑
s=0

⏐⏐⏐⏐⏐⏐Λt−s
m

⏐⏐⏐⏐⏐⏐
∞

≤ max
i∈[qm]

t∑
s=0

lm,i−1∑
j=0

(
s
j

) ⏐⏐λm,i
⏐⏐s−j

≤

t∑
s=0

l∗m−1∑
j=0

sj

j!

⏐⏐λm,1
⏐⏐s−j

≤

t∑
s=0

⏐⏐λm,1
⏐⏐s sl∗m−1

l∗m−1∑
j=0

⏐⏐λm,1
⏐⏐−j

j!

≤ e1/|λm,1|

∞∑
s=0

⏐⏐λm,1
⏐⏐s sl∗m−1

≲ e1/|λm,1|

[
l∗m − 1

− log |λm,1|
+

(l∗m − 1)!
(− log |λm,1|)l

∗
m

]
.

hus, for this case, each state vector can be upper bounded as
xm(t)∥ ≤ α(Am)(bT (δ) + ∥xm(0)∥∞). When the matrix Am is
iagonalizable, each Jordan block is of size 1, which leads to
he upper-bound

∑t
s=0

⏐⏐⏐⏐⏐⏐Λt−s
m

⏐⏐⏐⏐⏐⏐
∞

≤ (1 − λ1)−1, for all t ≥

. Therefore for diagonalizable Am, we can let α(Am) = (1 −

1)−1
⏐⏐⏐⏐⏐⏐P−1

m

⏐⏐⏐⏐⏐⏐
∞→2 |||Pm|||∞.

ase II When
⏐⏐λm,1 − 1

⏐⏐ ≤
ρ

T , we get
⏐⏐λm,1

⏐⏐t ≤ eρ , for all t ≤ T .
Therefore, since l∗m is the largest Jordan block, we have:

t∑
s=0

⏐⏐⏐⏐⏐⏐Λt−s
m

⏐⏐⏐⏐⏐⏐
∞

≤

t∑
s=0

l∗m−1∑
j=0

(
s
j

) ⏐⏐λm,1
⏐⏐s−j

≤ eρ

t∑
s=0

l∗m−1∑
j=0

(
s
j

)

≤ eρ

t∑
s=0

l∗m−1∑
j=0

sj/j! ≤ eρ

t∑
s=0

sl
∗
m−1

l∗m−1∑
j=0

1/j!

≤ eρ+1
t∑

s=0

sl
∗
m−1 ≲ eρ+1t l

∗
m .

herefore, the magnitude of each state vector grows polynomially
ith t , the exponent being at most l∗m. For example, when Am is
iagonalizable, the Jordan block for the unit root is of size 1, given
t
s=0

⏐⏐⏐⏐⏐⏐Λt−s
m

⏐⏐⏐⏐⏐⏐
∞

≤ eρ t .
So, for systems with unit roots, the bound on each state vector

s as expressed in the proposition. ■

Using the high probability upper bound on the size of each
tate vector, we can upper bound the covariance matrix for each
ystem as follows:

emma 1 (Upper Bound On Σm). For all m ∈ [M], the sample
ovariance matrix Σm of system m can be upper bounded under the
vent Ebdd(δ), as follows:

(I) When all eigenvalues of the matrix Am are strictly less than 1
in magnitude (|λm,i| < 1 −

ρ

T ), we have

λ (Σ ) ≤ α(A )2 b (δ) + ∥x (0)∥ 2 T .
max m m ( T m ∞)
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(II) When some eigenvalues of the matrix Am are close to 1,
i.e. |λ1(Am) − 1| ≤

ρ

T , we have:

λmax(Σm) ≤ α(Am)2 (bT (δ) + ∥xm(0)∥∞)2 T 2lm,1+1.

roof. First note that we have:

λmax(Σm) =

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐

T∑
t=0

xm(t)xm(t)′
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

≤

T∑
t=0

∥xm(t)∥2
2 .

Therefore, by Proposition 7, when all eigenvalues of Am are strictly
less than 1, we have:

λmax(Σm) ≤ Tα(Am)2 (bT (δ) + ∥xm(0)∥∞)2 .

For the case when 1 −
ρ

T ≤ λ1(Am) ≤ 1 +
ρ

T , we get:

λmax(Σm) ≤ α(Λm)2
T∑

t=0

t2lm,1

≤ α(Am)2 (bT (δ) + ∥xm(0)∥∞)2 T 2lm,1+1. ■

6.2. Lower bound for covariance matrices

A lower bound result for the idiosyncratic covariance matrices
can be derived using the probabilistic inequalities in the last
section. We provide a detailed proof below.

Lemma 2 (Covariance Lower Bound.). Define ~ =
dσ2

λmin(C)2
. For all

∈ [M], if the per-system sample size T is greater than T0 defined
s

~ · max
(
cη log 18

δ
, 16

(
log
(
α(A)2b̄m(δ)2 + 1

)
+ 2 log 5

δ

))
,

f
⏐⏐λm,1

⏐⏐ < 1 −
ρ

T , and

~ · max
(
cη log 18

δ
, 16

(
log
(
α(A)2b̄m(δ)2T 2l∗m + 1

)
+ 2 log 5

δ

))
if 1 −

ρ

T ≤
⏐⏐λm,1

⏐⏐ ≤ 1 +
ρ

T , then with probability at least 1 − 3δ,
the sample covariance matrix Σm for system m can be bounded from
below: Σm(T ) ⪰

Tλmin(C)
4 I .

roof. We bound the covariance matrix under the events Ebdd(δ),
η(δ) in Propositions 7, 8, as well as the one in Proposition 10. As
e consider a bound for all systems, we drop the system subscript
here. Using (1), we have:

Σ(T ) ⪰ AΣ(T − 1)A′
+

T∑
t=1

η(t)η(t)′

+

T−1∑
t=0

(
Ax(t)η(t + 1)′ + η(t + 1)x(t)′A′

)
Since T ≥ ~cη log 18

δ
=

cηdσ2 log 18
δ

λmin(C)2
, under the event Eη(δ) it holds

hat

Σ(T ) ⪰ AΣ(T − 1)A′
+

3λmin(C)T
4

+

T−1∑
t=0

(
Ax(t)η(t + 1)′ + η(t + 1)x(t)′A′

)
.

Thus, for any unit vector u (i.e., on the unit sphere Sd−1), we have

u′Σ(T )u ≥ u′AΣ(T − 1)A′u +
3λmin(C)T

4

+

T−1∑
t=0

u′
(
Ax(t)η(t + 1)′ + η(t + 1)x(t)′A′

)
u.
8

Now, by Proposition 10 with V = T · I , we get the following
result for the martingale

∑T−1
t=0 AmXm(t)ηm(t + 1)′ and V̄m(s) :=

s
t=0 AmXm(t)Xm(t)′A′

m + V , with probability at least 1 − δ:
T−1∑
t=0

Ax(t)η(t + 1)′u


≤

√
u′AΣ(T − 1)A′u + T√
8dσ 2 log

(
5 det(V̄m(T−1))

1/2d det(TI)−1/2d

δ1/d

)
.

Thus, we get:

u′Σ(T )u

⪰ u′AΣ(T − 1)A′u −

√
u′AΣ(T − 1)A′u + T√

16dσ 2 log
(

λmax(V̄ (T−1))
T

)
+ 32dσ 2 log 5

δ
+

3λmin(C)T
4

.

Hence, we have:

u′
Σ(T )
T

u ⪰ u′
AΣ(T − 1)A′

T
u +

3λmin(C)
4

−

√
u′
AΣ(T − 1)A′

T
u + 1

λmin(C)
2

⪰
λmin(C)

4
,

henever T is larger than

16dσ2

λmin(C)2

(
log
(

λmax
(∑T−1

t=0 AX(t)X(t)′A′
)

T + 1
)

+ 2 log 5
δ

)
.

Using the upper bound analysis in Lemma 1, we show that it
suffices for T to be lower bounded as

T ≥
16dσ 2

λmin(C)2

(
log
(
α(A)2b̄m(δ)2 + 1

)
+ 2 log

5
δ

)
,

when A is strictly stable, and as

T ≥
16dσ 2

λmin(C)2

(
log
(
α(A)2b̄m(δ)2T 2l∗

+ 1
)

+ 2 log
5
δ

)
,

when |λ1(A)| ≤ 1 +
ρ

T . Since, both quantities on the RHS grow at
most logarithmically with T , there exists T0 such that it holds for
all T ≥ T0. Combining the failure probability for all events, we get
the desired result. ■

7. Proof of Theorem 2

In this section, we use the result in Theorem 1 to analyze the
estimation error for the estimator in (3), under Assumption 3.
For ease of presentation, we rewrite the problem by transforming
the vector output space to scalar values. For that purpose, we
introduce some notation to express transition matrices in vector
form and rewrite (3). First, for each state vector xm(t) ∈ Rd, we
reate d different covariates of size Rd2 . So, for j = 1, . . . , d, the
vector x̃m,j(t) ∈ Rd2 contains xm(t) in the jth block of size d and
0′s elsewhere.

Then, we express the system matrix Am ∈ Rd×d as a vector
Ãm ∈ Rd2 . Similarly, the concatenation of all vectors Ãm can be
coalesced into the matrix Θ̃ ∈ Rd2×M . Analogously, η̃m(t) will
denote the concatenated dt dimensional vector of noise vectors
for system m. Thus, the structural assumption in (2) can be
written as:

Ãm = W ∗β∗

m, (12)

where W ∗
∈ Rd2×k and β∗

m ∈ Rk. Similarly, the overall parameter
set can be factorized as Θ̃∗

= W ∗B∗, where the matrix B∗
=
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1 |β
∗

2 | · · · β
∗

M ] ∈ Rk×M contains the true weight vectors β∗
m. Thus,

xpressing the system matrices Am in this manner leads to a low
ank structure in (12), so that the matrix Θ̃∗ is of rank k. Using the
ectorized parameters, the evolution for the components j ∈ [d]

of all state vectors xm(t) can be written as:

xm(t + 1)[j] = Ãmx̃m,j(t) + ηm(t + 1)[j]. (13)

For each systemm ∈ [M], we therefore have a total of dT samples,
where the statistical dependence now follows a block structure:
d covariates of xm(1) are all constructed using xm(0), next d using
xm(1) and so forth. To estimate the parameters, we solve the
following optimization problem:

Ŵ , {β̂m}
M
m=1

:= argmin
W ,{βm}

M
m=1

∑
m,t

d∑
j=1

(
xm(t + 1)[j] − ⟨Wβm, x̃m,j(t)⟩

)2
  

L(W ,β)

= argmin
W ,{βm}

M
m=1

M∑
m=1

ym − X̃mWβm

2
2
, (14)

here ym ∈ RTd contains all T state vectors stacked verti-
cally and X̃m ∈ RTd×d2 contains the corresponding matrix input.
We denote the covariance matrices for the vectorized form by
Σ̃m =

∑T−1
t=0 x̃m(t)x̃m(t)′. Recall, that the sample covariance ma-

trices for all systems are denoted by Σm =
∑T−1

t=0 xm(t)xm(t)′.
We further use the following notation: for any parameter set
Θ = WB ∈ Rd2×M , we define X (Θ) ∈ RdT×M as X (Θ) :=

[X1(Θ)|X2(Θ) · · · |XM (Θ)], where each column Xm(Θ) ∈ RdT is
the prediction of states xm(t + 1) with Θm. That is,

Xm(Θ) = (xm(0)′, xm(0)′Θ ′

m, . . . , xm(T − 1)′Θ ′

m)
′.

Thus, X (Θ̃∗) ∈ RTd×M denotes the ground truth mapping for the
training data of the M systems and X (Θ̃∗

− Θ̂) ∈ RTd×M is the
prediction error across all coordinates of the MT state vectors,
each of dimension d.

By Assumption 3, we have ∆ := Θ̃∗
− Θ̂ = UR, where

U ∈ Od2×2k is an orthonormal matrix and R ∈ R2k×M . We start by
the fact that the estimates Ŵ and β̂m minimize (3), and therefore,
have a smaller squared prediction error than (W ∗, B∗). Hence, we
get the following inequality:

1
2

M∑
m=1

X̃m(W ∗β∗

m − Ŵ β̂m)
2
2

≤

M∑
m=1

⟨
η̃m, X̃m

(
Ŵ β̂m − W ∗β∗

m

)⟩
. (15)

e can rewrite Ŵ β̂m − W ∗β∗
m = Urm, for all m ∈ [M], where

m ∈ R2k is an idiosyncratic projection vector for system m. Since
ur joint estimator is a least squares objective with bilinear terms,
e first decompose the prediction error for the estimator, similar
o the linear regression setting (Du et al., 2020; Tripuraneni et al.,
021). In subsequent analyses, we use different matrix concentra-
ion results and LTI estimation theory in order to account for the
emporal dependence and spectral properties of the systems. Our
irst step is to bound the prediction error for all systems.

emma 3. For any fixed orthonormal matrix Ū ∈ Rd2×2k, the
total squared prediction error in (3) for (Ŵ , B̂) can be decomposed
as follows:

1
2

M∑X̃m(W ∗β∗

m − Ŵ β̂m)
2
F

m=1

9

≤

√ M∑
m=1

η̃⊤
m X̃mŪ

2
V̄−1
m

√2
M∑

m=1

X̃m(W ∗β∗
m − Ŵ β̂m)

2
2

+

√ M∑
m=1

η̃⊤
m X̃mŪ

2
V̄−1
m

√ M∑
m=1

X̃m(Ū − U)rm
2

+

M∑
m=1

⟨
η̃m, X̃m(U − Ū)rm

⟩
. (16)

The proof of Lemma 3 can be found in the extended version of
his paper (Modi et al., 2021). Our next step is to bound each term
n the RHS of (16). To that end, let Nϵ be an ϵ-cover of the set of
rthonormal matrices in Rd2×2k. In (16), we select the matrix Ū

to be an element of Nϵ such that
Ū − U


F ≤ ϵ. Note that since

Nϵ is an ϵ-cover, such matrix Ū exists. We can bound the size of

such a cover using Lemma 5, and obtain |Nϵ | ≤

(
6
√
d

ϵ

)2d2k
.

We now bound each term in the following propositions using
the auxiliary results in Section 9 and covariance matrix bounds in
the previous section. The detailed proofs for the following results
are available in the extended version (Modi et al., 2021). Using
Proposition 9, we bound the expression in the second term of
(16), as follows.

Proposition 2. Under Assumption 3, for the noise process
{ηm(t)}∞t=1 defined for each system, with probability at least 1 − δZ ,
e have:

M∑
m=1

X̃m(Ū − U)rm
2 ≲ κϵ2

(
MT tr (C) + σ 2 log

2
δZ

)
.

Based on the bound in Proposition 2, we can bound the third
erm in (16) as follows:

roposition 3. Under Assumptions 2 and 3, with probability at
east 1 − δZ , we have:

M∑
m=1

⟨
η̃m, X̃m(U − Ū)rm

⟩
≲

√
κϵ

(
MT tr (C) + σ 2 log 1

δZ

)
. (17)

Next, we show a multitask concentration of martingales pro-
ected on a low-rank subspace.

roposition 4. For an arbitrary orthonormal matrix Ū ∈ Rd2×2k

n the ϵ-cover Nϵ defined in Lemma 5, let Σ ∈ Rd2×d2 be a positive
efinite matrix, and define Sm(τ ) = η̃m(τ )⊤X̃m(τ )Ū , V̄m(τ ) =

¯ ′
(
Σ̃m(τ ) + Σ

)
Ū , and V0 = Ū ′ΣŪ . Then, letting E1(δU ) be the

vent
M∑

m=1

∥Sm(T )∥2
V̄−1
m (T )

≤ 2σ 2 log

⎛⎝ΠM
m=1

det(V̄m(T ))
det(V0)

δU

⎞⎠ ,

we have

P [E1(δU )] ≥ 1 −

(
6
√
2k

ϵ

)2d2k

δU . (18)

7.1. Proof of estimation error in Theorem 2

Proof. We now use the bounds we have shown for each term
before and give the final steps by using the error decomposition
in Lemma 3. Let |Nϵ | be the cardinality of the ϵ-cover of the set
of orthonormal matrices in Rd2×2k that we defined in Lemma 3.
Let V denote the expression ΠM det(V̄m(t)) . So, substituting the
m=1 det(V0)
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ermwise bounds from Proposition 2, Proposition 3, and Proposi-
ion 4 in Lemma 3, with probability at least 1 − |Nϵ | δU − δZ , it
olds that:

1
2

X (W ∗B∗
− Ŵ B̂)

2
F

≲

√
σ 2 log

(
V
δU

)X (W ∗B∗
− Ŵ B̂)


F

+

√
σ 2 log

(
V
δU

)√
κϵ2

(
MT tr (C) + σ 2 log

1
δZ

)
+

√
κϵ

(
MT tr (C) + σ 2 log

1
δZ

)
. (19)

For the matrix V0, we now substitute Σ = λId2 , which implies
hat det(V0)−1

= det(1/λI2k) =
(
1/λ

)2k. Similarly, for V̄m(T ),
e get det(V̄m(T )) ≤ λ̄2k. Thus, substituting δU = δ/3 |N |ϵ and

C = δ/3 in Theorem 1, with probability at least 1 − 2δ/3, the
pper-bound in Proposition 4 becomes:

M∑
m=1

η̃⊤

m X̃mŪ
2
V̄−1
m

≲ σ 2Mk log κ∞ + σ 2d2k log
k
δϵ

.

Substituting this in (19) with δZ = δ/3, c2 = max(σ 2, λ1(C)), with
probability at least 1 − δ, we have:

1
2

X (W ∗B∗
− Ŵ B̂)

2
F

≲

√
c2Mk log κ∞ + c2d2k log

k
δϵ

( X (W ∗B∗
− Ŵ B̂)


F

+

√
κϵ2

(
c2dMT + c2 log

1
δ

) )
+

√
κϵ

(
c2dMT + c2 log

1
δ

)
.

Noting that log 1
δ
≲ d2k log k

δϵ
for ϵ =

k
√

κd2T
, with probability

t least 1 − δ, we get:

1
2

X (W ∗B∗
− Ŵ B̂)

2
F

≲

(√
c2Mk log κ∞ + c2d2k log κdT

δ

)X (W ∗B∗
− Ŵ B̂)


F

+

√
c2Mk log κ∞ + c2d2k log κdT

δ

√
c2
(

k2M
d3T

+
k3

d2T2
log κdT

δ

)
+ c2

(
Mk
d +

k2
T log κdT

δ

)
.

s k ≤ d2, we can rewrite the above inequality as:

1
2

X (W ∗B∗
− Ŵ B̂)

2
F

≲

√
c2
(
Mk log κ∞ + d2k log

κdT
δ

)X (W ∗B∗
− Ŵ B̂)


F

+ c2
(
Mk log κ∞ +

d2k
T

log
κdT
δ

)
.

The above quadratic inequality for the prediction errorX (W ∗B∗
− Ŵ B̂)

2
F

implies the following bound, which holds
with probability at least 1 − δ:X (W ∗B∗

− Ŵ B̂)
2 ≲ c2

(
Mk log κ∞ + d2k log

κdT
)

.

F δ

10
Since the smallest eigenvalue of the matrix Σm =
∑T

t=0 Xm(t)
m(t)′ is at least λ (Theorem 1), we can convert the above predic-

tion error bound to an estimation error bound and getW ∗B∗
− Ŵ B̂

2
F
≲

c2
(
Mk log κ∞ + d2k log κdT

δ

)
λ

,

which implies the desired bound for the solution of (3). ■

8. Proof of Theorem 3

Here, we provide the key steps for bounding the average
estimation error across the M systems for the estimator in (3)
in presence of misspecifications Dm ∈ Rd×d:

Am =

(
k∑

i=1

β∗

m[i]W ∗

i

)
+ Dm,

where we use ζm to denote the bound on misspecification in task
m and set ζ̄ 2

=
∑M

m=1 ζ 2
m. In the presence of misspecifications, we

have ∆ := Θ̃∗
−Θ̂ = VR+D, where V ∈ Od2×2k is an orthonormal

matrix, R ∈ R2k×M , and D ∈ Rd2×M is the misspecification
error. As the analysis here shares its template with the proof
of Theorem 2, we provide a sketch with the complete details
delegated to the extended version (Modi et al., 2021). Same as in
Section 7, we start with the fact that (Ŵ , B̂) minimize the squared
loss in (3). However, in this case, we get an additional term caused
by on the misspecifications Dm:

1
2

M∑
m=1

X̃m(W ∗β∗

m − Ŵ β̂m)
2
2

≤

M∑
m=1

⟨
η̃m, X̃m

(
Ŵ β̂m − W ∗β∗

m

)⟩
+

M∑
m=1

2
⟨
X̃mD̃m, X̃m

(
Ŵ β̂m − W ∗β∗

m

)⟩
. (20)

We follow a similar proof strategy as in Section 7 and account
for the additional terms arising due to the misspecifications Dm.
he error in the shared part, Ŵ β̂m −W ∗β∗

m, can still be rewritten
as Urm where U ∈ Rd2×2k is a matrix containing an orthonormal
basis of size 2k in Rd2 and rm ∈ R2k is the system specific vector.
We now show a decomposition similar to Lemma 3:

Lemma 4. Under the misspecified shared linear basis structure in
(10), for any fixed orthonormal matrix Ū ∈ Rd2×2k, the low rank
part of the total squared error can be decomposed as follows:

1
2

M∑
m=1

X̃m(W ∗β∗

m − Ŵ β̂m)
2
F

≤

√ M∑
m=1

η̃⊤
m X̃mŪ

2
V̄−1
m

√2
M∑

m=1

X̃m(W ∗β∗
m − Ŵ β̂m)

2
2

+

M∑
m=1

⟨
η̃m, X̃m(U − Ū)rm

⟩

+

√ M∑
m=1

η̃⊤
m X̃mŪ

2
V̄−1
m

√2
M∑

m=1

X̃m(Ū − U)rm
2

+2
√

λ̄ζ̄

√ M∑X̃m

(
Ŵ β̂m − W ∗β∗

m

)2
2
. (21)
m=1
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We bound each term on the RHS of (21) individually. Similar
to Section 7, we choose the orthonormal Rd2×2k matrix Ū ∈ Nϵ .
Then, we use the following results, for which the proofs are
provided in the longer version (Modi et al., 2021).

Proposition 5 (Bounding
∑M

m=1

X̃m(Ū − U)rm
2). For the model

in (10), with probability at least 1 − δZ , it holds that
M∑

m=1

X̃m(Ū − U)rm
2 ≲ κϵ2

(
MT tr (C) + σ 2 log 2

δZ
+λ̄ζ̄ 2

)
.

(22)

Proposition 6 (Bounding
∑M

m=1

⟨
η̃m, X̃m(U − Ū)rm

⟩
). Under As-

sumption 2,(10), with probability at least 1 − δZ we have:
M∑

m=1

⟨
η̃m, X̃m(U − Ū)rm

⟩
≲

√
κϵ

(
MT tr (C) + σ 2 log

1
δZ

)
+

√
κλ̄

√
MT tr (C) + σ 2 log

1
δZ

ϵζ̄ . (23)

Finally, we are ready to put the above intermediate results
ogether. Using the decomposition in Lemma 4 and the term-wise
pper bounds above, one can derive the desired estimation error
ate. Below, we show the final steps with appropriate substitution
or constants. The full details are available online in Modi et al.
2021).

As before, we substitute the termwise bounds from Proposi-
ions 4–6 in Lemma 4 with values δU = δ/3 |N |ϵ , δC = δ/3 (in
heorem 1), δZ = δ/3. Noting that k ≤ d2 and log 1

δ
≲ d2k log k

δϵ
,

by setting ϵ =
k

√
κd2T

we finally get the following quadratic

nequality in the error term Ξ :=

X (W ∗B∗
− Ŵ B̂)


F
:

1
2
Ξ 2 ≲

(√
c2
(
Mk log κ∞ + d2k log

κdT
δ

)
+

√
λ̄ζ̄

)
Ξ

+ c2
(
Mk log κ∞ +

d2k
T

log
κdT
δ

)
+c

√
λ̄ζ̄ 2

T

(
Mk log κ∞ +

d2k
T

log
κdT
δ

)
.

he quadratic inequality for the prediction error

X (W ∗B∗
− Ŵ B̂)

2
F
implies the following bound with probability

t least 1 − δ:

Ξ 2 ≲ c2
(
Mk log κ∞ + d2k log

κdT
δ

)
+ λ̄ζ̄ 2.

Since λ = minm λm, an estimation error bound for the solution of
3):

M∑
m=1

Âm − Am

2
F

≲
c2
(
Mk log κ∞ + d2k log κdT

δ

)
λ

+ (κ∞ + 1)ζ̄ 2.

9. Auxiliary probabilistic inequalities

In this section, we state the general probabilistic inequali-
ties which we used in proving the main results in the previous
11
sections. The proofs for these results can be found in the full
preprint (Modi et al., 2021).

Proposition 7 (Bounding the Noise Sequence). For T = 0, 1, . . .,
and 0 < δ < 1, let Ebdd be the event

Ebdd(δ) :=

{
max

1≤t≤T ,m∈[M]

∥ηm(t)∥∞ ≤

√
2σ 2 log 2dMT

δ

}
. (24)

hen, we have P[Ebdd] ≥ 1 − δ. For simplicity, we denote the above
pper-bound by bT (δ).

roposition 8 (Noise Covariance Concentration). For T and 0 <

< 1, let Eη be the event

Eη(δ) :=

{
3λmin(C)

4 I ⪯
1
T

T∑
t=1

ηm(t)ηm(t)′ ⪯
5λmax(C)

4 I

}
.

hen, if T ≥ Tη(δ) :=
cηdσ2

λmin(C)2
log 18/δ, we have P[Ebdd(δ)∩Eη(δ)] ≥

1 − 2δ.

Define Z ∈ RdT×M as the pooled noise matrix as follows:

Z = [η̃1(T )|η̃2(T ) · · · |η̃M (T )] , (25)

with each column vector ηm(T ) ∈ RdT as the concatenated noise
vector (ηm(1), ηm(2), . . . , ηm(T )) for the mth system.

Proposition 9 (Bounding Total Magnitude of Noise). For the joint
noise matrix Z ∈ RdT×M defined in (25), with probability at least
1 − δ, we have:

∥Z∥
2
F ≤ MT tr (C) + log

2
δ
.

We denote the above event by EZ (δ).

The following result shows a self-normalized martingale
ound for vector valued noise processes.

roposition 10. For the system in (1), for any 0 < δ < 1 and
ystem m ∈ [M], with prob. at least 1 − δ, we have:⏐⏐⏐⏐⏐

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐V̄−1/2

m (T − 1)
T−1∑
t=0

xm(t)ηm(t + 1)′
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

≤ σ

√8d log

(
5 det

(
V̄m(T − 1)

)1/2d
det (V )−1/2d

δ1/d

)
,

where V̄m(s) =
∑s

t=0 xm(t)xm(t)
′
+ V and V is a deterministic

ositive definite matrix.

emma 5 (Covering Low-Rank Matrices (Du et al., 2020)). For
he set of orthonormal matrices Od×d′

(with d > d′), there exists
ϵ ⊂ Od×d′

that forms an ϵ-net of Od×d′

in Frobenius norm such
that |Nϵ | ≤ ( 6

√
d′

ϵ
)dd

′

, i.e., for every V ∈ Od×d′

, there exist V ′
∈ Nϵ

and ∥V − V ′
∥F ≤ ϵ.

10. Concluding remarks

We studied the problem of jointly learning multiple linear
time-invariant dynamical systems, under the assumption that
their transition matrices can be expressed based on an unknown
shared basis. Our finite-time analysis for the proposed joint es-
timator shows that pooling data across systems can provably
improve over individual estimators, even in presence of moderate
misspecifications. The results highlight the critical roles of the
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pectral properties of the system matrices and the number of the
asis matrices, in the efficiency of joint estimation. Further, we
haracterize fundamental differences between joint estimation of
ystem dynamics using dependent state trajectories and learning
rom independent stationary observations. Considering different
hared structures, extensions of the presented results to explosive
ystems, or those with high-dimensional transition matrices, as
ell as joint learning of multiple non-linear dynamical systems,
ll are interesting avenues for future work that this paper paves
he road towards.
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